
INSTRUCTIONS FOR USE

PLC Automation
Automation Builder, AC500
Automation Builder 2.5.0, AC500 V3, AC500-eCo V3, AC500-XC V3

—
 Table of contents

1 PLC Automation with V3 CPUs.. 8
1.1 About this document.. 8

1.1.1 Documentation structure.. 8
1.1.2 Your tasks - documentation from the user's point of view.. 9
1.1.3 Older revisions of this document.. 11
1.1.4 Use the "magic button" to display your current position in the table of contents...................... 11

1.2 Getting started... 11
1.2.1 Structure of safety notices.. 12
1.2.2 Cyber security.. 13
1.2.2.1 Defense in depth... 14
1.2.2.2 Secure operation... 15
1.2.2.3 Hardening.. 18
1.2.2.4 Open Ports and Services.. 19
1.2.3 Automation Builder update notification.. 19
1.2.4 Managing your licenses... 20
1.2.4.1 Identifying the installed license... 20
1.2.4.2 Selecting the license used on Automation Builder startup.. 20
1.2.4.3 Checking licenses with CodeMeter control center.. 22
1.2.4.4 Setting dedicated network servers in search list... 23
1.2.4.5 Restarting license check with a dongle bound license.. 25
1.2.4.6 Removing trial license to remove expiring message... 26
1.2.4.7 Network licenses... 27
1.2.4.8 License borrowing manager.. 32
1.2.4.9 Transfering an Automation Builder license... 34
1.2.4.10 Generating license information file for support... 46
1.2.5 Set-up communication parameters in Windows... 47
1.2.6 Further information... 49
1.2.7 PLC runtime and demo licensing... 50
1.2.8 Create log files for support... 50
1.2.9 Menues, views, windows.. 51
1.2.9.1 Start page and menus... 52
1.2.9.2 'All Messages' window.. 52
1.2.10 Device repository... 53
1.2.11 Creating and configuring projects... 56
1.2.12 Handling of AC500 projects... 56
1.2.13 Connection of devices.. 57
1.2.13.1 Configuring devices... 57
1.2.13.2 Symbolic names for variables, inputs and outputs.. 58
1.2.13.3 Update of AC500 devices... 59
1.2.13.4 Comparing objects.. 59
1.2.14 Connection of serial interfaces... 60
1.2.14.1 Programming of applications... 60
1.2.15 I/O mapping.. 60
1.2.16 AC500 PLC configuration... 60
1.2.17 Converting an AC500 V2 project to an AC500 V3 project... 61
1.2.18 Example projects.. 61
1.2.18.1 Example projects for AC500 V3.. 61
1.2.18.2 Example projects for AC500-eCo V3.. 122

Table of contents

2022/01/213ADR010583, 3, en_US2

1.3 Automation Builder installation manager... 169
1.3.1 Installing customer specific package.. 170
1.3.2 Adding or removing installed software packages... 171
1.3.3 Automation Builder update notification.. 172
1.3.4 Checking for updates... 175
1.3.5 Uninstalling Automation Builder... 175

1.4 Programming with CODESYS... 176
1.4.1 CODESYS Development System.. 176
1.4.1.1 Configuring CODESYS... 180
1.4.1.2 Creating and Configuring a Project... 186
1.4.1.3 Exporting and Transferring Projects.. 193
1.4.1.4 Comparing projects... 195
1.4.1.5 Protecting and Saving Projects... 197
1.4.1.6 Localizing projects... 211
1.4.1.7 Configuring I/O Links... 213
1.4.1.8 Programming of Applications.. 222
1.4.1.9 Working with Controller Networks... 352
1.4.1.10 Downloading an Application to the PLC.. 379
1.4.1.11 Testing and Debugging.. 394
1.4.1.12 Application at Runtime.. 409
1.4.1.13 Updating an Application on the PLC... 439
1.4.1.14 Copying files to/from PLC... 441
1.4.1.15 Using the Command-Line Interface.. 442
1.4.1.16 Using Libraries.. 448
1.4.1.17 Managing devices... 452
1.4.1.18 Security... 453
1.4.1.19 Reference, Programming.. 460
1.4.1.20 Reference, User Interface... 817
1.4.2 Fieldbus Support.. 1216
1.4.2.1 Device Diagnosis.. 1216
1.4.2.2 Fieldbus Devices and I/O Drivers.. 1217
1.4.2.3 Bus Cycle Task.. 1219
1.4.2.4 EtherNet/IP Configurator... 1220
1.4.3 OPC UA server for AC500 V3 products... 1236
1.4.3.1 General... 1236
1.4.3.2 Creating a project for OPC UA access.. 1236
1.4.3.3 Use node name... 1237
1.4.3.4 Use UaExpert client.. 1237
1.4.3.5 Working with encryption.. 1239
1.4.3.6 Changing variables via UaExpert client.. 1245
1.4.3.7 Configuring OPC UA client.. 1246
1.4.4 Libraries... 1248
1.4.4.1 Guidelines for creating libraries... 1249
1.4.5 CODESYS Visualization.. 1249
1.4.5.1 Preparing CODESYS and projects... 1251
1.4.5.2 Limitation of the number of usable web pages on AC500 V3 PLCs................................. 1253
1.4.5.3 Designing a visualization with elements... 1254
1.4.5.4 Configuring user inputs... 1267
1.4.5.5 Setting Up User Management... 1282
1.4.5.6 Setting Up Multiple Languages... 1286
1.4.5.7 Visualizing alarm management... 1289

Table of contents

2022/01/21 3ADR010583, 3, en_US 3

1.4.5.8 Animating visualization elements.. 1293
1.4.5.9 Displaying data arrays in tables.. 1298
1.4.5.10 Displaying data curve with trace... 1306
1.4.5.11 Displaying data curve with trend... 1309
1.4.5.12 Displaying and Editing Text Files.. 1315
1.4.5.13 Configuring a variable assignment with unit conversion... 1320
1.4.5.14 Using recipes in visualization elements.. 1320
1.4.5.15 Creating a structured user interface.. 1321
1.4.5.16 Configuring and executing display variants.. 1354
1.4.5.17 Applying Visualization Styles.. 1360
1.4.5.18 Reference, Programming.. 1366
1.4.5.19 Reference, user interface.. 1717
1.4.5.20 Reference, visualization style editor... 2127
1.4.5.21 Tutorial.. 2131

1.5 Libraries and solutions.. 2146
1.5.1 Information on libraries... 2146
1.5.2 Reference to CODESYS (V3).. 2146
1.5.3 Library Manager functionality... 2146
1.5.3.1 Search function... 2147
1.5.3.2 View embedded documentation of all libraries.. 2148
1.5.3.3 Access version history.. 2149
1.5.3.4 Add user defined libraries... 2150
1.5.3.5 Download missing libraries... 2151
1.5.4 ACS/DCS drives libraries... 2152
1.5.4.1 Introduction... 2152
1.5.4.2 Overview of the library.. 2169
1.5.5 BACnet-BC... 2209
1.5.5.1 Introduction to BACnet.. 2209
1.5.5.2 AC500 and BACnet... 2209
1.5.5.3 AC500 V3 as BACnet Building Controller (B-BC)... 2211
1.5.6 CAA library guidelines.. 2225
1.5.7 Datalogging library... 2225
1.5.7.1 Overview... 2225
1.5.7.2 Examples.. 2233
1.5.8 High Availability Modbus TCP.. 2234
1.5.8.1 HA-Modbus TCP - System technology... 2234
1.5.9 Motion Solution Wizard.. 2278
1.5.9.1 Create new project.. 2280
1.5.9.2 Select PLC.. 2280
1.5.9.3 Select servo drive (motion axis).. 2281
1.5.9.4 Configure servo drive (motion axis).. 2282
1.5.9.5 Open Motion Solution Wizard editor page and generate application................................ 2286
1.5.9.6 Check generated application.. 2286
1.5.9.7 Optional: Add and configure virtual axis for simulation without real axis 2287
1.5.10 Motion control library.. 2288
1.5.10.1 Preconditions for the use of the libraries... 2288
1.5.10.2 Overview... 2290
1.5.10.3 PLCopen... 2299
1.5.10.4 PLC-based motion control... 2329
1.5.10.5 Examples.. 2375
1.5.11 MQTT client library... 2376

Table of contents

2022/01/213ADR010583, 3, en_US4

1.5.11.1 Structures and enumerations.. 2376
1.5.11.2 Global variables... 2379
1.5.12 PLCopen libraries... 2379
1.5.12.1 Common function block state machine... 2379

1.6 PLC integration (hardware)... 2384
1.6.1 Product overview and comparison... 2384
1.6.1.1 Comparison of AC500 V3 terminal bases... 2384
1.6.1.2 Comparison of features and protocols.. 2388
1.6.1.3 Ethernet protocols and ports for AC500 V3 products... 2389
1.6.2 PLC introduction... 2395
1.6.2.1 Safety instructions... 2395
1.6.2.2 Cyber security... 2398
1.6.2.3 License and third party information... 2405
1.6.2.4 Regulations... 2406
1.6.2.5 Definitions: PLC system start-up... 2406
1.6.2.6 Device lists.. 2408
1.6.2.7 PLC system description.. 2421
1.6.2.8 AC500-S.. 2429
1.6.2.9 Converting an AC500 V2 project to an AC500 V3 project.. 2430
1.6.3 Device specifications.. 2430
1.6.3.1 Status LEDs, display and control elements.. 2430
1.6.3.2 Terminal bases (AC500 standard)... 2430
1.6.3.3 Processor modules... 2440
1.6.3.4 Communication modules (AC500 standard)... 2528
1.6.3.5 Terminal units (AC500 standard)... 2549
1.6.3.6 I/O modules... 2569
1.6.3.7 Communication interface modules (S500).. 3043
1.6.3.8 Accessories... 3288
1.6.4 System assembly, construction and connection.. 3333
1.6.4.1 Introduction... 3333
1.6.4.2 Regulations... 3334
1.6.4.3 Safety instructions... 3335
1.6.4.4 Overall information (valid for complete AC500 product family)... 3338
1.6.4.5 AC500-eCo... 3352
1.6.4.6 AC500 (Standard)... 3398
1.6.4.7 AC500-XC... 3450
1.6.4.8 AC500-S.. 3454
1.6.5 System technology for AC500 V3 products... 3455
1.6.5.1 System technology of CPU and overall system.. 3456
1.6.5.2 System technology of the AC500 communication modules.. 3599
1.6.5.3 System technology of the communication interface modules... 3603
1.6.6 Configuration in Automation Builder for AC500 V3 products... 3631
1.6.6.1 General settings.. 3631
1.6.6.2 PLC devices and components.. 3662
1.6.6.3 Protocols and special servers... 3839
1.6.6.4 Data transfer and programming.. 3945
1.6.6.5 Server installation.. 3952
1.6.6.6 Converting an AC500 V2 project to an AC500 V3 project.. 3993
1.6.7 Storage devices for AC500 V3 products.. 3994
1.6.7.1 Introduction of AC500 storage devices for AC500 Products... 3994
1.6.7.2 Memory card in AC500 V3.. 3999

Table of contents

2022/01/21 3ADR010583, 3, en_US 5

1.6.7.3 Flash memory for AC500 V3 products.. 4010
1.6.7.4 Health monitoring.. 4010

1.7 Diagnosis and debugging for AC500 V3 products... 4011
1.7.1 The diagnosis system... 4011
1.7.1.1 Access to diagnosis data.. 4012
1.7.1.2 Diagnosis in CPU display.. 4013
1.7.1.3 Diagnosis in Automation Builder... 4017
1.7.1.4 Diagnosis in IEC application... 4020
1.7.1.5 Structure of error numbers.. 4044
1.7.1.6 Diagnosis history file... 4045
1.7.2 Online diagnosis in Automation Builder... 4046
1.7.2.1 Short description and overview... 4046
1.7.2.2 Entering/leaving the online mode.. 4046
1.7.2.3 Project tree in online mode... 4047
1.7.2.4 CPU diagnosis views.. 4051
1.7.2.5 Live values in views with I/O components... 4056
1.7.2.6 Communication module and fieldbus diagnosis.. 4056
1.7.3 Diagnosis messages.. 4062
1.7.3.1 CPU diagnosis.. 4062
1.7.3.2 I/O bus diagnosis.. 4063
1.7.3.3 S500 I/O modules diagnosis... 4065
1.7.3.4 Communication modules diagnosis.. 4074

1.8 Engineering interfaces and tools... 4112
1.8.1 Export and import interfaces.. 4112
1.8.1.1 Exporting and importing ECAD data (PBF)... 4112
1.8.1.2 Exporting and importing I/O mapping (CSV)... 4116
1.8.1.3 Exporting and importing device list (CSV)... 4118
1.8.2 CODESYS Security Agent... 4122
1.8.2.1 Integration in CODESYS Development System... 4122
1.8.2.2 Encrypted Communication with Devices via Controller Certificates................................. 4122
1.8.2.3 Encryption of the Boot Application, Download, and Online Change................................. 4123
1.8.2.4 Reference, User Interface... 4125
1.8.3 CODESYS Static Analysis... 4129
1.8.3.1 Configuring and Running Static Analysis.. 4130
1.8.3.2 Reference, User Interface... 4133
1.8.3.3 Reference, Programming.. 4148
1.8.4 Drive composer pro integration.. 4227
1.8.5 Professional Version Control.. 4231
1.8.5.1 Getting Started.. 4232
1.8.5.2 Version control.. 4232
1.8.5.3 Using an SVN Repository... 4232
1.8.5.4 Using Working Copies... 4234
1.8.5.5 Reference, User Interface... 4235
1.8.6 Subversion... 4272
1.8.6.1 Project Version Control with Subversion... 4272
1.8.6.2 SVN Support Examples.. 4275
1.8.7 Python.. 4277
1.8.7.1 Python script support.. 4277
1.8.7.2 Working with script objects.. 4278
1.8.7.3 Python script editor... 4280

1.9 Human machine interface... 4281

Table of contents

2022/01/213ADR010583, 3, en_US6

1.9.1 Panel Builder interface... 4281
1.9.1.1 Adding desired AC500 PLC to the project.. 4281
1.9.1.2 Creating a Panel Builder project... 4282
1.9.1.3 Configuring Panel Builder... 4285
1.9.2 SCADA Integration... 4288
1.9.2.1 Creating Workspace and Project.. 4288
1.9.2.2 Loading existing Workspace and Project.. 4290
1.9.2.3 Checking the Gateway Settings in a Zenon Project.. 4290
1.9.2.4 Generating a Symbol File.. 4291
1.9.2.5 Updating Standard Data Types... 4291
1.9.2.6 Creating Data Types... 4292
1.9.2.7 Importing Data Types in zenon Editor... 4292

1.10 Reference, function blocks.. 4292
1.11 Contact ABB.. 4408

2 Index... 4409

Table of contents

2022/01/21 3ADR010583, 3, en_US 7

—
1 PLC Automation with V3 CPUs
1.1 About this document
1.1.1 Documentation structure

Ä Chapter 1.1.4 “Use the "magic button" to display your current position in the
table of contents” on page 11.

Ä See also chapter " Your tasks - documentation from the user's point of view" on page 9.

Table 1: Guidance for this documentation: Main chapters
 Getting started

Basic information to start with Automation Builder and AC500
PLC, e.g., licensing, GUI explanations, example projects.

Ä Chapter 1.2 “Getting
started” on page 11

 Automation Builder installation manager
Add, remove or modify software packages in Automation
Builder.

Ä Chapter 1.3 “Automation
Builder installation manager”
on page 169

 Programming with CODESYS
Information about IEC programming in Automation Builder,
including description of CODESYS libraries.

Ä Chapter 1.4 “Programming
with CODESYS” on page 176

 Libraries and solutions
ABB libraries. Overview and description of integrated standard
libraries and solution libraries available as library packages.
Explanation of the concept of solution libraries ("system tech-
nology"). Description of the library elements, like function
blocks and functions.

Ä AC500 V3 library descrip-
tions: Chapter 1.5 " Libraries
and solutions" on page 2146

Ä Chapter 1.10 “Reference,
function blocks” on page 4292

 PLC integration (hardware)
Hardware description and specifications. Overview on module
variants, connections, technical data, order data, assembly of
modules. Device configuration in Automation Builder. Explan-
ation of system behavior ("system technology"), interaction
between PLC behavior (firmware), configuration, programming
and use cases.

Ä Chapter 1.6 “PLC integra-
tion (hardware)” on page 2384

 Diagnosis and debugging
Explanation of the diagnosis system in the PLC, the display
of error messages at the CPU and in IEC applications. Online
diagnosis in Automation Builder. List of diagnosis and error
messages.

Ä Chapter 1.7 “Diagnosis
and debugging for AC500 V3
products” on page 4011

 Engineering interfaces and tools
Information on add-on packages, e.g., for security static anal-
ysis or Project Version Control. Mainly for advanced users.

Ä Chapter 1.8 “Engi-
neering interfaces and tools”
on page 4112

 Human machine interface (HMI)
Information on HMI with Automation Builder. Configuration of
HMI devices in Automation Builder.

Ä Chapter 1.9
“Human machine interface”
on page 4281

 Contact ABB
Contact information about our sales and support teams.

Ä Chapter 1.11 “Contact
ABB” on page 4408

PLC Automation with V3 CPUs
About this document > Documentation structure

2022/01/213ADR010583, 3, en_US8

1.1.2 Your tasks - documentation from the user's point of view
All information about AC500, AC500-XC and AC500-eCo is available in this manual.
All information about AC500-S and AC500-S-XC is available online in the safety user manual.

Ä Chapter 1.1.4 “Use the "magic button" to display your current position in the
table of contents” on page 11.

Ä See also chapter " Documentation structure" on page 8.

PLC system description Ä Chapter 1.6.2.7 “PLC system description”
on page 2421

Hardware descriptions Ä Chapter 1.6.3 “Device specifications”
on page 2430

Comparison of product features ● Ä Chapter 1.6.1 “Product overview and
comparison” on page 2384

● via product catalog (online)

Assembly of modules Ä Chapter 1.6.4 “System assembly, construc-
tion and connection” on page 3333

Connection of modules In the device specifications, select the desired
product to access the connection for this
device Ä Chapter 1.6.3 “Device specifica-
tions” on page 2430.
“Device specifications è Product group
è Product type è Electrical connection”

Installation instructions AC500 V2 + V3 (online)

Getting started with Automation Builder Ä Chapter 1.2 “Getting started” on page 11

Installation of Automation Builder AC500 V2 + V3 (online)

License management for Automation Builder Ä Chapter 1.2.4 “Managing your licenses”
on page 20

Getting started with example projects Ä Chapter 1.2.18 “Example projects”
on page 61

Firmware update Ä Chapter 1.6.6.1.4 “Firmware identification
and update” on page 3652

Configuration of PLC hardware in Automation
Builder

Ä Chapter 1.6.6 “Configuration in Automation
Builder for AC500 V3 products” on page 3631

Programming with CODESYS Ä Chapter 1.4 “Programming with CODESYS”
on page 176

Function block libraries Libraries by ABB Ä Chapter 1.5 “Libraries and
solutions” on page 2146

CODESYS libraries by 3S Ä Chapter 1.4.4
“Libraries” on page 1248

System behavior ("system technology"), inter-
action between PLC (firmware), configuration,
programming and use cases.

Ä Chapter 1.6.5 “System technology for
AC500 V3 products” on page 3455

As a mechan-
ical/electrical
designer

As a switchgear
cabinet manu-
facturer

As a program-
ming engineer

PLC Automation with V3 CPUs

About this document > Your tasks - documentation from the user's point of view

2022/01/21 3ADR010583, 3, en_US 9

https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch
https://share.library.abb.com/api/v4?cid=9AAC177287&dk=Instruction&dk=Manual&dk=Operating%20instruction&dk=Recycling%20instructions&dk=Service%20instruction&q=installation%20instruction
https://search.abb.com/library/Download.aspx?DocumentID=9AKK107045A3040&LanguageCode=en&DocumentPartId=&Action=Launch

Visualization and web visualization: Example
projects

Ä Chapter 1.2.18.1.2 “Example project for
central I/O expansion” on page 63

Visualization and web visualization Ä Chapter 1.4.5 “CODESYS Visualization”
on page 1249

Add, remove or modify software packages in
Automation Builder via installation manager

Ä Chapter 1.3 “Automation Builder installation
manager” on page 169

Add-on software packages Ä Chapter 1.8 “Engineering interfaces and
tools” on page 4112

HMI, e.g., interface to control panels and
SCADA systems

Ä Chapter 1.9 “Human machine interface”
on page 4281

Function block libraries Libraries by ABB Ä Chapter 1.5 “Libraries and
solutions” on page 2146

CODESYS libraries by 3S Ä Chapter 1.4.4
“Libraries” on page 1248

Hardware descriptions Ä Chapter 1.6.3 “Device specifications”
on page 2430

Diagnosis and debugging Ä Chapter 1.7 “Diagnosis and debugging for
AC500 V3 products” on page 4011

Diagnosis and debugging Ä Chapter 1.7 “Diagnosis and debugging for
AC500 V3 products” on page 4011

List of diagnosis and error messages Ä Chapter 1.7.3 “Diagnosis messages”
on page 4062

Contact the PLC support team Ä Chapter 1.11 “Contact ABB” on page 4408

AC500 V3 CPU specifications Ä Chapter 1.6.3.3 “Processor modules”
on page 2440

Comparison of product features ● Ä Chapter 1.6.1 “Product overview and
comparison” on page 2384

● via product catalog (online)

Convert an AC500 V2 project to an AC500 V3
project

Ä Chapter 1.2.17 “Converting an AC500 V2
project to an AC500 V3 project” on page 61

Compatible modules with AC500 CPUs Ä Chapter 1.6.3 “Device specifications”
on page 2430

Documentation for AC500 V2 AC500 V2 (online)

Getting started with engineering suite
Automation Builder

Ä Chapter 1.2 “Getting started” on page 11

PLC system description Ä Chapter 1.6.2.7 “PLC system description”
on page 2421

Hardware descriptions Ä Chapter 1.6.3 “Device specifications”
on page 2430

System technology: System behavior, interac-
tion between PLC behavior (firmware), config-
uration, programming and use cases.

Ä Chapter 1.6.5 “System technology for
AC500 V3 products” on page 3455

As a commis-
sioning engi-
neer

As a service
engineer

As a specialist
for AC500 V2
CPU range, new
to AC500 V3
CPU range

As a specialist
for PLCs, new to
AC500 PLC

PLC Automation with V3 CPUs
About this document > Your tasks - documentation from the user's point of view

2022/01/213ADR010583, 3, en_US10

https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010582&LanguageCode=en&DocumentPartId=&Action=Launch

1.1.3 Older revisions of this document
You can always find all revisions of our documents on our website.
AC500 V3 (online)

Revisions Select any of the revisions
Latest revision Get a link to the always latest revision
This revision Get a direct link to the selected revision

1.1.4 Use the "magic button" to display your current position in the table of contents
Documentation is opened in a PDF reader. PDF readers often provide a button to syn-

chronize with the table of contents. Usually, you can find the "magic button" in the bookmarks
tab. For example, it looks like this: /

Select the "magic button".

ð Your current position will be highlighted in the bookmark tab.

1.2 Getting started
ABB Automation Builder is the integrated software suite for machine builders and system inte-
grators wanting to automate their machines and systems in a productive way. Combining the
tools required for configuring, programming, debugging and maintaining automation projects
from a common intuitive interface, Automation Builder addresses the largest single cost element
of most of today's industrial automation projects: software. ABB Automation Builder covers the
engineering of ABB PLCs, Safety PLCs, control panels, drives, motion and robots.

Before starting Automation Builder configuration read the version specific
information provided in the Automation Builder readme file. It describes new
features and functions as well as workarounds on known problems. The
readme file is stored in the installation directory of Automation Builder, how-
ever can be downloaded as well from ABB website http://new.abb.com/plc/
automationbuilder.

ABB
Automation
Builder - One
holistic suite

Automation
Builder ReadMe

PLC Automation with V3 CPUs

Getting started

2022/01/21 3ADR010583, 3, en_US 11

https://library.abb.com/d/3ADR010583
http://new.abb.com/plc/automationbuilder
http://new.abb.com/plc/automationbuilder

1.2.1 Structure of safety notices
Throughout the documentation we use the following types of safety and information notices.
They make you aware of safety considerations or give advice on AC500 products usage.

1 Safety alert symbol indicates the danger.
2 Signal word classifies the danger.
3 Type and source of the risk are mentioned.
4 Possible consequences of the risk are described.
5 Measures to avoid these consequences (enumerations).

DANGER!
DANGER indicates a hazardous situation which, if not avoided, will result in
death or serious injury.
Ensure to take measures to prevent the described impending danger.

WARNING!
WARNING indicates a hazardous situation which, if not avoided, could result in
death or serious injury.
Ensure to take measures to prevent the described dangerous situation.

CAUTION!
CAUTION indicates a hazardous situation which, if not avoided, could result in
minor or moderate injury.
Ensure to take measures to prevent the described dangerous situation.

NOTICE!
NOTICE is used to address practices not related to physical injury but might
lead to property damage for example damage of the product.
Ensure to take measures to prevent the described dangerous situation.

NOTE provides additional information on the product, e.g., advices for configu-
ration or best practice scenarios.

Signal words

PLC Automation with V3 CPUs
Getting started > Structure of safety notices

2022/01/213ADR010583, 3, en_US12

1.2.2 Cyber security
This product is designed to be connected to and to communicate information and data via a
network interface. It is your sole responsibility to provide and continuously ensure a secure con-
nection between the product and your network or any other network (as the case may be). You
shall establish and maintain any appropriate measures (such as but not limited to the installation
of firewalls, application of authentication measures, encryption of data, installation of anti-virus
programs, etc.) to protect the product, the network, its system and the interface against any kind
of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data
or information. ABB Ltd and its affiliates are not liable for damages and/or losses related to such
security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data
or information.

Although ABB provides functionality testing on the products and updates that we release,
you should institute your own testing program for any product updates or other major system
updates (to include but not limited to code changes, configuration file changes, third party
software updates or patches, hardware exchanges, etc.) to ensure that the security measures
that you have implemented have not been compromised and system functionality in your envi-
ronment is as expected. This also applies to the operating system. Security measures (such
as but not limited to the installation of latest patches, installation of firewalls, application of
authentication measures, installation of anti-virus programs, etc.) are in your responsibility. You
have to be aware that operating systems provide a considerable number of open ports that
should be monitored carefully for any threats.
It has to be considered that online connections to any devices are not secured. It is your
responsibility to assure that connections are established to the correct device (and e.g. not to an
unknown device pretending to be a known device type). Furthermore you have to take care that
confidential data exchanged with the PLC is either compiled or encrypted.

Security details for industrial automation is provided in a whitepaper on ABB website.

The firmware update files for the AC500 V3 PLC are digitally signed releases by ABB. During
the update process, these signatures are validated by a hardware security component in the
PLC. This way, the AC500 V3 PLC will only update with valid, authentic firmware, signed by
ABB.

As part of the ABB security concept the AC500 V3 PLC comes with minimal services opened
by default. Only the services needed for initial setup and programming are open before any
user application is downloaded Ä Chapter 1.6.1.3 “Ethernet protocols and ports for AC500 V3
products” on page 2389.

Only used services/ports should be enabled (e.g. to enable the functionality of
an FTPS server).

Whenever possible, use an encrypted communication between AC500 V3 devices and third
party devices, such as HMI devices. This is necessary to protect passwords and other data.

The AC500 V3 PLC contains a secure shell service to access core logging data in case of
problems which need a deeper analysis. This service is inactive by default, which means that no
one can access this privileged shell in the normal operating state.

Cyber security
disclaimer

Security related
deployment
guidelines for
industrial
automation
Signed firmware
updates

Open ports and
services

Secure commu-
nication

Secure shell
access for ABB
service

PLC Automation with V3 CPUs

Getting started > Cyber security

2022/01/21 3ADR010583, 3, en_US 13

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010317&LanguageCode=en&DocumentPartId=&Action=Launch

To activate this service, local access to the PLC is necessary and activation is only valid until
the next power cycle of the PLC. Once activated, the service run on TCP port 22. Each PLC
also protects the secure shell access by an individual password.

For more information around cyber security please see our FAQ.

1.2.2.1 Defense in depth
The defense in depth approach implements multi-layer IT security measures. Each layer pro-
vides its special security measures. All deployed security mechanisms in the system must be
updated regularly. It is also important to follow the system vendor’s recommendations on how
to configure and use these mechanisms. As a basis, the components must include security
functions such as:
● Virus protection
● Firewall protection
● Strong and regularly changed passwords
● User management
● Using VPN tunnels for connections between networks
Additional security components such as routers and switches with integrated firewalls should
be available. A defined user and rights concept managing access to the controllers and their
networks is mandatory. Finally, the manufacturer of the components should be able to quickly
discover weaknesses and provide patches.

Only used services/ports should be enabled (e.g. to enable the functionality of
an FTPS server).

References: CODESYS Security Whitepaper

IT resources vary in the extent to which they can be trusted. A common security architecture is
therefore based on a layered approach that uses zones of trust to provide increasing levels of
security according to increasing security needs. Less-trusted zones contain more-trusted zones
and connections between the zones are only possible through secure interconnections such as
firewallsFig. 1. All resources in the same zone must have the same minimum level of trust. The
inner layers, where communication interaction needs to flow freely between nodes, must have
the highest level of trust. This is the approach described in the IEC 62443 series of standards.
Firewalls, gateways, and proxies are used to control network traffic between zones of different
security levels, and to filter out any undesirable or dangerous material. Traffic that is allowed to
pass between zones should be limited to what is absolutely necessary because each type of
service call or information exchange translates into a possible route that an intruder may be able
to exploit. Different types of services represent different risks. Internet access, incoming e-mail
and instant messaging, for example, represent very high risks.

Frequently
asked questions

Security zones

PLC Automation with V3 CPUs
Getting started > Cyber security

2022/01/213ADR010583, 3, en_US14

https://share.library.abb.com/api/v4?cid=Root&q=3ADR010764
https://customers.codesys.com/fileadmin/data/customers/security/CODESYS-Security-Whitepaper.pdf

Fig. 1: Security zones

Fig. 1 shows three security zones, but the number of zones does not have to be as many or as
few as three. The use of multiple zones allows access between zones of different trust levels to
be controlled to protect a trusted resource from attack by a less trusted one.
High-security zones should be kept small and independent. They need to be physically pro-
tected, i.e. physical access to computers, network equipment and network cables must be
limited by physical means to authorized persons only. A high-security zone should obviously not
depend on resources in a less secure zone for its security. Therefore, it should form its own
domain that is administered from the inside, and not depend on, e.g., a domain controller in a
less secure network.
Even if a network zone is regarded as trusted, an attack is still possible: by a user or compro-
mised resource that is inside the trusted zone, or by an outside user or resource that succeeds
to penetrate the secure interconnection. Trust therefore depends also upon the types of meas-
ures taken to detect and prevent compromise of resources and violation of the security policy.
References: Security for Industrial Automation and Control Systems

1.2.2.2 Secure operation
The controller must be located in a protected environment in order to avoid accidental or
intended access to the controller or the application.
A protected environment can be:
● Locked control cabinets without connection from outside
● No direct internet connection
● Use firewalls and VPN to separate different networks
● Separate different production areas with different access controls
To increase security, physical access protection measures such as fences, turnstiles, cameras
or card readers can be added.
Follow these rules for the protected environment:
● Keep the trusted network as small as possible and independent from other networks.
● Protect the cross-communication of controllers and the communication between controllers

and field devices via standard communication protocols (fieldbus systems) using appro-
priate measures.

● Protect such networks from unauthorized physical access.
● Use fieldbus systems only in protected environments. They are not protected by additional

measures, such as encryption. Open physical or data access to fieldbus systems and their
components is a serious security risk.

PLC Automation with V3 CPUs

Getting started > Cyber security

2022/01/21 3ADR010583, 3, en_US 15

https://search.abb.com/library/Download.aspx?DocumentID=3BSE032547&LanguageCode=en&DocumentPartId=&Action=Launch

● Physically protect all equipment, i.e., ensure that physical access to computers, network
equipment and cables, controllers, I/O systems, power supplies, etc., is limited to authorized
persons

● When connecting a trusted network zone to outer networks, make sure that all connections
are through properly configured secure interconnections only, such as a firewall or a system
of firewalls, which is configured for “deny by default”, i.e., blocks everything except traffic
that is explicitly needed to fulfill operational requirements.

● Allow only authorized users to log on to the system, and enforce strong passwords that are
changed regularly.

● Continuously maintain the definitions of authorized users, user groups, and access rights,
to properly reflect the current authorities and responsibilities of all individuals at all times.
Users should not have more privileges than they need to do their job.

● Do not use the system for e-mail, instant messaging, or internet browsing. Use separate
computers and networks for these functions if they are needed.

● Do not allow installation of any unauthorized software in the system.
● Restrict temporary connection of portable computers, USB memory sticks and other remov-

able data carriers. Computers that can be physically accessed by regular users should have
ports for removable data carriers disabled.

● If portable computers need to be connected, e.g., for service or maintenance purposes, they
should be carefully scanned for viruses immediately before connection.

● All CDs, DVDs, USB memory sticks and other removable data carriers, and files with
software or software updates, should also be checked for viruses before being introduced
into the trusted zone.

● Continuously monitor the system for intrusion attempts.
● Define and maintain plans for incident response, including how to recover from potential

disasters.
● Regularly review the organization as well as technical systems and installations with respect

to compliance with security policies, procedures and practices.
A protected local control cabinet could look like in figure 2, page 16. This network is not
connected to any external network. Security is primarily a matter of physically protecting the
automation system and preventing unauthorized users from accessing the system and from
connecting or installing unauthorized hardware and software.

Fig. 2: Isolated automation system

Servers and workplaces that are not directly involved in the control and monitoring of the
process should preferably be connected to a subnet that is separated from the automation
system network by means of a router/firewall. This makes it possible to better control the
network load and to limit access to certain servers on the automation system network. Note that
servers and workplaces on this subnet are part of the trusted zone and thus need to be subject
to the same security precautions as the nodes on the automation system network.

PLC Automation with V3 CPUs
Getting started > Cyber security

2022/01/213ADR010583, 3, en_US16

Fig. 3: Plant information network connected to an automation system

For the purposes of process control security, a general-purpose information system (IS) network
should not be considered a trusted network, not the least since such networks are normally
further connected to the Internet or other external networks. The IS network is therefore a
different lower-security zone, and it should be separated from the automation system by means
of a firewall. The IS and automation system networks should form separate domains.

PLC Automation with V3 CPUs

Getting started > Cyber security

2022/01/21 3ADR010583, 3, en_US 17

Fig. 4: Automation system and IS network

1.2.2.3 Hardening
System hardening means to eliminate as many security risks as possible. Hardening your
system is an important step to protect your personal data and information. This process intends
to eliminate attacks by patching vulnerabilities and turning off inessential services. Hardening a
system involves several steps to form layers of protection.
Commissioning phase
● Protect the hardware from unauthorized access
● Be sure the hardware is based on a secure environment
● Disable unused software and services (network ports)
● Install firewalls
● Disallow file sharing among programs
● Install virus and spyware protection

PLC Automation with V3 CPUs
Getting started > Cyber security

2022/01/213ADR010583, 3, en_US18

● Use containers or virtual machines
● Create strong passwords by applying a strong password policy
● Create and keep backups
● Use encryption when possible
● Disable weak encryption algorithms
● Separate data and programs
● Enable and use disk quotas
● Strong logical access control
● Adjust default settings, especially passwords
Verification phase
● Verification of antivirus - Check antivirus is active and updated
● Verification of the identification - Check that test and unauthorized accounts are removed
● Verification of intrusion detection systems - Check malicious traffic is blocked
● Verification of audit logging - Check audit log is enabled
● You can use the checklist out of the cyber security white paper

Operation phase
● Keep software up-to-date, especially by applying security patches
● Keep antivirus up and running
● Keep antivirus definitions up-to-date
● Delete unused user accounts
● Lock an active session whenever it is unattended, e.g., lock the screen of the PC or of the

control panel (HMI)
Decommissioning phase
● Delete all credentials stored in the device like certificates and user data Ä Chapter 1.6.4.4.6

“Decommissioning” on page 3351.
References: Hardening in Wikipedia (2021)

1.2.2.4 Open Ports and Services
Overview of minimum cyber security requirements for open ports and services settings.

Port Protocol Description
1217 TCP CODESYS Gateway V3

1210 TCP CODESYS Gateway V2

1211 TCP CODESYS Gateway V2

22350 TCP/UDP CodeMeter License Server
(runtime) – license

22352 HTTP CodeMeter License Server
(runtime) – WebAdmin

22353 HTTPS CodeMeter License Server
(runtime) – WebAdmin

11030 HTTP Python editor server

1.2.3 Automation Builder update notification
A notification dialog will be shown if there are any updates available for the currently installed
version on every launch of the Automation Builder.
Ä Chapter 1.3.3 “Automation Builder update notification” on page 172

PLC Automation with V3 CPUs

Getting started > Automation Builder update notification

2022/01/21 3ADR010583, 3, en_US 19

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010317&LanguageCode=en&DocumentPartId=&Action=Launch
https://en.wikipedia.org/wiki/Hardening_(computing)

1.2.4 Managing your licenses
After installing and licensing the Automation Builder you can manage your licenses in various
ways.

1.2.4.1 Identifying the installed license
Since Automation Builder Version 1.1.1 the title bar or Automation Builder shows a license
information:

Be aware of the following rule for this information:
The info in the menubar is taken in this order from the first found license
● local licenses (on PC)
● on dongle (USB key)
● network licenses (since AB1.2)
So if a local license is only basic and a dongle with premium is inserted:
● the information in the menubar is basic
● the functionality is premium (the highest available)
To check your installed licenses, the CodeMeter Control Center tool can be used Ä Chapter
1.2.4.3 “Checking licenses with CodeMeter control center” on page 22.

1.2.4.2 Selecting the license used on Automation Builder startup
You can select, which license the Automation Builder should use on startup.

To select which license should be used:
1. In the Automation Builder menu select “Tools è Options”.

ð The Options window is opened.

2. In “Startup settings” under “License” select which license should be used.
● Default: The most comprehensive available license will be selected
● Use only local license: Network licenses will never be selected
● Display licenses selection dialog if shared licenses are available: On every Automation

Builder startup, you will be asked to select a license

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US20

3. To apply the setting select “OK”.

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 21

1.2.4.3 Checking licenses with CodeMeter control center
1. Open the CodeMeter Control Center via the “Windows start menu è CodeMeter

è CodeMeter Control Center”.

2. In the CodeMeter Control Center window you can see the different license “tickets” /
“CmContainers” that are installed on your PC.
To see more details, open the CodeMeter WebAdmin by selecting “WebAdmin”

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US22

3. Select “Container è All Container”

ð Here the details of the license containers can be checked.

1.2.4.4 Setting dedicated network servers in search list
In case of a new installation CodeMeter will check for licenses also in the network. If there is
a run-out or wrongly installed license found, the service is closed without any further hint. This
looks like Automation Builder starts and closes after a few moments.
To set the search for licenses to your local machine only follow these steps:
1. Open the CodeMeter Control Center. See Ä Chapter 1.2.4.3 “Checking licenses with

CodeMeter control center” on page 22

2. Open the CodeMeter WebAdmin by selecting “WebAdmin”

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 23

3. Select “Configuration è Basic è Server Search List”

4. Select “add new Server”

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US24

5. Enter "localhost" in the Server's names field
6. Select “Add”

7. Confirm by selecting “Apply”

ð The "localhost" is added to the Server Search List

8. Restart the license check
9. Add more servers to the search list by entering the IP-Adress or name of the license

servers you know.

1.2.4.5 Restarting license check with a dongle bound license
In case of using a dongle bound license it might be necessary to restart the check for license on
the PC, e.g. if the dongle was removed and reinserted.

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 25

1. Open the CodeMeter Control Center. See Ä Chapter 1.2.4.3 “Checking licenses with
CodeMeter control center” on page 22

2. Select “Process è Restart CodeMeter Service”

1.2.4.6 Removing trial license to remove expiring message
If an unlimited license is installed after having a trial license activated, the warning message for
expiring date of the trial license still pops up at the Startup of the Automation Builder.

To avoid this message the trial license can be removed.

CAUTION!
– If you remove a license from your PC it will be permanently lost.
– Be aware that the trial license includes all premium functionalities, which will

not be available any more if your unlimited license is not a premium license,
e.g. standard.

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US26

1. Check for the Trial CmContainer number in CodeMeter WebAdmin InterfaceCheck for the
Trial CmContainer number in CodeMeter WebAdmin Interface

2. Search CmContainer number in CodeMeter Control Center

3. Remove this selected license in CodeMeter Control Center

1.2.4.7 Network licenses
Starting from Automation Builder 1.2.0 network licenses can be used with Automation Builder.
This allows sharing of licenses between team members, easy switchover between several
workstations with a single license and allows centralized administration (ordering, registration,
activation).
The Automation Builder License Manager and CodeMeter need to be used to configure the
Network server.

– In a typical office LAN (Local Area Network) setup on Client side the default
settings of the Automation Builder (and CodeMeter) are sufficient to get the
Network Licenses working.

– If an opened Automation Builder is loosing contact to the network server
(e.g. due to network problems) Automation Builder will prompt the user to
restore the network. After 30 minutes without connection to the network
server Automation Builder will fall back to basic edition. Opened editors for
non-basic features stay open and usable. So your work will not be lost in
case of troubles with the network.

1.2.4.7.1 Setting up a network license
The following setup works in typical environments.

Configuring a network license server
Network license must be registered.

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 27

Automation Builder license must be activated.
1. Launch CodeMeter WebAdmin as described in Ä Chapter 1.2.4 “Managing your licenses”

on page 20

2. Select “Configuration è Server è Server Access”

3. Enable Network Server
Keep the default port settings. These should work in most cases.

4. Select “Apply”

5. For the changes to take effect, restart CodeMeter Control Center see Ä Chapter 1.2.4.5
“Restarting license check with a dongle bound license” on page 25

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US28

NOTICE!
– In case you want to control usage of network licenses please refer to
Ä Chapter 1.2.4.7.3 “View network server license usage” on page 30

– Activation keys for network licenses are valid for one network license
each. This one license can be shared among many people but only one
Automation Builder instance at the same time. If you want to run more than
one Automation Builder instance at the same time you have to activate
more than one network license. This means you have to purchase and enter
more than one activation key (one per license).

Configuring the client side
The default settings of Automation Builder and the CodeMeter (on client side) are sufficient in
most cases to get the network licenses working. In case of problems accessing the network
license, please set the server search list on the client side.

1.2.4.7.2 View network server licenses
On the Network Server side you can find information on existing network licenses and their
current allocation.

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 29

1. Launch CodeMeter WebAdmin. See Ä Chapter 1.2.4.3 “Checking licenses with Code-
Meter control center” on page 22

2. Select “License Monitoring è All Licenses ”

1.2.4.7.3 View network server license usage
1. Launch CodeMeter WebAdmin. See Ä Chapter 1.2.4.3 “Checking licenses with Code-

Meter control center” on page 22

2. Select “License Monitoring è Sessions ”

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US30

1.2.4.7.4 Controlling network server license usage
On the Network Server side you can define settings managing the client access to CodeMeter
License Server on a network.
1. Launch CodeMeter WebAdmin. See Ä Chapter 1.2.4.3 “Checking licenses with Code-

Meter control center” on page 22

2. Select “Configuration è Server è Server Access”

3. Add entries of PCs you want to share licenses with by adding client computers and IP
addresses for accessing CodeMeter License Server on a network.

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 31

1.2.4.8 License borrowing manager
The license borrowing manager allows you, to borrow a network license for offline use and
return it.

The license borrowing manager is not part of the default software distribution,
but will be handed out on request.

The license borrowing manager is only supported by Automation Builder 2.2.3
and later.

1.2.4.8.1 Borrowing a network license
Network access to the license server required.

Opened the license borrowing manager.
1. Select the license you want to borrow.

2. Select “Borrow License”.
3. Select the taget CmContainer.

Alternatively a new CmContainer can be created.
4. Select the end of the borrowing period.

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US32

5. Select “OK”.

ð The license has sucessfully been borrowed.

The list of available licenses has been updated.

1.2.4.8.2 Returning a network license
Network licenses will be returned automatically after the expiration of the maximum borrwoing
period. No licenses server access is required.

Automatical
return of a
license

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 33

Network licenses can be returned anytime manually.

Network access to the license server required.

Opened the license borrowing manager.
1. Select a borrowed license.

2. Select “Return License”

ð The license has sucessfully been returned.

1.2.4.9 Transfering an Automation Builder license
1.2.4.9.1 General

It is possible to transfer normal licenses from a PC to another PC or dongle (DM-Key).
This is not possible for ABB internal or temporary licenses, e.g. the 30 day Trial license.
The process consists of two main steps:
1. Return the actual license from the actual PC
2. Reactivate the license on the new PC

1.2.4.9.2 Getting activation code
For all license transfer processes the activation code is required. It is available from the license
paper from purchasing the license.
For Automation Builder licenses purchased April 2020 or later, the activation code is available
from the activated license:

Manual return of
a network
license

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US34

1. Open CodeMeter Control Center and navigate to the “WebAdmin”.

2. Identify the right product code.
Automation Builder editions consist of multiple product codes. The activation ID is
available from the product code containing the edition name, e.g. “Automation Builder
Standard”.

3. Select product code to access the product code details. Under “License Information” you
can find the activation code.

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 35

1.2.4.9.3 Returning an Automation Builder license
You need the License Activation code of the license you want to return.

1. Go to the following website: http://lc.codemeter.com/32838/depot-return/index.php

The website is also availaible through the Automation Builder menu under
“Help è Return of Automation Builder license”.

2. Insert your Activation code in the field “Ticket”
3. Select “Next”

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US36

http://lc.codemeter.com/32838/depot-return/index.php

4. Select “Re-Host License”

ð If the CmContainer is found, continue with Online licenses transfer Ä Chapter
1.2.4.9.3.1 “Online license transfer” on page 37

ð If the CmContainer is not found, continue with Offline license transfer Ä Chapter
1.2.4.9.3.2 “Offline license transfer” on page 39

Online license transfer
Wait till the CmContainer is found, then select “Deactivate Selected License Now”

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 37

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US38

Offline license transfer
If the CmContainer is not found on this PC, select file-based license transfer workflow.

ð The following dialog opens

The instructions will lead you through the main steps of the offline license transfer:

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 39

1. On the offline PC open the CodeMeter Control Center.
2. Select “License Update”.

ð The CmFAS Assistant opens.

3. Select “Create a license request file”.

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US40

4. Select a location to store the license request file.
5. Transfer the license request file from the offline PC to an online PC.

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 41

6. On the online PC choose the license request file and select “Upload Request And
Continue Now”.

ð The next dialog is opened

7. Select “Download License Update File Now”.

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US42

8. Save the license update file to a location on your computer.
9. Transfer the license upate file from the online PC to the offline PC.
10. On the offline PC open the CmFAS Assistant.
11. Select “Import license update”.

12. Select the license update file, to import the new license to the offline PC

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 43

13. To confirm a succesful license transfer return to the online PC and select “Next”.

ð The last dialog is opened

14. On the offline PC open the CmFAS Assistant.
15. Select “Create receipt”.

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US44

16. Choose a location to save the license receipt file.
17. Transfer the license receipt file from the offline PC to the online PC.

PLC Automation with V3 CPUs

Getting started > Managing your licenses

2022/01/21 3ADR010583, 3, en_US 45

18. On the online PC choose the license receipt file and select “Upload Receipt Now”.

ð After a succesful license transfer you will receive the following message

1.2.4.10 Generating license information file for support
To create a license information file which includes all license information for the support:
1. Select “Windows start menu è CodeMeter è Tools è DmDust”.

ð The explorer window opens and shows the folder where the created log file “CmDust-
Result.log” is stored.

2. Please attach this file to any support request regarding your licenses.

1.2.4.10.1 Log files
Sometimes more detailed log files are needed to analyse a situation.
Then please also zip the following folder and attach it to your support request.
C:\ProgramData\CodeMeter\Logs

PLC Automation with V3 CPUs
Getting started > Managing your licenses

2022/01/213ADR010583, 3, en_US46

This folder includes
● CmActDiagLogyyyy-mm-dd-hhmmss.log
● CodeMeteryyyy-mm-dd-hhmmss.log
To make it easier to distinguish when the files were created, they are named as follows:
● yyyy – year, mm – month, hh – hour; mm – minutes, ss – seconds.

1.2.5 Set-up communication parameters in Windows
To set-up the communication between the PC and the PLC, e.g., for downloading the compiled
program, you have to set-up the communication parameters.
The IP address of your PC must be in the same class as the IP address of the CPU.
The factory setting of the IP address of the CPU is 192.168.0.10.
The IP address of your PC should be 192.168.0.X. Avoid X = 10 in order to prevent an IP
conflict with the CPU.
Subnet mask should be 255.255.255.0.
1. Open Windows Control Panel. Click “Network and Internet è Network and Sharing

Center”.
2. Click Change adapter settings.

ð
If using existing network with several devices, please pay attention on
given network rules or contact your system administrator.

3. Right-click Local Area Connection (Ethernet) and select Properties.

Set-up commu-
nication param-
eters

Change the IP
address

PLC Automation with V3 CPUs

Getting started > Set-up communication parameters in Windows

2022/01/21 3ADR010583, 3, en_US 47

4. Double-click Internet Protocol Version 4 (TCP/IPv4).

PLC Automation with V3 CPUs
Getting started > Set-up communication parameters in Windows

2022/01/213ADR010583, 3, en_US48

5. Enter your desired IP address and subnet mask.

1.2.6 Further information
Further information on the installed Automation Builder version such as installed packages or
license terms can be found on the "About" page (help menu) and in Ä Chapter 1.4.1.20.4.13
“Dialog 'Options'” on page 1186.
Safety Version is visible if safety option is installed. Safety Version Information shows the
versions of all safety components.
● Package version information: Further information about all installed package versions is

shown.
● Plug-in version infromation: Further information about all installed plug-in versions is shown.
● Safety version infromation: Further information about all safety component versions is

shown.
● User registration data: Enter or change your registration data.
● License Terms: Information about the license terms.
● Create package for support: Creates a package which can be saved or sent to support
Ä Chapter 1.2.8 “Create log files for support” on page 50.

PLC Automation with V3 CPUs

Getting started > Further information

2022/01/21 3ADR010583, 3, en_US 49

It is possible to either continue working with a project on an older Automation Builder version or
to update a project to the latest Automation Builder version.
See
● Ä Chapter 1.4.1.20.4.13 “Dialog 'Options'” on page 1186

1.2.7 PLC runtime and demo licensing
The use of some libraries and devices require the PLC to have a runtime license. Further it
is possible to try out device features or library features by using a demo license Ä Chapter
1.6.6.2.2.2 “PLC runtime licensing” on page 3665. .

1.2.8 Create log files for support
Professional support requires some information about the project and the devices.
To collect this information proceed as follows:

PLC Automation with V3 CPUs
Getting started > Create log files for support

2022/01/213ADR010583, 3, en_US50

1. Click “Help è About” in the main menu of Automation Builder.

2. Click [Create package for support] and wait until a list of log files is displayed.
3. Click [Save package] to store the zipped log files to your disk, or click [Send package] to

send the zipped log files to ABB support.
4. Click [OK].

1.2.9 Menues, views, windows

Ensure the full display of Automation Builder editors by choosing the option
Smaller - 100 % (default) in “Start è Control Panel è Appearance and
Personalization è Display”.

PLC Automation with V3 CPUs

Getting started > Menues, views, windows

2022/01/21 3ADR010583, 3, en_US 51

1.2.9.1 Start page and menus
After start-up of Automation Builder software the start page is displayed.

All items of the Automation Builder user interface are described in the CODESYS documenta-
tion:
● Ä Chapter 1.4.1.20.3 “Menu Commands” on page 955
● Ä Chapter 1.4.1.20.2 “Objects” on page 818
● Ä Chapter 1.4.1.20.4 “Dialogs” on page 1149

1.2.9.2 'All Messages' window
Errors, warning and success messages are written to the “All messages” window:

PLC Automation with V3 CPUs
Getting started > Menues, views, windows

2022/01/213ADR010583, 3, en_US52

Ä Chapter 1.4.1.20.3.3.5 “Command 'Messages'” on page 986

1.2.10 Device repository
The Device Repository of Automation Builder manages the pool of devices that can be used in
the PLC configuration.
You install or uninstall devices in the “Device Repository” dialog box. The system installs a
device by reading the device description files, which define the device properties for configura-
bility, programmability, and possible connections to other devices.
You can use the devices provided in the device repository by adding them to the device tree of
your project.

PLC Automation with V3 CPUs

Getting started > Device repository

2022/01/21 3ADR010583, 3, en_US 53

1. Click “Tools è Device Repository”.

ð The “Device Repository” dialog box opens.

[Edit Locations]: Changes the default repository location. The devices can be man-
aged at different locations.
[Install] / [Uninstall]: Installs or uninstalls devices.
[Renew device repository]: Updates the device list, e.g. after uninstallation of a device.
[Details]: Provides technical details on the selected device.

2. Select the install location. “System Repository” is set by default.

The device repository cannot be changed manually, e.g. by copying or deleting
files. Use always the Device Repository dialog to add or remove devices.

Dialog device
repository

Installing
devices

PLC Automation with V3 CPUs
Getting started > Device repository

2022/01/213ADR010583, 3, en_US54

1. Click [Install] and select the appropriate file format.

ð The “Install Device Description” dialog box opens.

2. Select the file path of the device description.
3. Select the file type filter of the required device description.

ð All device descriptions of the selected file type are listed.

4. Select the required device description and click “Open”.

ð Automation Builder adds the device description to the matching category of your
device repository.
If errors occur during installation (for example, missing files that are referenced by the
device description), then Automation Builder displays them in the lower part of the
device repository dialog box.

During the installation the device description files and all additional files refer-
enced by that description will be copied to an internal location. Altering the
original files will have no further effects to an internal location.

The changes take only effect after reinstalling the corresponding device(s).
The version number shown in the information section of the device should be
verified.

Select the device you want to remove and click [Uninstall].
The device is removed from the list.

Uninstalled devices which are used in existing projects are indicated by the
symbol . The device will not be configured properly.

Uninstalling
devices

PLC Automation with V3 CPUs

Getting started > Device repository

2022/01/21 3ADR010583, 3, en_US 55

1.2.11 Creating and configuring projects
● A project contains the objects which are necessary to create a controller program ("applica-

tion"):
– Pure POUs, for example programs, function blocks, functions, and GVLs.
– Objects that are also required to be able to run the application on a PLC. For example,

task configuration, Library Manager, symbol configuration, device configuration, visuali-
zations, and external files.

● In a project, you can program multiple applications and connect multiple controller devices.
● CODESYS manages device-specific and application-specific POUs in the “Devices” view

("device tree") and project-wide POUs in the “POUs” view.
● For the creation of projects, there are templates that already contain certain objects.
● Basic configurations and information for the project are defined in the “Project Settings” and

“Project Information”. For example:
– Compiler settings
– User management
– Author
– Data about the project file
There are settings for the version compatibility of the project in the configuration dialogs in
the “Project Environment”.

● You save a project as a file in the file system. As an option, you can pack it together with
project-relevant files and information into a project archive. It is also possible to save files in
a source code management system such as SVN.

● Each project contains the information about the CODESYS version with which it was cre-
ated. When you open it in another version, CODESYS will notify you about possible or
necessary updates regarding file format, library versions, etc.

● You can compare, import/export projects, and create documentation for them.
● You can protect a project from being changed, or even completely protect it from being read.

By using user management, you can selectively control the access to the project and even
to individual objects in the project.

See also
● Ä Chapter 1.4.1.20.2.1 “Object 'Application'” on page 819
● Ä Chapter 1.4.1.20.2 “Objects” on page 818
● Ä Chapter 1.4.1.20.4 “Dialogs” on page 1149
● Ä Chapter 1.4.1.20.3.4.13 “Command 'Project information'” on page 1007
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197

Handling of AC500 projects such as project creation, export/import, comparison of projects etc.
is described in the sections for AC500 V3 products.
Ä Chapter 1.6.6.1.1 “Project handling” on page 3632

1.2.12 Handling of AC500 projects
Handling of AC500 projects such as project creation, export/import, comparison of projects etc.
is described in the sections for AC500 V3 products.
Ä Chapter 1.6.6.1.1 “Project handling” on page 3632

Copy-and-paste from one project to another project in two different Automation Builder
instances is possible. After copying parts of a project to a higher Automation Builder version
the copied components have to be updated.

What is a
project?

PLC Automation with V3 CPUs
Getting started > Handling of AC500 projects

2022/01/213ADR010583, 3, en_US56

It is not possible to downgrade a project to an earlier Automation Builder ver-
sion.

– Import of export files is only allowed in the same profile version.
– Copy-and-paste of configurations must not be used to copy objects to an

earlier version.

Automation Builder performs an integrity check for the PLC configuration before
generating the configuration.

Automation Builder supports the creation and the import of project archive files. Archive files
contain all relevant project data including the PLC configuration, the CODESYS project files and
all device descriptions. This allows exchanging Automation Builder projects without taking care
of the target environment General Settings. Ä Chapter 1.6.6.1 “General settings” on page 3631

The 'User Management' provides functions for defining user accounts and configure the access
rights within a project. The rights to access project objects via specified actions are assigned
only to user groups, not to a single user account. So each user must be member of a group
General Settings. Ä Chapter 1.6.6.1 “General settings” on page 3631

1.2.13 Connection of devices
1.2.13.1 Configuring devices

Modify your Automation Builder project by adding device objects. Preset items can be replaced
in the same way.

Project archive

User and access
rights of a
project

PLC Automation with V3 CPUs

Getting started > Connection of devices

2022/01/21 3ADR010583, 3, en_US 57

1. In the device tree, right-click an item node. Select “Add object”.

2. Select the desired object and click [Add object].
3. Double-click the new object in the device tree to configure the device settings. Depending

on the selected item different configuration tabs are available.

1.2.13.2 Symbolic names for variables, inputs and outputs

The IEC naming rules are not checked during input in Automation Builder.

Devices with I/Os provide an I/O Mapping tab in their configuration editor where the available
I/O channels can directly be mapped to a global variable.
The corresponding variable declarations are automatically available in the project.
All available I/O channels can easily be assigned to a variable.

Input and output
mapping

PLC Automation with V3 CPUs
Getting started > Connection of devices

2022/01/213ADR010583, 3, en_US58

AC500 uses Intel Byte Order (Little Endian).

Only entries with a data type set in column "Type" can be mapped. These
entries can be expanded to show the available I/O channels.

If the project has been imported from a previous Automation Builder version,
all variables should be checked to avoid inconsistencies concerning the I/O
mapping.

1.2.13.3 Update of AC500 devices
Perform a firmware update to update AC500 V3 devices. Ä Chapter 1.2.18.1.2.6 “ AC500 V3
firmware installation and update” on page 87

1.2.13.4 Comparing objects
To compare similar objects within a project (such as the project configuration) select both
objects. Right-click and select Compare Objects to see the differences.

PLC Automation with V3 CPUs

Getting started > Connection of devices

2022/01/21 3ADR010583, 3, en_US 59

1.2.14 Connection of serial interfaces
Depending on the device type, the configuration of serial interfaces is different.
AC500 V3 Products: Ä Chapter 1.6.6.2 “PLC devices and components” on page 3662

1.2.14.1 Programming of applications
To create an application program which can be run on the controller, you fill POUs with decla-
rations and implementation code (source code), establish the link from the controller I/Os to
application variables, and configure the task assignment. After checking and debugging, the
CODESYS compiler creates the application code which can be downloaded to the controller.
The programming of the application POUs is supported by the programming language editors
and other features such as text lists, image pools, alarm configurations, pragmas, refactoring,
and ready-to-use POUs from CODESYS Development System or libraries.
There are features for syntax checking and code analysis, for achieving data persistence, and
for encrypting the application code which is downloaded to the controller.

1.2.15 I/O mapping
For all connected I/O devices perform an I/O Mapping.
Ä Chapter 1.6.6.2.13.8 “I/O mapping list” on page 3777

1.2.16 AC500 PLC configuration
See Getting Started for AC500 V3 products. Ä Chapter 1.6.6.2.2 “PLC start-up” on page 3665

PLC Automation with V3 CPUs
Getting started > AC500 PLC configuration

2022/01/213ADR010583, 3, en_US60

1.2.17 Converting an AC500 V2 project to an AC500 V3 project
A project that has been configured for an AC500 V2 PLC can be converted to a project for an
AC500 V3 PLC.
Essentially, the conversion is done in Automation Builder, however, some additional actions
have to be executed manually. The complete procedure is described in the application example
Instructions on how to convert a V2 project to a V3 project and differences between V2 and V3.

1.2.18 Example projects
1.2.18.1 Example projects for AC500 V3
1.2.18.1.1 Hardware AC500 V3
Configuration for example projects

The example projects require a small PLC configuration with I/O devices, e.g., as available in
the training case TA5450-CASE. https://to.abb/AfO9-ftT

Table 2: Modules for example projects to get started with AC500 V3 PLC
Product name Type First project

Ä Chapter 1.2.18.1.2
“Example project for
central I/O expan-
sion” on page 63

Second project
Ä Chapter
1.2.18.1.3 “Example
project for remote
I/O expansion
with PROFINET”
on page 109

PM5630- 2ETH AC500 V3 CPU x x

TB5620-2ETH terminal base for CPU x x

DA501 analog/digital mixed
input/output (I/O)
module

x x

TU516-H terminal unit for I/O
module

x x

CM579-PNIO PROFINET communi-
cation module

-- x

CI502-PNIO PROFINET commu-
nication interface
module

-- x

TU508-ETH terminal unit for com-
munication interface
module

-- x

TA524 blind cap for terminal
base

x x

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 61

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010397&LanguageCode=en&DocumentPartId=&Action=Launch
https://new.abb.com/products/1SAP187700R0001

Fig. 5: Training case TA5450

In the training case, the control panel CP6607 is included. A control panel is not
needed for the example projects.

For testing the example project some inputs require to be connected as follows:

Fig. 6: Wiring of training case

Connections

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US62

For the example projects, not all input switches and none of the potentiometers
included in training case are necessary.

You will need switch I1 for the example project for central I/O expansion.

You will need switch I5 for the example project for remote I/O expansion.

System assembly, construction and connection

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge, which can
cause internal damage and affect normal operation. Observe the following rules
when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe packaging.

You can mount AC500 PLC either to DIN rail or to a metal plate Ä Chapter 1.6.4.6.3 “Mounting
and demounting” on page 3408. Here, we recommend to mount on DIN rail.
1. Snap the terminal base onto DIN rail.
2. Snap the additional terminal units for I/O modules onto DIN rail.
3. Make the sensor/actuator wire connections according to the dedicated electronic module

you want to use. Provide external process power supply as required.
4. If required, make the fieldbus connections according to the dedicated master communica-

tion module you want to use.
5. Plug the appropriate electronic and I/O modules in the correct locations (processor

module, communication modules on terminal base, and eventually also communication
interface modules and I/O modules onto dedicated terminal units).

6. Connect a programming cable (Ethernet cable between ETH port of CPU and PC with
engineering software).

1.2.18.1.2 Example project for central I/O expansion
The following steps show how to set-up an application project and configure the hardware. A
simple logic is used as example to introduce in programming and commissioning of the PLC.
The workflow for creation of a visualization is explained, as well as how to set-up a web server
for visualization.

Preconditions
● Automation Builder is installed and licensed as, at least, basic edition Ä Chapter 1.2.4

“Managing your licenses” on page 20.
● AC500 V3 CPU is assembled and connected to the PC Ä Chapter 1.2.18.1.1 “Hardware

AC500 V3” on page 61.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 63

Create, set-up and save your AC500 V3 project
Create a project

1. Launch Automation Builder either out of the desktop icon or out of the Windows menu.

2. Select “New Project” or go to menu “File è New Project”.

3. Select “Projects”.
4. Select “AC500 project”.
5. Fill in project name.
6. Choose a location to save the project to.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US64

7. Select “OK”.
8. Select “PLC - AC500 V3”.
9. Select the CPU according to your hardware set-up.

10. Select “Add PLC” to add the CPU to your application.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 65

Configure your CPU

1. Double-click “PLC_AC500_V3”.

ð A tab opens in the editor view.

2. Select “CPU-Parameters Parameters”.
3. Under parameter “Check battery”, choose the value “Off” since there is no battery present

inside the CPU module.
4. Keep the default values for all other parameters.

Create folders in the device tree
To optimize the project readability, you will create different folders to group similar objects. The
folder names are exemplary. Because the device tree view follows an alphabetical order, we use
number prefixes to determine the order.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US66

1. Right-click “Application”.
2. Select “Add Folder”.

3. Type in "10 POUs". This is a name example. Here, the intention is to see this folder as a
last one.
The folder "10 POUs" is for program organization units (POU). POUs are objects of type
program, function or function block that are used to create a user program.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 67

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Configure the I/O module
● The types and order of modules in the Automation Builder project must match the real

hardware configuration.
● The position of the modules in the device tree can be changed by drag and drop.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US68

Add an I/O bus module

1. Right-click “IO_Bus” in the device tree.
2. Select “Add object”.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 69

3. Select “S500 I/O modules”.
4. Select “DA501” module.
5. Select “Add object” to add the module to the I/O bus.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US70

DA501 variable mapping

1. Double-click “DA501” in the device tree.

ð A tab opens in the editor view.

2. Select “DA501 I/O Mapping”

ð Here, you will map variable names (symbols) for the channels you will need in the
program.

The suggested name convention is based on "Hungarian notation". A name prefix is describing
variable type: e.g., "x" = variable of type BOOL, "w" = WORD, "i" = INT (integer) etc. This
increases the code readability and is helpful for program analysis.

Handle the digital input variables

1. Open the list of the digital inputs.
2. Fill in the variable names:

Channel Type Variable
Digital input DI8 BOOL xDI_08_DA501_I1

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 71

Handle the digital output variables

1. Open the list of the digital outputs.
2. Fill in the variable names:

Channel Type Variable
Digital output DC16 BOOL xStartDrilling1

Programming and compiling
Task configuration

A task is a time unit in the processing of a user program (IEC application), which defines by
parameters the way and the speed the CPU is executing the user program.
For this project you will use only one cycling task.

In the device tree, you see the objects “Task configuration” and “Task”. Both created automati-
cally with the project.
For this project you will use only one cycling task.

Double-click “Task” in the device tree.

ð A tab opens in the editor view.

For this project you will use only one cyclic task. Keep the default settings for the task.

Priority This is how the CPU prioritizes the task, when more than one task is defined. Priority
0...15 = real time tasks, priority 16 = non-real time task.

Type In the CPU you can run tasks dependent on the demands of the process
Interval For cyclic tasks you can set the cyclical execution time. It is usually set in millisec-

onds with IEC time syntax
Watchdog To keep track of the time it takes to complete the task
Calls You can call in one or more program POUs in one single task

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US72

Main program PLC_PRG
In the default task configuration Ä (shown in chapter 1.2.18.1.2.4.1 Task configuration on
page 72), there is one call of a POU (program organization unit) i.e. "PLC_PRG".
In your project the "PLC_PRG" will become a main program containing calls to other programs
(POUs) which you will create one by one.

The PLC_PRG POU has been defined by default in ST (Structured Text) editor. Keep this
setting because of good visibility of the instructions at a glance and good handling for trouble-
shooting.
To optimize the project readability, you will work with the previously created folder "10 POUs"
and add the created subroutines (POUs) to this folder. The subroutines will be created in FBD
(Function Block Diagram) editor.

Boolean logic "NOT"
Application example "driller"

Recognizing of a driller by a photo sensor. "TRUE" input signal from sensor indicates that a
driller is broken. If driller has been found correct, then start drilling.

Table 3: Required behavior
Signal from photo sensor Required signal of motor ON
FALSE TRUE

TRUE FALSE

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 73

Table 4: Hardware set-up
Element HW channel Symbol Description
Switch I1 DA501 DI8 xDI_08_DA501_I1 Photo sensor

LED output DC16 DA501 DC16 xStartDrilling1 Motor on

Implementation
Create a new program POU in the project

1. Right-click “10 POUs”.
2. Select “Add object”.
3. Select “POU”.
4. Select “Add object”.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US74

5. Enter “_01_Assignment_NOT”.
6. Select “Program”.
7. Select “Function Block Diagram (FBD)”.
8. Select “Add”.

ð POU has been added.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 75

Assign the hardware DI signals to local variables
1. Double-click POU“_01_Assignement_NOT” in the device tree.

2. Select “Assignment” from the ToolBox.
3. Drag and drop “Assignment” into the "Start here" field in network “1”.

4. Select “???” on the left side of the assignment, then select “...”.
5. Open the “Io Config_Globals_Mapping” mapping list and select “xDI_08_DA501_I1”.
6. Select “OK” to add this variable to the left side of the assignment connector.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US76

7. Select “???” on the right side of the assignment connector and mark the "???".
8. Create a new local variable by typing in "xDrillerBroken1" which will replace the "???".
9. Press [Enter].

ð “Auto Declare” opens.

You see the written variable name and the data type BOOL. The scope is "VAR". It
means it is a local variable within this POU.

10. Select “OK” to accept the entries.

11. Drag and drop “Network” from the ToolBox to the down-arrow of network 1.

ð You added a network “2” below network 1.

Add assignments and a Boolean NOT to the DO signals
1. Add an assingment from the ToolBox.
2. Type in or copy & paste "xDrillerBroken1" to the left side of the instruction line.
3. Select “???” on the right side of the instruction line, then select “...”.

ð “Input Assistant” opens.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 77

4. In the “IoConfig_Globals_ Mapping” variable list, select “xStartDrilling1”.
5. Select “OK” to close the dialog.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US78

6. Right-click the center of assignment PIN.
7. Select “Negation” to add a negation to the assignment.

Call the POU in the PLC_PRG

1. Double-click “PLC_PRG”.
2. Select the first line in "PLC_PRG" and press [F2].

ð “Input Assistant” opens.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 79

3. Select “Module Calls”.
4. Open “Application”.
5. Open “10 POUs” and select “_01_Assignment_NOT”.
6. Select “OK” to close the dialog.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US80

Compile the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

Select menu “Build è Generate code”.

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Set-up the communication gateway
To set-up the communication between the PC and the PLC, e.g., for downloading the compiled
program, you have to set-up the communication parameters.
The IP address of your PC must be in the same class as the IP address of the CPU.
The factory setting of the IP address of the CPU is 192.168.0.10.

Set-up commu-
nication param-
eters

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 81

The IP address of your PC should be 192.168.0.X. Avoid X = 10 in order to prevent an IP
conflict with the CPU.
Subnet mask should be 255.255.255.0.
1. Open Windows Control Panel. Click “Network and Internet è Network and Sharing

Center”.
2. Click Change adapter settings.

ð
If using existing network with several devices, please pay attention on
given network rules or contact your system administrator.

3. Right-click Local Area Connection (Ethernet) and select Properties.

4. Double-click Internet Protocol Version 4 (TCP/IPv4).

Change the IP
address

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US82

5. Enter your desired IP address and subnet mask.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 83

CPU and PC are connected with an Ethernet cable.

1. In the Automation Builder device tree right-click “PLC_AC500_V3”.
2. Select “Communication Settings”.

Set-up the com-
munication
gateway

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US84

3. Keep the default value in the IP address of the CPU or type in the current IP address, if
differs.

The standard (default) IP address of the port ETH1 is: 192.168.0.10

4. Select “OK” to implement the IP address.

If you need to scan the network for the CPU or if you have multiple CPUs on the same network.
1. Right-click “PLC_AC500_V3” in the device tree.
2. Select “Communication Settings”.

Network scan

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 85

3. Select “...”.

ð “Pick IP Address for "PLC_AC500_V3"” opens.

The automatic scan runs.
The results will appear in this field.

4. Select the CPU in the field and select “OK” to implement the needed communications
gateway.

If you need to check the communications settings or if you want to see more information about
the current selected CPU.

1. Double-click “PLC_AC500_V3” in the device tree.

Check commu-
nication set-
tings

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US86

2. Select “Communication Settings”.

ð The selected IP address is shown.

3. If the IP address is not visible, enter the IP address manually.
4. To test the connection and/or to see the CPU information press [Enter] or click on the

black dot next to the PLC figure.

AC500 V3 firmware installation and update
The PLC firmware can be updated via Automation Builder.

This is also necessary for commissioning V3 CPUs.

A very new CPU has no pre-installed firmware. To guarantee the authenticity of delivered
AC500 firmware, V3 CPUs are delivered with a boot loader only. You need to download a valid
firmware to the CPU. After download, the functionality of the CPU is given.

An Automation Builder project with an AC500 V3 CPU is open.

CPU is in "stop" mode or shows uPdAtE (update) on the display.

After update the CPU shows either donE or StoP on the display

For new modules: IP address is set. (The default IP address is 192.168.0.10)
1. Double-click CPU “PLC_AC500_V3”.
2. Select “Version information”.

3. Select “Update Firmware”.

ð While the update process is running, the RUN and ERR LEDs are toggling, i.e., they
are flashing alternating.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 87

4. Wait for the PLC to finish the update.
A completed update is indicated by a message on the display. Either donE, or StoP.

NOTICE!
Do not disconnect the power supply during the update process! The PLC
could be damaged.

ð StoP indicates a restart has been performed by the CPU. When donE is displayed
sometimes it is necessary to re-boot the CPU manually, e.g., by powering-off. Manual
re-boot might be, e.g., for some older CPU versions or if downgrading to an older
firmware version according to application settings.

The CPU display shows "stop" after re-boot. The update process is finished.
5. If necessary, refresh the version information by switching to another tab and back.

ð Successful firmware update:

Behavior of
LEDs during
firmware update

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US88

LED LED flashes Status
RUN and ERR Toggling Update pending

RUN Flashing slow Done successful

ERR Flashing slow Done failed

Log-in to CPU and download the program
Logging-in to the CPU will load the project into the AC500 V3 CPU. The first log-in will also load
the hardware set-up.

1. In the Automation Builder menu select “Online è Login [PLC_AC500_V3]”.

ð A pop-up will appear.

2. Select “Yes” to download the application to the AC500V3 CPU.

ð PLC is in "stop" mode.

3. Start the PLC Ä Chapter 1.2.18.1.2.8.1 “Start the program execution” on page 90.

Generally, if the CPU is in RUN mode, i.e. in program execution mode, a
download will always cause the mode change to "stop". In stop mode the CPU
is not controlling the system!

Always, after selecting the "Login" command, read carefully the dialog box
text to ensure that you are aware of the CPU’s behavior after the command
confirmation.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 89

By default, a download generates following actions in the CPU:
● The project is stored in the RAM memory.
● The project is stored in the flash EEPROM, if boot application was created.

Test the program
Start the program execution

You are logged in the CPU.

An executable project is loaded to the CPU.

The CPU is in "stop" mode.

Select menu “Debug è Start [PLC_AC500_V3]”.
Alternatively, select the "start" icon in the tool bar.
Alternatively, press [F5].

Test the function
Operate the switch I1 and observe:
● The LEDs of the relevant DA501 inputs and outputs.
● The online status of inputs and outputs within the POU.

Stop the program execution
You are logged in the CPU.

An executable project is loaded to the CPU.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US90

The CPU is in RUN mode.

Select menu “Debug è Stop [PLC_AC500_V3]”

Alternatively, select the "stop” icon in the tool bar.
Alternatively, press [Shift] + [F8].

Set-up visualization
Add the VisualizationManager

1. Right-click “Application” in the device tree.
2. Select “Add object”.
3. Select “VisualizationManager”.
4. Select “Add object” to add the VisualizationManager to the project.

ð Dialog “Add Visualization Manager” opens.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 91

5. Select “Add”.

ð You added the objects “VisualizationManager” and “VISU-TASK” to the device tree.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US92

Set-up the VisualizationManager

1. Double-click VisualizationManager in the device tree.

ð A tab opens in the editor view.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 93

2. Select “Settings”.
3. Open the drop-down menu “Selected style”.
4. Select “Default, x.x.x” (exemplary).
5. Open the drop-down menu “Selected language”.
6. Select “en” for English language in the visualization.
7. Enable “Visible” for advanced settings.
8. Keep the file transfer to enable the visualization on the PLC (mandatory for web server

function Ä Chapter 1.2.18.1.2.11 “Enable web visualization” on page 103).

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US94

Create visualization
Add a folder for visualization screens

1. Right-click “Application” in the device tree.
2. Select “Add Folder”.

3. Type in "02 VISUs".
4. Select “OK” to add the folder.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 95

Add a screen for "_01_Assignment_NOT" POU

1. Right-click “02 VISUs”.
2. Select “Add object”.
3. Select object “Visualization”.
4. Select [OK].

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US96

5. Type in "PLC_VISU".
6. Select “Add”.

ð A tab opens in the editor view.

Fig. 7: PLC_VISU_tab

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 97

The name "PLC_VISU" has been chosen, because it is the default name for a
home screen in a web visualization.

If you have more than one visualization object in your project, it will be
useful to choose another name, e.g. "_01_Assignment_NOT_v". And to choose
"PLC_VISU" as a home screen to access all available visualization screens.

The name of a visualization object can be modified afterwards.

Creating and configuring of visualization
Change background color

1. Double-click “PLC_VISU” in the device tree.

ð A tab opens in the editor view.

2. Right-click anywhere on the "PLC_VISU" editor page.
3. Select “Background”.

4. Enable the check box “Use Color”.

ð This enables the drop-down menu.

5. Select a color, e.g., “Lightgray”.
6. Select [OK] to add the color to "PLC_VISU".

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US98

Add a screen title
1. Double-click on “PLC_VISU” in the device tree.

2. Select “ToolBox”.

3. Select “Common controls”.
4. Drag and drop “Label” to the page.

5. Type in "Start drilling condition".

Further lines and labels
1. Double-click on “PLC_VISU” in the device tree.

2. Select “ToolBox”.
3. Select “Basic”.
4. Drag and drop the line. Then drag the line to the needed length.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 99

5. Follow the same procedure to create the other shapes and labels.

Lamp element for signal indication
1. Double-click on “PLC_VISU” in the device tree.

2. Select “ToolBox”.
3. Select “Lamps/Switches/Bitmaps”.
4. Drag and drop “Lamp” to the screen.
5. Adapt the size, if required.

6. Under “Image”, select “Gray”.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US100

7. Double-click on “Variable” and select “...” to select a variable from the list.

8. Under “IoConfig_Globals_Mapping”, select “xStartDrilling1”.
9. Select [OK].

Compile the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 101

Select menu “Build è Generate code”.

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Loading the project to the CPU
1. Download the project to the CPU Ä as described in Chapter 1.2.18.1.2.7 , on page 89.
2. Check the notification window at the end of the download. In case of message "Boot

parameters were changed. These changes will be applied after reboot", a reboot of the
CPU is required after creation of the boot project.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US102

Test the program
Operate the switches and observe the visualization screen.

Enable web visualization
Add a web server object to the device tree

Ethernet ports can be configured for web server protocol. This description deals with ETH1
configuration for the web server

1. Right-click “ETH1” in the device tree.
2. Select “Add object”.
3. Select “Web Server”.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 103

4. Select “Add object”.

ð You added and activated a web server on Ethernet port 1 on the AC500 V3 CPU.

Set-up the web server

1. Double-click “WebVisu” in the device tree.

2. Under “Start Visualization”, select “...”.

ð A list opens.

3. Select the “PLC_VISU” screen from the list.
4. Keep all further settings with default values.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US104

5. Select the link “Show used visualizations”.

ð The VisualizationManager editor and there the tab “Visualizations” opens. All screens
and dialog elements created in the project are visible.
Here, you can select which screens are enabled or disabled for web visualization.

If you want to select another screen as a start visualization, you must modify the adequate
parameter in the webvisu.htm file: <param name="STARTVISU" value="PLC_VISU">

Compile the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 105

Select menu “Build è Generate code”.

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Loading the project to the CPU
1. Download the project to the CPU Ä as described in Chapter 1.2.18.1.2.7 , on page 89.
2. Check the notification window at the end of the download. In case of message "Boot

parameters were changed. These changes will be applied after reboot", a reboot of the
CPU is required after creation of the boot project.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US106

Create a boot project
By default, after project download, the boot project is created automatically.

Rebooting the CPU
Reboot the CPU by switching OFF and ON the power supply. (The parameter for web
server activation is a boot pamater which is loaded during boot of the CPU)

Test the web visualization
You have downloaded the project and created the boot project.

The CPU has been rebooted.

You are logged in.

CPU is in "stop" mode.
1. Start the project execution, e.g., from the tool bar.
2. Launch an internet browser.
3. Type in the URL field: http://192.168.0.10/webvisu.htm.

192.168.0.10 is the IP address of CPU’s ETH1 port.
/webvisu.htm is the default htm file.

ð Web visualization will be loaded.

The start screen “PLC_VISU” is displayed in a responsive view.

4. Test the function by operating switch I1.
5. Test the results for responsive view by changing the web browser window size.

Reset the CPU
In some cases, it could be required to do a CPU reset, e.g., for resetting of counter values,
parameters etc.

Reset values
and parameters

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 107

http://192.168.0.10/webvisu.htm

Fig. 8: Reset commands in “Online” menu

Reset
warm

All variables are reset, except RETAIN PERSISTENT variables.

Reset cold Causes initialization of all variables, except PERSISTENT variables. By recom-
mended creation of remanent variables always with both properties: PERSISI-
TENT and RETAIN, this command resets all variables, except PERSISTENT
RETAIN variables.

Reset
origin

All variables and the application project are reset.

Table 5: Behavior of variables of type VAR (local or global) and variables of type PERSISTENT
RETAIN

VAR VAR PERSISTENT RETAIN
After online command 'Online change' no change no change

After online command 'Download' initialization no change

After online command 'Reset warm' initialization no change

After online command 'Reset cold' initialization no change

After online command 'Reset origin' initialization initialization

After power supply off initialization no change

To do a complete reset of the CPU thereby erasing the application from the RAM and flash
EEPROM do the following.

Complete reset
of the CPU

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US108

1. Right-click the station object “PLC_AC500_V3” in the device tree.
2. Select “Reset origin device [station name]”.

ð The application is completely erased from the CPU (complete project from all memory
areas).

1.2.18.1.3 Example project for remote I/O expansion with PROFINET
This example introduces the configuration of the PLC with remote I/O. The use of I/O channels
in a program and commissioning of the configuration is shown.

Preconditions
● Automation Builder is installed and licensed as, at least, standard edition Ä Chapter 1.2.4

“Managing your licenses” on page 20.
● AC500 V3 CPU is assembled and connected to the PC Ä Chapter 1.2.18.1.1 “Hardware

AC500 V3” on page 61.
● Configuration and programming of this example project will be made in the existing example

project for central I/O expansion Ä Chapter 1.2.18.1.2 “Example project for central I/O
expansion” on page 63.

● CM579-PNIO communication module is inserted in terminal base and connected to the PLC
Ä Chapter 1.2.18.1.1 “Hardware AC500 V3” on page 61.

● CI502-PNIO communication interface module is inserted in terminal unit and connected to
the PLC Ä Chapter 1.2.18.1.1 “Hardware AC500 V3” on page 61.

Set-up PROFINET controller
Add the CM579-PNIO to the device tree

1. In the Automation Builder device tree under “Extension_Bus”, right-click “Slot_1”.
2. Select “Add object”.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 109

3. Select “CM579-PNIO”.
4. Select “Replace object” to add the CM579-PNIO.

Set-up the general behavior

1. Under “Extension_Bus”, double-click “CM579_PNIO” in the device tree.

ð A tab opens in the editor view.

2. Select “CM579-PNIO Parameters”.

Run on configuration
fault

This parameter will prohibit the PLC from running if the CM579-PNIO
has a configuration error.

Bus behavior This parameter sets how the data from the bus flows in/out of the
CM579-PNIO.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US110

3. Select “Status”.

ð This opens the bus controller status and gives a basic status overview.

4. Select “Information”.

ð This page contains general information about the CM579-PNIO.

5. For the example project, you can keep the default settings.

Set-up the PROFINET IO controller
To edit settings for the controller, you must not be logged-in to the PLC.

1. Under “CM579_PNIO”, double-click “PNIO_Controller” in the device tree.

ð A tab opens in the editor view.

2. Select “PROFINET IO CONTROLLER”

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 111

3. Select “General”.
4. Here, you can set-up the way, IP addresses are distributed out to the industrial bus net-

work. You can even set, what IP-address and DNS name (station name) the PROFINET
controller has.
For the example project, keep the default settings.

Set-up PROFINET device
Hardware preparation

1. Switch off the power supply of your PLC.
2. Use a screw driver to set the CI502 module address to "02" by positioning of the upper

rotary switch to "0" and lower switch to "2". Note, that the numbers have hexadecimal
format.

3. Switch on the power supply.

Add the CI502-PNIO to the device tree
1. Right-click “PNIO_Controller” in the device tree.
2. Select “Add object”.
3. Select “CI502-PNIO-Device”.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US112

4. Select “Add object” to add the device.

Configure the CI502-PNIO device
Configure the CI502-PNIO PROFINET IO device

1. Double-click “CI502_PNIO_Device”.

ð A tab opens in the editor view.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 113

2. Select “General”.

Station name Default station name
IP Parameter IP-addressing parameters of the node. If modifications are required for “IP

Parameter”, they must be done also for CM579-PNIO and all other devices in
this PROFINET line.

Communication Communication time set-up
VLAN Virtual local area network ID
RT Class PROFINET IO RT (real time) type settings
3. Set station name to "ci502-pn-02" according to hardware settings.

For numbers greater than 09 always make sure, that the last two decimal digits of the
node’s “Station Name” in Automation Builder correspond to the position of module’s rotary
switches (hexadecimal values): e.g., "ci502-pn-10" <-> "0A" or "ci502-pn-16" <-> "10".

4. Leave the default settings for “IP Parameter”.
5. Adjust the communication time settings to get a Watchdog (ms) 24:

● “Send clock (ms)”: 4
● “Reduction ratio”: 2
● “Phase”: 1

6. Leave the default settings for “VLAN ID”.
7. Leave the default settings for “RT Class”.

If the node has the same device address (the last two digits of the device name)
as set by means of the rotary switches on the module, all the node parameters
will be loaded automatically upon initialization scan of the CI50x module. This
allows, e.g., the module exchange without an engineering tool.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US114

Create CI502-PNIO I/O mapping to symbols

1. Double-click “CI502_IO”.

2. Select “PNIO Module I/O Mapping”.
3. Fill in the variable names:

Element Hardware channel Symbol
Switch I5 CI502 DI8 xDI_08_CI502_I5

LED output DO8 CI502 DO 8 xDO_08_CI502

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 115

Add remote I/O expansion to project
Add a program POU to the project

1. Right-click “01 - POUs” in the device tree.
2. Select “Add object”.
3. Select “POU”.
4. Select “Add object”.

5. Fill in "_30_PNIO_test".
6. Select “Program”.
7. Select “Function Block Diagram”.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US116

8. Select [Add] to add the POU.

Create a POU logic
1. Double-click “30_PNIO_test” in the device tree.

2. In the ToolBox, select “Assignment”.
3. Drag and drop “Assignment” into the "Start here" field in network "1".

4. Select “???” on the left side of the assignment, then select “...”.
5. In “IoConfig_Globals_Mapping” list, select “xDI_08_CI502_I5”.
6. Select [OK] to add this variable to the left side of the assignment connector.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 117

7. Select “???” on the right side of the assignment, then select “...”.
8. In “IoConfig_Globals_Mapping” list, select “xDO_08_CI502”.
9. Select [OK].

Call the POU in PLC_PRG
1. Double-click “PLC_PRG”.
2. Select the next free line in “PLC_PRG” and press [F2].

ð “Input Assistent” opens.

3. Select “Module Calls”.
4. Open “Application”.
5. Open “10 POUs” and select “_30_PNIO test”.
6. Select [OK] to close the dialog.

Compile the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US118

Select menu “Build è Generate code”.

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Loading the project to the CPU
1. Download the project to the CPU Ä as described in Chapter 1.2.18.2.2.7 , on page 148.
2. Check the notification window at the end of the download. In case of message "Boot

parameters were changed. These changes will be applied after reboot", a reboot of the
CPU is required after creation of the boot project.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 119

Test the program
Start the program execution

You are logged in the CPU.

An executable project is loaded to the CPU.

The CPU is in "stop" mode.

Select menu “Debug è Start [PLC_AC500_V3]”.
Alternatively, select the "start" icon in the tool bar.
Alternatively, press [F5].

Test the function
Operate the switch I5 and observe:
● The LEDs of the relevant CI502 inputs and outputs.
● The online status of inputs and outputs within the POU.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US120

Reset the CPU
In some cases, it could be required to do a CPU reset, e.g., for resetting of counter values,
parameters etc.

Fig. 9: Reset commands in “Online” menu

Reset
warm

All variables are reset, except RETAIN PERSISTENT variables.

Reset cold Causes initialization of all variables, except PERSISTENT variables. By recom-
mended creation of remanent variables always with both properties: PERSISI-
TENT and RETAIN, this command resets all variables, except PERSISTENT
RETAIN variables.

Reset
origin

All variables and the application project are reset.

Table 6: Behavior of variables of type VAR (local or global) and variables of type PERSISTENT
RETAIN

VAR VAR PERSISTENT RETAIN
After online command 'Online change' no change no change

After online command 'Download' initialization no change

After online command 'Reset warm' initialization no change

After online command 'Reset cold' initialization no change

After online command 'Reset origin' initialization initialization

After power supply off initialization no change

To do a complete reset of the CPU thereby erasing the application from the RAM and flash
EEPROM do the following.

Reset values
and parameters

Complete reset
of the CPU

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 121

1. Right-click the station object “PLC_AC500_V3” in the device tree.
2. Select “Reset origin device [station name]”.

ð The application is completely erased from the CPU (complete project from all memory
areas).

1.2.18.2 Example projects for AC500-eCo V3
1.2.18.2.1 Hardware AC500-eCo V3
Configuration for example projects

The example projects require a AC500-eCo V3 CPU. The onboard I/O channels are used.
The visualization example is running on CPUs as of PM5032-T-ETH.

Table 7: Modules for example projects to get started with AC500 V3 PLC
Product name Type First project
PM5032-T-ETH CPU x

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US122

System assembly, construction and connection

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge, which can
cause internal damage and affect normal operation. Observe the following rules
when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe packaging.

You can mount AC500 PLC either to DIN rail or to a metal plate Ä Chapter 1.6.4.6.3 “Mounting
and demounting” on page 3408. Here, we recommend to mount on DIN rail.
1. Snap the terminal base onto DIN rail.
2. If needed, remove option board slot covers from the CPU and insert option boards.
3. If needed, snap the additional I/O modules onto DIN rail and slide them on the rail to

establish the I/O bus connection.

Electrical con-
nection

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 123

4.
The terminal blocks are not included in the scope of delivery.

The terminal blocks have to be ordered separetellly according to the CPU
type and the type of terminal blocks needed (screw or spring technology).

Insert terminal blocks for power and I/O connection to CPU, options and I/O modules.
5. Make the sensor/actuator wire connections according to the dedicated electronic module

you want to use. Provide external process power supply as required.
6. Connect a programming cable (Ethernet cable between ETH port of CPU and PC with

engineering software).

1.2.18.2.2 Example project
The following steps show how to set-up an application project and configure the hardware. A
simple logic is used as example to introduce in programming and commissioning of the PLC.
The workflow for creation of a visualization is explained, as well as how to set-up a web server
for visualization.

Preconditions
● Automation Builder is installed and licensed as, at least, basic edition Ä Chapter 1.2.4

“Managing your licenses” on page 20.
● AC500 V3 CPU is assembled and connected to the PC Ä Chapter 1.2.18.2.1 “Hardware

AC500-eCo V3” on page 122.

Create, set-up and save your AC500 V3 project
Create a project

1. Launch Automation Builder either out of the desktop icon or out of the Windows menu.

2. Select “New Project” or go to menu “File è New Project”.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US124

3. Select “Projects”.
4. Select “AC500 project”.
5. Fill in project name.
6. Choose a location to save the project to.
7. Select “OK”.
8. Select “PLC - AC500 V3”.
9. Select the CPU according to your hardware set-up.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 125

10. Select “Add PLC” to add the CPU to your application.

Create folders in the device tree
To optimize the project readability, you will create different folders to group similar objects. The
folder names are exemplary. Because the device tree view follows an alphabetical order, we use
number prefixes to determine the order.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US126

1. Right-click “Application”.
2. Select “Add Folder”.

3. Type in "10 POUs". This is a name example. Here, the intention is to see this folder as a
last one.
The folder "10 POUs" is for program organization units (POU). POUs are objects of type
program, function or function block that are used to create a user program.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 127

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US128

Configure the onboard I/O channels
Onboard I/O variable mapping

1. Double-click “OnBoard_IO” in the device tree.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 129

ð A tab opens in the editor view.

2. Select “12DI/8DO-T/2DC I/O Mapping”.

ð Here, you will map variable names (symbols) for the channels you will need in the
program.

The suggested name convention is based on "Hungarian notation". A name prefix is describing
variable type: e.g., "x" = variable of type BOOL, "w" = WORD, "i" = INT (integer) etc. This
increases the code readability and is helpful for program analysis.

Handle the digital input variables

1. Open the list of the digital inputs.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US130

2. Fill in the variable names:

Channel Type Variable
Digital input DI0 BOOL xDI_00_OnBoard_IO_I0

Handle the digital output variables

1. Open the list of the digital outputs.
2. Fill in the variable names:

Channel Type Variable
Digital output DO0 BOOL xStartDrilling1

Programming and compiling
Task configuration

A task is a time unit in the processing of a user program (IEC application), which defines by
parameters the way and the speed the CPU is executing the user program.
For this project you will use only one cycling task.

In the device tree, you see the objects “Task configuration” and “Task”. Both created automati-
cally with the project.
For this project you will use only one cycling task.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 131

Double-click “Task” in the device tree.

ð A tab opens in the editor view.

For this project you will use only one cyclic task. Keep the default settings for the task.

Priority This is how the CPU prioritizes the task, when more than one task is defined. Priority
0...15 = real time tasks, priority 16 = non-real time task.

Type In the CPU you can run tasks dependent on the demands of the process
Interval For cyclic tasks you can set the cyclical execution time. It is usually set in millisec-

onds with IEC time syntax
Watchdog To keep track of the time it takes to complete the task
Calls You can call in one or more program POUs in one single task

Main program PLC_PRG
In the default task configuration Ä (shown in chapter 1.2.18.2.2.4.1 Task configuration on
page 131), there is one call of a POU (program organization unit) i.e. "PLC_PRG".
In your project the "PLC_PRG" will become a main program containing calls to other programs
(POUs) which you will create one by one.

The PLC_PRG POU has been defined by default in ST (Structured Text) editor. Keep this
setting because of good visibility of the instructions at a glance and good handling for trouble-
shooting.
To optimize the project readability, you will work with the previously created folder "10 POUs"
and add the created subroutines (POUs) to this folder. The subroutines will be created in FBD
(Function Block Diagram) editor.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US132

Boolean logic "NOT"
Application example "driller"

Recognizing of a driller by a photo sensor. "TRUE" input signal from sensor indicates that a
driller is broken. If driller has been found correct, then start drilling.

Table 8: Required behavior
Signal from photo sensor Required signal of motor ON
FALSE TRUE

TRUE FALSE

Table 9: Hardware set-up
Element HW channel Symbol Description
Switch I1 OnBoard_IO_I0 xDI_00_OnBoard_IO_

I0
Photo sensor

LED output DO0 OnBoard_IO_O0 xStartDrilling1 Motor on

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 133

Implementation
Create a new program POU in the project

1. Right-click “10 POUs”.
2. Select “Add object”.
3. Select “POU”.
4. Select “Add object”.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US134

5. Enter “_01_Assignment_NOT”.
6. Select “Program”.
7. Select “Function Block Diagram (FBD)”.
8. Select “Add”.

ð POU has been added.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 135

Assign the hardware DI signals to local variables
1. Double-click POU“_01_Assignement_NOT” in the device tree.

2. Select “Assignment” from the ToolBox.
3. Drag and drop “Assignment” into the "Start here" field in network “1”.

4. Select “???” on the left side of the assignment, then select “...”.
5. Open the “Io Config_Globals_Mapping” mapping list and select "xDI_00_OnBoard_IO_I0".
6. Select “OK” to add this variable to the left side of the assignment connector.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US136

7. Select “???” on the right side of the assignment connector and mark the "???".
8. Create a new local variable by typing in "xDrillerBroken1" which will replace the "???".
9. Press [Enter].

ð “Auto Declare” opens.

You see the written variable name and the data type BOOL. The scope is "VAR". It
means it is a local variable within this POU.

10. Select “OK” to accept the entries.

11. Drag and drop “Network” from the ToolBox to the down-arrow of network 1.

ð You added a network “2” below network 1.

Add assignments and a Boolean NOT to the DO signals
1. Add an assingment from the ToolBox.
2. Type in or copy & paste "xDrillerBroken1" to the left side of the instruction line.
3. Select “???” on the right side of the instruction line, then select “...”.

ð “Input Assistant” opens.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 137

4. In the “IoConfig_Globals_ Mapping” variable list, select “xStartDrilling1”.
5. Select “OK” to close the dialog.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US138

6. Right-click the center of assignment PIN.
7. Select “Negation” to add a negation to the assignment.

Call the POU in the PLC_PRG

1. Double-click “PLC_PRG”.
2. Select the first line in "PLC_PRG" and press [F2].

ð “Input Assistant” opens.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 139

3. Select “Module Calls”.
4. Open “Application”.
5. Open “10 POUs” and select “_01_Assignment_NOT”.
6. Select “OK” to close the dialog.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US140

Compile the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

Select menu “Build è Generate code”.

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Set-up the communication gateway
To set-up the communication between the PC and the PLC, e.g., for downloading the compiled
program, you have to set-up the communication parameters.
The IP address of your PC must be in the same class as the IP address of the CPU.
The factory setting of the IP address of the CPU is 192.168.0.10.

Set-up commu-
nication param-
eters

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 141

The IP address of your PC should be 192.168.0.X. Avoid X = 10 in order to prevent an IP
conflict with the CPU.
Subnet mask should be 255.255.255.0.
1. Open Windows Control Panel. Click “Network and Internet è Network and Sharing

Center”.
2. Click Change adapter settings.

ð
If using existing network with several devices, please pay attention on
given network rules or contact your system administrator.

3. Right-click Local Area Connection (Ethernet) and select Properties.

4. Double-click Internet Protocol Version 4 (TCP/IPv4).

Change the IP
address

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US142

5. Enter your desired IP address and subnet mask.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 143

CPU and PC are connected with an Ethernet cable.

1. In the Automation Builder device tree right-click “PLC_AC500_V3”.
2. Select “Communication Settings”.

Set-up the com-
munication
gateway

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US144

3. Keep the default value in the IP address of the CPU or type in the current IP address, if
differs.

The standard (default) IP address of the port ETH1 is: 192.168.0.10

4. Select “OK” to implement the IP address.

If you need to scan the network for the CPU or if you have multiple CPUs on the same network.
1. Right-click “PLC_AC500_V3” in the device tree.
2. Select “Communication Settings”.

Network scan

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 145

3. Select “...”.

ð “Pick IP Address for "PLC_AC500_V3"” opens.

The automatic scan runs.
The results will appear in this field.

4. Select the CPU in the field and select “OK” to implement the needed communications
gateway.

If you need to check the communications settings or if you want to see more information about
the current selected CPU.

1. Double-click “PLC_AC500_V3” in the device tree.

Check commu-
nication set-
tings

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US146

2. Select “Communication Settings”.

ð The selected IP address is shown.

3. If the IP address is not visible, enter the IP address manually.
4. To test the connection and/or to see the CPU information press [Enter] or click on the

black dot next to the PLC figure.

AC500-eCo V3 firmware installation and update
The PLC firmware can be updated via Automation Builder.

This is also necessary for commissioning AC500-eCo V3 CPUs.

A very new CPU has no pre-installed firmware. To guarantee the authenticity of delivered
AC500-eCo firmware, V3 CPUs are delivered with a boot loader only. You need to download a
valid firmware to the CPU. After download, the functionality of the CPU is given.

An Automation Builder project with an AC500-eCo V3 CPU is open.

CPU is in "stop" mode without firmware.

The power LED is ON.

For new modules: IP address is set. (The default IP address is 192.168.0.10)
1. Double-click CPU “PLC_AC500_V3”.
2. Select “Version information”.

3. Select [Update Firmware].

ð While the update process is running, the RUN and ERR LEDs are toggling, i.e., they
are flashing alternating.

4. Wait for the PLC to finish the update.

NOTICE!
Do not disconnect the power supply during the update process! The PLC
could be damaged.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 147

5. If necessary, refresh the version information by switching to another tab and back.

ð Successful firmware update:

● CPU without firmware, only the power LED is on.
● While the firmware update process is running, the RUN and ERR LEDs are toggling, i.e.,

they are flashing alternating.

LED LED flashes Status
RUN and ERR Toggling Update pending

RUN Flashing slow Done successful

ERR Flashing slow Done failed

● CPU with installed firmware, only the power LED is on.
● If the CPU is running, then the RUN LED is on.
● If the CPU is in STOP mode, the RUN LED is off.

Log-in to CPU and download the program
Logging-in to the CPU will load the project into the AC500 V3 CPU. The first log-in will also load
the hardware set-up.

1. In the Automation Builder menu select “Online è Login [PLC_AC500_V3]”.

ð A pop-up will appear.

Behavior of
LEDs during
firmware update

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US148

2. Select “Yes” to download the application to the AC500V3 CPU.

ð PLC is in "stop" mode.

3. Start the PLC Ä Chapter 1.2.18.2.2.8.1 “Start the program execution” on page 149.

Generally, if the CPU is in RUN mode, i.e. in program execution mode, a
download will always cause the mode change to "stop". In stop mode the CPU
is not controlling the system!

Always, after selecting the "Login" command, read carefully the dialog box
text to ensure that you are aware of the CPU’s behavior after the command
confirmation.

By default, a download generates following actions in the CPU:
● The project is stored in the RAM memory.
● The project is stored in the flash EEPROM, if boot application was created.

Test the program
Start the program execution

You are logged in the CPU.

An executable project is loaded to the CPU.

The CPU is in "stop" mode.

Select menu “Debug è Start [PLC_AC500_V3]”.
Alternatively, select the "start" icon in the tool bar.
Alternatively, press [F5].

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 149

Test the function
Operate the switch I1 and observe:
● The LEDs of the relevant onboard I/O inputs and outputs.
● The online status of inputs and outputs within the POU.

Stop the program execution
You are logged in the CPU.

An executable project is loaded to the CPU.

The CPU is in RUN mode.

Select menu “Debug è Stop [PLC_AC500_V3]”

Alternatively, select the "stop” icon in the tool bar.
Alternatively, press [Shift] + [F8].

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US150

Set-up visualization
Add the VisualizationManager

1. Right-click “Application” in the device tree.
2. Select “Add object”.
3. Select “VisualizationManager”.
4. Select “Add object” to add the VisualizationManager to the project.

ð Dialog “Add Visualization Manager” opens.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 151

5. Select “Add”.

ð You added the objects “VisualizationManager” and “VISU-TASK” to the device tree.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US152

Set-up the VisualizationManager

1. Double-click VisualizationManager in the device tree.

ð A tab opens in the editor view.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 153

2. Select “Settings”.
3. Open the drop-down menu “Selected style”.
4. Select “Default, x.x.x” (exemplary).
5. Open the drop-down menu “Selected language”.
6. Select “en” for English language in the visualization.
7. Enable “Visible” for advanced settings.
8. Keep the file transfer to enable the visualization on the PLC (mandatory for web server

function Ä Chapter 1.2.18.2.2.11 “Enable web visualization” on page 163).

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US154

Create visualization
Add a folder for visualization screens

1. Right-click “Application” in the device tree.
2. Select “Add Folder”.

3. Type in "02 VISUs".
4. Select “OK” to add the folder.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 155

Add a screen for "_01_Assignment_NOT" POU

1. Right-click “02 VISUs”.
2. Select “Add object”.
3. Select object “Visualization”.
4. Select [OK].

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US156

5. Type in "PLC_VISU".
6. Select “Add”.

ð A tab opens in the editor view.

Fig. 10: PLC_VISU_tab

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 157

The name "PLC_VISU" has been chosen, because it is the default name for a
home screen in a web visualization.

If you have more than one visualization object in your project, it will be
useful to choose another name, e.g. "_01_Assignment_NOT_v". And to choose
"PLC_VISU" as a home screen to access all available visualization screens.

The name of a visualization object can be modified afterwards.

Creating and configuring of visualization
Change background color

1. Double-click “PLC_VISU” in the device tree.

ð A tab opens in the editor view.

2. Right-click anywhere on the "PLC_VISU" editor page.
3. Select “Background”.

4. Enable the check box “Use Color”.

ð This enables the drop-down menu.

5. Select a color, e.g., “Lightgray”.
6. Select [OK] to add the color to "PLC_VISU".

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US158

Add a screen title
1. Double-click on “PLC_VISU” in the device tree.

2. Select “ToolBox”.

3. Select “Common controls”.
4. Drag and drop “Label” to the page.

5. Type in "Start drilling condition".

Further lines and labels
1. Double-click on “PLC_VISU” in the device tree.

2. Select “ToolBox”.
3. Select “Basic”.
4. Drag and drop the line. Then drag the line to the needed length.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 159

5. Follow the same procedure to create the other shapes and labels.

Lamp element for signal indication
1. Double-click on “PLC_VISU” in the device tree.

2. Select “ToolBox”.
3. Select “Lamps/Switches/Bitmaps”.
4. Drag and drop “Lamp” to the screen.
5. Adapt the size, if required.

6. Under “Image”, select “Gray”.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US160

7. Double-click on “Variable” and select “...” to select a variable from the list.

8. Under “IoConfig_Globals_Mapping”, select “xStartDrilling1”.
9. Select [OK].

Compile the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 161

Select menu “Build è Generate code”.

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Loading the project to the CPU
1. Download the project to the CPU Ä as described in Chapter 1.2.18.2.2.7 , on page 148.
2. Check the notification window at the end of the download. In case of message "Boot

parameters were changed. These changes will be applied after reboot", a reboot of the
CPU is required after creation of the boot project.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US162

Test the program
Operate the switches and observe the visualization screen.

Enable web visualization
Add a web server object to the device tree

Ethernet ports can be configured for web server protocol. This description deals with ETH1
configuration for the web server

1. Right-click “ETH1” in the device tree.
2. Select “Add object”.
3. Select “Web Server”.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 163

4. Select “Add object”.

ð You added and activated a web server on Ethernet port 1 on the AC500 V3 CPU.

Set-up the web server

1. Double-click “WebVisu” in the device tree.

2. Under “Start Visualization”, select “...”.

ð A list opens.

3. Select the “PLC_VISU” screen from the list.
4. Keep all further settings with default values.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US164

5. Select the link “Show used visualizations”.

ð The VisualizationManager editor and there the tab “Visualizations” opens. All screens
and dialog elements created in the project are visible.
Here, you can select which screens are enabled or disabled for web visualization.

If you want to select another screen as a start visualization, you must modify the adequate
parameter in the webvisu.htm file: <param name="STARTVISU" value="PLC_VISU">

Compile the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 165

Select menu “Build è Generate code”.

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Loading the project to the CPU
1. Download the project to the CPU Ä as described in Chapter 1.2.18.2.2.7 , on page 148.
2. Check the notification window at the end of the download. In case of message "Boot

parameters were changed. These changes will be applied after reboot", a reboot of the
CPU is required after creation of the boot project.

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US166

Create a boot project
By default, after project download, the boot project is created automatically.

Rebooting the CPU
Reboot the CPU by switching OFF and ON the power supply. (The parameter for web
server activation is a boot pamater which is loaded during boot of the CPU)

Test the web visualization
You have downloaded the project and created the boot project.

The CPU has been rebooted.

You are logged in.

CPU is in "stop" mode.
1. Start the project execution, e.g., from the tool bar.
2. Launch an internet browser.
3. Type in the URL field: http://192.168.0.10/webvisu.htm.

192.168.0.10 is the IP address of CPU’s ETH1 port.
/webvisu.htm is the default htm file.

ð Web visualization will be loaded.

The start screen “PLC_VISU” is displayed in a responsive view.

4. Test the function by operating switch I1.
5. Test the results for responsive view by changing the web browser window size.

Reset the CPU
In some cases, it could be required to do a CPU reset, e.g., for resetting of counter values,
parameters etc.

Reset values
and parameters

PLC Automation with V3 CPUs

Getting started > Example projects

2022/01/21 3ADR010583, 3, en_US 167

http://192.168.0.10/webvisu.htm

Fig. 11: Reset commands in “Online” menu

Reset
warm

All variables are reset, except RETAIN PERSISTENT variables.

Reset cold Causes initialization of all variables, except PERSISTENT variables. By recom-
mended creation of remanent variables always with both properties: PERSISI-
TENT and RETAIN, this command resets all variables, except PERSISTENT
RETAIN variables.

Reset
origin

All variables and the application project are reset.

Table 10: Behavior of variables of type VAR (local or global) and variables of type PERSISTENT
RETAIN

VAR VAR PERSISTENT RETAIN
After online command 'Online change' no change no change

After online command 'Download' initialization no change

After online command 'Reset warm' initialization no change

After online command 'Reset cold' initialization no change

After online command 'Reset origin' initialization initialization

After power supply off initialization no change

To do a complete reset of the CPU thereby erasing the application from the RAM and flash
EEPROM do the following.

Complete reset
of the CPU

PLC Automation with V3 CPUs
Getting started > Example projects

2022/01/213ADR010583, 3, en_US168

1. Right-click the station object “PLC_AC500_V3” in the device tree.
2. Select “Reset origin device [station name]”.

ð The application is completely erased from the CPU (complete project from all memory
areas).

1.3 Automation Builder installation manager
Automation Builder installation manager allows you to install customer specific software pack-
ages, modify the existing installation, update installation information and to uninstall Automation
Builder software packages in a comfortable and flexible way.
You can launch installation manager from the main menu of Automation Builder or from Win-
dows start menu.
1. Open Automation Builder software.

From the Tools menu, select Installation Manager.

PLC Automation with V3 CPUs

Automation Builder installation manager

2022/01/21 3ADR010583, 3, en_US 169

2. As an alternative, launch installation manager from Windows start menu: “Start menu
è All Programs è ABB è Automation Builder è ABB Automation Builder Installation
Manager”.

ð Installation manager starts.

Options:
● Installed packages: Shows all installed packages of Automation Builder.
● Licenses: Displays the detailed license information of installed Automation Builder

packages in the CodeMeter WebAdmin page. For more information, see http://
localhost:22350/$help/CmUserHelp/us/index.html?controlcenter.htm.

● Uninstall all: Uninstalls the currently installed Automation Builder software.
● Install Package: Installs customer specific software packages.
● Modify: Adds or removes installed software packages.
● Info Export: Exports detailed information of installed packages in a notepad.
● Check for Update: Checks if your installed version of Automation Builder is up to date and

checks for updates.

1.3.1 Installing customer specific package
Installation manager allows you to install customer specific software packages (CABPKG files).
These packages are separately distributed to the customer based on the customer requirement.

PLC Automation with V3 CPUs
Automation Builder installation manager > Installing customer specific package

2022/01/213ADR010583, 3, en_US170

http://localhost:22350/$help/CmUserHelp/us/index.html?controlcenter.htm
http://localhost:22350/$help/CmUserHelp/us/index.html?controlcenter.htm

1. In the installation manager, click Install Package.
2. Select the package to be installed (.cabpkg file) from the file system.

3. Select the components to be installed.
4. Click Install.

ð Data installation starts.

5. Successfully installed components are indicated with .

Errors during data download are indicated with . Errors during download of any package
component aborts the installation. In this case click Show Log and save the log data.
Send the log file to ABB support team.
Click Finish to end the wizard.

1.3.2 Adding or removing installed software packages
1. In the installation manager, click Modify.

ð The selection page opens.

The selected software packages are installed already.
The not selected software packages are not installed.

PLC Automation with V3 CPUs

Automation Builder installation manager > Adding or removing installed software packages

2022/01/21 3ADR010583, 3, en_US 171

2. Select the software packages you want to install.
Unselect the software packages you want to uninstall.

You cannot unselect the main ABB Automation Builder software
package.

If also an older Automation Builder version or Control Builder Plus version shall be
installed for compatibility reasons, select the appropriate options under Install also pre-
vious product versions. This allows to open and edit a corresponding project in the
original version without a previous project upgrade.

3. Click Continue.
The following three cases are possible:
● The selected software package starts downloading and installing.
● The unselected software package will uninstall.
● The unselected software package will uninstall first and then download and install the

selected software package.
4. Successfully downloaded components are indicated with .

Errors during data download are indicated with . Errors during download of any package
component aborts the installation. In this case click Show Log and save the log data.
Send the log file to ABB support team.
Click Finish to end the wizard.

If you modify the type of installed edition, a warning message is displayed.

1.3.3 Automation Builder update notification
An update notification dialog will be shown during Automation Builder startup in case there are
any updates available for the currently installed version.
● Notification on available major, minor, or service release version
● Notification on recommend software updates (Bug fixes, CM FW, V2 FW, LIB updates,

documentation updates, ...), Automation Builder 2.5 and next future versions will show notifi-
cation on updates.

PLC Automation with V3 CPUs
Automation Builder installation manager > Automation Builder update notification

2022/01/213ADR010583, 3, en_US172

Skip of next 30 days
+ Skip:

Close the notification dialog. Notification dialog will not be shown for next
30 days.

Show details: Show details will show the updates details page.
Skip: Close the notification dialog. Next time launch of Automation Builder will

show the notification dialog.

Update notifications will only be shown in the latest installed Automation Builder
version profile.

The “Check for Updates” menu item has been added to the “Help” menu. The user has the
possibility to check for updates manually.

Check for Updates: Will launch the Automation Builder update details window.

The Automation Builder update window provides information about all available updates for the
currently installed Automation Builder version and features. Detailed information is provided via
the description links.

“Help” - “Check
for Updates”
menu item

Automation
Builder update
details window

PLC Automation with V3 CPUs

Automation Builder installation manager > Automation Builder update notification

2022/01/21 3ADR010583, 3, en_US 173

Skip update notification until
further updates are avail-
able:

If this option is selected and the update details page is “Close”, no
notification is displayed at startup until new updates are available.

New versions: New releases of Automation Builder will be shown this section
which will list hotfix version for the currently installed version or
recent major version released, if any.

Recommended updates for
installed version:

Updates for the currently installed options will be shown.

User can only select any one of the new versions and install.

All the installed updates will be shown in the Installation Manager start page in the “Installed
updates” tab.

All the newly installed updates package version information will be updated and shown in the
packages tab.

Installed
updates in the
Installation Man-
ager start page
Installation Man-
ager selection
page

PLC Automation with V3 CPUs
Automation Builder installation manager > Automation Builder update notification

2022/01/213ADR010583, 3, en_US174

1.3.4 Checking for updates
In the installation manager, click “Check for new service release”.

ð If the installed Automation Builder version is up-to-date, the following message will
appear.

If a newer Automation Builder version is available, you will get an option to download
and install the new version.

Create a project archive before updating Automation Builder. Project
archives contain all project data, including data that is not stored with
a *.project file, e.g. device description files for third party devices.

Ä Chapter 1.6.6.1.1.7.1 “Creation of an archive ” on page 3642

1.3.5 Uninstalling Automation Builder
Installation manager offers a comfortable way to uninstall Automation Builder software. This
will uninstall all related packages of Automation Builder platform as well, such as Mint Plug-in,
Automation Builder Extensions, Drive Manager etc.
1. In the installation manager, click “Uninstall all”.

ð A warning message is displayed to uninstall Automation Builder software.

Click Yes to continue.

PLC Automation with V3 CPUs

Automation Builder installation manager > Uninstalling Automation Builder

2022/01/21 3ADR010583, 3, en_US 175

2. If Automation Builder instances are running, a warning message is displayed.
Close running instances of Automation Builder and click Retry to continue uninstallation.
With Abort uninstallation of the current package is stopped. Uninstallation is continued
with the next package. With Ignore, uninstallation is forced. As this can lead to an erro-
neous uninstallation, we recommend you, not to use this option.

3. If installation manager was launched with “Tools è Installation Manager”, the following
message is displayed as Automation Builder is still running:
With Yes Automation Builder software is closed to continue uninstallation procedure.
With No uninstallation of the current package is stopped. Uninstallation is continued with
the next package.

4. For each of the packages being uninstalled, system may prompt to continue uninstallation.
5. Successfully uninstalled components are indicated with .

Errors during uninstallation are indicated with . Errors during uninstallation of any
package component aborts the uninstallation. In this case click Show Log and save the
log data. Send the log file to ABB support team.
Click Finish to end the wizard.

1.4 Programming with CODESYS
1.4.1 CODESYS Development System

CODESYS Help is intended to assist you in using the CODESYS Development System easily
and successfully. You will find quick answers to questions and solutions to problems.
Each help component consists of a concept section and a reference section.
In the concept sections, we explain in detail all topics that are relevant for creating CODESYS
projects. The concepts are supplemented with instructions that lead you step-by-step to the
intended result.
In the reference sections, we provide complete reference works for the user interface and
programming of CODESYS.
The following formats of CODESYS Help are provided:
● CODESYS Offline Help: CHM-based CODESYS Help
● CODESYS Online Help: Web-based CODESYS Help

Using
CODESYS help

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US176

In the CODESYS options, you determine whether to use CODESYS Offline Help or CODESYS
Online Help.
You can call the context-sensitive help directly from the user interface of the CODESYS Devel-
opment System. In CODESYS, when you position the cursor over an object, menu command,
or programming element, and then press the [F1] key, the respective help page opens. As an
alternative, you can use the commands in the “Help” menu. This is a full-text search. The index
search is possible in CODESYS Offline Help only.
Search operators for the offline help
● AND

Used automatically, for example the input of the search terms Device Diagnosis has the
same results as the input of Device AND Diagnosis

● The * placeholder is used automatically. However, the * character must not be used as a
wildcard because in this case the * character will be searched for specifically.

Search operators for the online help
● AND
● OR
● NOT

Example: abc NOT abcd: The search result includes all help pages that contain abc and
excludes the pages with abcd.

● ANDNOT
ANDNOT is the combination of the search operators AND nd NOT.

● ANDMAYBE
Example: The search for abc ANDMAYBE xyz finds the help pages that contain abc and
xyz, and all pages that contain only the string abc.

● Placeholders
– *: Replaces any number of characters
– ?: Replaces exactly one character

In the online help, you can use parentheses to group together multiple search operators for
complex search queries. Example: ((profinet AND cycle) OR (Ethernet/IP AND
cycle)) ANDNOT IRT
See also
● Ä Chapter 1.4.1.20.4.13.10 “Dialog 'Options' - 'Help'” on page 1194
● Ä Chapter 1.4.1.20.3.10.1 “Command 'Contents'” on page 1078
● Ä Chapter 1.4.1.20.3.10.2 “Command 'Index'” on page 1078
● Ä Chapter 1.4.1.20.3.10.3 “Command 'Find'” on page 1078

The CODESYS Development System IEC 61131-3 programming tool forms the core of the
CODESYS software platform for tasks in industrial automation technology. With additional, inte-
grated solutions for motion control, visualizations, and fieldbus connections, the usual practical
requirements are covered in one system.

CODESYS
System over-
view

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 177

The free CODESYS Development System is a IEC 61131-3 programming platform for
automation devices with control tasks. It provides diverse and comfortable engineering solutions
to support you in your developing tasks:

 For this see in this Online Help:
Project configuration through wizards. Ä Chapter 1.4.1.2 “Creating and Config-

uring a Project” on page 186

Adaptability of the user interface. Ä Chapter 1.4.1.1.2 “Customizing the
user interface” on page 180

Creation of professional IEC 61131-3 controller
applications wit a host of standard features.

Ä Chapter 1.4.1.8 “Programming of Appli-
cations” on page 222

User-friendly programming with mouse and key-
board in all IEC 61131-3 languages.
Appropriate editors for FBD, LD, IL, ST, SFC, addi-
tionally the variants CFC and Extended CFC.

Ä Chapter 1.4.1.19.1 “Programming Lan-
guages and Editors” on page 460

Input assistance for the input and configuration of
data.

Ä Chapter 1.4.1.8.5 “Using input assis-
tance” on page 260

Features

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US178

 For this see in this Online Help:
Support of object-oriented programming.
Real object-oriented programming (OOP) fully
compliant with the IEC 61131-3 standard in all
IEC 61131-3 languages, without any additional
tools.
Inheritance of POUS to similar application parts to
reduce development time and errors.
Object-orientation is not a must: Functional and
object-oriented programming can be used and
mixed as required.

Ä Chapter 1.4.1.8 “Programming of Appli-
cations” on page 222

Comprehensive project comparison, also for
graphic editors.

Ä Chapter 1.4.1.4 “Comparing projects”
on page 195

Library concept for an easy reutilization of applica-
tion.

Ä Chapter 1.4.1.16 “Using Libraries”
on page 448

Debugging and online features for the fast optimi-
zation of the application code and to speed up
testing and commissioning.

Ä Chapter 1.4.1.11 “Testing and Debug-
ging” on page 394

Integrated compilers for many different CPU plat-
forms for optimizing the controller performance.

Ä Chapter 1.4.1.20.4.12.2 “Dialog 'Pro-
ject Environment' - 'Compiler Version'”
on page 1182

Ä Chapter 1.4.1.20.4.11.3 “Dialog Box
'Project Settings' - 'Compileoptions'”
on page 1173

Security features for the protection of the source
code and the operation of the controller.

Ä Chapter 1.4.1.5 “Protecting and Saving
Projects” on page 197

Ä Chapter 1.4.1.8.17 “Encrypting an
application” on page 294

Ä Chapter 1.4.1.10.3 “Handling of Device
User Management” on page 385

Field bus support and programming of devices
from different manufacturers.

Ä Chapter 1.4.1.7 “Configuring I/O Links”
on page 213

Extensibility and adaptability without leaving the
framework.

Additionally:
Many seamlessly integrated tools for different kinds of automation tasks, for example
CODESYS Visualization, CODESYS SoftMotion, CODESYS Application Composer.
Please always note the possibility to extend the functionalities by "AddOn"-Packages, provided
in the CODESYS Store.

In the “Option è International Settings” dialog you can customize the language of the user
interface of the development system. This change will take effect the next time you start
CODESYS. You can adjust the help language separately.
If you start CODESYS from the command line, you can add a parameter to adjust the user
interface language.
See also
● Ä Chapter 1.4.1.20.4.13.13 “Dialog 'Options' – 'International Settings'” on page 1195
● Ä Chapter 1.4.1.15 “Using the Command-Line Interface” on page 442

Customization
of the user inter-
face language

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 179

All rights are reserved by the individual copyright holders. Technical specifications are subject
to change. Reproduction or further use of this help resp. of parts of it require the express prior
authorization of ABB AG.

1.4.1.1 Configuring CODESYS
CODESYS Development System allows to configure the behavior, the appearance, the content
of the menus and the arrangement of the windows individually. In the “Tools” menu you find
dialogs for customizing the user interface and to setup the CODESYS options.
See also
● Ä Chapter 1.4.1.20.4.14 “Dialog 'Customize'” on page 1205
● Ä Chapter 1.4.1.20.4.13 “Dialog 'Options'” on page 1186

1.4.1.1.1 Setting CODESYS options
You can configure the behavior and appearance of the CODESYS Development System in the
different tabs of the “Options” dialog. The dialog opens by clicking “Tools è Options”. Here you
can configure the default settings for different editors and functionalities. These settings apply
throughout CODESYS.
The settings are stored in your current user profile on your local system. For use on other
systems, option settings, either user-specific or machine-specific (computer), can be exported to
an XML file.

In V3.5 SP13 and later, CODESYS checks whether an older version is already
installed when the development system is started for the first time. If this is the
case, then the “Import Assistant” dialog opens for transferring the CODESYS
options set with the older version.

See also
● Ä Chapter 1.4.1.20.3.8.17 “Command 'Options'” on page 1071
● Ä Chapter 1.4.1.20.3.8.18 “Command 'Import and Export Options'” on page 1072
● Ä Chapter 1.4.1.20.4.1 “Dialog 'Import Assistant'” on page 1149
● Ä Chapter 1.4.1.1.2.1 “Customizing menus” on page 180
● Ä Chapter 1.4.1.1.2.4 “Customizing keyboard shortcuts” on page 183
● Ä Chapter 1.4.1.1.2.2 “Customizing toolbars” on page 182

1.4.1.1.2 Customizing the user interface
In CODESYS, you can customize the user interface by changing the window layout as well as
the appearance of menus and commands according to your requirements.

Customizing menus
You can customize the menu commands of the CODESYS user interface. In a configuration
dialog, you can add or remove menus.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens. The “Menu” tab is visible.

Copyrights and
trademarks

Removing
menus and
commands

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US180

2. Select a menu in the menu tree or a command in a menu.
3. Click “Delete”.

ð The menu or command is deleted from the menu tree.

4. Click “OK”.

ð The dialog box closes and the menu is customized.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens. The “Menu” tab is visible.

2. Scroll to the end of the menu tree.
3. Select the blank symbol ().
4. Click “Add Popup Menu”.

ð The “Add Popup Menu” dialog box opens.

5. Type a name for the new menu in the “Default text” field.
If localization is unnecessary, then skip to step 9.

6. Click “Add Language”.

ð A drop-down list opens with available languages.

7. Choose the required language.

ð The language is added to the list of languages.

8. Click into the “Text” field and type the language-specific text.
9. Click “OK”.

ð The new menu is added at the bottom of the menu tree.

10. Change the menu order by clicking “Move up” and “Move down”. Click “OK” to close the
“Customize” dialog box.

The new menu is displayed only when it contains a command.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens. The “Menu” tab is visible.

2. Expand the branch of the menu where the new command should be added.
3. Select the blank symbol ().
4. Click “Add Command”.

ð The “Add Command” opens dialog box.

The dialog box lists all commands grouped by category.
5. Select the command to be added. Click “OK”.

ð The new command is added to the menu tree.

Adding menus

Adding com-
mands

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 181

6. Change the menu order by clicking “Move up” and “Move down”. Click “Add separator” to
add a border between commands. Click OK to close the “Customize” dialog box.

ð The new command is now available in the menu.

See also
● Ä Chapter 1.4.1.20.4.14.1 “Dialog 'Customize' - 'Menu'” on page 1206
● Ä Chapter 1.4.1.1.2.2 “Customizing toolbars” on page 182

Customizing toolbars
You can customize the toolbars of the CODESYS user interface. In a configuration dialog, you
can add or remove toolbars.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens.

2. Choose the “Toolbars” tab.
3. Select a toolbar or a command from a toolbar tree.
4. Click “Delete”.

ð The toolbar or command is deleted.

5. Click “OK”.

ð The dialog box closes and the toolbar or command is removed.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens.

2. Choose the “Toolbars” tab.
3. Select the blank toolbar.
4. Click “Add Toolbar”.

ð The cursor blinks in the new toolbar.

5. Type a name.
6. Change the toolbar order by clicking “Move up” and “Move down”. Click “OK” to close the

“Customize” dialog box.

CODESYS displays the new toolbar only when it contains a command.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens.

Removing tool-
bars and com-
mands

Adding toolbars

Adding com-
mands

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US182

2. Choose the “Toolbars” tab.
3. Expand the tree of the toolbar where the new command should be added.
4. Select the blank symbol ().
5. Click “Add Command”.

ð The “Add Command” dialog box opens.

The dialog box lists all commands grouped by category.
6. Select the command to be added. Click “OK”.

ð The new command is added to the toolbar tree.

7. Change the toolbar order by clicking “Move up” and “Move down”. Click “Add separator” to
add a border between commands. Click “OK” to close the “Customize” dialog box.

ð The new command is available in the toolbar.

See also
● Ä Chapter 1.4.1.20.4.14.3 “Dialog 'Customize' - 'Toolbars'” on page 1207
● Ä Chapter 1.4.1.1.2.1 “Customizing menus” on page 180

Customize command icon
CODESYS provides the capability of assigning customized icons to commands.

1. Select the command “Tools è Customize”.

ð The “Customize” dialog box opens.

2. Click the “Command icons” tab.
3. Select the category “Help” from the list on the left.

ð All commands in this category are listed on the right.

4. Select the command “Information”.
5. Click “Assign”.

ð A dialog box opens for selecting the icon file (*.ico).

6. Select an icon file.
7. Click the “Open” button.

ð The icon is assigned to the selected command.

8. Click “OK”.

See also
● Ä Chapter 1.4.1.20.4.14.2 “Dialog 'Customize' - 'Command Icons' ” on page 1206

Customizing keyboard shortcuts
CODESYS provides the capability of executing commands directly via keyboard shortcuts. You
can customize or extend predefined keyboard shortcuts.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 183

2. Choose the “Keyboard” tab.
3. Select the category “Help” from the list on the left.

ð All commands in this category are listed on the right.

4. Select the command “Search”.
5. Click into the field “Press Shortcut Keys”.
6. Press [Ctrl]+[Shift]+[S].

ð CODESYS adds the key combination to the field.

7. Click “Assign”.

ð The keyboard shortcut is assigned to the command.

8. Click “OK”.

ð You can call the “Search” command by pressing [Ctrl]+[Shift]+[S].

See also
● Ä Chapter 1.4.1.20.4.14.4 “Dialog Box 'Customize' - 'Keyboard' ” on page 1207

Changing the window layout
In CODESYS, you can easily customize the layout of different views to your individual needs.
1. Drag the view by the caption bar or by the tab.

ð Arrows are shown to mark possible destinations. Example:

2. Drag the view to one of the arrows.

ð The destination is displayed as a blue-shaded area.

3. Release the left mouse button.

ð The window is inserted into the selected destination.

The window can also be placed outside of the CODESYS programming inter-
face.

See also
● Ä Chapter 1.4.1.1.2.6 “Resizing windows” on page 184
● Ä Chapter 1.4.1.1.2.7 “Auto-hiding windows” on page 185
● Ä Chapter 1.4.1.1.2.8 “Switching between windows” on page 185

Resizing windows
1. Move the mouse pointer over the border between two windows or views.

ð The cursor becomes a left-right arrow.

2. Drag the border to another position.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US184

You can resize detached views by moving the frame lines.

See also
● Ä Chapter 1.4.1.1.2.5 “Changing the window layout” on page 184
● Ä Chapter 1.4.1.1.2.7 “Auto-hiding windows” on page 185
● Ä Chapter 1.4.1.1.2.8 “Switching between windows” on page 185

Auto-hiding windows
When you hide a view, it is minimized to a tab in the frame of the user interface. When you
move the pointer over the tab, the window is shown automatically.
1. Click into the window to be hidden.
2. Click “Window è Auto Hide”.

Or click the PIN symbol () in the upper right corner of the view.

ð The window is hidden and only visible by a small tab on the edge of the main window.

3. Move the mouse pointer over the tab.

ð The window is shown as long as the mouse pointer hovers over the tab.

1. Click the tab of the hidden window.
2. Clear the check box “Window è Auto Hide”.

Or click the PIN symbol () in the upper right corner of the view.

ð The window is permanently shown.

See also
● Ä Chapter 1.4.1.1.2.5 “Changing the window layout” on page 184
● Ä Chapter 1.4.1.1.2.6 “Resizing windows” on page 184
● Ä Chapter 1.4.1.1.2.8 “Switching between windows” on page 185

Switching between windows
It is possible to switch directly between the currently opened views and the editor windows.
1. Press the keystroke combination [Ctrl]+[Tab]. Continue pressing the [Ctrl] key.

ð An overview opens with all active views and editors.

2. Continue pressing the [Ctrl] key and select a window using the arrow keys.
3. Release the [Ctrl] key.

ð The selected view or editor is activated.

Hiding windows

Showing win-
dows

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 185

See also
● Ä Chapter 1.4.1.1.2.5 “Changing the window layout” on page 184
● Ä Chapter 1.4.1.1.2.6 “Resizing windows” on page 184
● Ä Chapter 1.4.1.1.2.7 “Auto-hiding windows” on page 185

1.4.1.2 Creating and Configuring a Project
● A project contains the objects which are necessary to create a controller program ("applica-

tion"):
– Pure POUs, for example programs, function blocks, functions, and GVLs.
– Objects that are also required to be able to run the application on a PLC. For example,

task configuration, Library Manager, symbol configuration, device configuration, visuali-
zations, and external files.

● In a project, you can program multiple applications and connect multiple controller devices.
● CODESYS manages device-specific and application-specific POUs in the “Devices” view

("device tree") and project-wide POUs in the “POUs” view.
● For the creation of projects, there are templates that already contain certain objects.
● Basic configurations and information for the project are defined in the “Project Settings” and

“Project Information”. For example:
– Compiler settings
– User management
– Author
– Data about the project file
There are settings for the version compatibility of the project in the configuration dialogs in
the “Project Environment”.

● You save a project as a file in the file system. As an option, you can pack it together with
project-relevant files and information into a project archive. It is also possible to save files in
a source code management system such as SVN.

● Each project contains the information about the CODESYS version with which it was cre-
ated. When you open it in another version, CODESYS will notify you about possible or
necessary updates regarding file format, library versions, etc.

● You can compare, import/export projects, and create documentation for them.
● You can protect a project from being changed, or even completely protect it from being read.

By using user management, you can selectively control the access to the project and even
to individual objects in the project.

See also
● Ä Chapter 1.4.1.20.2.1 “Object 'Application'” on page 819
● Ä Chapter 1.4.1.20.2 “Objects” on page 818
● Ä Chapter 1.4.1.20.4 “Dialogs” on page 1149
● Ä Chapter 1.4.1.20.3.4.13 “Command 'Project information'” on page 1007
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197

1.4.1.2.1 Opening a V3 Project
You can open projects, library projects, or project archives in CODESYS which have been cre-
ated with different installations. When a project is opened, it is automatically checked whether
or not the active installation is appropriate to load the project. At this time, deficiencies can be
detected, such as missing add-ons or deprecated installations. You can correct these deficien-
cies. Then you can load the project with an appropriate installation.
The following actions are possible to correct deficiencies:
● Update existing add-ons and install missing add-ons
● Start another installation which is appropriate for the project
● Install an additional CODESYS version with the appropriate state

What is a
project?

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US186

Moreover, you can load and read write-protected projects. You have to specify an appropriate
location where you have the necessary write permissions only when you save the file.

You can load restricted projects only if you have the access credentials, such as user name and
password.

You have selected a project which is protected by a security key. If the security key is not
plugged into the computer, then you are prompted to plug it in. Otherwise CODESYS opens the
project without any information about the protection.

Backups are created when the “Automatically save” project option is selected. When CODESYS
is not ended properly after a change, the project is saved as a backup.
When you have selected a project, the “Auto Save Backup” dialog opens first when loading.
There you can handle the backup.

See also
● Ä Chapter 1.4.1.2.2 “Opening a V2.3 project” on page 187
● Ä Chapter 1.4.1.20.4.13.16 “Dialog 'Options' – 'Load and Save'” on page 1196
● Ä Chapter 1.4.1.5.1 “Setting up write protection” on page 201
● Ä Chapter 1.4.1.5.2 “Assigning Passwords” on page 202
● Ä Chapter 1.4.1.20.3.1.2 “Command 'Open Project'” on page 957

See also
● Help on CODESYS Installer

1.4.1.2.2 Opening a V2.3 project

A CoDeSys V2.3 project can be converted into a CODESYS V3 project only
if the CODESYS V2.3 Converter package is installed in CODESYS V3. The
package is available in the CODESYS Store.

Requirement: CODESYS is started (or a project is already open). You should be aware of the
restrictions described below the following instructions.
1. Click “File è Open Project”.
2. In the “Open Project” dialog, click any CoDeSys V2.3 project or project archive in the file

system. For searching, you can set the file filter on the bottom right corner of the dialog.

ð If another project is still open, CODESYS instructs you to close it accordingly. After
that the CoDeSys V2.3 converter automatically starts.

3. The V2.3 converter checks that the project can be compiled without errors. If so, then it
processes the project automatically.

4. NOTE: If the project contains visualization objects with placeholder variables that the
converter cannot resolve, the respective visualizations are shown as a group in place of
the visualization references.

5. Device conversion: When a device (target system) is referenced in the project to be
opened and no conversion rules are defined for the device, then the “Device Conversion”
dialog opens. Specify here whether and how the converter should replace the previous
device reference with a current one.

ð For replacement, the converter added the new device in the place of the old one in the
device tree of the converted project.

Loading a write-
protected
project

Loading a
project with
access restric-
tions
Loading a
project with a
security key

Loading a
backup of a
project

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 187

6. Library conversion: if a library, for which no conversion rule has so far been defined, is
referenced in the project to be opened, then the “Conversion of Library Reference” dialog
opens. Specify here whether and how the converter should replace the existing library
reference with a current one. If you select a library for which the project information is
missing, then the “Enter Project Information” dialog opens in order to specify this informa-
tion.

ð The converter loads the adapted project. Note: The redefined library references are to
be found in the global Library Manager in the POUs view.

Com-
pila-
tion:

The project has to be compilable without errors in CoDeSys V2.3. Note: CODESYS
stills issues warnings in V3 when compiling. These are caused by implicit conversions,
which can lead to a loss of information (for example through sign changes).
CODESYS checks "case" statements against the switch variable: CASE USINT OF
INT is not checked in CoDeSys V2.3, but it issues an error message when imported
into V3.

Con-
troller
config-
ura-
tion:

The “Controller Configuration” of a CoDeSys V2.3 project cannot be imported into V3.
You have to recreate the device configuration and re-declare the variables used in the
controller configuration.

Net-
work
varia-
bles:

For network variables, CODESYS creates V3 GVL objects and imports the variable
declarations. However, the network properties are not imported. See the description of
the network variable exchange for this.

Libra-
ries:

All variables and constants that are used in a library also have to be declared in the
library. It must be possible to compile the library in CoDeSys V2.3 without errors.

Syn-
tactic
and
seman
tic
restrict
ions
since
CoDe
Sys
V2.3:

● FUNCTIONBLOCK is not a valid keyword instead of FUNCTION_BLOCK.
● TYPE (declaration of a structure) must be followed by a “:”.
● ARRAY initialization** must have parentheses.
● INI is no longer supported (you have to replace this in the code by the Init

method).
● In function calls it is no longer possible to mix explicit with implicit parameter

assignments. Therefore the order of the parameter input assignments can be
changed:
fun(formal1 := actual1, actual2); // -> error message
fun(formal2 := actual2, formal1 := actual1); // same
semantics as the following line:
fun(formal1 := actual1, formal2 := actual2);

● CoDeSys V2.3 pragmas are not converted. They produce an warning in V3.
● The TRUNC operator now converts to the data type DINT instead of INT.

CODESYS automatically adds a corresponding type conversion for a CoDeSys
V2.3 import.

Visu-
aliza-
tion:

Place-
holder
s and
their
replac
ement

Placeholders VAR_INPUT Usage Replacement

 PLC_PRG.$Local
Var$.aArr[0]

localVar:
MyStruct;

localVar.aArr[0
]

localVar :=
PLC_PRG.myStruc
tVar

Restrictions
when reusing a
CoDeSys V2.3
project in
CODESYS

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US188

 Var.aArr[0] Var : MyStruct; Var.aArr[0] Var :=
PLC_PRG.myStruc
tVar

 PLC_PRG.myStru
ctVar.aArr[$In
dex$]

Index : INT; PLC_PRG.myStruc
tVar.aArr[Index
]

Index := 0

Prob-
lemati
c pla-
cehold
ers

● Placeholders within a text:
Text: $axle$-Axis
Correction:
localVar : STRING;
Text: %s-Axis
Text variable: localVar

● Placeholder describes only one part of a variable name:
axis$axis$spur$spur$.fActPosition
Correction:
Define only one placeholder for the axis$axis$spur$spur$ placeholder.
axis_spur : MyFunctionBlock;
Then directly transfer the corresponding instance of the function block.
axis_spur := PLC_PRG.axis1spur2;

● Placeholder is replaced by an expression:
$Expression$ -> PLC_PRG.var1 + PLC_PRG.var2
Correction:
You must transfer the expression to an auxiliary variable and then transfer this
auxiliary variable as an instance.

● The placeholder describes a program name: $Program$.bToggle ->
PLC_PRG.bToggle D
The converter cannot transfer this form of setting placeholders in V3. However,
you will rarely use it in practice.

● Placeholder is replaced by different types:
Var
-> replacement 1 : PLC_PRG.n (INT)
-> replacement 2 : PLC_PRG.st (STRING)
Correction:
Define two different placeholders in the interface for this.

● The visualization is located in a library. You replace the placeholder later from any
desired project when you use the visualization there.
Correction:
Here you have to replace the TYPE_NONE data types manually. However, there is
also the possibility for you to integrate the library in a project and the placeholder
is correctly replaced. If you now import this project, the data type is also deter-
mined correctly in the library.

Non-
import
able
ele-
ments:

Trend, ActiveX – the import is not possible, because the implementation differs a
great deal. In V3, a corresponding warning is issued and a corresponding manual
reproduction is required.

Pro-
gram-
ming
lan-
guage
s

ST, IL, FBD: No restrictions

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 189

 LD: CODESYS imports function blocks with parallel branches in such
a way that the part before the branch is repeated for each branch.
This corresponds to the generated code that CoDeSys V2.3 cre-
ates for parallel branches.

 SFC: ● Step variables explicitly declared by the user must be
declared locally in the SFC editor. You may not declare them
as VAR_INPUT, VAR_OUTPUT or VAR_INOUT, because
CODESYS cannot automatically adapt the calls. Explanation:
Steps no longer use Boolean variables for the management
of the internal states in V3, but also structures of the type
SFCStepType.

● Identifier: the following identifiers may not begin with an
underscore character:
– Names of IEC actions in the tree
– Variables that are called in an IEC association list
– Names of transitions that have been programmed out

Explanation: In V3 the implicit variables that CODESYS creates
for actions are given an underscore character as prefix. An invalid
identifier with a double underscore character would result.

 CFC: ● Large boxes: The layout of large boxes can lose quality due
to an import. The boxes may overlap one another too much.
(Correction planned).

● Macros: Macros cannot be imported. (Correction planned).

See also
● Ä Chapter 1.4.1.20.2.21 “Object 'Project Information'” on page 919
● Ä Chapter 1.4.1.20.4.4 “Dialog 'Device Conversion' ” on page 1151
● Ä Chapter 1.4.1.20.4.2 “Dialog 'Library Reference Conversion'” on page 1150

1.4.1.2.3 Configuring a Project
You can configure your CODESYS project using the following dialogs:
● “Project Settings”: Basic settings on the behavour of editors and of the compiler, on user

management etc.
● “Project Information”: Adding of individual and tagging information to the project
● “Project Environment”: Defining which versions of the external and internal modules should

be used, with the aim of achieving up-to-dateness and compatibility with each other.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US190

See also
● Ä Chapter 1.4.1.20.4.11 “Dialog 'Project Settings'” on page 1170
● Ä Chapter 1.4.1.20.2.21 “Object 'Project Information'” on page 919
● Ä Chapter 1.4.1.20.4.12 “Dialog 'Project Environment'” on page 1182

Retrieving and Editing Project Information
You can use the “Project Information” object to retrieve information about your project and the
associated file, and edit certain information.
The object contains information about
● File attributes
● Meta-information, such as manufacturer, title, or author
● Properties with keys
● Statistics
● Licensing
● Signing: This way of signing translated libraries is deprecated, and for security reasons

should only be used if compatibility with older versions is required. If this method is used,
then later you can use a public key token to verify that the library was last signed by the
library vendor. As a library vendor, it is therefore crucial that you make the public key used
available to the customer, for example in the documentation.

CODESYS saves the project information as an object within the project. When you transfer a
project to another system, the “Project Information” object is transferred with it. There is no need
for a project archive.
You can use property keys to access the project information externally via function blocks. For a
library project, you can also query information about the licensing.

1. Click “Project è Project Information”.

ð The “Project Information” dialog opens.

2. Click the “Summary” tab.
3. Specify your data in the input fields (example: 0.0.0.1 in the “Version” input field).

ð CODESYS creates a property with a key for each given value and manages them on
the “Properties” tab. For a library project, CODESYS still uses the properties and sorts
later in the library repository.
If you select the option for CODESYS to create a functions block for these properties,
then you can access the properties programmatically.

1. Click “Project è Project Information”.

ð The “Project Information” dialog opens.

2. Select the “Automatically generate 'Project Information' POUs” option.

Editing meta-
information

Creating func-
tions for
accessing prop-
erties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 191

Requirement: The following property is defined.

Key = nProp1
Type= number
Value= 333

1. Select the “Automatically generate 'Project Information' POUs” option.
2. Declare a property of the type DINT, for example showprop : DINT;.

3. Call the function GetNumberProperty: showprop :=
GetNumberProperty("nProp1");
ð You are granted access to the value in the application.

Example

Note: The functions that are created with the “Automatically generate 'Project
Information' POUs” option can be used only if the runtime supports the
WSTRING data type. If this is not the case, then instead you can apply the
“Automatically generate 'Library Information' POUs” option. You can use the
functions created in this way at least in the application to access properties.
These functions are not registered in the runtime.

If your project is a library project, then you can activate the library licensing in use here. The
CODESYS Security Key is a dongle.

Requirement: The project is a library project.
1. Click “Project è Project Information”.

ð The “Project Information” dialog opens.

2. Click the “Licensing” tab.
3. Select the “Activate dongle licensing” option.
4. Specify the dongle data in “Firm code”, “Product code”, “Activation URL”, and “Activation

mail”.

ð The library is licensed.

1. Click “Project è Project Information”.
2. Click the “Signing” tab.
3. Click the “Create Private Key File” button.

ð The “Create Private Key File” dialog opens.

4. Select a safe location, e.g. D:\for lib developers only\mycomp_libkey.libpk
and exit the dialog with “Save”.

See also
● Ä Chapter 1.4.1.20.2.21 “Object 'Project Information'” on page 919

Licensing
library projects

Creating private
key files

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US192

Making project settings
You can configure settings that affect the behavior of CODESYS and that of certain editors
in the “Project Settings” object. The settings are valid throughout the project and are applied
immediately for active editors. You can also access the dialog boxes of the object with the
command “Project è Project Settings”.
CODESYS saves the project settings as an object directly in the project. If you then transfer
a project to another system, the “Project Settings” object is also transferred with it, without a
project archive being required.
See also
● Ä Chapter 1.4.1.10.7 “Downloading source code to and from the PLC” on page 393
● Ä Chapter 1.4.1.8.12.2 “Analyzing code statically” on page 283
● Ä Chapter 1.4.1.20.3.4.14 “Command 'Project Settings'” on page 1007
● Ä Chapter 1.4.1.20.4.11.1 “Dialog 'Project Settings' - 'SFC'” on page 1171
● Ä Chapter 1.4.1.20.4.11.2 “Dialog 'Project Settings' - 'Users and Groups'” on page 1172
● Ä Chapter 1.4.1.20.4.11.3 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 1173
● Ä Chapter 1.4.1.20.4.11.4 “Dialog Box 'Project Settings' - 'Compiler Warnings'” on page 1173
● Ä Chapter 1.4.1.20.4.11.5 “Dialog 'Project Settings' – 'Source Download'” on page 1174
● Ä Chapter 1.4.1.20.4.11.6 “Dialog 'Project Settings' - 'Page Setup'” on page 1175
● Ä Chapter 1.4.1.20.4.11.7 “Dialog 'Project Settings' - 'Security'” on page 1176
● Ä Chapter 1.4.1.20.4.11.8 “Dialog 'Project Settings' - 'Static Analysis Light'” on page 1177
● Ä Chapter 1.4.1.20.4.11.9 “Dialog 'Project Settings' - 'Visualization'” on page 1180
● Ä Chapter 1.4.1.20.4.11.10 “Dialog 'Project Settings' - 'Visualization Profile'” on page 1181

1.4.1.3 Exporting and Transferring Projects
Export and import functions are available to you for the exchange of the data from CODESYS
projects with other programs.
An exchange of CODESYS projects between CODESYS development systems takes place by
way of a copy of the project file (*.project) or project archive (*.projectarchive).
See also
● Ä Chapter 1.4.1.3.1 “Exporting and importing projects” on page 193
● Ä Chapter 1.4.1.3.2 “Transferring Projects” on page 194

1.4.1.3.1 Exporting and importing projects
CODESYS offers commands for the export and import of objects to and from a file. Two
possibilities are available to you here:
● Export to or import from a CODESYS XML file (*.export)

This format is completely compatible with the CODESYS project format. The objects are
saved in a machine-readable XML format.

● Export to or import from an XML file in the PLCopen format (*.xml)
You can use this format to exchange information with other programs (for example program
editors or documentation tools). PLCopen XML defines a subset of the elements known in
CODESYS. 100% compatibility is thus not guaranteed.

Requirement: A project is open in CODESYS.

1. Select the command “Project è Export…” or “Project è Export PLCopenXML”

2. Select the objects that you wish to export in the dialog box “Export” or “Export
PLCopenXML”.

3. Click on “OK”.

Exporting proj-
ects

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 193

4. Enter the file name and the location and click on “Save”.

Requirement: A project is open in CODESYS.

1. Select the command “Project è Import…” or “Project è Import PLCopenXML”.
2. In the dialog box “Import” or “Import PLCopenXML”, select the export file that you wish to

import.

ð A dialog box opens and displays the objects in a tree structure, which can be inserted
at this point.

3. Select the object in the object tree, under which the objects to be imported are to be
inserted.

4. Select the objects and click “OK”.

ð The objects are added to the existing object tree.

See also
● Ä Chapter 1.4.1.20.4.13.19 “Dialog 'Options' - 'PLCopenXML'” on page 1198
● Ä Chapter 1.4.1.20.3.4.26 “Command 'Export PLCopenXML'” on page 1015
● Ä Chapter 1.4.1.20.3.4.27 “Command 'Import PLCopenXML'” on page 1015
● Ä Chapter 1.4.1.20.3.4.25 “Command 'Import'” on page 1015

1.4.1.3.2 Transferring Projects

If you wish to transfer a project to another computer and connect from there to the same PLC,
without an online change or download being required, observe the following points.
● Make sure that the project requires only fixed versions of libraries (exception: interface

libraries), visualization profile and compiler.
● Make sure that the boot application is up to date.
Then create a project archive, which you unpack on the other computer.

Requirement: A project is open on computer “PC1” that you transfer to another computer “PC2”
and reconnect from there to the same controller.

1. Make sure that only libraries with fixed versions are integrated in the project, with the
exception of pure interface libraries. To do this, open the “Library Manager” and check all
entries that have a “*” instead of a fixed version specification.

2. Make sure that a fixed compiler version is set in the project settings. To check, select
“Project è Project Settings” and the “Compiler Options” category.

3. Make sure that a fixed visualization profile is defined in the project settings. To check,
select “Project è Project Settings” and the “Visualization Profile” category.

Importing proj-
ects

Transferring a
project to
another system

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US194

4. Make sure that the application that is presently open is the same as that which is presently
in use on the PLC. This means that the “boot application” must be identical to the project
in the programming system. To check, look at the project name in the title bar of the
programming system window: If an asterisk is displayed behind the name, this means that
the project has been modified, but not yet saved. It is then possible that the application
and boot application do not correspond!
In this case, first create a (new) boot application. It depends on the PLC and the appli-
cation properties, whether this takes place automatically during the download of the appli-
cation. For explicit creation, select the command “Online è Create boot application”.
Then execute a download with the help of the commands “Online è Login” and “Online
è Load”.
After that, start the application on the controller with the command “Debug è Start”.

ð Now the desired application is running on the PLC, to which you wish to reconnect
from the same project later on PC2.

5. Generate a project archive: Select “File è Project Archive è Save/Send Archive”. In the
“Project Archive” dialog box, also select the following information:
● “Download information files”
● “Library profile”
● “Referenced devices”
● “Referenced libraries”
● “Visualization profile”

Save the project archive in a place that is accessible by PC2.
6. Log out from the controller: To do this, select “Online è Logout”. You can stop and restart

the PLC without reservations, before you reconnect from PC2.
7. Extract the project archive to PC2: Select “File è Project Archive è Extract Archive” and

open the archive saved above. In the “Extract Project Archive” dialog box, activate the
same information as described above when generating the archive.

8. Open the project and log in to PLC “xy” again.

ð CODESYS does not demand an online change or download; the project runs.

See also
● Ä Chapter 1.4.1.20.4.11.3 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 1173
● Project Settings - Visualization Profile
● Ä Chapter 1.4.1.20.3.6.4 “Command 'Create Boot Application'” on page 1032
● Ä Chapter 1.4.1.20.3.1.8 “Command 'Save/Send Archive'” on page 960

1.4.1.4 Comparing projects
You can compare the currently open project with another project – a reference project. The
differences in contents, properties, or access rights are detected and shown in a comparison
view.
Clicking “Project è Compare” opens the “Project Compare” dialog for you to configure and
run the comparison. Then the result is shown in the comparison view “Project Compare -
Differences” where the objects are aligned in a tree structure. Objects that indicate differences
from the respective reference object are identified by colors and symbols. This is how you
detect whether or not the contents, properties, or access rights are different.
For differences in the contents, you can also open the detailed compare view “Project Compare
- <object name> Differences” in order to zoom into the object. In the detailed compare view,
the contents of the object and reference object are displayed or their source code aligned. The
detected differences are marked. Previously opened views are not closed. In this way, you can
have any number of comparison views open and read them, in addition to the project compare
view.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 195

ms-its:core_visualization.chm::/_visu_dlg_project_settings_visualzation_profile.htm

You can accept the detected differences from the reference project into the current project.
This is possible only from the reference project into the open project. To do this, you activate
differences (for example in the code) that should be accepted in the current project with the
commands , , or in the active comparison view for accepting. These positions are high-
lighted in yellow. Make sure that any other open compare views are inactive (write-protected,
read-only). therefore, you can activate differences to be accepted in exactly one comparison
view only. When exiting the active compare view, if you confirm that the differences that are
activated for acceptance are actually accepted into the current project, then the current project
is modified.
In order to exit the project comparison completely, close the project compare view.

1.4.1.4.1 Creating a comparison view
Requirement: You have made changes in your current project and wish, for example, to com-
pare it with the last-saved version. In the meantime, for example, you have added further POUs,
removed a POU, changed single lines of code or the object properties in function blocks.
1. Select the command “Project è Compare”.

ð The “Project Comparison” dialog box opens.

2. Enter the path to the reference project, for example the path to the last-saved version of
your current project.

3. Leave the activation of the comparison option “Ignore Spaces” as it is.
4. Click on “OK”.

ð The comparison view opens. Title: “ Project Comparison – Differences”. The Device
trees of the current project and the reference project are displayed alongside each
other and the changed objects are marked in color.

5. Select an object marked in blue in the tree of the reference project (right). The current
project no longer contains this object.

Click on “Accept Single”

ð The object is added to the tree of the current project (left). The line has a yellow
background. appears in the middle column.

6. Select an object marked in green in the tree of the current project (left). The reference
project does not contain this object.

Click on “Accept Single”

ð The object is removed again from the tree of the current project (left). The line has a
yellow background. appears in the middle column.

7. If changes are detected in the content of an object that is contained in both the current
project and the reference project, this is indicated by red lettering. You can then switch to
the detailed comparison view for the object by double-clicking on the object.

8. Close the comparison view and answer the query whether the changes made are to be
saved with “Yes”.

ð The changes become effective in the project.

1.4.1.4.2 Opening the detailed compare view
Requirement: For example, a user modified the code in a POU of the current project. You have
performed the project comparison by clicking “Project è Compare”. The project compare view
shows this POU highlighted in red in the aligned in the project tree.
1. Double-click the line of the aligned POU versions.

ð The compare view switches to the detailed compare view of the POU. The modified
code lines are highlighted in gray and written in red.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US196

2. Click .

ð Code lines with changes (red) are extended by two lines: an line with insert (left,
green) and a line with delete (right, blue).

3. Click again.

ð The code line is marked again as modified.

4. Move the mouse pointer to the code line marked as modified and click “Accept Single”.

ð The code line from the reference project is activated for acceptance into the current
project.

5. Click .

ð The project compare view opens for the entire project. It is write-protected (read-only)
to prevent you from activating differences for acceptance. The link highlighted in
yellow above the tree view also indicates this.

6. Click the link: “Project compare view is read only because there are uncommitted changes
in another view. Click here to switch to the modified view.”

ð The detailed compare view opens again. The unconfirmed changes are highlighted in
yellow.

7. Click in the tab of the view and confirm that the changes should be saved.

ð The detail project view is closed and the POU is overwritten. Now it corresponds to
the POU of the reference project. The project view is active again so that you can
continue working with project compare.

If you do not click the link, but click instead to close the editor of the project
compare view, then you will also confirm the acceptance of changes into the
current project. The detail changes are accepted and then the project compare
is closed completely.

See also
● Ä Chapter 1.6.6.1.1.6 “Comparing projects” on page 3640
● Ä Chapter 1.4.1.20.3.4.21 “Command 'Compare'” on page 1010
● Ä Chapter 1.4.1.4.1 “Creating a comparison view” on page 196

1.4.1.5 Protecting and Saving Projects
You can protect a project against unintentional changes by means of access and write protec-
tion. You can also provide it with read protection (knowledge protection).
Write protection:
The following options are available for providing the entire project with simple write protection:
● Select the “Open Read-Only” option when opening the project.
● You set the “Released” status in the “Project Information”.
● You select the "read-only" option in the properties of the project file in the local file system.
In order to protect only certain objects in a project against changes, or to allow access only
to certain users, you can use a user and access rights management (see below). Some target
devices similarly support user and rights management. The access of CODESYS to objects and
files of the target device can thus be restricted.
However, write protection and access protection do not serve as protection of expertise of the
POUs. Both CODESYS itself, automation platform plug-ins and persons with knowledge of the
project file format can view or modify function blocks created with CODESYS.
Knowledge protection:

General infor-
mation about
write and
access protec-
tion

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 197

Knowledge protection of a project is done by encrypting the project file. Either with a project
password, the CODESYS Security Key (dongle), or a certificate. We recommend protection by
means of the key or the certificate because in this case no secret needs to be shared between
authorized users. The desired type of project encryption is enabled in the project settings.
You can attain knowledge protection of a library by providing it as a target-system-independent
"protected library" (*.compiled-library, *.compiled-library-v3). The library file no
longer contains source code in this format, but only encrypted precompile context. The com-
piler is still able to interpret these data. Whether access by other CODESYS components or
additional plug-ins is possible depends on their functionality and is to be observed in individual
cases. Signing can increase protection even more.
Knowledge protection and copy protection of a boot application can be done by means of a
runtime system dongle (simple or licensed) or encryption with a certificate. One of these options
is enabled in the object properties of the application.
See also
● Ä “User management and password manager” on page 199
● Ä Chapter 1.4.1.5.3 “Protecting Projects Using a Dongle” on page 203
● Ä Chapter 1.4.1.5.2 “Assigning Passwords” on page 202
● Ä Chapter 1.4.1.5.5 “Protecting Objects in the Project by Access Rights” on page 204
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449
● Ä Chapter 1.4.1.8.17 “Encrypting an application” on page 294

In CODESYS, projects and applications can be encrypted with certificates and signed in order
to protect them from unauthorized access.
To do this, you can configure specific security settings for each individual user profile. These
settings are always used automatically when the user works with CODESYS projects. There-
fore, they do not have to be redone for each project. The general configuration of the security
features for a user profile is done in the “Security Screen” view of CODESYS. See the individual
instructions below.
You can also encrypt a project file or an application for download or online change directly with
a certificate:
● User-independent encryption for the current project is configured in the “Security” category

of the “Project Settings”.
● User-independent encryption of the application is configured in the “Properties” dialog of the

application object.

NOTICE!
When you encrypt a project, an application, or online code with a certificate, you
will always require the certificate with a private key in order to open the object
again.

If the CODESYS Security Agent add-on product is installed, then the “Security
Screen” view provides an additional tab: “Devices”. This allows for the configu-
ration of certificates for the encrypted communication with controllers.

Certificates, Windows Certificate Store
All available certificates are located in the Windows Certificate Store (“certmgr”) on your com-
puter. There are two types of keys:
● Certificates with private keys

– for file decryption
– for digital signatures

● Certificates with public keys
– for file encryption
– for verifying digital signatures

Encryption with
certificates

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US198

The local Windows Certificate Store is usually filled with certificates by the IT administrator of
the computer. Certificates are either created using special tools or the creation is requested by a
trusted certification authority (CA).
If you receive a certificate file that you need to install yourself in the Windows Certificate Store,
then double-click the file in the store directory. Depending on the type (certificate with private or
public key only), the appropriate import wizard will appear.
See also
● Ä Chapter 1.4.1.18.1 “General Information” on page 453
● Ä Chapter 1.4.1.5.7 “Encrypting Projects with Certificates” on page 207

User accounts with different rights can be managed in CODESYS. For each account you can
define the actions with which the user can access a project object.
The user management is configured in the “Project settings” in the category “Users and
Groups”.
Before the creation of users and groups, please note the following:
● Rights can only be assigned to user groups. Therefore, you must assign each user to a

group.
● There is automatically always a group 'Everyone' and by default every user and every other

group is initially a member of this group. Thus each user account is automatically equipped
with at least the defined standard rights.
You cannot delete the group 'Everyone', you can only rename it, and you cannot remove
members from this group.
Caution: by default "Everyone" does not have the right to change the current user, group
and rights configuration!

● There is automatically always a group 'Owner' containing a user 'Owner'. From V3.5 only
the 'Owner' initially has the right to change the current user, group and rights configuration in
a new project! Hence, only 'Owner' can assign this right to another group.
Initially the 'Owner' can log in with user name 'Owner' and an empty password. You can add
further users to the group 'Owner' or remove users from it, but at least one member must be
retained. Like 'Everyone', you cannot delete the group 'Owner' and it always possesses all
access rights. This prevents a project from being rendered unusable by denying all access
rights to all groups.
You can rename both the group 'Owner' and the user 'Owner'.

● If the programming system or a project is restarted, no user is initially logged in to the
project. However, the user can then log in via a certain user account with user name and
password in order to obtain the access rights defined for the account.

● Each project has its own user management! Therefore, in order to obtain certain access
rights to a library integrated into the project, for example, the user must explicitly log in to
the library project.
Users and groups defined in different projects are not the same, even if they have the same
names.

● A user management in a project only makes sense if it is connected with corresponding
rights assignment for the access to project and objects. The project rights are generally
managed in the dialog box “Rights” of the “User Management”. You can also change the
access rights to an individual project object on the “Access control” tab of the “Properties” of
the object.

● There are standard menu commands under “Project è User Management” for logging into
and out of a project as a defined user. A password manager permits the management of the
login data on your computer.

From V3.5 only the 'Owner' initially has the right to change the current user,
group and rights configuration in a new project! Hence, only 'Owner' can assign
this right to another group.

User manage-
ment and pass-
word manager

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 199

NOTICE!
CODESYS stores the user passwords inaccessibly. If you forget a password,
the user account becomes unusable. If you forget the 'Owner' password, the
entire project may become unusable!

Password manager
The password manager enables you to save login data records that you enter during the login
procedures for projects. It is accessible via a button in the login dialog box and offers fast
access to the login data currently required. This can be helpful, for example, if you are working
in parallel on several library projects that are protected by different passwords.
The password manager itself is protected by an individual master password. If you wish to use
the password manager for the first time, CODESYS requests you to define this password in the
password manager configuration dialog box. CODESYS notes the master password until you
terminate the current CODESYS session. You must always input the password when you wish
to log in to the password manager for the first time during a new session, or after you have
changed it.
See also
● Ä Chapter 1.4.1.5.5 “Protecting Objects in the Project by Access Rights” on page 204
● Ä Chapter 1.4.1.5.6 “Logging in via User Account and Password Manager” on page 205
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385

Rights management for access to a project and objects in a project is necessary in order to
make a user management meaningful.
The rights for a project are generally managed in the “Rights” editor of the “User Management”.
You can also change the access rights to an individual project object on the “Access control” tab
of the “Properties” dialog box of the object.
Before assigning rights, please observe the following:
● In a new project CODESYS always sets all rights for the execution of actions on objects with

the default value 'allowed' (standard right). The only exception to this is the right to change
the current user, group and rights configuration. Initially only the 'Owner' group has this right.

● If you are member of a group that is permitted to change rights, you can do this at any time
for each right when working further on a project. You change a right by switching between
'allowed' and 'forbidden' or by resetting to the default.

See also
● Ä Chapter 1.4.1.5.4 “Setting up a user management” on page 203
● Ä Chapter 1.4.1.5.5 “Protecting Objects in the Project by Access Rights” on page 204

Provide the project file with the desired protection before saving it in the file system; see above.
For a read-only project file you are given various options so that you can still save the file,
depending on the type of write protection.
If the project is to be opened later in an older CODESYS version, it makes sense to save the
project for precisely this version (file type), since CODESYS will also inform you immediately
about possible losses of data in the course of saving it.
If you wish to save library projects, please observe the rules for the creation of libraries. Also
consider the possibility of installing a library directly in a library repository.
If you wish to continue to use a project on another computer, it makes sense not only to save
the project file, but also to create a project archive from all relevant auxiliary files.
You can make a setting so that a backup copy of this project is created each time the project
is saved. In addition you can configure CODESYS so that projects are generally automatically
saved at certain time intervals.
If you wish to keep projects in a source control system, observe the corresponding add-ons for
CODESYS. For example, the link to SVN is supported.

Rights manage-
ment

Filing, saving

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US200

See also
● Ä Chapter 1.4.1.20.4.13.16 “Dialog 'Options' – 'Load and Save'” on page 1196
● Ä Chapter 1.4.1.3 “Exporting and Transferring Projects” on page 193
● Ä Chapter 1.4.1.5.8 “Saving the Project” on page 209
● Ä Chapter 1.4.1.5.9 “Saving/Sending the project archive” on page 210
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449
● Ä Chapter 1.4.1.5.10 “Linking a project to the source control system” on page 211

1.4.1.5.1 Setting up write protection
A project can be protected against inadvertent changes by means of access and write protec-
tion. In addition, however, it can also be provided with read protection (know-how protection).
You have the following options:

Requirement: No project is opened.

1. Select “File è Open Project”.

ð The dialog box “Open project” appears.

2. Select the project.
3. Click on the arrow button next to the “Open” button and select “Open read-only” from

the menu.

ð CODESYS opens the project. At the top right in the main window a line appears
“'Project file cannot be saved…'”. You must now select one of the offered options if
you wish to save the project file.

See also
● Ä Chapter 1.4.1.2.1 “Opening a V3 Project” on page 186

Requirement: project is opened.

1. Select “Project è Project Information”, then the “Summary” tab.
2. Activate the option “Released”, confirm with “OK”.
3. Save the project, for example with [Ctrl]+[S].
4. Open the project again with the command “File è Open Project”.

ð CODESYS opens the project. At the top right in the main window a line appears
“'Project file cannot be saved…'”. You can now directly remove the status “Released”
again via the offered option if you wish to save the project file.

See also
● Ä Chapter 1.4.1.20.2.21 “Object 'Project Information'” on page 919

Open the
project with
write protection

Providing proj-
ects with the
attribute 'Relea-
sed'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 201

Provide the project file in its local file system with the property attribute 'Read-only'.

ð If you had already opened the project and you now attempt to save it under the same
name, a dialog box appears informing you about the existent write protection. This
dialog box provides you with the following options:
You can save the project under another name or another path using the button “Save
As…”.
You can deliberately save the project under the same name and path and thus over-
write the existing version in the file system using the button “Overwrite”.
You can abort the saving procedure using the “Cancel” button, for example to remove
the write protection on the disk.
If you re-open the project, a line appears at the top right in the main window 'The
project cannot not be saved…'. You must now select one of the offered
options if you wish to save the project file.

See also
● Ä “General information about write and access protection” on page 197

1.4.1.5.2 Assigning Passwords
Requirement: The project is open.
1. Click “Project è Project Settings” and then select the “Security” category.

ð The dialog “Project Settings / Security” opens.

2. Select the “Encryption” option.

ð The option fields “Password”, “Dongle”, and “Certificates” are selectable.

3. Select the option “Password”.

ð The input fields for the encryption password appear.

4. Enter the encryption password in the input field “New Password”.
5. Enter the encryption password for confirmation in the input field “Confirm new password”.
6. Click “OK”.

ð CODESYS saves the encryption password for the project. You must enter this pass-
word in order to be able to open the project again, even if it is to be loaded as a library
reference.

CAUTION!
If you no longer know the encryption password, you can no longer open or
restore the project!

See also
● Ä Chapter 1.4.1.20.4.11.7 “Dialog 'Project Settings' - 'Security'” on page 1176
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197

Providing a
project in the
file system with
the property
'Read-only'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US202

1.4.1.5.3 Protecting Projects Using a Dongle
Requirement: The project is opened and you have connected the CODESYS Security Key
(dongle) to your computer.
1. Click “Project è Project Settings” and then select the “Security” category.

ð The dialog “Project Settings / Security” opens.

2. Select the “Encryption” option.

ð The option fields “Password”, “Dongle”, and “Certificates” are selectable.

3. Select the option “Dongle”.

ð The dialog with the drop-down list “Registered Dongles” and the buttons “Add”,
“Remove”, “Comment” and “Flash” opens.

4. Click “Add”.

ð The “Add Registered Dongle” dialog opens.

5. Select the CODESYS Security Key (dongle) from the “Dongle” drop-down list and option-
ally enter a comment.

6. Click “OK”.

ð The added dongle is listed in the list “Registered Dongles”.

7. Click “OK”.

ð The dongle is registered for the project. You must connect the dongle to your com-
puter in order to be able to open the project again, even if it is to be loaded as a library
reference.

NOTICE!
If the CODESYS Security Key registered for the project is lost, you can no
longer open the project or restore it.

See also
● Ä Chapter 1.4.1.20.4.11.7 “Dialog 'Project Settings' - 'Security'” on page 1176
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197

1.4.1.5.4 Setting up a user management

This concerns a user management for a CODESYS project file. Visualizations
and devices can have their own user management.

The following guide describes how you can adapt the user management for the first time in a
project. It deals with the definition of a user and a group to which he belongs.
Requirement: the project for which the user management is to be set up is opened. There is no
adapted user configuration yet.
1. Select “Project Settings è Users and Groups” and then the “Users” tab. The user Owner

is already created by default.
2. Click on “Add”.

ð The dialog box “Add User” appears.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 203

3. Enter a login name, for example 'Dev1', and a password. Leave the option “Activated”
activated. Click on “OK”.

ð On creating a group for the first time, CODESYS now requests you to authenticate
yourself to perform this action.
In this case, enter 'Owner' as the “current user”. Do not enter a “password”, just click
on “OK”.
The user Dev1 appears in the list and is automatically a member of the group
'Everyone'.

4. Change to the tab “Groups”, in order to add the user to a new group.

ð The groups Everyone and Owner have already been created.

5. Click on “Add” in order to open the dialog box “Add Group”.
6. Specify at least one name for the new group, for example 'Developers'. Activate the

checkbox next to the entry “User 'Dev1'” in the field “Members”. Click on “OK”.

ð The group “Developers” now appears with has user member 'Dev1'.

7. Switch to the “Users” tab.

ð The user “Dev1” now appears as a member of the groups 'Everyone' and 'Develo-
pers'.

You can take over the user management configuration from another project by
using the “Export/Import” functions in the dialog box “Project Settings”, category
“Users and Groups”.

See also
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197
● Ä “User management and password manager” on page 199
● Ä Chapter 1.4.1.20.4.11.2 “Dialog 'Project Settings' - 'Users and Groups'” on page 1172
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385

1.4.1.5.5 Protecting Objects in the Project by Access Rights

1. Select “Project è User Management è Rights”

ð The window of the “Rights” editor opens. On the left you can see the action catego-
ries, on the right the currently existing user groups.

2. Expand the relevant action category and below it the action for which you wish to change
a right.

3. Select the goal of the action in the “Actions” window. In the “Rights” window, select the
group for which you would like to change the right. Multiple selection is possible.

ð The buttons in the symbol bar are active.

4. Click on the appropriate button in order to change the right of the group for the action on
the target object.

ð CODESYS updates the symbol in front of the group according to the new right. The
right is immediately effective.

Protection of
individual
objects by set-
ting access
rights in the
“Rights” editor

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US204

See also
● Ä Chapter 1.4.1.20.4.6 “Dialog 'Permissions'” on page 1152

Here you can configure whether the members of a group have the right to view, edit or remove
the object and to add/remove child objects to/from the object.

1. Select the object in the navigator tree.
2. In the context menu, select the command “Properties” and in the dialog box select the

category “Access Control”.
3. In the table under “Groups, Actions and Permissions”, double-click on the symbol of the

right that you wish to change.

ð A selection list of the possible rights appears: “Grant”, “Deny”, “Clear”.

4. Select the desired right and click on “Accept” or “OK”.

ð The right is immediately effective for the action and group. The symbol changes
accordingly.

See also
● Ä Chapter 1.4.1.20.4.10.6 “Dialog 'Properties' - 'Access Control'” on page 1161

1.4.1.5.6 Logging in via User Account and Password Manager
Requirement: A project is open. You wish to log in as a defined user for this project or for a
library integrated in it in order to edit one or the other with certain rights. You have the required
login data for the respective project or the library.

1. Select “Project è User Management è User Logon”.

ð The dialog box “Logon” opens.

2. Select the project file from “Project/Library” and enter the required access data “User
name” and “Password”.

3. Log in with “OK”.

ð If another user is already logged in, this user will automatically be logged out by the
new login.

Requirement: A project is open. The dialog box “Login” is open for you to log in as a defined
user for a project or for a library integrated in the project. You wish to use the password
manager in order to save login data in it.

1. Select “Project è User Management è User Logon”.
2. In the dialog box “Logon”, click on the button .

ð If you are working for the first time with the password manager, the dialog box
“Password Manager Configuration” opens.

Protection of
individual
objects by set-
ting access
rights in the
object proper-
ties

Logging in to a
project without
using the pass-
word manager
functions

Setting a master
password for
the password
manager

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 205

3. Enter a character string as the future master password. Confirm it in the second line and
click on “OK”.

ð CODESYS notes the master password until you terminate the current CODESYS
session. You must always input this password when you wish to log in to the password
manager for the first time during a new session, or after you have changed it.

NOTICE!
If you have forgotten your master password, you no longer have any possibility
to access the login data already saved! In this case you can only reset the
password manager. After that you must start again to save passwords in the
manager!

Requirement: A project is open. You wish to log in as a defined user for this project or for a
library integrated in it in order to edit one or the other with certain rights. You have the required
login data for the respective project or the library. These login data have not yet been saved in
the password manager.
1. Select “Project è User Management è User Logon”, in order to open the “Logon” dialog

box.
2. Select the project file from “Project/Library”.
3. Enter the user name and password for the project or the library.
4. Click on the button .

ð If you are working for the first time with the password manager, you will be requested
to define a master password. Refer to the above guide 'Setting a master password for
the password manager' for this.
When you call the password manager for the first time in this CODESYS session, you
will be requested to enter the master password.

5. Enter the master password when requested to do so.

ð The password manager menu appears.

6. Select the option “Save the credentials locally on this computer”.

ð The login takes place. The data are saved in the password manager.

Requirement: A project is open. You wish to log in as a defined user for this project or for a
library integrated in it in order to edit one or the other with certain rights. The login data required
for this are already saved in the password manager.

1. Select “Project è User Management è User Logon” in order to open the “Logon” dialog
box.

2. Click on the button .

ð If you are working for the first time with the password manager, you will be requested
to define a master password. Refer to the above guide 'Setting a master password for
the password manager' for this.
When you call the password manager for the first time in this CODESYS session, you
will be requested to enter the master password.

3. Enter the master password when requested to do so.

ð The password manager menu appears.

4. Select the appropriate entry “Use the stored credentials for <user name>”.

ð The login takes place automatically with the data read from the password manager.

Saving login
data in the pass-
word manager

Getting the
login data from
the password
manager

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US206

Requirement: A project is open. You wish to open the password manager in order to view and/or
edit the entries or to change the master password. You have already logged in once with the
master password.

1. Select “Project è User Management è User Logon”, in order to open the “Logon” dialog
box.

2. Click on the button .
Select “Open the Password Manager”.

ð The password manager window opens.

3. Click on “Change Master Password” and make the change.

Requirement: A project is open. A user is logged in, which is recognizable by a name entry in
the field “Current User” in the status bar.

Select “Project è User Management è User Logoff”. Alternatively, double-click on the
field “Current User” in the status bar.

ð If the user is logged in to only one project, he will now be logged out without further
interaction. “(nobody)” appears again in the field “Current User” in the status bar
If the user is logged in to several projects, the dialog box “Logoff” opens. There, select
the specific project or library project from which the user is to be logged out.

See also
● Ä “User management and password manager” on page 199
● Ä Chapter 1.4.1.20.3.4.28 “Command 'User management' – 'Log in User'” on page 1016
● Ä Chapter 1.4.1.5.4 “Setting up a user management” on page 203

1.4.1.5.7 Encrypting Projects with Certificates
When a project is encrypted with a certificate, this certificate is needed for decryption to open
the project. You can assign this certificate to specific user profiles. To do this, select the certifi-
cate from the Windows Certificate Store on the “User” tab of the “Security Screen”.

1. Double-click in the status bar or click “View è Security Screen”.

ð The “Security Screen” view opens.

2. In the “User” tab, select the user profile for which the communication will be encrypted. By
default, the specified user profile is the one you have used on your computer to sign into
Windows. You can also create a new user profile with .

3. Click the button in the “Project file decryption” area.

ð The “Certificate Selection” dialog opens.

4. Select a certificate with a private key from the list “Available certificates in the local
Windows Certificate Store”. Certificates with a private key are identified by the symbol.

5. Click .
6. The certificate is added to the upper part of the dialog.
7. Click “OK” to confirm your selection.

ð The selected certificate is displayed in the “Security Screen” in the “Project file
decryption” area.

Opening the
password man-
ager, changing
the master
password

Logging out
from the project

Configuring a
certificate for
project file
encryption in a
user profile

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 207

A project encrypted with a certificate in connection with a user management allows you to
restrict access to the project.

1. Click “Project è Project Settings” and then select the “Security” category.

ð The “Project Settings / Security” dialog opens.

2. Select the “Encryption” option.

ð The option fields “Password”, “Dongle”, and “Certificates” are available.

3. Select the “Encryption” option.

ð The certificates available for project encryption are listed in the lower part of the
dialog. If no certificate has been specified yet, then click to select a relevant certifi-
cate in the “Certificate Selection” dialog. Then return to the “Project Settings” dialog.
Now the certificate is specified for encryption. Now the project can only be edited on
computers of users who also have the certificate for file decryption.

You delete the certificate in the “Security Screen” view, either directly on the “User” tab or in the
“Certificate Selection” dialog. The deletion will follow in the other dialog.
● Dialog “Security Screen”, tab “User”, “Digital Signature”, or “Project Data Decryption”: Select

a certificate and click
● Dialog “Certificate Selection”: in the “Security Screen” dialog, click on the “User” tab. In

the upper field of the “Certificate Selection” dialog, select the certificate to be deleted and
click .

To ensure that the project is not only encrypted with a certificate, but also that its authorship and
integrity can be verified, you can add a signature to the project:

1. Double-click in the status bar or click “View è Security Screen”.

ð The “Security Screen” view opens.

2. In the “User” tab, select the user profile for which the digital signature will be created. By
default, the specified user profile is the one you have used on your computer to sign into
Windows. You can also create a new user profile with .

3. Click the button in the “Digital signature” area.

ð The “Certificate Selection” dialog opens.

4. Select a certificate with a private key from the list “Available certificates in the local
Windows Certificate Store”. Certificates with a private key are identified by the symbol.

5. Click .

ð The certificate is added to the upper part of the dialog.

6. Click “OK” to confirm your selection.

ð The selected certificate is displayed in the “Security Screen” in the “Digital signature”
area.

See also
● Ä “Encryption with certificates” on page 198
● Ä Chapter 1.4.1.20.3.3.18 “Command 'Security Screen'” on page 995
● Ä Chapter 1.4.1.20.4.18 “Dialog 'Certificate Selection'” on page 1215
● Ä Chapter 1.4.1.20.4.10.3 “Dialog 'Properties' - 'Encryption'” on page 1158
● Ä Chapter 1.4.1.20.4.11.7 “Dialog 'Project Settings' - 'Security'” on page 1176
● Ä Chapter 1.4.1.8.17 “Encrypting an application” on page 294

Encrypting a
project with a
certificate

Deleting a certif-
icate in the user
profile

Configuring a
certificate for
the digital sig-
nature in a user
profile

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US208

1.4.1.5.8 Saving the Project
Requirement: The project is open. The project file is not write-protected.

Select “File è Save”.

ð CODESYS saves the project file with the current project name, which appears in the
title bar of the main window. If the project has been changed since it was last saved,
then the project name is provided with an asterisk. If this is set in the CODESYS
options in the category “Load and Save”, then a backup copy will also be made.

Requirement: The project is open.

1. Select “File è Save Project as”.

ð The “Save Project” dialog box opens.

2. Select a storage location in the file system and the desired “File Type” (project file or
library file) and the desired storage version. If you want to open the project later in an
older version, then it makes sense to save for precisely this version, as you will then be
informed immediately in the message window about possible data loss.

ð If the project file is not write protected, then CODESYS saves it in the selected path.
Otherwise you will be informed how to proceed.

3. If the current project contains add-ons that are not available in the selected memory
format, then the “Extend Profile” dialog box opens.

4. Select the add-ons to extend the memory profile in order for the add-on data to be saved.
5. To save the memory profile permanently, click “Save Profile” and specify a name in the

“Enter profile name” dialog box.
6. In the “Extend Profile” dialog box, select the “Use saved profile” option and click “Yes”.

ð CODESYS saves the project with the saved profile.

Requirement: A read-only project is open.

Select “File è Save”.

If the write protection was assigned in CODESYS, then it will be displayed by a line in the top
right corner of the main window. Depending on the current situation you will be offered one or
more of the following actions so that you can still save the project:
● “Save project under a different file name on the disk”: Always appears and continues to the

“Save File” dialog box, as for the “Save File as” command
● “Exit read-only mode”: Appears if the “Open read-only” option is selected when opening the

project.
● “Remove read-only attribute from the project on the disk”: Appears if the project file was

provided with the 'Read-only' property in the local file system at the time of opening.
● “Remove identification 'Released' in the project information”: Appears only if this attribute is

currently set.
If the write protection was assigned outside of CODESYS in the properties of the project file in
the file system, you will be offered the following options when you attempt to save under the
same name and path:
● “Save as”: You can save under a different name as with the “Save Project as” command.
● “Overwrite”: The write protection is removed from the project file and the file is saved under

its existing name.

Saving a project
under the same
name

Saving a project
under a different
name or format

Saving a read-
only project

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 209

1. Click on the line in the top right corner of the main window that indicates the write
protection.

ð The current options with which you can still save the project appear in a selection
menu.

2. Select one of the options offered and perform any necessary actions.
3. Click “File è Save” or “File è Save as”.

ð The project can be saved.

Requirement: The project is open.

1. Click “Tools è Options” (category “Load and Save”.

ð The “Load and Save” dialog box opens.

2. Activate the “Create backup files” option.
3. Activate the “Automatically save every … minutes” option and select a time interval.
4. Click “OK” to close the “Options” dialog box.

ð Each time the project is saved, CODESYS also creates a backup copy <project
name>.backup.

CODESYS saves the project automatically at the specified time interval to a file
<project name>.autosave in the project directory. If you open the project again
after the development system was closed irregularly, then this file will be offered to you
as an alternative to the file last saved by the user.

See also
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197
● Ä Chapter 1.4.1.20.4.13.16 “Dialog 'Options' – 'Load and Save'” on page 1196

1.4.1.5.9 Saving/Sending the project archive
You can configure a project archive and then save it in the file system or send it directly in an
e-mail.
To send, follow the guide below as far as point 9. There, click on the button “Send” instead
of “Save” in order to directly open the standard e-mail program, in which a new mail will
automatically be created with the project archive file as an attachment.
Requirement: A project is opened.
1. Select “File è Project Archive è Save/Send Archive”.

ð The dialog box “Project Archive” appears.

2. Activate the checkbox next to each object that is to be saved in the archive.

In order to guarantee know-how protection,CODESYS will not automati-
cally add unprotected libraries, not available as "compiled-library", to a
project archive. If you explicitly select such a library in the list of additional
files, you will get an appropriate warning.

3. If you want to pack further files in the archive, click on “Additional Files”.

ð The dialog box “Additional Files” opens.

4. Click on “Add”.

Saving of the
project automat-
ically; creating a
backup copy

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US210

5. Select the files and click “Open”.

ð The files are added to the list of additional files.

6. Click on “OK”.
7. Click on “Comment”.

ð The dialog box “Comment” opens.

8. Enter a comment and click on “OK”.
9. Click on the button “Save”.
10. Select a storage location and a file name and click on “Save”.

ð The project archive is saved in the file directory.

See also
● Ä Chapter 1.4.1.20.3.1.4 “Command 'Save project'” on page 957
● Ä Chapter 1.4.1.20.3.1.5 “Command 'Save Project as'” on page 958

1.4.1.5.10 Linking a project to the source control system
To link your CODESYS projects to a source control system, check the following option:
The Professional Version Control add-on provides the capability of directly linking to an SVN
database. You can get the package at the CODESYS Store and install it with the help of the
Package Manager.
Refer to the corresponding help when using Professional Version Control.

1.4.1.6 Localizing projects
You can display your project in different languages when you create and link localization files.
The localization files correspond to those of the GNU gettext system. The format of the
localization template files is *.pot (Portable Object Template), from which localization files *.po
(Portable Object) are generated after translation.

The project can be localized in different languages. However, editing is possible
only in the original version.

You configure which categories of text information are localized in the project. Then you export
these texts into a translation template. This template is a file in *.pot format (example:
project_1.pot). You produce localization files in the format *.po (example: de.po, en.po,
or es.po), either automatically with a corresponding external translation tool or manually with
a neutral text editor. You can import the *.po files back into CODESYS and use them for
localization.
The commands for using project localization are located in the menu “Project è Project
localization”.
See also
● Ä Chapter 1.4.1.20.3.4.16 “Command 'Project Localization' - 'Create Localization Template'”

on page 1007

Requirement: A project is open.Generating
localization tem-
plates

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 211

1. Click “Project è Project Localization è Create Localization Template”.

ð The “Create Localization Template” dialog box opens.

2. Activate the categories of text information that should be included in the localization
template.

3. “Position information” can also be included in the template. For each text to be translated,
specify its location in the project. Select the positions to be displayed in the translation
template: only the first position found, all positions found, or none.

4. Click the “Generate” button.

ð The dialog box opens for saving a *.pot file to the file system. Save the localization
template. Then you can process the file in a translation tool and generate localization
files <language>.po in the required languages.

In the first line, the text categories are specified that were selected for the translation when
generating the template:
Example: #: Content:Comments|Identifiers|Names|Strings: All four categories were
selected.
Then each text to be translated is segmented in the form as in the following example:

#: D:\Projects\p1.project\Project_Settings:1
msgid "Project Settings"
msgstr ""

Line 1: Position information displayed as source code reference. Displayed only if this has
been configured when generating the translation file.
Line 2: Untranslated text as entry msgid (example: msgid "Project settings").

Line 3: Placeholder for the translation: msgstr "". Between the single straight quotation
marks, the translation in the *.po file must be inserted in the respective language.

Example

You can generate a *.po file with a translation tool or create one using a neutral text editor
based on the *.pot file. For this purpose, you could change the file extension from *.pot to
*.po and edit the according to *.po standard format.

It is imperative to specify the language in the form of the usual culture abbreviation in the
metadata of the file (example: "Language: de" for German. Then you insert the translations
of the individual texts between the straight quotation marks for the msgstr "" entries.

"Language: de\n"
#: Content:Names
#: D:\projects\p1.project\Project_Settings:1
msgid "Project Settings"
msgstr "Projekteinstellungen"

Example

Requirement: For your project, localization files (<language>.po) were generated based on
the translation template *.pot. The project is open.

1. Click “Project è Project Localization è Manage Localizations”.
2. Click on the “Add” button.

ð The “Open Localization File” dialog box appears for selecting a *.po file from the file
system.

Format of the
localization tem-
plate: file *.pot

Format of the
localization file:
*-
<language>.po

Importing locali-
zation files /
localizing proj-
ects

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US212

3. Select one of the localization files (example: <project name>-de.po).

ð The dialog box closes and the affected texts appear in the project in the respective
language. For example, if you specify the translation msgstr "Main program" for
the POU name "PLC_PRG" in the English localization file, then the object name "Main
program" appears in the device tree.

4. In the same way, you import the localization files for other language targets.

Requirement: All required language are stored in the project by importing the corresponding
*.po file. The project is open.

1. Click “Project è Project Localization è Manage Localization”.

ð The “Manage Localization” dialog box opens. All stored localization files *-
<language>.po appear in “Files”, as well as the entry “<original version>”.

2. Select the desired language and click the “Switch Localization” button.

ð The project appears in the selected language. When you select “<original version>”,
the project is displayed in the original, unlocalized version and it cannot be edited.

Select one of the available localizations and activate the “Default Localization” option.

ð Click “Project è Project Localization è Toggle Localization” to toggle the localization
between the default localization and original version. By default, this command is also
available with the button on the toolbar.

See also
● Ä Chapter 1.4.1.20.3.4.17 “Command 'Project Localization' - 'Manage Localizations'”

on page 1008
● Ä Chapter 1.4.1.20.3.4.18 “Command 'Project Localization' - 'Toggle Localization'”

on page 1009

1.4.1.7 Configuring I/O Links
With the help of device objects you can map hardware to be controlled in a tree structure in your
CODESYS project. This makes the linking of hardware and application easy to handle.
In the configuration editors of the device objects, you can configure the settings for the commu-
nication between CODESYS and the controller, and above all for I/O mapping. The I/O mapping
is the linking of the inputs and outputs of the controller with the variables of your application.
Access to control objects at runtime can be controlled, depending on the device, via an 'online
user management', which you can edit – likewise depending on the device – in the CODESYS
Development System. Moreover, communication with the controller depends on the current
security settings.
See also
● Ä Chapter 1.4.1.7.1 “Configuring Devices and I/O Mapping” on page 213
● Ä Chapter 1.4.1.10.2 “Encrypting Communication, Changing Security Settings” on page 381
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385

1.4.1.7.1 Configuring Devices and I/O Mapping
You can configure the device objects inserted into the device tree in the associated device
editor. The possibilities depend on the device description. The 'generic device editor' provides
tabs that are supplemented as necessary by device-specific tabs.

Switching locali-
zation, adding
and removing
localization files

Optional:
Defining a
default localiza-
tion, toggling
localizations

Configuring
devices

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 213

Requirement: You have opened a standard project in whose device tree a standard PLC and
below that a fieldbus device object are inserted.
1. Double-click the device object of the standard PLC in the device tree of your project.

ð The “<device name>” editor opens in the CODESYS main window. The
“Communication Settings” tab is in the foreground. Change to the other tabs in order
to make configuration settings for the controller. See the help pages for the generic
device editor.

2. Double-click the fieldbus device object in the device tree of your project.

ð The “<fieldbus device name>” editor opens in the CODESYS main window. Specific
tabs are available depending on the device. For the configuration options, see the
help pages for the respective device editor. If the “Show generic device configuration
views” option is selected in “Tools è Options”, in the “Device Editor” category, then
see also the tabs contributed by the generic device editor.

See also
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839

Whether or not you can configure an I/O mapping to project variables or even to the entire
function blocks depends on the type of device. Configuring an I/O map means linking input and
output channels of the device with variables of the project. We also use the term 'mapping' for
this.
Pay attention in general to the following for the mapping of inputs and outputs of a device to
variables in CODESYS:
● You do not have write access to variables that are mapped to an input.
● You can map an existing variable to one input only.
● You can directly generate new global implicit variables in the I/O map and map them to a

device channel.
● The memory layout of structures is specified by the device.
● You can change addresses and fix values in the I/O map.
● For each variable that is assigned to an I/O channel in the “I/O Mapping” dialog, you can

cause 'force variables' to be generated during the compilation of the application (see further
below). Using these variables you can, for example during the commissioning of a plant,
force a value on the input or output via a visualization/HMI.

● Changes in the I/O map can be transferred to the controller with an online change.
● If a pointer to a device input is used, the access is considered to be a write access, for

example pTest := ADR(input);. This leads to a compiler warning when the code is
generated: "...invalid assignment target". If you require a construct of this kind,
you have to first copy the input value input to a variable with write access.

● An I/O address can also be linked with a variable via the 'AT declaration' in the IEC code.
Since a device configuration often changes again, however, we recommend that you make
the assignments only in the device editor.
If you use the AT declaration, note the following:
– An AT declaration is permissible only with local or global variables, not with input or

output variables of function blocks.
– Implicit 'force variables' for I/Os (see below) cannot be generated for AT declarations.
– If you use an AT declaration with structure variables or function block variables, all

instances will access the same memory location. This then corresponds to the use of
'static variables' in classic programming languages such as 'C'.

General infor-
mation about I/O
mapping

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US214

NOTICE!
If a pointer to a device input is used, then the access (for example, pTest :=
ADR(input);) applies as write access. This leads to a compiler warning when
the code is generated: "...invalid assignment target".

If you require a construct of this kind, you have to first copy the input value
(input) to a variable with write access.

As an alternative, you can assign a variable to an address in the programming
code using the AT declaration. In view of possible changes of the device config-
uration, however, we recommend that you make the assignments only in the
device editor.

You can export the I/O mapping configuration of a device to a csv file or import
it from such a file.

See also
● Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854
● Ä Chapter 1.4.1.20.3.4.37 “Command 'Export Mappings to CSV'” on page 1019
● Ä “Generating implicit variables for the forcing of I/Os” on page 221

Requirement: A device that supports an I/O mapping configuration in CODESYS is inserted in
the device tree of your project. On the “I/O Mapping” tab in the device editor you thus get a
tabular display of the input and output channels of the device with specification of the addresses
and data types.

NOTICE!
Mapping 'too large' data types
If a variable of a data type that is larger than a byte is mapped to a byte
address, the value of the variable will be truncated to byte size there. For
monitoring the variable value in the “I/O Mapping” dialog, this means that, in the
root element of the address, the value is displayed which the variable currently
has in the project. The current individual bit values of the byte are displayed in
succession in the bit elements below that, but this may not be sufficient for the
entire variable value.

If a UNION is represented by I/O channels in the mapping dialog, it depends on
the device whether mapping to the root element is also possible.

1. In a POU, declare, for example, a variable xBool4 of the type BOOL with which you want
to access an input of the target device from the application.

2. To open the device editor, double-click the device object in the device tree, and then the
“<device name> I/O Mapping” tab.

3. Observe the “Variable” column with the display of the device input channels and device
output channels , which can still be sorted by organizational nodes , depending on the
device. We assume that there is a device input of the type BYTE. It is displayed with its
individual bit addresses (bit channels) below the BYTE node.

Linking a device
input with an
existing project
variable ("map-
ping")

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 215

4. Note: When mapping structured variables, the editor prevents you from entering both the
structure variable (example: %QB0) and individual structure elements (example: %QB0.1
and QB0.2). Therefore, if there is a main entry with a subtree of bit channel entries in the
mapping table, then the following applies: Then you can specify a variable either into the
line of the main entry, or into the lines of the subelements (bit channels), but not into both.
You can now occupy either the entire channel with a variable of a suitable type OR its
individual bit-channel addresses with suitable variables of the type BOOL or BIT. First of
all, double-click a bit input channel in the “Variables” column.

ð An input field opens.

5. In order to place an existing variable on the channel, you have to enter the desired project
variable with the complete path. Press to open the Input Assistant. Select, for example,
the variable Application.PLC_PRG.xBool4 declared in PLC_PRG.

ð The variable is inserted. The HMI symbol () is displayed in the “ Mapping” column.
The address is now struck through. That does not mean that the address is no longer
available, because values of existing variables are managed at another memory
space. But: in order to avoid ambiguities when writing the values, you should nev-
ertheless not occupy the address with a further variable, especially in the case of
outputs.
Note: For compiler version V3.5 SP11 and higher, the initialization value of the varia-
bles is used automatically as the default value when mapping to an existing variable.
You can edit the “Default value” field only if you map to a new created variable or if no
mapping is specified. In older versions, users had to specify explicitly that the default
value and initialization value were identical.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US216

6. Delete the variable assignment again. Click the root of the channel,
the BYTE node. Use the Input Assistant again to select the variable
Application.PLC_PRG.byte_gotodevice.

ð The variable is inserted, all bit addresses of the main channel are struck through and
you should not additionally occupy them.

See also
● Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854

In the following you will map a device output to a global implicit variable, which you recently
create for this purpose directly in the “I/O Mapping” dialog.

The “I/O Mapping” dialog is thus a further place for declaring a global variable.

Requirement: A device that supports an I/O mapping configuration in CODESYS is inserted in
the device tree of your project. On the “I/O Mapping” tab in the device editor you will thus see a
tabular display of the input and output channels of the device with specification of the addresses
and data types.
1. To open the device editor, double-click the device object in the device tree, and then the

“<device name> I/O Mapping” tab.
2. Click in the mapping table on a channel entry in the “Variable” column in order to open an

input field.

Mapping a
device input to a
recently created
project variable

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 217

3. Enter a simple name (without '.') for a new variable (for example, myBool).

ð CODESYS creates the variable as an implicit global variable in the project and
assigns it directly to the channel address. Therefore in this case the address does
not appear struck through as in the case of mappings to existing variables .

If supported by the device, you can map entire function blocks to an input or output channel.
This allows you to count the frequency of signal changes or scale a channel value for mainte-
nance purposes, for example.
Here you will map a device output channel to a function block. In this example, the block scales
the channel output value.
Requirement: A device with a digital output that supports FB mapping is linked in the project.
There is a function block “Scale_Output_Int” with the following implementation. The attributes
of the function block itself and before the output parameter with which the channel output is
processed are important.
{attribute 'io_function_block'}
FUNCTION_BLOCK Scale_Output_Int
VAR_INPUT
 iInput : INT;
 iNumerator : INT;
 iDenominator : INT :=1;
 iOffset : INT := 0;
END_VAR
VAR_OUTPUT
 {attribute 'io_function_block_mapping'}
 iOutput : INT;
END_VAR
VAR
END_VAR
IF iDenominator <> 0 THEN
 iOutput := TO_INT(TO_DINT(iInput) * TO_DINT(iNumerator) /
TO_DINT(iDenominator)) + iOffset;
1. Open the “<device name> I/O Mapping” tab of the device editor. Double-click the output

that should be connected to the function block. Click the button “Add FB for IO
channel”.

ð The “Select Function Block” dialog opens. On the left side, you see at least the
function block “Scale_Output_int” below the “Application” node. Libraries linked in the
project that contain corresponding function blocks are also displayed for selection.

2. Select the POU myScaleOutputInt.

ð After clicking “OK”, the path of the function block parameter iOutput in the
“Variable” is entered in the mapping dialog. The path comprises the applica-
tion name, the device channel name, and the selected FB output (example:
App1.Out_4_Int_myScale_Output_Int_1.iOutput).

Linking a device
with a function
block instance

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US218

3. Select the channel and click “Go to Instance”.

ð The focus switches to the “<device name> IEC Objects” tab and the created entry
for the new IEC object Out_4_Int_myScale_Output_Int_1. In this view in
online mode, you see the current value of the parameter iOutput for the channel
Out_4_Int scaled by the FB. You can also write and force the value as in other
monitoring views.

See also
● Ä Chapter 1.4.1.20.4.3 “Dialog 'Select Function Block'” on page 1150
● Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854
● Ä Chapter 1.4.1.20.2.8.12 “Tab '<device name> IEC Objects'” on page 859
● Ä Chapter 1.4.1.19.6.2.22 “Attribute 'io_function_block', 'io_function_block_mapping'”

on page 707

You can change the address value of an entire channel (but not that of an individual subelement
of the channel!) in the mapping table of the “<device name> I/O Mapping” tab. This allows you
to adapt the addressing to a specified machine configuration and to retain the address value
even if the layout of the modules changes. By default, a change of the layout leads to an
automatic adaptation of the address values.
Requirement: Your project has I/O mapping. See the corresponding sections of the help page
above.
1. To open the device editor, double-click the device object in the device tree, and then the

“<device name> I/O Mapping” tab.
2. Click in the mapping table on a channel entry in the “Address” column in order to open an

input field. This is only possible for the 'root' address of a channel, not for a particular one
of its subelements.
Therefore, change the top address entry of a channel in the table, for example from QB0
to QB1. Exit the input field.

ð The address value is changed. The symbol is displayed before the address. It
indicates that the address is fixed. The addresses of the subelements of the channel
are also changed accordingly. If you now change the position of the device object
inside other device objects with input/output channels in the device tree, CODESYS
does not adapt these addresses to the new order as would be the case without fixing.

3. In order to undo the manual change or fixing, open the input field of the address value
again, delete the address entry and press the Enter key.

ð CODESYS resets the address and the subsequent addresses concerned to the values
they had before the change and removes the symbol .

See also
● Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854
● Ä Chapter 1.4.1.19.4.10 “Addresses” on page 643

Changing and
fixing an
address value in
the I/O map

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 219

Depending on the device that you link in the project, CODESYS updates the variables applied
to its inputs and outputs in different ways. You can explicitly change the settings for this in the
“I/O Mapping” dialog.
See also
● Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854

Requirement: You have compiled an application with a device configuration containing I/O maps
without error. The associated hardware and the bus system are running. You have connected
to the controller by means of the “Online è Login” command and have loaded and started the
application.
1. Open the “I/O Mapping” tab of the PLC in the device editor. To open the editor, double-

click the device object in the device tree.

ð The mapping table now additionally contains the “Current Value” and “New Value”
columns.

If a structure variable is mapped to the 'root' element of an address1, CODESYS does
not display a value in this line in online mode. If, for example, a DWORD variable is
mapped to the address, however, the respective values are monitored both in the 'root'
line and in the indented bit-channel lines below it.
As a matter of principle, the field in the 'root' line always remains empty if the value
would be composed of several subelements.
1 'root' = top element of this address in the Mapping dialog

2. Enter a certain variable value for an entry in the column “New value” and press [F7] to
force or [Ctrl]+[F7] to write the value.

ð As in the case of monitoring in the declaration editor or in watch lists, the forced
variable value is displayed in the column “Current Value” with a prefixed red F-symbol
or the written value.

NOTICE!
Inputs and outputs that the PLC code does NOT use are not read by the PLC
in online mode, as a result of which the displayed value could be incorrect. The
“Current Value” of the variables concerned is displayed with a gray background.

(1) Forced values on the controller
(2) Values not used on the controller, value shown in gray

Configuration of
the I/O variable
update

Monitoring of
variables in the
I/O map in
online mode

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US220

During the commissioning of a plant or machine it may be necessary to 'force' the values
applied at the inputs and outputs. If a device supports this you can cause special 'force varia-
bles' to be generated for this purpose and use them, for example, in an HMI visualization.
Requirement: The device supports the functionality. You have a project in which an I/O map is
configured for the device and which contains a program object PLC_PRG.

1. Open the device editor, “PLC Settings” tab, by double-clicking the device object in the
device tree.

2. Activate the option “Generate force variables for IO mapping”.
3. Press [F11] to compile the application.

ð Two variables are created for each I/O channel in accordance with the following
syntax, in the process of which spaces in the channel name are replaced by under-
scores:
<device name>_<channel name>_<IEC address>_Force of type BOOL for the
activation and deactivation of forces.
<device name>_<channel name>_<IEC address>_Value of the data type of
the channel for defining the value that you want to force on the channel.
These variables are available in the Input Assistant in the category “Variables” /
“IoConfig_Globals_Force_Variables.” You can use them in CODESYS in programming
objects, in visualizations, in the symbol configuration, etc.

4. Open the function block “PLC_PRG”, set the focus in the implementation part and press
F2.

ð The Input Assistant opens. The variables are available in the category “Variables” /
“IoConfig_Globals_Force_Variables” as described above.
A rising edge at the 'Force variable' input activates the forcing of the respective input
or output with the value given by the 'Value variable'. A falling edge deactivates the
forcing. Deactivation by resetting the 'Force' variable to FALSE is the requirement for
being able to force a new value.

Take note of the following restrictions.
● Forcing via the implicit force variables is only possible for channels that are mapped in the

“I/O Mapping” of the device to an existing or recently created variable.
● Forcing via the implicit force variables is not possible for unused inputs and outputs or those

that are mapped to a variable via an AT declaration in an application program.
● I/O channels that you want to force via the mechanism have to be used by CODESYS in at

least one task.
● CODESYS identifies forced inputs in the monitoring by the red Force symbol, but not forced

input/outputs. The forced value is used only implicitly by the I/O driver for writing to the
device.

See also
● Ä Chapter 1.4.1.20.2.8.9 “Tab 'PLC Settings'” on page 850
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401

There is a table that displays the I/O map of a device plus the I/O maps of all subelements
inserted below it in the device tree. There you can edit the I/O maps in exactly the same way as
in the individual mapping tables of the respective device editors.
Requirement: In the device tree of your project there are several PLCs inserted that each
enable an I/O mapping configuration.
1. Select the root node of the device tree and click “Edit I/O Mapping” in the context menu .

ð The “Edit I/O Mapping” dialog opens, in which the I/O mapping configurations of all
devices inserted in the project are displayed in a table. You can edit the entries in the
same way as in the “I/O Mapping” dialog of the associated device editor.

Generating
implicit varia-
bles for the
forcing of I/Os

I/O mapping in
one dialog for
multiple devices

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 221

2. Now select one of the control objects in the device tree and select the “Edit I/O Mapping”
command once again in the context menu.

ð The “Edit I/O Mapping” dialog now shows only the I/O table for the I/O mapping
configurations found in and under the selected object.

3. Set a desired “Filter” in the bar above the table or enter a variable name in the “Search for
variable” field in order to see the use of this variable in the mapping.

ð The method of working in this window is the same as that described for the “<device
name> I/O Mapping” tab.

See also
● Ä Chapter 1.4.1.20.3.4.35 “Command 'Edit I/O Mapping'” on page 1018

1.4.1.8 Programming of Applications
To create an application program which can be run on the controller, you fill POUs with decla-
rations and implementation code (source code), establish the link from the controller I/Os to
application variables, and configure the task assignment. After checking and debugging, the
CODESYS compiler creates the application code which can be downloaded to the controller.
The programming of the application POUs is supported by the programming language editors
and other features such as text lists, image pools, alarm configurations, pragmas, refactoring,
and ready-to-use POUs from CODESYS Development System or libraries.
There are features for syntax checking and code analysis, for achieving data persistence, and
for encrypting the application code which is downloaded to the controller.

1.4.1.8.1 Designating identifiers
Identifiers are names of variables and programming objects (for example programs, function
blocks, and methods) and names of other objects of the application and project. There are rules
that you must follow when assigning identifiers. Furthermore, there are also recommendations
to help you designate uniform and expressive identifiers.
You designate variables identifiers in the variables declaration. These identifiers can e changed
in the declaration section of the programming object. You designate identifiers for programming
objects and other objects in the dialog box when adding the object. You can change the
identifier of an existing object of the application or of the project in the properties dialog of the
object. However, you cannot change the identifiers of objects that can be available only one
time per application or project (for example, the “Library Manager” and “ImagePool” identifiers).
See also
● Ä Chapter 1.4.1.19.7 “Identifiers” on page 740

1.4.1.8.2 Declaration of Variables
You can declare variables at the following locations:
● Declaration part of a POU

The “Declare Variable” dialog helps you with this.
Hint: If you define a variable in the tabular declaration editor, the correct syntax is automati-
cally produced.

● Declaration part of the GVL or NVL editor
● I/O mapping configuration of an I/O device object

Variable decla-
ration: Where
and how?

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US222

(<pragma>)*
<scope> (<type qualifier>)?
 <identifier> (AT <address>)? : <data type> (:= <initial
value>)? ;
END_VAR

 Declaration See also
● Ä Chapter 1.4.1.8.2.1

“Using the declaration editor”
on page 226

● Ä Chapter 1.4.1.8.2.2 “Using
the 'Declare variable' dialog
box” on page 227

● Ä Chapter 1.4.1.20.3.2.32
“Command 'Auto Declare'”
on page 975

<pragma> Pragma (none, one, or multiple)
Note: By adding a pragma, you can affect
the behavior and the properties of one or
more variables.

See also
● Ä Chapter 1.4.1.8.6 “Using

Pragmas” on page 263
● Ä Chapter 1.4.1.19.6

“Pragmas” on page 683
<scope> Scope

● VAR
● VAR_CONFIG

Note: If variables with incomplete
address information are declared in
function blocks (for example, AT %I*),
then the variables in the variable dec-
laration VAR_CONFIG have to be com-
pletely declared. You can access these
variables in a local instance only when
this is done.

● VAR_EXTERNAL
● VAR_GLOBAL
● VAR_INPUT
● VAR_INST
● VAR_IN_OUT
● VAR_OUTPUT
● VAR_STAT
● VAR_TEMP

See also
● Ä Chapter 1.4.1.19.2.1 “Local

variables - VAR” on page 526
● Ä Chapter 1.4.1.19.2.10

“Configuration variables -
VAR_CONFIG” on page 534

● Ä Chapter 1.4.1.19.2.8
“External variables -
VAR_EXTERNAL” on page 533

● Ä Chapter 1.4.1.19.2.5 “Global
variables - VAR_GLOBAL”
on page 531
Ä Chapter 1.4.1.20.2.10
“Object 'GVL' - Global Variable
List” on page 871

● Ä Chapter 1.4.1.19.2.2 “Input
variables - VAR_INPUT”
on page 526

● Ä Chapter 1.4.1.19.2.9
“Instance variables -
VAR_INST” on page 533

● Ä Chapter 1.4.1.19.2.4
“Input/Output Variable
(VAR_IN_OUT)” on page 527

● Ä Chapter 1.4.1.19.2.3 “Output
variables - VAR_OUTPUT”
on page 527

● Ä Chapter 1.4.1.19.2.7
“Static variables - VAR_STAT”
on page 532

● Ä Chapter 1.4.1.19.2.6 “Tem-
porary variable - VAR_TEMP”
on page 532

Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 223

<type
qualifier
>

Type qualifier
● CONST
● RETAIN
● PERSISTENT

See also
● Ä Chapter 1.4.1.19.2.11 “Con-

stant Variables - 'CONSTANT'”
on page 534

● Ä Chapter 1.4.1.19.2.13
“Retain Variable - RETAIN”
on page 537

● Ä Chapter 1.4.1.19.2.12 “Per-
sistent Variable - PERSIS-
TENT” on page 535

<identifi
er>

Identifier, variable name
Note: The rules listed in the chapter "Iden-
tifiers" must be followed without exception
when assigning an identifier. In addition,
you will find recommendations for uniform
naming.

See also
● Ä Chapter 1.4.1.19.7 “Identi-

fiers” on page 740

AT
<address>

Assignment of an address in the input,
output, or flag memory range (I, Q, or M)
AT % <memory area prefix>
(<size prefix>)? <memory
position>
Example
● AT %I* // Incomplete address
● AT %I7.5
● AT %IW0
● AT %QX7.5
● AT %MD48

See also
● Ä Chapter 1.4.1.7.1 “Config-

uring Devices and I/O Map-
ping” on page 213

● Ä Chapter 1.4.1.8.11.2 “AT
declaration” on page 281

● Ä Chapter 1.4.1.19.4.10
“Addresses” on page 643

<data
type>

Data type
● <elementary data type>
● <user defined data type>
● <function block>

See also
● Ä Chapter 1.4.1.19.5 “Data

Types” on page 646
● Ä Chapter 1.4.1.20.2.6 “Object

'DUT'” on page 835
Ä Chapter 1.4.1.20.2.18.2
“Object 'Function Block'”
on page 883

<initial
value>

Initial value
<literal value> | <identifier>
| <expression>

See also
● Ä Chapter 1.4.1.19.7 “Identi-

fiers” on page 740
● Ä “Constants and literals”

on page 632
● Ä Chapter 1.4.1.19.1.3.3 “ST

expressions” on page 464
(...)? Optional
(...)* Optional repetition

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US224

{attribute 'qualified_only'}
{attribute 'linkalways'}
VAR_GLOBAL CONSTANT
 g_ciMAX_A : INT := 100;
 g_ciSPECIAL : INT := g_ciMAX_A - 10;
END_VAR
{attribute 'qualified_only'}
VAR_CONFIG
 // Generated instance path of variable at incomplete address
 PLC_PRG.fbDoItNow.XLOCINPUT AT %I*: BOOL := TRUE;
END_VAR
METHOD METH_Last : INT
VAR_INPUT
 iVar : INT;
END_VAR
VAR_INST
 iLast : INT := 0;
END_VAR

METH_Last := iLast;
iLast := iVar;

FUNCTION_BLOCK FB_DoIt
VAR_INPUT
 wInput AT %IW0 : WORD; (* Input variable *)
END_VAR
VAR_OUTPUT
 wOutput AT %QW0 : WORD; (* Output variable *)
END_VAR
VAR_IN_OUT
 aData_A : ARRAY[0..1] OF DATA_A; // Formal variable
END_VAR
VAR_EXTERNAL
 GVL.g_ciMAX_A : INT; // Declared in object GVL
END_VAR
VAR_STAT
 iNumberFBCalls : INT;
END_VAR
VAR
 iCounter: INT;
 xLocInput AT %I* : BOOL := TRUE; // VAR_CONFIG
END_VAR

iNumberFBCalls := iNumberFBCalls + 1;
PROGRAM PLC_PRG
VAR
 iLoop: INT;
 iTest: INT;
 fbDoItNow : FB_DoIt;
 iTest_200: INT;
 aData_Now : ARRAY[0..1] OF DATA_A := [(iA_1 := 1, iA_2 := 10,
dwA_3 := 16#00FF),(iA_1 := 2, iA_2 := 20, dwA_3 := 16#FF00)];
END_VAR

iTest := GVL.g_ciMAX_A;
iTest_200 := 2 * GVL.g_ciMAX_A;
fbDoItNow(aData_A := aData_Now);
FOR iLoop := 0 TO GVL.g_ciSPECIAL DO
 ;
END_FOR

Example
GVL

GVL_CONFIG

FB_DoIt (FB)

PLC_PRG
(PRG)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 225

The standard initialization value for all declarations is 0. In the declaration part you can also
specify user-defined initialization values for each variable and each data type.
The user-defined initialization starts with the assignment operator := and consists of any valid
expression of the programming language ST (structured text). You thus define the initialization
value with the help of constants, other variables or functions. If you use a variable, you must
also initialize it.

VAR

 var1:INT := 12; // initialization
value 12

 x : INT := 13 + 8; // initalization
value defined by an expression of constants

 y : INT := x + fun(4); // initialization
value defined by an expression,
 // that contains a
function call; notice the order!

 z : POINTER TO INT := ADR(y); // not described in
the standard IEC61131-3:
 // initialization
value defined by an adress function;
 // Notice: In this
case the pointer will not be initialized
 // during an Online
Change *)
 END_VAR

Examples

Notes on the order of initialization

From compiler version 3.5.3.40, variables in a function block are initialized in
the following order: firstly, all constants in accordance with the order of their
declarations, then all other variables in accordance with the order of their decla-
rations.

NOTICE!
From compiler version 3.3.2.0, variables from global variable lists are always
initialized before the local variables of a POU.

See also
● Ä Chapter 1.4.1.19.5.14 “Data Type 'ARRAY'” on page 660
● Ä “Declaration and initialization of structure variables” on page 675
● Ä Chapter 1.4.1.19.5 “Data Types” on page 646
● Ä Chapter 1.4.1.19.6.2.15 “Attribute 'global_init_slot'” on page 699

Using the declaration editor
The declaration editor is used for declaring variables in the variable lists and POUs.

The declaration editor offers two possible views: textual and tabular .

Variable initiali-
zation

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US226

in the dialog in “Tools è Options è Declaration Editor”, you define whether only the textual
view or only the tabular view is available, or whether you can switch between both views by
means of the buttons on the right side of the editor view.
If the declaration editor is used in conjunction with a programming language editor, it appears as
the declaration part at the top of the window of a POU.

The behavior and the appearance of the textual editor are configured with the settings in the
dialog “Tools è Options è Text Editor”. The settings concern colors, line numbers, tab widths,
indentations etc. The usual Windows functions are available, plus the IntelliMouse functions if
necessary.
Requirement: You have opened a programming object (POU, GVL or NVL) of a project. The
textual declaration editor has the focus.

Enter the variable declarations in correct syntax. With [F2] you can open the dialog “Input
Assistant” for the selection of the data type or a keyword.

In the tabular declaration editor, you add variable declarations to a table with the following
columns: “Scope”, “Name”, “Address”, “Data type”, “Initialization”, “Comment”, and “Attributes”
(pragmas).
Requirement: A programming object (POU or GVL) of a project is open. The tabular declaration
editor has the focus.
1. Click the button in the declaration header or select the command “Insert” in the context

menu.

ð CODESYS inserts a new row for a variable declaration and the input field for the
variable name opens.

2. Specify a valid variable identifier.
3. Open the other fields of the declaration line as required with a double-click and select

the desired specifications from the drop-down lists or with the help of the dialogs which
appear.

See also
● Ä Chapter 1.4.1.19.1.1 “Declaration Editor” on page 461
● Ä Chapter 1.4.1.20.3.2.32 “Command 'Auto Declare'” on page 975
● Ä Chapter 1.4.1.8.2.2 “Using the 'Declare variable' dialog box” on page 227
● Ä Chapter 1.4.1.20.3.16.2 “Command 'Edit Declaration Header'” on page 1121
● Ä “Dialog 'Input Assistant' - Tab 'Categories'” on page 978

Using the 'Declare variable' dialog box
Requirement: A programming object (POU or GVL) of a project is open.
1. Select the command “Edit è Auto Declare”.

ð The dialog box “Auto Declare” opens.

2. Select the desired scope for the variable from the selection list “Scope”.
3. Enter a variable name in the input field “Name”.
4. Select the desired data type from the selection list “Type”.
5. If the initialization value deviates from the standard initialization value, enter an initializa-

tion value for the variable.
6. Complete your entries with a click on “OK”.

ð CODESYS lists the newly declared variable in the declaration part of your program-
ming object.

Declaring in the
textual declara-
tion editor

Declaring in the
tabular declara-
tion editor

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 227

With the help of pragmas in the declaration part you can affect the processing of
the declaration by the compiler.

See also
● Ä Chapter 1.4.1.20.3.2.32 “Command 'Auto Declare'” on page 975
● Ä Chapter 1.4.1.19.5 “Data Types” on page 646
● Ä Chapter 1.4.1.8.6 “Using Pragmas” on page 263

Declaring arrays
Requirement: A programming object (POU or GVL) of a project is open.
1. Click “Edit è Declare Variable”.

ð The “Declare Variable” dialog opens.

2. Select the desired scope for the array from the drop-down list “Scope”.
3. Enter an identifier for the array in the “Name” input field.
4. Click the arrow button () next to the “Data type” input field and select the “Array

Assistant” entry from the selection menu.
5. In the input fields “Dimension 1”, type in the lower and upper limit of the first dimension of

the array (example: 1 and 3).

ð The field “Result” displays the 1st dimension of the array (example: ARRAY [1..3]
OF ?).

6. In the input field “Basic type”, type in the data type of the array or use the “Input Assistant”
() or the “Array Assistant” (example: DINT).

ð The field “Result” displays the data type of the array now (example: ARRAY [1..3]
OF DINT).

7. Define the second and third dimensions of the array according to steps 5 and 6 (example:
Dimension 2: 1 and 4, Dimension 3: 1 and 2).

ð The “Result” field displays the array with the defined dimensions: ARRAY [1..3,
1..4, 1..2] OF DINT. The array consists of 3 * 4 * 2 = 24 elements.

In an array of variable length, declare the dimension limits with an
asterisk placeholder (*). Arrays of variable length are permitted to be
used only in VAR_IN_OUT declarations of function blocks, methods,
or functions.

Example of a 2-dimensional array of variable length:
aiUnknownLengthData : ARRAY [*,*] OF INT;

8. Click “OK”.

ð In the dialog “Declare Variable” the field “Data type” displays the array.

9. To modify the initialization values of the array, click the arrow button () next to the
“Initialization value” input field.

ð The “Initialization Value” dialog opens.

10. Select the line of the array element whose initialization value you wish to modify. Example:
Select array component [1, 1, 1].

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US228

11. Enter the desired initialization value in the input field below the list and click button “Use
value on selected lines” (example: value 4).

ð CODESYS displays the changed initialization value of the selected line.

12. Click “OK”.

ð In the “Initialization value” field of the “Declare Variable” dialog, CODESYS displays
the initialization values of the array (example:{4, 23(0)]).

13. You can optionally enter a “Comment” in the input field.
14. Click “OK” in order to conclude the declaration of the array.

ð CODESYS adds the declaration of the array to the declaration part of the program-
ming object.

See also
● Ä Chapter 1.4.1.20.3.2.32 “Command 'Auto Declare'” on page 975
● Ä Chapter 1.4.1.19.5.14 “Data Type 'ARRAY'” on page 660

Declaring global variables
Requirement: A project is open.

1. In the Device tree of your project, select the application in which the global variables are to
be valid.

2. Select the context menu command “Add Object è Global Variable List”.

ð CODESYS inserts the “GVL” in the Device tree under the application and opens it in
the editor.

3. Select the menu command “Edit è Auto Declare”.

ð The dialog box “Auto Declare” opens.

4. In the selection list “Scope”, select the entry “VAR_GLOBAL”.
5. In the field “Name”, enter a name for the global variable.
6. Select a data type from the selection list “Type”.
7. If your variable is to have an initialization value other than the standard initialization value,

click on next to the field “Initialization”.

ð The dialog box “Initialization Value” opens.

8. Double-click on the cell “Init value” of your variable and enter the desired valid value.
9. Click on “OK”.

ð The initialization value is displayed in the dialog box “Auto Declare”.

10. Activate one of the “Flags” if necessary.
11. Confirm your entries by clicking on the button “OK”.

ð CODESYS inserts the declared variable in the GVL.

The global variable is available in the total application of your project.

Declaring global
variables that
are available
within the appli-
cation.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 229

1. Select the menu command “View è POUs”.

ð The “POUs” view opens.

2. In the “POUs” view, select the uppermost node with the project name and select the
context menu command “Add Object è Global Variable List”.

ð CODESYS inserts the “GVL” in the “POUs” view and opens it in the editor.

3. Select the menu command “Edit è Auto Declare”.

ð The dialog box “Auto Declare” opens.

4. In the selection list “Scope”, select the entry “VAR_GLOBAL”.
5. In the field “Name”, enter a name for the global variable.
6. Select a data type from the selection list “Type”.
7. If your variable is to have an initialization value other than the standard initialization value,

enter it in the column “Initialization”.
8. Activate one of the “Flags” if necessary.
9. Confirm your entries by clicking on the button “OK”.

ð CODESYS inserts the declared variable in the GVL.

The global variable is now available in the entire project.

See also
● Ä Chapter 1.4.1.20.3.2.32 “Command 'Auto Declare'” on page 975

Using Task-Local Variables
Task-local variables are cycle-consistent. In a task cycle, they are written only by a defined task,
while all other tasks have read-only access. It is taken into account that tasks can be interrupted
by other tasks or can run simultaneously. The cycle consistency also applies above all if the
application is running on a system with a multicore processor.
Therefore, using task local global variable lists is one way to automatically achieve a synchro-
nization (by the compiler) when multiple tasks are processing the same variables. This is not
the case when using ordinary GVLs. Multiple tasks can write simultaneously to ordinary GVL
variables during a cycle.
However, it is imperative to note: The synchronization of task-local variables requires a relatively
large amount of time and memory and is not always the best solution for every application. For
this reason, see below for more detailed technical information and best practice guidance to
help you make the right decision.

In the CODESYS project, the “Variable List (Task-Local)” object is available for defining task-
local variables. Syntactically, it corresponds to a normal GVL, but also contains the information
of the task that has write access to the variables. Then all variables in such a GVL are not
changed by another task during a cycle of a task.
The next section contains a simple example that demonstrates the principle and functionality of
task-local variables. It includes a writing program and a reading program. The programs run in
different tasks, but they access the same data that is stored in a task-local global variable list so
that they are processed cycle-consistently.

Declaring global
variables that
are available in
the entire
project.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US230

See below for Instructions on reprogramming this sample application.

(* task-local GVL, object name: "Tasklocals" *)
VAR_GLOBAL
 g_diaData : ARRAY [0..99] OF DINT;
END_VAR

PROGRAM ReadData
VAR
 diIndex : DINT;
 bTest : BOOL;
 diValue : DINT;
END_VAR
bTest := TRUE;
diValue := TaskLocals.g_diaData[0];
FOR diIndex := 0 TO 99 DO
 bTest := bTest AND (diValue = Tasklocals.g_diaData[diIndex]);
END_FOR

PROGRAM WriteData
VAR
 diIndex : DINT;
 diCounter : DINT;
END_VAR
diCounter := diCounter + 1;
FOR diCounter := 0 TO 99 DO
 Tasklocals.g_diaData[diIndex] := diCounter;
END_FOR

Sample appli-
cation

The programs “WriteData” and “ReadData” are called by different tasks.
In the program WriteData, the array g_diaData is populated with values. The program
ReadData tests whether or not the values of the array are as expected. If so, then the variable
bTest yields the result TRUE.

The array data that is tested is declared via the variable g_diaData in the object Tasklocals
of type Global Variable List (Task-Local). This synchronizes the data access in the
compiler and guarantees cycle consistency, even when the accessing programs are called from
different tasks. In the sample program, this means that the variable test is always TRUE in the
program ReadData.

If the variable g_diaData were declared only as a global variable list in this example, then the
test (the variable test in the program ReadData) would yield FALSE more often. In this case,
this is because one of the two tasks in the FOR loop could be interrupted by the other task, or
both tasks could run simultaneously (multicore controllers). And therefore the values could be
changed by the writer while the reader reads the list.

NOTICE!
An online change of the application is not possible after changes in declarations
in the list of task-local variables.

Note the following when declaring a global task-local variable list:
● Do not assign direct addresses by means of an AT declaration.
● Do not map to task-local variables in the controller configuration.
● Do not declare any pointers.
● Do not declare any references.

Showing func-
tionality in an
example

Constraints in
the declaration

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 231

● Do not instantiate any function blocks.
● Do not declare any task-local variables as PERSISTENT and RETAIN at the same time.

The compiler reports write access in a task without write access as an error. However, not all
write-access violations can be detected. The compiler can only assign static calls to a task.
However, the call of a function block by means of a pointer or an interface is not assigned to a
task, for example. As a result, any write access is not recorded there either. Moreover, pointers
can point to task-local variables. Therefore, data can be manipulated in a read task. In this case,
a runtime error is not issued. However, values that are modified by means of pointer access are
not copied back in the shared reference of variables.

The variables are located at a different address in the list for each task. For read access, this
means: ADR(variable name) yields a different address in each task.

The synchronization mechanism guarantees the following:
● Cycle consistency
● Freedom from locked states: A task never waits for an action from another task at any time.
With this method, however, no time can be determined when a reading task securely receives a
copy of the writing task. Fundamentally, the copies can deviate. In the example above, it cannot
be concluded that each written copy is processed one time by the reader. For example, the
reading task can edit the same array over multiple cycles, or the contents of the array can skip
one or more values between two cycles. Both can occur and have to be considered.
The writing task can be paused for one cycle between two accesses to the shared reference
by each reading task. This means that when n reading tasks exist, the writing task can have n
cycles of delay until the next update of the shared reference.
In each task, the writing task can prevent a reading task from getting a reading copy. As a
result, no maximum number of cycles can be specified after which a reading task will definitely
receive a copy.
In particular, this can become problematic if very slow running tasks are involved. Assuming
a task runs only every hour and cannot access the task-local variables during this time, then
the task works with a very old copy of the list. Therefore, it can be useful to insert a time
stamp in the task-local variables so that the reading tasks can at least determine whether or
not the list is up-to-date. You can set a time stamp as follows: Add a variable of type LTIME
to the list of task-local variables and add the following code to the writing task, for example:
tasklocal.g_timestamp := LTIME();.

Task-local variables are designed for the use case "Single writer - multiple readers". When
you implement a code that is called by different tasks, using task-local variables is a signifi-
cant advantage. For example, this is the case for the sample application appTasklocal as
described above when it is extended by multiple reading tasks that all access the same array
and use the same functions.
Task-local variables are especially useful on multicore systems. On these systems, you cannot
synchronize tasks by priority. Then other synchronization mechanisms become necessary.
Do not use task-local variables when a reading task always has to work on the newest copy of
the variable. Task-local variables are not suitable for this purpose.
A similar issue is the "Producer - Consumer" dilemma. This happens when a task produces
data and another task processes the data. Choose another type of synchronization for this
configuration. For example, the producer could use a flag to notify that a new date exists. Then
the consumer can use a second flag to notify that it has processed its data and is waiting for
new input. In this way, both can work on the same data. This removes the overhead for cyclic
copying of data, and the consumer does not lose any data generated by the producer.

At runtime, multiple different copies of the task-local variable list may exist in memory. When
monitoring a position, not all values can be displayed. Therefore, the values from the shared
reference are displayed for inline monitoring, in the watch list, and in the visualization for a
task-local variable.

Properties of
task-local global
variables and
possible
behavior

Best practice

Monitoring

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US232

When you set a breakpoint, the data of the task is displayed that ran to the breakpoint and was
halted as a result. Meanwhile, the other tasks continue running. Under certain circumstances,
the shared copy can be changed. In the context of the halted task, however, the values remain
unchanged and are displayed as they are. You need to be aware of this.

For a list of task-local variables, the compiler creates a copy for each task, as well as a shared
reference copy for all tasks. This creates a structure that contains the same variables as the
list of task-local variables. Moreover, an array with this structure is created in which an array
dimension is created for each task. As a result, an array element is indexed for each task. If a
variable in the list is accessed now in the code, then the task-local copy of the list is actually
accessed. Furthermore, it is determined in which task the block is currently running and the
access is indexed accordingly.
For example, the line of code diValue := TaskLocals.g_diaData[0]; from the above
example is replaced by:
diValue := __TaskLocalVarsArray[__CURRENTTASK.TaskIndex].__g_diarr[0];
__CURRENTTASK is an operator that is available in CODESYS V3.5 SP13 and later in order to
determine the current task index quickly.
At runtime, at the end of the writing task, the contents of the task-local list are written to the
global list. For a reading task at the beginning, the contents of the shared reference are copied
to the task-local copy. Therefore, for n tasks, there are n+1 copies of the list: One list serves as
a shared reference and every task also has its own copy of the list.
A scheduler controls the time-based execution of multiple tasks and therefore also task
switching. The strategy, which is tracked by the scheduler in order to control the allocation
of the execution time, has the goal of preventing a task from being blocked. The synchronization
mechanism is therefore optimized to the properties of task-local variables to prevent blocking
states (lock states) and at no time does a task wait for the action of another task.
Synchronization strategy:
● As long as the writing task writes a copy back to the shared reference, none of the reading

tasks gets a copy.
● As long as a reading task gets a copy of the common reference, the writing task does not

write back a copy.

Aim: With a program ReadData, you want to access the same data that is written by a program
WriteData. Both programs should run in different tasks. You make the data available in a
task-local variable list so that it is processed automatically in a cycle-consistent manner.

Requirement: A brand new standard project is created and open in the editor.
1. Rename the application from Application to appTasklocal.

2. Below appTasklocal, add a program in ST named ReadData.

3. Below appTasklocal, add another program in ST named WriteData.

4. Below the object Task Configuration, rename the default task from MainTask to
Read.

5. In the “Configuration” dialog of the task Read, click the “Add Call” button to call the
program ReadData.

6. Below the “Task Configuration” object, add another task named Write, and add the call of
the program Write to this task.

ð Now there are two tasks Write and Read in the task configuration which call the
programs WriteData and ReadData, respectively.

7. Select the application appTasklocal and add an object of type “Global Variable List
(Task-Local)”.

ð The “Add Global Variable List (Task-Local)” dialog opens.

Background:
Technical imple-
mentation

Instructions for
creating the
sample applica-
tion as
described above

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 233

8. Specify the name Tasklocals.

9. Select the Write task from the “Task with write access” list box.

ð The object structure for using task-local variables within an application is complete.
Now you can code the objects as described in the example above.

See also
● Ä Chapter 1.4.1.20.3.2.32 “Command 'Auto Declare'” on page 975
● Ä Chapter 1.4.1.8.2.4 “Declaring global variables” on page 229
● Ä Chapter 1.4.1.20.2.11 “Object 'GVL' - Global Variable List (task-local)” on page 872
● Ä Chapter 1.4.1.8.11.2 “AT declaration” on page 281
● Ä Chapter 1.4.1.12.1.1 “Calling of monitoring in programming objects ” on page 410

1.4.1.8.3 Creating Source Code in IEC
Source code:
"Source code" is a term used for the implementation code, which you insert in the programming
modules by using the appropriate programming language editors. The following programming
module types are available for this purpose: POU (Program, Function, Function Block), Action,
Method, Property, Interface.
Programming Language:
When creating a POU, you define, in which programming language the implementation should
be inserted. Besides the IEC languages also CFC is available.
Programming Language:Editors:
You get a programming module editable in the corresponding programming language editor
on a double-click on the programming module object. So, the module will appear either in the
textual ST editor or in one of the graphical editors for FBD/LD/IL or CFC. Each editor consists
of two windows: In the upper window you insert the declarations, in textual or tabular form,
depending on the setting. In the lower window you insert the implementation code. The display
and behaviour of each editor can be configured in the corresponding tab of the CODESYS
“Options” dialog.
Regard the possibility to open a programming module for offline-editing even while the applica-
tion is in online mode.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US234

See also
● Ä Chapter 1.4.1.19.1 “Programming Languages and Editors” on page 460
● Ä Chapter 1.4.1.20.3.4.11 “Command 'Edit Object (Offline)'” on page 1006

FBD/LD/IL
A combined editor enables programming in the languages FBD (function block diagram), LD
(ladder diagram) and IL (instruction list).
The basic unit of the FBD and LD programming is a network. Each network contains a structure
that can represent the following: a logical or arithmetic expression, the call of a POU (function,
function block, program etc.), a jump or a return instruction. IL actually requires no networks. In
CODESYS, however , an IL program also consists of at least one network in order to support
conversion to FBD or LD. In view of this you should also divide an IL program meaningfully into
networks.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

The function block diagram is a graphically oriented IEC 61131 programming language. It works
with a list of networks, where each network contains a structure that can contain logical and
arithmetic expressions, calls of function blocks, a jump or a return instruction.
Boxes familiar from boolean algebra are used here. Boxes and variables are connected by
connecting lines. The signal flow in the network runs from left to right. The signal flow in the
editor runs from top to bottom, starting with network 1.

Example

CFC is also a programming language based on the same principle as FBD, but
with the following differences:

– The CFC editor is not network-oriented.
– You can freely place the elements in the CFC editor.
– Direct insertion of feedbacks is possible.
– The order of execution is determined by a list of currently inserted elements,

which you can change.

See also
● Ä Chapter 1.4.1.8.3.1.1 “Programming function block diagrams (FBD)” on page 237
● Ä Chapter 1.4.1.20.3.13 “Menu 'FBD/LD/IL'” on page 1104(commands)
● Ä Chapter 1.4.1.8.3.2 “Continuous Function Chart (CFC)” on page 241

The ladder diagram (LD) is a graphically oriented programming language that approximates an
electrical circuit diagram. On the one hand the ladder diagram is suitable for designing logical
switching units, but on the other you can also create networks just as in FBD. Therefore you can
use LD very well for controlling calls of other program blocks.

Function block
diagram (FBD)

Ladder diagram
(LD)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 235

The ladder diagram consists of a series of networks. A network is bounded on the left side by
a vertical line (bus bar). A network contains a circuit diagram of contacts, coils, optional boxes
(POUs) and connecting lines. On the left side of a network there is a contact or a series of
contacts that relay the ON or OFF state, which corresponds to the boolean values TRUE and
FALSE, from left to right. A boolean variable is associated with each contact. If this variable is
TRUE, the status is relayed from left to right via the connection line. Otherwise OFF is relayed.
Thus the coil(s) in the right part of the network receive(s) the value ON and OFF coming from
the left and the value TRUE or FALSE is written accordingly into the boolean variable assigned
to them.
If the elements are connected in series, this means an AND operation. If they are connected
in parallel, this means an OR operation. A line through an element means a negation of the
element. The negation of an input or an output is indicated by a circle symbol.

Example

IEC 61131-3 defines a complete LD command set, consisting of different types of contacts and
coils. Contacts conduct the current (according to their type) from left to right. Coils store the
incoming value. Contacts and coils are assigned to boolean variables. You can supplement an
LD network by jumps, returns, labels and comments.
See also
● Ä Chapter 1.4.1.8.3.1.2 “Programming ladder diagrams (LD)” on page 239
● Ä Chapter 1.4.1.20.3.13 “Menu 'FBD/LD/IL'” on page 1104(Befehle)

The instruction list is an assembler-like IEC 61131-compliant programming language. It supports
accumulator-based programming.
An instruction list (IL) consists of a series of instructions. Each instruction starts in a new line
and contains an operator and, depending on the type of operation, one or more operands
separated by commas. A label, followed by a colon, can be placed in front of an instruction. It
serves the identification of the instruction and you can use the label as a jump destination. A
comment must be the last element in a line. Empty lines can be inserted between instructions.
All IEC 61131-3 operators are supported, as are multiple inputs, multiple outputs, negations,
comments, set/reset of outputs and conditional/unconditional jumps.
Each instruction is based primarily on the loading of values into the accumulator (LD instruc-
tion). After that the corresponding operation is executed with the parameter from the accumu-
lator. The result of the operation is written again into the accumulator, from where you should
store it purposefully with the help of an ST instruction.

The instruction list supports comparison operators (EQ, GT, LT, GE, LE, NE) and jumps for pro-
gramming of conditional executions or loops. Jumps can be unconditional (JMP) or conditional
(JMPC / JMPCN). In the case of conditional jumps, a check is performed as to whether the
value in the accumulator is TRUE or FALSE.

Instruction list
(IL)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US236

Example

See also
● Ä Chapter 1.4.1.8.3.1.3 “Programming in instruction list (IL)” on page 240
● Ä Chapter 1.4.1.19.1.5.3 “Modifiers and operators in IL” on page 500

Programming function block diagrams (FBD)

1. Select an application in the device tree.
2. Select the command “Project è Add Object è POU”.

ð The dialog box “Add POU” opens.

3. Enter a name and select the implementation language “Function Block Diagram (FBD)”.
Click on “Add”.

ð The POU is added to the device tree and opened in the editor. It consists of the
declaration editor in the top part and the implementation part with an empty network
in the lower part. The view “ToolsBox” is also automatically opened , in which the
suitable elements, operators and function blocks for FBD programming are available.

See also
● Ä Chapter 1.4.1.20.2.18 “Object 'POU'” on page 881
● Ä Chapter 1.4.1.8.3.1 “FBD/LD/IL” on page 235

1. Click inside the automatically inserted empty network in the implementation part.

ð The network is given a yellow background and the area at the left-hand side with the
network number is given a red background.

Creating a POU
in the function
block diagram
(FBD) imple-
mentation lan-
guage

Programming a
network

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 237

2. Open the context menu with the right mouse button.

ð You obtain amongst other things the insert commands for the elements that can be
inserted at this point.

3. Insert the elements required for your programming using the menu commands or by
dragging in the elements from the toolbox.

4. For example, select the command “Insert Assignment”.

ð An assignment line is inserted. In each case three question marks stand for assign-
ment source and assignment target.

5. Select the question marks and replace them with the desired variable. Input assistance is
available for this purpose.

6. Move the cursor over the assignment line.

ð The possible insertion positions for further elements are displayed as grey diamonds.
A click on a diamond selects that position and the suitable insert commands are once
again available.

7. Alternatively, you can drag an element with the mouse from the toolbox into the network.
For example, click in the tool box on the box element, keep the mouse button pressed and
move the cursor over the network.

ð Each possible insertion position lights up green.

8. Release the mouse button in order to insert the box.

ð The box is displayed in the network. The type of box on the inside and the instance
name above the box, which is required in the case of a function block, are still kept
free with three question marks.

9. Select the string ??? inside the box and replace it with the name of the box. Input
assistance is available for this purpose.

ð The inputs and outputs of the selected box are displayed. They are still kept free with
question marks, as is the instance name in the case of a function block.

See also
● Ä Chapter 1.4.1.20.3.13 “Menu 'FBD/LD/IL'” on page 1104
● Ä Chapter 1.4.1.8.3.1 “FBD/LD/IL” on page 235

1. In the implementation part of your POU, insert a new network using the command
“FBD/LD/IL è Insert network” or drag it in from the tool box.

2. For example, drag an “ADD” operator into the empty network and replace the charac-
ters ??? with two variables of the type INT.

3. Drag the element “Branch” from the tool box into your implementation and release the
mouse button at the green insertion position directly at the output of the operator.

ð The line branch splits the processing line at the output of the operator box into 2
subnetworks.

4. Further FBD elements and also further line branches can now be added to each of the two
subnetworks.

See also
● Ä Chapter 1.4.1.19.1.5.4.9 “FBD/LD/IL element 'Branch'” on page 506
● Ä Chapter 1.4.1.20.3.13.33 “Command 'Insert Branch'” on page 1113

Programming
line branches
(subnetworks)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US238

See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Programming ladder diagrams (LD)

1. Select the application in the Device tree.
2. Select the command “Project è Add Object è POU”.

ð The dialog box “Add POU” opens.

3. Enter a name and select the implementation language “Ladder Diagram (LD)”.
Click on “Add”.

ð CODESYS adds the POU to the Device tree and opens it in the editor. An empty
network is inserted in the implementation part. The empty network is bounded on
the left by a vertical line, which represents a bus bar. The view “ToolBox” is also
automatically opened, in which the suitable elements, operators and function blocks
for LD programming are available.

Requirement: a POU with the implementation language LD is opened in the editor and an
empty network is inserted.
1. Click on the category “Ladder Elements” in the view “ToolBox”

2. Click on the “Contact” element, drag it into your network and release the mouse button at
the insertion position “Start here”.

ð The contact is added on the left in the network directly against the vertical line.

3. Click on ??? and enter the identifier of a boolean variable. The input assistant is also
available to you for this.

4. Click on the category “Function Blocks” in the view “ToolBox” and drag the function block
“TON” onto an insertion position on the connecting line to the right of the inserted contact.

ð CODESYS inserts the box “TON” to the right of the contact. The contact is connected
with the input IN of the TON box.

5. Enter a time constant at the input PT, for example T#3s.

ð If the variable of your contact goes TRUE, then the input IN of the TON box also goes
TRUE. The TON box forwards the value TRUE to the output Q with a switch-on delay of
T#3s, for example.

Requirement: a POU with the implementation language LD is opened in the editor and an empty
network is inserted.

1. Click inside the empty network and select the command “FBD/LD/IL è Insert Contact”.
2. Select the connecting line to the left of the contact and select the command “FBD/LD/IL

è Set Branch Start Point”.

ð The starting point on the connecting line is marked by a red rectangle. CODESYS
marks all possible end points of the branch with a blue rectangle.

Creating a POU
in the ladder
diagram (LD)
implementation
language

Adding a con-
tact and a func-
tion block (TON)

Inserting a
closed line
branch

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 239

3. Click on a blue rectangle in order to set the end point of your closed line branch.

ð CODESYS inserts the line branch between the starting and end points. The program
flow will go through both branches up to the end point.
If you insert the line branch at a box instead of at a contact, the box will only be called
if none of the other branches is TRUE.

See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.14 “Closed branch” on page 509
● Ä Chapter 1.4.1.19.1.5.4.11 “LD element 'Contact'” on page 507

Programming in instruction list (IL)

If necessary, IL can be activated in the CODESYS options.

1. Select the application in the device tree.
2. Click “Project è Add Object è POU”.

ð The “Add POU” dialog opens.

3. Enter a name and select the implementation language “Instruction List (IL)”.
Click “Add”.

ð CODESYS adds the POU to the device tree and opens it in the editor. A network is
already inserted in the implementation part.

Requirement: A POU (IL) is opened in the editor and possesses an empty network.

1. Click the line marked in color in the 1st column and enter the operator LD.

2. Press the [Tab] key.

ð The cursor jumps to the 2nd column

3. Enter the first summand of your ADD operation, for example 6.

4. Press [Ctrl]+[Enter] or select the command “FBD/LD/IL è Insert IL Line After”.

ð CODESYS inserts a new instruction line. The first column of this line has the focus.

5. Enter ADD and press [Tab].

6. Enter the second summand of your ADD operation, for example 12.

7. Press [Ctrl]+[Enter]

8. Enter the operator ST and press [Tab].

Creating POUs
in the instruc-
tion list (IL)
implementation
language

Programming
networks
(example: ADD
operation)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US240

9. Specify a variable of the data type INT, for example iVar.

ð The result – 16 in the example – is stored in the iVar.

Requirement: A POU (IL) is opened in the editor and possesses an empty network. A variable of
the data type <function block> is declared in the declaration part (example: C1:CTU;).

1. Click the line marked in color in the 1st column and select the command “FBD/LD/IL
è Insert Box”.

ð The input assistant opens.

2. Select the desired function block in the category “Function Blocks” or “Boxes”, for example
the “CTU” counter from the “Standard” library, and click “OK”.

ð CODESYS inserts the selected function block “CTU” as follows:

3. Replace the strings ??? with the variable name and the values or variables for the inputs/
outputs of the function block.

4. As an alternative to inserting the function block via the input assistant, you can directly
enter the call in the editor as shown in the picture at step 4.

See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.3 “Modifiers and operators in IL” on page 500

Continuous Function Chart (CFC)
The “Continuous Function Chart (CFC)” implementation language is a graphical programming
language which extends the standard languages of IEC 61131-3.
You can graphically program a system by means of a POU in CFC. You insert elements and
position them freely. You insert connections and wire the elements to a network so that a
well-structured function block diagram is created. You can also insert feedback. You can read
function block diagrams like an circuit diagram or a block diagram.
The execution order of a function block diagram is based on data flow. Moreover, a POU can
process multiple data flows. Then the data flows do not have any common data. In the editor,
multiple networks do not have any connections to each other.
On the other hand, POUs in FBD, LD, or IL have a network-based execution order.

The “Continuous Function Chart (CFC) - page-oriented” implementation language is also a
graphical programming language which extends the standard languages of IEC 61131-3.

Calling function
blocks

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 241

In this language, you can graphically program large, complex function block diagrams. The
same elements and commands are available as for “Continuous Function Chart (CFC)”. In
addition, you can arrange the code on as many pages as you like. This allows you to create
extensive function block diagrams that are still easy to print. Furthermore, each page has border
areas. You can arrange inputs and sink connection marks on the left, and outputs and source
connection marks on the right. This helps you to insert connecting lines and provides a better
overview.

Unfortunately, it is not possible to switch a POU between the “Continuous
Function Chart (CFC) - page-oriented” and “Continuous Function Chart (CFC)”
implementation languages.

See also
● Ä Chapter 1.4.1.19.1.6.1 “CFC Editor” on page 511
● Ä Chapter 1.4.1.19.1.6.2 “CFC editor, page-oriented” on page 514
● Ä Chapter 1.4.1.20.3.12 “Menu 'CFC'” on page 1089
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165

Automatic Execution Order by Data Flow
The execution order in POUs is uniquely determined in text-based and network-based editors.
In the CFC editor, however, you can position the elements freely, so the execution order is
initially not unique. For this reason, CODESYS determines the execution order by data flow and,
in the case of multiple networks, by the topological position of the elements. The elements are
sorted from top to bottom and left to right. Now the execution order is unique and makes sure
that the POU is processed while optimized by time and by cycle.
You can get information about the chronological order of the elements in the chart and tempora-
rily display the execution order. When you program networks with feedback you can define an
element as the starting point in the feedback loop.
You can also explicitly edit the processing order in a CFC object if necessary. To do this, switch
the “Auto Data Flow Mode” property of the CFC object to “Explicit Execution Order Mode”. In
this mode, you have the option of editing the execution order by means of menu commands.
Before CODESYS Development System V3.5 SP15, you had to define the execution order
explicitly for each POU. The was no mode switching.

In general, data flow is described as the chronological order in which data is read or written
when and how in which programming objects. A POU can process any number of data flows,
which can also be executed independently of each other.

By default, the execution order of a CFC object is determined automatically. The “Auto Data
Flow Mode” property is selected for this. You can temporarily display the automatically deter-
mined execution order in the CFC editor.

Data flow

Displaying the
execution order

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US242

1. Create a new project using the “Standard project” template and specify the name
Minimal for example.

2. Extend the application with the function block FB_DOIt in the “ST” implementation lan-
guage with inputs and outputs.

ð
FUNCTION_BLOCK FB_DoIt
VAR_INPUT
 iAlfa : INT;
 iBravo: INT;
 sCharlie : STRING := 'Charlie';
 xItem : BOOL;
END_VAR
VAR_OUTPUT
 iResult : INT;
 sResult : STRING;
 xResult : BOOL;
END_VAR
VAR
END_VAR

iResult := iAlfa + iBravo;

IF xItem = TRUE THEN
 xResult := TRUE;
END_IF

3. Create the function block ExecuteCFC in the “CFC” implementation language.

ð
PROGRAM ExecuteCFC
VAR
 fb_DoIt_0: FB_DoIt;
 fb_DoIt_1: FB_DoIt;
 iFinal_1: INT;
 iFinal_0: INT;
 xFinal: BOOL;
END_VAR

Recently created programming objects in CFC have the Auto Data Flow Mode
selected. The execution order of the programming object is optimally defined inter-
nally.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 243

4. Click “CFC è Execution Order è Display Execution Order”.

ð The execution order of the object is shown. The boxes and inputs are numbered
accordingly and reflect the chronological processing order. The numbering is hidden
as soon as you click again in the CFC editor.

1. Create a CFC program with feedback.

ð The POU PrgPositiveFeedback counts.

PROGRAM PrgPositiveFeedback
VAR
 iResult: INT;
END_VAR

2. Select an element within the feedback.

ð The selected element is highlighted in red.

3. Click “CFC è Execution Order è Set Start of Feedback”.

ð At run time, this POU is processed first. The start POU of the feedback is defined
and decorated with the symbol. The execution order is resorted and the selected
element gets the number 0. (This is the lowest number of the feedback.)

4. Select the start POU again.

Determining the
execution order
in feedback net-
works

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US244

5. Click “CFC è Execution Order è Set Start of Feedback”.

ð The POU is not selected as the start POU.

The execution order is defined internally.
6. Click “CFC è Execution Order è Display Execution Order”.

ð The execution order by data flow is displayed.

The automatically defined execution order by data flow results in time- and
cycle-optimized execution of the POU. You do not need any information about
the internally managed execution order during the development process.

In “Explicit Execution Order Mode”, it is your responsibility to adapt the execu-
tion order and to assess the consequences and impacts. This is another reason
why the execution order is always displayed.

You can change the automatically defined execution order of a CFC object explicitly when you
select the “Explicit Execution Order Mode” option for the object.
1. In the “Devices” or “POUs” view, select a CFC object.
2. In he context menu, click “Properties”.
3. Click the “CFC Execution Order” tab.

ð The “Execution order” list box displays the currently selected mode.

4. In the “Execution order” list box, select “Explicit Execution Order Mode”.
5. Click “OK” to confirm the dialog.

ð The Explicit Execution Order Mode property is selected. The networks are numbered
in the CFC editor, and the following commands are provided in the “CFC è Execution
Order” menu for editing the execution order.

6. Open a CFC object.
7. Select a numbered element and click “CFC è Execution Order è Send to Front”.

ð The execution order is resorted and the selected element has the number 0.

See also
● Ä Chapter 1.4.1.19.1.6.1 “CFC Editor” on page 511
● Ä Chapter 1.4.1.19.1.6.2 “CFC editor, page-oriented” on page 514
● Ä Chapter 1.4.1.20.3.12 “Menu 'CFC'” on page 1089
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165

Defining the
execution order
explicitly

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 245

Programming in the CFC editor
In the CFC editor, you can wire POUs to each other and create well-structured block diagrams.
The editor supports you in the following ways:
● Programming with elements and connecting lines
● Dragging instances and variables to the editing area
● Auto-routing the connecting lines
● Automatic linking
● Fixing of connecting lines by control points
● Collision detection
● Input assistance for connection marks
● Forcing and writing of values in online mode
● Movement of selection using arrow keys
● Reduced display of a POU without disconnected pins

1. Drag a “Box” element and an “Output” element into the editor.
2. Click the output of the “Box” element.

ð The output is marked with a red box.

3. Drag a connecting line from the box output of the “Box” element to the box input of the
“Output” element.

ð The cursor symbol changes when it reaches the box input.

4. Release the left mouse button.

ð The output pin of the box is wired to the input pin of the output.

You can also hold down the [Ctrl] key, select each pin, and then right-click “Connected Selected
Pins”.

1. Create a new project using the standard template and specify the name First for
example.

ð The project First.project is created.

Inserting ele-
ments and
wiring with con-
necting lines

Calling of
instances

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US246

2. Extend the application with the function block FB_DOIt in the “ST” implementation lan-
guage with inputs and outputs.

ð
FUNCTION_BLOCK FB_DoIt
VAR_INPUT
 iAlfa : INT;
 iBravo: INT;
 sCharlie : STRING := 'Charlie';
 xItem : BOOL;
END_VAR
VAR_OUTPUT
 iResult : INT;
 sResult : STRING;
 xResult : BOOL;
END_VAR
VAR
END_VAR

iResult := iAlfa + iBravo;

IF xItem = TRUE THEN
 xResult := TRUE;
END_IF

3. Select the application and click “Add Object è POU” in the context menu. Select the
“Continuous Function Chart (CFC)” implementation language and the type Program.
Specify the name PrgFirst for example.

Click “OK” to confirm the dialog.

ð The program PrgFirst is created and it opens in the editor. It is still empty.

4. Instantiate function blocks and declare variables.

ð
PROGRAM PrgFirst
VAR
 iCounter: INT;

 fbDoIt_1 : FB_DoIt;
 fbDoIt_2 : FB_DoIt;

 iOut : INT;
 sOut: STRING;
 xOut: BOOL;

END_VAR
5. Drag a “Box” element from the “ToolBox” view into the editor.
6. Click the ??? field and type in ADD.

ð The box type is ADD. The box acts as an adder.

7. Click line 3 in the declaration editor.

ð The declaration line of iCounter is selected.

8. Click in the selection and drag the selected variable into the implementation. Focus there
on an input of the ADD box.

ð An input has been created, declared, and connected to the box.

9. Click again in the selection and drag the variable to the output of the ADD box.

ð An output has been created, declared, and connected to the box.

10. Drag an “Input” element from the “ToolBox” view to the implementation. Click its ??? field
and type in 1.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 247

11. Connect the 1 input to an input of the ADD box.

ð A network is programmed. At runtime, the network counts the bus cycles and stores
the result in iCounter.

12. Click line 5 in the declaration editor.

ð The line is selected.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US248

13. Click in the selection and drag the selected instance into the implementation.

ð The instance appears as a POU in the editor. The type, name, and POU pins are
displayed accordingly.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 249

14. Drag the fbDoIt_2 instance to the editor. Interconnect the instances to each other and to
inputs and outputs.

ð Example:

A program in ST with the same functionality might look like this:

PROGRAM PrgFirstInSt
VAR
 iCounter: INT;

 fbDoIt_1 : FB_DoIt;
 fbDoIt_2 : FB_DoIt;

 iOut : INT;
 sOut: STRING;
 xOut: BOOL;

END_VAR
iCounter := iCounter + 1;
fbDoIt_1(iAlfa := 16, iBravo := 32, sCharlie := 'First',
xItem := TRUE, iDelta := 2, iResult => fbDoIt_2.iAlfa, xResult
=> fbDoIt_2.xItem);
fbDoIt_2(iBravo := fbDoIt_1.iResult, sCharlie := 'Second',
iDelta := 2, iResult => iOut , sResult=> sOut, xResult =>
xOut);

Requirement: A CFC POU has connected elements.
1. Select a connecting line between two elements.

ð The connecting line is displayed as selected. The ends of the connecting line are
marked with red boxes ().

2. Click “CFC è Connection Mark”.

ð The connection is separated into a “Connection Mark - Source” and a “Connection
Mark - Sink”. The name of the mark is generated automatically.

Creating con-
nection marks

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US250

3. Click in the source connection marks.

ð You can edit the name.

4. Specify a name SimpleMark for the source connection mark.

ð The source connection mark and sink connection mark have the same name.

The following example shows how to use the “Route All Connections” command with control
points.

1. Position the “Input” and “Output” elements. Connect the elements.

2. Position two “Box” elements on the line.

ð The connecting line and the boxes are marked red because of the collision.

3. Click “CFC è Routing è Route All Connections”.

ð The collision is resolved.

Resolving colli-
sions and fixing
connecting lines
by means of
control points

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 251

4. Change the connecting lines gradually.

ð The connecting line has been changed manually and is now blocked for auto-routing.
This is shown by a lock symbol at the end of the connection.

5. Select the connecting line and click “CFC è Routing è Create Control Point”.

ð A control point is created on the connecting line. The connecting line is fixed to the
control point.

You can also drag a control point from the “ToolBox” view to a line.
6. Change the connecting line as seen in the following example.

ð Use the control point for changing the connecting line according to your needs. You
can set any number of control points.

7. In the context menu, click “CFC è Routing è Remove Control Point” to remove the
control point.

8. Unlock the connection by clicking “Unlock Connection” or by clicking the lock symbol.
9. Select the connecting line and click “Route All Connections”.

ð The connecting line is routed automatically as seen in Step 3.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US252

NOTICE!
Connections in a group are not auto-routed.

Requirement: A CFC POU is open. In the editor, its POUs with all declared pins are
displayed.
1. Select a POU whose pins are partially disconnected.

ð Example: fb_DoIt_1

The POU needs space for all of the pins.
2. Click “CFC è Pins è Remove Unused Pins”.

ð Now the POU needs less space and is displayed only with the functionally relevant
pins.

See also
● Ä Chapter 1.4.1.19.1.2 “Common functions in graphical editors” on page 462
● Ä Chapter 1.4.1.19.1.6.1 “CFC Editor” on page 511
● Ä Chapter 1.4.1.19.1.6.2 “CFC editor, page-oriented” on page 514
● Ä Chapter 1.4.1.19.1.6.5 “Elements” on page 522

Structured Text (ST), Extended Structured Text (ExST)
The ST editor is used for the programming of POUs in the IEC-61131-3 programming language
Structured Text (ST) and Extended Structured Text. The Extended Structured Text offers some
additional functions with regard to the IEC 61131-3 standard.

Reducing the
display of a
POU

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 253

Structured Text is a programming language, comparable with other high-level languages such
as C or PASCAL, which permits the development of complex algorithms. The program code
consists of a combination of expressions and instructions, which can also be executed condi-
tionally (IF… THEN… ELSE) or in loops (WHILE… DO).
An expression is a construct that returns a value following its evaluation. Expressions are also
operators and operands together. You can also use assignments as expressions. An operand
can be a constant, a variable, a function call or a further expression.
Instructions control how the expressions are to be processed.
For this text editor you can make various settings with regard to behavior, appearance and
menus in the dialog boxes “Options” and “Adapt” in the “Tools” menu. The familiar Windows
functions (for example IntelliMouse) are also available for this editor.
See also
● Ä Chapter 1.4.1.8.3.3.1 “Programming structured text (ST)” on page 254
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203
● Ä Chapter 1.4.1.20.4.14.1 “Dialog 'Customize' - 'Menu'” on page 1206

Extended Structured Text (ExST) is a CODESYS-specific extension of the IEC 61131-3
standard for Structured Text (ST).
See also
● Ä Chapter 1.4.1.19.1.3.4.4 “ExST assignment 'R='” on page 466
● Ä Chapter 1.4.1.19.1.3.4.3 “ExST assignment 'S='” on page 465
● Ä Chapter 1.4.1.19.1.3.4.5 “ExST – Assignment as expression” on page 467

Programming structured text (ST)
The programming languages 'Structured Text' and 'Extended Structured Text' are programmed
in the ST editor. The program code consists of a combination of expressions and instructions,
which can also be executed conditionally or in loops. You must conclude each instruction with a
semicolon ;.

The variables are declared in the declaration editor.

1. Select an application in the device tree.
2. Select the command “Project è Add Object è POU”.

ð The dialog box “Add POU” opens.

3. Enter a name and select the “Implementation language”“Structured Text (ST)”. Click on
“Add”.

ð The POU is added to the device tree and opened in the editor.

Now insert the variable declarations in the upper part of the POU and enter the ST
program code in the lower part of the POU.

See also
● Ä Chapter 1.4.1.19.1.3.3 “ST expressions” on page 464
● Ä Chapter 1.4.1.19.1.3 “Structured Text and Extended Structured Text (ExST)” on page 463
● Ä Chapter 1.4.1.19.1.3.5.10 “ST function block call” on page 474

ExST - Extended
structured text

Principle

Creating a POU
in the structured
text (ST) imple-
mentation lan-
guage

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US254

● Ä Chapter 1.4.1.19.1.3.5.11 “ST – Comments” on page 475
● Ä Chapter 1.4.1.8.2.1 “Using the declaration editor” on page 226

Sequential Function Chart (SFC)
Use the SFC editor for programming POUs in the IEC 61131-3 compliant SFC implementation
language. SFC is a graphical programming language for describing the chronological sequence
of individual actions in a program. For this purpose, actions (discrete programming objects) are
assigned to step elements. Transition elements control the processing order of steps.
See also
● Ä Chapter 1.4.1.19.1.4.1 “SFC editor” on page 476

Programming in SFC

1. Select an application in the device tree.
2. Click “Project è Add Object è POU”.

ð The “Add POU” dialog opens.

3. Specify a name and select the “Sequential Function Chart (SFC)” implementation lan-
guage.
Click “Add”.

ð CODESYS adds the POU to the device tree and opens it in the editor.

1. Select the transition after the initial step.

ð The transition is marked in red.

2. Click “SFC è Insert Step-Transition After”.

ð CODESYS inserts the “Step0” step and the “Trans0” transition.

3. Select the “Trans0” transition and click “SFC è Insert Step-Transition”.

ð CODESYS inserts the “Trans1” transition and the “Step1” step before the “Trans0”
transition.

You can also drag the “Step” and “Transition” elements into the diagram from the “Toolbox” view.
See also
● Ä Chapter 1.4.1.19.1.4.8.1 “SFC elements 'Step' and 'Transition'” on page 486
● Ä Chapter 1.4.1.20.3.11.6 “Command 'Insert Step-Transition'” on page 1081
● Ä Chapter 1.4.1.20.3.11.7 “Command 'Insert Step-Transition After'” on page 1081

Creating a POU
in SFC

Adding a step-
transition

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 255

1. Select the “Step0” step.
2. Click “SFC è Add Entry Action”.

ð By default, you are prompted to select the duplication mode for the step actions.
You decide whether the reference information about the existing step action objects
is copied when the step is copied, or the objects are embedded. Embedding results
in new step action objects being created when the step is copied. The duplication
mode is defined in the “Duplicate when copying” step property. When this property is
deactivated, the copied steps call the same actions as the current step.
You can deactivate the prompt completely in the SFC properties.
The display of embedded objects in the “Devices” and “POUs” views can be deacti-
vated by means of a menu command.

3. For this example, accept the “Copy reference” default setting and click “OK” to confirm.

ð The “Add Entry Action” dialog opens.

4. Enter the name "Step0_entry" and select the “Structured Text (ST)” implementation lan-
guage. Click “Add”.

ð CODESYS inserts the “Step0_entry” action below the POU in the device tree and
opens the action in the editor.
In the Step0_entry entry action, you program statements to be executed one time
when the “Step0” step becomes active.

5. Close the editor of Step0_entry.

ð The “Step0” step is now marked with an “E” in the lower left corner. Double-click this
marker to open the editor.

The entry action Step0_entry is now available in the properties of the step in “Entry
action”. Other actions can also be selected there as needed.

6. Select the “Step0” step. Press [Ctrl]+[V] to copy the step.

ð The same entry actions inserted above are available In the inserted copy of the step.
The new step then calls the same exact action.

See also
● Ä Chapter 1.4.1.20.3.11.8 “Command 'Add Entry Action'” on page 1082
● Ä “2. Step actions” on page 489
● Ä Chapter 1.4.1.20.4.13.22 “ Dialog 'Options' - 'SFC Editor'” on page 1200

1. Select the “Step0” step.
2. Click “SFC è Insert Exit Action”.

ð By default, you are prompted to select the duplication mode for the step actions of the
step. See above for adding an entry action. Then the “Insert Exit Action” dialog opens.

Adding an entry
action

Adding an exit
action

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US256

3. Enter the name "Step0_exit" and select the “Structured Text (ST)” implementation lan-
guage. Click “Add”.

ð CODESYS inserts the “Step0_exit” action below the POU in the device tree and opens
the action in the editor.
In the Step0_exit exit action, you program statements to be executed one time
before the “Step0” step becomes inactive.

4. Close the editor of Step0_exit.

ð The “Step0” step is now marked with an “X” in the lower right corner. Double-click this
marker to open the editor.

You can define the exit action in the properties of the step in “Exit action”. Other actions can
also be selected there.
See also
● Ä Chapter 1.4.1.20.3.11.9 “Command 'Add Exit Action'” on page 1082
● Ä “2. Step actions” on page 489

1. Double-click the “Step0” step.

ð By default, you are prompted to select the duplication mode for the step actions of the
step. See above for adding an entry action. The “Add Action” dialog opens.

2. Type in the name "Step0_active" and select the “Structured Text (ST)” implementation
language. Click “Add”.

ð CODESYS inserts the “Step0_active” action below the POU in the device tree and
opens the action in the editor.
In the Step0_active step action, you program statements to be executed as long as
the step is active.

3. Close the editor of Step0_active.

ð The “Step0” step is now marked with a black triangle in the upper right corner.

You can define the action in the properties of the step in “Step action”. Other actions can also be
selected there.
See also
● Ä “2. Step actions” on page 489

Adding an
action

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 257

1. Select the “Step1” step.
2. Click “SFC è Insert Branch Right”.

ð CODESYS inserts the “Step2” step to the right of “Step1”. The steps are connected as
a parallel branch signified by two pairs of double lines.

3. Select one of the double lines.

ð The double line is marked red.

4. Click “SFC è Alternative”

ð CODESYS converts the branch into an alternative branch. The double lines change
into a single line.

You can click “SFC è Parallel” to convert an alternative branch into a parallel branch.
See also
● Ä Chapter 1.4.1.19.1.4.8.3 “SFC element 'Branch'” on page 491
● Ä Chapter 1.4.1.20.3.11.10 “Command 'Parallel'” on page 1082
● Ä Chapter 1.4.1.20.3.11.12 “Command 'Insert Branch'” on page 1083
● Ä Chapter 1.4.1.20.3.11.13 “Command 'Insert Branch Right'” on page 1083

1. Select the “Step2” step.
2. Click “SFC è Insert Jump After”.

ð CODESYS inserts the “Step” jump after the “Step2” step.

3. Select the “Step” jump destination.

ð You can type the jump destination manually or select it by using the Input Assistant
. Select Step0.

See also
● Ä Chapter 1.4.1.19.1.4.8.4 “SFC element 'Jump'” on page 492
● Ä Chapter 1.4.1.20.3.11.16 “Command 'Insert Jump'” on page 1085
● Ä Chapter 1.4.1.20.3.11.17 “Command 'Insert Jump After'” on page 1085

1. Select the “Step1” step.
2. Click “SFC è Insert Macro After”.

ð CODESYS inserts the “Macro0” macro after the “Step1” step.

Adding an alter-
native branch

Adding a jump

Adding a macro

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US258

3. Double-click the “Macro0” element.

ð The macro opens in the implementation section of the editor. The name "Macro0" is
displayed in the caption.

4. Click “SFC è Insert Step-Transition”.

ð CODESYS inserts a step-transition combination.

5. Click “SFC è Zoom out of Macro”.

ð The implementation section returns to the main diagram.

See also
● Ä Chapter 1.4.1.19.1.4.8.5 “SFC element 'Macro'” on page 492
● Ä Chapter 1.4.1.20.3.11.18 “Command 'Insert Macro'” on page 1086
● Ä Chapter 1.4.1.20.3.11.19 “Command 'Insert Macro After'” on page 1086

1. Select the “Step2” step.
2. Click “SFC è Insert Action Association”.

ð CODESYS inserts an association to the right of the “Step2” step.

3. Click in the left field of the association to select the qualifier.

ð You can enter the qualifier manually or use the Input Assistant . Select "P".

4. Click in the right field of the association to select the action.

ð You can type the action or select it by using the Input Assistant .

See also
● Ä “1. IEC actions” on page 488
● Ä Chapter 1.4.1.19.1.4.4 “Qualifiers for Actions in SFC” on page 479
● Ä Chapter 1.4.1.20.3.11.14 “Command 'Insert Action Association'” on page 1084
● Ä Chapter 1.4.1.20.3.11.15 “Command 'Insert Action Association After'” on page 1085

The library analyzation.library allows for the analyzation of expressions. It can be used,
for example, in the SFC diagram to examine the result of the flag SFCError. This flag is used
to monitor timeouts in the SFC diagram.
See also
● Ä Chapter 1.4.1.19.1.4.7 “Library "Analyzation"” on page 485

See also
● Ä Chapter 1.4.1.19.1.4.1 “SFC editor” on page 476

Adding an asso-
ciation

Using the library
'analyza-
tion.library' for
the analyzation
of expressions

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 259

1.4.1.8.4 Function block — Calling functions or methods with external implementation
A runtime system can include the implementation of a function block, function, or method (for
example, from a library). If you create a POU in your application with the same name by using
the “External implementation” without an implementation, then you can execute the existing
implementation. Please make sure that you declare local variables only in an external function
block. External functions and methods must not contain local variables.
When the application is downloading, CODESYS searches for and links the associated imple-
mentation in the runtime system for each external POU.

Objects with the property “External implementation” are postfixed with (EXT)
after the object name in the “Devices” or “POUs” view.

See also
● Ä Chapter 1.4.1.20.4.10.4 “Dialog 'Properties' - 'Build'” on page 1159

1. Click “Project è Add Object è POU”.
2. Activate “Function block”, Method, or “Function” and specify the name of the associated

implementation of the runtime system. Close the dialog box by clicking “Add”.

ð The runtime system POU is created in the “POUs” view. The name is postfixed with
(EXT).

3. Right-click the POU and select “Properties”.

ð The dialog box opens.

4. Click the “Build” tab.
5. Select the “External implementation (Late link in the runtime system)” check box.

ð The POU is declared and you can implement a POU call.

1. Select a function block in the device tree or in the POUs view.
2. Select “Add Object è Method” and type the name of the associated implementation of the

runtime system. Click “Add” to close the dialog box.

ð The method is created.

3. Right-click the method and select “Properties”.

ð The dialog box opens.

4. Click the “Build” tab.
5. Select the “External implementation (Late link in the runtime system)” check box.

ð The method is declared and you can implement a method call. The method name is
postfixed with (EXT) in the “Devices” or “POUs” view.

1.4.1.8.5 Using input assistance
CODESYS provides tools and features to help you code when creating programs.

Creating POUs
with external
implementation

Creating
methods with
external imple-
mentation

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US260

The input assistant provides all program elements that you can insert at the current cursor
position. Open the “Input Assistant” dialog by clicking “Edit è Input Assistant” or by pressing
[F2].
See also
● Ä “Dialog 'Input Assistant' - Tab 'Categories'” on page 978

This dialog supports the declaration of variables.
See also
● Ä Chapter 1.4.1.20.3.2.32 “Command 'Auto Declare'” on page 975

The "List components" function is an input tool in textual editors to help you input valid identi-
fiers. Activate this function by clicking “Tools è Options” and then the “SmartCoding” category.
Select the “List components after typing a dot (.)” check box.
● If you type a dot (.) instead of a global variable, then a drop-down list opens with all

available global variables. You insert the selected variable after the dot by double-clicking a
variable in the drop-down list or by pressing [Enter].

● If you type a dot (.) instead of a global variable after a function block instance variable or a
structure variable, then CODESYS opens a drop-down list with all global variables, all input
and output variables for the function block, or all structure members.
You insert the selected variable after the dot by double-clicking a variable in the drop-down
list or by pressing [Enter].
Note: When you also want to choose from the local variables of function block instances,
select the “Show all instance variables in input assistant” option in the CODESYS options
(SmartCoding category).

● If a component access (with a dot) for a drop-down list has already happened, then the last
selected entry is preselected at the next component access.

● When you type any sequence of characters and then press [Ctrl]+[Space], a drop-down
list opens with all available POUs and global variables. The first element in this list that
starts with the sequence of characters is selected by default and you can insert it by
double-clicking it or by pressing [Enter].
Matches with the entered character string are highlighted in yellow in the drop-down list.
If the entered character string is changed, then the displayed drop-down list is refreshed.

● In the ST editor, you can filter the displayed drop-down list by scopes:
Depending on the displayed drop-down list, you can use the [Arrow right] and [Arrow left]
keys to toggle between the following drop-down lists:
– “All items”
– “Keywords”
– “Global declarations”
– “Local declarations”

● CODESYS displays a tooltip if you type an opening parenthesis for a POU parameter when
calling a function block, a method, or a function. This tooltip includes information about the
parameters as they are declared in the POU. The tooltip remains open until you click to
close it or you change the focus away from the current view. If you accidentally close the
tooltip, then you can reopen it by pressing [Ctrl]+[Shift]+[Space].

You can use the pragma attribute 'hide' for excluding variables from the "List
components" feature.

Input assistant

Dialog 'Auto
Declare'

"List compo-
nents"

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 261

Typing structure variables:

list
Calling a function block:

Examples

See also
● Ä Chapter 1.4.1.20.4.13.23 “Dialog 'Options' - 'SmartCoding'” on page 1201
● Ä Chapter 1.4.1.19.6.2.16 “Attribute 'hide'” on page 700

The short form feature allows you to type abbreviated forms for variable declarations in the
declaration editor and in textual editors where variables declarations are possible. Use this
feature by pressing [Ctrl]+[Enter] to end a declaration line.
CODESYS supports the following short forms:
● All identifiers become variable identifiers except the last identifier of a line.
● The data type of the declaration is determined by the last identifier of the line. The following

applies:
– B or BOOL yields BOOL
– I or INT yields INT
– R or BOOL yields BOOL
– S or STRING yields STRING

● If a data type is not defined using this rule, then the data type is automatically BOOL, and the
last identifier is not used as the data type (see Example 1).

● Depending on the type of declaration, every defined constant becomes an initialization or
string length definition (see Example 2 and 3).

● An address, such as %MD12, is automatically extended with the AT attribute (see Example
4).

● Any text after a semicolon (;) is converted into a comment (see Example 3).
● All other characters in the line are ignored (see exclamation mark in Example 5).

Example Short Form Resulting declaration
1 A A: BOOL
2 A B I 2 A, B: INT := 2;
3 ST S 2; A string ST:STRING(2); (* A string *)
4 X %MD12 R 5 Real Number X AT %MD12: REAL := 5.0;(* Real

Number *)
5 B ! B: BOOL

Examples

Short form fea-
ture

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US262

See also
● Ä Chapter 1.4.1.8.2 “Declaration of Variables ” on page 222

Smart tags make it easier to write program code by suggest appropriate commands directly at
the programming element. When you place the cursor over a programming element that has a
smart tag function, the symbol appears. When you click the symbol, the commands that
you can choose from are shown. Available smart tags:
● The smart tag function provides the “Declare Variable” command for undeclared variables in

the implementation part of the ST editor.
See also
● Ä Chapter 1.4.1.20.3.2.32 “Command 'Auto Declare'” on page 975

1.4.1.8.6 Using Pragmas
A pragma is a text in the source code of the application that is enclosed in curly brackets.
Pragmas are used to insert special statements in the code, which the compiler can evaluate.
This allows a pragma to influence the properties of one or more variables with respect to
precompilation or compilation (code generation). Pragmas that the compiler does not recognize
are passed over as a comment.
The statement string of a pragma can also extend over multiple lines. For more details about the
syntax, see the descriptions of the individual CODESYS pragmas.
There are different pragmas for different purposes (example: initialization of a variable, moni-
toring of a variable, adding a variable to the symbol configuration, forcing the display of mes-
sages during the compilation process, and behavior of a variable under certain conditions).

NOTICE!
Uppercase and lowercase characters have to be respected.

{warning 'This is not allowed'}

{attribute 'obsolete' := 'datatype fb1 not valid!'}

{attribute 'Test':='TestValue1;
 TestValue2;
 TestValue3'}

Examples

NOTICE!
Pragmas in CODESYS are not one-to-one implementations of C preprocessor
directives. You have to position a pragma like an ordinary statement. You must
not use a pragma within an expression.

A pragma that the CODESYS compiler should evaluate can be inserted at the following posi-
tions:

Smart tag func-
tions

Pragma in
CODESYS

Possible inser-
tion positions

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 263

● In the declaration part of a POU:
– In the textual declaration editor, specify pragmas directly as line(s), either at the begin-

ning of the POU or before a variable declaration.
– In the tabular editor, you specify pragmas that should be located before the first declara-

tion line in the “Edit Declaration Part” / “Attributes” dialog.
● In a global variable list
● In the implementation part of a POU:

– The pragma has to be at a "statement position", meaning at the beginning of a POU on
a separate line, or after a ";" or END_IF, END_WHILE, etc.

– FBD/LD/IL editor: In networks of the FBD/LD/IL editor, you insert pragmas like a label
by means of the “FBD/LD/IL è Insert Label” command. Then, in the text field of the
label with the corresponding pragma statement, replace the default text “Label:”. To use
a pragma in addition to a label, you specify the pragma first and then the label.

{IF defined(abc)}
IF x = abc THEN
{ELSE}
IF x = 12 THEN
{END_IF}
y := {IF defined(cde)} 12; {ELSE} 13; {END_IF}
END_IF
{IF defined(abc)}
IF x = abc THEN
{IF defined(cde)}
 y := 12;
{ELSE}
 y := 13;
{END_IF}
END_IF
{ELSE}
IF x = 12 THEN
{IF defined(cde)}
 y := 12;
{ELSE}
 y := 13;
{END_IF}
END_IF
{END_IF}

Incorrect and
correct posi-
tions for a con-
ditional
pragma
INCORRECT:

CORRECT:

In the “Properties” dialog (“Compile” category), you can specify "defines" that
can be queried in pragmas.

Scope:
Depending on the type and contents of a pragma, it may influence the following:
● Subsequent declarations
● Exactly the next statement
● All subsequent statements until it is canceled by a corresponding pragma
● All subsequent statements until the same pragma is executed with other parameters or the

end of the code is reached. In this context, "code" means the declaration part, implemen-
tation part, global variable list, and type declaration. Therefore, a pragma influences the
entire object when the pragma is alone on the first line of the declaration part and is not
superseded or canceled by another pragma.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US264

The CODESYS pragmas are divided into the following categories:
● Attribute pragmas (influence compiling and precompiling)
● Message pragmas (print user-defined messages when compiling)
● Conditional pragmas (influence code generation)
● User-defined pragmas

See also
● Ä Chapter 1.4.1.8.2.2 “Using the 'Declare variable' dialog box” on page 227
● Ä Chapter 1.4.1.19.6.2 “Attribute Pragmas” on page 685
● Ä Chapter 1.4.1.19.6.1 “Message Pragmas” on page 683
● Ä Chapter 1.4.1.19.6.3 “Conditional Pragmas” on page 732

1.4.1.8.7 Using Library POUs
Libraries are collections of objects that you can link to your application. You can use the objects
contained in libraries in exactly the same way as objects that you have defined in the project.
Libraries can contain the following objects:
● POUs (for example function blocks, or functions)
● Interfaces and their methods and attributes
● Data types (for example enumerations, structures, aliases, and unions)
● Global variables, constants, and parameter lists
● Text lists, image pools, visualizations, and visual elements
● External files (for example, documentation)
● Cam plate tables
Libraries in a project are managed in the Library Manager. You use the dialog of the library
repository to perform the previous installation of the library on the system.

For "visibility" of library POUs and namespaces of libraries, see also the help
page for the library properties.

See also
● Ä Chapter 1.4.1.20.3.14.3 “Command 'Properties'” on page 1118
● Ä Chapter 1.4.1.16 “Using Libraries” on page 448
● Ä Chapter 1.4.1.20.3.14.3 “Command 'Properties'” on page 1118

The following instructions describe the example of how to insert the counter POU CTUD from the
library Standard into your program.

1. Open a POU in the editor and place the cursor in the declaration part.
2. Specify the name for the function block instance, followed by a colon (example:

iCounter1:).

3. Press [F2] to open the Input Assistant.
4. In the category “Structured Types”, select the CTUD function block from the Standard

library (subfolder "Counter").
Select the “Insert with namespace prefix” option.

5. Click “OK” to exit the dialog.

ð The function block is inserted with a namespace prefix into the declaration part:
iCounter1:Standard.CTUD.

Pragma catego-
ries in
CODESYS

Using library
POUs

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 265

See also
● Ä Chapter 1.4.1.16 “Using Libraries” on page 448

1.4.1.8.8 Managing text in text lists
Text lists are used for preparing visualization texts is multiple languages. You can specify the
texts in Unicode format so that all languages and characters are possible. You can export text
lists and then translate the texts outside of the current project.
CODESYS differentiates between static text (managed in the “GlobalTextList” object) and
dynamic text (managed in objects of type “TextList”. Static texts exist in the visualization and
can change only the displayed language while in runtime mode. The text ID stays the same.
Dynamic texts can be controlled by means of an IEC variable that contains the text ID. In this
way, you can display varying text in a visualization element in runtime mode. For example, you
can configure a text field so that is shows an error text for an error number.
Both text list types include a table with text entries. An entry consists of an ID for identification,
the output text, and its translation. In a text list or global text list, you can translate an output text
in any number of languages. The translations are the basis for the language selection and the
language switch in visualizations.

Requirement: A project is open with a text list or global text.

1. Double-click an object of type “TextList” or “GlobalTextList” in the device tree or POUs
view.

ð The “Textlist” menu is shown in the menu bar and the text list opens in the editor.

2. Click “Textlist è Add Language”.
3. Specify a name for the language (example: en-US). Click “OK” to close the dialog.

ð A column is displayed with the heading en-US.

4. Type in the translation of the source text into the column.

You can correct the name of a language in the table by means of the command
“Rename Language” in the context menu of the text list.

Requirement: A project is open with a text list or global text.
1. Double-click the object “GlobalTextList” or an object of type “TextList”.

ð The object opens.

2. Click “Textlist è Import/Export Text Lists”.

ð The “Import/Export” dialog opens.

3. At “Choose export file”, click for more () and select the directory and file name
(example: Text_lists_exported).

4. Select the “Export” option.

Adding a lan-
guage and
translating text

Exporting a text
list

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US266

5. Click “OK” to close the “Import/Export” dialog.

ð CODESYS exports to a file the text list entries of all text lists of the project. The table
contains a column with the text list names.

TextList Id Default en_US
Text_list_A A Information A Infrrmation A_en
Text_list_A B Information B: OK Information B_en: OK
Text_list_A C Information C Information C_en
Text_list_A D Information D Information D_en
Text_list_A E Information E Information E_en
Text_list_A F Information F Information F_en
AlarmGroup 2 Warning 2
AlarmGroup 1 Warning 1
GlobalTextList Information B Information B_en
GlobalTextList Information A Information A_en
GlobalTextList Switch Switch
GlobalTextList Counter: %i Counter : %i

Example
Contents of the
file
Text_lists_e
xported

Requirement: A file is created (example : Text_lists_exported) by means of the
command “Import/Export Text Lists”. It contains the texts of the text lists of the project.
1. Click “Tools è Options”, “Visualization” category, “File Options” tab.
2. Click in “Text file for textual "List components" ” and select a file (example:

Text_lists_exported). Click “OK” to close the dialog.

ð When you specify a static text in the “Texts” property for an element in a visualization,
CODESYS offers the source text of the file as input assistance when typing in the first
letter.

(1): “Texts”, “Text”

See also
● Ä “"List components"” on page 261

A file to be imported has the .csv format. The first line is a header (example: TextList Id
Default en_US). The other lines contain text list entries. You get this kind of file by exporting
the text lists of the project to a file. There you can edit the text list entries and then import the file
outside of CODESYS. When importing, CODESYS handles the text list entries differently for the
GlobalTextList and for dynamic text lists.

Preparing the
exported file for
input assistance

Importing files
with text list
entries

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 267

GlobalTextList
● CODESYS does not create new text list entries for an unknown ID.
● CODESYS ignores changes that affect the ID or the source text.
● CODESYS accepts changes in the translations.
TextList
● For a new ID, CODESYS supplements the corresponding text list with a text list entry.
● For an existing ID that does not agree in the source text, the source text of the text list is

overwritten with the source text of the file.
● CODESYS accepts changes in the translations.

Requirement: A project is open with a text list or global text.
1. Double-click the object “GlobalTextList” or an object of type “TextList”.

ð The object opens.

2. Click “Textlist è Import/Export Text Lists”.

ð The “Import/Export” dialog opens.

3. In the “Choose file to compare or to import” input field, click for more () and select the
directory and file (example: Text_lists_corrected.csv).

4. Select the “Import” option.
5. Click “OK” to close the dialog.

ð CODESYS imports the text list entries of the file into the respective text lists.

TextList Id Default en_US
Text_list_A A Information A Information A2_en
Text_list_A B Information B: OK Information B_en: OK
Text_list_A C Information C Information C_en
Text_list_A D Information D Information D_en
Text_list_A E Information E Information E_en
Text_list_A F Information F Information F_en
Text_list_A G Information G Information G_en
AlarmGroup 2 Warning 2
AlarmGroup 1 Warning 1
GlobalTextList Information B Information B_en
GlobalTextList Information A Information A_en
GlobalTextList Switch Switch
GlobalTextList Counter: %i Counter : %i

These contents are applied to the text lists with the same name in the project.

Example
Contents of the
file
Text_lists_c
orrected.csv

See also
● Ä Chapter 1.4.1.20.3.20.6 “Command 'Import/Export Text Lists'” on page 1133

Requirement: A project is open with a text list or global text.
1. Double-click the object “GlobalTextList” or an object of type “TextList”.

ð The object opens.

Importing a file

Comparing text
lists with a file
and exporting
differences

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US268

2. Click “Textlist è Import/Export Text Lists” in the context menu.

ð The “Import/Export” dialog opens.

3. In the “Choose file to compare or to import” input field, click for more () and select the
directory and file name of the comparison file (example: Text_lists_corrected.csv).

4. For “Choose export file”, click and select the directory and file that contains the
comparison result.

5. Select the “Export only text differences” option.
6. Click “OK” to close the dialog.

ð CODESYS reads the import file and compares the text list entries that have the same
ID. If they do not agree, then CODESYS writes the text list entries of the text list to the
export file.
For the global text list, CODESYS compares the translations of the same source texts.
If they do not agree, then CODESYS writes the text list entries to the export file.

See also
● Ä Chapter 1.4.1.20.3.20.1 “Command 'Add Language'” on page 1132
● Ä Chapter 1.4.1.20.3.20.6 “Command 'Import/Export Text Lists'” on page 1133
● Ä Chapter 1.4.1.20.3.20.7 “Command 'Remove Language'” on page 1134
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

Managing static text in global text lists
The global text list is the central location for texts that are displayed in the visualization.
When you configure a text for the first time in visualization element, CODESYS creates the
global text list. CODESYS fills in the table as you create more texts. Therefore, the table
includes all texts automatically that you create in the project visualizations. CODESYS assigns
incremental IDs as integers, beginning at 0.
You can check, update, and compare the global text list with the static texts of the visualization.
You cannot edit the source text or the ID directly in the table. However, you can replace
a source text with another source text by creating and importing a replacement file. Menu
commands are provided for this purpose.

A text in a “GlobalTextList” can contain a format definition.

Requirement: A project is open with a visualization. The “GlobalTextList” object contains
the texts that are defined in the project visualizations.
1. Double-click the visualization.

ð The editor opens.

2. Select an element with the “Text” property (example: “Text field”).
3. Type in some text in the “Text” property (example: Static Information A).

ð CODESYS adds the text to the global text list in the POU view.

Configuring vis-
ualization ele-
ments with
static text

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 269

Requirement: A project is open with a visualization. The “GlobalTextList” object contains
the texts that are defined in the project visualizations.
1. Double-click the “GlobalTextList” object in the POUs tree.

ð The table opens with the static texts.

2. Click “Text List è Check Visualization Text IDs”.

ð CODESYS reports when a source text of the text list does not match the static text
that is identified by the ID. The source text in the global text list and the text in the
visualization with the same ID do not match.

Requirement: A project is open with a visualization. The “GlobalTextList” object contains
the texts that are defined in the project visualizations.
1. Double-click the “GlobalTextList” object in the POUs tree.

ð The list opens with the text list entries.

2. Click “Text List è Update Visualization Text IDs”.

ð CODESYS adds text to the global text list when a text in the “Static Text” property
does not match the source text in the project visualizations.

Requirement: A project is open with a visualization. The “GlobalTextList” object contains
the texts that are defined in the project visualizations.
1. Right-click the “GlobalTextList” object in the POUs tree and select the “Delete” command.

ð The object is removed.

2. Open a visualization.
3. Click “Visualization è Create Global Text List”.

ð In the POU view, a new “GlobalTextList” object is created. The global text list contains
the static text from the existing project visualizations.

Requirement: A project is open with a visualization. The “GlobalTextList” object contains
the texts that were defined in the project visualizations.
1. Double-click the “GlobalTextList” object in the POUs tree.

ð The table opens with the texts.

2. Click “Text List è Remove Unused Text List Entries”.

ð CODESYS removes the text list entries with IDs not referenced in the project visuali-
zations.

Checking the
global text list

Updating IDs of
the global text
list

Removing the
global text list
and creating
current IDs
again

Removing IDs
from the global
text list

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US270

A replacement file has the CSV format. The first row is a header: defaultold defaultnew
REPLACE. The following rows contain the old source texts, the new source texts, and then the
REPLACE command. Tabs, commas, and semicolons are permitted separators. A combination
of separator characters in a file is not permitted.
defaultold defaultnew REPLACE
Information A Information A1 REPLACE
When you import a replacement file, CODESYS processes the replacement file row by row and
performs the specified replacements in the “GlobalTextList”. In addition, CODESYS replaces
the previous text with the replacement text in the visualizations. If the replacement text already
exists as static text, then CODESYS recognizes this and harmonizes the static text and leaves
only one text list entry.

Requirement: A project is open with a text list or global text.
1. Double-click the “GlobalTextList” object.

ð The object opens.

2. Click “Text List è Import/Export Text Lists”.

ð The “Import/Export” dialog opens.

3. At the “Choose file to compare or to import” input field, click for more () and select the
directory and file (example: ReplaceGlobalTextList.csv).

4. Select the “Import replacement file” check box.
5. Click “OK” to close the dialog.

ð The texts in the text lists and the visualizations are replaced.

Updating the
global text list
with a replace-
ment file

Example (tab as
separator char-
acter)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 271

The global text list contains the following source texts:

GlobalTextList Counter: %i
GlobalTextList Counter: %i
GlobalTextList Information A
GlobalTextList Information a
GlobalTextList Information Aa
GlobalTextList Switch

The replacement file contains the following replacements:

defaultold defaultnew REPLACE
Counter: %i Counter2: %i REPLACE
Counter: %i Counter2: %i REPLACE
Information A Information A2 REPLACE
Information a Information A2 REPLACE
Information Aa Information A2 REPLACE
Switch Switch2 REPLACE

CODESYS detects duplicate text list entries and removes them. Afterwards, the global text list
contains the following source texts:

The texts in the visualization have been replaced.

Example

See also
● Ä Chapter 1.4.1.20.3.20.2 “Command 'Create Global Text List'” on page 1132
● Ä Chapter 1.4.1.20.3.20.10 “Command 'Check Visualization Text IDs'” on page 1135
● Ä Chapter 1.4.1.20.3.20.11 “Command 'Update Visualization Text IDs'” on page 1135
● Ä Chapter 1.4.1.20.2.9 “Object 'GlobalTextList'” on page 871

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US272

Managing dynamic text in text lists
You can create and translate texts in a text list for dynamic texts in order to show them
dynamically in a visualization or in the alarm management. The object of type “Text list” can
be located globally in the POUs view or below an application in the device tree. It contains a
table with text list entries that you can edit and extend. A text list entry consists of an ID for
identification, the output text, and its translation. You can add new text list entries to a text list.
Menu commands are provided for this purpose.

Requirement: A project is open with a visualization.

1. Select an application in the POUs view or device tree and click “Project è Add Object”.
2. Select “Text list”.
3. Type a name (example: Textliste_A). Click “Add” to close the dialog.

ð An object of type “Text list” is created.

4. Click below the “Default” column and open the input field. Type a text (example:
Information).

ð The source text is created. It is used as a key in the table and as a source text for
translations.

5. Type any string in the “ID” column (example: A).

ð A text list entry is defined with source text and ID. If you configure the “Dynamic
texts” property of an element in a visualization, then you can select the text list
Textliste_A and assign the ID A.

6. Double-click in the blank line at the end of the table below “Default” and type in more text
list entries.

In a visualization, you can configure the dynamic output of texts that were created in a text list
by configuring the “Dynamic texts” property of an element. You can directly assign a text list and
an ID, as well as IEC variables, where you set the values programmatically.

Requirement: A project with visualization is open and a text list is in the device tree.
1. Open the text list (example: Text_list_A).

2. Double-click the visualization.

ð The editor opens.

3. Drag an element to the visualization (example: a “Text field”).

Creating text
lists for
dynamic text
output

Displaying text
dynamically

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 273

4. Configure its “Dynamic texts” property by selecting one in the “Text list” property (example:
'Text_list_A') and add an ID from the text list into the “Text index” (example: 'A').
Pay attention to the single straight quotation marks. You can also assign an IEC
variable of type STRING for the text list name and ID.

ð The IEC variables allow for programmatic access to the texts of the text lists.

5. Build the application, download it to the controller, and start it.

ð The visualization shows the text from the text list in the text field : Information A.

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

1.4.1.8.9 Using image pools
An image pool is a table of image files. CODESYS references image files for use in the project
(for example, in a visualization) uniquely by the ID and name of the image pool. A project
can include several image pools. You can create Image pools in the device tree below the
application or in the POU pool. In a library project, you can use the object properties of an
image pool to turn it into a symbol library for the visualization.

We recommend that you reduce the size of image files as much as possible
integrating them. This will optimize the loading time of the visualization in every
visualization type: TargetVisu, WebVisu and development system.

If you insert an image element into a visualization and enter an ID (“Static ID”) in the element
properties, then CODESYS automatically creates a global image pool. CODESYS uses the
default name “GlobalImagePool” for this.
Please note the following when the ID of an image file appears in several image pools.
● Search order: If you selected an image managed in “GlobalImagePool”, then you do not

have to enter the name of the image pool. The search order for image files is as follows:
– 1. GlobalImagePool
– 2. Image pools assigned to the currently active application
– 3. Image pools next to the GlobalImagePool in the POU window
– 4. Image pools in libraries

● Unique access: You can reference a selected image directly and uniquely by appending the
image ID to the name of the image pool in the following syntax "<pool name>.<image
ID>.

See also
● Ä Chapter 1.4.1.20.2.13 “Object 'Image Pool'” on page 873
● Ä Chapter 1.4.1.20.4.10.17 “Dialog 'Properties' - 'Image Pool'” on page 1168

1. Select the “Application” object in the device tree.
Click “Project è Add Object è Image Pool”.

ð The “Add Image Pool” dialog box opens.

2. Type a name for the image pool (for example, "Images1") and click “Add”.

ð The image pool is added to the device tree.

3. Select the image pool object and open by choosing the command “Project è Edit Object”.

Creating image
pools

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US274

4. Double-click the field in the “ID” column and assign an appropriate ID (for example,
"Icon1").
You can also add new images to the list by clicking “Imagepool è Add Image File”.

5. Double-click the field in the “File name” column. Click for more settings ().

ð The “Select Image” dialog box opens.

6. Click for more settings () and select the image file.

ð A thumbnail of the image file is displayed in the field of the column “Image”. The name
of the file is displayed in the field of the column “File name”.

The image file can be references only by the name Images1.Icon1.

See also
● Ä Chapter 1.4.1.20.3.15.1 “Command 'Insert Image'” on page 1121

When you insert an image element into a visualization, you can define the image type.
● Static image: Enter the image ID of the image file or the name of the image pool plus the

image ID into the element configuration (property “Static ID”). Please note the comments for
the search order and access.

● Dynamic image: Type the variable for defining the image file ID (for example,
PLC_PRG.imagevar) in the element configuration (“Bitmap ID variable” property). You can
exchange a dynamic element in online mode depending on a variable.

See also
● Ä Chapter 1.4.5.18.1.5 “Visualization Element 'Image'” on page 1418

You can set an image in the background definition of a visualization. You can define the
image by the name of the image pool plus the filename, as described above for a visualization
element.
See also
● Ä Chapter 1.4.5.19.2.10 “Command 'Background'” on page 1728

1.4.1.8.10 Integrating C Modules
With the C code integration plugin, externally implemented C code files can be included in
CODESYS projects and C stubs can be generated from IEC objects.
In CODESYS, the “C Code Module” object type is available for this purpose. The C code files
and the used IEC objects are located below a “C Code Module”. A file directory on the hard disk
with C code files is assigned to each C code module.
In the project, you can generate IEC objects from a C code file in the format *.h or *.hpp (header
file) in order to use them in other POUs.
The generation of C-stubs is intended for the following use cases:
● A C code file accesses an IEC object: A C code file cannot access an IEC object directly. It

can access only the C stub that was generated from the IEC object.
● Generation of precompiled modules that you can merge into a library project.
After being imported, the imported source code files are part of the CODESYS project and they
are therefore decoupled from the original files on the disk.
During compilation, a dynamic module is generated from a C code module and saved as part of
the project. Information, warnings, and errors are displayed in the message view in the “C Code
Module” category.

Using image
files in the
'Image' visuali-
zation element

Using image
files for the vis-
ualization back-
ground

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 275

All dynamic modules of an application are transferred and loaded to the runtime system during
the download. The runtime system must support dynamic linking for this.

License for the runtime system
The runtime system requires a license that permits C modules to be loaded.
Without this license, dynamic modules cannot be linked during the download,
and therefore the download will be aborted.

The dynamic modules are part of the boot application and they are reloaded and activated
when the controller is restarted. The “Reset Origin” command unloads all C code modules in
the application. The “Reset Cold” and “Reset Warm” commands do not lead to a repeated
initialization of the C code modules.

NOTICE!
No C code for simulation mode
In simulation mode, C code is not generated and loaded to the runtime system.
To simulate the code contained in the C modules anyway, you can implement it
for this purpose in the respective IEC objects of the C code module.

CODESYS does not support the monitoring of variables in C code files or the setting of break-
points in C source code.
Precompiled module in a library:
C code integration provides the capability of assigning a precompiled runtime module (example:
*.dll) in the library to a device and then to save it in the library. Then, these modules can be
loaded dynamically.
See also
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385

Requirement: A project is open that already includes a C code module.

1. Click the object “C Code Module” in the device tree.
2. Select the command “Properties” in the context menu.
3. Open the “Build” tab in the “Properties” dialog.
4. Specify the file path of the Visual Studio installation on your computer. The input assistant

() and the search tool (magnifying glass) are also available.
5. Specify the file path of the MS Windows SDK installation on your computer. The input

assistant () and the search tool (magnifying glass) are also available.
6. Specify a file path for CODESYS to store the temporary compile files.

Requirement: A project is open. The project controller supports the integration of C code.

1. Select “Application” in the device tree and click “Project è Add Object è C Code
Module”.

2. If necessary, specify a new name for your C code module in the “Add C Code Modules”
dialog. If you do not, then your object will be given the standard name “C Code Module”.

3. Click the symbol () next to the “Source directory” input field.
4. The “Find Folder” dialog opens.

Configuring C
code modules

Importing
folders with C
source files
from the file
directory

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US276

5. In the “Find Folder” dialog, select the folder containing the C source files (*.c, *.cpp,
*.h, or *.hpp).

6. When you select the “Monitor folder for source code changes” option, CODESYS displays
a message when changes have been made to the C source files in the selected folder of
the file system.

7. Click “Add”.

ð CODESYS inserts the C code module into the device tree with the folders
“Extensions”, “IEC interface”, and “Source Files”.

8. In the device tree, click the plus symbol (“+”) of the “Source Files” folder.

ð The imported C source files are listed in the open folder.

9. If you double-click one of the C source files (), then the C code file opens in your editor.

Requirement: A project is open that already includes a C code module.

1. Click the object “C Code Module” in the device tree.
2. Click “Project è Add Object è C Code File”.
3. In the “Add C Code-File” dialog, use the input assistant () to select a file in *.c, *.cpp,

*.h, or *.hpp format, and then click “Add”.

ð CODESYS inserts the selected C code file into the device tree below the “C Code
Module”.

4. If you double-click the new C code file () in the device tree, then it opens in the editor for
modification.

Requirement: A project is open that already includes a C code module.

1. Click the object “C Code Module” in the device tree.
2. Click “Project è Add Object è C Code File”.
3. In the “Add C Code File” dialog, specify the name for the new C code file with the

appropriate file extension and click “Add”.

ð CODESYS inserts the selected C code file into the device tree below the “C Code
Module”.

4. If you double-click the new C code file () in the device tree, then it opens in the editor for
modification.

Requirement: A project is open that includes a C code module and C code files. For
example, the C code file contains the following C code: int adder(int a, int b);

1. Click a C code file with the file extension *.h. In this example, it is test.h.

2. Click “Build è C-Integration è Create IEC Interface”.

ð The dialog “Create C Interface” opens and lists the file test.h and its function adder
(int, int). Both are activated for the import.

3. Click “Import”.
4. CODESYS generates the “adder (FUN)” function and inserts it as an object in the “IEC

Interface” folder in the device tree.

Importing indi-
vidual C code
files

Generating
empty C code
files

Converting C
code files into
IEC objects for
use as program-
ming objects in
applications

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 277

5. When you double-click the “adder (FUN)” object, it opens in the editor.

ð It contains the following declaration part:

6. You can now call the adder function in the implementation part of a POU (example:
adder (diVar1, diVar2);).

Requirement: A project is open that includes a C code module. A POU is added to the C
code module and this POU has implemented code.

In the device tree, select the POU below the C code module and click “C-Integration
è Create Stub Implementation in C”.

ð CODESYS creates the objects “iec_external.c” and “iec_external.h” and adds them to
the “Extensions” folder in the device tree.
In the message view (“C Code module” category), you will find a message that an m4
file has been successfully created.

When you click “Create Stub Implementation in C”, the application
is compiled automatically. If errors occur in the process, then these
are indicated in the message view. In addition, please monitor the
messages in the “C Code Module” category.

Requirement: A library (*.library) is open in CODESYS.

1. Click “View è POUs”.

ð The “POUs” view opens and displays the library project and its objects.

2. Select the library project and click “Project è Add Object è C-Implemented Library”.
3. Click “Add” in the “Add C-Implemented Library” dialog.

ð CODESYS adds the object “C Implemented Library” to the “POUs” view.

4. Double-click the “C Implemented Library” object.

ð The object opens in its editor

5. Click “Add” in this editor.

ð The “Select Device” dialog opens.

Creating C
stubs

Assigning pre-
compiled run-
time modules to
devices and
saving them in
libraries

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US278

6. In the “Object file” input field, specify the name of a dynamically loadable module in the
format *.dll or *.so.

NOTICE!
The *.dll file must contain the title of the library project in its name. For
example, if the library project is named XYlib, then the “Object file” must
be called: <Name>_XYlib.dll.

7. In the “Device” window, select a device for assignment of the “Object file”.
8. Click “Select Device”.

ð CODESYS displays the created device file assignment in the editor on the tab
“Compiled Components”.

9. Save the library project.

1.4.1.8.11 Programmatic Access to I/Os
CODESYS provides the following features for mapping project variables to input, output and
memory addresses:
● Assignment of project variables to input, output and memory addresses in the “I/O Mapping”

tab of the device editor
● Programmed access to I/Os

– Variables configuration
– AT declaration

NOTICE!
We recommend that you define the mapping of project variables to input, output
and memory addresses in the “I/O Mapping” of the editor of the respective
device.

See also
● Ä Chapter 1.4.1.7.1 “Configuring Devices and I/O Mapping” on page 213

Variables configuration - VAR_CONFIG
Use the variables configuration for mapping variables of functions blocks to the process map.
For declarations in the function block, assign the variables to the device inputs/outputs without
providing the full address. Later, the exact address is provided centrally for all function block
instances of the application in a global variable list including VAR_CONFIG declarations. This
global variables list with the VAR_CONFIG declarations is termed the "variables configuration".

NOTICE!
For changes to variables that are assigned to I/O addresses, CODESYS dis-
plays them immediately In the process map. For changes to variables that are
mapped by a variables configuration, CODESYS displays them not until the end
of the responsible task.

Declaration of variables in functions blocks
When declaring variables in a function block, declare the variables between the keywords
VAR and END_VAR and assign incomplete addresses to the variables. Mark these incomplete
addresses with an asterisk (*).

Syntax:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 279

<identifier> AT %<I|Q>*:<data type>;

Define two local I/O variables: the input variable xLocIn and the output variable xLocOut.
FUNCTION_BLOCK locio
VAR
 xLocIn AT %I*: BOOL := TRUE;
 xLocOut AT %Q*: BOOL;
END_VAR

Example

Final definition of addresses in the variables configuration of the global variables list
In the global variables list that you use as the variables configuration, define the variable
declarations with the absolute addresses between the keywords VAR_CONFIG and END_VAR.

You must declare the VAR_CONFIG variables with the complete instance path, separating the
individual POU and instance name by a dot (.). The declaration must include an address whose
class (input/output) agrees with the class of the incomplete address (%I*, %Q*) in the function
block. The data type must also agree.
Syntax:
<instance variable path> AT %<I|Q><location>: <data type>;
If the path instance does not exist, then an error is reported. CODESYS prints an error also
if there is not an address configuration available for a variable that you declared with an
incomplete address.

The locio function block in the example above is used in a program as follows:
PROGRAM PLC_PRG
VAR
 locioVar1: locio;
 locioVar2: locio;
END_VAR

A correct variables configuration in a global variable list could then look like this:
VAR_CONFIG
 PLC_PRG.locioVar1.xLocIn AT %IX1.0 : BOOL;
 PLC_PRG.locioVar1.xLocOut AT %QX0.0 : BOOL;
 PLC_PRG.locioVar2.xLocIn AT %IX1.0 : BOOL;
 PLC_PRG.locioVar2.xLocOut AT %QX0.3 : BOOL;
END_VAR

Example

See also
● Ä Chapter 1.4.1.19.2.10 “Configuration variables - VAR_CONFIG” on page 534
● Ä Chapter 1.4.1.8.11.2 “AT declaration” on page 281
● Ä Chapter 1.4.1.19.4.10 “Addresses” on page 643

Requirement: You have a project open that includes a controller configuration with a field
device. The project contains a program (e.g. PLC_PRG) and a function block (e.g. func1).
The field device has inputs and outputs. The textual view is selected in the options for the
declaration editor.
1. Double-click a function block in the device tree (e.g. func1).

ð The function block editor opens.

2. Type the following between the keywords VAR and END_VAR: xLocIn AT %I*:
BOOL := TRUE; and XLocOut AT %Q*:BOOL; in the next line.

ð You have declared an input variable xLocIn and assigned it to the incomplete input
address %I* of a field device. You have assigned the declared output variables have
to the incomplete output address %Q*.

Creating a varia-
bles configura-
tion

In the function
block, assign
variables to
device I/Os with
incomplete
addresses and
then create a
variables con-
figuration.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US280

3. Click the PLC_PRG object in the device tree and add the following to the declaration
section of the program between VAR and END_VAR:
locioVar1: func;
locioVar2: func;

4. Right-click the “Application” object in the device tree and click “Add Object è Global
Variable List” and then click “Add” in the “Add Global Variable List” dialog box.

ð The global variables list is added to the device tree and opens in the editor.

5. Change the keyword VAR_GLOBAL to VAR_CONFIG.

6. Click “Declarations è Add All Instance Paths”.

ð The following instance paths are added:

PLC_PRG.logioVar1.xLocIn AT %I*;
PLC_PRG.logioVar2.xLocIn AT %I*;
PLC_PRG.logioVar1.xLocOut AT %Q*;
PLC_PRG.logioVar2.xLocOut AT %Q*;

7. Now, replace the incomplete addresses %I* and %Q* with the absolute, complete
addresses.

See also
● Ä Chapter 1.4.1.20.3.17.4 “Command 'Add all instance paths'” on page 1124

AT declaration
In the variables declaration, the code AT assigns a project variable to a specific input address,
output address, or memory address of the PLC that is configured in the device tree. You can
also define the assignment of variables to an address in the “I/O Mapping” dialog of the device
in the PLC configuration.

<variable name> AT <address> : <data type>;

<address> : %<memory area prefix> (<size prefix>)? <memory position>
The AT declaration allows you to give the address a meaningful name. You can make any
necessary changes for the input or output signals at just one location, for example in the
declaration.

Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 281

VAR wInput AT %IW0 : WORD; END_VAR Variable declaration with address information of an
input word

VAR xActuator AT %QW0 : BOOL; END_VAR Boolean variable declaration
Note: For Boolean variables, one byte is allocated
internally if a single bit address is not specified. A
change in the value of xActuator affects the range
from QX0.0 to QX0.7.

VAR xSensor AT IX7.5 : BOOL; END_VAR Boolean variable declaration with explicit specification
of a single bit address. On access, only the input bit
7.5 is read.

VAR xSensor AT IX* : BOOL; END_VAR For the address specification, the placeholder * is
given instead of the memory position. The final
address specification is done in the variables configu-
ration.
Note: This is possible in function blocks.

Examples

If you assign a variable to an address, please note the following:
● You cannot write to variables that are placed at inputs. This will cause a compiler error.
● You can perform AT declarations only for local and global variables, not for input/output

variables of POUs.
● Furthermore, AT declarations cannot be used in persistent variable lists.
● If you use AT declarations for structure components or function block variables, then all

instances use the same memory. This is just like using static variables in classic program-
ming languages, such as C.

● The memory layout of structures also depends on the target system.

NOTICE!
If you do not specify a single bit address explicitly, then Boolean variables are
allocated byte-by-byte.

PROGRAM PLC_PRG
VAR
 xVar AT %QW0 : BOOL;
END_VAR

xVar := TRUE;
When the variable xVar is written, the output memory range from QX0.0 to QX0.7 is affected.

Example

See also
● Ä Chapter 1.4.1.8.11.1 “Variables configuration - VAR_CONFIG” on page 279
● Ä Chapter 1.4.1.19.2.10 “Configuration variables - VAR_CONFIG” on page 534
● Ä Chapter 1.4.1.19.4.10 “Addresses” on page 643

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US282

1.4.1.8.12 Checking Syntax and Analyzing Code
CODESYS provides useful functions for detecting errors and assisting you while you create
programs. The syntax check flags errors and prints them to the message view as early as the
programming phase.
The static code analysis in CODESYS also assists you in complying with defined coding guide-
lines and detecting weak constructs.
See also
● Ä Chapter 1.4.1.8.12.1 “Checking Syntax” on page 283
● Ä Chapter 1.4.1.8.12.2 “Analyzing code statically” on page 283

Checking Syntax
When you input code, the precompile in CODESYS already runs some basic checks. Then,
wavy underlines appear under buggy code in the editor and an error message is printed to the
messages view.
CODESYS automatically generates the application code from the source code that was written
in the development system. This is done automatically before downloading the application to the
PLC. Before the application code is generated, a test is performed for checking the allocations,
the data types, and the availability of libraries. Moreover, the memory addresses are allocated
when the application code is generated. You can click “Build è Generate Code” to execute this
command explicitly, or press the [F11] key. This is useful for detecting any errors in your source
code, even when the PLC is not connected yet.
CODESYS prints all errors and warnings to the "Build" category of the messages view. Double-
clicking the error message opens the respective POU in the editor with the buggy code marked.
As an alternative, you can also jump to the buggy code by right-clicking the error message.
Note the settings for this in the CODESYS options.
See also
● Ä Chapter 1.4.1.20.4.13.23 “Dialog 'Options' - 'SmartCoding'” on page 1201

Analyzing code statically
You can subject your source code also to static analysis (lint) during the code generation.
This determines whether or not your source code complies with the coding guidelines that you
defined - according to the idea behind the lint analysis tool.
● You activate the rules to the checked in the “Project Settings” dialog in the “Static Analysis

Light” category. The check itself is performed automatically each time code is generated,
for example when you click “Build è Generate Code”. If divergence from the rules is
determined, then it is reported as an error message in the “Build” category of the message
view. The reported errors have the prefix SA<number>.

NOTICE!
For static code analysis with “Static Analysis Light”, only the application code of
the project is checked. Libraries are excluded from the check.
GVL variables in the “POUs” view are not necessarily checked: If you have a
project with several applications, then only the objects in the active application
are checked. If you have only one application, then the objects in the common
POU pool are also checked.

“Static Analysis Light” includes only a reduced set of rules in the default devel-
opment system. A larger set of rules, additional naming conventions, and met-
rics are available when you install the CODESYS Static Analysis add-on.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 283

By means of the pragma {analysis ...}, you can mark code so that the specified rules are
not checked. As a result, the marked lines of code are not subjected to static analysis. The
marked code is ignored during the check.
Syntax:
{analysis <sign><rule number>|,<other combinations of signs and rules,
comma-separated>}
-<rule number>: Deactivate the rule SA<rule number>.

-<rule number>: Activate the rule SA<rule number>.

Requirement: Rules are activated in the “Project Settings” dialog.
1. Add the pragma {analysis -<number>} above the line of code that contains code not

to be checked first of all. For example, for the rule SA0024

ð The line of code is the first line of the code snippet that is not checked with rule 24.

2. Add the pragma {analysis -<number>} below the line of code that contains code not
to be checked first of all. For example, for the rule SA0024

ð The line of code above is the last line of the code snippet that is not checked with rule
24.

{analysis -24}
nTest := 99;
iVar := INT#2;
{analysis +24}

The rule “SA0024: Untyped literals only” is deactivated for two lines. An error is not issued
although the code does not correct to: nTest := DINT#99;

Example:
Ignore untyped
literal

{analysis -10, -24, -18}
...
{analysis +10, +24, +18}

“SA0010: Arrays with only one component”

“SA0018: Unusual bit access”

“SA0024: Untyped literals only”

Example:
Ignore several
rules

However, you cannot deactivate the rule SA0004: “Multiple Write Access on
Output” with a pragma.

Syntax:
{attribute 'analysis' := '-<rule number>[,<other negative rule
numbers, comma-separated>]'}

Deactivating
lines of code in
the implementa-
tions with
pragmas from
the static anal-
ysis

Excluding
implementation
code

Excluding pro-
gramming
objects with
pragmas from
the static anal-
ysis

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US284

When you insert the attribute pragma in the declaration part of a programming object, the
specified rules are excluded for the entire programming object. If multiple rules are excluded,
then the rules are each comma-separated with a dash and a number. A pragma statement for
activation is not required.

{attribute 'analysis' := '-33, -31'}
TYPE LocalData :
STRUCT
 iLocal : INT;
 uiLocal : UINT;
 udiLocal : UDINT;
END_STRUCT
END_TYPE

The rules SA0033 and SA0031 are ignored for the structure LocalData.

{attribute 'analysis' := '-100'}
big: ARRAY[1..10000] OF DWORD;

The rule SA0100 is ignored for the array big.

Example

See also
● Ä Chapter 1.4.1.20.4.11.8 “Dialog 'Project Settings' - 'Static Analysis Light'” on page 1177

1.4.1.8.13 Orientation and Navigation
1.4.1.8.13.1 Using the cross-reference list to find occurrences....................... 285
1.4.1.8.13.2 Finding declarations... 287
1.4.1.8.13.3 Setting and using bookmarks... 287

Using the cross-reference list to find occurrences
The occurrences of symbols of a variable, a POU (program, function block, function), or a
DUT can be displayed in a cross-reference list. Then you can jump from the list directly to the
corresponding locations in the project.
There are two ways to search for occurrence locations of a symbol:
● Plain text search: You manually specify a text (symbol name, placeholder) in the “Cross-

Reference list” view.
● Search for a specific declaration:

– In the “Cross-Reference List” view, you select the declaration from the input assistant.
– The focus is on a symbol name in the POU editor and you start the cross-reference

search from the context menu.
– The focus is on a symbol name in the POU editor, the “Cross-Reference List” view is

open, and the cross-reference search executes automatically.
– In the “Cross-Reference List” view which already lists occurrence locations for several

declarations, you limit these results to a specific declaration.

Requirement: The “Cross-Reference List” view is open.Cross refer-
ences with text
search by
symbol name

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 285

1. Specify a string in the field next to the name, for example the identifier of the variable for
which you want to find the occurrence location in the project. Example: "iCounter".

For the text search, you can use the asterisk "*" (for any number of characters) or the
question mark "?" (for an exact number of characters) combined with a substring of a
variable identifier.
Use the percent sign "%" to search for IEC addresses. Examples: "%MW8", "%M*".

2. Click the button to start a text search in the project.

ð The view “Cross-Reference List” opens and displays the occurrence locations for the
iCounter variable. The declaration parts are always displayed in the project with the
occurrence location indented.

3. Double-click an occurrence location in the cross-reference list.

ð The respective object opens in the editor with the marked occurrence location.

Requirement: A POU is open in the editor.

1. Set the cursor at the identifier of the symbol (variable, POU) in the declaration part or
implementation part.

2. Click “Browse for Symbol è Browse Cross-References” in the context menu or “Edit”
menu.

ð The “Cross-Reference List” view opens and shows the occurrence locations of the
variables or POU.

If the “Cross-Reference List” view is already open, then you can also search the occurrence
locations for a specific result as follows:

Select the “Automatically list selection in cross reference view” check box in “Tools
è Options” (“SmartCoding” category). Select the name of the symbol in the POU, or
set the cursor in the name.

ð Depending on the position of the selection or cursor, the cross-reference list automati-
cally shows the occurrence locations for the respective symbol.

In the “Cross-Reference List” view, use the input assistant to specify a symbol name in
the field next to “By declaration”.

ð The cross-reference list displays the occurrence locations for the symbol.

If multiple declarations for a symbol are listed in the “Cross-Reference List” view, for
example after a text search, then you can reduce the display to one result: Select the
line with the desired declaration and click the button or click “Limit Results to Current
Declaration” in the context menu.

ð the cross-reference list includes only the occurrence locations for the selected decla-
ration.

See also
● Ä Chapter 1.4.1.20.3.3.13 “Command 'Cross Reference List'” on page 990
● Ä Chapter 1.4.1.20.3.2.29 “Command 'Browse Cross References'” on page 974
● Ä Chapter 1.4.1.20.4.13.23 “Dialog 'Options' - 'SmartCoding'” on page 1201

Cross-refer-
ences for a spe-
cific symbol
declaration
From the POU
editor, with a
menu command

From the POU
editor,
automatic

In the cross-ref-
erence list view,
with input assis-
tance

In the cross-ref-
erence list view,
limited to a spe-
cific declaration

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US286

Finding declarations
CODESYS provides the capability of searching the entire project for the definition location of a
variable or function. The block that includes the definition opens in the editor with the marked
declaration.

Requirement: You have opened a POU in the editor.

1. Set the cursor at an identifier in the implementation section.
2. Click “Edit è Browse è Go to Definition”.

ð The POU with the declaration opens in the editor with the variable definition marked.
If the definition is located in a compiled library, then the respective block opens in the
library manager.

You can execute this command in both online and offline mode.

The following block includes a function block definition (fbinst), a program call (prog_y()),
and a function block call (fbinst.out):
VAR fbinst:fb1; ivar:INT; END_VAR prog_y(); ivar:=prog_y.y;
res1:=fbinst.out;

If the cursor is located at prog_y, then the command opens the program prog_y in the editor.

If the cursor is located at fbinst, then this command focuses in the declaration section at line
fbinst:fb1;
If you set the cursor at out, then this command opens the function block fb1 in its editor.

Examples

See also
● Ä Chapter 1.4.1.20.3.2.37 “Command 'Go to Definition'” on page 979

Setting and using bookmarks
Bookmarks are used for easy navigation through long programs. You can use bookmarks in all
implementation language editors, except SFC (sequential function chart). Commands help to
navigate directly to the marked position in the program.

Requirement: The POU is open in the editor.

1. Set the cursor at any program line.
2. Click “Edit è Bookmarks è Toggle Bookmark”.

ð A bookmark is set at this position in the program. This is marked by the bookmark
symbol .

3. Set several bookmarks at different places in the program.
4. Set the cursor at a bookmarked program line.

Finding the dec-
laration of a var-
iable

Setting and
deleting book-
marks

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 287

5. Click “Edit è Bookmarks è Toggle Bookmark”.

ð The bookmark is removed. The bookmark symbol is deleted.

As an alternative to this, you can delete one or more bookmarks in the “Bookmarks”
view by clicking the button. For this purpose, the corresponding bookmarks have to
be selected in the “Bookmarks” view.

Click “Edit è Bookmarks è Clear All Bookmarks (Active Editor)” to
remove all bookmarks from the active POU.

In order to delete all bookmarks in a project, click “Clear All
Bookmarks”. However, for this command to be available, you first
have to add it to a menu by means of the command “Tools
è Customize”.

See also
● Ä Chapter 1.4.1.20.3.2.22 “Command 'Toggle Bookmark'” on page 972
● Ä Chapter 1.4.1.20.3.2.27 “Command 'Clear All Bookmarks (Active Editor)'” on page 974
● Ä Chapter 1.4.1.20.3.2.28 “Command 'Clear All Bookmarks'” on page 974

Requirement: The POU is open in the editor. Multiple bookmarks are set.

1. Click “Edit è Bookmarks è Next Bookmark (Active Editor)”.

ð Depending on the current cursor position, the cursor jumps to the next bookmark (see
below).

2. Click “Edit è Bookmarks è Previous Bookmark (Active Editor)”.

ð Depending on the current cursor position, the cursor jumps to the previous bookmark
(see above).

See also
● Ä Chapter 1.4.1.20.3.2.23 “Command 'Next Bookmark (Active Editor)'” on page 973
● Ä Chapter 1.4.1.20.3.2.25 “Command 'Previous Bookmark (Active Editor)'” on page 973

A project is open with multiple POUs. Multiple bookmarks are set in different POUs.

1. Click “View è Bookmarks”.

ð The “Bookmarks” view opens.

All bookmarks in the project are listed in a table in the view.
2. Click the “Next Bookmark” button.

ð In the “Bookmarks” view, the bookmark in the row below the selected bookmark is
selected.
The POU with the recently selected bookmark in the table opens in the editor and the
row with the bookmark is selected in the POU.

Jumping to
bookmarks
within a POU

Jumping to
bookmarks of
different POUs
in a project

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US288

3. As in step 2, you can click the “Previous Bookmark” button to jump to the bookmark in
the project that is displayed in the row above it in the “Bookmarks” view.

See also
● Ä Chapter 1.4.1.20.3.3.11 “Command 'Bookmarks'” on page 988
● Ä Chapter 1.4.1.20.3.2.26 “Command 'Previous Bookmark'” on page 973
● Ä Chapter 1.4.1.20.3.2.24 “Command 'Next Bookmark'” on page 973

1.4.1.8.14 Searching and replacing in the entire project
In CODESYS you can search for strings in single objects or project-wide. If required, you can
replace the string found.
1. Choose the command “Search” in the main menu “Edit è Search Replace”.

ð The dialog “Find” opens.

2. Enter the string to be found in the field “Find what”.
3. Activate the search options
4. Define the objects to be searched by choosing an entry from the combobox “Search”.
5. Click on the button “Find Next”.

ð The first hit is displayed.

6. Click on the button “Replace” to replace the string found by a different one.
7. Click on the button “Find All” to get a list of all hits.

See also
● Ä Chapter 1.4.1.20.3.2.2 “Command 'Find', 'Find in Project'” on page 966
● Ä Chapter 1.4.1.20.3.2.3 “Command 'Replace', 'Replace in Project'” on page 967

1.4.1.8.15 Refactoring
In general, refactoring is a technique for improving the design of existing software code without
changing the way it functions.
In CODESYS, refactoring provides functions for renaming objects and variables and updating
referenced pins. You can display all occurrences of renamed objects and variables and then
rename them all at once or individually. In “Tools è Options”, you can also configure where
CODESYS will prompt you for refactoring.

Requirement: A project is open that includes at least a function block “FB” and a global variable
list. The global variable list “GVL” is open in the editor and contains a variable declaration
(example: iGlobal). “FB” uses iGlobal.

1. Select the global variable name iGlobal.

2. Right-click the variable and click “Refactoring è Rename iGlobal”.
3. In the “Rename” dialog, type a name in the “New name” input field, for example

iGlobalOK, and click “OK”.

ð The “Refactoring” dialog opens. In the device tree view on the left, the “GVL” and “FB”
objects are highlighted in red and yellow. In the view on the right, “FB” in is open in its
editor and iGlobal has already been renamed as iGlobalOK.

4. Click “OK”.

ð No global variable iGlobal is in your project. Now iGlobalOK is everywhere.

Renaming
global variables

Renaming
global variables
throughout the
project

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 289

1. Select the global variable name iGlobal.

2. Right-click the variable and click “Refactoring è Rename iGlobal”.
3. In the “Rename” dialog, type a name in the “New name” input field, for example

iGlobalTest, and click “OK”.

ð The “Refactoring” dialog opens. In the device tree view on the left, the “GVL” and “FB”
objects are highlighted in red and yellow. In the window on the right, the function block
“FB ” is open in its editor. iGlobalTest is listed instead of iGlobal.

4. Right-click in the view on the right.
5. Click “Reject this Object” and click “OK”.

ð The global variable iGlobal is available in “FB” in your project. The variable
iGlobalTest is now specified in the objects where the previous variable occurred.

The error message in the message view reports that the iGlobal identifier is not
defined.

In the declaration part of blocks, you can add and delete input and output variables by using
the refactoring commands. CODESYS performs updates at the occurrence locations and calling
locations of the blocks. You can accept or reject these updates individually. The “Refactoring”
dialog also opens for this purpose.
Requirement: The FCT (function type) POU is open in the editor. The function already contains
the input variables input1, input2, and inputx. They are called in the PLC_PRG and POU
programs.
1. Set the focus in the declaration part of the FCT function.
2. Click “Refactoring è Add Variable”.

ð The default dialog opens for declaring variables.

3. Declare the variable input_3 with the scope of VAR_INPUT and data type INT. Click
“OK” to close the dialog.

ð The “Refactoring” dialog opens (see figure below). The affected locations are marked
in yellow. (1)+(2)

4. In the upper right corner, select “Add inputs with placeholder text” from the drop-down list.
(3).

5. In the left side of the window, click one of the highlighted objects (for example, PLC_PRG).
Right-click and choose the “Accept Whole Project” command to add the new variable at
the new location of use in FCT for the entire project.

ð You see the change in the implementation part of PLC_PRG in the view on the right:
The placeholder _REFACTOR_ appears at the location where the new variable was
added.

6. Click “OK” to close the “Refactoring” dialog.
7. Click “Edit è Find”. Search the project for "_REFACTOR_" to check and edit the affected

locations.
8. Note: As an alternative, you can insert the new variable with another initialization value

without working with a placeholder first. In this case, in Step 4 you select "Add inputs with
the following value" and type the value in the field on the right side of the drop-down list.

Renaming
global variables
throughout the
project (except
for a POU)

Adding and
removing input
variables

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US290

Example of a new variable with placeholder text in a CFC block:

Please note that you can also remove variables with refactoring.

In the declaration part of function blocks, you can change the order of declarations by refac-
toring This is possible for declarations with scope VAR_INPUT, VAR_OUTPUT, or VAR_IN_OUT.

Requirement: The declaration part of a POU is open and includes declarations, for example:

VAR_INPUT
 invar2 : INT;
 invar1 : INT;
 in : DUT;
 bvar : BOOL;
 invar3 : INT;
END_VAR
1. Right-click in this declaration block to access the context menu.
2. Click “Refactoring è Reorder Variables”.

ð The “Reorder” dialog opens with a list of VAR_INPUT variables.

Reordering vari-
ables in the dec-
laration

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 291

3. Drag the “invar1 : INT;” entry to the position before the “invar2.” entry.

ð The invar1 declaration is now at the top position.

4. Click “OK” to close the dialog.

ð The “Refactoring” dialog opens. The affected locations are marked in yellow (see
figure above).

5. Click “OK” to accept the new order for the function block.

Refactoring helps you in the declaration when renaming variables (by means of "Auto declare").

Requirement: Function block fb_A.

1. Click “Tools è Options”.

ð The “Options” dialog opens.

2. Select the “Refactoring” category.
3. In “Auto-Declare”, activate the options “On renaming variables” and “On adding or

removing variables, or for changing the namespace”.
4. Double-click the function block fb_A.

5. Select a variable in the declaration of fb_A, for example iA. As an alternative, you can
set the cursor before or in the variable.

6. Specify “Edit è Declare variable” ([Shift]+[F2]).

ð The “Declare Variable” dialog opens. The dialog includes the settings of iA.

7. Change the name of iA to iCounter_A.

8. The option “Changes by means of refactoring” appears and is activated.
9. Click “OK”.

ð The dialog “Refactoring” “Renaming from iA to iCounterA” opens. All locations affected
by the variable renaming are marked there.

10. Click “OK” to close the dialog.

ð The changes are applied.

See also
● Ä Chapter 1.4.1.20.3.2.40 “Command 'Refactoring' - 'Rename <...>'” on page 980
● Ä Chapter 1.4.1.20.3.2.41 “Command 'Refactoring' - 'Update Referenced Pins'”

on page 981
● Ä Chapter 1.4.1.20.3.2.42 “Command 'Refactoring' - 'Add Variable'” on page 981
● Ä Chapter 1.4.1.20.3.2.43 “Command 'Refactoring' - 'Remove <variable>'” on page 983

1.4.1.8.16 Task Configuration
In the task configuration, you define one or more tasks for controlling and executing the applica-
tion program in the controller. Each application must include a “Task Configuration” object.
A task is a time-based flow unit of an IEC program. You define a task with a name, a priority,
and a type, which determines which condition triggers the start of the task. You can define this
condition either by time (cyclic-interval, freewheeling) or by the occurrence of an internal or
external event to process the task. Examples of an event are the rising edge of a global project
variable or an interrupt event of the controller.

Changing a vari-
able declaration
and applying
refactoring
automatically

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US292

A task calls one or more program blocks (POUs). These programs can be application-specific
(objects below the application in the device tree) or project-specific (objects available in the
POU window). In the case of a project-specific program, the application instances the project-
global program. If CODESYS processes the task in the current cycle, then the programs are
executed for the duration of a cycle.
With the combination of priority and condition, you define the order in which the tasks are
processed. You can configure a watchdog for each task, and you can link a start, stop, and
reset directly to the execution of the project block.
Rules for the processing order of the defined tasks:
● If the task condition is satisfied, then CODESYS processes the task.
● If several tasks satisfy the condition for processing at the same time, then CODESYS

processes the tasks with the highest priority first.
● If several tasks with the same priority level satisfy the condition for processing at the same

time, then CODESYS processes the longest waiting task first.
● The program calls are processed in the order they appear in the configuration dialog of the

task.
● If a called program has the same name in the device tree of the application and in a library

or project-global in the POU window, then the application program is used.
Attention
All tasks share one process map. The reason is as follows: When each task has its own indi-
vidual process map, performance is compromised. However, the process map can be consistent
only with one task. When you create a project, you must ensure that the application copies
the input and output data to a safe location in case of conflicts. Modules, such as the library
SysSem, provide the capability of solving consistency and synchronization problems.

Consistency problems can also occur when accessing other global objects, such as global
variables or blocks. Consistency problems always occur if several tasks read and write to one
variable. Modules, such as the library SysSem, are available as a solution.

Creating a task configuration
Requirement: The open project includes a program-type POU and a “Task Configuration” with a
“Task” object has been inserted below “Application” in the device tree.
1. Double-click the task object below “Task Configuration” in the device tree.

ð The “Configuration” tab of the task object opens.

2. In the “Type” dropdown list., click “Cyclic”.

ð The “Interval (e.g. t#200ms)” input field appears.

3. Enter t#300ms in the “Interval (e.g. t#200ms)” input field.

4. Click “Add Call”.

ð The Input Assistant opens.

5. In “Input Assistant è Categories” -> “Programs”, click the desired POU and then click
“OK”.

ð CODESYS inserts the selected POU into the POU list of the “Configuration” tab and
below the task object in the device tree.
When the application is executed from the controller, CODESYS executes the
selected POU in cyclical intervals of 300 ms.

● Ä Chapter 1.4.1.20.2.27.1 “Tab 'Configuration'” on page 942

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 293

Definitions of Jitter and Latency
In the “Task Configuration” object, on the “Watchdog” tab, you can monitor the periodic jitter
values of the individual tasks at runtime. The periodic jitter is differentiated from latency-based
release jitter. See the following definitions:

Periodic jitter (Jper) is the deviation of the cycle time of a task (Tper) from the desired task cycle
time (T0).

Jper = Tper - T0

The desired (ideal) cycle time T0 is specified in the configuration of the task as “Interval”.

You can monitor the current value, as well as the maximum and minimum value of the periodic
jitter, on the “Watchdog” tab of the “Task Configuration”.

If the sum of all negative Jper values and the sum of all positive Jper values do
not balance each other, then a drift results.

Latency is the delay between the invocation of a task and the actual start of its release.

The release jitter Jr is the difference between the maximum and the minimum latency (L) that
has ever occurred.
Jr = Lmax - Lmin

In the case that Lmax = Lmin, a release jitter Jr of 0. results. This corresponds to a plain offset
shift.

See also
● Ä Chapter 1.4.1.8.16 “Task Configuration” on page 292
● Ä Chapter 1.4.1.20.2.27.1 “Tab 'Configuration'” on page 942
● Ä Chapter 1.4.1.20.2.26.3 “Tab 'Monitor'” on page 940

1.4.1.8.17 Encrypting an application
You achieve the know-how protection and copy protection of a boot application with the help of
PLC -specific license management and its settings in the object properties of the application. In
this case, the download code and boot application are encrypted.

Requirements: You have a project with an application that you want to download to the con-
troller as an encrypted boot application. A security key for license management is connected to
your computer.
1. Select the application in the device tree.
2. Select the “Properties” command in the context menu.

ð The “Properties - <application name>” dialog opens.

3. Click the “Encryption” tab.
4. For “Encryption Technology”, select the “Simple Encryption” option and type the “Product

Code” that you received from the hardware manufacturer for the controller. Depending on
the controller, it is protected either by a security key (firmcode is shown automatically) or
by an integrated Wibu SD card for example.

Periodic jitter

Latency

Release jitter

Encryption with
a dongle

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US294

5. Click “Online è Login” and download the application.

ð If the matching security key and/or valid license is available, then you can download
the application to the controller. By default, a boot application is automatically created
at this time in the controller directory. The default setting is defined in the application
“Properties”, in the “Boot Application” category.

6. Logout, change the application, and login again.

ð You are prompted to perform an online change. The dialog provides the option of
updating the boot application on the PLC. If the security key and license match, then
you can log in. If not, then you receive a corresponding message.

Requirements: You have a project with an application that you want to download to the con-
troller as an encrypted boot application. In the Windows Certificate Store of your computer,
you have a certificate of this controller for encrypting the application. Note: In case you want
to download the application to different controllers, you will need the appropriate certificate for
each controller.
1. Select the application in the device tree.
2. Select the “Properties” command in the context menu.

ð The “Properties - <application name>” dialog opens.

3. Click the “Encryption” tab.
4. On “Encryption Technology”, select the “Encryption with certificates” option.

ð The “Certificates” group is enabled.

5. If there are not any certificates listed in the table, then click the button.

ð The “Certificate Selection” dialog opens for selecting a certificate from the local Win-
dows Certificate Store.

6. In the lower area, select a certificate and add it to the upper area by clicking the button,
Click “OK” to confirm.

ð The certificate is shown in the “Certificates” group of the “Encryption” dialog.

7. Select the certificate and click “Apply” or “OK”.

ð The certificate is now used to encrypt the application. It can only be transferred to
the controller on computers that have an corresponding key installed in the Windows
Certificate Store.

See also
● Ä Chapter 1.4.1.18.3 “Security for the Runtime/PLC” on page 455
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197
● Ä Chapter 1.4.1.5.7 “Encrypting Projects with Certificates” on page 207
● Ä Chapter 1.4.1.20.4.10.3 “Dialog 'Properties' - 'Encryption'” on page 1158

1. Click in the status bar of CODESYS to open the “Security Screen” view. Then select
a certificate with a private key for a user profile for the “Digital signature”. The procedure
is described in the instructions "Configuring a certificate for the digital signature in a user
profile".

2. Double-click the certificate for the “Digital signature” in the “User” tab.

ð The “Certificate” dialog opens.

3. On the “Details” tab, click “Copy to file”.

ð The “Certificate Export Wizard” starts.

Encrypting with
certificates

Signing a boot
application

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 295

4. In the “Export Private Key” prompt, select the “No, do not export the private key” option.
5. For “Export File Format”, select the “DER encoded binary X.509 (.CER)” option.
6. In the next step, select a file name and the location for the certificate.
7. After the last step “Finish”, a message appears that the export was successful.
8. After successful export to CODESYS, open the device editor by double-clicking the con-

troller in the device tree and selecting the “Files” tab for the file transfer.
9. Select the “Path” cert/import in the right side of the “Runtime” dialog.

10. On the left side of the dialog for “Host”, select the path in the file system where you saved
the exported certificate and selected the certificate.

11. Click .

ð The certificate is copied to the cert/import folder.

12. Click the “PLC Shell” tab.
13. Type the command cert-import trusted <file name of the

certificate.cer> in the input line of the tab and press the [Enter] key. Note that
the file name is specified with the extension .cer; otherwise the certificate is not imported
successfully.

ð The certificate is created on the controller under trusted. With this certificate, the
controller can test the integrity of the boot application.

14. Open the “Security Screen” by double-clicking in the status bar.
15. If you want that downloads, online changes, and boot applications of your project are

always encrypted, then select the “Enforce signing of downloads, online changes and boot
applications” option in the “Security level” group on the “User” tab. To do this, the “Enforce
encryption of downloads, online changes and boot applications” option also has to be
selected.

See also
● Ä Chapter 1.4.1.5.7 “Encrypting Projects with Certificates” on page 207
● Ä “Encryption, signature” on page 453
● Ä Chapter 1.4.1.20.3.3.18 “Command 'Security Screen'” on page 995
● Ä Chapter 1.4.1.20.4.10.3 “Dialog 'Properties' - 'Encryption'” on page 1158

Requirement: The CODESYS Security Agent add-on product is installed.
The “Security Screen” view provides an additional tab: “Devices”. This allows for the configura-
tion of certificates for the encrypted communication with controllers. In this case, see the help
for CODESYS Security Agent.
Alternatives:
If you the CODESYS Security Agent is not available to you, then you can proceed as follows by
means of the PLC shell of the device editor:
In order to use certificates on the controller for the encryption of downloads, online changes,
and boot applications, these certificates first have to be generated on the controller and loaded
from the controller and installed in the Windows Certificate Store.

Requirement: You are connected to the controller.
1. Open the device editor by double-clicking the controller in the device tree, and select the

“PLC Shell” tab.

ð The tab appears with a blank display window. Below that is a command line.

2. Type ? in the command line and press the [Enter] key.

ð All commands are listed in the display window.

Encrypting the
download,
online change,
and boot appli-
cation

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US296

3. Type the following command in the command line: cert-getapplist.

ð All used certificates are listed with information about components and availability with
certificates.

4. If no certificate is available for the CmpApp component, then type the command cert-
genselfsigned <Number of the Component in the applist>.

5. Click the “Log” tab and then the refresh button ().

ð The display shows whether or not the certificate was generated successfully.

6. Type in cert-getcertlist and press the [Enter] key.

ð Your own certificates are listed that can be used for encryption. The information
Number and Key usage(s) are useful in the next step.

Number: The number is specified as a parameter in the next step.

Key usage(s): Data encryption means that this is a certificate of the controller
for a download, online change, and boot application.

7. Export the required certificate by typing in the command cert-export own 0 and
press the [Enter] key. 0 is the Number of the certificate with Key usage(s):Data
encryption.

ð The display shows that the certificate has been exported to a cert directory.

8. Click the “Files” tab of the device editor.
9. Click the refresh button () in the right part of the dialog in “Runtime”.

ð The list of files and directories is refreshed.

10. Open the “cert” folder in the list and then the “export” subfolder.
11. In the left part of the dialog in “Host”, open the directory where the certificate of the

controller will be loaded.
12. In the right part of the dialog, select the certificate that you have exported and click .

ð The certificate is copied to the selected directory.

13. In the file explorer, go to the directory where the certificate was copied and double-click
the certificate.

ð The “Certificate” dialog opens and shows the information about this certificate.

14. On the “General” tab, click “Install Certificate”.

ð The “Certificate Import Wizard” starts.

15. In the “Certificate Storage” dialog, for “Certificate Import Wizard”, select the “Store all
certificates in the following store” option and then select the “Controller Certificates” folder.

ð The controller certificate is imported into the Windows Certificate Store in the
“Controller Certificates” folder. Now the certificate is available for the encryption of
boot applications, downloads, and online changes.

16. Open the “Security Screen” by double-clicking in the status bar.
17. If you want that downloads, online changes, and boot applications of your project are

always encrypted, then select the “Enforce encryption of downloads, online changes and
boot applications” option in the “Security level” group on the “User” tab.

18. Open the “Project” tab and double-click the application in the “Encryption of boot
application, download and online change” area.

ð The properties dialog of the application opens.

19. Click the “Encryption” tab, select “Encryption with certificates” in the “Encryption
technology” list box, and click .
If the “Enforce encryption of downloads, online changes and boot applications” option is
selected in the “Security Screen”, then “Encryption with certificates” is already selected.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 297

20. In the “Certificate Selection” dialog, select the respective certificate from the “Controller
Certificates” folder and click .

21. Click “OK” to confirm the dialog.

ð The certificate is displayed in the properties dialog.

22. Confirm the properties dialog of the application.

ð The certificate is shown on the “Project” tab of the “Security Screen” in the “Encryption
of boot application, download and online change” group.
The boot application, download, and online change are encrypted.

See also
● Help for the CODESYS Security Agent add-on product
● Ä Chapter 1.4.1.20.2.8.10 “Tab 'PLC Shell'” on page 852
● Ä Chapter 1.4.1.20.3.3.18 “Command 'Security Screen'” on page 995

Requirement: The CODESYS Security Agent add-on product is installed. A certificate with the
information "Encrypted Application" is already installed on your computer.

1. In the “Security Screen” view, on the “Project” tab, in the bottom view, click the entry for
the application.

ð The “Properties” dialog for the application opens with the “Encryption” tab.

2. For “Encryption Technology”, select “Encryption with certificates”. In the “Certificates”
group, click .

3. In the “Certificate Selection” dialog, delete the certificate as described above.
4. Click “OK” to close the “Certificate Selection” dialog.

ð The certificate is no longer displayed in the “Properties” dialog.

See also
● Help for the CODESYS Security Agent add-on product
● Ä Chapter 1.4.1.20.3.3.18 “Command 'Security Screen'” on page 995

1.4.1.8.18 Unit conversion
You define a conversion rule when you want to convert data for another system of units. This
data is executed for a specific order of magnitude and unit of measure.
Conversion rules are defined in a “Unit Conversion” object. CODESYS automatically imple-
ments each conversion rule as a function block <name>_Impl and instances it as <name>.
Each conversion rule includes Convert and Reverse methods for use as function blocks.
Locations where you access a variable, you can link the variable to a conversion rule. The input
assistant provides conversion rules in the “Function Blocks” and “Instance Calls” categories.
After execution, the result is a converted value according to the conversion rule.
In a visualization, an IEC variable that is configured in an element property can also be linked to
a conversion rules.

Deleting a certif-
icate for the
encryption of
boot applica-
tion, download
and, online
change

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US298

1. Double-click a “Unit conversion” object in the device tree.

ð The respective editor opens with a table of the defined conversion rules. You edit a
rule in “Type setting” and a respective condition in “Condition setting”.

2. Double-click the “Add new entry” field and type a name.

ð CODESYS implements the <name>_Impl function block and instances it as <name>.

3. Double-click the “Type” field and click a type from the drop-down list.

ð Input fields are displayed below the table for editing the conversion rule. The input
fields vary according to selected type.

4. Change the conversion rule in the input fields.

ð The changes are displayed in the “Setting” category of the table.

5. Double-click the “Condition” field and click a condition type from the drop-down list.

ð Input fields are displayed below the “Condition Setting” category of the table to edit the
condition. The input fields vary according to selected type.

6. Edit the condition.

ð The changes are displayed in the “Condition Setting” category of the table.

You can define which conversion rule is applied to a specific language or condition.

1. Double-click a “Unit Conversion” object in the device tree.

ð The respective editor opens with a table of the predefined conversion rules.

2. Click the “Add new entry” field and type a name.

ð Example: Conv_A_LanguageDependent
3. Double-click the “Type” field and click “Switchable conversion”. Double-click the

“Condition” field and click “Language”.

ð Below the main table, the “Switchable Conversion” table is displayed with “Condition
setting”.

4. In the “Switchable Conversion” table, double-click a predefined conversion rule from the
drop-down list in the “Switchable conversion name” column, for example Conv_AInInch.

In “Condition Setting”, type a value in the “For condition 'Language'” input field, for
example en.

ð CODESYS executes the Conv_AInInch conversion rule only if the language set in
the visualization manager is “en ”.

5. In the “Switchable Conversion” table, double-click a predefined conversion rule from the
drop-down list in the “Switchable conversion name” column, for example Conv_AInMM.

In “Condition Setting”, type a value in the “For condition 'Language'” input field, for
example de.

ð CODESYS executes the Conv_AInMM conversion rule only if the language set in the
visualization manager is “de”.

6. Apply the Conv_A_LanguageDependent conversion rule in the application or visualiza-
tion.

ð If the set language in the visualization is English, then the application visualization
apply the Conv_AInInch conversion rule. If the set language in the visualization is
German, then the application visualization applies the Conv_AInMM conversion rule.
The current visualization language is located in the VisuElems.CurrentLanguage
variable.

Defining unit
conversions

Defining switch-
able unit con-
versions

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 299

Add a conversion rule to objects that access IEC variables.

1. In the device tree, double-click an object that accesses IEC variables in order to link an
IEC variable to a conversion rule at that location.

2. Declare a variable for the conversion result of the IEC variable.

ð ST sample code: rConvertedA : REAL;
3. Use the input assistant to apply the conversion rule with the Convert method and then

assign the result to the variable.

ð ST sample code to link the IEC variable to the conversion rule: rConvertedA :=
ConvRule_A.Convert(rA);

1. In the device tree, double-click an object that accesses an IEC variable.
2. Declare a variable for the result of the conversion rule.

ð ST sample code: rReverseA: REAL;
3. Apply the reverse conversion rule with the Reverse method and then assign the result to

the variable.

ð rReverseA := ConvRule_A.Reverse(rConvertedA);

Requirement: The conversion rule is Conv_XtoY.

PROGRAM A_PRG
VAR
 rA : REAL;
 rConvertedA : REAL;
 rReverseToA : REAL;
END_VAR

rConvertedA := Conv_XtoY.Convert(rA);
rReverseToA := Conv_XtoY.Reverse(rConvertedA);

ST call

In the CFC editor, define the instance name of the conversion rule via the block. Select the
method in the block.

CFC call

See also
● Ä Chapter 1.4.1.20.2.33 “Object 'Unit Conversion'” on page 952
● Ä Chapter 1.4.1.8.5 “Using input assistance” on page 260

Applying con-
version rules

Applying
reverse conver-
sion rules

Example

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US300

1.4.1.8.19 Data Persistence
The lifespan of a variable and its data begins at the time when the variable is created and ends
at the time when the variable is deleted and its memory is freed. The time when the variable is
created, initialized, or instantiated depends on the declared scope. The time when the memory
is freed usually depends on the scope as well. For example, the memory of global variables is
freed by exiting the application.
They can retain data longer than usual. The following mechanisms are provided for this pur-
pose.
Mechanisms for data retention

● (A): Persistent global variable list with the keyword PERSISTENT RETAIN
Persistent variables retain their values when the application is reloaded. Moreover, the
values are restored after a download, warm start, or cold start.

● (B): Retain variables with the keyword RETAIN
Retain variables retain their values after a warm start, but not after reloading the application,
a download, or a cold start.

● (C): Variables of the Persistence Manager of the CODESYS Application Composer
Variables of the Persistence Manager are stored in an external file.

● (D): Recipe variables
Recipe variables and their values are stored in a recipe file.

See also
● Ä Chapter 1.4.1.8.19.3 “Retaining data with variables of the persistence manager”

on page 307
● Ä Chapter 1.4.1.8.19.2 “Preserving data with retain variables” on page 306
● Ä Chapter 1.4.1.8.19.4 “Preserving data with recipes” on page 307
● Ä Chapter 1.4.1.19.2.12 “Persistent Variable - PERSISTENT” on page 535
● Ä Chapter 1.4.1.19.2.13 “Retain Variable - RETAIN” on page 537
● Ä Chapter 1.4.1.20.2.12 “Object 'Persistent variable list'” on page 872

Which mechanism is suitable for which application? Some common use cases are considered in
the table. The specific examples refer to a building control system.

Mechanisms in
comparison

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 301

Table 11: Comparison of mechanisms and use cases
 Uses case (A) Persis-

tent varia-
bles

(B) Retain var-
iables

(C) Varia-
bles of the
Persis-
tence
Manager

(D) Recipe
variables

1 The application must maintain
device settings.
Example: After a power failure,
the building control has to have
information available about how
long a window blind needs to be
raised.

Suitable1

Preferred
use case
In this
case, you
can also
use retain
variables
instead of
persistent
variables.
This is
advanta-
geous for
variables
whose dec-
laration is
often
changed.

Suitable
Preferred use
case
Retain varia-
bles are an
advantage
when their dec-
larations are
changed often.

Suitable2

This is
advanta-
geous for
controllers
that do not
have any
hardware
support.
Special
functionali-
ties make
this pos-
sible, such
as double
file buf-
fering.

Possible,
but very
compli-
cated and
therefore
not recom-
mended.

2 The application must main-
tain values also after program
changes or extensions.

 2a: Rare extensions
Example: An application pro-
grammer extends the program
with a new switch and installs
a new light. The building con-
trol must still have saved values
available until then.

Suitable1

Preferred
use case

Suitable Suitable2 Possible,
but compli-
cated.

 2b: Unrestricted changes,
including deleting or changing
the data type of variables
The building control is running
and is persistent. When an appli-
cation programmer adds a new
functionality to the controller and
therefore adds another persistent
variable to a function block, the
values saved up to that point
must be retained. For example,
the program in an FB is extended
with a variable that controls the
automatic switching off of a pre-
viously uncontrolled lamp after a
certain time. The building control
must have the times of all con-
trolled lamps available after the
extension.

Not suit-
able

Suitable
Data from
retain variables
are preserved
as far as pos-
sible after an
online change.

Suitable
as far as
possible 2

Preferred
use case

Possible if
textual, but
compli-
cated

 2c: The application must main-
tain values after a download.

Suitable Not suitable Suitable Suitable

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US302

 Uses case (A) Persis-
tent varia-
bles

(B) Retain var-
iables

(C) Varia-
bles of the
Persis-
tence
Manager

(D) Recipe
variables

3 The application must be able
to use different value sets.
Example: The operating settings
for summer, winter, and holidays
must be saved and imported
when needed.

Not suit-
able

Not suitable Not suit-
able

Suitable
Preferred
use case

4 The application must be able
to use settings from another
system.
It must be possible to transfer
settings to another plant using
similar variables.

Not suit-
able

Not suitable Suitable2 Suitable3

5 The application must provide
human readable data.
The user must be able to read,
compare, and edit the data.

Not suit-
able

Not suitable Suitable2 Suitable3

1 Disadvantage: Only possible if the runtime system supports this mechanism and an NVRAM
memory or UPS is available. Advantage: Speed; recommended application: 1 and 2a
2 Disadvantage: In the case of large variable sets (> 10000), long delays during initialization and
shutdown are to be expected. Advantage: No special memory is required; value retention exists
even in case of changes, extensions, or deletions.
3 Advantage: Editable remotely, transferable. Disadvantage: Complicated

User input in the “Online” menu Variable with usual lifespan
Neither RETAIN nor PERSISTENT

RETAIN PERSISTENT
RETAIN PERSISTENT
PERSISTENT RETAIN

Command “Online Change” x x x

Command “Reset Warm” i x x

Command “Reset Cold” i i x

Command “Download” i i x 1

Command “Reset Origin” i i i

x : The variable retains its value.
i : The variable is initialized.
1 Note: For the structure of persistent data, see the information in "Mechanism for downloading".
See also
● Ä “Mechanism for downloading” on page 304
● Ä Chapter 1.4.1.20.3.6.6 “Command 'Online Change'” on page 1033
● Ä Chapter 1.4.1.20.3.6.12 “Command 'Reset Origin'” on page 1039
● Ä Chapter 1.4.1.20.3.6.10 “Command 'Reset Cold'” on page 1038
● Ä Chapter 1.4.1.20.3.6.5 “Command 'Load'” on page 1032

Lifespan of vari-
ables when
calling online
commands

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 303

The values of ordinary variables lose their value and are reinitialized.
The values of persistent variables are protected when:
● The structure of the persistent variable in memory matches the structure in the persistent

data list.
The values of retain variables are protected when:
● The structure of the persistent variable in memory matches the structure in the persistent

data list.
● The persistent variables match the application (GUID has to agree).
A "Retain mismatch" occurs when the requirements for restoring the values of retain variables
and persistent variables are not met when the application is booted. The response to this
discrepancy is described in the documentation of the hardware manufacturer.
Note: For the structure of persistent data, refer to the information in "Mechanism for down-
loading".
See also
● Ä “Mechanism for downloading” on page 304

Preserving data with persistent variables
Persistent variables retain their values after reloading the application, and after a download,
warm start, or cold start.
A special non-volatile memory area on the controller, for example as NVRAM or UPS, is
required to extend the lifespan. Securing the data in such a memory does not require any
additional time, which is an advantage over data retention with the Persistence Manager. If the
controller does not provide hardware support, then the data is usually stored in a file. Then the
data will be retained if you shut down the controller correctly. In the event of a power failure or a
pulled plug, however, data will be lost.

Value retained for
● Uncontrolled exit
● Warm start by calling the “Reset Warm” command
● Cold start by calling the “Reset Cold” command
● Repeated download of the application
Reinitialization for
● Call of the “Reset Origin” command
Therefore, persistent variables are reinitialized only if you reset the controller to the factory
settings (for example, when you click “Online è Reset Origin”).
If, on the other hand, you download the application again, the persisted data is retained if
possible. That depends on how profound the changes that led to the download were. Changing
the application name always leads to a full reinitialization. Changes to the implementations
never lead to a reinitialization: the data persistence is completely preserved. Changes to the
declarations lead to an initialization of the new variables only if the existing variables are persis-
tent, when you change the declarations so that the persistent variable list remains consistent.
This is the case when you add a new variable or delete an existing one. Inconsistencies can
occur if you edit and change the identifiers or data types of previously declared persistent
variables.

Editing the variable list in the persistence editor causes the variable list to be edited automati-
cally before it is saved, not to be saved as it is shown in the editor.

Lifespan of vari-
ables when
downloading a
boot project

Behavior

Mechanism for
downloading

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US304

During post-processing, a variable that you have removed is replaced by a placeholder variable
with the same memory requirement. As a result, the subsequent variables retain their addresses
in the process image. Moreover, a variable you add is moved to the end of the list. Post-pro-
cessing can neutralize changes that would lead to a loss of persistence. But you create gaps
that use additional memory.
When downloading, the CRC value of the variable list and the length of the list (number of vari-
ables) are stored on the controller. When downloading again, the new test value is compared
with the test value currently on the controller. Then the variable list is compared successively up
to the specified length. If you have edited a declaration (for example, the name or data type),
then the variable is reinitialized. Otherwise its value is retained. When the download is repeated,
CODESYS checks whether the variable list declared in the persistence editor is still consistent
with the variable list already on the controller.
The mechanism works well when the variables themselves are not modified significantly. Too
extensive changes of the identifiers and the data types continue to lead to a reinitialization and
the loss of persistence. If you anticipate frequent changes due to your application requirements,
then this kind of a list is not recommended. Moreover, in an online change after a data type
change, a persistent variable is less robust than a variable with a normal lifespan.
It is good practice to clear any gaps in the variable list after a while (command “Reorder List and
Clear Gaps”). After cleaning, however, the list no longer matches the list on the controller and
you have triggered an initialization of all persistent variables. The persistence of all variables is
lost.

For versions before V3.5 SP1, changes in the persistence editor always lead to
reinitialization.

Recovering data with the recipe manager
To clean up the global persistent variable list without losing persistence, you can save the data
in a recipe using the Recipe Manager. This creates a list for all variables of the persistent
variable list in the recipe manager, and at the same time its current values are stored by the
controller as a recipe. Then execute the command “Reorder List and Clear Gaps” and perform
a download again. Now when you execute the command “Restore Values from Recipe”, the
values saved in the recipe are restored.

if you change the name or data type of a variable, this is interpreted as a new declaration and
causes a re-initialization of the variables at the next online change or download. For complex
data types, a change occurs when a new component is added, or when you change the type of
a variable from INT to UINT in the depth of a used structure used, for example.

Basically, complex user-defined data types are not suitable for administration in a persistent var-
iable list, because even small changes cause the variable to be initialized with all components.

You can persist global variables or variables declared locally in a function block or program. To
do this, add the keyword PERSISTENT to the declaration. In addition, you insert the instance
path to this variable in the persistent global variable list. To do this, execute the “Add All
Instance Paths” command in the persistence editor.
Persistence is guaranteed by the following mechanism:
● The cyclic tasks in which the variable is accessed are determined.
● At the end of the first cyclic task (in each cycle), the variable is copied to the persistent

global variable list.
● After restarting the controller, the value of the persistent variable is copied to the ordinary

variable.

Changing an
existing declara-
tion in the per-
sistent variable
list

Double alloca-
tion of memory
in the case of
instance paths

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 305

The disadvantage of this mechanism is that memory is allocated both at the place of declaration
and at the place of the instance path. This persistent variable has a double memory allocation.
Moreover, the data is copied to both places in each cycle. This can be time consuming, espe-
cially when large structured values are involved.

A function block instance is always stored completely in memory. This is necessary so that the
same code can work on different instances. If only one variable in a function block is marked
with PERSISTENT, then the function block instance is stored completely with all variables in
remanent memory, although only the one variable is treated as persistent. However, non-volatile
memory is not available to the same extent as main memory.
A function block with a pointer to an instance in SRAM as a variable is not stored in the
protected memory.

When you open a CoDeSys V2.3 project to import it into CODESYS V3, the declarations of
persistent variables are not preserved. You have to revise the declarations and create then
again in a separate persistent global variable list.

See also
● Ä Chapter 1.4.1.19.2.12 “Persistent Variable - PERSISTENT” on page 535
● Ä Chapter 1.4.1.20.3.17.4 “Command 'Add all instance paths'” on page 1124
● Ä Chapter 1.4.1.2.2 “Opening a V2.3 project” on page 187

Preserving data with retain variables
Retain variables preserve their values after a warm start. However, the degree of value retention
for persistent variables is higher.
A special non-volatile memory area on the controller, for example as NVRAM or UPS, is
required to extend the lifespan. Securing the retain variables in such a memory does not require
any additional time, which is an advantage over data retention with the Persistence Manager. If
the controller does not provide hardware support, then the data is usually stored in a file. Then
the data will be retained if you shut down the controller correctly. In the event of a power failure
or a pulled plug, however, data will be lost.

To declare a retain variable, add the RETAIN keyword to a variable declaration.

Value retained for
● Uncontrolled exit
● Call of the “Reset Warm” command
Reinitialization for
● Repeated download of the application
● Call of the “Reset Cold” command (in contrast to persistent variables)
● Call of the “Reset Origin” command
When you restart an application, its variables are usually initialized with an explicitly preset
initial value or with a default value. Variables marked with the RETAIN keyword are managed
in a separate memory area depending on the target system and retain their value. Then the
variables are protected from power failure, for example. This means that you can apply retain
variables to a parts counter in a production line so that you can continue counting even after a
power failure.

Memory loca-
tion in the case
of persistent
function block
instances

Importing from
CoDeSys V2.3
projects

Declaration

Behavior

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US306

Function block instances are stored as one block in memory. This is necessary so that the same
code can work on different instances. If a variable is marked with RETAIN in a function block,
then each instance of the function block is protected with all variables. This is also true for the
variables of the function block that are not marked this way. However, non-volatile memory is
not available to the same extent as main memory.
A function block with a pointer to an instance in SRAM as a variable is not stored in the
protected memory.

When you open a CoDeSys V2.3 project to import it into CODESYS V3, the declarations of
retain variables are preserved and remain effective as before.

See also
● Ä Chapter 1.4.1.19.2.13 “Retain Variable - RETAIN” on page 537
● Ä Chapter 1.4.1.2.2 “Opening a V2.3 project” on page 187

Retaining data with variables of the persistence manager
Persistent variables are managed in the Persistence Manager of the CODESYS Application
Composer. The functionality of the “Persistence Manager” does not need any special memory
on the controller in order to preserve values and data.

In the declarations, the variables managed in the Persistence Manager are marked with the
pragma {attribute 'ac_persist'}.

The pragma makes sure that the variable with this attribute is managed in the Persistence
Manager of the Application Composer. The variable value is retained even if you change the
declaration of the variable, delete a variable from the application, or add a new one. The value
is retained even if you change the data type and use the appropriate conversions.

The variables of the Persistence Manager are stored with their values in an external archive file
in TXT format.
The application code is extended with the code of the Persistence Manager, which leads to a
greater memory requirement. This is at the expense of performance. Moreover, reading and
especially writing a large number of persistent variables can take a long time. As a result, the
executing task also blocks the execution for a long time.

● You can load and edit the TXT file in an external editor such as Notepad++.
● You can use the persistent variables of the file in another application.
● You can configure the behavior of persistent variables by defining persistence groups,

assigning variables to them, and configuring the groups with their own save and read
behavior.

Preserving data with recipes
Variables are managed persistently in the Recipe Manager. The Recipe Manager does not need
any special memory on the controller in order to preserve values and data.

A recipe definition consists of a set of variables with values and is created and edited in the
“Recipe Manager” object and saved to a file.

Memory loca-
tion of persis-
tent function
block instances

Importing of
CoDeSys V2.3
projects

Declaration

Mechanism

Functionality

Declaration

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 307

● You can include a variable in multiple recipes, each with different values.
● In online mode, you can read in the actual values of the variables from the controller and

save them as recipe values (specified value).
● You can use the Recipe Management library to programmatically implement the creation

and editing of a recipe.
● You can save and backup a recipe as a recipe file.

See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3.17.2 “Command 'Save Current Values to Recipe'” on page 1123
● Ä Chapter 1.4.1.20.3.17.1 “Command 'Reorder List and Clean Gaps'” on page 1123
● Ä Chapter 1.4.1.20.3.17.3 “Command 'Restore Values from Recipe'” on page 1123
● Ä Chapter 1.4.1.20.2.22 “Object 'Recipe Manager'” on page 923
● Ä Chapter 1.4.1.20.2.23 “Object 'Recipe Definition'” on page 926

Declaring VAR PERSISTENT Variables
Below you will declare persistent variables in a persistent variable list and in a POU.
Requirement: A project is opened and contains a program POU. You have selected the option
for the textual view in the “Declaration Editor” category of the options (menu command in “Tools
è Options”).
1. Add the “Persistent Variables” object to the application object with the menu command

“Project è Add Object”.

ð CODESYS adds the persistent variable list “PersistentVars” below the application
object in the device tree and the editor opens.

2. In the editor, enter a variable declaration, for example ivarpersist1 : INT; between
VAR_GLOBAL PERSISTENT RETAIN and END_VAR.

3. Double-click the POU in the device tree.

ð The editor of the POU opens.

4. Specify the following declaration in the declaration part:
VAR PERSISTENT RETAIN
ivarpersist2 : INT;
END_VAR

5. Click “Build è Build”.

ð The message view opens. If CODESYS has compiled the application without errors,
then close the message window and continue with the next step. Otherwise, correct
the error(s) and select the menu command “Build è Build” again.

6. Set the focus in the “PersistentVars” editor. Click “Declarations è Add All Instance Paths”

ð CODESYS adds the persistent variable from the persistent variable list
“PersistentVars” to the POU:
// instance path of the persistent variables created
POU.IVARPERSIST2 : INT

See also
● Ä Chapter 1.4.1.19.2.12 “Persistent Variable - PERSISTENT” on page 535
● Ä Chapter 1.4.1.19.2.13 “Retain Variable - RETAIN” on page 537
● Ä Chapter 1.4.1.20.2.12 “Object 'Persistent variable list'” on page 872
● Ä Chapter 1.4.1.20.3.17.4 “Command 'Add all instance paths'” on page 1124

Functionality

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US308

Saving the values of a persistent variable list in a recipe
Requirement: a project is opened and a persistent variable list with declarations of persistent
variables exists under an application object.
1. Double-click on the controller in the device tree and select the tab “Communication

Settings”.
2. Select your gateway and click on the button “Scan Network”.

ð Your device is shown in bold in the tree view of the gateway.

3. Select your device and click on the button “Set Active Path”.
4. Select your application object in the device tree and select the context menu command

“Set Active Application”.

ð The application object is displayed in bold.

5. Select the menu command “Online è Login”

ð Your application is logged in to the controller and the controller and the application
object in the device tree have a green background.

6. Double-click on the persistent variable list and select the command “Declarations è Save
Current Values to Recipe”.

ð CODESYS creates the objects “Recipe Manager” and “PersistentVariables” under the
application object.

7. Select the menu command “Online è Logout”.

ð The application is logged out from the controller.

See also
● Ä Chapter 1.4.1.20.3.17.2 “Command 'Save Current Values to Recipe'” on page 1123
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301

1.4.1.8.20 Alarm Management
For information about alarm management and alarm visualization, see the help for CODESYS
Visualization.

1.4.1.8.21 Using POUs for implicit checks
CODESYS provides special POUs that implement implicit monitoring functions. At runtime,
these functions check the array limits or subrange types, the validity of pointer addresses, or
division by zero.
1. Select the “Application” object in the device tree.

Click “Project è Add Object è POU for Implicit Checks”

ð The “Add POU for Implicit Checks” dialog box opens.

2. Select the desired functions.
3. Click “Add”.

ð The selected POUs are inserted below the “Application” in the device tree.

4. Open the POUs in the editor.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 309

5. Adapt the implementation suggestion to your requirements.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration
section. However, you are permitted to add local variables.

See also
● Ä Chapter 1.4.1.20.2.18 “Object 'POU'” on page 881
● Ä Chapter 1.4.1.20.2.19 “Object 'POUs for Implicit Checks'” on page 904

1.4.1.8.22 Object-Oriented Programming
CODESYS supports object oriented programming with function blocks and for this purpose
provides the following features and objects:
● Methods
● Interfaces
● Properties
● Inheritance
● Method call, virtual function call
● Definition of function blocks as extensions of other function blocks
Basic information on dealing with object-oriented programming with AC500 V3 PLCs is given in
the application example.
See also
● Ä Chapter 1.4.1.20.2.18.4 “Object 'Interface'” on page 888

Extension of function blocks
The extension of a function block is based on the concept of inheritance in object-oriented
programming. A derived function block thereby extends a basic function block and in doing so is
given the properties of the basic function block in addition to its own properties.
The extension of a function block means:
● The inherited function block contains all data and methods that are defined by the basic

function block. You can use an instance of the basic function block in every context in which
CODESYS expects a function block of the type of the basic function block.

● The derived function block can overwrite the methods that you have defined in the base
function block. This means that the inherited function block can define a method with the
same name, the same inputs and the same output as is defined by the basic function block.
Tip: You have the following support when overwriting methods, actions, attributes, and tran-
sitions that are inherited by the base block: When you insert a method, action, etc. below an
inherited block, the “Add Object” dialog includes a combo box with a list of methods, actions,
etc. used in the base block. You can accept these and adapt them accordingly.

● The derived function block may not contain function block variables with the same names as
used by the basic function block. The compiler reports this as an error.
The only exception: If you have declared a variable in the basic function block as
VAR_TEMP, then the inherited function block may define a variable with the same name.
In this case, the inherited function block can no longer access the variable of the basic
function block.

● You can directly address the variables and methods of the basic function block within the
scope of the inherited function block by using the SUPER pointer.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US310

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010525&LanguageCode=en&DocumentPartId=&Action=Launch

NOTICE!
Multiple inheritance is not permitted.
Exception: A function block can implement multiple interfaces, and an interface
can extend other interfaces.

Requirement: the currently opened project possesses a basic function block, for example
“POU_1(FB)”, which is to be extended by a new function block.

1. Right-click the “Application” object in the device tree and select “Project è Add Object
è POU”.

ð The “Add POU” dialog opens.

2. Type the name for the new POU in the “Name” input field, for example “POU_Ex”.
3. Select “Function block”.
4. Click “Advanced” and then the more button ().
5. In the category “Function blocks” under “Application” in the input assistant, select the

POU(FB) that is to serve as the basic function block, for example POU_1, and click “OK”.

6. As an option, you can select an “Access modifier” for the new function block from the
drop-down list.

7. Select from the “Implementation language” combo box (example: “Structured text (ST)”.
8. Click “Add”.

ð CODESYS adds the POU_Ex function block to the device tree and opens the editor.
The first line contains the text:
FUNCTION_BLOCK POU_Ex EXTENDS POU_1
The function block POU_Ex extends the basic function block POU_1.

Requirement: The open project possesses a base function block (example: POU_1(FB)) and
another function block (example: POU_Ex(FB)). The function block POU_Ex(FB) is also to be
given the properties of the basic function block. This means that POU_Ex(FB) should extend
POU_1(FB).

1. Double-click the function block POU_Ex(FB) in the device tree.

ð The function block editor opens.

2. Extend the existing entry in the top line FUNCTION_BLOCK POU_Ex with EXTENDS
POU_1.

ð The function block POU_Ex extends the basic function block POU_1.

See also
● Ä Chapter 1.4.1.8.22.2 “Implementing interfaces” on page 312
● Ä Chapter 1.4.1.8.22.3 “Extending interfaces” on page 314
● Ä Chapter 1.4.1.19.2.14 “SUPER” on page 538
● Ä Chapter 1.4.1.19.2.15 “THIS” on page 539
● Ä Chapter 1.4.1.20.2.18.2 “Object 'Function Block'” on page 883
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897
● Ä Chapter 1.4.1.20.2.18.9 “Object 'Action'” on page 901
● Ä Chapter 1.4.1.20.2.18.10 “Object 'Transition'” on page 903

Extension of a
basic function
block by a new
function block

Extension of a
basic function
block by an
existing func-
tion block

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 311

Implementing interfaces
Implementing interfaces is based on the concept of object-oriented programming. With common
interfaces, you can use different but similar function blocks the same way.
A function block that implements an interface has to include all methods and attributes that are
defined in that interface (interface methods and interface attributes). This means that the name
and the inputs and outputs of the methods or attributes must be exactly the same. When you
create a new function block that implements an interface, CODESYS adds all methods and
attributes of the interface automatically to the tree below the new function block.

NOTICE!
If you add more interface methods afterwards, then CODESYS does not add
these methods automatically to the affected function block. To perform this
update, you must execute the “Implement Interfaces” command explicitly.
For inherited function blocks, you have to make sure that any methods or
attributes that were derived through the inheritance of an interface also receive
the appropriate implementation. Otherwise they should be deleted in case the
implementation that was provided in the basis should be used. Respective
compile error messages or warnings are displayed, prompted automatically by
added pragma attributes. For more information, refer to the help page for the
“Implementing Interfaces” command.

NOTICE!
– You must assign the interface of a function block to a variable of the inter-

face type before a method can be called via the variable.
– A variable of the interface type is always a reference of the assigned func-

tion block instance.

A variable of the interface type is a reference to instances of function blocks. This kind of
variable can refer to every function block that implements the interface. If there is no assignment
to a variable, then the variable in online mode contains the value 0.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US312

The I1 interface contains the GetName method.
METHOD GetName : STRING

The functions blocks A and B implements the interface I1:
FUNCTION_BLOCK A IMPLEMENTS I1
FUNCTION_BLOCK B IMPLEMENTS I1

For this reason, both function blocks must include a method named GetName and the return
type STRING. Otherwise the compiler reports an error.

A function includes the declaration of a variable of interface I1 type.
FUNCTION DeliverName : STRING
VAR_INPUT
 l_i : I1;
END_VAR

Function blocks that implement the I1 interface can be assigned to these input variables.

Examples of function calls:
DeliverName(l_i := A_instance); // call with instance of type A
DeliverName(l_i := B_instance); // call with instance of type B

Calling of interface methods:
In this case, it depends on the actual type of l_i whether the application calls A.GetName or
B.GetName.
DeliverName := l_i.GetName();

Examples

● Ä Chapter 1.4.1.20.3.22.2 “Command 'Implement Interfaces'” on page 1148

Requirement: The open project has at least one interface object.
1. Right-click “Application” in the device tree and select “Project è Add Object è POU”.

ð The “Add POU” dialog box opens.

2. Type the name for the new POU in the “Name” input field, for example “POU_Im”.
3. Select “Function block”.
4. Click “Implemented” and then the more button ().
5. In the input assistant, select the interface from the category “Interfaces”, for example

ITF1, and click on “OK”.

6. To insert more interfaces, click and select a another interface.
7. As an option, you can select an “Access modifier” for the new function block from the

selection list.
8. Select from the “Implementation language” combo box (example: “Structured text (ST)”.
9. Click “Add”.

ð CODESYS adds the “POU_Ex” function block to the device tree and opens the editor.
The first line contains the text:
FUNCTION_BLOCK POU_Im IMPLEMENTS ITF1
The interface and its methods and properties are now inserted below the function
block in the device tree. Now you can type program code into the implementation part
of the interface and its methods.

Implementing
an interface in a
new function
block

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 313

Requirement: The currently open project has a function block (example: “POU_Im”) and
at least one interface object (example: “ITF1”).
1. Double-click the “POU_Ex(FB)” POU in the device tree.

ð The POU editor opens.

2. Extend the existing entry in the uppermost line FUNCTION_BLOCK POU_Im with
IMPLEMENTS ITF1
ð The “POU_Im” function block implements the “ITF1” interface.

See also
● Ä Chapter 1.4.1.20.2.18.2 “Object 'Function Block'” on page 883

Extending interfaces
You can extend interfaces just like function blocks. The interface is then also given the interface
methods and interface properties of the basic interface in addition to its own.
1. Select the object “Application” in the device tree.
2. Select the command “Project è Add Object è Interface”.

ð The dialog box “Add Interface” opens.

3. Enter a name for the new interface.
4. Activate the option “Extended” and click on the button .
5. The input assistant opens.
6. From the category “Interfaces”, select the interface that is to be extended by the new

interface.

● Ä Chapter 1.4.1.20.2.18.4 “Object 'Interface'” on page 888

Calling methods
To implement a method call, the actual parameters (arguments) are passed to the interface
variables. As an alternative, the parameter names can be omitted.
Depending on the declared access modifier, a method can be called only within its own name-
space (INTERNAL), only within its own programming module and its derivatives (PROTECTED),
or only within its own programming module (PRIVATE). For PUBLIC, the method can be called
from anywhere.
Within the implementation, a method can call itself recursively, either directly by means of the
THIS pointer, or by means of a local variable for the assigned function block.

Virtual function calls can occur due to inheritance.
Virtual function calls enable one and the same call to call various methods in a program source
code during the runtime.

Implementing
an interface in
an existing
function block

Creation of an
interface that
extends another
interface.

Method call as a
virtual function
call

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US314

In the following cases the method call is dynamically bound:
● You call a method via a pointer to a function block (for example pfub^.method).

In this situation the pointer can point to instances of the type of the function block and to
instances of all derived function blocks.

● You call the method of an interface variable (for example interface1.method).
The interface can refer to all instances of function blocks that implement this interface.

● A method calls another method of the same function block. In this case the method can also
call the method of a derived function block with the same name.

● The call of a method takes place by means of a reference to a function block. In this situa-
tion the reference can point to instances of the type of the function block and to instances of
all derived function blocks.

● You assign VAR_IN_OUT variables of a basic function block type to an instance of a derived
FB type.
In this situation the variable can point to instances of the type of the function block and to
instances of all derived function blocks.

The function blocks fub1 and fub2 extend the function block fubbase and implement the
interface interface1. The methods method1 and method2 exist.
PROGRAM PLC_PRG
VAR_INPUT
 b : BOOL;
END_VAR

VAR pInst : POINTER TO fubbase;
 instBase : fubbase;
 inst1 : fub1;
 inst2 : fub2;
 instRef : REFERENCE to fubbase;
END_VAR

IF b THEN
 instRef REF= inst1; (* reference to fub1 *)
 pInst := ADR(instBase);
ELSE
 instRef REF= inst2; (* reference to fub2 *)
 pInst := ADR(inst1);
END_IF
pInst^.method1(); (* If b is TRUE, fubbase.method1 will
be called, otherwise fub1.method1 is called *)
instRef.method1(); (* If b ist TRUE, fub1.method1 will be
called, otherwise fub2.method1 is called*)

On the assumption that fubbase in the above example contains two methods method1 and
method2, it overwrites fub1 method2, but not method1. The call of method1 takes place
as follows:
pInst^.method1();

If b is TRUE, then CODESYS calls fubbase.method1. If not, then fub1.method1 is called.

Overloading
methods

In accordance with the IEC 61131-3 standard, methods can have additional outputs declared,
like normal functions. With the method call, you assign variables to the additional outputs.
Detailed information about this can be found in the topic “Function”.

Example

Additional out-
puts

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 315

<function block name>.<method name>(<first input name> := <value> (,
<further input assignments>)+ , <first output name> => <first output
variable name> (,<further output assignments>)+);

METHOD PUBLIC DoIt : BOOL
VAR_INPUT
 iInput_1 : DWORD;
 iInput_2 : DWORD;
END_VAR
VAR_OUTPUT
 iOutput_1 : INT;
 sOutput_2 : STRING;
ENDVAR

fbInstance.DoIt(iInput_1 := 1, iInput_2 := 2, iOutput_1 =>
iLocal_1, sOUtput_2 => sLocal_2);

When the method is called, the values of the method outputs are written to the locally declared
output variables.

Example
Declaration

Call

In the device description it is possible to define that a certain function block instance (of a library
function block) always calls a certain method in each task cycle. If the method contains the
input parameters of the following example, CODESYS processes the method even if the active
application is presently in the STOP state:

VAR_INPUT
 pTaskInfo : POINTER TO DWORD;
 pApplicationInfo: POINTER TO _IMPLICIT_APPLICATION_INFO;
END_VAR

(*Now the status of the application can be queried via
pApplicationInfo and the instructions can be implemented: *)
IF pApplicationInfo^.state = RUNNING THEN <instructions> END_IF;

Example

Use recursions mainly for processing recursive data types such as linked lists.
Generally, we recommend that you be careful when using recursion. An unex-
pectedly deep recursion can lead to stack overflow and therefore to machine
downtime.

Within their implementation, a method can call itself:
● Directly by means of the THIS pointer
● Indirectly by means of a local function block instance of the basic function block
Usually, a compiler warning is issued for such a recursive call. If the
method is provided with the pragma {attribute 'estimated-stack-usage' :=
'<sstimated_stack_size_in_bytes>'}, then the compiler warning is suppressed. For
an implementation example, refer to the section "Attribute 'estimated-stack-usage'".

Syntax for the
call:

Calling a
method even if
the application
is in the STOP
state

Calling methods
recursively

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US316

See also
● Ä Chapter 1.4.1.19.6.2.13 “Attribute 'estimated-stack-usage'” on page 695
● Ä Chapter 1.4.1.19.2.15 “THIS” on page 539
● Ä Chapter 1.4.1.19.2.14 “SUPER” on page 538
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897

1.4.1.8.23 Motion Solution
Basic Motion

1.4.1.8.23.1.1 Cams... 317
1.4.1.8.23.1.2 BufferMode.. 335

Cams
The SoftMotion cam is integrated in the development interface of CODESYS. In the cam editor,
cams and tappets can be implemented graphically or by means of tables. As soon as code is
generated for the corresponding application, global data structures ("Cam Data") are created
which the IEC program can access. For this purpose, the SM3_Basic is also linked automati-
cally into the project when inserting a SoftMotion drive.
See also
● Ä Chapter 1.4.1.8.23.1.1.1 “Definition of a SoftMotion Cam” on page 317
● Ä Chapter 1.4.1.8.23.1.1.3 “Creating Cams” on page 319

Definition of a SoftMotion Cam
A cam describes the functional dependency of one drive (slave) on another drive (master).
The relationship is described by a continuous function (or curve) that maps a defined range of
master values to slave values. To be more precise: After dividing the master axis into suitable
segments, the graph of these functions can be represented on each of these intervals by a line
or a 5th degree polynomial.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 317

The master values are applied to the horizontal axis and the slave values to the vertical axis in
the cam graph.

In the example, the master values are between 0 and 360. This range is divided into three
intervals:
● (1) First interval: [0, 140]
● (2) Second interval: [140, 280]
● (3) Third interval: [280, 360]
The function (graph) is linear in the first and third intervals and its graph is displayed as a line.
As a result, its first derivative (slope) is constant and all higher derivatives are 0.
In the second interval, the graph is described by a 5th degree polynomial. Therefore, its
first derivative is a 4th degree polynomial, its second derivative (curvature) is a 3rd degree
polynomial, and its third derivative is a 2nd degree polynomial, etc.

Example

When the function describes the movement of the slave depending on the position of the
master, its first derivative corresponds to the velocity of the slave and the second derivative to
its acceleration.
When you keep this physical interpretation in mind, it is obvious that the mapping has to be
continuous. This means that its graph is not allowed to have any jumps. In particular, the
continuity also has to be fulfilled at each point where two intervals meet. Furthermore, the
continuity in general is also required by the first and second derivative. (In fact, these three
continuity conditions at the start and end points of an interval determine the coefficients of the
5th degree polynomial inserted between two straight segments.
Moreover, you may add tappets (binary switches) to the cam at any position. In this way, you
can create cam tables which contain tappets only. The slave position is then set to zero over the
entire master value range.

At compile time, variables of type MC_CAM_REF are created for a cam. They include a
description of each segment of the cam. Data structures of this kind are passed to the
MC_CamTableSelect function block. The structure is part of the SM3_Basic library.

Compiling cam
definitions

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US318

See also
● MC_CAM_REF
● MC_CamTableSelect

Structure of the Cam Editor
Open the cam editor by double-clicking the “Cam” object in the device tree.
The editor consists of the following tabs:
● Tab “Cam”: Includes a graphical editor for creating a cam path. Here, you can display and

modify the slave position, slave velocity, slave acceleration, and slave jerk. In the graphical
editor, you recognize very quickly when you program a movement with high acceleration.

● Tab “Cam table”: Includes an editor for listing base points in a table. Here, you can specify
the exact positions and velocities.

● Tab “Tappets”: Includes an editor for programming tappets (switch points) in a diagram. This
display provides a very good overview of the sequential order of the tappets.

● Tab “Tappet table”: Includes an editor for listing switch points in a table. Here, you can
specify the exact switch points.

The tabs are split into an editor, as well as a “ToolBox” view and “Properties” view.
See also
● Ä Chapter 1.4.1.8.23.3.1.1.1.1 “Tab 'Cam'” on page 344
● Ä Chapter 1.4.1.8.23.3.1.1.1.2 “Tab 'Cam table'” on page 345
● Ä Chapter 1.4.1.8.23.3.1.1.1.3 “Tab 'Tappets'” on page 346
● Ä Chapter 1.4.1.8.23.3.1.1.1.4 “Tab 'Tappet table'” on page 347

Creating Cams
The steps for creating a cam are explained by means of a sample application that describes
a rotary table with eight slots (45° division). Inside, there is a component that is fused ultrasoni-
cally. The welding tool is fed in by a linear drive after the rotary table has turned. After welding,
the linear axis returns and the rotary table continues turning.
Work steps
● Rotary table turns 45° (duration: 400 ms).
● The welding head is moved down by a vertical axis of 250 mm (duration: 200 ms).
● Start welding (duration: 1200 ms).
● The welding head is moved up by a vertical axis of 250 mm (duration: 200 ms).
A cycle time of 2000 ms results from total times.
The application is implemented by means of a virtual master axis that runs continuously
(modulo). The end value of the axis is projected according to the cycle time of 2000 ms. The
rotary table is achieved as a cam (modulo; end value: 45°). The vertical axis is also achieved as
a cam (restricted; end value: 300 mm). The welding process is controlled by a tappet.
See also
● Ä Chapter 1.4.1.8.23.3.1.1.1.5 “Dialog 'Properties - 'Cam'” on page 348

Requirement: A SoftMotion controller is selected.

1. Select the “Application” object in the device tree.
2. Click “Project è Add object è Cam table”.
3. Specify the name “Rotary table” for the cam and click “OK”.

ð The object is inserted into the device tree. The cam editor opens.

Adding a cam to
the device tree

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 319

ms-its:SM3_Basic.chm::/BuP9kxjq765pFZQGuC-g-SYQ0v8/MC_CAM_REF.html
ms-its:SM3_Basic.chm::/fR9xNjosAsbspGTv-8BkJ1A1K0E/MC_CamTableSelect.html

4. Insert another cam named “Vertical axis”.

1. Select the “Rotary table” cam in the device tree.
2. Click “Properties” in the “View” menu or in the context menu.
3. Select the “Cam” tab.
4. Specify the following values:

● “Master start position”: 0
● “Master end position”: 2000
● “Slave start position”: 0
● “Slave end position”: 45
● “Smooth transition”: (deactivated)

5. Click “OK” to close the dialog. Confirm the dialog for changing the cam object.
6. Change the values for the “Vertical axis” cam in the same way:

● “Master start position”: 0
● “Master end position”: 2000
● “Slave start position”: 0
● “Slave end position”: 300
● “Smooth transition”: (activated)

7. Click “OK” to close the dialog. Confirm the dialog for changing the cam object.

Changing the Cam Path
These instructions use the example from the section "Creating Cams" to demonstrate how to
change a cam.

1. Open the “Rotary table” cam in the editor.

ð The “Cam” tab is visible.

2. Select the point at 120 and delete it by pressing the delete key ([Del]). Also delete the
point at 240.

3. Select the “Add point” tool from the “ToolBox” view.

ð The mouse pointer turns into crosshairs when you move it into the editor.

4. Click near “Master position” 400 and “Slave position” 45 in the upper graphs (slave posi-
tion).

ð The curve of the slave position is changed. The curves of velocity, acceleration, and
jerk also change.

5. Select the new inserted point by clicking it.
6. Drag the point to another position.

ð The curve of the slave position is adjusted accordingly.

7. Change the “X” and “Y” properties to the exact values of 400 and 45, respectively.
8. In the same way, change the x-value to 45 of the point at master position 2000.
9. Select the “Select” tool from the “ToolBox” view.

Setting the
properties of the
cam

Changing the
path with the
graphical editor

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US320

10. Select the second curve element (between 400 and 2000).
11. Change the “Segment type” property to “Line”.
12. Check the curve in the graphical editor.

ð Display:

See also
● Ä Chapter 1.4.1.8.23.3.1.1.1.1 “Tab 'Cam'” on page 344

1. Open the “Vertical axis” cam in the editor.

ð The “Cam” tab is visible.

2. Select the “Cam table” tab.
3. Delete the point at 120 by clicking the symbol. Also delete the point at 240.
4. Click the symbol.

ð A new point and a new segment are inserted at (1000/150).

5. Add two more points.
6. Change the values X / Y of the following points:

● Point 1: 0 / 0
● Point 2: 400 / 0
● Point 3: 600 / 250
● Point 4: 1800 / 250
● Point 5: 2000 / 0
ð The curve of the slave position is changed. The curves of velocity, acceleration, and

jerk also change.
7. In the cam table, change the “Segment type” of the first and third segments to “Line”.
8. Check the curve in the graphical editor.

ð Display:

Changing the
path with a cam
table

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 321

In practice, the curves of the different cams are defined frequently as overlap-
ping in order to save on cycle time. In the example above, the vertical axis could
already begin the movement while the rotary table is still in motion (for example,
at X: 350).

See also
● Ä Chapter 1.4.1.8.23.3.1.1.1.2 “Tab 'Cam table'” on page 345

By clicking “Display generated code”, you can display the automatically created
global variables.

{attribute 'linkalways'}

VAR_GLOBAL
Vertical_axis_A: ARRAY[0..4] OF SMC_CAMXYVA := [
 (dX := 0, dY := 0, dV := 0, dA := 0),
 (dX := 400, dY := 0, dV := 0, dA := 0),
 (dX := 600, dY := 250, dV := 0, dA := 0),
 (dX := 1800, dY := 250, dV := 0, dA := 0),
 (dX := 2000, dY := 0, dV := 0, dA := 0)];
Vertical_axis: MC_CAM_REF := (nElements := 5, byType := 3, xStart :=
0, xEnd := 2000, nTappets := 2, strCAMName := 'Vertical_axis', pce :=
ADR(Vertical_axis_A), pt := ADR(Vertical_axis_T), xPartofLM := TRUE);
END_VAR
See also
● Ä Chapter 1.4.1.8.23.3.1.2.1.1 “Command 'Display generated code'” on page 350

See also
● Ä Chapter 1.4.1.8.23.1.1.3 “Creating Cams” on page 319

Defining Switch Points
Use switch points to trigger events depending on the master position. For example, this can be
the setting of an output or the calling of a function block.
These instructions use the example from the section "Creating Cams" to demonstrate how to
define switch points. In this example, the tappet starts and stops the welding process.
1. Open the “Vertical axis” cam in the editor.

ð The “Cam” tab is visible.

2. Select the “Tappets” tab.
3. Select the “Add tappet” tool from the “ToolBox” view.

ð The mouse pointer turns into crosshairs when you move it into the editor.

4. Click below the master position near position 600.

ð A tappet is inserted to the tappet path 1.

5. Select the tappet.

Displaying gen-
erated code

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US322

6. Change the values of the tappet in the “Properties” view.
● “X”: 600
● “Positiver pass”: “Switch ON”
● “Negative pass”: “No action”

7. Insert another tappet to tappet path 1 at X: 1800.
● “X”: 1800
● “Positiver pass”: “Switch OFF”
● “Negative pass”: “No action”

8. Check the result.

You can also change the values for “Positive pass” and “Negative pass” by
clicking the respective end of the crosshairs ().

Please note the possibility of also setting switch points in the “Tappet table” tab.
This editor provides you with the same options, but in tabular form.

See also
● Ä Chapter 1.4.1.8.23.1.1.3 “Creating Cams” on page 319
● Ä Chapter 1.4.1.8.23.3.1.1.1.3 “Tab 'Tappets'” on page 346
● Ä Chapter 1.4.1.8.23.3.1.1.1.4 “Tab 'Tappet table'” on page 347

By clicking “Display generated code”, you can display the automatically created
global variables.

{attribute 'linkalways'}

VAR_GLOBAL
Vertical_axis_A: ARRAY[0..4] OF SMC_CAMXYVA := [
 (dX := 0, dY := 0, dV := 0, dA := 0),
 (dX := 400, dY := 0, dV := 0, dA := 0),
 (dX := 600, dY := 250, dV := 0, dA := 0),
 (dX := 1800, dY := 250, dV := 0, dA := 0),
 (dX := 2000, dY := 0, dV := 0, dA := 0)];
Vertical_axis_T: ARRAY[0..1] OF SMC_CAMTappet := [
 (x := 597.32540861812777, ctt := 0, iGroupID := 1, cta := 0),

Displaying gen-
erated code

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 323

 (x := 1800, ctt := 0, iGroupID := 1, cta := 1)];
Vertical_axis: MC_CAM_REF := (nElements := 5, byType := 3, xStart :=
0, xEnd := 2000, nTappets := 2, strCAMName := 'Vertical_axis', pce :=
ADR(Vertical_axis_A), pt := ADR(Vertical_axis_T), xPartofLM := TRUE);
END_VAR
See also
● Ä Chapter 1.4.1.8.23.3.1.2.1.1 “Command 'Display generated code'” on page 350

Important Cam Settings
The SM3_Basic library provides function blocks for handling cams. If you insert a SoftMotion
drive into the device tree, then this library is included automatically into the project. You can also
include this library manually by means of the “Add Library” command.
The following sections are intended to explain in detail the meaning of certain parameters
(periodicity, offset, etc.), as well as the possibility of switching between different cams:

A cam can be run repeatedly when the Periodic input of the MC_CamTableSelect function
block is set to TRUE. Then the cam is restarted automatically after reaching the end position.
If this input is FALSE, then the EndOfProfile output variable of the MC_CamIn function block
is set to TRUE when the end position of the master is reached. The slave pauses at its current
position. Note that the cam activity does not stop after leaving the master value range. When
entering the master drive again in the master value range, the slave drive is also checked by the
cam.
Behavior in the case of Slave.EndPosition <> Slave.StartPosition: The function block
MC_CamIn calculates an internal offset at the end of a period. In the subsequent period, the
cam is shifted by this offset so that it continues at the current position of the slave and conse-
quently prevents jumps.
For a periodic cam, you can activate the “Smooth transition” option in the cam properties. This
is used for preventing jumps from occurring when transitioning from one period to another. Then
the slave has the same velocity and acceleration at the end position as at the start position. The
period and feed are measured in the units of slave scaling. Even if you do not activate “Smooth
transition”, the cam can be operated continuously. In this case, your task is to make sure the
consistency of the transitions are satisfied to a sufficient degree.

Periodic cam

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US324

The image below illustrates the differences between the occurring time spans. A practical use
case is a conveyor belt that transports identical objects. A tool, such as a punch, is positioned
above the conveyor belt and controlled by a slave drive (blue graph). The length of these
objects is defined as the value range of the master. The tool runs travels within this range to
and from the object.

Of course, the master value range of the cam (this is the range of defined positional values of
the master) is not identical to the period of the master drive (in the example: one cycle of the
conveyor belt). Therefore, the statement 'SlavePosition = CAM(MasterPosition)'
(the definition of the slave position as a function of the master position using the cam) is valid
only for the first run of the cam.
When a new object arrives, a new cam cycle has to be started for controlling the tool. After the
objects are placed on the conveyor belt with a specific, variable distance from one another, the
production rate (the time span between successive starting of the cam) is not identical to the
master value range of the cam.

Example

See also
● Ä Chapter 1.4.1.8.23.3.1.1.1.5 “Dialog 'Properties - 'Cam'” on page 348
● MC_CamTableSelect

● MC_CamTableSelect.MasterAbsolute:
If the MasterAbsolute input is TRUE, then the cam is started at the current master
position. This point may be at any position in the master value range of the cam. If the point
is outside of the value range of the cam, then an error is issued.
If the MasterAbsolute input is FALSE, then the cam is relocated to the current position.
The zero point of the master is also shifted to the current master position. This mode is
permitted only if the value 0 is in the master value range. Otherwise, an error is issued
("...master leaving specified range...").

● MC_CamTableSelect.SlaveAbsolute
The parameter CamTableSelect.SlaveAbsolute influences the StartMode of the
slave drive. This mode is defined by the CamIn.StartMode parameter. The following table
documents the StartMode that results from the interaction of the two parameters.

Function block
'MC_CamTable-
Select' and
'MC_CamIn'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 325

ms-its:SM3_Basic.chm::/fR9xNjosAsbspGTv-8BkJ1A1K0E/MC_CamTableSelect.html

● MC_CamIn.StartMode:
– absolute: When starting a new cycle, the cam is evaluated independent of the current

position of the slave. This can lead to jumps if the slave position to the master start
position deviates from that of the master end position.

– relative: The new cam is started allowing for the current slave position. The position
that the slave has after the end of the previous cycle is added as a slave offset to the
new evaluations of the cam. Jumps can also occur if the slave position at the master
start position is not 0.

– ramp_in, ramp_in_pos, ramp_in_neg: ramp_in: When starting the cam, occurring
jumps are prevented by compensating movements. Its dynamics values are limited
by VelocityDiff, Acceleration, and Deceleration. If the slave drive is rotary,
then the ramp_in_pos option compensates in the positive directions only, while
ramp_in_neg compensates in the negative direction. For linear slave drives, the direc-
tion of the compensation is automatic, and ramp_in_pos and ramp_in_neg are inter-
preted like ramp_in.

● MC_CamIn.MasterOffset, MC_CamIn.MasterScaling:
These parameters transform the master position according to the following formula: X =
MasterScaling*MasterPosition + MasterOffset. The transformed position X is
then used for evaluating the cam. In this way, the cam is run at a higher velocity when the
value of MasterScaling is greater than 1; on the other hand, the velocity is reduced for
values less than 1.

● MC_CamIn.SlaveOffset, MC_CamIn.SlaveScaling:
This input moves or scales the graph of the cam function in the direction of the slave
(vertical axis). First the cam is scaled and then moved according to the following formula:
Y = SlaveScaling*CAM(X) + SlaveOffset. A SlaveScaling > 1 magnifies the
slave value range. Accordingly, a SlaveScaling < 1 reduces the magnification.

Table 12: Interaction of MC_CamIn.StartMode and CamTableSelect.SlaveAbsolute
MC_CamIn.StartMode MC_CamTableSelect.SlaveAbso

lute
MC_CamIn.StartMode: New value

absolute TRUE absolute
absolute FALSE relative
relative TRUE relative
relative FALSE relative
ramp_in TRUE ramp_in absolute
ramp_in FALSE ramp_in relative
ramp_in_pos TRUE ramp_in_pos absolute
ramp_in_pos FALSE ramp_in_pos relative
ramp_in_neg TRUE ramp_in_neg absolute
ramp_in_neg FALSE ramp_in_neg relative

See also
● Ä Chapter 1.4.1.8.23.1.1.1 “Definition of a SoftMotion Cam” on page 317

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US326

Switching Between Cams
Basically, you can switch between different cams at any time. However, you should consider
some points:
● In the cam editor, the position of the slave is defined uniquely as the function value of the

cam function. This function is defined in the master value range and can be expressed as
follows:
SlavePosition = CAM(MasterPosition)

● Because the current position of the master drive usually deviates from the master value
range, you must scale the master position in the definition range of the cam function in order
to represent a valid argument:
SlavePosition = CAM(MasterScale*MasterPosition + MasterOffset)

● In an analog way, you must scale the function value (the slave position) if the start of the
cam in the mode Absolute would lead to a jump:
SlavePosition = SlaveScale*CAM(MasterPosition) + SlaveOffset

● You may have to apply both scaling values, which results in the following:
Slaveposition = SlaveScale*CAM(MasterScale*Masterposition +
MasterOffset) + SlaveOffset

● The appropriate values for scaling and offset parameters can vary from period to period.
● Restarting the MC_CamIn function block deletes the corresponding memory area and also

the values of scaling and offset. In this way, the cam function is applied in the original
definition, which usually results in other values for the slave position. For this reason, it is
recommended to restart the MC_CamIn function block to start another cam.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 327

In the following example, it switches from CAM1 to CAM2:

CAM1 consists of a 5th order polynomial followed by two line segments.

CAM2 consists of two line segments followed by one 5th order polynomial.

When switching between both cams, you should consider the following:
● To prevent jumps, the values of velocity and acceleration at the end point of the first cam

should agree with the values at the start point of the second cam. In the example, this
condition is fulfilled because the same velocity (=1) and acceleration (=0) is assigned to
the end point of CAM1 and the start point of CAM2.

● You can start the second cam in Relative mode when you have defined the start
position of the slave as 0. However, the first cam must be running in non-periodic
mode. Otherwise, if CAM1 were periodic, then the Relative setting would result in a
jump.

The magnification shows the transition from CAM1 to CAM2. The blue lines marks the evalua-
tions of the cam functions at the master positions x1 and x2.

Now, we will look at the unfavorable case of periodic:

Example

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US328

MasterAbsolute := TRUE;
SlaveAbsolute := FALSE;

CAM(x1, CAM1,
PERIODIC:=TRUE);

The call starts an evaluation of the cam at the master position x1, which is
less than the end position of the master of CAM1. Then CAM1 is evaluated by
default and yields point 1 as the position for the slave.

CAM(x2, CAM1,
PERIODIC:=TRUE);

For the following call of the module, the master position x2 is outside of the
master value range of CAM1, whose limit is marked by the green dashed
line and agrees with the horizontal axis of the point 3p. Therefore, the
EndOfProfile is set. Because CAM1 was started in periodic mode, its
restart occurs at the end of the value range, which finally yields the point 2p
as the result of the module call.

CAM(EXECUTE:=FALSE); Switch to the new cam
CAM(x2, CAM2,
PERIODIC:=TRUE);

Second evaluation at master position x2. This time, the new CAM2 is evalu-
ated. After CAM2 is started in Relative mode, the current slave position (2p)
is added as offset to the image of the cam function of CAM2. This moves the
start point of its graph to the point 3p and its evaluation at the master position
x2 yields the point 4p, and therefore an unfavorable jump.

Select the non-periodic mode in order to prevent jumps:

MasterAbsolute :=
TRUE; SlaveAbsolute :=
FALSE;

CAM(x1, CAM1,
PERIODIC:=FALSE);

The call starts an evaluation of the cam at the master position x1, which is
less than the end position of the master of CAM1. Then CAM1 is evaluated by
default and yields point 1 as the position for the slave.

CAM(x2, CAM1,
PERIODIC:=FALSE);

For the following call of the module, the master position x2 is outside of the
master value range of CAM1, whose limit is marked by the green dashed
line and agrees with the horizontal axis of the point 3n. Therefore, the
EndOfProfile is set. Because CAM1 was started in non-periodic mode,
slave position (2n) assigned to master position x2 is identical to the position
of the slave upon reaching the end of the value range of CAM1 (3n).

CAM(EXECUTE:=FALSE); Switch to new cam.
CAM(x2, CAM2,
PERIODIC:=FALSE);

Second evaluation at master position x2.This time, the new CAM2 is evalu-
ated. After CAM2 is started in Relative mode, the current slave position (2n)
is added as offset to the image of the cam function of CAM2. This moves the
start point of its graph to the point 3n and its evaluation at the master position
x2 yields the point 4n, which is on the specific line through the points 1 and
3n.

To start the cam in Absolute mode, you have to make sure that the slave is in an appropriate
start position. If the value range of the master agrees with the period of the slave, then
switching between cams does not have any complications, regardless of whether the cams are
periodic or not.
In the example above, you can start CAM2 in Absolute mode when the periods of the master
and slave agree with the master value range of CAM2 (each is 360°).

If not, for example when the period of the slave is 270° (indicated by the light blue line), then
the Absolute option is not permitted without taking additional actions.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 329

In this case, the slave is at 90° when switching from CAM1 to CAM2. Starting CAM2 in
Absolute mode causes a jump to 0° (indicated by a gray line).

However, the jump can be prevented by setting the slave offset to the appropriate value of 90°.

Data Structure
On project compile, the created cam data is converted internally into a global variable list.
Each cam is represented by the data structure MC_CAM_REF. You can access this data structure
by means of the IEC program or by preprocessing functions and function blocks. It is available
by the SM3_Basic library.

A function block that describes a cam can also be generated or populated by the IEC program
at runtime.

Data structures
of cams

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US330

TYPE mySMC_CAMTable_LREAL_10000_2 :
STRUCT
 Table: ARRAY[0..9999] OF ARRAY[0..1] OF LREAL;
 (* set all scaling definitions to 0 and 1
 result: all values of the table are not scaled *)
 fEditorMasterMin: REAL := 0;
 fEditorMasterMax: REAL := 1;
 fEditorSlaveMin: REAL := 0;
 fEditorSlaveMax: REAL := 1;
 fTableMasterMin: REAL := 0;
 fTableMasterMax: REAL := 1;
 fTableSlaveMin: REAL := 0;
 fTableSlaveMax: REAL := 1;
END_STRUCT
END_TYPE

Cam: MC_CAM_REF;
Cam_PointArray : mySMC_CAMTable_LREAL_10000_2;

Cam.byType:=2;
Cam.byVarType:=6;
Cam.nTappets:=0;
Cam.strCAMName:='myCAM';
Cam.pce:= ADR(CAM_PointArray);
FOR i:=0 TO 9999 DO
 (* example cam: master 0..360, slave 0..100,
 constant velocity *)
 Cam_PointArray.Table[i][0]:=UDINT_TO_LREAL(I)/10000 *
360; (* X *)
 Cam_PointArray.Table[i][1]:=UDINT_TO_LREAL(I)/10000 *
100; (* Y *)
END_FOR
Cam.nElements:=10000
Cam.xStart:=0.0;
Cam.xEnd:=360.0;

Example
Definition of
the data struc-
ture:

Instantiating
the data struc-
ture:
Calculating the
cam:

In order to allow for easy access to the function blocks, they are collected and listed in the
g_CAMManager global variable with the Count property and the GetCAM(int n) method.

PROGRAM CAMManageRef
VAR
 pCAM_Ref: POINTER TO MC_CAM_REF;
 n: INT;
 i: INT;
END_VAR

n := g_CAMManager.Count;
FOR i:=0 TO n-1 DO
 pCAM_Ref := g_CAMManager.GetCAM(i); (* Processing pCAM_Ref*)
END_FOR

Example
Access to data
objects of the
MC_CAM_REF
function block:

See also
● MC_CAM_REF

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 331

ms-its:SM3_Basic.chm::/BuP9kxjq765pFZQGuC-g-SYQ0v8/MC_CAM_REF.html

A cam can be created in an IEC program without using the cam editor.

VAR
i: INT;
CAM: MC_CAM_REF := (
 byType:=2, (* not-equidistant *)
 byVarType:=2, (* UINT *)
 nElements:=128,
 xStart:=0,
 xEnd:=360);
Table: SMC_CAMTable_UINT_128_2 := (
 fEditorMasterMin := 0, fEditorMasterMax := 360,
 fTableMasterMin := 0, fTableMasterMax := 6000,
 fEditorSlaveMin := 0, fEditorSlaveMax := 360,
 fTableSlaveMin := 0, fTableSlaveMax := 6000);
END_VAR

(* Generate cam (example: line); unique *)
FOR i:=0 TO 127 DO
 Table.Table[i][0] := Table.Table[i][1] := REAL_TO_UINT(i /
127.0 * 6000);
END_FOR
(* Link pointer; must be done in every cycle *)
CAM.pce := ADR(Table);

Example
Declaration:

Implementa-
tion:

This generated cam can be specified in the MC_CamTableSelect function block and its output
used again for MC_CamIn.

Visualization Element 'Online cam editor'
The online cam editor is a visualization template that displays a cam table in the visualization.
With this element, you can modify the cam in online mode.
The visualization element is made available in a visualization template
(“SMC_VISU_CamEditor”) of the SM3_Basic library. You find it in the visualization editor in
the “ToolBox” view in the “SM3_Basic” tag. For more information about the "Frame" visualization
element, refer to the CODESYS Visualization standard help.

Manually gener-
ated cams

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US332

In addition to the properties of the frame element, this template contains the following proper-
ties:

Property Description
“xReadOnly” If TRUE, then the cam cannot be modified.

“dIntervalX” Step size for the X-value of the SpinControl element

“dIntervalY” Step size for the Y-value of the SpinControl element

“dIntervalV” Step size for the V-value (velocity) of the SpinControl element

“dIntervalA” Step size for the A-value (acceleration) of the SpinControl element

“Editor” Instance of the SMC_CamEditor function block

To visualize the cam, you must declare and call an instance of the SMC_CamEditor function
block in your application.

PROGRAM PLC_PRG
VAR
 myCamEditor: SMC_CamEditor;
END_VAR

myCamEditor(cam := MyCam, bEnable :=TRUE);
See also
● Visualization Element 'Frame'
● SMC_CamEditor

In online mode, the graphs of position (black), velocity (blue), and acceleration (green) are
displayed.

Cam editor in
online mode

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 333

ms-its:core_Visualization.chm::/_visu_elem_frame.htm
ms-its:SM3_Basic.chm::/AHrMjZzMH1J3UecTYM9NX4Rdytk/SMC_CamEditor.html

(1) “Name: ” Name of the curve table (read-only)

(3) “Selection:” Selection of a curve point by mean of the SpinControl element. The selected
point is displayed red.

(4) “X:” Moves the curve point of the position in the X-direction (horizontal) by means of
the SpinControl element or by specifying a value. The first and last points cannot
be moved in the X-direction.

(5) “Y:” Moves the curve point of the position in the Y-direction (vertical) by means of the
SpinControl element or by specifying a value.

(6) “V:” Moves the curve point of the velocity by means of the SpinControl element or
by specifying a value. The display of the velocity curve can be shown and hidden
by means of a checkbox.

(7) “A:” Moves the curve point of the acceleration by means of the SpinControl ele-
ment or by specifying a value. The display of the acceleration curve can be
shown and hidden by means of a checkbox.

The cam tappets are displayed as small gray boxes.
It is also possible to move the curve points by dragging and dropping. To do this, the left mouse
button must be pressed on the curve point longer than 500 ms. Then the curve point changes to
a large red point.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US334

BufferMode
Some function blocks have an input BufferMode which is used to control the chronological
order of movements. The buffer mode defines whether the function block works in non-buffered
mode ("Aborting", standard behavior) or in buffered mode ("Buffered"). The difference between
these two modes is the time when they begin their actions:
● "Non-buffered Mode": The movement command is effective immediately, even if this inter-

rupts another movement. The buffer of the commanded movements is deleted.
● "Buffered Mode": The movement command waits until the current function block sets its

output Done (or InPosition, or InVelocity, etc.). The buffer modes are also used to
define how the velocity curve should look at the transition of the movements.

Table 13: The input "BufferMode" is an ENUM of type MC_BUFFER_MODE.
Aborting Default mode without buffering. The function block starts immediately

and aborts an active movement. The command takes immediate effect
on the axis.

Buffered The function block starts as soon as the last commanded movement
is terminated. No blending takes place here. The new movement
starts at the velocity that the previous movement has when the
end condition is reached (Done, InVelocity, InEndVelocity,
InGear, InSync, EndOfProfile, etc.). If the previous movement
was MC_MoveAbsolute or MC_MoveRelative, then the new move-
ment starts at standstill.

BlendingLow The function block starts as soon as the last commanded movement
is terminated. The axis does not stop between movements, but passes
through the end position of the first movement at the lower velocity of
the two movement commands.

BlendingPrevious The function block starts as soon as the last commanded movement
is terminated. The axis does not stop between movements, but passes
through the end position of the first movement at the velocity of the
first movement command.

BlendingNext The function block starts as soon as the last commanded movement
is terminated. The axis does not stop between movements, but passes
through the end position of the first movement at the velocity of the
second movement command.

BlendingHigh The function block starts as soon as the last commanded movement
is terminated. The axis does not stop between movements, but passes
through the end position of the first movement at the higher velocity of
the two movement commands.

See also
● linktarget [CODESYS_Softmotion] doesn't exist but @y.link.required='true'

Supported Function Blocks
All function blocks that can be specified as buffered/blending commands have the following
inputs and outputs:
● Input BufferMode (type MC_BUFFER_MODE)
● Output Active (type BOOL)

A command is accepted when the function block switches to the state Busy after a new
movement has been commanded.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 335

Function Block Can be Defined as
a Buffered/Blending
Command

Can be Followed by
a Buffered/Blending
Command

Relevant Signal for
Activating the Next
Buffered/Blending
FB

MC_Power No No
MC_Home No No
MC_Stop No No
MC_Halt No No
MC_MoveAbsolut
e
MC_MoveRelativ
e

Yes Yes Done

MC_MoveAdditiv
e

No Yes (Buffered only) Done

MC_MoveSuperim
posed

No No (see chapter 'Be-
havior of MC_Move-
Superimposed')

MC_MoveVelocit
y

Yes Yes (Buffered only) InVelocity

SMC_MoveContin
uousAbsolute
SMC_MoveContin
uousRelative

No Yes (Buffered only) InEndVelocity

MC_PositionPro
file
MC_VelocityPro
file
MC_Acceleratio
nProfile

No Yes (Buffered only) Done

MC_CamIn No Yes, also if periodic
(only Buffered)

EndOfProfile

MC_CamOut No Yes (Buffered only) Done
MC_GearIn Yes

(BlendingPrevious
only)

Yes (Buffered only) InGear

MC_GearOut No Yes (Buffered only) Done
MC_GearInPos Yes

(BlendingPrevious
only)

Yes (Buffered only) InSync

SMC_FollowPosi
tion
SMC_FollowVelo
city
SMC_FollowPosi
tionVelocity
SMC_FollowSetV
alues

No No

SMC_SetTorque No No
MC_Phasing No No

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US336

Function Block Can be Defined as
a Buffered/Blending
Command

Can be Followed by
a Buffered/Blending
Command

Relevant Signal for
Activating the Next
Buffered/Blending
FB

MC_Jog
SMC_Inch

No No
These function blocks
should not be
used when move-
ments are com-
manded with buffer
mode Buffered or
Blending*. Jogging
and the commanded
movements could
interrupt each other.

SMC_BacklashCo
mpensation

No No

Note for MC_GearInPos and MC_GearIn: The behavior of other buffer modes as
BlendingPrevious is difficult to establish. The main problem is that the velocity of these
function blocks can change at any time depending on the master axis. Because blending works
best when the blending speed is known as early as possible, only BlendingPrevious is
supported.
In the case of BlendingPrevious, the direction of the master axis can also change at any
time. This means that the direction that the slave axis should have for MC_GearInPos is
known only when the blending is complete. However, we need a direction for the blending
movement right when the blending begins. This is why the first movement defines both the
blending velocity and the direction, regardless of the direction defined by the subsequent
MC_GearIn(Pos).

See also
● linktarget [CODESYS_Softmotion] doesn't exist but @y.link.required='true'

● Ä Chapter 1.4.1.8.23.1.2.8 “Behavior of MC_MoveSuperimposed” on page 340

Buffering/Blending from Continuous or Synchronized Movement
According to PLCopen, the blending buffer mode determines the velocity at the end of the first
movement.
In some cases, the velocity is already entirely determined by the first movement. This is the
case when the first movement is of one of the following types:
● Continuous movement (MC_MoveVelocity, SMC_MoveContinuousRelative, or

SMC_MoveContinuousAbsolute)
● Synchronized movement (MC_CamIn, MC_GearIn, or MC_GearInPos)

In these cases, Motion Solution supports only the buffer modes Buffered
and Aborting. Using one of the blending buffer modes causes an FB error
(SMC_BLENDING_NOT_SUPPORTED_BY_PREVIOUS_MOVEMENT).

When the subsequent buffered command becomes active, the output CommandAborted is set
to TRUE for a previous movement command. In addition, the "Inxxx" outputs (for example,
InVelocity for MC_MoveVelocity or InGear for MC_GearIn) and the output Busy are set
for one cycle. This is in contrast to PLCopen, Section 2.4.1, in which CommandAborted and
"Inxxx" as well as Busy are mutually exclusive.

See also
● linktarget [CODESYS_Softmotion] doesn't exist but @y.link.required='true'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 337

Using One Function Block Instance to Control Multiple Movements
A single function block instance (for example, from MC_MoveAbsolute) cannot be used to
control multiple buffered/blending movements as long as it is "Busy".
When a function block instance is Busy, the command for a new buffered or blended movement
with this instance results in the error SMC_MORE_THAN_ONE_MOVEMENT_PER_INSTANCE.

To command multiple buffered or blended movements of the same type in a short order, multiple
function module instances are required.
See also
● linktarget [CODESYS_Softmotion] doesn't exist but @y.link.required='true'

Behavior in Case of Error
If an axis error occurs (for example, the axis switches to the state errorstop), the active
movement will report an error along with all other accepted movements.
If an FB error occurs in the function block of an active movement, then all movements accepted
later also report an error. This is in contrast to PLCopen, Section 2.2.2, in which subsequent
commands will continue the execution after an FB error.
See also
● linktarget [CODESYS_Softmotion] doesn't exist but @y.link.required='true'

Execution Order of Movement Function Blocks
When buffered movements or blending movements are commanded, the function block instance
that commands the subsequent movement must not be executed earlier than the function block
instance that commanded the previous movement.
If this order is violated, then the new error SMC_MOVING_WITHOUT_ACTIVE_MOVEMENT is
reported and the axis switches to the state Errorstop.

See also
● linktarget [CODESYS_Softmotion] doesn't exist but @y.link.required='true'

Behavior in the Case of Buffered Movements
When a buffered movement is commanded after MC_MoveAbsolute or MC_MoveRelative,
the buffered movement is active in the same cycle where the previous movement reports Done
and reaches the velocity 0. However, the interpolation of the buffered movement does not start
until the next cycle, so that the velocity of the axis at the end of the cycle is equal to 0.
See also
● linktarget [CODESYS_Softmotion] doesn't exist but @y.link.required='true'

Behavior in the Case of Blending
A basic property of the blending behavior of Motion Solution is that the axis moves along the
same positions during blending as during a buffered movement. The only difference is the
velocity along these positions.
This is obvious for simple cases. See the following example for this:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US338

There are cases in which the property of traversing the same positions by the axis independ-
ently of the buffer mode influences the effective blending velocity between the two movements.
This is the case, for example, if the above example is modified so that the maximum velocity of
the second movement is so high that it cannot be reached at the blending position. According to
the rules described in PLCopen, the blending velocity should be 500 u/s. However, to achieve
this velocity at position 100 u, the axis would have to reverse, move in the negative direction
to a position less than 0 u, and then accelerate to 500 u/s. Instead, in such cases the effective
blending velocity is limited to the maximum velocity that can be achieved without reversal and
position overshoot. In this example, the maximum velocity is 447 u/s.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 339

The following rules for the effective blending velocity result from the property that the buffer
mode does not change the driven positions:
● If the blending velocity cannot be reached without position overshoot, then the effective

blending velocity is the next possible velocity that can be reached without overshoot (see
example above).
Note: The effective blending velocity can be higher or lower than the blending velocity.

● If the direction at the beginning of the second movement is opposite to the direction of the
first movement, then the effective blending velocity is set to 0. This prevents the position
from overshooting in the direction of the first movement beyond its target position.

● If the path of the second movement is too short to allow deceleration from the blending
velocity to standstill, then the effective blending velocity is adjusted. It is set to the maximum
velocity that allows for safe braking to a standstill on the path of the second movement.

● In the case of modulo axes, the effect of the input Direction of MC_MoveAbsolute is not
affected by blending to a second movement. This means that the target position of the first
movement is always in the same modulo period, regardless of whether or not a blending
movement follows.

● In the case of modulo axes and a second movement of type MC_MoveAbsolute, the
blending velocity does not affect the modulo period of the target position of the second
movement when Direction = fastest is used. This means that the same target period
is selected regardless of whether the second movement is commanded with Buffered or
Blending.

See also
● linktarget [CODESYS_Softmotion] doesn't exist but @y.link.required='true'

Behavior of MC_MoveSuperimposed
If MC_MoveSuperimposed is active and the underlying movement is aborted, then
MC_MoveSuperimposed is also aborted.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US340

If the underlying movement is not aborted, but rather another movement is commanded with
the mode Buffered or one of the modes of the blending buffer mode, then the behavior
is as follows:MC_MoveSuperimposed is not aborted when the blending begins or the new
movement is active. Instead, MC_MoveSuperimposed is continued in the background until it is
done.
If an MC_MoveAbsolute assigned with buffered mode or a blending mode is commanded
while an MC_MoveSuperimposed is active, then the resulting end position depends on the
status of MC_MoveSuperimposed at the time when the MC_MoveAbsolute is active. If
MC_MoveSuperimposed is still active at this time, then the resulting end position is the sum
for the position of MC_MoveAbsolute and the path of MC_MoveSuperimposed. On the other
hand, if MC_MoveSuperimposed is no longer active at this time, then the resulting end posi-
tion is the position of MC_MoveAbsolute without the distance of MC_MoveSuperimposed.
In a similar way, the resulting velocity of MC_MoveVelocity depends on the status of
MC_MoveSuperimposed when MC_MoveVelocity is active.

The curve below shows an MC_MoveSuperimposed (“sup” function block) parallel to three
absolute movements with blending buffer mode BlendingHigh. The first and second move-
ments are commanded with a velocity of 100 u/s with the function blocks “ma0” and “ma1”. The
function block “ma2” commands the third movement with a velocity of 120 u/s. The first target
position is 10 u, the second is 25 u, and the third is 40 u. The velocity of the superimposed
movement is 20, and the distance is 10. The resulting position is 50 u: the position of the last
absolute movement plus the path of MC_MoveSuperimposed.

See also
● linktarget [CODESYS_Softmotion] doesn't exist but @y.link.required='true'

● MC_MoveSuperImposed (FB)

Examples of Use
1.4.1.8.23.2.1 Controlling a Cam Drive with a Virtual Time Axis...................... 341
1.4.1.8.23.2.2 Alternating Cams... 344

Controlling a Cam Drive with a Virtual Time Axis
Refer to the sample project PLCopenMulti.project in the installation directory of
CODESYS.
This example demonstrates how to implement a periodic cam on a linear drive. The example
also demonstrates how to use the tappet function.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 341

ms-its:SM3_Basic.chm::/74YgxSD47ycAkED81whSoB9i6wQ/MC_MoveSuperImposed.html

1. Insert a cam named Example in the device tree below “Application”. Open the cam in the
editor.

2. Define a tappet in the “Tappet” tab.
● “X”: 8.0
● “Positive pass”: Invert
● “Negative pass”: Invert

3. Insert a virtual drive named Drive in the device tree below “SoftMotion General Axis
Pool”. For this axis, select the axis type “Modulo” with a modulo value of 360.

4. Insert another virtual drive named Virtual. For this axis, select the axis type “Modulo”
with a modulo value of 10.

5. Create a “MOTION_PRG” program in CFC.

PROGRAM MOTION_PRG
VAR
 power1, power2: MC_Power;
 TableSelect: MC_CamTableSelect;
 CamIn: MC_CamIn;
 Tappet: SMC_GetTappetValue;
 MoveVirtual: MC_MoveVelocity;
END_VAR

6. Insert a box element and assign the variable power1 to it. The box element is used for
switching on the Drive.

Configure the inputs as follows:
● “Axis”: Drive
● “Enable”: TRUE
● “bRegulatorOn”: TRUE
● “bDriveStart” TRUE

7. Insert a box element and assign the variable power2 to it. The box element is used for
switching on the Virtual drive.

Configure the inputs as follows:
● “Axis”: Virtual
● “Enable”: TRUE
● “bRegulatorOn”: TRUE
● “bDriveStart” TRUE

8. Insert a box element and assign the variable MoveVirtual to it. The box element is used
for moving the virtual master.
Configure the inputs as follows:
● “Axis”: Virtual
● “Execute”: power2.Status
● “Velocity”: 2
● “Acceleration” 10
● “Deceleration” 10
● “Direction” positive

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US342

9. Insert a box element and assign the variable TableSelect to it. The box element is used
for selecting a cam.
Configure the inputs as follows:
● “Master”: Virtual
● “Slave”: Drive
● “CamTable”: Example
● “Execute” TRUE
● “Periodic” TRUE
● “MasterAbsolute” TRUE
● “SlaveAbsolute” TRUE

10. Insert a box element and assign the variable CamIn to it. The box element implements the
selected cam plate.
Configure the inputs as follows:
● “Master”: Virtual
● “Slave”: Drive
● “Execute” power1.Status
● “MasterOffset”: 0
● “SlaveOffset”: 0
● “MasterScaling”: 1
● “SlaveScaling”: 1
● “StartMode”: absolute
● “CamTableID”: TableSelect.CamTableID
● “VelocityDiff”: 1
● “Acceleration”: 1
● “Deceleration”: 1
● “TappetHysteresis”: 1

11. Insert a box element and assign the variable Tappet to it. The box element checks the
setting of the cam switch.
Configure the inputs as follows:
● “Tappets”: CamIn.Tappets
● “iID”: 1
● “bInitValue” FALSE
● “bSetInitValueAtReset”: FALSE
ð The tappet is defined as an inverting tappet. For this reason, its value is changed

every 10 seconds.
12. The sample project provides a visualization for checking the individual function blocks and

the position of the axes.
13. Add the call of the MOTION_PRG program to the task “MainTask”.

14. Load the project to the controller and start it.

See also
● linktarget [_sm_edt_drive_general] doesn't exist but @y.link.required='true'

● MC_Power
● MC_CamTableSelect
● MC_CamIn
● SMC_GetTappetValue
● MC_MoveVelocity

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 343

ms-its:SM3_Basic.chm::/yMh8bsZYTxWN3bfJc4A4zjmoLqc/MC_Power.html
ms-its:SM3_Basic.chm::/fR9xNjosAsbspGTv-8BkJ1A1K0E/MC_CamTableSelect.html
ms-its:SM3_Basic.chm::/fR9xNjosAsbspGTv-8BkJ1A1K0E/MC_CamIn.html
ms-its:SM3_Basic.chm::/AHrMjZzMH1J3UecTYM9NX4Rdytk/SMC_GetTappetValue.html
ms-its:SM3_Basic.chm::/yMh8bsZYTxWN3bfJc4A4zjmoLqc/MC_MoveVelocity.html

Alternating Cams
Refer to the sample project PLCopenMultiCAM.project in the installation directory of
CODESYS.
This example demonstrates how a cam movement can be created with two alternating cams.
The program is implemented in ST and executes the same actions as the sample "Cam
Drive Control using a Virtual Time Axis". At the end of the first cam, the MC_CamIn func-
tion block sets the EndOfProfile output. In this way, the other curve table is assigned to
MC_CamTableSelect and MC_CamIn is restarted.

Reference
1.4.1.8.23.3.1 User Interface.. 344

User Interface
1.4.1.8.23.3.1.1 Objects... 344
1.4.1.8.23.3.1.2 Commands... 350

Objects
1.4.1.8.23.3.1.1.1 Object 'Cam Table'... 344

Object 'Cam Table'
1.4.1.8.23.3.1.1.1.1 Tab 'Cam'.. 344
1.4.1.8.23.3.1.1.1.2 Tab 'Cam table'... 345
1.4.1.8.23.3.1.1.1.3 Tab 'Tappets'... 346
1.4.1.8.23.3.1.1.1.4 Tab 'Tappet table'.. 347
1.4.1.8.23.3.1.1.1.5 Dialog 'Properties - 'Cam'... 348

Tab 'Cam'
In this graphical editor, the cam graphs are defined. You can switch between the graphical editor
and the alternative tabular editor at any time (“Cam table tab” tab).
The editor window displays the curves of four graphs:
● Slave position (black)
● Slave velocity (blue)
● Slave acceleration (green)
● Slave jerk (yellow)
The horizontal axis of all four coordinate systems shows the range of the master values
([0,360]). The vertical axis in the position diagram shows the value range that is defined in
the cam properties. The vertical axis of velocity, acceleration, and jerk is scaled automatically.
A new inserted cam is assigned with default values. It consists of four points that subdivide the
graph into three sections: [0,120], [120,240], and [240,360]. Each of the interval parts of the
cam graphs is type Poly5 (5th degree polynomial).
You can modify all curves, except the jerk curve. As velocity, acceleration, and jerk are derived
curves, changes to one graph causes changes to the other graphs.
You change the height of the diagram by moving the horizontal separation bars.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US344

Table 14: “View 'ToolBox'”
: “Select” Select a line in the table by using this tool.

Selected points are deleted by pressing the [Del] key.

 “Add point” Add new points with this tool. Click the insertion point in the diagram. The graph
is then adapted automatically so that its curve runs through the new inserted
point.

Table 15: “View 'Properties'”
X X-position of the slave axis

Y Y-position of the slave axis

V Velocity of the slave axis

A Acceleration of the slave axis

J Jerk of the slave axis

See also
● Ä Chapter 1.4.1.8.23.3.1.1.1.5 “Dialog 'Properties - 'Cam'” on page 348
● Ä Chapter 1.4.1.8.23.1.1.3 “Creating Cams” on page 319

Tab 'Cam table'
The cam table is an alternative to the graphical editor for defining the cam graphs (“Cam” tab).
You can switch between the table editor and the graphical editor at any time.
The first line of the table always contains the start position of the master (and the related slave
values) and the last line is always the end position. The lines in-between alternately define
segments and points.

Table 16
Inserts a new line.

Deletes the selected segment

“X” X-position of the slave axis

“Y” Y-position of the slave axis

“V” Velocity of the slave axis

“A” Acceleration of the slave axis

“J” Jerk of the slave axis

“Segment type” ● “Poly5”: 5th degree polynomial
● “Line”
● Linear

The following values result from the values of the respective segment. They cannot be modified.

min(Position) Minimum value of the slave position

max(Position) Maximum value of the slave position

max(Velocity) Maximum value of the velocity of the slave, based on the master axis

max(Acceleration) Maximum value of the acceleration of the slave, based on the master axis

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 345

Table 17: “View 'ToolBox'”
: “Select” Select a line in the table by using this tool.

Selected points are deleted by pressing the [Del] key.

See also
● Ä Chapter 1.4.1.8.23.3.1.1.1.5 “Dialog 'Properties - 'Cam'” on page 348
● Ä Chapter 1.4.1.8.23.1.1.3 “Creating Cams” on page 319

Tab 'Tappets'
The tappet paths are defined in this table graphical editor. A tappet path defines one or more
tappets depending on the master position. At the upper edge of the editor window, a horizontal
axis approaches the range of the master positions. The individual tappet paths are defined
below.
You can switch between the graphical editor and the alternative tabular editor at any time
(“Tappet table” tab).

Table 18
Track ID of the tappet path
All tappets of a tappet path refer to the same tappet switch (a variable of type
BOOL).

Table 19: “View 'ToolBox'”
: “Select” Select the tappets by means of this tool. You can drag the selected tappets to

another position.
You can modify the switch on/off attribute of a tappet by clicking the relevant end
of the crossed line ().
Delete the selected tappet by pressing the [Del] key.

Add new tappets with this tool. Click the insertion point in the path.

Table 20: “View 'Properties'”
the tappet is assigned to a result, if it is passed from the position of the master axis in the positive (increasing
master values) or negative direction.

“X” Position of the tappet

“Positive pass” Switch on/off attribute
● No action
● Switch to ON
● Switch to OFF
● Invert

“Negative pass” Switch on/off attribute
● No action
● Switch to ON
● Switch to OFF
● Invert

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US346

Table 21: Table of the possible combinations of tappet attributes
Tappet symbol Positive pass Negative pass

No action No action

Switch to ON No action

Switch to OFF No action

No action Switch to ON

No action Switch to OFF

Switch to ON Switch to OFF

Switch to ON Switch to OFF

Switch to OFF Switch to ON

Switch to OFF Switch to OFF

Invert No action

No action Invert

Switch to ON Invert

Invert Switch to ON

Invert Switch to OFF

Switch to OFF Invert

Invert Invert

See also
● Ä Chapter 1.4.1.8.23.1.1.5 “Defining Switch Points” on page 322

Tab 'Tappet table'
This tabular editor is an alternative to the graphical editor for configuring the tappet paths
(“Tappets” tab). A tappet path defines one or more tappets depending on the master position.
In the table, the lines with the definitions of the associated tappets follow below each line that
defines a tappet path.
You can switch between the table editor and the graphical editor at any time.

Table 22
Inserts a new tappet.

Deletes the tappet.

“Track ID” ID of the tappet path
All tappets of a tappet path refer to the same tappet switch (a variable of type
BOOL).

“X” Position of the tappet

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 347

“Positive pass” Switch on/off attribute
● No action
● Switch to ON
● Switch to OFF
● Invert

“Negative pass” Switch on/off attribute
● No action
● Switch to ON
● Switch to OFF
● Invert

Table 23: “View 'Properties'”
The tappet is assigned to a result, if it is passed from the position of the master axis in the positive (increasing
master values) or negative direction.

“X” Position of the tappet

“Positive pass” Switch on/off attribute
● No action
● Switch to ON
● Switch to OFF
● Invert

“Negative pass” Switch on/off attribute
● No action
● Switch to ON
● Switch to OFF
● Invert

See also
● Ä Chapter 1.4.1.8.23.1.1.5 “Defining Switch Points” on page 322

Dialog 'Properties - 'Cam'
Function: Use this dialog to define the global variables of the cam.

Table 24: “Dimensions”
“Master start/end position” The start and end positions of the master define the range of the master values

and therefore the scale of the horizontal axis of the cam. The default settings are
given in angular degrees with 0 and 360 as limiting values.

“Slave start/end position” The associated slave positions are determined by the graph type that is defined
for the cam. However, the segment depicted by the curves (this is also the scale
of the vertical axis) can be defined by the start and end positions of the slave
that are given here.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US348

Table 25: “Period”
These settings affect the work in the cam editor and cam table. Depending on these parameters, the slave start
point is adjusted automatically when the end point is changed, as well as the other way around. This adjustment
optimizes the period transition to be as smooth and jerk-free as possible.

“Smooth transition” : The values for position, velocity, and acceleration are adjusted automatically.

“Slave period” Indicates when the slave period is repeated mechanically. Then the slave posi-
tion at the start and end of the master period can deviate by one integer multiple
of this value.
This value is effective only if the “Smooth transition” check box is selected.

Table 26: “Continuity requirements”
Activation of these options for the continuity of the curve does not have any effect when editing the cam. It does,
however, prompt a continuity check, which reports any violations to the message view (CAM). It is not possible to
edit jumps in the position curve. The default setting also requires the continuity of velocity and acceleration. You
can clear these options, for example in the special case of a curve that consists of only linear segments. However,
this can lead to breaks in the position curve. By default, the jerk (4th derivative) is not tested for jumps.

“Position”

: The entire curve is tested for jumps.
“Velocity”

“Acceleration”

“Jerk”

Table 27: “Compile format”
When compiling, MC_CAM_REF structure variables are generated. A cam is described according to the following
options:

“Polynomial (XYVA)” Polynomial description of the individual points, consisting of master position,
slave position, slave velocity, and slave acceleration.

“One-dimensional point array” 1D table of slave positions

“Two-dimensional point array” 2D table of composite master/slave positions

“Elements” Number of elements in the arrays. This array has already been created in
SM3_Basic for the standard cases “128” and “256”. If you type in another value,
you must create the structure in your application (see the following example).

TYPE SMC_CAMTable_LREAL_720_2 :
STRUCT
 Table: ARRAY[0..719] OF ARRAY[0..1] OF LREAL;
 fEditorMasterMin, fEditorMasterMax: REAL;
 fEditorSlaveMin, fEditorSlaveMax: REAL;
 fTableMasterMin, fTableMasterMax: REAL;
 fTableSlaveMin, fTableSlaveMax: REAL;
END_STRUCT
END_TYPE

Example of an
array with 720
elements

See also
● Ä Chapter 1.4.1.8.23.1.1.3 “Creating Cams” on page 319

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 349

Commands
1.4.1.8.23.3.1.2.1 Cam... 350

Cam
1.4.1.8.23.3.1.2.1.1 Command 'Display generated code'................................. 350
1.4.1.8.23.3.1.2.1.2 Command 'Read cam data from ASCII table'................... 350
1.4.1.8.23.3.1.2.1.3 Command 'Read cam online file'...................................... 351
1.4.1.8.23.3.1.2.1.4 Command 'Write cam data to ASCII table'....................... 351
1.4.1.8.23.3.1.2.1.5 Command 'Write cam online file'...................................... 352

Command 'Display generated code'
Function: This command opens the “Generated code” dialog where the IEC initialization code
of the represented cam is displayed.
Call: Menu bar: “Cam”.
Requirement: The cam editor is open and displays a cam.

{attribute 'linkalways'}

VAR_GLOBAL
Cam_A: ARRAY[0..3] OF SMC_CAMXYVA := [
 (dX := 0, dY := 0, dV := 0, dA := 0),
 (dX := 120, dY := 120, dV := 1, dA := 0),
 (dX := 240, dY := 240, dV := 1, dA := 0),
 (dX := 360, dY := 360, dV := 0, dA := 0)];
Cam: MC_CAM_REF := (nElements := 4, byType := 3, xStart := 0,
xEnd := 360, nTappets := 0, strCAMName := 'Cam', pce := ADR(Cam_A),
xPartofLM := TRUE);
END_VAR

Example: IEC
initialization
code

Command 'Read cam data from ASCII table'
Function: This command reads an ASCII file.

Call: Menu bar: “Cam”.
Requirement: The cam editor is open.
When being read, the file data is interpreted as the xy-values of a cam. The “Number of points”
opens so that you can decrease the number of interpolation points. Then the determined points
are interpolated to a cam and displayed in the editor.
The “Write cam data to ASCII table” commands creates an appropriate TXT file.

See also
● Ä Chapter 1.4.1.8.23.1.1.3 “Creating Cams” on page 319
● Ä Chapter 1.4.1.8.23.3.1.2.1.4 “Command 'Write cam data to ASCII table'” on page 351

Dialog 'Gener-
ated code'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US350

“Number of points” Number of points used for interpolation.
Preset: According to the number of xy-values that are stored in the read file.
Example: 256
You can decrease the preset value in order to determine the cam with fewer
interpolation points. When determining the interpolation points, their x-values are
distributed equidistantly.

As the cam is interpolated using a 5th degree polynomial, a larger number of
interpolation points may cause oscillations.

Command 'Read cam online file'
Function: This command reads an external file with cam data. The file extension is CAM. The
cam is displayed in the cam editor.
Call: Menu bar: “Cam”.
Requirement: The cam editor is open.
The “Write cam online file” command creates an appropriate file in CAM format.

See also
● Ä Chapter 1.4.1.8.23.3.1.2.1.5 “Command 'Write cam online file'” on page 352

Ä Chapter 1.4.1.8.23.1.1.1 “Definition of a SoftMotion Cam” on page 317

Command 'Write cam data to ASCII table'
Function: This command creates an ASCII file (TXT extension) on the development system.
A specified number of xy-values of the active cam is saved in this file. A standard dialog box
opens first and then the “Number of points” dialog box.
Call: Menu bar: “Cam”.
Requirement: The cam editor is open and displays a cam.
See also
● Ä Chapter 1.4.1.8.23.3.1.2.1.2 “Command 'Read cam data from ASCII table'” on page 350
● Ä Chapter 1.4.1.8.23.1.1.3 “Creating Cams” on page 319

The ASCII table does not contain any information about cams.

“Number of points” Number of xy-values that are saved in the file and represented in the curve
shape. For this purpose, the x-curve is split equidistantly and the respective
y-value is determined.

Dialog Box
'Number of
points'

Dialog Box
'Number of
points'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 351

Command 'Write cam online file'
Function: This command creates a file (CAM extension). The file contains the data of the cam
that is active in the editor.
Call: Menu bar: “Cam”.
Requirement: The cam editor is open and displays a cam.
The cam data is composed of a cam description and the positions and types of cams.
A CAM file can be read to the editor by means of the “Read cam online file” command.

In addition, an instance of the SMC_ReadCAM function block can read the file in order to load a
cam table into the application at runtime.
See also
● Ä Chapter 1.4.1.8.23.3.1.2.1.3 “ Command 'Read cam online file'” on page 351
● Ä Chapter 1.4.1.8.23.1.1.8 “Data Structure” on page 330
● Ä Chapter 1.4.1.8.23.1.1.3 “Creating Cams” on page 319

1.4.1.9 Working with Controller Networks
With the following functionalities, CODESYS supports communication between controllers
(PLC) and the insertion of a safety controller below a PLC:
● Symbol Configuration: CODESYS creates symbols with certain access rights for the varia-

bles in an application. With these symbols, you can access the variables from outside, for
example from an OPC server.

● Data Source Manager: Manages the connection settings and the data transmission to
remote devices (data sources). The transmitted data is mapped in data source variables
that are accessed in the visualization or local application. An example of this is a control
panel that controls remote devices and displays the state of the device as an HMI applica-
tion.

● Network Variables: Network variables are variables whose values are accessible to dif-
ferent controllers in the network. The variables have to be defined in rigid, identical lists in
both the transmitter device and the receiver device. These lists are assigned to applications,
but can be located in different projects.

● A safety controller can be inserted below a PLC in the device tree. The communication
links of the safety controller to the field devices, controller networks, and development
system are routed through this controller.

The “DataServer” object is obsolete.
The data link with CODESYS DataServer has already been superseded with
SP10 by a data link with data sources. With CODESYS 3.5 SP17, the function-
ality has now been completely removed.

In case you want to adapt an existing project with a “DataServer” object, you
can do the following: Open the existing project with CODESYS V3.5 SP16,
select the data server object, and click “Convert Data Server to Data Source
Manager” in the context menu. After the conversion of the data link to a data
source connection, you can open the project with a current CODESYS version.

See also
● Ä Chapter 1.4.1.9.2 “Symbol Configuration” on page 357
● Ä Chapter 1.4.1.9.4 “Data Link with Data Sources” on page 363
● Ä Chapter 1.4.1.9.3 “Network Variables” on page 360
● Ä Chapter 1.4.1.9.1.1 “Network topology” on page 353
● Ä Chapter 1.4.1.9.1.2 “Addressing and Routing” on page 353
● Ä Chapter 1.4.1.9.1.3 “Address Structures” on page 355
● Ä Chapter 1.4.1.9.5 “Subordinate safety controller” on page 378

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US352

1.4.1.9.1 Network and Addressing
Constructing a control network hierarchically, so that extensive self-configuration is possible.
In CODESYS the network topology is mapped to clear addresses and the routing algorithm
is kept simple by structured addresses. There is direct and relative addressing and automatic
address determination during the bootup of the system.
See also
● Ä Chapter 1.4.1.9.1.1 “Network topology” on page 353
● Ä Chapter 1.4.1.9.1.2 “Addressing and Routing” on page 353
● Ä Chapter 1.4.1.9.1.3 “Address Structures” on page 355

Network topology
It is recommended to set up a network system so that the following are possible:
● Extensive self-configuration (address assignment)
● Transparent support for every communication medium
● Transport of data packets between different networks
The routing mechanism should be so simple that each network node can reroute data packets,
even if it has a low memory capacity. Therefore, avoid extensive routing tables, complex calcu-
lations or queries at runtime.
Construct the control network hierarchically. Each node may possess a parent node and any
number of child nodes. A node without a parent is a "top level" node. Cycles are not permitted,
i.e. each control network has the structure of a tree.
Parent-child relationships results from the specification of certain network areas. A network
area can be, for example, a local Ethernet or a serial point-to-point connection. We differentiate
between the main network (mainnet) and the subnetworks (subnet). Each node belongs at the
most to one main network, to which its parent node, if one exists, also belongs. For each node
any desired number of subnets can be configured, for which the node acts in each case as a
parent.
A network area may have only one parent node. Therefore, a configuration in which a network
area is defined at the same time as a subnet of several nodes is invalid.
See also
● Ä Chapter 1.4.1.9.1.2 “Addressing and Routing” on page 353
● Ä Chapter 1.4.1.9.1.3 “Address Structures” on page 355

Addressing and Routing
Addressing means: the topology of the control network is mapped to unique addresses.
A node address is composed hierarchically: for each network connection the associated block
driver determines a local address, which uniquely identifies the node within the local network.
The complete node address is formed as follows: The local address is placed in front of the
subnet index of the local network assigned by the parent. In turn, the subnet index is placed
in front of the node address of the parent. The length of the subnet index (in bits) is thereby
determined by the device. The length of the local address, conversely, is determined by the type
of network. A node without a main network is a top level node with address 0. A node with a
main network that contains no parent is likewise a top level node. It is given the local address of
the main network.
See an example of a control network here:

Information and
recommenda-
tions for the
topology of a
control network

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 353

In the example the addresses of the nodes are represented in hexadecimal notation. The
first 4 digits represent the address of the respective parent in the main network, for example
0x007A=122 for PLC1. The next byte (in blue lettering) is reserved for the subnet index and
is followed by the local address, for example C=12 for node ID 12. The structuring of the
addresses makes a lean routing algorithm possible. Routing tables, for example, are thus
unnecessary. Information is queried only locally: via its own address and via the address of the
parent node. On this basis a node can correctly process the data packets:
● If the destination address corresponds to the address of the current node, then this is meant

to be the receiver.
● If the destination address starts with the address of the current node, then the data packet is

either meant directly for a child or for a descendant of the node and must be forwarded.
● In all other cases the receiver is not a descendant of the current node and the data packet

must be forwarded to its own parent.
Relative addressing is a special case: relative addresses do not contain the node number
of the receiver, but directly describe the path from the sender to the receiver. The principle
is similar to the relative path in the file system: the address consists of the number of steps
via which the packet must be transported upwards. These are the steps to the corresponding
parent and from the subsequent path downwards to the destination node.
The advantage of relative addressing is that two nodes in the same subtree can continue to
communicate if the complete subtree is shifted to another place in the entire network. Whereas
the absolute node addressing has to be modified due to this shift, the relative addressing is still
valid.
Address determination
For a node to know its own address it must either know the address of its parent node or know
that it is a top level node. For this purpose the node dispatches a message during the bootup
to all network devices for address determination. As long as it receives no response to this
message, the node considers itself to be a top level node, but continues to search for a possible
parent. A parent node responds by announcing its address. The node will thus independently
complete its address and will announce it to the subnets. An address determination can be
accomplished during the bootup or at the request of the PC used for programming.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US354

See also
● Ä Chapter 1.4.1.9.1.1 “Network topology” on page 353
● Ä Chapter 1.4.1.9.1.3 “Address Structures” on page 355

Address Structures
Network addresses represent a mapping of the addresses of the network type (for example IP)
to logical addresses within a control network. This mapping is carried out by the corresponding
block driver. The first three bytes of the IP address are identical for all network devices within
an Ethernet network with "Class C" IP addresses. Consequently, the last 8 bits of the IP
address suffice as network address, since they enable unambiguous mapping between the two
addresses on the block driver.
A node has a different network address for each network connection. Different network connec-
tions can have the same network address, since each address need only be locally unique.
Terminology: the network address in the main network is usually designated as the network
address of a node with no specification of the network connection.
The length of a network address is specified in bits and can be chosen by the block driver as
required. The same length must be used for all nodes within a network area. A network address
is represented by an array of bytes in accordance with the following coding:
● Length of the network address: n bits
● Necessary bytes: b = (n + 7) DIV 8
● The (n MOD 8) bits of lowest rank of the first byte and all others (n DIV 8) are used for the

network address.

Length: 11 bit
Address: 111 1000 1100

Example of
network
address coding

The node address indicates the absolute address of a node within a control network and is
therefore unique within the whole "network tree". The address is composed of up to 15 address
components, each of which occupies 2 bytes. The lower a node is located within the network
hierarchy, the longer its address.
The complete node address consists of the partial addresses of all preceding nodes and the
partial address of the node itself. Each partial address consists of one or more address compo-
nents. The length is therefore always a multiple of 2 bytes. The partial address of a node is
formed from the network address of the node in its main network and the subnet index of the
main network in the case of the parent node. The bits required for the subindex are determined
by the router of the parent node. Filler bits can be inserted between the subnet index and the
network address in order to ensure that the length of the partial address is a multiple of 2 bytes.
Special cases:
● A node without a main network: this means that there is neither a subnet index nor a

network address in the main network. In this case the address is set to 0x0000.
● A node in the main network without a parent: In this case a subnet index with the length 0

is assumed. The partial address corresponds to the network address, if necessary extended
by filler bits.

Network
addresses

Node addresses

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 355

Example of
node
addresses

The node address is always specified in hexadecimal. The individual address components (two
bytes in each case) are separated by a colon ":". Since this represents an array of bytes and
not a 16-bit value, the components are not displayed in the Intel format. For manually input
addresses, missing parts in an address component are supplemented by leading zeros: "274"
= "0274". In order to improve the legibility, the display should also always contain the leading
zeros.
Absolute and relative addresses
Communication between two nodes can be based on relative or absolute addresses. Absolute
addresses are identical to node addresses. Relative addresses specify a path from the sender
to the receiver. They consist of an address offset and the descending path to the receiver.
The (negative) address offset describes the number of address components by which a packet
must be passed upwards in the tree before it can be passed back down by the common parent
node. Since nodes can use partial addresses that consist of more than one component, the
number of parent components to be passed is always equal to the address offset. This means
that the demarcation between the parent nodes is no longer clear. For that reason the common
start of the address of the communication partners is used as the parent address. Each address
component is counted as an upward step, independent of the current parent node. Each error
resulting from this assumption can be detected by the corresponding parent node and must be
handled by it accordingly.
After achieving the common parent node the relative path, as an array of address components,
is followed downwards as usual. Formal: the node address of the receiver is formed by
removing the last address offset components from the node address of the sender and by
appending the relative path to the remaining address.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US356

In the following example each address component is represented by a letter; in each case a
dot separates nodes from each other. Since a node can carry several address components,
there are some in the example that are represented with several letters.
Node A: a.bc.d.ef.g
Node B: a.bc.i.j.kl.m
● Address of the lowest common parent: a.bc
● Relative address from A to B: -4/i.j.kl.m (The number 4 results from the 4 compo-

nents, d, e, f and g, which must pass on the data packet in the upward direction)

In order to guarantee correct operation of the routing, the relative address must be adapted
each time it passes an intermediate node. It is sufficient to adapt the address offset. This is
always done by the parent node: If a node receives a data packet from one of its subnets, the
address offset is increased by the length of the address component of this subnet.
● If the new address offset is < 0, then the data packet must be passed further upward.
● If the address offset is >= 0, then the data packet must be passed on to the child node

whose local address corresponds to the relative path, starting from the address offset.
First of all, however, the address offset must be increased by the length of the local
address of the child node, so that the child node sees the correct address.

A special situation results if the error mentioned above occurs during the determination of the
common parent node. In this case the address offset of the actual parent node is negative,
but this value is larger than the length of the partial address of the subnet from which the
packet originated. So that the next node sees a correct relative address in this case, the node
concerned must do the following: it must discover the error, calculate the local address of the
child node on the basis of the address of the predecessor node and the length difference,
and adapt the address offset accordingly. In this case, too, the address components as such
remain unchanged; only the offset is changed.

Example of the
formation of
node
addresses

There are two types of broadcast - global and local. A global broadcast is sent to all the nodes
in a network. The empty node address with a length of 0 is reserved for this purpose.
Local broadcasts are sent to all the devices in a network area. For this purpose, all the bits of
the network address are set to 1. This is permissible both in relative and in absolute addresses.
A block driver must be able to process both kinds of broadcast addresses. This means: empty
network addresses as well as network addresses whose bits were all set to 1 must be inter-
preted and sent to all devices concerned.

1.4.1.9.2 Symbol Configuration
Use the symbol configuration for preparing symbols with specific access rights for project varia-
bles. With these symbols, you can access the variables from outside, for example from an OPC
server. When generating code, CODESYS also generates a symbol file (*.xml) that includes the
description of the symbols.
The symbol file is stored in the project directory. The name of the symbol file is composed as
follows: <project name>.<device name>.<application name>.xml

proj_xy.PLC1.application.xmlExample

You can also generate the symbol file with the “Generate Code” command. This
is very useful when downloading to the PLC is not possible.

Broadcast
addresses

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 357

The variables that you export as symbols can be bundled in the symbol configuration editor
or defined in the variables declaration using the {attribute 'symbol'} pragma. Another
option is using the element in the SFC editor, where you can define the implicitly generated
element variables that should be exported to the symbol configuration.
The name of the symbol is generated in the symbol configuration in the following syntax:
<application name>.<POU name>.<variable name>. When accessing the variable, you
must always provide the complete symbol name in this syntax.

MyApplication.PLC_PRG.a or MyApplication.SymFB.aExample

As a rule, read-only access applies to symbols for input addresses and for
variables that are mapped to input channels. Write access is possible for testing
purposes in simulation mode only.

The symbol file is downloaded together with the application to the PLC. Depending on the
device description, this file can be generated as an additional (child) application. This appli-
cation is then listed on the “Application” tab of the device editor. Syntax: <application
name>._symbols. The symbol application is regarded as a "normal" application with respect to
the maximum number of applications on the PLC.
If your controller has a user management, then you can assign different access rights to a
symbol to the individual user groups (clients). To do this, place the same symbol in different
symbol sets and allow the individual user groups (clients) either to access a symbol set or not.
An on-site operator or an operating data record, for example, receives more information and
access to the same symbols as remote maintenance.
See also
● Ä Chapter 1.4.1.20.2.25 “Object 'Symbol Configuration'” on page 927
● Ä Chapter 1.4.1.19.6.2.41 “Attribute 'symbol'” on page 728
● Ä Chapter 1.4.1.19.6.2.44 “Effects of Pragmas on Symbols ” on page 729
● Ä Chapter 1.4.1.19.1.4.8.6 “SFC element properties” on page 493
● Ä Chapter 1.4.1.20.2.8.4 “Tab 'Applications'” on page 845
● Ä Chapter 1.4.1.20.3.6.23 “Command 'Simulation” on page 1044

Requirement: The project can be compiled without any errors.

1. Select the “Application” object in the device tree.
2. Click “Project è Add Object è Symbol Configuration”.

ð The “Symbol Configuration” object is added to the device tree and the objects editor
opens.

3. Open the “View” menu of the editor and activate the categories of variables that should be
provided in the configuration editor. Click “Build” in the symbol configuration editor.

ð All variables (according to the currently defined filter in the “View” menu) are displayed
in a tree structure.

4. Select the check boxes of individual variables.
Note: Pay attention to the current settings (see the “Settings” button in the menu bar of the
editor).

ð In the field below the menu bar of the editor, information is provided about the current
situation with accompanying instructions, as well as controls for corrective actions.

Creating a
symbol configu-
ration

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US358

5. Follow the prompt in the field below the menu bar. In the following case, this should be
only the information that the modified symbol configuration is transferred with the next
download or online change.
Click “Build è Generate Code” on the CODESYS menu bar.

ð The <project name>.<device name>.<application name>.xml file is gen-
erated in the project directory.

CODESYS transmits the symbol configuration to the PLC for an application download or online
change.
See also
● Ä Chapter 1.4.1.20.2.25 “Object 'Symbol Configuration'” on page 927

A symbol set is a defined set of symbols. If supported by the target device, you can combine
different symbol sets from the symbols of the application in the symbol configuration editor. The
information about the symbol sets is downloaded to the controller. Then you can define the user
group that has access to each symbol set. Rights are assigned on the “Symbol Rights” tab of
the device editor.
As a result, symbol sets allow different client-specific access rights to a symbol in the controller.
You can download changes to a symbol set definition to the controller in an online change.
When the application is deleted on the controller, the symbol sets are also deleted. When
building the application, you can create and save a symbol file in XML format for each symbol
set.
In the following section, you will see an example of steps for creating symbol sets and the
assignment of rights on the controller:
Requirements: The application has a defined symbol configuration in the project. The “Enable
symbol sets” option is enabled in the settings of the symbol configuration. The controller has a
user management. For the example here, there should be a user group that has the necessary
rights for the servicing of the plant. By default, this type of user group, named "Service", is
already created.
1. Define the connection to the controller in the “Communication Settings” of the device

editor.
2. Click the button in the editor of the “Symbol Configuration” in order to create a new

symbol set. Specify a name of the group ("Startup") in the “Add New Symbol Set” dialog.
3. Click the button (“Build”) in the toolbar of the dialog in order to display all symbols

available in the project. Select the users who should belong to the group. Save the project.
4. Click the “Configure Symbol Rights” button.

ð The “Symbol Rights” tab of the device editor opens.

5. Click the button (“Synchronization”) to synchronize the display of the symbol sets with
the device.

ð If you have not enabled user management on the controller yet, then you will see a
dialog in the “Users and Groups” tab prompting you to do it.

6. Click “OK” in the dialog and click the “Users and Groups” tab.

Click the button (“Synchronization”). Click “Yes” to confirm that user management
should be enabled.

ð The “Device User Logon” dialog opens.

7. Sign in. If this is the first login, use "Administrator" as the user name and password, and
then set a new password in the following dialog.

ð After the dialog is closed, the configurations of the device user management are
displayed in the “Users and Groups” and “Access Rights” tabs.

Creating symbol
sets with dif-
ferent access
rights for dif-
ferent control
clients

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 359

8. Log in to the controller by clicking “Online è Login”. Click “Yes” to the prompt of whether
or not the application should be downloaded to the device.

9. After successful login, click the “Symbol Rights” tab. Click the “Synchronization” button.

ð In “Symbol Sets”, you see all sets that have currently been downloaded for the
application (for this example, at least "startup"). In “Rights”, a table shows the user
groups that are created in the user management of the controller. In the example,
we assume that the default groups “Administrator” and “Service” have been created.
When a symbol set is selected on the left, you see on the right the access rights
of the individual user groups to this symbol set (: access granted; : access not
granted). The possible type of access is already defined for each symbol in the symbol
configuration (read, write, execute).

10. On the left, select the “Startup” symbol set and double-click the preset minus sign for
"Administrator" as well as for "Service".

ð The symbol changes into a plus sign. The "Administrator" and "Service" now have
access to the symbols in the “Startup” symbol set.

See also
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385

1.4.1.9.3 Network Variables
The values of network variables can be exchanged between different PLCs in a network. The
variables must be defined in strict, identical lists on both the sender device and receiver device,
and only one device application defines the network variables. The lists can be in one or more
projects.
The network variable list in the sender is a global variable list where specific log and transfer
parameters are defined in their object properties. By adding these properties, you create a
"network variable list (sender)" from an ordinary “GVL”. You can also insert a “Network
Variable List (Sender)” object directly into the device tree when this object already has these
parameters set.

The network variable list in the receiver is of type “Network Variable List (Receiver)”. When
creating one, select the respective network variable list of the server. As an alternative, you can
read this variable list from an export file that was generated from the sender list. An export file is
required anyway for defining the sender list in another project.
The network variables are transmitted as broadcasting in one direction only: sender to receiver.
However, it is also possible for a device to contain both sender and receiver lists.
For the NetVarUdp library version 3.5.7.0 and later, a receiver channel is no longer assigned
when confirmed transfer is not selected. In this way, network variable exchange is also possible
between two controllers on one hardware device .

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US360

NOTICE!
– If the exchanging devices should be senders and receivers, then the vari-

able list identifiers must be unique in order to prevent abnormal operation.
The variable list identifiers are defined in the “Properties” dialog of an object
GVL.

– Data exchange via network variables is not possible when:
– The device (target system) does not support it.
– A firewall blocks the communication.
– Another client or application is using the UDP port that is set in the

properties of the network variable list.
– More than one application per sender device and receiver device use

network variable lists.
– Only arrays that have limits defined with a literal or constant are transmitted

to the receiver application. Constant expressions are not permitted for this
purpose.
Example: "arrVar : ARRAY[0..g_iArraySize-1] OF INT ;" is not
transmitted, but "arrVar : ARRAY[0..10] OF INT ;" is transmitted.

– The maximum size of a network variable is 255 bytes. The possible number
of network variables is unlimited.

– If the size of the GVL exceeds the maximum length of the network telegram,
then the data is split into multiple telegrams. Depending on the configura-
tion, this can result in data inconsistencies.

Communication by means of network variables is also possible when the PLCs
operated with applications from different versions of the development system
(V2.3, V3). However, in this case, you cannot use the export/import mechanism
for matching the variable lists exactly in the sender and receiver projects. The
reason is that an variable export file (*.exp) that is generated from V2.3
does not include the required amount of information necessary for creating a
receiving NVL in V3. There is no respective network parameter configuration as
a GVL file, which you exported from the sender previously. To get this file, you
must recreate the V2.3 NVL in V3 first. Then you can generate an export file
and create a receiving NVL in V3 based on this.

An alternate to data exchange between PLCs is the use of data sources. As
opposed to the broadcasting method for exchanging network variables, defined
point-to-point connections are created between one application and a remote
data source.

See also
● Ä Chapter 1.4.1.20.4.10.11 “Dialog 'Properties' - 'Network Variables'” on page 1163
● Ä Chapter 1.4.1.20.2.10 “Object 'GVL' - Global Variable List” on page 871

Configuring a Network Variable Exchange
The following steps are necessary for exchanging network variables between the sender device
and receiver device.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 361

Requirements: An application is inserted in the device tree of the PLC that has been employed
as the sender device.

1. Select the application and insert a “Network Variable List (Sender)” object. Make the
following settings in the “Add Network Variable List (Sender)” dialog: network type: UDP,
example: "NVL_Sender".

2. Double-click the NVL object to open the respective editor and type the declarations of the
network variables. Example:
VAR_GLOBAL
iglobvar:INT;
bglobvar:BOOL;
strglobvar:STRING;
END_VAR

3. Right-click the NVL object in the device tree to open the “Properties”. In the “Properties”
dialog, open the “Network Variables” tab. This shows the following settings: Network type:
UDP; List identifier: 1; Pack variables; Cyclic transmission: every 50 ms.

4. Note: You can also convert an existing GVL into a network variable list by configuring its
network variable properties.

5. Click the “Link to File” tab.in the “Properties” dialog of the “NVL_Sender”. Define a file
name <export>.gvl and a location in the file system for the export file of the GVL.
Select the “Export before compile” option.

6. Click “Build è Generate Code” to compile the application.

The export file for the network variable list is now located in the defined folder.
See also
● Ä Chapter 1.4.1.20.4.10.11 “Dialog 'Properties' - 'Network Variables'” on page 1163

Requirements: A sender device and a receiver device exist in the device tree. An application
with a task configuration is inserted below the device. An NVL or a GVL is created below the
sender device as network variable list to be sent.

1. Select the application of the receiver in the device tree and click “Add Object è Network
Variable List (Receiver)”.

ð The “Add Network Variable List (Receiver)” dialog opens.

2. In the dialog, select the previously created NVL of the sender device and type a name (for
example, "NVL_Receiver"). CODESYS populates this receiver list automatically with
the variable declarations from the sender list.
Note: As an alternative, you can select the “Import from file” option and load the export file
that was generated previously from the sender list.

Requirements: A network variable list (sender) exists in the sender device, a network variable
list (receiver) exists in the receiver device, and both lists have identical variable declarations.

1. Below the application in the sender device, create a program that increments a network
variable. Example: iglobvar:=iglobvar+1;.

2. Configure the application task so that this program calls it.

1. Creating a
network variable
list in the
sender device
and generating
an export file

2. Creating an
associated net-
work variable
list in the
receiver device

3. Testing the
network variable
exchange

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US362

3. Below the application in the receiver device, create a program that writes the value of this
network variable to a local variable. Example: ilocalvar:=iglobvar;.

4. Configure the application task so that this program calls it.
5. Download both applications to the controllers and start them. (Set the application as

active, login, download, and start.)
6. In the online views of the editors of both programs, check whether the values of

iglobvar match in the receiver and the sender.

See also
● Ä Chapter 1.4.1.20.2.16 “Object 'Network Variable List (Sender)'” on page 880
● Ä Chapter 1.4.1.20.2.17 “Object 'Network Variable List (Receiver)'” on page 880

1.4.1.9.4 Data Link with Data Sources
In order to have read/write access to the remote devices and their running applications, you can
add a data source manager to your application with one or more data sources.
The functionality of the data source manager allows for establishing connections and communi-
cation to remote devices, and it makes its data available through data source variables. At this
time, the partners communicate by means of a point-to-point connection. Depending on the
network where the controllers are located, a connection is established via the CODESYS data
source types or CODESYS ApplicationV3.

The data source type CODESYS Symbolic is available only together with a CODESYS HMI
device. However, then it is advantageous to use this type.

Below a CODESYS HMI device, you can configure the data link either with
data source type CODESYS Symbolic or with data source type CODESYS
ApplicationV3. We recommend that you select the data source type CODESYS
ApplicationV3 only when there are no resources for the symbol configuration
available on the remote device. For example, this is the case with embedded or
mini PLCs whose applications often do not contain a symbol configuration.

The requirement for a connection setup is that symbols have been configured in the remote
device and as a result a symbol file exists. The application in the remote device has a symbol
configuration. Then the data link can take place via symbolic monitoring.
In the case of symbolic monitoring, the symbol file on the remote device is read and the stored
variable information is used for the data source variables and the data transfer. The advantage
is that the application does not have to be updated in the local device when someone modifies
the remote application without updating its symbol configuration. If the symbol file is also located
on your development system (either a file or a symbol configuration object as part of your
project), then the local symbol file can also be read. Then you can work offline during the
development phase.
During the development phase, you can create a variable list offline by means of local symbol
configuration files. In this way, you can develop a local application offline based on the symbol
information without a connection to a data source.
The following connection types are possible:
● “CODESYS V2”:

The devices exist in the same network. The V2 runtime on the remote PLC provides a
communication interface.

● “CODESYS V2 (Via gateway)”
The devices do not exist in the same network. They are connected via a V2 gateway.
Note: For this connection, a “CoDeSys V2.3 Gateway Server” (V2 gateway) has to be
installed on the development computer where CODESYS V3 is running.

Data source
type CODESYS
Symbolic

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 363

● “CODESYS V3”
The devices exist in the same network. The V3 runtime on the remote PLC provides a
communication interface.

● “CODESYS V3 (Via gateway)”:
The devices do not exist in the same network. They are connected via a V3 gateway.

This data source type is available below all device types.
The data link with CODESYS ApplicationV3 data source type in done by means of address
monitoring. This requires that the address information between the remote PLC and the local
device match. The runtime system of the local application needs valid communication parame-
ters in order to establish the connection.

The network scan function can support you when configuring the data source.

Disadvantage: If you modify the remote application, then you also have to update the local
application afterwards (for example, the HMI application.
The advantage is that a symbol configuration is not required in the remote application.

At runtime of the local application, the data source variables that appear in the data source
editor of the “Variables” tab are updated in configurable time intervals. The remote application
is also executed at this time. Variables that are configured in the visualization, in the trend, as
alarms, or for recipes are transferred and stored automatically. When a variable is accessed in
IEC code only, the variable is not updated automatically. In this case, you have to select the
“Update always” option in the data source editor of the “Variables” tab.
The data source types support the (read or write) data access to variables of the source PLC for
the following data types:
● Scalar value at top level

Example: PLC_PRG.hugo
● Property to a program or GVL by means of a call when it is marked with {attribute

monitoring := 'call'}.
Example: PLC_PRG.PropertyCall

● Variable which is mapped to bit addresses
Example in PLC_PRG: x AT %MX0.5 : BOOL;

● Variable (type BIT) in a function block
Example: Declaration in DUT: x, y : BIT, bit access: PLC_PRG.dutInst.y

● Structured obtainable variable
Example: PLC_PRG.outerInst.innerInst.dwVar

● Property to POU instance when it is marked with {attribute monitoring :=
'call'}.
Example: PLC_PRG.instance.PropertyCall

● Property at top level and to an instance when it is marked with {attribute
monitoring := 'variable'}.
Note: This cannot be written by monitoring or by the data sources.

● Array access with literal index
Example: PLC_PRG.arrOfInts[3], PLC_PRG.inst.arrOfBool[1]

● Nested access (for example, array of structures or structure of arrays)

Data source
type CODESYS
ApplicationV3

Data transmis-
sion

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US364

CAUTION!
Bit access used in visualizations that are transferred via a data source con-
nection function only if they contain literal offset specifications. A visualization
cannot process an offset specification by defined constants.

See also
● Ä Chapter 1.4.1.20.2.4 “Object 'Data Source Manager'” on page 821
● Ä “Dialog 'Add Data Source'” on page 822
● Ä Chapter 1.4.1.20.2.5 “Object 'Data Source'” on page 823

Initially Adding a Data Source
For data exchange between your local device and a remote device, add a “Data Source
Manager” object and then a “Data Source” below your application in the device tree. A wizard
guides you through the configuration of the data source. Afterwards, you can change the
settings at any time in the editor of the object. However, it is not possible to modify the data
source type later.

Use the “CODESYS Symbolic” data source type unless there are no resources
available in the remote PLC for a symbol configuration. As long as the symbol
configuration in the remote device is not impacted by an application change,
you have the advantage that the application in the local device does not have to
be updated.

When adding a data source, select a data source type. Then specify the connection settings of
the point-to-point connection to the remote device. Ideally, the remote device is running during
this time and CODESYS can establish the connection to it immediately. Then all available
data source variables from the remote PLC are displayed. Select the variables that should be
transferred. You can also select all variables. Then the data source is initialized automatically,
the data source variables are created below the “DataSources_Objects” folder, and another
data source is added below the data source manager.
If the data is transferred using symbolic monitoring and the symbol file is stored on your
development system, then you can read the variable information from the symbol file and work
offline. The symbol file is stored either as a file on your development system or as a symbol
configuration object as part of your project (in CODESYS).
The initial settings can be changed at any time in the data source editor.
See also
● Ä Chapter 1.4.1.20.2.4 “Object 'Data Source Manager'” on page 821

A “CODESYS Control Win V3” is running on the remote device. Moreover, an application is
running with a symbol configuration.

1. Below your application in the device tree, insert a “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source”.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Remote_Device

Initially con-
necting devices
symbolically via
'CODESYS V3'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 365

4. As the data source type, select “CODESYS Symbolic”.

ð The data transfer is done via symbolic monitoring. The “Initialize Data Source Wizard -
Provider settings” dialog opens.

5. As the connection type, select “CODESYS V3”.
6. For “Type of name or address”, select the “Node name” option.
7. In the “Connection Settings” group, specify the connection parameters for configuring the

remote device. Example: “[03A7)”

ð The connection to the remote device is established and the application is read. The
“Initialize Data Source Wizard - Browse data items” dialog also opens. The read
remote control variables are displayed in the tree view on the “Variables” entry. The
top node is the application, which is displayed with its remote application name.

8. In the tree view, select which control variables should be transferred. Then click “Finish”.

ð The data source is initially configured. The ds_Remote_Device object is added
below the “Data Source Manager” node. The object is open, and on the “Variables”
tab, the data source variables to be generated are displayed in the tree view. The GVL
ds_Remote_Device, where the data source variables are declared, is located below
the “DataSource_Objects” folder.

A “CODESYS Control Win V3” is running on the remote device. Moreover, an application is
running with a symbol configuration. The remote device exists in another network so that the
communication has to be routed via a gateway.

1. Below your application in the device tree, insert a “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source”.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Remote_Device
4. As the data source type, select “CODESYS Symbolic”.

ð The data transfer is done via symbolic monitoring. The “Initialize Data Source Wizard -
Provider settings” dialog opens.

5. As the connection type, select “CODESYS V3 (Via gateway)”.

ð You can also specify the communication parameters for the gateway.

6. For “Type of name or address”, select the “Node name” option.
7. In the “Connection Settings” group, specify the connection parameters for configuring the

remote device. Example: “[03A7)”

ð The connection to the remote device is established and the application is read. The
“Initialize Data Source Wizard - Browse data items” dialog also opens. The read
remote control variables are displayed in the tree view on the “Variables” entry. The
top node is the application, which is displayed with its remote application name.

8. In the tree view, select which control variables should be transferred. Then click “Finish”.

ð The data source is initially configured. The ds_Remote_Device object is added
below the “Data Source Manager” node. The object is open, and on the “Variables”
tab, the data source variables to be generated are displayed in the tree view. The GVL
ds_Remote_Device, where the data source variables are declared, is located below
the “DataSource_Objects” folder.

Initially con-
necting devices
symbolically via
'CODESYS V3
(Via gateway)'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US366

A “CoDeSys V2.3 SP PLCWinNT V2.4” is running on the remote device. Moreover, an applica-
tion is running with a symbol configuration.

1. Below your application in the device tree, insert a “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source”.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Remote_Device
4. As the data source type, select “CODESYS Symbolic”.

ð The data transfer is done via symbolic monitoring. The “Initialize Data Source Wizard -
Provider settings” dialog opens.

5. As the connection type, select “CODESYS V2”.
6. In the “Connection Settings” group, specify the connection parameters for configuring the

remote device.
Example: driver type TCP/IP (Level 2 Route), address localhost, port 1200
ð The connection to the remote device is established and the application is read. The

“Initialize Data Source Wizard - Browse data items” dialog also opens. The read
remote control variables are displayed in the tree view on the “Variables” entry.

7. In the tree view, select which control variables should be transferred. Then click “Finish”.

ð The data source is initially configured. The ds_Remote_Device object is added
below the “Data Source Manager” node. The object is open, and on the “Variables”
tab, the data source variables to be generated are displayed in the tree view. The GVL
ds_Remote_Device, where the data source variables are declared, is located below
the “DataSource_Objects” folder.

A “CoDeSys V2.3 SP PLCWinNT V2.4” is running on the remote device. Moreover, an applica-
tion is running with a symbol configuration. The remote device exists in another network so that
the communication has to be routed via a gateway.

1. Below your application in the device tree, insert a “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source”.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Remote_Device
4. As the data source type, select “CODESYS Symbolic”.

ð The data transfer is done via symbolic monitoring. The “Initialize Data Source Wizard -
Provider settings” dialog opens.

5. As the connection type, select “CODESYS V2 (Via gateway)”.

ð You can also specify the communication parameters for the gateway.

6. In the “Connection Settings” group, specify the connection parameters for both the
gateway and the device configuring the remote device.
Example: driver type TCP/IP (Level 2 Route), address localhost, port 1200
ð The connection to the remote device is established and the application is read. The

“Initialize Data Source Wizard - Browse data items” dialog opens. The remote control
variables are displayed in the tree view on the “Variables” entry.

Initially con-
necting devices
symbolically via
'CODESYS V2'

Initially con-
necting devices
symbolically via
'CODESYS V2
(Via gateway)'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 367

7. In the “Connection Settings” group, specify the connection parameters for configuring the
remote device. Example: “[03A7)”

ð The connection to the remote device is established and the application is read. The
“Initialize Data Source Wizard - Browse data items” dialog opens. The read remote
control variables are displayed in the tree view on the “Variables” entry. The top node
is the application, which is displayed with its remote application name.

8. In the tree view, select which control variables should be transferred. Then click “Finish”.

ð The data source is initially configured. The ds_Remote_Device object is added
below the “Data Source Manager” node. The object is open, and on the “Variables”
tab, the data source variables to be generated are displayed in the tree view. The GVL
ds_Remote_Device, where the data source variables are declared, is located below
the “DataSource_Objects” folder.

Ideally, the same symbol file on the remote device is saved on your development system.

1. Below your application in the device tree, insert a “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source” in the

context menu.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Symbols
4. As the data source type, select “CODESYS Symbolic”.

ð The data transfer is done via symbolic monitoring. The “Initialize Data Source Wizard -
Provider settings” dialog opens.

5. In “Variable information”, click the “From symbol file” entry.
6. In “Select symbol file”, specify the location and the file name of the symbol file. When the

code is generated, an XML symbol file is created in the project directory by default.

ð Example: D:\Projects\V3.5 SP11\Project_A.Device.Application.xml
Hint: When a symbol file is specified, no additional connection settings have to be
configured. A connection is not established. You are working offline. You have to
configure the connection settings only when you need current data from the controller
which is transferred online. In the “Variable information” settings, select the “From
connection settings” option.

7. Click the “Next” button.

ð The “Initialize Data Source Wizard - Browse data items” dialog opens. The read
symbols are displayed in the tree view on the “Variables” entry.

8. In the tree view, select the symbols to be transferred. Then click “Finish”.

ð The data source is initially configured. The ds_Symbols object is added below the
“Data Source Manager” node. The object is open, and on the “Variables” tab, the data
source variables that were generated based on the symbol file are displayed in the
tree view. The GVL ds_Symbols, where the data source variables are declared, is
located below the “DataSource_Objects” folder.

Your active project contains the control application for the remove device. The control applica-
tion includes a symbol configuration with symbols that are added to your local application as
data source variables.

Initially adding
data source var-
iables from a
symbol file

Initially adding
data source var-
iables from a
symbol configu-
ration

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US368

1. Below your local application in the device tree, insert the “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source”.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Symbols
4. As the data source type, select “CODESYS Symbolic”.

ð The data transfer is done via symbolic monitoring. The “Initialize Data Source Wizard -
Provider settings” dialog opens.

5. In “Variable information”, select the “<remote device>.<application>.symbol configuration”
entry.

ð Example: Device.Application.Symbol Configuration
Hint: When a symbol file is specified, no additional connection settings have to be
configured. A connection is not established. You are working offline.

6. Click the “Next” button.

ð The “Initialize Data Source Wizard - Browse data items” dialog opens. The read
symbols are displayed in the tree view on the “Variables” entry.

7. In the tree view, select the symbols to be transferred. Click “Finish”.

ð The data source is initially configured. The ds_Symbols object is added below the
“Data Source Manager” node. The object is open, and on the “Variables” tab, the
data source variables that were generated based on the symbol configuration are
displayed in the tree view. The GVL ds_Symbols, where the data source variables
are declared, is located below the “DataSource_Objects” folder.

A “CODESYS Control Win V3” is running on the remote device. The project of the remote
device is located on your development computer. The engineered application there does not
contain a symbol configuration.

Use this communication link only if there are no resources available in the
remote PLC for a symbol configuration.

1. Below your application in the device tree, insert a “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source”.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Remote_Device
4. As the data source type, select “CODESYS ApplicationV3”.

ð The data transfer is done by means of address monitoring. The “Initialize Data Source
Wizard - Provider settings” dialog opens.

5. For “Select the project type”, select the “Other Project” option.
6. For “Choose file”, specify the file and location of the project on the remote device.

Example: C:\Data\Projects\PLC_A.project.

ð The remote device is displayed in the tree view of the window below, and as a result
the connection was established.

7. Click the “From device” link.

ð The connection parameters to the remote device are read and displayed in the dialog.
The connection is configured.

Initially con-
necting devices
with address
monitoring

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 369

8. Click “Next>”.

ð The “Initialize Data Source Wizard - Browse data items” dialog opens. The remote
control variables are displayed in the tree view on the “Variables” entry.

9. In the tree view, select which control variables should be transferred. Then click “Finish”.

ð The data source is configured. A connection is established. The settings are stored in
the object and can be modified in the editor of the object.
The data source is initially configured. The ds_Remote_Device object is added
below the “Data Source Manager” node. The object is open, and on the “Variables”
tab, the data source variables to be generated are displayed in the tree view. The GVL
ds_Remote_Device, where the data source variables are declared, is located below
the “DataSource_Objects” folder.

See also
● Ä Chapter 1.4.1.20.2.5.3 “Tab 'Communication' via CODESYS Symbolic” on page 826
● Ä Chapter 1.4.1.20.2.5.4 “Tab 'Communication' via CODESYS ApplicationV3” on page 831

Editing data source variables
In runtime mode, the remote data is saved to the data source variables. The data source
variables and their mapping to the remote variables are displayed in the data source editor
below of the “Variables” tab. If the local and remote variables have the same names and the
same data types, then the data is mapped 1:1. The variables and the data types are created
automatically. That is the regular procedure.
You can also map to existing variables. This is necessary, for example, if a visualization includes
a data type in an interface. Then the same data must be passed to this visualization. In this
case, the declared local variable and the remote variable have the same data type, for example
from one library. Moreover, you can map a local variable with a conforming data type to a
remote variable. The data type can be created in the “Type Mappings” tab.
The specifically created variables and data types are declared in the “DataSources_Objects”
folder. For each data source, a global variable list of the same name as the data source is
declared there. Moreover, the data source variables usually have the identical or conforming
data type as the remote control variable and they are declared as user-defined data types (DUT
objects). Considering all data sources, multiple declaration of the same data types is avoided.
Do not edit the data interface in the “DataSources_Objects” folder manually. It is created initially
when adding a data source. Changes can be made later in the editor of the data source.
See also
● Ä Chapter 1.4.1.9 “Working with Controller Networks” on page 352
● Ä Chapter 1.4.1.9.4.4 “ Updating data interfaces” on page 373
● Ä Chapter 1.4.1.20.2.5.1 “Tab 'Variables'” on page 824

You can edit the selection of the data source variables.

Requirement: The remote device and its application are running. A data source manager
is already inserted below the local application with a data source.
1. Open the editor of the data source.
2. Select the “Variables” tab.
3. Click “Update Variables”.

ð The “Browse Variables” dialog opens.

Selecting varia-
bles for data
transfer

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US370

4. Activate the variables that should be transferred and click “OK” to close the dialog.

ð The data source variables are modified according to the selection. The declaration of
variables and data types is also modified.
The “Variables” tab shows the modified selection. Moreover, the mapped remote vari-
able is listed in the “Remote variable” column.

See also
● Ä Chapter 1.4.1.9 “Working with Controller Networks” on page 352
● Ä Chapter 1.4.1.9.4.4 “ Updating data interfaces” on page 373
● Ä Chapter 1.4.1.20.2.5.1 “Tab 'Variables'” on page 824

You need to map a remote variable to a global implicit variable that is created new. That is the
regular procedure for transposing data source to 1:1.

Requirement: A project is open. A data source manager and a data source below it are
located in the device tree of the local application.
1. Open the editor of the data source.
2. Select the “Variables” tab.

ð The data source variables are listed.

3. Select a variable and click the symbol in the “Create or map” column.
4. Specify a name in “Local variable”.

ð A variable is declared automatically and it contains the same value as the mapped
remote variable.

You need to map a remote variable to an existing variable.

Requirement: A data source manager and a data source below it are located in the device
tree of the local application. The remote data that should be transferred is displayed in the editor
of the data source in the “Variable” tab
1. Open the editor of the data source.
2. Select the “Variables” tab.
3. Select a variable and click the symbol in the “Create or map” column.

ð A variable contains the same value as the mapped remote variable.

First, create a conforming data type and then use it for a variable.

Requirement: A data source manager and a data source below it are located in the device
tree of the local application. The remote data that should be transferred is displayed in the editor
of the data source in the “Variable” tab
1. Open the editor of the data source.
2. Select the “Type Mappings” tab.

Mapping remote
variables to a
new variables

Mapping remote
variables to a
existing varia-
bles

Mapping remote
variables to
local variables
with a con-
forming data
type

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 371

3. Select the data type in the list that you want to edit.

ð The elements of the data type are listed in the window below the data type list

4. Specify a name for the data type. Example: DataType_A. Select the name for the remote
data types to which the local type should conform. Example: Library1.DataType_A.

5. Modify it in the window below the data type list and remove the elements that are not
necessary for the data transfer.

6. Select the symbol for this data type in the “Create or map” column.

ð The data type DataType_A is declared in the “DataSources_Objects” folder.

7. Select the “Variables” tab.
8. Specify a name in the “Local variable” column. Example: Var_A
9. Select the symbol in the “Create or map” column.
10. Specify the data type DataType_A in the “Mapping type” column.

11. Select the remote variable with the data that should be transferred. Example:
appPLC_A.Data_A. Use the input assistance for this.

ð A variable Var_A is declared automatically with the user-defined data type
DataType_A. During data transfer, it receives the data of the mapped remote vari-
ables.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US372

The example demonstrates how variables of the data source are created. At this time, new
variables are created, data is mapped to existing data types and their variables, and new data
types are created with type-conforming mapping.
The remote PLC uses POU instances from the SnakeUtil library and the HMI device
visualizes these POU instances. This is why the HMI application requires a variable in the
operating interface that has a data type appropriate for a visualization template. As a result,
the SnakeUtil library is linked integrated into the HMI application and the HMI variables
instantiate the SnakeUtil.SnakeVisu visualization function block.

The following library function blocks from the SnakeUtil library are used in the remote PLC.

● Function block SnakeUtil.Snake: Equipped with much logic and calling from external
functions.

● DUT SnakeUtil.PositionInfo: Two values (of the variables x and y)
● DUT: SnakeUtil.DrawingInfo: Image ID
● The SnakeUtil.SnakeVisu visualization function block with transfer parameter

SnakeUtil.Snake visualizes the Snake function block.

The following settings are entered in the editor of the “Type Mappings” tab:

In the visualization, a frame is inserted with a reference to SnakeUtil.SnakeVisu. This
expects to have the type SnakeUtil.Snake.

The data types SnakeUtil.PositionInfo and SnakeUtil.DrawingInfo are mapped to
existing data types (symbol in the “Create or map” column). The data types are small and
contain data only.
The SnakeUtil.Snake function block is very complex and calls external functions that are
not available in the HMI visualization. The function block with code is not required in the
visualization. You need a less extensive but compatible and conforming type in the HMI visuali-
zation. Therefore, do not create the original data type directly. Instead, first modify the original
data type and remove the unnecessary elements. Then create the new data type Snake by
selecting the symbol in the “Create or map” column.

Library
SnakeUtil

Editing Communication
You have added a “Data Source Manager” object and below it a “Data Source” object below
your application in the device tree. The connection parameters are displayed in the data source
editor of the “Communication” tab. You can modify it there.
The data source type and the current connection type are listed in the status bar. It is not
possible to modify the data source type later.
See also
● Ä Chapter 1.4.1.9.4.1 “Initially Adding a Data Source” on page 365
● Ä Chapter 1.4.1.20.2.5.3 “Tab 'Communication' via CODESYS Symbolic” on page 826
● Ä Chapter 1.4.1.20.2.5.4 “Tab 'Communication' via CODESYS ApplicationV3” on page 831

Updating data interfaces
The data source variables are updated cyclically in runtime mode. Only the data is updated that
either is used in the current visualization or has the property “Update always”.

Example

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 373

You can define the time interval. Moreover, you can define variables whose data is transferred
in each update interval, and therefore they are always update. To update variables that are not
used in the application code, you can implement an update programmatically with the help of
interface functions from the data source manager.

NOTICE!
If data traffic between the remote and local device is too high, then the update
rate is reduced automatically. This can lead to an incomplete transfer.

See also
● Ä Chapter 1.4.1.20.2.5.1 “Tab 'Variables'” on page 824

1. Open the editor of the data source.
2. Click the “General and Diagnosis” tab.
3. Specify a value in the “Update rate” field.

Example: 100
ð The data from the remote device to the local device is transferred every 100 ms.

See also
● Ä Chapter 1.4.1.20.2.5.6 “Tab 'General and Diagnosis'” on page 834

NOTICE!
Avoid updating too many variables always. Each update produces additional
data traffic at the connection between the remote and local devices. When data
traffic is too high, the update rate is reduced automatically. This can lead to an
incomplete transfer.

1. Open the editor of the data source.
2. Activate the option “Update always” for a variable.

ð The data of the variables is transferred at each update cycle, even when the data has
not changed.

See also
● Ä Further information on page 824

The data source manager provides interface functions in the Datasources library. If a data
source manager is integrated in the application code, then the global variable g_Datasources
is instantiated automatically. This provides access to the interface functions.
Then you can update individual variables that are not called in the active visualization.

Setting the
update rate

Selecting the
variable for 'Up-
date always'

Updating data
programmati-
cally

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US374

The variable ivar is activated and deactivated by means of methods from the Datasources
library so that its value is transferred. Furthermore, you can configure that the variable is
updated only over a defined duration in order to save transfer capacity.

//Synchronize with DatasourcesTask and block until access is
possible
//Regard the feedback in ERR_OK or in ERR_DE_MULTITASKING_LOCKED
g_Datasources.BeginDataConfiguration(TRUE);
// Activate variable
g_DataServer.UseData(ADR('RemoteDevice.Application.PLC_PRG.iVar'));
// Deactivate variable
//
g_DataServer.ReleaseData(ADR('RemoteDevice.Application.PLC_PRG.iVar'
));
g_DataServer.EndDataConfiguration();

The data configuration is started with BeginDataConfiguration(TRUE), thus initializing
the synchronization of the task DatasourceTask with the application task. The value TRUE
blocks the processing until the access to the variable is possible; FALSE repeats access
attempts without blocking. The return values ERR_OK and ERR_DS_MULTITASKING_LOCKED
provide feedback about the access attempts.
When synchronization is successful, the variable is activated by means of the UseData
method. Then the data configuration is completed with the EndDataConfiguration method
and the synchronization triggered again with the task DatasourceTask.

The ReleaseData method is used in the same way for deactivating the variable again at the
desired processing time.

Example

Using remote data
The variables that are listed in the data source editor of the “Variables” tab (and declared in the
“DataSources_Objects” folder) can be used in your application like IEC variables. For example,
you can visualize the variables.
If multiple data sources are available and therefore conflicts occur regarding unique variable
names, then you must specify the data source name as the prefix. If no conflicts occur, then this
is not necessary and you can map the variables without a data source prefix.
<data source name>.<function block name>.<variable name>

You need to show the variable value iTemp of a remote device in a visualization element of a
visualization in the local application (with the data source manager).
Initial situation: A data source dsRemotePLC is below the local data source manager where the
connection to the remote device is configured. In addition, the variable iTemp is selected in the
data source editor of the “Variables” tab.
1. Select the visualization element in the editor view. Select the properties “Text variables” -

“Text variable” in the “Properties” view.
2. Select the iTemp variable.

ð The variable mapping is qualified. Example: dsRemotePLC.PLC_PRG.iTemp.

3. Select the “Text” property of the visualization element and type in the following:
Temperature: %s
ð The value of the iTemp variable from the remote device RemoteDevice is displayed.

4. Download and start the remote application.
5. Download and start the local application.

ð The visualization starts and displays the actual value of iTemp.

Displaying vari-
able values from
the remote
device

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 375

NOTICE!
The visualization integrated in CODESYS does not display actual values of vari-
ables that are transferred by means of a data source connection. The integrated
visualization displays only the initialization values or the last otherwise delivered
values because they do not establish a connection to the data sources.

NOTICE!
If variables are used that are not called in the visualization code, then the
variables must be updated in the application code by means of functions from
the data source interface.

Establishing an Encrypted Connection of a Data Source OPC UA Client to an OPC UA Server
Requirement:
● An OPC UA Server is available. For a description of the OPC UA Server which is included in

the standard installation CODESYS, see the chapter "OPC UA Server".
● You have installed the CODESYS Security Agent add-on in CODESYS.
● CODESYS is open.
● The “Allow anonymous login” option is selected for your controller in the “Change

Communication Policy” dialog of the device editor (“Communication Settings” tab, “Change
Communication Policy” command, “Device” menu). Or the user management has been
explicitly disabled (for example, by switching to “Optional user management” in the “Change
Communication Policy” dialog) and then “Reset Origin”.

1. Start the OPC UA Server.
2. Create a new CODESYS project.
3. Add a “Data Source Manager” object to the application.
4. Add a “Data Source” “OPCUAClient” to the “Data Source Manager”.

ð The “Datasource” dialog opens.

5. In the “Datasource” dialog, specify the URI of the started OPC UA Server and select the
“Information Model Source”. When you select “Online” as the “Information Model Source”,
the OPC UA Client connects to the OPC UA Server and reads the information about which
variables and types exist. When you select “Offline”, the client reads the same information
from an installed information model and does not require a running OPC UA Server to do
this.

6. For “Message Security Mode”, select “Sign and Encrypt”.
Note: You should use “Message Security Mode” = “None” only in closed networks.

7. Click “Next”.Now the client scans the OPC UA Server to find the variables and types of the
OPC UA Server. The OPC UA Server has to be online to do this.

8. Now select one or more variables.

ð These variables can be exchanged later via encrypted communication between the
OPC UA Client and the OPC UA Server. For the variables, components are created in
the “Devices” view, in the “DataSources_Objects” folder. The variables can be used in
the application.

9. In the next steps, you create a certificate for the encrypted communication from the OPC
UA Client to the OPC UA Server.

10. Click “View è Security Screen”.
11. Select the “Devices” tab.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US376

12. Select the controller in the left view.

ð In the right view, all services of the controller are displayed which require a certificate.

13. Select the service “CmpOPCUAClient”.
14. Create a new certificate for the device. Click the icon.

ð The “Certificate Settings” dialog opens.

15. Define the certificate parameters and click “OK” to close the dialog.

ð The certificate is created on the controller.

16. Click the button and save the certificate to the local file directory of the OPC UA Server,
in the folder certs.

ð Now when you restart the OPC UA Server, it will recognize the client certificate. The
the server sends its certificate to the client. In the following steps, this certificate will be
made "trusted" to the client.

17. To do this, in the “Security Screen” view, on the “Devices” tab, click the “Certificates in
Quarantine” folder in the left area.

ð The certificate is displayed in the right area.

18. Drag this certificate to the “Trusted Certificates” folder.

ð Now the server certificate is "trusted" by the client.

19. Now when you connect to the controller and the application starts, the data source varia-
bles of the OPC UA Client can be exchanged with the OPC UA Server via the encrypted
connection.

See also
● Ä Chapter 1.4.1.20.2.5.5 “Tab 'Communication' via OPC UA Server” on page 834

Establishing an Encrypted Connection of a Data Source OPC UA Client to an OPC UA Server
Requirement:
● An OPC UA Server is available. For a description of the OPC UA Server which is included in

the standard installation CODESYS, see the chapter "OPC UA Server".
● You have installed the CODESYS Security Agent add-on in CODESYS.
● CODESYS is open.
● The “Allow anonymous login” option is selected for your controller in the “Change

Communication Policy” dialog of the device editor (“Communication Settings” tab, “Change
Communication Policy” command, “Device” menu). Or the user management has been
explicitly disabled (for example, by switching to “Optional user management” in the “Change
Communication Policy” dialog) and then “Reset Origin”.

1. Start the OPC UA Server.
2. Create a new CODESYS project.
3. Add a “Data Source Manager” object to the application.
4. Add a “Data Source” “OPCUAClient” to the “Data Source Manager”.

ð The “Datasource” dialog opens.

5. In the “Datasource” dialog, specify the URI of the started OPC UA Server and select the
“Information Model Source”. When you select “Online” as the “Information Model Source”,
the OPC UA Client connects to the OPC UA Server and reads the information about which
variables and types exist. When you select “Offline”, the client reads the same information
from an installed information model and does not require a running OPC UA Server to do
this.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 377

6. For “Message Security Mode”, select “Sign and Encrypt”.
Note: You should use “Message Security Mode” = “None” only in closed networks.

7. Click “Next”.Now the client scans the OPC UA Server to find the variables and types of the
OPC UA Server. The OPC UA Server has to be online to do this.

8. Now select one or more variables.

ð These variables can be exchanged later via encrypted communication between the
OPC UA Client and the OPC UA Server. For the variables, components are created in
the “Devices” view, in the “DataSources_Objects” folder. The variables can be used in
the application.

9. In the next steps, you create a certificate for the encrypted communication from the OPC
UA Client to the OPC UA Server.

10. Click “View è Security Screen”.
11. Select the “Devices” tab.
12. Select the controller in the left view.

ð In the right view, all services of the controller are displayed which require a certificate.

13. Select the service “CmpOPCUAClient”.
14. Create a new certificate for the device. Click the icon.

ð The “Certificate Settings” dialog opens.

15. Define the certificate parameters and click “OK” to close the dialog.

ð The certificate is created on the controller.

16. Click the button and save the certificate to the local file directory of the OPC UA Server,
in the folder certs.

ð Now when you restart the OPC UA Server, it will recognize the client certificate. The
the server sends its certificate to the client. In the following steps, this certificate will be
made "trusted" to the client.

17. To do this, in the “Security Screen” view, on the “Devices” tab, click the “Certificates in
Quarantine” folder in the left area.

ð The certificate is displayed in the right area.

18. Drag this certificate to the “Trusted Certificates” folder.

ð Now the server certificate is "trusted" by the client.

19. Now when you connect to the controller and the application starts, the data source varia-
bles of the OPC UA Client can be exchanged with the OPC UA Server via the encrypted
connection.

See also
● Ä Chapter 1.4.1.20.2.5.5 “Tab 'Communication' via OPC UA Server” on page 834

1.4.1.9.5 Subordinate safety controller
If a safety controller is below the standard controller, then the communication with the develop-
ment system and the data exchange run via the standard controller. The communication links
of the safety controller can interrupted the execution of commands that affect the standard
controller. You find a notice about this for each these command.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US378

Possible interruptions
● Temporary interruption: During the execution of the command (for example: download),

the connections with the safety controller are interrupted first and then are automatically
available again afterwards. If the interruption time is too long, then safety-oriented reactions
can occur in the output devices and connected network variable receiver safety controllers.
Then in the safety controller, the corresponding communication errors must be acknowl-
edged (if not done automatically) in order to end the safety-oriented reactions. This affects
the connection to their field devices and network variable receiver connections to other
sender safety controllers. In the case of a connected safety controller with network variable
senders, the communication errors must be acknowledged in the other safety controllers.

● Permanent interruption: The execution of commands (for example: delete) leads to an
interruption that is ended again by another action (for example: download). As a result of
the interruption, safety-oriented reactions can occur in the output devices and connected
network variable receiver safety controllers. After ending the interruption, the corresponding
communication errors must be acknowledged in the safety controller (if not done automati-
cally) in order to end the safety-oriented reactions.

For a subordinate safety controller, the routing runs via “<Name of SafetyApp>_Mapping”. In
some cases, it can happen that the user can see this application in the device tree.

CAUTION!
No commands may be executed in the application “<Name of
SafetyApp>_Mapping”.

● Ä Chapter 1.4.1.9 “Working with Controller Networks” on page 352

1.4.1.10 Downloading an Application to the PLC
1.4.1.10.1 Configuring the Connection to the PLC... 380
1.4.1.10.2 Encrypting Communication, Changing Security Settings................ 381
1.4.1.10.3 Handling of Device User Management.. 385
1.4.1.10.4 Generating Application Code.. 389
1.4.1.10.5 Downloading the application code, logging in, and starting the

PLC.. 391
1.4.1.10.6 Generating boot applications... 391
1.4.1.10.7 Downloading source code to and from the PLC.............................. 393

In order to transfer your application to the PLC, the program has to be compiled without any
errors and the connection settings for the PLC have to be set.

If the communication with the controller is encrypted and/or restricted to specific
users, then you need the respective certificates and permissions. See here:

– Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385
– Ä Chapter 1.4.1.8.17 “Encrypting an application” on page 294

You can edit the basic security policy for communication with the device in a
dialog on the “Communication Settings” tab of the device editor. See here:

– Ä Chapter 1.4.1.10.2 “Encrypting Communication, Changing Security Set-
tings” on page 381

When these requirements are fulfilled, the application is downloaded to the PLC at login.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 379

1.4.1.10.1 Configuring the Connection to the PLC
The connection to the controller is established by means of a gateway. This gateway can
be your development computer or another network computer connected to the controller. The
“Communication Settings” dialog is available for configuring the connection path. This dialog
opens automatically when you attempt to log in, but the communication settings have not been
configured yet.

If the communication with the controller is encrypted and secured by means of
user management, then you need a corresponding certificate and credentials
to establish the connection to the controller. In this case, see the relevant
instructions on the "Encrypting communication and Changing Security Settings"
help page.

Requirement: The project can be compiled without any errors. A programmable logic controller
(PLC) is inserted in the device tree. The use of a user management is required for the device,
but it is not enabled.
1. In the device tree, select the PLC and click “Project è Edit Object”.

ð The PLC opens in the editor.

2. Click the “Communication Settings” tab.
3. On the menu bar, click “Scan Network”.

ð The “Select Device” dialog opens. All available devices in the network are shown on
the left side.

4. Select the desired device and click “OK”.

ð A dialog prompt is displayed with the notice that a user management is required for
the device, but it is not enabled yet. You are prompted to enable the user management
if you want. The notice is displayed that in this case you have to create a new
administrator account and then log in as this user.

5. Click “Yes” to close the dialog prompt.

ð The “Add Device User” dialog opens to create an initial device administrator.

6. Define the credentials (“Name” and “Password”) for the device administrator. Select the
“Password can be changed by the user” option.

NOTICE!
Remember the seriousness of the password: From within the develop-
ment system, there is no way to access the controller again if you forget
the password.

Click “OK” to close the dialog.

ð The “Device User Logon” dialog opens.

7. Enter the credentials for the device administrator which you defined in the previous step.

ð The connection path for the PLC is set.

You can reset the communication settings view to the original view in the
CODESYS options of the device editor.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US380

See also
● Ä Chapter 1.4.1.10.2 “Encrypting Communication, Changing Security Settings” on page 381
● Ä Chapter 1.4.1.20.2.8.2 “Tab 'Communication Settings'” on page 840
● Ä Chapter 1.4.1.20.4.13.6 “Dialog 'Options' - 'Device Editor'” on page 1190

1.4.1.10.2 Encrypting Communication, Changing Security Settings

NOTICE!
Recommendations for data protection
In order to minimize the risk of data security violations, we recommend the
following organizational and technical actions for the system where your appli-
cations are running. Whenever possible, avoid exposing the PLC and control
networks to open networks and the Internet. Use additional data link layers
for protection, such as a VPN for remote access. Install firewall mechanisms.
Restrict access to authorized persons. Use high-strength passwords. Change
any default passwords regularly before and after commissioning.
Use the security features supported by CODESYS and the respective con-
troller, such as encryption of communication with the controller and intentionally
restricted user access.

Communication with the device can be protected by means of encryption and user management
on the device. You can change the current security preset on the “Communication Settings” tab
of the device editor.

Requirement: Encrypted communication with the controller and user management are
enforced on the controller. However, an individual password does not exist yet. A certificate
has not been installed on your computer and the connection to the controller has not been
configured yet.
1. In the device tree, double-click the controller.

ð The device editor opens.

2. Click the “Communication Settings” tab.
3. Click “Scan Network”.

Establishing a
connection to
the controller,
logging in,
installing a
trusted certifi-
cate for
encrypted com-
munication

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 381

4. Select a controller.

ð A dialog opens, informing you that the certificate of the device does not have a trusted
signature for communication. You are prompted whether or not to install this certificate
as trusted in the local "Controller Certificates" store on your computer, or accept a
session only for this one.

NOTICE!
A controller certificate installed in this way is valid for only 30 days.
This gives you time for the following long-term solutions:
– Creation of an additional self-signed certificate with a longer term

(for example, 365 days). You can do this on the security screen
if you have installed the CODESYS Security Agent, even if a
certificate already exists. Using the PLC shell of the device editor
is not a convenient workaround.
See below: "Configuring encrypted communication with a con-
troller certificate with a more long-term validity period"

– Importing a CA-signed certificate. This is currently only possible
via the PLC shell commands of the runtime. Therefore, we recom-
mend to use self-signed certificates first.

5. If you want to install the certificate, then select the first option and click “OK” to confirm the
dialog prompt.

ð The certificate is listed as trusted. After accepting the self-signed certificate for the first
time, you can establish an encrypted connection with the controller again and again
without further prompts.
A dialog prompt is displayed with the notice that a user management is required for
the device, but it is not enabled yet. You are prompted to enable the user management
if you want. The notice is displayed that in this case you have to create a new
administrator account and then log in as this user.

6. Click “Yes” to close the dialog prompt.

ð The “Add Device User” dialog opens to create an initial device administrator.

7. Create a device user in order to edit the user management as this user. In this case, only
the “Administrator” group is available. Specify a “Name” and “Password” for the user. The
password strength is displayed. Note also the set options regarding a password change.
By default, the password can be changed by the user at any time. Click “OK” to confirm.

ð The “Device User Logon” dialog opens.

8. Enter the credentials for the device administrator which you defined in the previous step.

ð You are logged in on the controller. On the “Users and Groups” tab, you can use the
 button to switch to synchronized mode. The device user management is displayed

there and you can edit it.
After you click “OK” to confirm, the device user management is displayed in the editor
view. It contains the user of the “Administrator” group who you just defined. The name
of this user is also displayed in the taskbar of the window as “Device User”.

9. All saved controller certificates (from Step 5) are stored in the local Windows Certifi-
cate Store on your computer. You can access this memory by means of the “Execute”,
certmgr.msc command.

ð All registered certificates for encrypted communication with controllers are listed here
in “Controller Certificates”.

Requirement: The CODESYS Security Agent add-on product is installed. You want to replace
the temporary certificate (as described above) acquired the first time you connected to the
protected controller with a certificate with a longer validity period.

Configuring a
controller certif-
icate with a
more long-term
validity period

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US382

In this case, the “Security Screen” view provides an additional tab: “Devices”. This allows for
the simple configuration of certificates for the encrypted communication with controllers. For
operation, see the help for CODESYS Security Agent: "Encrypted Communication with Devices
via Controller Certificates".

Choose this less convenient method when the CODESYS Security Agent is unavailable to you.
In this case, you can set up a certificate with a more long-term validity period for communication
encryption on the “PLC Shell” tab of the device editor.

Requirement: You are connected to the controller.
1. At first, you check if a qualified certificate is already on the controller. If no certificate is

available, then you create a new certificate.
Open the device editor by double-clicking the controller in the device tree, and select the
“PLC Shell” tab.

ð The tab appears with a blank display window. Below that is a command line.

2. Type the following command in the command line: cert-getapplist.

ð All used certificates are listed. The list includes information about the runtime compo-
nent and whether or not the certificate is available.

3. If a certificate still does not exist for the component CmpSecureChannel, then type the
following command in the input line:
cert-genselfsigned <number of the component in the applist>

4. Click the “Log” tab and then the refresh button ().

ð The display shows whether or not the certificate was generated successfully.

5. Change back again to the “PLC Shell” tab and type the command cert-getapplist.

ð The new certificate for the component CmpSecureChannel is displayed.

6. In the next two steps, activate encrypted communication in the security screen of
CODESYS.

7. Open the “Security Screen” by double-clicking in the status bar.
8. On the “User” tab, select the “Enforce encrypted communication” option in the “Security

Level” group.

ð The communication to all controllers is encrypted. If there is not a certificate on a
controller, then you cannot log in to it.
The connecting line between the development system, the gateway, and the controller
is displayed in yellow on the “Communication Settings” tab of the device editor of the
controller.

9. As an alternative to the “Enforce encrypted communication” option which applies to all
controllers, you can also define encrypted communication for specific controllers only. To
do this, select the “Communication Settings” tab in the editor of the respective controller.
Then click “Encrypted Communication” in the “Device” list box.

ð The communication with this controller is encrypted. If there is not a certificate on the
controller, then you cannot log in to it.
The connecting line between the development system, the gateway, and the controller
is displayed in yellow on the “Communication Settings” tab of the device editor of the
controller.

for encrypted
communication
by means of
CODESYS
Security Agent
(recommended)
Installing a con-
troller certificate
for encrypted
communication
via the PLC
shell of the
device editor

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 383

10. When you log in to the controller for the first time, a dialog opens with information that the
certificate of the controller is not signed by a trustworthy authority. In addition, the dialog
displays information about the certificate and prompts for you to install it as a trustworthy
certificate in the local store in the “Controller Certificates” folder.
When you confirm the dialog, the certificate is installed in the local store and you are
logged in to the controller.
In the future, communication with the controller will be encrypted automatically with this
control certificate.

11. To increase security for key exchange for controllers < V3.5 13.0, you can generate Diffie-
Hellman parameters on the controller. To do this, type the command cert-gendhparams
in the input line.
This is no longer required for controllers >= V3.5.13.0.

NOTICE!
Caution: Generating the Diffie-Hellman parameters can last for several
minutes or even several hours. However, this process must be executed
only one time for each controller. The Diffie-Hellman parameters increase
security for key exchange and for future attacks against encrypted data
recording.

Requirement: The connection to the device is established.
1. In the device tree, double-click the controller.

ð The device editor opens.

2. Click the “Communication Settings” tab.
3. Open the “Device” menu in the header of the editor. Click “Change Communication

Policy”.

ð The “Change Communication Policy” dialog opens.

4. In the upper part of the dialog, you can toggle between the “Optional encryption”,
“Enforced encryption”, and “No encryption” settings.

5. In the lower part of the dialog, you can toggle between the “Optional user management”
and “Enforced user management” settings.

Requirement: The device supports encrypted communication.
1. In the device tree, double-click the controller.

ð The device editor opens.

2. Click the “Communication Settings” tab.

Changing the
communication
policy (encryp-
tion, user man-
agement)

Enabling and
disabling
enforced
encrypted com-
munication

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US384

3. Open the “Device” menu in the header of the editor. Click “Encrypted Communication”.
The status toggles between enabled and disabled.

ð If the “Encrypted communication” option is selected, then the connection line between
the development system, the gateway, and the device is highlighted in the editor in
bold and in color in the graphical representation.

See also
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385
● Ä Chapter 1.4.1.8.17 “Encrypting an application” on page 294
● Ä “Encryption with certificates” on page 198

1.4.1.10.3 Handling of Device User Management

NOTICE!
Recommendations for data protection
In order to minimize the risk of data security violations, we recommend the
following organizational and technical actions for the system where your appli-
cations are running. Whenever possible, avoid exposing the PLC and control
networks to open networks and the Internet. Use additional data link layers
for protection, such as a VPN for remote access. Install firewall mechanisms.
Restrict access to authorized persons. Use high-strength passwords. Change
any default passwords regularly before and after commissioning.
Use the security features supported by CODESYS and the respective con-
troller, such as encryption of communication with the controller and intentionally
restricted user access.

For devices that support a device user management, the device editor includes the “Users
and Groups” tab and the “Access Rights”. When offered by the device, you can view the user
management for the device here as well as edit it in synchronization mode (not in online mode).
Here, you can grant or deny specific permissions on the controller to the defined user groups.
The device user management can already be set up in the device description.

Note the commands in the “Online è Security” menu. You can easily add, edit,
or remove a user account on the controller where you are currently logged in.

In order for the “Access Rights” tab to be available in the device editor, the
corresponding CODESYS option must be selected in the device editor and
unlocked in the device description. If the device editor is not available, then
contact the manufacturer of the controller.

In order to grant access rights to a user group, first the users and user groups have to be
configured on the “Users and Groups” tab of the device editor. User management first has
to be set up on the controller before access rights can be configured on it. In case the user
management of a device is not enabled yet, it can be enabled in the following way: Either by
switching to the synchronized mode on the “Users and Groups” tab, or by adding a new user by
means of the command “Online è Security è Add Device User”.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 385

For the CODESYS Control devices, a user management is enforced by default.

Access rights can be granted to groups only, not individual users. Therefore every user has to
be a member of a group.
Access rights can be granted for the following actions which are executed on the individual
objects of the controller:
● Add/Remove
● Modify
● View
● Execute
An object on the controller is usually assigned to just one controller component.
Each object can use all of the listed actions, but usually only the permissions for the following
actions are needed on an object:
● “View”
● “Modify”

The objects are organized in a tree structure. There are two root objects for the two kinds of
objects:
● “Runtime objects è Device”: In these objects, all objects are managed that have online

access in the controller and therefore have to control the access rights.
● “File system objects è /”: In these objects, the permissions can be granted to folders of the

current execution directory of the controller.
The child objects inherit the access rights from the root object (also “Device” or "“/”"). If a
permission of a user group is denied or explicitly granted to a parent object, then this affects all
child objects.
A single permission can be explicitly granted or denied (green plus sign or red minus sign),
or remain "neutral" (light gray character). Neutral means that the permission has been neither
explicitly granted nor denied. In this case, the permission of the parent object applies.
If no permission has been explicitly granted or denied in the entire hierarchy of the object, then
it is by definition denied. As a result, all permissions are initially denied (exception: the access
right for the “View” action). Initially, this permission is explicitly granted for every user group both
on the “Device” runtime object as well as on the "“/”" file system object. This allows read access
to all objects, unless it is explicitly denied in child objects.
For an overview table for the objects, see the "Tab 'Access Rights'" chapter.
See the following instructions for handling the editor for the device user management:

Requirement: The connection to the controller is configured. The controller supports a device
user management, but one is not active yet.

1. Double-click the controller device object in the device tree.

ð The device editor opens.

2. Click the “Users and Groups” tab.
3. Click .

ð A dialog opens prompting whether the device user management should be activated.

4. Click “Yes” to acknowledge the dialog prompt.

ð The “Add Device User” dialog opens.

General infor-
mation about
device user
management

First-time login
on the controller
in order to edit
or view its user
management

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US386

5. Now create a device user in order to edit the user management as this user. In this
case, only the “Administrator” group is available. Specify a “Name” and “Password” for the
user. The password strength is displayed. Note also the set options regarding a password
change. By default, the password can be changed by the user at any time. Click “OK” to
confirm.

ð The “Device User Logon” dialog opens.

6. Specify a “User name” and “Password” for the user who you just defined.

ð After you click “OK” to confirm, the device user management is displayed in the editor
view. It contains the user of the administrator group who you just defined. The name of
this user is also displayed in the taskbar of the window as “Device User”.

Requirement: The controller has a device user management. You have the corresponding
access data.

1. Double-click the controller device object in the device tree.

ð The device editor opens.

2. Click the “Users and Groups” tab.
3. Click (Synchronization) to load the user management configuration from the controller

to the editor. If you are not logged in to the device yet, then the “Device User Logon”
dialog opens for entering the user name and password.

ð The user management configuration of the device is shown in the editor.

4. In the “Users” view, click “Add”.

ð The “Add User” dialog opens.

5. Specify the name of the new user and assign the user to a group. This counts as the
user's minimum required default group. The user can be assigned to other groups later.
Define and confirm a “Password” for the user. Define whether the user can change the
password and whether the user has to change the password at the first login. Click “OK”
to confirm.

ð The new user appears in the “Users” view as a new node and in the “Groups” view as
a new subentry of the selected default group.

Requirement: The controller has a device user management. You have the corresponding
access data.

1. Double-click the controller device object in the device tree.

ð The device editor opens.

2. Click the “Access Rights” tab.

Setting up a
new user in the
user manage-
ment of the con-
troller

Changing of
access rights to
controller
objects in the
user manage-
ment of the con-
troller

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 387

3. Click (Synchronization) to load the rights management configuration from the controller
to the editor. If you are not logged in to the device yet, then the “Device User Logon”
dialog opens for entering the access data.

ð The access rights management configuration of the device is shown in the editor.

4. Select the object whose access right you want to change to the left in the object tree.

ð In the “Rights” view, a table shows the access rights to this object for all configured
user groups.

5. Double-click the right in the table that you want to change.

ð If the object has child objects, then a dialog prompts whether you want to modify the
permissions for the child objects.

6. Click “Yes” or “No” to close the prompt.

ð The permissions are switched from "allowed" to "not allowed" , or the other way
around. The symbol in the table cell changes accordingly. Explicitly set permissions
appear in the table as green or red symbols. Rights that are inherited from a parent
object appear as gray symbols.

In V3.5 SP16 and higher, a file (*.dum2) to be encrypted with a password is
used for exporting a user management.

1. Double-click the controller device object in the device tree.

ð The device editor opens.

2. Click the “Users and Groups” tab.
3. Click .

ð The dialog for selecting a file from the local file system opens.

4. Select the file (<file name>.dum2) with the desired user management from the local
file system and click “Open” to confirm.

ð The “Enter Password” dialog opens.

Transferring and
enabling a
saved user man-
agement in off-
line mode from
a DUM2 file to a
controller

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US388

5. Specify the password that was assigned when the user management file was exported
(possible by means of the button).
CAUTION: The import of a device user management by means of a *.dum2 file com-
pletely overwrites the existing user management on the device. In order to log in to the
device again afterwards, you need authentication data from the recently imported user
management.

ð When the password is entered correctly, the configuration from the downloaded user
management file is now displayed in the editor view.

6. Edit the configuration however you like. For example, change the user password or add a
new user.

ð Every change is downloaded immediately to the device.

See also
● Ä Chapter 1.4.1.20.2.8.14 “Tab 'Access Rights'” on page 863
● Ä Chapter 1.4.1.20.4.13.6 “Dialog 'Options' - 'Device Editor'” on page 1190
● Ä Chapter 1.4.1.20.2.8.13 “Tab 'Users and Groups'” on page 860
● Ä Chapter 1.4.1.7.1 “Configuring Devices and I/O Mapping” on page 213
● Ä Chapter 1.4.1.10.2 “Encrypting Communication, Changing Security Settings” on page 381

1.4.1.10.4 Generating Application Code
The application code is the machine code that a PLC executes when you start an application.
CODESYS automatically generates the application code from the source code that was written
in the development system. This is done automatically before downloading the application to the
PLC. Before the application code is generated, a test is performed for checking the allocations,
the data types, and the availability of libraries. Moreover, the memory addresses are allocated
when the application code is generated.
You can click “Build è Generate Code” to execute this command explicitly. This is useful for
detecting any errors in your source code, even when the PLC is not connected yet. The errors
are output in the message view in the "Build" category.

NOTICE!
If you have encrypted the application, then consider the following information: If
a (new) boot application is generated on request after an online change, then
the boot application is formed in the RAM with the current code that is not
encrypted.

Requirement: The application can be compiled without any errors.

Click “Build è Generate Code”.

ð The application code is generated. Detailed information about memory allocation is
output in the message view.

See also
● Ä Chapter 1.4.1.10.6 “Generating boot applications” on page 391
● Ä Chapter 1.4.1.20.3.5.1 “Command 'Generate Code'” on page 1021

Explicitly gener-
ating the appli-
cation code

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 389

When you generate the application code, CODESYS outputs information about memory alloca-
tion in the message view. Gaps form in the memory because reallocation is only for new and
changed POUs and variables due to the incremental memory build. Online changes have the
same effect. This fragmentation reduces the amount of available memory. However, you can
completely reallocate the memory by clicking “Clean” and therefore increase the amount of free
memory.
Syntax errors and bugs that CODESYS detects during the code generation and memory alloca-
tion are also output in the message view (“Build” category).
Output information about memory allocation:
● “ Size of the generated code” (in bytes): Sum of all code segments
● “Size of global data” (in bytes): Total memory used by the global variables. Inputs and

outputs are not included unless inputs or outputs are mapped in the area of the global
variables.

● “Total allocated memory size for code and data” (in bytes): The total allocated memory
is composed of the already used memory areas plus the reserved, not yet used memory
for incremental builds and online changes. After the first build, the already used memory
is approximately equal to the highest used address (see below). The largest contiguous
memory gap (see below) still corresponds approximately to the difference to the total
allocated memory. However, as the number of incremental builds and online changes
increases, the number of memory gaps also increases, and the largest contiguous memory
gap becomes smaller.

● “Memory area <n>”: Contents of the individual reserved memory areas
Background: It depends on the PLC which data and code is stored in which memory areas.
For example, code and data are located in the same area on the CODESYS Control Win
V3. For the addresses %I, %M, and %Q, memory is always reserved, even when a variable
is not assigned to an address. After cleaning the application, the memory is reallocated
completely. In this case, small gaps could result from the predefined alignment (normally
8). Larger gaps result from changing a date without cleaning, for example by increasing an
array area. In this case, only the affected POUs are recompiled. Furthermore, in the case
of an online change, the memory is used only for new variables and new code. Memory
that was previously reserved by deleted variables and code is made available again. As a
result, memory fragmentation can occur after many incremental builds and online changes.
This creates many small gaps that might not be usable at all in some cases. To clarify how
much memory is safely available, the "largest contiguous memory gap" of the memory area
is output during code generation.
– “highest used address” (Byte) : This is the highest reserved address in the entire

allocated memory area. During the first build after a "Clean" operation, the memory
addresses are output to variables in ascending order, taking into consideration the align-
ment (usually 8 bytes). As a result, the highest address used at this time corresponds
approximately to the amount of memory used. The rest of the allocated memory area is
still completely available for incremental builds and online changes.

– “Largest contiguous memory gap” (in bytes): This is the memory size that is available for
backup.
Resulting gaps in the allocated memory are reused whenever possible for other
changes. When, for example, a global variable of type Byte is added, it is placed in
the first free byte of the memory. Even just a small gap is enough for this. However,
an FB instance, a variable of the type structure or array, or the code for a POU has to
be stored contiguously and therefore occupies more memory accordingly. As a result,
they can be allocated only to the largest contiguous memory area. This is why during
code generation the "largest contiguous memory gap" that is safely available is output
(in bytes), as well as its percentage of the total memory.

Note the options for generating applications.
See also
● Ä Chapter 1.4.1.20.4.10.9 “Dialog 'Properties - Application Build Options'” on page 1162

See also
● Ä Chapter 1.4.1.8.17 “Encrypting an application” on page 294

Messages when
generating the
application code

Encrypting the
application code

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US390

1.4.1.10.5 Downloading the application code, logging in, and starting the PLC
In order to download the source code of your application to the PLC, you must log in to the PLC
with application. If there are several applications in the project, then you must switch explicitly to
the correct application first.
When you download an application to the PLC, CODESYS performs the following checks:
The list of applications on the PLC is compared with the applications available in the project. If
they do not match, then you are prompted to download the application that is not on the PLC yet
or delete existing applications.
For "externally implemented" blocks in the application to be downloaded, CODESYS checks
whether these are available on the PLC. If they are not available, then the message "unresolved
reference(s)" is printed to a dialog prompt and to the message view. Then CODESYS compares
the parameters (variables) of the blocks in the application to be downloaded and the parameters
of the same-named blocks in the application that exists on the PLC (signature check). If there
are any discrepancies, then the message "invalid signature(s)" is printed to a dialog prompt and
to the message view.
If the "Download Application Info" check box is selected in the application properties, then
additional information about the application contents are downloaded to the PLC.
if multiple applications exist for the same device, then notice that the “I/O Mapping” dialog
contains the definition for which of the applications is used for for the I/O mapping of the device.
See also
● Ä Chapter 1.4.1.20.2.1 “Object 'Application'” on page 819

Requirement: The application contains no errors and the communication settings of the PLC are
correct. The application does not exist yet on the PLC: The application and the communication
with the controller are not encrypted.

1. Select the required application in the device tree. Skip to Step 3 if you have only one
application.

2. Click “Set Active Application”.

ð The application name appears in bold typeface.

3. Click “Online è Login”.

ð A dialog prompts you whether the application should be created on the PLC.

4. Click “Yes” to confirm.

ð The application is downloaded to the PLC.

5. Click “Debug è Start” or press the [F5] key.

ð The application is running on the controller.

1.4.1.10.6 Generating boot applications
A boot application is the application that is started automatically when the controller is switched
on or started. For this to happen, the application on the controller must exist as a file
<application name>.app.

For each application that is running on the controller, a boot application can also be saved
there.
By default, CODESYS generates the boot application automatically when an application is
downloaded and transfers them to the PLC. The defaults for generating automatically are
located in the “Boot application” category of the application “Properties”. When logging in with a
changed application, you are still prompted whether or not to generate a new boot application.
In addition, you can create a (new) boot application at any time in online mode by clicking
“Online è Create boot application”.

Transferring an
application and
starting the pro-
gram

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 391

You can create and save a local copy of a boot application in offline mode as well. Then,
you can copy this application to the controller with external tools. In this way, you transfer an
application to the controller, even when there is no connection to CODESYS.

Requirement: Offline mode; the application is compiled without errors. The connection to the
controller is configured and the controller is running. The application is active. The following
steps demonstrate the options:

1. Click “Online è Login”.

ð The boot application file <application name>.app is created on the controller with
the checksum of the boot application <application name>.crc.

2. Click “Online è Create Boot Application” explicitly.

ð The files on the controller are replaced by new files.

3. Log out.
4. Change the application. Log back in to the controller.

ð You are prompted whether an online change should be performed. You see the
“Update boot application” check box in the same dialog box. This is cleared by
default, but this can be changed in the “Boot Application” category of the application
“Properties”.

5. Keep the check box cleared and continue login.

ð A new boot application file is not created.

6. Log out. Close the project. Stop the controller. Restart the controller.

ð The boot application that was created above is running on the controller.

You can save the encrypted boot application on the controller. These settings
are defined in the “Application Build Options” category of the application
“Properties”.

See also
● Ä Chapter 1.4.1.20.4.10.9 “Dialog 'Properties - Application Build Options'” on page 1162
● Ä Chapter 1.4.1.20.4.10.2 “Dialog 'Properties' - 'Boot Application'” on page 1158
● Ä Chapter 1.4.1.13.1 “Executing the online change” on page 439
● Ä Chapter 1.4.1.20.3.6.4 “Command 'Create Boot Application'” on page 1032

Requirement: Offline mode; the application is compiled without errors. You want to generate
a boot application for an application and save it in the file directory for copying it later to the
controller by using external tools (without CODESYS).
1. Click “Online è Create Boot Application”.

ð A dialog box opens for specifying a save location in the local file system.

2. Click a save path and then click “Save”.
3. If the application has changed since the last boot application was generated, then you are

prompted to use a new code for the boot application. In this case, click “Yes”.

ð The “Save as” dialog box opens.

Generating boot
applications on
the controller
automatically
and explicitly

Creating boot
applications in
offline mode

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US392

4. Select a directory and click “Save”.

ð The boot application file <application name>.app is created in the given path.

You are prompted whether or not the build information for the boot application is
saved.

5. Click “Yes”.

ð The build information is saved to the project directory as a file named <application
name>.compileinfo. It is a requirement for a possible online change the next time
the application is updated. Please note: Clicking “Build è Clean” deletes this file.

See also
● Ä Chapter 1.4.1.20.3.6.4 “Command 'Create Boot Application'” on page 1032

When using a CODESYS Control Win V3, the application name must also be included in the
configuration file (*.cfg).

 [CmpApp]
 Application.1=MyApplication

1.4.1.10.7 Downloading source code to and from the PLC
CODESYS provides the capability of loading project source code to a PLC as a project archive.
You can then transfer this project archive back to the development system from the PLC as
needed.
Requirement: The connection settings are configured for the affected controllers.

1. Choose the command “File è Source Download”.

ð The dialog box “Select Device” opens.

2. Select the controller to receive the source code. Click “OK”.

ð CODESYS writes the archive file Archiv.prj to the controller.

By choosing the command “Online è Source Download to Connected Device”,
you can load the source code directly to the connected device.

See also
● Ä Chapter 1.4.1.20.3.1.11 “Command 'Source Download'” on page 963
● Ä Chapter 1.4.1.20.3.6.7 “Command 'Source Download to Connected Device'” on page 1035
● Ä Chapter 1.4.1.20.4.11.5 “Dialog 'Project Settings' – 'Source Download'” on page 1174

When using
CODESYS Con-
trol Win V3

Downloading
source code to
the PLC

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 393

1. Choose the command “File è Source Upload”.

ð The dialog box “Select Device” opens.

2. Select the controller to send the source code. Click “OK”.

ð The “Extract Project” dialog box opens.

3. Select the destination directory where you want to extract the project archive. Click
“Extract”.

ð CODESYS extracts the project archive to the directory.

4. Then you are prompted to open the project archive. Click “Yes”.

ð The project opens.

See also
● Ä Chapter 1.4.1.20.3.1.10 “Command 'Source Upload'” on page 962

1.4.1.11 Testing and Debugging
CODESYS provides various options for testing your application and detecting errors. You can
start your application in simulation mode, even without connecting any hardware. Using break-
points and stepping commands, you can examine specific parts of a program. By writing values
to variables, you can influence the running program.
Commands are provided that reset your application in various different ways, from resetting only
non-persistent variables to completely resetting the controller to factory settings.
See also
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395
● Ä Chapter 1.4.1.11.3 “Stepping Through a Program” on page 399
● Ä Chapter 1.4.1.11.5 “Resetting applications” on page 404

1.4.1.11.1 Testing in simulation mode
Use simulation mode for testing and debugging your program when you do not have a physical
target device. In this mode, the application is started on a simulated device.
The command is available only when you are logged out.
Requirement: You program contains no errors (compiler error messages or compile errors) and
you are not logged in.
1. Activate simulation mode as follows:

● Click “Online è Simulation”, or
● Right-click the controller in the device tree and click “Simulation”.

ð The name of the controller in the device tree is displayed in italics. In the status line,
"Simulation" appears highlighted in red. The “Simulation” command is selected in the
main menu.

2. Click “Online è Login”.
3. When logging in with the active application, you will be prompted whether the application

"Sim.<device name>.<application name>" should be created and loaded. Click “Yes” to
confirm.

ð The application is logged onto the PLC.

Loading source
code from the
PLC

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US394

4. Now you can check and correct the program flow with the commands provided in the main
menu in “Debug”.

5. Log out from the controller and end the simulation mode.

See also
● Ä Chapter 1.4.1.20.3.6.23 “Command 'Simulation” on page 1044

● The focus of the simulation mode is testing and debugging your program of the PLC. That
means the functionality of the simulated PLC is limited. Keep in mind that some POUs have
no function. They are not creating any compile or download errors, they will simple not work.

● Without an extra available “Virtual Commissioning” license the “Online mode” of the simu-
lated PLC is limited to 2 hours. After 2 hours starting from the “Login”, the “Online mode” is
automatically terminated and the PLC is logged out.

● It is not possible to create a “Boot Application” in the simulated PLC. Every “Login” starts
with an empty simulated PLC and a download of the application is required.

● When logging in to a simulated PLC the first time a “Windows Security Alert” is displayed.
Depending on the application, e.g. if any network communication is implemented, it might be
necessary to allow the “Virtual AC500” to communicate on one or multiple network types.

1.4.1.11.2 Using Breakpoints
Breakpoints are commonly used for debugging programs. CODESYS supports breakpoints in all
IEC editors.
You can set breakpoints at specific positions in the program to force an execution stop and to
monitor variable values. You can set special data breakpoints to halt program execution when
the value of a specific variable changes.
The halt at a breakpoint or data breakpoint can be linked to additional conditions. You can also
redefine breakpoints and data breakpoints as execution points where specific code is executed
instead of stopping the program.

The “Breakpoints” view provides an overview of all defined breakpoints. It also
includes additional commands for processing batch changes to multiple break-
points.

In the editor, the following symbols identify the status of a breakpoint or execution point:

● The breakpoint is enabled.
● The breakpoint is disabled.
● Breakpoint is set in another instance of the POU open in the editor.
● The program is halted at the breakpoint.
● The conditional breakpoint is enabled.
● The conditional breakpoint is disabled.
● The execution point is enabled.
● The execution point is disabled.
● The conditional execution point is enabled.
● The conditional execution point is disabled.
● The data breakpoint is enabled.
● The data breakpoint is disabled.
● Halt at data breakpoint
● The data execution point is enabled.
● The data execution point is disabled.
● Halt at data execution point

Limitations

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 395

● The conditional data execution point is enabled.
● The conditional data breakpoint is enabled.
See also
● Ä Chapter 1.4.1.20.3.3.12 “Command 'Breakpoints'” on page 989

The function of data breakpoints depends on the target system. Currently, data
breakpoints are possible only with the CODESYS Control Win V3.

Program execution stops at a data breakpoint when the value of a particular variable or memory
address changes. As with ordinary breakpoints, the halt can be linked to an additional condition,
or specific code can be processed instead of the halt (converted to a data execution point).
You set a data breakpoint either by means of the “New Data Breakpoint” command in the
“Debug” menu or by means of the “New” button in the “Breakpoints” view. You specify a
qualified variable name or a memory address directly which is to be monitored for changes in its
value.

In the following sample code, the memory of the variable iNumber is overwritten unintention-
ally. However, a data breakpoint at the variable iNumber will detect when its value changes.
The processing then stops with a corresponding message at the array access, which over-
writes the variable value: Idx = 7. See also below: "Setting a data breakpoint".
PROGRAM PLC_PRG
VAR
 Idx : INT;
 Ary : ARRAY[0..3] OF BYTE;
 iNumber : INT := 55;
END_VAR
FOR idx := 0 TO 6 DO
 Ary[idx] := 0;
END_FOR

Example

Basically, debugging is not possible for multiple tasks at the same time. While you are working
on a task with breakpoints or stepping, breakpoints are ignored in other tasks.
If a POU containing a breakpoint is used by multiple tasks, then only the debug task is halted
because it reaches the breakpoint first. All other tasks continue. The “Call Stack” dialog shows
which task is currently halted.
If you need a breakpoint to affect only one specific task, then you can define this in the
breakpoint properties.
Breakpoints operate separately for each application so that a "HALT ON BP" does not affect any
other applications. This applies also to parent/child applications, even if the breakpoint is set in
a block that is used by several applications and whose code is located only once on the PLC.

NOTICE!
The I/Os that are called by the debug task are not updated at a halt in the
breakpoint, even if you select the “Refresh I/Os in Stop” check box in the PLC
settings.

If the application stops at a breakpoint on the PLC, then an online change or
download causes all tasks to halt which means the PLC will stop. In this case,
CODESYS prompts you whether or not to continue with the login.

Data break-
points

Breakpoints in
applications
with multiple
tasks

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US396

See also
● Ä Chapter 1.4.1.20.3.3.15 “Command 'Call Stack'” on page 993

Requirement: The application is in online mode and running. The operating mode is “Debug”.

1. In the editor, open a POU programmed in structured text (ST).
2. Place the cursor in the line where a breakpoint will be set.
3. Click “Debug è Toggle Breakpoint” or press [F9].

ð The line is marked in red and identified by the "breakpoint enabled" symbol (). If the
program is halted at the breakpoint, then the line is marked by the "stop at breakpoint"
symbol (). The processing of the program is stopped. This is identified in the status
line by the HALT ON BP status highlighted in red.

4. Click “Debug è Start” or press [F5].

ð The program continues.

5. Set more breakpoints and check the variable values at the break position.
6. Place the cursor in the line where a breakpoint should be removed.
7. Click “Debug è Toggle Breakpoint” or press [F9].

ð The marking disappears. The breakpoint is deleted.

See also
● Ä Chapter 1.4.1.20.3.7.9 “Command 'Toggle Breakpoint'” on page 1050

1. In the editor, open a POU programmed in structured text (ST).
2. Place the cursor in the line where a breakpoint will be set.
3. Click “Debug è New Breakpoint”.

ð The “Breakpoint Properties” dialog opens.

4. Click the “Condition” tab.
5. Click “Break when the hit count is a multiple of” in the “Hit Count” list box.

Specify the value "5" in the field to the right.
6. In addition, you can define a Boolean condition for when the breakpoint should be active.

Select the “Break, when true” check box. Specify a Boolean variable in the text field to the
right.

7. Select the “Enable breakpoint immediately” check box.
8. Close the dialog.

ð The line is marked red and identified by the "conditional breakpoint enabled" symbol
()

Monitor the running program. As long as the Boolean variable for the condition is FALSE, the
breakpoint condition is not fulfilled and the program continues to run. If you set the variable to
TRUE, then the condition is fulfilled and the program halts at the breakpoint every 5th pass.

Setting a single
breakpoint
(example in ST
editor)

Defining a
breakpoint con-
dition (example
in ST editor)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 397

See also
● Ä Chapter 1.4.1.20.4.5 “Dialog 'Breakpoint Properties'” on page 1151

1. In the editor, open a POU programmed in structured text (ST).
2. Place the cursor at the position for an execution point.
3. Click “Debug è New Breakpoint”.

ð The “Breakpoint Properties” dialog opens.

4. Click the “Execution Point Settings” tab.
5. Select the “Execution point” option.

In the “Execute the following code” field, type the following statement: iCounter :=
iCounter + 1;
In the “Print a message in the device log” field, type the following text: Execution
point reached {iCounter}

6. Close the dialog.

When the program reaches the execution point, it does not halt, but executes the code defined
above. In addition. a message is issued to the device log.
See also
● Ä Chapter 1.4.1.20.4.5 “Dialog 'Breakpoint Properties'” on page 1151

Requirement: The application is in online mode and running.

1. Click “View è Breakpoints”.
2. Click “Debug è New Data Breakpoint”.
3. Click the button in the “New breakpoint” dialog (“Data” tab.
4. In the “Input assistant” dialog (“Watch Variables” tab), select the variables for which the

program should halt when changed.
As an alternative, specify the qualified name of the variable on the “Data” tab directly in
the input line. Example: PLC_PRG.iNumber. The exact number of bytes to be monitored
is specified as the “Size”. A value that corresponds to the data type is set here automati-
cally by default. You can also specify fewer bytes to be monitored.

5. In the “Breakpoints” view, select the line with the data breakpoint and click the button.

ð The line is marked and identified by the "Data breakpoint enabled" symbol (). When
the program reaches the data breakpoint (meaning when the value of the selected
variables changes), the program processing halts. In the implementation part of the
POU, the next line is identified by an arrow . This is identified in the status line by
the HALT ON BP status highlighted in red.

6. Click “Debug è Start” or press [F5].

ð The program continues running and halts again when the value of the variables
changes again.

See also
● Ä Chapter 1.4.1.20.4.5 “Dialog 'Breakpoint Properties'” on page 1151

Defining an exe-
cution point
(example in ST
editor)

Setting a data
breakpoint

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US398

1.4.1.11.3 Stepping Through a Program
You can step through an application and navigate the code. This is useful to check the status of
your code at runtime. You can examine the call process, track variable values, or locate errors.
Stepping commands are provided in the “Debug” menu for this purpose. The commands
become available when you set breakpoints in online mode and then halt execution at a break-
point: the application is in “HALT ON BP” state (debug mode). During debug mode, the current
break position is highlighted in yellow and marked with the symbol in the text editors.

1. Download your application to a controller.

ð The application is highlighted in green. CODESYS and the editors of the POUs are in
online mode.

2. In the POUs, set breakpoints at the locations in the code that you want to examine.

ð All breakpoints are listed in the “Breakpoints” view.

3. Start the application.

ð The application starts and the code is processed until the first breakpoint.

Now the application is in debug mode. In the device tree, the application is labeled
with “[halt on breakpoint]”. The status bar provides information about the operating
state:

The editor was opened at the current break position. The line of code with an active
breakpoint where program execution was halted is highlighted in yellow and marked
by the symbol. This statement highlighted in yellow has not been executed yet.

Now you can select the various stepping commands or display the call tree.

Switching to
debug mode

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 399

Alternatively, you can first start the application and then set a breakpoint.

● Command “Step Over”
The statement at the breakpoint position is executed. Program execution halts before the
next statement in the POU.
If the statement contains a call (from a program, function block instance, function, method,
or action), then the subordinate POU is processed completely in one step.

● Command “Step Into”
The statement at the breakpoint position is executed. Program execution halts before the
next statement.
If the statement contains a call (from a program, function block instance, function, method,
or action), then the program execution jumps to this subordinate POU. The first statement
there is executed and the program execution halts before the next statement. The new
current breakpoint position is then in the called POU.

● Command “Step Out”
The command executes the POU from the current breakpoint position to the end of the POU
and then jumps back to the calling POU. Program execution halts at the calling position (in
the line with the call).
If the current breakpoint position is in the main program, then the POU is run through to the
end. Then the program execution jumps back to the beginning (to the program start at the
first line of code in the POU) and halts there.

● Command “Run to Cursor”
First set the cursor at any line of code and then execute the command. The program is
executed from the current breakpoint position and halts at the current cursor position without
executing the code of this line.

● Command “Set Next Statement”
First set the cursor at any line of code (also before the current breakpoint position) and
then execute the command. The statement marked with the cursor is executed next. All
statements in between are ignored and skipped.

● Command “Show Next Statement”
If you do not see the current breakpoint position, then execute the command. Then the
window with the current breakpoint position comes into focus and the breakpoint position is
visible.

Click “View è Call Stack” to completely show the previous call tree for the breakpoint position
currently reached in the program processing.

The “Call Stack” view shows the location of the block in the call structure of the
program at all times, even before compiling the application.

See also
● Ä Chapter 1.4.1.20.3.7.11 “Command 'Step Into'” on page 1051
● Ä Chapter 1.4.1.20.3.7.10 “Command 'Step Over'” on page 1050
● Ä Chapter 1.4.1.20.3.7.12 “Command 'Step Out'” on page 1051
● Ä Chapter 1.4.1.20.3.7.13 “Command 'Run to Cursor'” on page 1052
● Ä Chapter 1.4.1.20.3.7.14 “Command 'Set Next Statement'” on page 1052
● Ä Chapter 1.4.1.20.3.7.15 “Command 'Show Next Statement'” on page 1052
● Ä Chapter 1.4.1.20.3.3.16 “Command 'Call tree'” on page 993

Behavior of the
stepping com-
mand in the 'De-
bug' menu

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US400

1.4.1.11.4 Forcing and Writing of Variables

CAUTION!
Unusual changes to variable values in an application currently running on
the controller can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled machinery, the result may lead
to damage to machinery and equipment or injury to health and life of personnel.

In CODESYS, variable values in the PLC can be changed in online mode. Here we make a
distinction between forcing and writing a previously prepared value.
Writing is done with the “Write Values” command ([Ctrl]+[F7]) and sets the variable to the
prepared value one time. In this way, the value can be overwritten again by the program at any
time.
Forcing is done with the “Force Values” command ([F7]) and sets the prepared value perma-
nently. For more information, see below.
The preparation of a value for forcing or writing is possible at different places:
● Declaration part: “Prepared value” field
● Implementation part of the FBD/LD/IL editor: inline monitoring field
● Watch view: “Prepared value” field
For instructions about this, see below. In the case that you want to prepare a value again for
an already forced value, the “Prepare Value” dialog opens with options for handling the current
force value.

The prepared value is set to the respective variable at the beginning and end of a task cycle (or
of a processing loop in the case of other task types).
The processing order in each cycle of a task is as follows:
1. Read the inputs
2. Force: Before the first program call, all prepared values are written to the variables by the
runtime system, regardless of whether or not they are used by the task.
3. Process the IEC code
4. Force: After the last program call, all prepared values are written to the variables by the
runtime system, regardless of whether or not they are used by the task.
5. Write the outputs
Note: It is possible that a forced variable temporarily gets a different value in the cycle while
the code is being processed because the IEC code performs an assignment. Then the variable
receives the forced value again only at the end of the cycle. The variable value can also be
overwritten by the write access of a client to symbols of the application in mid-cycle. For this
case, see the “Access variables in sync with IEC tasks” option in the “Properties” of the device
object, or the “Configure synchronization with IEC tasks” setting in the symbol configuration.
In this way, a PLC handler-supported synchronization of the write accesses by clients can be
enabled with the task cycle.

Functionality of
forcing

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 401

NOTICE!
Forced values are marked with the symbol. CODESYS does the forcing until
the user lifts it explicitly by one of the following actions:
– Executing the “Cancel forcing for all values” command
– Lifting the force operation in the “Prepare Value” dialog
– Logging out of the application

If forced variables still exist when logging out, then a dialog opens,
prompting whether or not forcing should be lifted for all variables. If you
respond by clicking “No”, then the forced values are applied again at the
next login.

See also
● Ä Chapter 1.4.1.8.16 “Task Configuration” on page 292
● Ä Chapter 1.4.1.20.4.10.19 “Dialog 'Properties' - 'Options'” on page 1169
● Ä “Setting: Configure synchronization with IEC tasks” on page 932

Requirement: Your application includes a POU with declarations. The application is in online
mode.
1. Open the POU in the editor by choosing the command “Project è Edit Object”.
2. In the declaration part of the editor, double-click in column (1) “Prepared Value” of a

variable.

ð The field can be edited and a value can be entered. When it is a Boolean value, you
change the value by clicking in the field.

3. Perform Step 2 for other variables.
4. Click “Debug è Force Values”.

ð The variable values are overwritten with the prepared values. The values are marked
with the symbol.

Forcing in the
declaration part

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US402

You can also force the variable values in the “Watch” view.

Requirement: The application is in online mode.

1. Open the POU in the editor by choosing the command “Project è Edit Object”.
2. In the implementation part of the editor, double-click an inline monitoring field (1).

ð The “Prepare Value” dialog opens.

3. Enter the new value in the field “Prepare a new value for the next write or force operation”.

ð The prepared value appears in the inline monitoring field.

4. Click “Debug è Force Values”.

ð The value of the variables is overwritten with the prepared values. The values are
marked with the symbol.

Requirement: The application is in online mode. Multiple variables are forced.

1. Click “View è Watch è Watch all Forces”.

ð The “Watch all Forces” view opens. It contains all currently forced variables of the
application in the form of a watch list.

2. Select all lines in the list and click “Unforce è Unforce and Keep All Selected Values” in
the list box in the upper left part of the view.

ð The variables are unforced and they get the values that they had before forcing.

Requirement: An application has a CFC POU that contains a function block, and the application
is in offline mode.

NOTICE!
This kind of forcing uses a data breakpoint internally and is therefore different
from forcing with the “Force Values” command or [F7].
Values that were forced by the command “Force FB Input” do not respond to the
commands “Show All Forces” or “Unforce Values”.

Forcing in the
implementation
part

Viewing and
editing all
forced variables
one list

Forcing a func-
tion block input
in CFC

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 403

1. Open the editor of the CFC POU by double-clicking the object in the tree.
2. When using compiler version 3.5.11.x or 3.5.12.x, enable the "forceability" for the desired

function block. Select the POU element in CFC and click “CFC è Prepare Box for
Forcing”.

3. Log in to the application on the target device. In CFC, select the input of the POU and
click “Force Function Block Input” in the context menu.

ð The “Force Value” dialog opens.

4. Set a new value for the input. Example in the case of a TON POU: FALSE for the Boolean
input IN, or t#4s for the PT input (TIME). Click “OK” to confirm.

ð The set value is forced immediately. A green circle is displayed at the upper left of
the POU element and the name of the input in the element is highlighted in green. In
the case of a Boolean value, a small monitoring view with the value also opens at the
input. In the monitoring views, the forced value is displayed, for example in the “Value”
column, as in the declaration part.

5. To remove the forced value, click “Force Function Block Input” again. In the “Force Value”
dialog, select the “Remove value” option.

ð Forcing is canceled. The input gets the current value from the controller.

See also
● Ä Chapter 1.4.1.20.3.12.34 “Command 'Prepare Box for Forcing'” on page 1101
● Ä Chapter 1.4.1.20.3.12.35 “Command 'Force Function Block Input'” on page 1101
● Ä Chapter 1.4.1.20.4.7 “Dialog Box 'Prepare Value'” on page 1153
● Ä Chapter 1.4.1.20.3.7.16 “Command 'Force Values'” on page 1053
● Ä Chapter 1.4.1.20.3.7.18 “Command 'Unforce Values'” on page 1054
● Ä Chapter 1.4.1.20.3.7.17 “Command 'Write Values'” on page 1053
● Ä Chapter 1.4.1.12.1.2 “Using watch lists” on page 416

1.4.1.11.5 Resetting applications
Resetting the application stops the program and resets the variables to their initialization values.
Depending on the type of reset, retain variables and persistent variables are also reset.
● Reset warm: All variables are reset, except RETAIN and PERSISTENT variables.
● Reset cold: All variables are reset, except PERSISTENT variables.
● Reset origin: All variables are reset.
● Reset origin device: All variables are reset and all applications are deleted.
The following sample program and statements clarify the functionality of the various resets.
See also
● Ä “Lifespan of variables when calling online commands” on page 303

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US404

VAR
 iVar: INT := 0;
END_VAR
VAR RETAIN
 iVarRetain: INT :=0;
END_VAR
VAR PERSISTENT
 iVarPersistent : INT:= 0;
END_VAR

iVar := 100;
iVarRetain := 200;
iVarPersistent :=300;

1. Insert the “Persistent Variables” object below the application and open it in the editor.
2. Click “Build è Build”.
3. Click “Declare è Add All Instance Paths”.

ð The instance path of the persistent variables is inserted.

4. Download the application to the controller.

Example
Declaration

Implementa-
tion

Requirement: The sample program runs on the controller.

1. Click “Online è Login” to switch to online mode.
2. Monitor the variables iVar, iVarRetain, and iVarPersistent.

3. Click “Online è Reset Warm”.

ð You are prompted whether you really want to execute the command.

4. Click “Yes” to confirm the dialog.

ð The application is reset. The iVar variable is set to the initialization value 0. Both of
the other variables retain their values.

5. Click “Online è Reset Cold”.

ð You are prompted whether you really want to execute the command.

6. Click “Yes” to confirm the dialog.

ð The application is reset. The iVar and iVarRetain variables are set to the initializa-
tion value 0. The iVarPersistent variable retains its value.

7. Click “Online è Reset Origin”.

ð You are prompted whether you really want to execute the command.

8. Click “Yes” to confirm the dialog.

ð The application is reset. All variables are reset to their initialization values.

Sample program

Executing a
"Reset warm",
"Reset cold",
and "Reset
origin"

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 405

See also
● Ä Chapter 1.4.1.20.3.6.11 “Command 'Reset Warm'” on page 1038
● Ä Chapter 1.4.1.20.3.6.10 “Command 'Reset Cold'” on page 1038
● Ä Chapter 1.4.1.20.3.6.12 “Command 'Reset Origin'” on page 1039
● Ä Chapter 1.4.1.20.3.6.13 “Command 'Reset Origin Device'” on page 1040

1.4.1.11.6 Flow Control
With flow control, you can monitor the processing of the application program. Flow control is
provided for the ST, FBD, LD, and CFC language editors.
With an activated flow control, CODESYS displays the variable values and results from function
calls and operations at the respective processing location and time. In this way, the exact lines
of code and networks that process the current cycle are marked in colors. Compare this to
standard monitoring, in which CODESYS delivers only the value that a variable has between
two processing cycles.
Flow control works in all parts of the editor view that are currently visible. “Flow control enabled”
is then displayed in the status line as long as the function is active and flow control positions
(processed parts of code) are visible in an editor view.
You can write values in the declaration part and implementation part. Forcing is not possible.

NOTICE!
Values are written at the end of the current cycle.

NOTICE!
When you enable flow control, the cycle time of the application is prolonged.
When “Confirmed Online Mode” is selected in the communication settings, a
dialog prompt appears when switching on the flow control to cancel the opera-
tion.
When flow control is enabled, it is not possible to use breakpoints or step
through the program.

See also
● Ä Chapter 1.4.1.20.2.8.2 “Tab 'Communication Settings'” on page 840
● Ä Chapter 1.4.1.20.3.7.22 “Command 'Flow Control'” on page 1056

By default, CODESYS displays the flow control positions of the processed parts of code as
green fields. Unprocessed parts of code are displayed in white.

Note that the displayed value of an unprocessed code position is an ordinary
monitoring value. This is the value between two task cycles.

Display of the
flow control in
different lan-
guage editors

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US406

In network editors, CODESYS marks the processed networks with bars on the left edge in the
flow control color.
In LD, CODESYS displays the currently processed connecting lines in green and all others in
gray. The actual value of the connection is also displayed: TRUE by a bold blue line, FALSE by
a bold black line, and unknown or analog values by thin black lines. Combinations of these lines
are displayed as dashed lines.

In IL, for each statement CODESYS uses two fields for the display of the actual values. One is
located to the left of the operator with the current accumulator value, and one is located to the
right of the operand with the operand value.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 407

1.4.1.11.7 Determining the current processing position with the call stack
You can use the call stack for determining the current position of the program flow. This function
is very useful when stepping into programs.
Requirement: The application is in online mode. The program is halted at a breakpoint or you
are stepping into it.

Open the call stack by clicking “View è Call Stack”.

ð The call stack opens. The list shows the current location with the complete call path.

The call stack is also available in offline mode and normal online mode (without using debug-
ging functions). In this case, it receives the last displayed location during a stepped execution,
but it is displayed in gray.
See also
● Ä Chapter 1.4.1.20.3.3.15 “Command 'Call Stack'” on page 993
● Ä Chapter 1.4.1.11.3 “Stepping Through a Program” on page 399

1.4.1.11.8 Checking the Task Deployment
The Tab “Task Deployment” of the device editor indicates in an overview the tasks that process
the individual inputs and outputs of the I/O mapping of your application and the priority with
which they do so. You can check here whether an unintentional overwriting of values is caused,
which can lead to undefined values.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US408

1. Generate code for the application: to do this select, for example, the command “Build
è Generate Code”.

2. Open the device editor by double-clicking on the device object in the device tree. Select
the “Task Deployment” tab.

ð You obtain a display of the inputs and outputs of your application and the assignment
of the tasks and their priorities. See the description of the “Task Deployment” tab for
details.

See also
● Ä Chapter 1.4.1.20.2.8.17 “Tab 'Task deployment'” on page 869
● Ä “General information about I/O mapping” on page 214

1.4.1.12 Application at Runtime
1.4.1.12.1 Monitoring of Values.. 409
1.4.1.12.2 Changing Values with Recipes.. 417
1.4.1.12.3 Data Recording with Trace.. 421
1.4.1.12.4 Data Recording with Trend.. 430
1.4.1.12.5 Monitoring tasks.. 435
1.4.1.12.6 Reading the PLC log... 435
1.4.1.12.7 Using PLC shell for requesting information..................................... 436
1.4.1.12.8 PLC operation control via system variables.................................... 436
1.4.1.12.9 Backup and restore... 438

When the application is running on the PLC, in the CODESYS Development System there are
some features for monitoring and changing the values of the variables as well as for recording
and storing the value charts.
Furthermore, you can poll some information from the PLC, you can have a look into the PLC-
log, display a core dump and monitor the time behavior of the tasks.
Regard also the possibility to restrict the access on the running application in critical states
of the machine via online commands provided by CODESYS Development System. For this
purpose some system variables are available in a module of the ComponentManager library.

1.4.1.12.1 Monitoring of Values
In runtime mode, you can monitor the current variable values of a programming object at
different places in a project. The following is what we refer to as monitoring:
● Online view of the programming editor of an object: inline monitoring
● Online view of the declaration editor of an object
● Object-independent, configurable watchlists
When you set the {attribute 'monitoring'...} pragma, you can monitor the results from function
calls and the current variable values in property-type objects.

More options for recording current variable values:

– Read and save recipes
– Record values on a timeline for displaying the history immediately or later:

trace and trend features

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 409

See also
● Ä Chapter 1.4.1.19.6.2.25 “Attribute 'monitoring'” on page 709
● Ä Chapter 1.4.1.12.1.2 “Using watch lists” on page 416
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.12.3 “Data Recording with Trace” on page 421
● Ä Chapter 1.4.1.12.4 “Data Recording with Trend” on page 430

Calling of monitoring in programming objects
When an application is running on the controller, the actual values of variables are displayed in
the editors of the POUs. This is how the values of variables are monitored.

Requirement: The “Enable inline monitoring” option is activated in “Tools è Options” in
the “Text Editor” category on the “Monitoring” tab.
1. Download an application to the controller and start it.
2. Click “Debug è Display Mode è Decimal”.

ð The display format of the actual values is set.

3. Click a programming object in the “Devices” view or “POUs” view.

ð The respective editor opens. Actual values of the variables are refreshed continually
for both the declaration and implementation.

The actual value of an expression (1) is displayed in the “Value” column (3).
You can write and force a value in the “Prepared Value” (4) column. During the forcing, the
actual value is decorated with a red symbol ().
The expression of an interface reference can be expanded. If the interface points to a global
instance, then this global instance is displayed as the first entry below the reference. After-
wards, if the interface reference changes, then the displayed reference is collapsed.

Inline monitoring is the display of the current variable value in the implementation.
Depending on the implementation language, the following displays are possible in the imple-
mentation part:

● Variables have a window with the current value displayed after their name:
If you have prepared values for variables for forcing or writing, then they are displayed in
angle brackets in the inline monitoring view after the current value.
After forcing, the respective values are identified by the symbol.

● Network editors and the CFC editor:
Connecting lines are displayed in color according to their actual Boolean value (blue means
TRUE, black means FALSE).

Monitoring in
the declaration
editor

Monitoring in
the implementa-
tion (inline mon-
itoring)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US410

● LD editor:
The contact and coil elements are also marked.
For contacts and coils, a prepared value (TRUE or FALSE) is shown in a small view next to
the element.

● SFC editor:
Transitions with the value TRUE are displayed in color according to their actual Boolean
value (blue means TRUE, black means FALSE).
Active steps are displayed in blue.
Forced transition values are displayed in red in the implementation.

● IL tabular editor:
Current values are displayed in a separate column.

Monitoring in
the ST editor

Monitoring in
the LD editor

Monitoring in
the SFC editor

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 411

You can deactivate the inline monitoring function in “Tools è Options”, in the
“Text Editor” category on the “Monitoring” tab.

See also
● Ä Chapter 1.4.1.19.1.3.1 “ST Editor” on page 463
● Ä Chapter 1.4.1.19.1.3.2 “ST editor in online mode” on page 463
● Ä Chapter 1.4.1.19.1.5.2 “FBD/LD/IL editor in online mode” on page 499
● Ä Chapter 1.4.1.19.1.4.2 “SFC Editor in Online Mode” on page 476
● Ä Chapter 1.4.1.19.1.6.4 “CFC Editor in Online Mode” on page 516

An expanded array shows the actual values for up to 1000 elements. However, this can be
confusing. In addition, an array can contain more than 1000 elements. Then it is helpful to limit
the range of displayed elements. You can do this in online mode in the following way.

Requirement: An application is running. It contains a multidimensional array variable with
more than 1000 elements. Example: arrBig : ARRAY [0..100, -9..10, -19..20] OF
INT;
1. Click in the field of the “Data Type” column for the arrBig variable.

ð The “Monitoring Range” dialog opens.

2. Specify the value [1, -9, -19] for “Start”.

3. Specify the value [1, 10, 20] for “End”.

ð The actual values of 800 array elements are displayed in the declaration editor. The
range is limited to the elements of the index [1, <i>, <j>] with i from -9 to 10 and
j from -19 to 20.

See also
● Ä Chapter 1.4.1.19.1.1 “Declaration Editor” on page 461
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401
● Ä Chapter 1.4.1.20.4.9 “Dialog 'Monitoring Range'” on page 1156

When you double-click the editor view of a function block in online mode, a dialog opens where
you can choose between viewing the basic implementation or a specific instance.
If you select the basic implementation, then the code is displayed in the editor without current
values. Now set a breakpoint in the basic implementation. If the execution halts there, then the
current values of the instance that is processed first in the program flow are displayed. Now you
can step successively through all instances.
If you select one of the instances, then the editor opens with the code of the function block
instance. The current values are displayed in the declaration and, if applicable, in the implemen-
tation, and are updated continuously.
See also
● Ä Chapter 1.4.1.20.2.18.2 “Object 'Function Block'” on page 883
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395

You can monitor variables in a property object by setting a breakpoint in the function during
online mode. When halted there, the current values are displayed.
In addition to your own values, the values of the variables of the superordinate instance are
displayed automatically. In the declaration part of the property, the THIS pointer, which points to
the superordinate instance, appears in the first line with the current data type information and
values.

Partial moni-
toring of an
array
Limiting the
monitoring
range

Monitoring a
function block

Monitoring a
property

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US412

FUNCTION_BLOCK FB_BaseAlfa
VAR
 iBaseLocal : INT;
 sBaseLocal : STRING;
END_VAR
iBaseLocal := iBaseLocal + 1;
sBaseLocal := 'Testing Text';

FB_BaseAlfa.PorpBeta.Get
iBaseLocal := iBaseLocal + 1;
IF iBaseLocal > 0 THEN
 PropBeta := TRUE;
END_IF

FB_BaseAlfa.PorpBeta.Set
IF PropBeta = TRUE THEN
 iBaseLocal := 0;
 sBaseLocal := 'Tested IF';
END_IF

PROGRAM PLC_PRG
VAR
 fb_BaseAlfa : FB_BaseAlfa;
END_VAR

fb_BaseAlfa();

IF fb_BaseAlfa.PropBeta = TRUE THEN
 xResult := TRUE;
END_IF
IF xReset THEN
 fb_BaseAlfa.PropBeta := TRUE;
 xReset := FALSE;
END_IF

Example
Code

See also
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 413

You can monitor the values of subordinate properties in a function block or program in
addition to the variable values.
To do this, add either the pragma {attribute 'monitoring' = 'variable'} or
{attribute 'monitoring' = 'call'} to the subordinate property object in the declara-
tion. If you open the superordinate program instance or function block instance at runtime, then
the current property values are displayed in the editor in addition to the current variable values.
See also
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897
● Ä Chapter 1.4.1.19.6.2.25 “Attribute 'monitoring'” on page 709

You can monitor variables in a method object by setting a breakpoint in the method during
online mode. When halted there, the current values are displayed.
In addition to your own values, the values of the variables of the superordinate instance are
displayed automatically. In the declaration part of the method, the THIS pointer, which points to
the superordinate instance, appears in the first line with the current data type information and
values.

Monitoring of
property access
in the superordi-
nate program-
ming object

Monitoring a
method

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US414

FUNCTION_BLOCK FB_BaseAlfa
VAR
 iBaseLocal : INT;
 sBaseLocal : STRING;
END_VAR
iBaseLocal := iBaseLocal + 1;
sBaseLocal := 'Testing Text';

METHOD MethBaseAlfa : BOOL // Method of FB_BaseAlfa
VAR_INPUT
END_VAR
VAR
 iMethLocal : INT;
END_VAR
iMethLocal := iMethLocal + 1;

PROGRAM PLC_PRG
VAR
 fb_BaseAlfa : FB_BaseAlfa;
END_VAR
fb_BaseAlfa();
fb_BaseAlfa.MethBaseAlfa();

Example
Code

See also
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897
● Ä Chapter 1.4.1.20.2.18.5 “Object 'Method'” on page 889

You can monitor variables in a function object by setting a breakpoint in the function during
online mode. When halted there, the current values are displayed.

In the ST editor of a POU, the current return value is displayed as inline monitoring at the
position of the POU where a function is called.
The following conditions must be fulfilled:
● The value can be interpreted as a 4-byte numeric value. Example: INT, SINT, or LINT.
● The pragma {attribute 'monitoring' := 'call'} is inserted into the function.

Monitoring a
function

Monitoring the
return value of a
function call

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 415

See also
● Ä Chapter 1.4.1.20.2.18.3 “Object 'Function'” on page 886
● Ä Chapter 1.4.1.19.6.2.25 “Attribute 'monitoring'” on page 709

Using watch lists
A watch list is a user-defined list of project variables that are collected in one view for the
purpose of monitoring their values. In online mode, you can write and force variable values in a
watch list. Monitoring, writing, and forcing are handled the same way as the declaration editor in
online mode. You can customize the format of the representation of floating-point values in the
options for monitoring.
There are four, ready-to-use watch lists (Watch <n>) available in a project. Click “View
è Watch”.

If the expression is an interface reference, then it can be expanded. If the
interface points to a global instance, then this global instance is displayed as
the first entry below the reference. If the interface reference changes, then the
displayed reference is collapsed.

See also
● Ä Chapter 1.4.1.19.1.1 “Declaration Editor” on page 461
● Ä Chapter 1.4.1.20.4.13.18 “Dialog 'Options' - 'Monitoring'” on page 1197

Requirement: The project is in either online or offline mode. It includes an application with
declared variables that you want added to one of the four possible watch lists.

1. Click “View è Watch è Watch <n>”.

ð The Watch <n> view opens. It contains a blank table row.

2. Double-click the field in the “Expression” column and type a variable to monitor, either
manually or with the input assistant.
Syntax: <device name>.<application name>.<object name>.<variable name>
Example: "Dev1.App1.PLC_PRG.ivar"

If you type the name of a structured variable, then the individual components are dis-
played automatically in other lines in online mode.

3. Define all successive variables that will be monitored with this list. You can change the
order by using drag and drop operations.

ð The “Execution point”, “Type”, “Address”, “Comment” fields are filled in automatically
according to the variables declaration. The symbol before the expression indicates the
type of variable: input variable (), output variable (), or ordinary variable ().

In online mode, you can also create or edit watch lists by right-clicking and
choosing the “Add Watch” command.

See also
● Ä Chapter 1.4.1.20.3.3.8 “Command 'Watch' - 'Watch <n>'” on page 987

What is a watch
list?

Creating and
editing a watch
list (offline or
online mode)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US416

Requirement: A project is open and running. It includes an application with declared variables
that you want added to a possible watch list.

1. Click “View è Watch <n>” to open the watch list.
2. Place the cursor on a variable in the declaration or implementation part of a POU and

right-click to choose the “Add Watch” command.

ð This adds an entry to the list for the selected variable.

3. You can add other variables in this way or by typing directly into the list in the “Expression”
field as described above.

ð The watch lists are updated immediately.

If a watch list is not open when you click “Add Watch” for a variable, then it is
added automatically to the “Watch 1” list.

Writing and forcing variable values is also possible in the watch lists. In online
mode, the “Prepared value” column is also available.

See also
● Ä Chapter 1.4.1.20.3.22.1 “Command 'Add Watch'” on page 1147
● Ä Chapter 1.4.1.12.1.1 “Calling of monitoring in programming objects ” on page 410
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401

1.4.1.12.2 Changing Values with Recipes
Use recipes to change or read recipes values for a specific set of variables (recipe definition) on
the controller at the same time.
You define the basic settings for recipes, such as location and format, in the “Recipe Manager”
object. Insert one or more recipe definitions below this object. A recipe definition is composed of
one or more recipes for the contained variable. The recipe consists of specific variable values.
You can save a recipe to a file or write directly from files to the PLC.
Recipes can be loaded via the CODESYS development interface, the visualization element, or
the application program.

Using recipes on remote devices
The variable values from recipes are transferred automatically to and from
another controller when they are data source variables and a data source
exchange is configured. Reading and writing occurs synchronously. Therefore,
CODESYS updates all variables in a recipe at the same time. After reading or
writing, you can use the call g_RecipeManager.LastError to check whether
or not the transfer was successful (g_RecipeManager.LastError = 0).

Adding varia-
bles by
choosing the
'Add Watch'
command
(online mode)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 417

See also
● Ä Chapter 1.4.1.20.2.22 “Object 'Recipe Manager'” on page 923
● Ä Chapter 1.4.1.20.2.23 “Object 'Recipe Definition'” on page 926
● Ä Chapter 1.4.1.9.4 “Data Link with Data Sources” on page 363

The development interface of CODESYS provides commands for generating recipes as well as
reading/writing in online mode.
See also
● Ä Chapter 1.4.1.20.3.19 “Menu 'Recipes'” on page 1127

At runtime, you can use recipes in the user program and visualization elements.
In the user program, you use the methods for the function block RecipeManCommands from
the library RecipeManagement. In the visualization, you use recipes via the input configuration
(internal command of visualization elements.

During the initialization process, the recipe management reads the values of
the variables that are defined in the recipe definition. This operation takes place
at the end of the initialization phase of the application. At this point, all initial
values of the application variables are set. This is performed to initialize missing
values from recipe files correctly.

See also
● RecipeManCommands
● Input Configuration

1. Select the “Application” object in the device tree.
2. Click “Project è Add Object è Recipe Manager”.

ð CODESYS adds the Recipe Manager to the device tree.

3. Select the “Recipe Manager” object in the device tree.
4. Click “Project è Add Object è Recipe Definition”.

ð CODESYS adds the recipe definition below the Recipe Manager.

5. Open the editor of the recipe definition by double-clicking the object.
6. Double-click the blank field below “Variable”. Specify the name of a variable that you will

define a recipe. The Input Assistant can be used for this: button.
7. Click “Recipes è Add New Recipe” and specify a name for the new recipe.

ð A column with the new recipe name appears in the editor.

8. Enter the variable value for this recipe in this field.
9. Insert additional fields as needed.
10. Select a variable value for the recipe and click “Recipes è Save Recipe”. Select a

location and file name.

ð CODESYS saves the recipe in the format as defined in the Recipe Manager.

Handling of rec-
ipes in the
CODESYS user
interface

Using recipes in
applications

Creating a
recipe

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US418

ms-its:Recipe Management.chm::/index.html
ms-its:core_Visualization.chm::/_visu_dlg_input_configuration.htm

See also
● Ä Chapter 1.4.1.20.2.22 “Object 'Recipe Manager'” on page 923
● Ä Chapter 1.4.1.20.2.23 “Object 'Recipe Definition'” on page 926
● Ä Chapter 1.4.1.20.3.19 “Menu 'Recipes'” on page 1127

Requirement: A Recipe Manager is available in the application. In a recipe definition, there is a
“myRec” recipe with variable values. A myRec.txt recipe file is located on the file system and
contains the entries for this recipe.
Example of the recipe file:
PLC_PRG.bVar:=0
PLC_PRG.iVar:=2
PLC_PRG.dwVar:=35232
PLC_PRG.stVar:='first'
PLC_PRG.wstVar:='123443245'
1. Double-click the “Recipe Definition” object in the device tree to open the tabular editor for

the definition of the individual recipes.

ð You see the myRec column with the current values for this recipe.

2. Edit the myRec.txt file in an external text editor and replace the variable values with
other values that you want to load into the recipe definition in CODESYS. Save the file.

3. Click the “myRec” column in the recipe definition and click “Load Recipe” in the context
menu.

ð A dialog prompt notifies you about the possibly needing to perform an online change
when logging in again. An online change is necessary when you change the current
values of the recipe variables by loading the recipe.

4. Click “Yes” to close the dialog and continue. Select the myRec.txt file from the file
explorer for loading.

ð The recipe values in the recipe definition are updated according to the values read in
the file.

If you want to overwrite only individual recipe variables with new values, then
remove the values for the other variables before loading to the recipe file.
Entries without value definitions are not read, and therefore updating leaves
these variables unchanged on the PLC and in the project.

For values of the data type REAL/LREAL, the hexadecimal value is also written
to the recipe file in some cases. This is necessary so that the exact identical
value is restored when converting back. In this case, change the decimal value
and delete the hexadecimal value.

See also
● Ä Chapter 1.4.1.20.3.19.4 “Command ‘Load Recipe'” on page 1128
● Ä Chapter 1.4.1.20.3.19.8 “Command 'Load and Write Recipe'” on page 1129

When you clear the “Recipe management in the PLC” option, the Recipe Manager and recipe
definitions will not use any memory on the PLC.
If you select this option, then code is generated for the Recipe Manager and all recipe defini-
tions, and this code is stored on the PLC. The size of the used memory primarily depends on
the number pf recipes and their variables, as well as the data type of the variables. Whether or
not the fields of the recipe definition are filled also has an effect. The memory usage of recipes
cannot be calculated. It has to be determined by experimentation at the time it is needed. The
following table merely provides some guiding principles.

Loading a
recipe from a
file

Recipe manage-
ment on the
controller;
memory usage

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 419

 Code Size (bytes) Data Size (bytes) Total (bytes)
Recipe definition with
100 INT variables

194406 79400 267352

Recipe definition with
200 INT variables

238318 121284 459344

Recipe definition with
300 INT variables

282230 163084 543856

Recipe definition with
100 BOOL variables

192742 69884 343168

Recipe definition with
200 BOOL variables

235446 101568 436872

Recipe definition with
300 BOOL variables

278146 133284 510072

Recipe definition with
100 string variables

203278 870084 1154000

Recipe definition with
200 string variables

255570 1709784 2973296

Recipe definition with
300 string variables

307886 2549484 2964112

You can apply recipe values on the controller to recipe definitions in the project, even if these
definitions have been modified in the project.
Requirement: The “Recipe management in the PLC” is option is selected in the Recipe Man-
ager.
1. Create a recipe definition RecDef1 in the project, containing the variables

PLC_PRG.ivar and PLC_PRG.bvar. Insert a recipe “R1”: value for PLC_PRG.ivar: 33;
value for PLC_PRG.bvar: TRUE.

2. Log in to the controller and download the application.

ð The recipe file R1.RecDef1.txtrecipe is saved to the default directory of the
controller ($PlcLogic$).

3. Logout and add another variable PLC_PRG.dwvar to the recipe definition in the project.

4. Edit the recipe definition file R1.RecDef1.txtrecipe on the device by changing the
value for PLC_PRG.ivar from 33 to 34.

Moreover, add another recipe “R2” on the device. To do this, copy the
R1.RecDef1.txtrecipe and rename it to R2.RecDef1.txtrecipe. Then edit this
file and change the recipe values: PLC_PRG.ivar: 1, PLC_PRG.bvar: FALSE.

ð Now two recipes “R1” and “R2” are available on the device. In the project, there is only
“R1”, and it also contains other values than “R1” on the device.

5. Log in to the controller by means of an online change.
6. Click “Load Recipes from Device” from the context menu.

ð A dialog prompt notifies you that executing the command at the next login may trigger
an online change, and that the recipes on the runtime system will overwrite the recipes
of the current recipe definition.

7. Confirm that you want to continue.

ð A dialog prompt notifies you that the recipe for PLC_PRG.dwvar loaded on the device
cannot yield a value from the controller.

Loading recipe
values from the
controller

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US420

8. Confirm that you want to continue.

ð The value of PLC_PRG.ivar in recipe “R1” of the recipe definition in the project
changes to 34. The recipe “R2” with the values 1 and FALSE is also listed in the
recipe definition now. PLC_PRG.dwvar remains in the recipe definition.

1.4.1.12.3 Data Recording with Trace
You can use a “Trace” to follow the value history of variables on the controller in a similar
way as a digital sampling oscilloscope. When the application is in runtime mode with trace,
all statements are executed first within the task cycle. Then, data recording starts with value
storage including time stamps. These time stamps are relative and refer to the start time of the
data recording. The data yields a discrete time signal and CODESYS displays its course in the
trace editor.
A sample (data record) is composed of the value and the time stamp. The runtime system writes
the samples to a buffer with a definable size. CODESYS requests the data, saves it in the
trace editor buffer, and displays it in the trace diagram as a function of time. You can monitor
the value history of the configured variables continually because CODESYS displays the latest
data.
You can trigger the data recording. When this happens, the application saves the data from the
time of the trigger and CODESYS displays the data at the time of the trigger.
The configuration and the display of a trace are possible in the CODESYS project by means of
trace objects in the trace editor. There are the following two object types:
● “Trace”: Inserted below the IEC application in the device tree. This kind of object always

contains a purely application-specific trace configuration. You can download this trace con-
figuration to the controller and run it with the application.

● “DeviceTrace”: Inserted below the device object in the device tree. If the PLC supports
a trace manager, then you can use one or more “DeviceTrace” objects to access one or
more traces that are running on the controller. These can be both application-specific or
controller-specific traces. For example, a controller can support traces for recording the
processor load. Menu commands allow for access from the CODESYS project to the trace
manager in the device.

Access to the trace manager from IEC code is possible by means of the functions from the
library CmpTraceMgr.library. For more information, refer to the library documentation.

NOTICE!
A running data recording with trace can lead to a significant increase in the
cycle time of the IEC task.

NOTICE!
Data recording with trace also continues running after logging out of the device.

The device description of a runtime system with trace manager includes the tracemanager
entry in the TargetSettings section.

In this case, CODESYS transfers only the trace configuration when downloading the application
to the PLC. When you start the trace, the application interprets the configuration on the RTS by
means of the trace manager, executes the data recording, and buffers the data sets on the PLC.
The CmpTraceMgr runtime system component provides extended functionality, as compared to
data recording with IEC code.

Runtime system
component
CmpTraceMgr,
"Trace man-
ager"

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 421

Data recording is therefore possible as follows:
● Parameters on the PLC (for example, the processor load (cpuload, plcload), or the tempera-

ture curve of a CPU or a battery). The measurement of the processor load per CPU core
(cpuload) is interesting for multicore controllers.

● Device signals (for example, the current path of a drive)
● System variables of another runtime system component
You can configure parameters like IEC variables in the “Trace Configuration” dialog of the
“Variable Settings”.
The display of traces that run on the controller is possible in the trace editor of a DeviceTrace
object.
See also
● Ä Chapter 1.4.1.12.3.4 “Accessing All Traces on the Controller” on page 428
● Ä Chapter 1.4.1.20.2.29 “Object 'DeviceTrace'” on page 948
● Ä Chapter 1.4.1.20.4.15.2 “Dialog 'Trace Configuration'” on page 1209

To monitor data that depends on an event or a condition, you can free the data recording that
depends on a trigger. At runtime, the application checks whether the event has occurred or the
the condition is fulfilled, and then it buffers the data accordingly.
The trace configuration enables triggering by:
● a trigger variable that maps the event
● a condition as expression
● a combination of trigger variable and condition

You can save samples from the development system to a file. The file can also include the trace
configuration.

Table 28: Possible file formats
File Extension File type Description
*.trace: “Trace file” Contains the samples and the trace

configuration in XML format. You can
execute the “Load Trace” command to
load the file to the trace editor when off-
line and analyze the samples without a
controller.

*.txt “Text File” Contains the samples in ASCII format.
You can edit the file with an external
tool.

Data recording
after triggering

Saving samples
to a file

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US422

File Extension File type Description
*.trace.csv “Trace dump” File in CSV format includes the trace

configuration and optional samples.
You can create the file by clicking
“Export Symbolic Trace Config”. You
can transfer the file to the controller and
load it to the application. Then you can
execute the “Load Trace” command in
CODESYS to display this in the trace
editor.
You can also click “Trace è Save
Trace” and select the *.trace.csv file
format. You can transfer the file to the
controller and load it with an HMI for
analysis.

*.traceconfig “Symbolic trace configuration” Contains the trace configuration CSV
format. You can create the file by
clicking “Export Symbolic Trace Config”.
The CmpTraceMgr runtime system
component can read the file.

See also
● Ä Chapter 1.4.1.20.3.21.15 “Command 'Save Trace'” on page 1145
● Ä Chapter 1.4.1.20.3.21.8 “Command 'Load Trace'” on page 1141
● Ä Chapter 1.4.1.20.3.21.7 “Command 'Export Symbolic Trace Config'” on page 1139
● Ä Chapter 1.4.1.20.2.25 “Object 'Symbol Configuration'” on page 927

See also
● Ä Chapter 1.4.1.20.2.28 “Object 'Trace'” on page 945
● Ä Chapter 1.4.1.20.2.29 “Object 'DeviceTrace'” on page 948

Getting started

PROGRAM PLC_PRG
VAR
 iVar : INT;
 rSin : REAL;
 rVar : REAL;
END_VAR

iVar := iVar + 1;
iVar := iVar MOD 33;

rVar := rVar + 0.1;
rSin := 30 * SIN(rVar);

Requirement: The application is running the PLC_PRG program on the controller.

1. In the device tree, select the application and add a new trace object by clicking “Project
è Add Object”.

ð The respective trace editor opens with the commands available in the “Trace” menu.

2. Click “Trace è Configuration”.

ð The “Trace Configuration” dialog box opens.

3. Select a task for running the trace feature. Normally this is the same task that is running in
PLC_PRG.

Program
PLC_PRG

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 423

4. Click “Add Variable” to add an entry to the tree view of the trace configuration and assign
an IEC variable (for example, PLC_PRG.rSin).

5. Click “Trace è Download Trace”.

ð CODESYS loads the trace configuration to the controller. The application starts
recording data and transmits the data to CODESYS, where it is displayed in the trace
diagram as a graph. Commands are provided for navigating through the samples and
controlling the data recording.

The PLC_PRG program is running on the controller. When you follow the instructions for
"Getting Started", CODESYS displays the following trace diagram.

● (1) : “Configuration”
● (2) : “Add Variable”

Trace the sine-
shaped data of
the IEC vari-
able
PLC_PRG.rSin

See also
● Ä Chapter 1.4.1.20.2.28 “Object 'Trace'” on page 945

Creating trace configuration
For a complete trace configuration, specify at least one task and one variable. In order to trigger
the data recording, activate the trigger option and select a trigger variable or specify a recording
condition.
See also
● Ä Chapter 1.4.1.20.4.15.1 “Dialog 'Advanced Trace Settings'” on page 1208
● Ä Chapter 1.4.1.20.4.15.2 “Dialog 'Trace Configuration'” on page 1209
● Ä Chapter 1.4.1.20.4.17 “Dialog Box 'Advanced Trend Settings'” on page 1214
● Ä Chapter 1.4.1.12.4.2 “Configuring trend recording” on page 432

In this task, the data recording is executed in runtime mode. Usually the same task is selected
where the variables are written.
1. Double-click the trace object.

ð The trace editor opens with the commands available in the “Trace” menu.

Example

Assigning a
task

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US424

2. Click “Trace è Configuration”.

ð The “Trace Configuration” dialog opens. In the tree view “Trace Record”, the top item
is selected and the subdialog “Record Settings” is shown on the right.

3. Click the "arrow down" symbol () in the “Task” drop-down list.

ð The drop-down list opens with all tasks that are available throughout the application.

4. Select a task for the trace.

See also
● Ä Chapter 1.4.1.20.4.15.2 “Dialog 'Trace Configuration'” on page 1209

1. Double-click the trace object.

ð The trace editor opens. The commands of the “Trace” menu are available.

2. Click “Add Variable”.

ð The “Trace Configuration” dialog opens. The subdialog “Variable Settings” is displayed
on the right.

3. Click in the input field of the “Variable” setting and select a trace variable in the “Input
Assistant” dialog.

ð The variable is configured for data recording. The trace record tree and the display
tree were extended by the variable.

4. Click the “Add Variable” link.

ð The trace record tree and the display tree receive a new variable. The settings of the
variables are available on the right.

5. Select a trace variable.
6. Click “OK” to close the dialog.

ð The variables are trace variables and are displayed in the trace variable list.

1. Double-click the trace object.
2. Click a variable in the trace record tree.
3. Click the “Delete Variable” command or press [Del].
4. Click “OK” to close the dialog.

ð The variable is removed from the trace variable list.

1. Double-click the trace object.
2. Click “Add Variable”.

ð The “Trace Configuration” dialog opens. The subdialog “Variable Settings” is displayed
on the right.

3. Click (right of the “Variable” setting, left of the input field).
4. Select the “Parameter” option in the drop-down list.
5. Click and select a parameter from the “Input Assistant” dialog.

Configuring a
trace variable

Deleting a trace
variable

Tracing a
parameter

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 425

6. Configure how the parameter is displayed.
7. Click “OK” to close the dialog.

ð The parameter will be traced and displayed in the trace variable list.

1. Double-click the trace object.

ð The trace editor opens with the commands available in the “Trace” menu.

2. Click “Trace è Configuration”.

ð The “Trace Configuration” dialog opens. The subdialog “Record Settings” is displayed
on the right.

3. Select the “Enable trigger” check box.
4. Select the task in which the trend record is to be executed.
5. Select a variable from the “Trigger Variable” field.
6. Click “OK” to close the dialog.

ð The data recording will be triggered.

The trigger time is displayed as a black line in the diagram in runtime mode.
1. Download the application and start it.
2. Click “Trace è Download Trace”.

ð The trace configuration is loaded. After triggering, the runtime system saves the value
graph of the trace variables. The data is displayed in the trace editor. The trigger time
is displayed as a black line in the diagram.

1. Double-click a trace object.
2. Click the “Configuration” link above the configuration tree.

ð The “Trace Configuration” dialog opens.

3. Select “Time axis” in the display tree (below “Presentation (Diagrams)”).

ð The display settings of the time axis are shown on the right.

4. Edit the presets and click the “Preview” link.

ð The changes are seen in the coordinate system preview.

5. Click “Y-axis” in the display tree. The “Y-axis” item is below every configured diagram.
Therefore, the display of the value axis is set for each diagram.

ð The subdialog “Display Settings” of the selected axis is displayed on the right.

6. Change the preset value.

ð The changes are applied in the coordinate system preview.

7. Click OK to close the “Trace Configuration” dialog.

ð The display changes are visible in the affected diagrams.

Configuring a
trigger

Configuring the
display of the
time axis

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US426

1. Double-click a trace object.
2. Click the “Configuration” link.

ð The “Trace Configuration” dialog opens.

3. Select a variable below “Trace Record”.

ð The subdialog “Variable Settings” of the selected variable is displayed on the right.

4. Change a setting, for example the “Line type”.
5. Click “OK” to close the dialog.

ð The display changes are visible in the affected diagrams.

1. Double-click a trace object.
2. Click “Trace è Configuration”.

ð The “Trace Configuration” dialog opens. The subdialog “Record Settings” is displayed
on the right.

3. Click “Advanced”.

ð The “Advanced Trace Settings” dialog opens.

4. Change the setting “Measure in every n-th cycle” or “Recommended runtime buffer size
(samples)”.

5. Click “OK” to close the dialog.

ð The buffer settings are reconfigured. It is applied after the trace configuration is loaded
to the RTS the next time.

Requirement: The application is running on the controller and a trace configuration is loaded.

1. Double-click a variable in the trace record tree.

ð The “Trace Configuration” dialog opens.

2. Change the color, for example.

ð The variable is displayed in the new color in the affected diagrams without interrupting
the execution of the application.

If you change essential settings, for example a trace variable, then you must
download the trace configuration to the controller again.

Operating the data recording
Use menu commands for controlling how data is recorded.
Requirement: The application is loaded on the runtime system and a trace is configured.

Configuring the
display of the
trace variable

Configuring the
buffer for data
on the runtime
system

Editing the trace
configuration in
runtime mode

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 427

Menu commands
● “Trace è Download Trace”
● “Trace è Start Trace”
● “Trace è Stop Trace”
● “Trace è Reset Trigger”

See also
● Ä Chapter 1.4.1.20.3.21.6 “Command 'Download Trace'” on page 1138
● Ä Chapter 1.4.1.20.3.21.16 “Command 'Start Trace'” on page 1145
● Ä Chapter 1.4.1.20.3.21.17 “Command 'Stop Trace'” on page 1145
● Ä Chapter 1.4.1.20.3.21.13 “Command 'Reset Trigger'” on page 1144

Accessing All Traces on the Controller
If the controller supports the runtime system component CmpTraceMgr (Trace Manager), then
you can access all traces from a CODESYS project which are running on the controller. In
addition to application-related traces that capture the values of IEC variables, these can also
be entirely controller-specific traces (for example, for recording device signal values or the CPU
load).
For each trace running on the controller that you want to present in your project, you have to
insert an individual “DeviceTrace” object in the device tree.
In order to show a trace from the device in this object, the connection to the PLC has to be con-
figured correctly (“Communication Settings”). Then use one of the following menu commands:
● “Trace è Upload Trace”: Establishes the connection to the PLC and opens the “Online List”

dialog for selecting a trace from the controller.
● “Trace è Online List”: Available in online mode only: Also opens the “Online List” dialog.
Now the trace uploaded from the controller can be started and traced in the editor of the
DeviceTrace object. The configuration of the presentation (colors, labels, etc.) is the same as
with traces for application variables configured in the project.

NOTICE!
Closing the DeviceTrace editor terminates the connection to the con-
troller.
Please note that the connections to the controller is also terminated when
the last open “DeviceTrace” editor is closed. In order for device traces to be
displayed again in the project, you have to reload them into the “DeviceTrace”
objects.
At this time, closing the editor is also the recommended procedure for deliber-
ately terminating the connection to the controller. Logging out is not enough for
this.

See also
● Ä Chapter 1.4.1.20.4.15.2 “Dialog 'Trace Configuration'” on page 1209
● Ä Chapter 1.4.1.20.2.29 “Object 'DeviceTrace'” on page 948
● Ä Chapter 1.4.1.20.3.21.19 “ Command 'Upload Trace'” on page 1146
● Ä Chapter 1.4.1.20.3.21.12 “Command 'Online List'” on page 1143

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US428

Requirement: The PLC device supports the Trace Manager. For the example described here,
this is CODESYS Control Win V3. The device provides traces of the individual CPU loads
(CpuLoad), as well as traces of the CPU load caused by the runtime system (PlcLoad). The
possible display of the CPU load in the project can be helpful when using multicore functionality.

1. In the project, define the “Communication Settings” for the controller.
2. Select the PLC entry in the device tree and add a “DeviceTrace” object.
3. Rename “DeviceTrace” to "Trace_PlcLoad" (“Properties”).
4. Set the focus in the trace editor and click “Trace è Upload Trace”.

ð The connection to the controller is established and the “Online List” dialog opens.

5. Select the “PlcLoad” entry in the dialog and click “Upload”. Click OK to close the dialog.

ð Multiple trace views open in the trace editor to show the CPU load in the runtime
system. There are the traces for the particular CPUs and one trace for the average
value. The following text appears for each: "No samples have been recorded."

6. Click “Trace è Start Trace”.

ð The trace recording for the four parameters is displayed.

7. If you also want to display the traces for the CpuLoad per CPU with their average value
in the project, then insert another “DeviceTrace” object into the device tree. Name it
"Trace_CpuLoad" for example. Load and start the traces for “CpuLoad” in the editor as
described above.

ð Now you can monitor all traces in the project:

8. If you want to change the appearance of the presentation, then click “Configuration”
in the respective trace editor window to access the configuration dialogs. You can use
these dialogs (except variable assignments) in the same way as for an IEC variable trace
created in a project.

9. To disconnect from the controller, close all open DeviceTrace editor windows. If you are
logged in to the device, then logging out is enough to terminate the connection.

See also
● Ä Chapter 1.4.1.20.2.8.2 “Tab 'Communication Settings'” on page 840

Navigating into trace data
Use menu commands to navigate the data in the trace diagram.
Requirement: The application is in online mode.
Menu commands
● “Trace è Cursor”
● “Trace è Mouse Zooming”
● “Trace è Reset View”
● “Trace è AutoFit”
● “Trace è Compress”
● “Trace è Stretch”
● “Trace è Convert to Single-Channel”
● “Trace è Convert to Multi-Channel”

Displaying the
CPU load with
DeviceTrace
objects in the
CODESYS
project
(example)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 429

See also
● Ä Chapter 1.4.1.20.3.21.5 “Command 'Cursor'” on page 1137
● Ä Chapter 1.4.1.20.3.21.9 “Command 'Mouse Zooming'” on page 1141
● Ä Chapter 1.4.1.20.3.21.14 “Command 'Reset View'” on page 1144
● Ä Chapter 1.4.1.20.3.21.2 “Command 'AutoFit'” on page 1137
● Ä Chapter 1.4.1.20.3.21.3 “Command 'Compress'” on page 1137
● Ä Chapter 1.4.1.20.3.21.18 “Command 'Stretch'” on page 1146
● Ä Chapter 1.4.1.20.3.21.10 “Command 'Convert to Multi-Channel'” on page 1141
● Ä Chapter 1.4.1.20.3.21.11 “Command 'Convert to Single-Channel'” on page 1142

Managing trace
Use menu commands to load and save traces in various formats.
Menu commands
● “Trace è Save Trace”
● “Trace è Load Trace”
● “Trace è Export Symbolic Trace Config”

See also
● Ä Chapter 1.4.1.20.3.21.15 “Command 'Save Trace'” on page 1145
● Ä Chapter 1.4.1.20.3.21.8 “Command 'Load Trace'” on page 1141
● Ä Chapter 1.4.1.20.3.21.7 “Command 'Export Symbolic Trace Config'” on page 1139

Showing statistics
CODESYS evaluates and displays the recorded data with an option of saving the data to the
clipboard. Click “Trace è Statistics”.
See also
● Ä Chapter 1.4.1.20.3.21.20 “Command 'Statistics'” on page 1146

1.4.1.12.4 Data Recording with Trend
When you want to monitor the development of data over a long period of time for the purpose of
reading a trend, you can save the data with “Trend Recording”. You can configure any number
of variables or parameters to save their values in a persistent database. This database is
located on the PLC and is populated continually at runtime.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US430

Trend recording comprises the following objects:
● (1):“Trend recording task” of type “Task”
● (2): Object of type “Trend Recording Manager”
● (3): Object of type “Trend Recording”

NOTICE!
Timeout for trend recording
During a trend recording, it can happen that the application task triggers a
timeout that is caught with an exception when transitioning from “Running” to
“Stop”. Causes can be that file operations with the SQLite database are taking
too long or that too many variables are being recorded. This usually happens on
a target device with weak performance.
You can avoid the occurrence of an exception:
– Configure the trend recording with less memory demand so that the amount

of data that is stored is adapted to the target system.
– Reduce the number of variables.

To display the collected data, you design a visualization with a “Trend” element.
This kind of visualization accesses the database for visualizing the data.

See also
● Ä Chapter 1.4.1.20.2.30 “Object 'Trend Recording Manager'” on page 949
● Ä Chapter 1.4.1.20.2.31 “Object 'Trend Recording'” on page 949
● Ä Chapter 1.4.1.20.2.32 “Object 'Trend Recording Task'” on page 952

Getting started with trend recording
To execute trend recording on a runtime system, you need an application with a “Trend
Recording Manager” object that contains at least one “Trend Recording” object. Then you can
configure a database on the runtime system and the data buffering.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 431

1. Add a “Trend Recording Manager” object below your application.
2. Select the “Trend Recording Manager” object and click “Add Object è Trend Recording”.

Type a name in the “Add Trend Recording” dialog box.

ð CODESYS creates the object. The editor opens.

3. Type a task in “Record Settings”.
4. Click “Add Variable”.

ð CODESYS adds another variables. The blank settings open in the “Variable Settings”
to the right of the tree view.

5. Select a valid IEC variable from the “Variable” field.

ð The IEC variable is configured for trend recording.

6. Build the application.
7. Download the application to the controller and click “Start”.

ð The application records data in runtime mode and saves it to a database.

See also
● Ä Chapter 1.4.1.20.2.31 “Object 'Trend Recording'” on page 949
● Ä Chapter 1.4.5.11.1 “Getting Started with Trend Visualization” on page 1309

Configuring trend recording
You can configure a database on the runtime system and the data buffering.

NOTICE!
Timeout for trend recording
During a trend recording, it can happen that the application task triggers a
timeout that is caught with an exception when transitioning from “Running” to
“Stop”. Causes can be that file operations with the SQLite database are taking
too long or that too many variables are being recorded. This usually happens on
a target device with weak performance.
You can avoid the occurrence of an exception:
– Configure the trend recording with less memory demand so that the amount

of data that is stored is adapted to the target system.
– Reduce the number of variables.

In this task, the runtime system records the trend.

In general, trend recording runs in the same task as the main program (for
example, PLC_PRG).

1. Double-click a “Trend Recording” object in the device tree.

ð The respective editor opens. In the tree view of the trend configuration, the top entry is
selected, and on the right you see the current configuration in “Record Settings”.

2. Click the "arrow down" symbol () in the “Task” drop-down list.

ð The drop-down list opens with all tasks that are available throughout the application.

3. Select a task for trend recording.

Assigning tasks

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US432

See also
● Ä Chapter 1.4.1.20.2.31 “Object 'Trend Recording'” on page 949

NOTICE!
The number of variables is limited for trend recording. You can change this
number in the “Trend storage” dialog.

1. Double-click a “Trend Recording” object in the device tree.

ð The respective editor opens. In the tree view of the trend configuration, the top entry is
selected, and on the right you see the current configuration in “Record Settings”.

2. Right-click an entry in the tree view.
3. Click “Add Variable”.

ð CODESYS adds another variables. The blank settings open in the “Variable Settings”
to the right of the tree view.

4. Select a valid IEC variable from the “Variable” field.

ð The IEC variable is configured for trend recording.

5. Configure how the variable is displayed in the trend diagram.
6. Configure how the alert color is displayed in the trend diagram.

See also
● Ä Chapter 1.4.1.20.2.31 “Object 'Trend Recording'” on page 949
● Ä Chapter 1.4.1.20.4.16 “Dialog Box 'Trend storage'” on page 1214

1. Double-click a “Trend Recording” object in the device tree.
2. Click a variable in the tree view of the configuration.
3. Click “Delete Variable” or press [Del].

You can configure conditional trend recording for execution. Configuration is not possible when
depending on triggering. For that you need a “Trace” object.

1. Double-click a “Trend Recording” object in the device tree.
2. Click the top node in the tree view of the trend configuration.

ð The name of the trend configuration is selected and on the right you see the current
configuration in “Record Settings”.

3. Assign a Boolean variable, an access to a bit, or a property to the “Record condition” field.

ð When the application is in runtime mode, data is recorded only if the value is TRUE.

See also
● Ä Chapter 1.4.1.12.3 “Data Recording with Trace” on page 421

Adding IEC vari-
ables

Removing varia-
bles from the
configuration

Starting condi-
tional trend
recording

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 433

1. Double-click a “Trend Recording” object in the device tree.

ð The respective editor opens. In the tree view of the trend configuration, the top entry is
selected, and on the right you see the current configuration in “Record Settings”.

2. Right-click an entry in the tree view.
3. Click “Add Variable”.

ð CODESYS inserts a new variable. The blank settings open in the “Variable Settings”
to the right of the tree view.

4. Click the "down" symbol () to the right of the “Variable” label.
5. Select “Parameter” from the drop-down list.
6. Click and select a parameter from the “Input Assistant” dialog.
7. Configure how the parameter is displayed in the trend diagram.
8. Configure how the alert color is displayed in the trend diagram.

See also
● Ä Chapter 1.4.1.20.2.31 “Object 'Trend Recording'” on page 949

1. Double-click a “Trend Recording” object in the device tree.

ð The respective editor opens. In the tree view of the trend configuration, the top entry is
selected, and on the right you see the current configuration in “Record Settings”.

2. Click “Trend Storage”.

ð The “Trend Storage” dialog opens.

3. Now you can change the settings.

See also
● Ä Chapter 1.4.1.20.4.16 “Dialog Box 'Trend storage'” on page 1214

1. Double-click a “Trend Recording” object in the device tree.

ð The respective editor opens. In the tree view of the trend configuration, the top entry is
selected, and on the right you see the current configuration in “Record Settings”.

2. Click “Advanced”.

ð The “Advanced Trace Settings” dialog opens.

3. Now you can change the settings.

See also
● Ä Chapter 1.4.1.20.4.17 “Dialog Box 'Advanced Trend Settings'” on page 1214

Adding param-
eter

Configuring
data buffering
on the RTS

Configuring
additional buf-
fering

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US434

See also
● Ä Chapter 1.4.1.12.3.2 “Creating trace configuration” on page 424

1.4.1.12.5 Monitoring tasks
In online mode, you can display some statistical values of the tasks in the runtime system.
This information is very useful for testing clock cycles or solving problems in the runtime
performance.
1. Switch to online mode.
2. Select the “Task Configuration” object in the device tree.

Click “Project è Edit Object”.

ð The task configuration opens in the editor.

3. Click the “Monitor” tab.

See also
● Ä Chapter 1.4.1.20.2.26.3 “Tab 'Monitor'” on page 940

1.4.1.12.6 Reading the PLC log
CODESYS provides the capability to display the events and error messages logged in the
controller.
See also
● Ä Chapter 1.4.1.20.2.8.8 “Tab 'Log'” on page 848

Requirement: The controller is running.
1. Select the controller in the device tree.
2. Choose the command “Project è Edit Object”.

ð The device editor opens.

3. Choose the tab “Log”.
4. Click on to update the view.

ð A connection to the controller is established. The controller in the device tree is
highlighted in green.
All controller log information are displayed.

5. Click on to delete the current list.
6. Filter the view by clicking on the desired category (for example "Information").
7. Save the log entries. Click on and choose a file name.

See also
● Ä Chapter 1.4.1.20.2.8.8 “Tab 'Log'” on page 848

Reading the log

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 435

1.4.1.12.7 Using PLC shell for requesting information
The "PLC shell" in CODESYS is a text-based control monitor (terminal) on a tab of the device
editor. There you can enter commands for the request of specific information from the controller,
as well as execute actions like starting, stopping or downloading applications. Also a description
on the meaning and syntax of the possible commands you can get directly via the PLC shell.

Requirement: Your project is connected with a controller; Example: CODESYS Control Win V3,
on which an application App1 is running.

1. Open the device editor double-clicking on the object CODESYS Control Win V3 in the
device tree, and activate tab “PLC Shell”.

ð The tab shows an empty output data window. Below there is an entry field for a
command.

2. Click button .

ð The “Insert Standard Command” dialog appears with a list of commands.

3. Choose command “?” and click button “Execute”.

ð The dialog closes and in the output data window you see a list of the supported com-
mands and their possible parameters. Each the syntax for how to enter the command
is displayed.

4. Click again and choose command “pid”. In the input assistant supplement the com-
mand as follows: pid App1. Press the Enter key.

ð In the output data window the following gets displayed (the GUIDs are just exmples):

pid App1
Project Identification
Application: App1
Code GUID:0x08a893c0
Data GUID:0x762d0e90

5. Click button in the command line.

ð Command pid App1 is added to the history of already entered commands.

See also
● Ä Chapter 1.4.1.20.2.8.10 “Tab 'PLC Shell'” on page 852

1.4.1.12.8 PLC operation control via system variables

CAUTION!
You are responsible for runtime system services being enabled under safe
application conditions and disabled only under critical conditions.

At runtime, the state of an application or facility can become sensitive and disruptive actions
can endanger the entire machine or facility. However, in this state you can suppress certain
commands and prevent dangerous actions. The “PlcOperationControl” function block and
“Component Manager” library are provided for this purpose.

Requesting
information
about the appli-
cation on the
controller

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US436

Examples of CODESYS commands that can suppress operations when executed:
● “Online Change”, “Download”
● “Enable Breakpoint”
● “Reset Application”, “Stop Application”
● “Transmit Data”
● “Force Values”, “Write Values”

In order that a backup solution is always in place, you are not permitted to suppress the “Reset
origin” and “Delete” commands.
CODESYS will notify you if a currently disabled runtime system service is required when the
application is in runtime mode. Then, you can respond with an appropriate countermeasure.

This function block is used for enabling and disabling operations.

Table 29: Property (PROPERTY)
Name Data Type Initial value Description
xDisableApplic
ationOnlineCha
nge

BOOL FALSE TRUE: Online change is suppressed.

xDisableApplic
ationDownload

BOOL FALSE TRUE: Download is suppressed.

xDisableApplic
ationStop

BOOL FALSE TRUE: Application stop is suppressed.

xDisableApplic
ationBP

BOOL FALSE TRUE: Setting breakpoints is suppressed.

xDisableApplic
ationWrite

BOOL FALSE TRUE: Writing variables is suppressed.

This can also be suppressed via PLCHandler/Iec-
VarAccess.

xDisableApplic
ationForce

BOOL FALSE TRUE: Forcing variables is suppressed.

xDisableApplic
ationReset

BOOL FALSE TRUE: Resetting the application (not "Reset
origin") is suppressed.

xDisableAll BOOL FALSE TRUE: All operations are suppressed.

Requirement
● Compiler version >= 3.4.3.0
● In the device description, the PLC operation control is enabled by system variables.
1. Declare an instance of the PlcOperationControl function block (for example,

PlcOpCtrl_Inst).

ð PlcOpCtrl_Inst : PlcOperationControl;
2. Suppress a command by assigning the respective TRUE property (for example, "Stop

Application".

ð PlcOpCtrl_Inst.xDIsableApplicationStop := TRUE;

Function block
PlcOperationC
ontrol for
operation con-
trol

Implementing
operation con-
trol

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 437

See also
● Ä Chapter 1.4.1.20.3.6.6 “Command 'Online Change'” on page 1033
● Ä Chapter 1.4.1.20.3.7.16 “Command 'Force Values'” on page 1053
Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401

1.4.1.12.9 Backup and restore
CODESYS and the CODESYS standard runtime systems (with version 3.5.8.0 and later) sup-
port backing up application-specific files on the PLC. You can execute the required actions in
the “Backup and Restore” tab of the generic device editor.
A backup consists of creating and saving a file in zip archive that contains the application-
related files and an information file meta.info. This backup file has the extension TBF
(="Target Backup File") and can be saved in the local file system or on the PLC.
The following applies when restoring the software status from the backup file:
● A dialog opens with a list of affected files on the PLC, and you can deactivate optional

components.
● We highly recommend to set the application to STOP mode for backup or restore. A dialog

prompt will open to warn you about this.
● The user interface is blocked when restoring to the PLC.
● Existing files are overwritten without warning.
● Existing boot applications are deactivated as soon as at least one new boot application is

part of the restore.
See also
● Ä Chapter 1.4.1.20.2.8.5 “Tab 'Backup and Restore'” on page 846

Requirement: A project is open with an application that is running on the required device. In
addition, for this example an external file myExternalFile.txt is inserted as an object below
the application. This file is downloaded to the PLC implicitly when downloading the application.
1. Open the device editor by double-clicking the device entry in the device tree. Click the

“Backup and Restore” tab.

ð The tab opens with a menu bar including the “Backup” and “Restore” menus.

2. In the “Backup” menu, select the “Read Backup Information from Device” item.

ð If the PLC is not connected at the moment, then CODESYS opens a
temporary connection to the device and reads the relevant files from the
$PlcLogic$ directory of the PLC into a table in the lower part of the
tabbed page. In this example, at least the following files will be listed:
$PlcLogic$/Application/Application.app, $PlcLogic$/Application/
Application.crc, and $PlcLogic$/Application/myExternalFile.txt. In
addition, other external, project-dependent files are listed, which have been inserted
below the application in the device tree. Furthermore, the source code archive file
$PlcLogic$/Archive.prj is listed if you have set the project setting for this
(“Implicitly at program download and online change”) as the loading time.

3. In the table, clear the check box for the $PlcLogic$/Application//
myExternalFile.txt file in the “Active” column.

4. Select “Save Backup File to Device” in the “Backup” menu.

ð The “Save as” dialog opens. The file type is predefine as “Backup files (*.tbf)”.

5. Select a location for the backup file and click “Save”.

See also
● Ä Chapter 1.4.1.20.4.11.5 “Dialog 'Project Settings' – 'Source Download'” on page 1174

Creating backup
files

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US438

Requirement: A project is open with a PLC device connected. A backup file is saved to the local
file system as described above.
1. Open the device editor by double-clicking the device entry in the device tree. Click the

“Backup and Restore” tab.
Click “Restore è Load Backup File from Disc”.

ð The default prompt opens for selecting a backup file tbf in the local file system.

2. Select the backup file and click “Open”.

ð The files are read from the backup file and shown in the table of the dialog below.
The file $PlcLogic$/Application/myExternalFile.txt that was excluded in
the backup is missing.

3. Click “Restore è Restore Backup to Device”.

ð A dialog prompt opens with information about the actions when restoring.

4. Click “OK” to start restoring the files to the PLC file system.

ð When restore is complete, you are prompted to restart the PLC in order to activate the
loaded application.

1.4.1.13 Updating an Application on the PLC
CODESYS basically provides two options to transfer a modified application to the controller:
download and online change.
A download results in a recompilation of the application. In that time, a syntax check is per-
formed and application code is also created and downloaded to the controller. This leads to
the running program being stopped. A download is the recommended method of data transfer
because a defined starting state is always created due to the program stop and the reinitializa-
tion.
In the case of an online change, only the modified parts are downloaded again to the controller.
A running program is not stopped for this. You should perform an online change only in the case
of minor changes to the application. For extensive changes, the behavior of a program cannot
be safely predicted. For more information, read the notes in the description of the “Online
Change” command.
See also
● Ä Chapter 1.4.1.13.1 “Executing the online change” on page 439
● Ä Chapter 1.4.1.13.2 “Execution of a download” on page 440
● Ä Chapter 1.4.1.20.3.6.5 “Command 'Load'” on page 1032
● Ä Chapter 1.4.1.20.3.6.6 “Command 'Online Change'” on page 1033

1.4.1.13.1 Executing the online change
CODESYS automatically offers you an online change if you log in with an application that
is already present on the controller, but has been changed since the last download in the
programming system. With this procedure only the modified parts are reloaded to the controller.
A running program on the controller is not stopped during the online change.
In the view “Memory reserve for online change”, you can configure memory reserves for the
online change for function blocks of a project. In this way, instance variables do not have to be
moved to the memory after changes are made to a function block for an online change.

NOTICE!
When carrying out the online change, pay attention to the notes in the descrip-
tion of the “Online Change” command.

Restoring from
backup files

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 439

See also
● Ä Chapter 1.4.1.20.3.6.6 “Command 'Online Change'” on page 1033
● Ä Chapter 1.4.1.20.3.6.2 “Command 'Login'” on page 1028
● Ä Chapter 1.4.1.10.4 “Generating Application Code” on page 389

Requirement: The connection settings of the controller are correctly set. The applications in
the project and on the controller are identical. The project on the controller is running. The
application is logged out.
1. Change your application.
2. Click “Online è Login”.

ð A dialog appears with the information that the application has been changed since the
last download.

3. Click the “Details…” button
4. Check the details in the “Application information” tab.

If you have not generated any code since the last change, the command “Application is
not up to date. Generate code now?” appears at the bottom edge of the dialog. In this
case click this command.

ð You are shown a comparison view of the objects (objects marked red are different).

5. Close the dialog.
6. Select the option “Login with Online Change” and click “OK”.

ð The change is loaded to the controller. The running program on the controller is not
stopped while doing this. The application is logged in.

See also
● Ä “View 'Project Comparison' - 'Differences'” on page 1011

Requirement: The connection settings of the controller are correctly set. The applications in
the project and on the controller are identical. The project on the controller is running. The
application is logged in.

1. Select an object in the device tree. It is best to select a POU or a GVL here.
2. Click “Project è Edit Object (Offline)”.

ð The object opens in the editor.

3. Change the object. For example, you can declare a new variable or change a value
assignment here.

4. Click “Online è Online Change”.

ð A query will appear, asking whether you really want to execute the online change.

5. Click “Yes” to confirm the dialog.

ð The change is loaded to the controller.

1.4.1.13.2 Execution of a download
A download of the application causes a compilation of the active application. In the process, a
syntax check is performed and application code is also created and loaded to the controller. A
program running on the controller is stopped during the download.

Executing the
online change
when logging in

Execute online
change in the
logged-in state
(online opera-
tion)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US440

NOTICE!
During the download, pay attention to the notes in the description of the
“Download” command.

See also
● Ä Chapter 1.4.1.20.3.6.5 “Command 'Load'” on page 1032
● Ä Chapter 1.4.1.20.3.6.2 “Command 'Login'” on page 1028
● Ä Chapter 1.4.1.10.4 “Generating Application Code” on page 389

Requirement: the connection settings of the controller are correctly set. The applications in
the project and on the controller are identical. The project on the controller is running. The
application is logged out.
1. Change your application.
2. Select the command “Online è Login”

ð A dialog box appears with the information that the application has been changed since
the last download.

3. Select the option “Login with download” and click on “OK”.

ð The running program on the controller is stopped and the change is loaded to the
controller. The application is logged in.

Requirement: the connection settings of the controller are correctly set. The applications in
the project and on the controller are identical. The project on the controller is running. The
application is logged in.

1. Select an object in the device tree. It is best to select a POU or a GVL here.
2. Select the command “Project è Edit Object (Offline)”

ð The object opens in the editor.

3. Change the object. For example, you can declare a new variable or change a value
assignment here.

4. Select the command “Online è Download”.

ð A query will appear, asking whether you really want to execute the download.

5. Confirm the dialog box with “Yes”.

ð The running program on the controller is stopped and the change is loaded to the
controller.

1.4.1.14 Copying files to/from PLC
In the generic “Files” tab of the device editor, you can copy files to and from the local file system
and the controller.
Requirement: The vendor has unlocked the tab. In the device tree, the connection to the
controller is configured. The device is running.
1. Double-click the PLC device object in the device tree to open the device editor.
2. Click the “Files” tab.

Downloading
when logging in

Downloading in
the logged-in
state (online
mode)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 441

3. In “Host” | “Location” on the left part of the view, set the path in the local file system where
files will be copied to and from. Example: D:\FileTransferWithPLC. If necessary,
create a new directory by clicking the folder symbol ().

ð The files and directories are shown like in a file manager. Click the refresh symbol ()
to update the display.

4. In “Runtime” on the right side of the view, set the required directory for the data transfer in
the same way.

ð CODESYS shows the files on the controller.

5. Select the required files from the file system tree for the file transfer (multiple selection is
possible). You can also select a directory for transferring all files in a folder.

6. Click the left and right arrow symbols (,) between the two parts of the view.

ð CODESYS copies the selected files to the other file system immediately. If a file is not
already available in the target directory, then it is created. If it is already available and
not write-protected, then it is overwritten. Otherwise a message is shown.

See also
● Ä Chapter 1.4.1.20.2.8.7 “Tab 'Files'” on page 848

1.4.1.15 Using the Command-Line Interface
You can start the command line with the following options and arguments.
<folder>Automation Builder.exe --<option>

Paths or option parameters must be written inside straight quotation marks
when they contain spaces, dashes, or slash marks.

CODESYS is started in the specified language.

--culture=<culture>
<Culture>: Typical language codes are as follows: de, en, fr, it, es, zh-CHS.

Starting CODESYS with the user interface in English:
Automation Builder.exe --culture=en

Example

See also
● Ä Chapter 1.4.1.20.4.13.13 “Dialog 'Options' – 'International Settings'” on page 1195

CODESYS is started directly with the specified profile. When you start CODESYS without this
option, the “Select Profile” opens.

--profile="<profile name>"
<profile name>: You have to specify the profile name exactly as it is displayed in the “Help
è About” splash screen of the development system or in the start menu on your computer.

Syntax:

Option --
culture (lan-
guage of the
user interface)
Syntax:

Option --
profile
(CODESYS pro-
file)
Syntax:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US442

Automation Builder.exe --culture=de --profile="Automation Builder
2.5"

Example

After CODESYS is started, the comparison of two CODESYS projects is begun immediately.
Type the path of the project file as arguments after the option and then the path of the reference
project. CODESYS starts and opens the “Project Comparison - Differences” view.

--compare="<path of project file>" "<path of reference project file>"

Automation Builder.exe --compare "D:\proj\project1.project"
"D:\proj\project2.project"

Example

See also
● Ä Chapter 1.4.1.20.3.4.21 “Command 'Compare'” on page 1010

CODESYS is started and the specified project is opened.

--project="<path of project file>"
<path of project file>: File path of project

Open the test project:
Automation Builder.exe --culture=de --
project="D:\projects\test.project"

Example

See also
● Ä Chapter 1.4.1.20.3.1.2 “Command 'Open Project'” on page 957

CODESYS is started, the specified project archive is extracted, and the project is opened.

--projectarchive="<path of project archive file>"
<path of project archive file>: File path of project archive

Extract the test.projectarchive and open the project in the development system:
Automation Builder.exe --
projectarchive="D:\projects\test.projectarchive"

Example

See also
● Ä Chapter 1.4.1.20.3.1.9 “Command 'Extract Archive'” on page 961

Option --
compare (start
project compar-
ison)
Syntax:

Option --
project (open
CODESYS
project)
Syntax:

Option --
projectarchiv
e (open
CODESYS
project archive)
Syntax:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 443

The specified script file is run by CODESYS.

Table 30: Command-line options for --runscript
--runscript="<scriptfile>.py" CODESYS runs the <scriptfile>.py script file at startup.

You have to provide the complete path of the script file.
--scriptargs:'<arg1>
<arg2> ... <argn>'

Use this option with the --runscript option. As a result, the argu-
ments <arg1> ... <argn> are passed to the script. The arguments are
passed to the Python variable sys.argv.

--noUI Use this option with the --runscript option.

The CODESYS user interface is not opened. CODESYS prints all
errors, warnings, compiler reports, and command-line messages gen-
erated from the script. The script messages (1: Severity Text) can
be separated from other messages (2: Severity FatalError, Error,
Warning, Information) with the ">" operator.

--enablescripttracing Use this option with the --runscript option. As a result, each com-
mand of the script file is shown in the output.

--textPrompts Use this option with the --noUI option. As a result, message service
methods and default dialogs are output in the command line for user
input.
If you do not specify --textPrompts, then all message service
prompts are confirmed automatically with default values.

scriptdebugger {="<debugger>"} Use this option with the --runscript option. It sets IronPython
in debug mode so that external debuggers can be used to debug
Python scripts. The following values are defined for <debugger>
(uppercase/lowercase is irrelevant).
● auto: Automatically detects if a debugger is included in every

script for the current process. At this time, only .NET-based debug-
gers can be detected automatically. A detected debugger over-
writes the --enablescripttracing flag.

● .NET: Activates debugging for .NET-based debuggers, such as
"Python Tools for Visual Studio" (PTVS) and SharpDevelop. With
this option, a debugger can also be included in running scripts, as
opposed to "auto".
Note: This is currently the default value when --
scriptdebugger is used without providing a value.

● disabled: Deactivates debugging and automatic detection.
● script: Switches the IronPython script engine to debug mode for

activating the debugging for set-trace debuggers. The script itself
must connect to and disconnect from the debugger.

● tracing: Activates the simple integrated script tracing mode
and deactivates the automatic detection (same as the option --
scripttracing).

● $absolute_path.py$: Absolute path to a Python script that ini-
tiates the connection to a Python-based debugger. The IronPython
script engine is switched to debug mode for allowing the debug-
ging for set-trace debuggers. This script is run one time during
the initialization and should define the following non-parameterized
functions:
scriptdebuggersetup is run immediately before running the
user script to establish the connection to the debugger.
scriptdebuggershutdown is called immediately after running
the user script or when the script engine is downloaded and
should close the connection to the debugger.

Option --
runscript (run
script)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US444

start /b /wait Automation Builder.exe
--runscript="D:\Script\ArgvAnd__main__Test.py"
--scriptargs:'username password 3.14 "path=\"C:\temp\\"'

Script file: ArgvAnd__main__Test.py
from __future__ import print_function
import sys
print("sys.argv: ", len(sys.argv), " elements:")

for arg in sys.argv:
 print(" - ", arg)
print()
print("__name__: ", __name__)

Output result: stdout:
sys.argv: 6 elements:
- D:\TestScripts\ArgvAnd__main__Test.py
- username
- password
- 3.14
- path= "C:temp"
__name__: __main__

For more information about the __name__ global variable, see the Python documentation.

Examples of
using transfer
parameters in
script files with
'sys.argv'

start /b /wait Automation Builder.exe --
runscript="D:\Script\AmpelTest.py" --noUI 1>ScriptMessages.txt

CODESYS passes all messages that are generated by the script to the
ScriptMessages.txt file. Other messages are printed to the command line.
start /b /wait Automation Builder.exe --
runscript="D:\Script\AmpelTest.py" --noUI 2>NUL

CODESYS suppresses all messages, except for script messages. The script messages are
printed to the command line.

Examples of
the message
output

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 445

The following initdebug.py script was tested successfully with pydevd-based debuggers,
such as PyDev / LiClipse and PyCharm. To use this script, start CODESYS with the following
command line:
--profile="Fanta Development Build" --
scriptdebugger="D:\test\charmdebug\initdebug.py"

File: initdebug.py:
from _future_ import print_function
from _future_ import unicode_literals
import sys
sys.path.append(r"D:\test\Env2\Lib\site-packages\pycharm-debug.egg")
import pydevd
def scriptdebuggersetup():
pydevd.settrace('localhost', port=51234, stdoutToServer=True,
stderrToServer=True)
def scriptdebuggershutdown():
pydevd.stoptrace()

Example of
option --script-
debugger

See also
● http://docs.python.org/tutorial/modules.html

If you add this option after the option --compare <project1> <project2>, then white-
space is ignored in the project comparison. Note that semantically relevant spaces, for example
in STRING literals, are still taken into account.

--compare="<path of project file>" "<path of reference project file>"
--ignorewhitespace="true"|"false"

Automation Builder.exe --compare "D:\proj\project1.project"
"D:\proj\project2.project" --ignorewhitespace="true"

Example

See also
● Ä Chapter 1.4.1.20.3.4.21 “Command 'Compare'” on page 1010

If you add this option after the option --compare <project1> <project2>, then comments
are ignored in the project comparison.

--compare="<path of project file>" "<path of reference project file>"
--ignorecomments="true"|"false"

Automation Builder.exe --compare "D:\proj\project1.project"
"D:\proj\project2.project" --ignorecomments="true"

Example

See also
● Ä Chapter 1.4.1.20.3.4.21 “Command 'Compare'” on page 1010

Option --
ignorewhitesp
ace (ignore
whitespace in
project compar-
ison)
Syntax

Option --
ignorecomment
s (ignore com-
ments in project
comparison)
Syntax:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US446

http://docs.python.org/tutorial/modules.html

If you add this option after the option --compare <project1> <project2>, then object
properties (permissions, compile settings, directories, bitmaps, etc.) are ignored in the project
comparison.

--compare="<path of project file>" "<path of reference project file>"
--ignoreproperties="true"|"false"

Automation Builder.exe --compare "D:\proj\project1.project"
"D:\proj\project2.project" --ignoreproperties="true"

Example

See also
● Ä Chapter 1.4.1.20.3.4.21 “Command 'Compare'” on page 1010

CODESYS is started. In this case, the query as to whether unlicensed components should still
be loaded is skipped. If so, then CODESYS does not load these components by implication.

Automation Builder.exe --skipunlicensedpluginsExample

If you add this option after the option --project="<path of project file>", then the
project is opened and the thumbprint of the certificate for signing compiled libraries is passed.

--signaturethumbprint="<thumbprint of digital signature>"

Automation Builder.exe --project="D:\projects\test.project"
signaturethumbprint="3E96C9B61010CBDC3186021A1CAA64946DDCAAF3"

Example

See also
● Ä Chapter 1.4.1.20.3.3.18 “Command 'Security Screen'” on page 995

If you add this option after the option --project="<path of project file>", then the
“Enforce signing of compiled libraries” option is enabled in the project in the “Security Screen”
on the “User” tab.

NOTICE!
When the “Security Screen” is opened and closed, the current settings are
applied in the user options, even when no active changes have been made.

--enforcesignedcompiledlibraries="true"|"false"

Option --
ignorepropert
ies (ignore
object proper-
ties in project
comparison)
Syntax:

Option --
skipunlicense
dplugins (do
not load compo-
nents without a
license)

Option --
signaturethum
bprint (thumb-
print of the cer-
tificate which is
used for signing
compiled libra-
ries)
Syntax:

Option --
enforcesigned
compiledlibra
ries (enforce
signing of com-
piled libraries)

Syntax:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 447

Automation Builder.exe --project="D:\projects\test.library" --
enforcesignedcompiledlibraries="true"

Example

See also
● Ä Chapter 1.4.1.20.3.3.18 “Command 'Security Screen'” on page 995

If you add this option after the option --project="<path of project file>", then the
Internet address of the RFC-3161 time stamp server (“Timestamping server”) is set in the
project in the “Security Screen” on the “User” tab.

NOTICE!
When the “Security Screen” is opened and closed, the current settings are
applied in the user options, even when no active changes have been made.

--timestampingserverurl="<URL of RFC-3161 timestamping server>"

Automation Builder.exe --timestampingserverurl="http://
timestamp.comodoca.com/rfc3161"

Example

See also
● Ä Chapter 1.4.1.20.3.3.18 “Command 'Security Screen'” on page 995

1.4.1.16 Using Libraries
1.4.1.16.1 Information for Library Developers.. 449
1.4.1.16.2 Adding a Library to the Application.. 450
1.4.1.16.3 Adding a library to the repository... 451
1.4.1.16.4 Exporting library files... 451

The library repository is the storage location on the development system for libraries and
associated metadata. You can link any installed the libraries into your project by means of a
library manager. Moreover, the libraries are installed with version management for easy library
updates.
You can create and edit more repositories in addition to the preinstalled System repository.

See also
● Ä Chapter 1.4.1.20.3.8.5 “Command 'Library Repository'” on page 1061

In order to be able to use POUs, which are provided in a library POU, in the application, the
library has to be integrated in the Library Manager in the project. The requirement for this is the
installation of the library in the library repository.
The Library Manager displays all integrated libraries according to their library type and the
respective properties. In the Library Manager, you can add more libraries from the library
repository, remove libraries, and edit library properties.

Option --
timestampings
erverurl (set
the time stamp
server address)

Syntax:

Library reposi-
tory

Library Manager

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US448

The Library Manager can be inserted into the “POUs” view or the “Devices” view. As a result,
a project can have a Library Manager for each application, as well as a Library Manager in the
“POUs” view for use across all applications. The library POUs of the integrated libraries in the
“POUs” view can be called regardless of the application. The library POUs of the integrated
libraries in the “Devices” view can be called in the respective application code only. Further-
more, placeholder libraries behave differently when downloading depending on their positions.
Libraries that are integrated to a specific version in the project also have a placeholder for
that version (placeholder library). You can define special placeholder resolutions. You can also
use the placeholder resolution that is defined for a device in the device description or that
is stored in the library repository for a library. The Library Manager notifies you about the
actual placeholder resolution and shows the version that will be loaded when an application is
downloaded (effective version).
When a Library Manager in the “POUs” view is integrated across all applications, you can
access its contents globally. If placeholder libraries are integrated, then only the placeholder
resolutions in the device description or library repository are checked.
A Library Manager is usually integrated in the “Devices” view. Then only the application code
below it calls library POUs from it. Moreover, the special placeholder resolutions are checked
first for placeholder libraries. Only after that are the placeholder resolutions checked that are in
the device description or that originate from the library repository.
See also
● Ä Chapter 1.4.1.20.2.14 “Object 'Library Manager'” on page 874
● Ä Chapter 1.4.1.8.7 “Using Library POUs” on page 265

1.4.1.16.1 Information for Library Developers

In order to avoid consistency problems and to adequately support the user,
be sure to adhere to certain rules for the creation, referencing, encryption,
protection, and documentation of libraries.

The following description provides only an overview of the library development
possibilities. For a more detailed description of these topics, see the "LibDev-
Summary" guidelines for library development.

See also
● Ä Chapter 1.4.1.16 “Using Libraries” on page 448

General
● You can define categories for libraries. The libraries are then displayed in the library reposi-

tory below these categories.
● You can define a namespace for a library in order to enable unambiguous access to the

integrated objects. The access becomes unambiguous by adding the namespace in front of
the POU name:
<namespace>.<variable name>
Example: AC.Module

● You can open the POUs of unencrypted libraries (*.library) by double-clicking the
respective entry in the Library Manager.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 449

● You can create the following library types:
– *.library: Implementation library (source code of the library)
– *.compiled-library, *.compiled-library-v3: Protected library; source code

no longer accessible.
– *_Itfs.library: Interface library; contains only objects that are used for the interface

definition of a component (for example, constants, structures, or interfaces) and do not
generate any code.

– *_Cnt.library: Container library; does not contain any POUs; instead contains
exclusively other libraries; therefore used to conveniently integrate an entire set of
libraries whose POUs are published on the top level of the container library.

● You can integrate external libraries into the application. External libraries are programmed
outside of CODESYS in a different programming language, for example C.

Protection of libraries
● Source code protection:

When a library is prepared in "compiled-library" format, the source code of the library POUs
is no longer visible after the library is integrated into a project.

● Signing:
In CODESYS V3 SP15 and higher, a certificate is always used for the signing of library
projects (*.compiled-library-v3). The signing can be enforced by means of a setting
in the security screen. Then for generating a compiled library, you need a certificate suitable
for code signing in your user profile.
For library projects that have to be compatible with CODESYS < V3 SP15 (*.compiled-
library), only the less safe signing is possible with a private key and a corresponding
token. These deprecated methods should only be used for reasons of compatibility. Settings
are configured in the “Project Information” on the “Signing” tab.
Note: For signing libraries, you should use compiler version 3.5.15.0 or higher because a
better storage format is used.

● Licensing:
You can protect libraries by means of a license (dongle or soft container). License-protected
libraries can be installed in the library repository. However, for use in the project, the valid
license has to exist on the computer. Licenses are managed in the License Manager.

Library versions
● You can have several versions of a library installed on the system at the same time.
● You can have several versions of a library integrated into your project at the same time.

However, we do not recommend doing this. In this case, each of the libraries must be
assigned a unique namespace and access to the symbols must be qualified. Examples:
V1.SendBlob, V2.SendBlob

Referenced libraries
● You can integrate a library into other libraries (referenced libraries). The nesting can be of

any depth.
● You can define whether referenced libraries should be visible in the Library Manager.
● You can integrate referenced libraries via library placeholders. This way you avoid the prob-

lems that could occur due to version dependencies or the necessity to use vendor-specific
libraries.

See also
● Ä Chapter 1.4.1.2.3.1 “Retrieving and Editing Project Information” on page 191

1.4.1.16.2 Adding a Library to the Application
The following instructions describe how to integrate for example the library Util into your
application in order to use its library POUs.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US450

1. Select the Library Manager and click “Project è Edit Object” to open it in the editor.

ð The Library Manager opens in the editor.

2. Click “Library è Add Library”.

ð The “Add Library” dialog opens.

3. Type the string "util" into the input field above to search the library.

ð The library Util is displayed in the library view.

4. Select the library Util and click “OK” to close the dialog.

ð The library Util is added to the Library Manager.

See also
● Ä Chapter 1.4.1.8.7 “Using Library POUs” on page 265
● Ä Chapter 1.4.1.20.3.14.1 “Command 'Add Library'” on page 1116
● Ä Chapter 1.4.1.16.3 “Adding a library to the repository” on page 451

1.4.1.16.3 Adding a library to the repository
The following instructions describe how to install a library in the library repository.
1. Select the command “Tools è Library Repository”.

ð The dialog box “Library Repository” opens.

2. Click on the “Install” button.
3. Select the library that you wish to install. You can set a file filter here.

Click on “Open”.

ð The library is added to the repository. The library can now be added in the Library
Manager.

See also
● Ä Chapter 1.4.1.16.2 “Adding a Library to the Application” on page 450

1.4.1.16.4 Exporting library files
You can export a library from the library manager of a project or from the library repository and
then save it as a file to the hard disk.
1. Open a library manager of an application in a project.
2. Select a library in the library manager.
3. Click the export command in the context menu.

ð The “Export Library” dialog box opens.

4. If the selected library is linked in the project not only as a compiled library, but also in
source format, then both file types are in the drop-down list for “File type”. Otherwise, the
filter automatically shows the available type: "*.library or *.compiled-library.

5. Select the file type and storage location and click “Save”.

1. Open the CODESYS library repository (“Tools” menu).
2. Select a library version in the window of the installed libraries.

Export from the
library manager

Export from the
library manager

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 451

3. Click the “Export” button.

ð The “Export Library” dialog box opens.

4. As step 4 and 5 for "Export from the library manager".

See also
● Ä Chapter 1.4.1.20.2.14 “Object 'Library Manager'” on page 874
● Ä Chapter 1.4.1.20.3.8.5 “Command 'Library Repository'” on page 1061

1.4.1.17 Managing devices
CODESYS manages the installed devices in the device repository. A device repository is a
defined location in the file system. In the default CODESYS installation, it is defined with
an absolute path as the system repository. You install or uninstall devices in the “Device
Repository” dialog. The system installs a device by reading the device description file. The
properties of a device are defined in these files regarding configurability, programmability, and
possible connections to other devices.
You can use the devices provided in the device repository by adding them to the device tree of
your project.
See also
● Ä Chapter 1.4.1.20.3.8.8 “Command 'Device Repository'” on page 1067
● Ä Chapter 1.4.1.17.1 “Installing devices” on page 452

1.4.1.17.1 Installing devices
Install a device in the device repository in order to include it in your project.
1. Click “Tools è Device Repository”.

ð The “Device Repository” dialog box opens.

2. Select the install location. “System Repository” is set by default.
3. Click “Install”.

ð The “Install Device Description” dialog box opens.

4. Select the file path of the device description.
5. Select the file type filter of the required device description.

ð All device descriptions of the selected file type are listed.

6. Select the required device description and click “Open”.

ð CODESYS adds the device description to the matching category of your device repo-
sitory.
If errors occur during installation (for example, missing files that are referenced by
the device description), then CODESYS displays them in the lower part of the device
repository dialog box.

See also
● Ä Chapter 1.4.1.20.3.8.8 “Command 'Device Repository'” on page 1067

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US452

1.4.1.18 Security
1.4.1.18.1 General Information... 453
1.4.1.18.2 Security for the development system.. 455
1.4.1.18.3 Security for the Runtime/PLC.. 455
1.4.1.18.4 Security for CODESYS WebVisu.. 455
1.4.1.18.5 FAQ... 456

Due to the increased networking of controllers and plants, potential threats are also quickly
rising. Therefore, you should carefully consider all possible security measures.
Security measures are absolutely necessary to protect data and communication channels from
unauthorized access.
On the following help pages, you can learn more about the safety functions of CODESYS and
the controller.

1.4.1.18.1 General Information
The following provides some general information about safety functions (security measures).
This information applies regardless of the usage in CODESYS or one with a connection con-
troller.

As a means of protecting against unauthorized access to data, it is necessary to configure user
accounts with specific access rights. Only a user with the credentials has access to the data or
functions.
Creating passwords according to the general recommendations for achieving a high password
strength is a tremendous contribution to security.
The following types of user management are roughly distinguished as follows:
● Simple user management:

To access data, only a password or the valid combination of user name and password
has to be entered. This means that access can be only granted or denied. Graduated
permissions cannot be configured.

● Group-based user management:
The access rights are assigned to user groups. Users who belong to a group can access the
data or functions after entering the credentials with precisely these assigned and different
permissions.

Encryption:
Encryption of data means the following: Data is converted into an unreadable form and can only
be made readable again with a matching key. In the simplest case, the key is a password or a
key pair.
There are two types of encryption methods:
● Symmetric method: (the only type of encryption until the mid-1970s)

Characteristic: Use of a secret key
Advantages: Fast, simple encoding
Disadvantages: The key has to be shared secretly.

● Asymmetric method:
Characteristic: Use of a key pair (private/secret key and public key)
Advantages: The public key can be made accessible to anyone, and authentication possible
with it.
Disadvantages: Slow (approx. 1,000 to 10,000 times slower than symmetric methods);
complex encoding; long key lengths

Access protec-
tion with user
management

Encryption, sig-
nature

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 453

Key exchange is usually performed by asymmetric methods; encryption and decryption by
symmetric methods.
Signature:
In order for the irrefutable ownership and integrity of a message to be verifiable, it should be
provided with a signature. These are usually the steps involved:
● Sender: Determines a unique hash value over the data (H)
● Sender: Encrypts the hash value with private key (He)
● Recipient: Also calculates the hash value and decrypts the He with the public key and

compares the two values. This allows the sender to be identified uniquely and verifies that
the sender owns the private key.

In the case of asymmetric encryption, a public key contained in a certificate is first exchanged
between the sender and the recipient. In addition, each participant needs a private key with
which they can decrypt the data if they have the certificate. So if you want to access a certifi-
cate, you need a certificate AND a private key.
Hash methods are necessary for this:
● Hash method:

Characteristic: Unique thumbprint of the data (for example, checksum of the data)
As low a collision as possible (it is very difficult to find / construct two different data for a
single hash value)

In order to assign the public key to an identity, it is usually embedded in a certificate.
In certificate-based systems, each user receives a digital certificate. The certificate is used for
digital identification. It contains information about the identity and the public key of the user.
Each certificate is authenticated by an issuing authority, which in turn may be authenticated by
higher authorities. The trust system of this PKI (Public Key Infrastructure) is strictly hierarchical.
The common trust anchor is a root certificate.
Contents of a certificate:
● Version
● Serial number
● Algorithm ID
● Issuer (authority or company)
● Validity from (not before) to (not after)
● Certificate owner (subject)
● Certificate owner key information (subject public key)

– Public key algorithm
– Public key of the certificate owner

● Unique ID of the issuer (optional)
● Unique ID of the owner (optional) The owner possess a private key matching the public key.
● Extensions

– Purpose (extended key usage)
– ...

The certificate consists of 2 parts/files:
● Public X.509 certificate (can be issued to anyone)
● Private key that matches the certificate or its public key only (has to be kept secret).
To manage the certificates in your local "Windows Certificate Store", see the following help
page:
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197

Certificates

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US454

1.4.1.18.2 Security for the development system
In CODESYS, you can apply access protection to projects, libraries, as well as individual appli-
cations. In addition to a simple write protection for a project, a user management (credentials,
access rights) and encryption using certificates should be used.
See current help:
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197
● Ä Chapter 1.4.1.8.17 “Encrypting an application” on page 294

1.4.1.18.3 Security for the Runtime/PLC
Communication with the controller connected in the CODESYS project should be protected
against unauthorized access in the following ways:
● Enabling user management: simple or group-based
● Certificate-based encryption of communication with the controller

First switch the communication to encryption so that you do not reveal any credentials to other
participants in the network when transferring the user management.
Enforcing encrypted communication
● On the controller:

– Runtime version >= 3.5 SP14: Encryption can be enabled for “Communication Policy”
and enforced for all clients.

● In CODESYS:
– Encrypted communication can be selected as an option in the device editor on the

“Communication Settings” tab (command or “Change Communication Policy” dialog) or
in the “Security Screen” view.
See the current help regarding this:
Ä Chapter 1.4.1.10.2 “Encrypting Communication, Changing Security Settings”
on page 381
If the CODESYS Security Agent is installed, then see the help for CODESYS Security
Agent.

Enforcing a user management
● On the controller:

– Runtime version >= 3.5 SP17: User management is enforced by default for
“Communication Policy”.
Note: For enabling the user management, at least a CODESYS development system
V3.5 SP16 is necessary. This means that, in the case of enforced user management
which has not been enabled yet, you cannot connect to an older development system.

● In CODESYS:
– See the current help regarding this:
Ä Chapter 1.4.1.10.2 “Encrypting Communication, Changing Security Settings”
on page 381
Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385

1.4.1.18.4 Security for CODESYS WebVisu
Protect the connection between the web server of the controller and the visualization client with
the following measures against unwanted access:
● Configure an HTTPS connection (encryption with SSL/TSL) between the visualization client

and the web server.
● Restrict access to the visualization and configure a visualization user management.

Enabling the
security fea-
tures

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 455

An HTTPS connection between the web server and the visualization client requires authentica-
tion of the web server by means of a certificate. You can create a self-signed certificate in the
“Security Screen”.
1. Click “View è Security Screen”.
2. Create a certificate for the web server on your controller.

ð The certificate data for the web server is displayed.

3. Stop your controller.
4. Restart the controller.

ð The new certificate is active.

5. Download your application to the controller.
6. Open your browser and specify the URL address of your web server.

The URL of a secure connection corresponds to the following format:
https:// <IP address/URL> :443/ <name of HTM file> .htm.

The HTML file name has to match the configured name as it is set in the “Visualization
Manager” object below the WebVisu variant. You will find the IP address of the controller
in the device editor when the a connection is active.

ð Example: https://localhost:443/webvisu.htm
The browser establishes a connection. If the certificate is not rated as trusted, then a
security notice appears.

7. Confirm that you know the risk and want to proceed.

ð You have created self-signed certificate and confirmed it as trusted.

Now start the web application with the visualization. The lock symbol in the browser
indicates secure communication.

See the chapter "Run as CODESYS WebVisu", which describes in detail how
you use certificates in the security screen.

See also
● Chapter "Run as CODESYS WebVisu"
● Chapter "User management of the visualization"

● Ä Chapter 1.4.1.10.2 “Encrypting Communication, Changing Security Settings” on page 381
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385

1.4.1.18.5 FAQ
1.4.1.18.5.1 Certificate expired.. 457
1.4.1.18.5.2 New certificate (while the current one is still valid)....................... 457
1.4.1.18.5.3 Client does not support security feature....................................... 457
1.4.1.18.5.4 CA-signed certificates preferred (PLC shell)................................ 458
1.4.1.18.5.5 Problems at login.. 459
1.4.1.18.5.6 Disabling User Management.. 459
1.4.1.18.5.7 Permitting encrypted communication again................................. 460

Configure an
encrypted con-
nection.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US456

ms-its:core_visualization.chm::/_visu_execute_webvisu.htm
ms-its:core_visualization.chm::/_visu_struct_user_management.htm

Certificate expired
If the certificate from the controller for encrypted communication has expired (valid from "not
before" until "not after"), you get a prompt with a corresponding message in CODESYS when
you attempt to access the controller. For example, to renew the expired certificate, you can
accept the expired certificate and connect to the controller.

You will see this message again every time you try to login until a valid certifi-
cate is installed on the controller.

If you have created or imported a new certificate on the controller, then this new certificate will
be available for you to accept the next time you login.
See also
● Ä Chapter 1.4.1.10.2 “Encrypting Communication, Changing Security Settings” on page 381

Other clients that communicate encrypted with the controller (for example,
PLCHandler) will typically not accept an expired certificate. This means that
no connection can be established here.

New certificate (while the current one is still valid)
A new certificate can be issued before the existing certificate expires. This makes it possible for
the encrypted communication to continue seamlessly. As soon as a new certificate is available
on the controller parallel to the one currently used, the new certificate will be offered by the
controller at the next login attempt. All you have to do is accept it.
See also
● Ä “Installing a controller certificate for encrypted communication via the PLC shell of the

device editor” on page 383

Client does not support security feature
The following CODESYS clients do not support user management yet:
● WebServer < V3.5.14.0
In order for these clients to be able to establish a connection to the controller, the user manage-
ment must not be enabled.

The following CODESYS clients do not support encrypted communication yet:
● Data servers with compiler version =< V3.5.9.0
● WebVisu < V3.5.14.0 or in the case of enabled file transfer
● WebServer < V3.5.14.0
● Remote TargetVisu
● Data source ApplicationV3
● OPC Server V3
● PLCHandler < V3.5.14.0
In order for these clients to be able to establish a connection to the controller, the encrypted
communication can be set as optional. Therefore clients can establish either an encrypted or an
unencrypted connection.

User manage-
ment

Encrypted com-
munication

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 457

Do not use the same user or password for encrypted and unencrypted commu-
nication.

See also
● Ä Chapter 1.4.1.10.2 “Encrypting Communication, Changing Security Settings” on page 381

CA-signed certificates preferred (PLC shell)
Using CA-signed certificates is not conveniently supported yet in CODESYS. However, you can
still request and use these types of certificates. In the device editor, on the “PLC Shell” tab, you
export the required CSR files to the file system and import from there the CER files sent from
the certification authority.

You are connected to the controller.
1. First you generate certificate signing requests (CSR) of all server certificates.

For this purpose, click the “PLC Shell” tab of the controller and type the command cert-
createcsr in the input line.

2. Click the “Log” tab and then the refresh button ().

ð In the log entries, you can see that the CSR files were generated.

3. Click the “Files” tab and open the file path cert/export in the right side of the “Runtime”
dialog.

ð The export folder contains the generated CSR files, for example
0_CmpsecureChannl.csr, 1_CmpApp.csr, 2_CmpWebServer.csr.

4. Select a file path where you wish to insert the CSR files in the left side of the “Host” dialog,
mark the CSR files in the right side of the dialog, and click .

ð The CSR files are copied to the required folder.

5. These requests can be signed for certification signing by a certificate authority (CA), and
then you receive a signed certificate from the certification authority.

6. In the steps that follow, you import these signed server certificates to your controller.

NOTICE!
Caution: Self-signed certificates of the server must be deleted before
importing the CA-signed certificates.

7. Select the “Path” cert/import in the right side of the “Runtime” dialog.

8. In the left side of the “Host” dialog, select the path in the file system where you saved the
signed certificates and selected the certificates.

9. Click .

ð The certificates are copied to the cert/import folder.

10. Click the “PLC Shell” tab.

Requesting and
providing a CA-
signed certifi-
cate

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US458

11. Type the command cert-import own <file name of the certificate.cer> in
the input line of the tab and press the [Enter] key.

ð The signed certificates are available to the runtime system servers.

See also
● Ä Chapter 1.4.1.20.2.8.10 “Tab 'PLC Shell'” on page 852
● Ä Chapter 1.4.1.20.2.8.8 “Tab 'Log'” on page 848
● Ä Chapter 1.4.1.20.2.8.7 “Tab 'Files'” on page 848

Problems at login
If you have entered an incorrect password when logging in to the user management of the con-
troller, then the login dialog reappears immediately afterwards. After three incorrect attempts,
the controller is locked for a defined period of time. However, stricter policies on the controller
can lead to the user being locked out and only authorized again by an administrator.
See also
● Ä Chapter 1.4.1.20.3.6.2 “Command 'Login'” on page 1028

Disabling User Management

NOTICE!
After disabling the user management, your controller is accessible again for
everyone in the network of the controller. Therefore, you should only do this
in justified exceptional cases or if the clients used do not support any user
management.

For enabling the user management, at least a CODESYS development system
V3.5 SP16 is necessary. This means that, in the case of enforced user man-
agement which has not been enabled yet, you cannot connect to an older
development system.

1. If the security policy for device user management is set to "Enforced", first set it back to
"Optional".

2. Execute the “Reset Origin Device” command. This deletes the user management and you
can then reconnect to the controller without having to enter user credentials. Note: In
CODESYS Version 3.5 SP16 Patch 20 and higher, you can exclude the boot application
from the delete operation when you execute “Reset Origin Device”.

See also
● Ä “Changing the communication policy (encryption, user management)” on page 384
Ä Chapter 1.4.1.20.3.6.13 “Command 'Reset Origin Device'” on page 1040

● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 459

Permitting encrypted communication again

Remember that not every controller supports the deactivation of encrypted com-
munication.

NOTICE!
We strongly advise against disabling encrypted communication. Especially
in connection with an enabled user management, encrypted communication
should be enabled so that credentials do not fall into the wrong hands.

To disable encrypted communication with the controller again, proceed as follows:
1. If the communication policy for encrypted communication is set to "Enforced", first set it

back to "Optional".
2. In the device editor, on the “Communication Settings” tab in the “Device” menu, disable

“Encrypted communication”. If you have installed the CODESYS Security Agent, then you
can also change the setting in the “Security Screen”.

ð CODESYS establishes unencrypted communication again with the controller. Other
clients can also communicate again without encryption.

See also
● Ä Chapter 1.4.1.10.2 “Encrypting Communication, Changing Security Settings” on page 381
● Ä Chapter 1.4.1.20.3.3.18 “Command 'Security Screen'” on page 995

1.4.1.19 Reference, Programming
1.4.1.19.1 Programming Languages and Editors... 460
1.4.1.19.2 Variables.. 526
1.4.1.19.3 Operators... 542
1.4.1.19.4 Operands... 632
1.4.1.19.5 Data Types.. 646
1.4.1.19.6 Pragmas.. 683
1.4.1.19.7 Identifiers... 740
1.4.1.19.8 Shadowing Rules.. 745
1.4.1.19.9 Keywords... 747
1.4.1.19.10 Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'................................. 748
1.4.1.19.11 Error Messages and Warnings.. 753

1.4.1.19.1 Programming Languages and Editors
1.4.1.19.1.1 Declaration Editor... 461
1.4.1.19.1.2 Common functions in graphical editors.. 462
1.4.1.19.1.3 Structured Text and Extended Structured Text (ExST)................. 463
1.4.1.19.1.4 Sequential Function Chart (SFC)... 476
1.4.1.19.1.5 Function Block Diagram / Ladder Diagram / Instruction List

(FBD/LD/IL).. 495
1.4.1.19.1.6 Continuous Function Chart (CFC) and Page-Oriented CFC........ 510

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US460

You program a POU in each case in the editor for the implementation language that you
selected when creating the POU. CODESYS offers a text editor for ST and graphic editors for
SFC, FBD/LD/IL and CFC.
The editor opens with a double-click on the POU in the device tree or in the “POUs” view.
Each of the programming language editors consists of two sub-windows:
● In the upper part you make declarations in the “declaration editor”, in text or tabular form

depending on the setting.
● In the lower part you insert the implementation code in the respective language.
You can configure the display and the behavior of each editor project-wide on the associated
tab of the CODESYS options.

Declaration Editor
In the declaration editor, you declare variables in variable lists and POUs.
If the declaration editor is used with an implementation language editor, then is opens in a view
above the implementation language editor.

The declaration editor offers two possible views: textual and tabular . In the “Tools
è Options è Declaration Editor” dialog, you define whether only the textual view or only
the tabular view is available, or whether you can switch between both views by means of the
buttons on the right side of the editor view.
A rectangle selection is possible in the textual view of the declaration editor. The key combina-
tions for the rectangle selection are located on the help page for the ST editor.
See also
● Ä Chapter 1.4.1.8.2.1 “Using the declaration editor” on page 226
● Ä Chapter 1.4.1.8.2 “Declaration of Variables ” on page 222
● Ä Chapter 1.4.1.19.1 “Programming Languages and Editors” on page 460
● Ä Chapter 1.4.1.20.4.13.4 “Dialog 'Options' – 'Declaration Editor'” on page 1190
● Ä Chapter 1.4.1.19.1.3.1 “ST Editor” on page 463

In online mode, you see the tabular view of the editor. The header always contains the current
object path:<device name>.<application name>.<object name>. In contrast to offline
mode, the table also contains the “Value” and “Prepared Value” columns.
The “Value” column shows the actual value on the PLC, offering monitoring functionality. If
the expression is an array with more than 1,000 elements, then you can define the range of
the array indices to monitor. To do this, double-click in the “Data Type” column to open the
“Monitoring Area” dialog. In this dialog, the declared array range is specified as the “Valid area”
for monitoring. A maximum of 20,000 elements can be monitored per array. You define the
range of the array indices to be monitored by specifying the “Start” and “End” indices. In order
to move this area more easily while maintaining the same size, the available scrollbars can be
used coupled. Tot toggle between coupled and not coupled , click the symbol on the right of
the bar. In non-coupled state, you can increase or decrease the size of the area to be monitored
as desired.

The “Prepared Value” column contains the value that you prepared for forcing or writing.
If you double-click a “Prepared value” field, then you can specify a value explicitly for writing or
forcing. In the case of enumerations, a combo box opens from which you can select a value. In
the case of a Boolean variable you can toggle the prepared value with the help of the [Enter]
key or the [Space] bar. If an expression (variable) is of a structured data type, for example the
instance of a function block or an array variable, then a plus or a minus sign is placed in front.
You can customize the format of the representation of floating-point values in the options for
monitoring.

Declaration
editor in online
mode

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 461

See also
● Ä Chapter 1.4.1.8.2.1 “Using the declaration editor” on page 226
● Ä Chapter 1.4.1.20.4.7 “Dialog Box 'Prepare Value'” on page 1153
● Ä “Forcing in the declaration part” on page 402
● Ä Chapter 1.4.1.20.4.13.18 “Dialog 'Options' - 'Monitoring'” on page 1197

Common functions in graphical editors
The implementation part of the graphical editors for FBD, LD, CFC, and SFC contains a toolbar
in the lower right corner.

Return to normal editing mode: The mouse pointer changes back to the shape of
the default arrow. You can select and edit elements in the editor view.

Panning tool: The mouse pointer changes to the shape of two crossed arrows.
You can click and drag anywhere in the editor view to move the visible area of the
FBD/LD/IL editor or also pivot a CFC chart.

Magnification tool: A magnified window opens in the lower right corner of the
editor view and the mouse pointer changes to the shape of a cross. As you
move the mouse pointer over your diagram, the magnification tool shows the
area of the diagram under the cross at 100% magnification. Note: If you click in
the view, then the magnification tool closes and the part of the diagram that the
tool contained is displayed at 100% magnification. If you want to retain the set
zoom factor, then you should use the default arrow () for returning to the default
editing mode.

Zooming tool: This opens a drop-down list with a selection of zoom factors.
Clicking more selections (...) will open the “Zoom” dialog for typing other values.
The current zoom factor is always shown to the left of the symbol.

Zooming with the scroll wheel: By holding down the [Ctrl] key and moving the scroll wheel, you
can change the zoom factor in steps of 10%.
Every graphical editor has its own “ToolBox” view that is located on the right of the editor
view by default. The toolbox contains elements that you can drag to insertion points in the
editor view. CODESYS highlights the insertion points with gray position flags in the shape of
diamonds, triangles, or arrows. These flags are green when you move the mouse pointer over
them. When you release the mouse button, CODESYS inserts the element at the selected
position.
It is also possible to use the mouse for moving elements in the editor.
You can drag function block declarations in the FBD, LD, and CFC graphical editors to the
editor view. To do this, select the full declaration (variable name and data type) and drag it
to a suitable position in the editor view. In the ladder diagram, you can also drag Boolean
declarations to the editor and insert them as contacts.
See also
● Ä Chapter 1.4.1.19.1.4.1 “SFC editor” on page 476
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.6.1 “CFC Editor” on page 511

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US462

Structured Text and Extended Structured Text (ExST)
1.4.1.19.1.3.1 ST Editor.. 463
1.4.1.19.1.3.2 ST editor in online mode... 463
1.4.1.19.1.3.3 ST expressions.. 464
1.4.1.19.1.3.4 Assignments ... 465
1.4.1.19.1.3.5 Statements.. 468

ST Editor
The ST editor is a textual editor used for the implementation of code in Structured Text (ST) and
Extended Structured Text (ExST).
The line numbering is displayed on the left side of the editor. When inputing programming ele-
ments, the "List components" functionality (activated in the CODESYS options, “SmartCoding”
category) and the Input Assistant [F2] are also useful. When the cursor is placed over a
variable, CODESYS shows a tooltip with information for declaring variables.
The box selection can be made with the following key combinations:
● [Shift]+[Alt]+[Arrow Right]: The selected area is extended one position to the right.
● [Shift]+[Alt]+[Arrow Left]: The selected area is extended one position to the left.
● [Shift]+[Alt]+[Arrow Up]: The selected area is extended one position up.
● [Shift]+[Alt]+[Arrow Down]: The selected area is extended one position down.
The behavior (for example parentheses, mouse actions, tabs) and appearance of the editor are
configured in the CODESYS options in the “Text Editor” category.
For an incremental search for strings in the editor, open an input field at the bottom edge of
the editor by means of the key combination [Ctrl]+[Shift]+[i]. As soon as you start typing in
characters, the corresponding search locations are highlighted in color in the editor. The number
of found matches is shown to the right of the input field. You can set the cursor at the search
location by using the arrow keys or the key combinations [Alt]+[Page Up] or [Alt]+[Page Down].
When you place the cursor on a symbol name, all occurrence locations of the symbol within the
editor are highlighted in color. The search locations correspond to the hits in the cross-reference
list. For very large projects, this can cause input delays. In this case, you can disable the
function in the options of the text editor.
CODESYS identifies syntax errors already when inputing in the editor and shows the corre-
sponding messages in the message view (“Precompile” category). If the corresponding option is
selected in the CODESYS options (“SmartCoding” category), then the error locations in the text
are also underlined with a wavy red line.
The “Format Document” command provides an automatic formatting of syntactically correct ST
code.
See also
● Ä Chapter 1.4.1.8.3.3.1 “Programming structured text (ST)” on page 254
● Ä Chapter 1.4.1.19.1.3.3 “ST expressions” on page 464
● Ä Chapter 1.4.1.19.1.3.5.11 “ST – Comments” on page 475
● Ä Chapter 1.4.1.19.1.3 “Structured Text and Extended Structured Text (ExST)” on page 463
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203
● Ä Chapter 1.4.1.20.3.3.5 “Command 'Messages'” on page 986
● Ä Chapter 1.4.1.20.3.2.45 “Command 'Advanced' - 'Format Document'” on page 984

ST editor in online mode
In online mode CODESYS displays the variables and expressions in the ST editor. The writing
and forcing of the variables and expressions as well as debugging functions (breakpoints, single
step execution) are also possible.
If you use assignments as expressions in ST programming, no further breakpoint positions are
created within a line.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 463

See also
● Ä Chapter 1.4.1.12.1.1 “Calling of monitoring in programming objects ” on page 410
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401
● Ä Chapter 1.4.1.12.1.2 “Using watch lists” on page 416
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395
● Ä Chapter 1.4.1.11 “Testing and Debugging” on page 394
● Ä Chapter 1.4.1.11 “Testing and Debugging” on page 394
● Ä Chapter 1.4.1.11.3 “Stepping Through a Program” on page 399
● Ä Chapter 1.4.1.11.6 “Flow Control” on page 406
● Ä Chapter 1.4.1.11.7 “Determining the current processing position with the call stack”

on page 408

ST expressions
An expression is a construct that returns a value following its evaluation.
Expressions are composed of operators and operands. In Extended Structured Text (ExST) you
can also use assignments as expressions. An operand can be a constant, a variable, a function
call or a further expression.

2014 (* Constant *)
ivar (* Variable *)
fct(a,b) (* Function call *)
(x*y)/z (* Expression *)
real_var2 := int.var; (* in ExST: Assignment *) *)

Examples

See also
● Ä “ExST - Extended structured text” on page 254

The evaluation of an expression takes place by processing the operators according to certain
rules of binding. CODESYS processes the operator with the strongest binding first. Operators
with the same binding strength are processed from left to right.

Operation Symbol Binding strength

Parenthesize (Expression) Strongest binding

Function Call Function name (parameter list)
all operators with syntax: <operator>
()

Exponentiate EXPT

Negate
Complementation

-
NOT

Multiplication
Division
Modulo

*
/
MOD

Addition
Subtraction

+
-

Comparison <,>,<=,>=

Evaluation of
expressions

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US464

Operation Symbol Binding strength

Equality
Inequality

=
<>

Bool AND AND
AND_THEN

Bool XOR XOR

Bool OR

OR
OR_ELSE

Weakest binding

See also
● Ä Chapter 1.4.1.19.3 “Operators” on page 542

Assignments
1.4.1.19.1.3.4.1 ST assignment operator... 465
1.4.1.19.1.3.4.2 ST assignment operator for outputs....................................... 465
1.4.1.19.1.3.4.3 ExST assignment 'S='.. 465
1.4.1.19.1.3.4.4 ExST assignment 'R='.. 466
1.4.1.19.1.3.4.5 ExST – Assignment as expression... 467
1.4.1.19.1.3.4.6 Assignment Operator 'REF='.. 468

ST assignment operator
Syntax:
<operand> := <expression>
This assignment operator executes the same function as the MOVE operator.

See also
● Ä Chapter 1.4.1.19.3.6 “Operator 'MOVE'” on page 550

ST assignment operator for outputs
The assignment operator => assigns the output of a function, a function block, or a method to a
variable. The position on the right side of the operator can also be blank.
Syntax
<output> => <variable>

FBcomp_Output1 => bVar1;
FBcomp_Output2 => ;
FBcom_Output1 and FB_Output2 are outputs of a function block. The value of
FBcom_Output1 is assigned to the variable bVar1.

Example

ExST assignment 'S='
When the operand of the Set assignment switches to TRUE, then TRUE is assigned to the
variable to the left of the operator. The variable is set.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 465

<variable name> S= <operand name> ;
The variables and the operand have the data type BOOL.

PROGRAM PLC_PRG
VAR
 xOperand: BOOL := FALSE;
 xSetVariable: BOOL := FALSE;
END_VAR

xSetVariable S= xOperand;
When the operand xOperand switches from FALSE to TRUE, then TRUE is also assigned
to the variable xSetVariable. But then the variable keeps this state, even if the operand
continues to change its state.

Example

NOTICE!
In the case of multiple assignments within a code line, the individual assign-
ments are not processed from right to left, but all assignments refer to the
operands at the end of the code line.

FUNCTION funCompute : BOOL
VAR_INPUT
 xIn : BOOL;
END_VAR
IF xIn = TRUE THEN
 funCompute := TRUE;
 RETURN;
END_IF

PROGRAM PLC_PRG
VAR
 xSetVariable: BOOL;
 xResetVariable: BOOL := TRUE;
 xVar: BOOL;
END_VAR
xSetVariable S= xResetVariable R= funCompute(xIn := xVar);
xResetVariable gets the R= assignment of the return value of funCompute.
xSetVariable gets the S= assignment of ht return value of funCompute, but not from
xResetVariable.

Example

See also
● Ä “ExST - Extended structured text” on page 254
● Ä Chapter 1.4.1.19.1.3.4.4 “ExST assignment 'R='” on page 466

ExST assignment 'R='
When the operand of the Reset assignment switches to TRUE, then FALSE is assigned to the
variable to the left of the operator. The variable is reset.
<variable name> R= <operand name> ;

Multiple assign-
ments

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US466

The variables and the operand have the data type BOOL.

VAR
 xOperand: BOOL := FALSE;
 xResetVariable: BOOL := TRUE;
END_VAR

xResetVariable R= xOperand;
When the operand xOperand switches from FALSE to TRUE, then FALSE is also assigned
to the variable xResetVariable. But then the variable keeps its state, even if the operand
continues to change its state.

Example

NOTICE!
In the case of multiple assignments within a code line, the individual assign-
ments are not processed from right to left, but all assignments refer to the
operands at the end of the code line.

FUNCTION funCompute : BOOL
VAR_INPUT
 xIn : BOOL;
END_VAR
IF xIn = TRUE THEN
 funCompute := TRUE;
 RETURN;
END_IF

PROGRAM PLC_PRG
VAR
 xSetVariable: BOOL;
 xResetVariable: BOOL := TRUE;
 xVar: BOOL;
END_VAR
xSetVariable S= xResetVariable R= funCompute(xIn := xVar);
xResetVariable gets the R= assignment of the return value of funCompute.
xSetVariable gets the S= assignment of ht return value of funCompute, but not from
xResetVariable.

Example

See also
● Ä “ExST - Extended structured text” on page 254
● Ä Chapter 1.4.1.19.1.3.4.3 “ExST assignment 'S='” on page 465

ExST – Assignment as expression
In ExST, as an extension to the IEC 61131-3 standard, CODESYS permits the use of assign-
ments as expressions.

Multiple assign-
ments

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 467

int_var1 := int_var2 := int_var3 + 9; (* int_var1 and int_var2 receive the value of
int_var3 + 9 *)

real_var1 := real_var2 := int_var; (* real_var1 and real_var2 receive the value of
int_var *)

int_var := real_var1 := int_var; (* incorrect assignment, the data types do not corre-
spond! *)

IF b := (i = 1) THEN
i := i + 1;
END_IF

Examples

See also
● Ä “ExST - Extended structured text” on page 254

Assignment Operator 'REF='
The operator generates a reference (pointer) to a value.
Syntax:
<variable name> REF= <variable name> ;

refA : REFERENCE TO DUT;
B : DUT;
C : DUT;

A REF= B; // corresponds to A := ADR(B);
A := C; // corresponds to A^ := C;

Example

See also
● Ä Chapter 1.4.1.19.5.13 “Reference” on page 658
● Ä Chapter 1.4.1.20.3.12.8 “Command 'REF= (Reference Assignment)'” on page 1091

Statements
1.4.1.19.1.3.5.1 ST statement 'IF'... 469
1.4.1.19.1.3.5.2 ST instruction 'FOR'.. 469
1.4.1.19.1.3.5.3 ST instruction 'CASE'... 470
1.4.1.19.1.3.5.4 ST instruction 'WHILE'.. 471
1.4.1.19.1.3.5.5 ST Statement 'REPEAT'... 472
1.4.1.19.1.3.5.6 ST statement 'RETURN'... 472
1.4.1.19.1.3.5.7 ST instruction 'JMP'.. 473
1.4.1.19.1.3.5.8 ST instruction 'EXIT'... 473
1.4.1.19.1.3.5.9 EXST Statement 'CONTINUE'.. 474
1.4.1.19.1.3.5.10 ST function block call... 474
1.4.1.19.1.3.5.11 ST – Comments.. 475

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US468

ST statement 'IF'
The IF statement is used for checking a condition and, depending on this condition, for exe-
cuting the subsequent statements.
A condition is coded as an expression that returns a Boolean value. If the expression returns
TRUE, then the condition is fulfilled and the corresponding statements after THEN are executed.
If the expression returns FALSE, then the following conditions, which are identified with ELSIF,
are evaluated. If an ELSIF condition returns TRUE, then the statements are executed after
the corresponding THEN. If all conditions return FALSE, then the statements after ELSE are
executed.
Therefore, at most one branch of the IF statement is executed. ELSIF branches and the ELSE
branch are optional.

IF <condition> THEN
 <statements>
(ELSIF <condition> THEN
 <statements>)*
(ELSE
 <statements>)?
END_IF;
// (...)* None, once or several times
// (...)? Optional

PROGRAM PLC_PRG
VAR
 iTemp: INT;
 xHeatingOn: BOOL;
 xOpenWindow: BOOL;
END_VAR

IF iTemp < 17 THEN
 xHeatingOn := TRUE;
ELSIF iTemp > 25 THEN
 xOpenWindow := TRUE;
ELSE xHeatingOn := FALSE;
END_IF;

The program is run as follows at runtime:
For the evaluation of the expression iTemp < 17 = TRUE, the subsequent statement is
executed and the heating is switched on. For the evaluation of the expression iTemp < 17
= FALSE, the subsequent ELSIF condition iTemp > 25 is evaluated. If this is true, then the
statements in ELSIF are executed and the view is opened. If all conditions are FALSE, then
the statement in ELSE is executed and the heating is switched off.

Example

See also
● Ä Chapter 1.4.1.19.1.3.3 “ST expressions” on page 464

ST instruction 'FOR'
The FOR loop is used to execute instructions with a certain number of repetitions.

Syntax:
FOR <counter> := <start value> TO <end value> {BY <increment> } DO
<instructions>
END_FOR;

Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 469

The section inside the curly parentheses {} is optional.
CODESYS executes the <instructions> as long as the <counter> is not greater, or - in
case of negative increment - is not smaller than the <end value>. This is checked before the
execution of the <instructions>.

Every time the instructions <instructions> have been executed, the counter <counter>
is automatically increased by the increment <increment>. The increment <increment> can
have any integral value. If you do not specify an increment, the standard increment is 1.

FOR iCounter := 1 TO 5 BY 1 DO
iVar1 := iVar1*2;
END_FOR;
Erg := iVar1;

If you have pre-configured iVar1 with 1, iVar1 has the value 32 after the FOR loop.

Example

CAUTION!
The end value <end value> may not attain the same value as the upper limit of
the data type of the counter.
If the end value of the counter is equal to the upper limit of the data type of the
counter, an endless loop results. For example, an endless loop results in the
above example if iCounter is of the data type SINT and the <end value>
equals 127, since the data type SINT has the upper limit 127.

As an extension to the IEC 61131-3 standard you can use the CONTINUE instruction within the
FOR loop.

See also
● Ä Chapter 1.4.1.19.5.2 “Integer data types” on page 647
● Ä Chapter 1.4.1.19.1.3.5.9 “EXST Statement 'CONTINUE'” on page 474

ST instruction 'CASE'
Use this dialog box for pooling several conditional instructions containing the same condition
variable into a construct.
Syntax:
CASE <Var1> OF
<value1>:<instruction1>
<value2>:<instruction2>
<value3, value4, value5>:<instruction3>
<value6 ... value10>:<instruction4>
...
<value n>:<instruction n>

{ELSE <ELSE-instruction>}

END_CASE;
The section within the curly brackets {} is optional.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US470

Processing scheme of a CASE instruction.

● If the value of the variable <Var1> is <value i>, then the instruction <instruction i>
is executed.

● If the variable <Var1> has non of the given values, then the <ELSE-instruction> is
executed.

● If the same instruction is executed for several values of the variable, then you can write the
values in sequence, seperated by commas.

CASE iVar OF
1, 5: bVar1 := TRUE;
 bVar3 := FALSE;

2: bVar2 := FALSE;
 bVar3 := TRUE;

10..20: bVar1 := TRUE;
 bVar3= TRUE;
ELSE
 bVar1 := NOT bVar1;
 bVar2 := bVar1 OR bVar2;
END_CASE;

Example

ST instruction 'WHILE'
The WHILE loop is used like the FOR loop in order to execute instructions several times until the
abort condition occurs. The abort condition of a WHILE loop is a boolean expression.

Syntax:
WHILE <boolean expression> DO
 <instructions>
 END_WHILE;
CODESYS repeatedly executes the <instructions> for as long as the <boolean
expression> returns TRUE. If the boolean expression is already FALSE at the first evaluation,
then CODESYS never executes the instructions. If the boolean expression never adopts the
value FALSE, then the instructions are repeated endlessly, as a result of which a runtime error
results.

WHILE iCounter <> 0 DO
Var1 := Var1*2
iCounter := iCounter-1;
END_WHILE;

Example

NOTICE!
You must ensure by programming means that no endless loops are caused.

In a certain sense the WHILE and REPEAT loops are more powerful than the FOR loop, since
you don't need to already know the number of executions of the loop before its execution. In
some cases it is thus only possible to work with these two kinds of loop. If the number of
executions of the loop is clear, however, then a FOR loop is preferable in order to avoid endless
loops.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 471

As an extension to the IEC 61131-3 standard you can use the CONTINUE instruction within the
WHILE loop.
See also
● Ä Chapter 1.4.1.19.1.3.5.2 “ST instruction 'FOR'” on page 469
● Ä Chapter 1.4.1.19.1.3.5.9 “EXST Statement 'CONTINUE'” on page 474

ST Statement 'REPEAT'
The REPEAT loop is used like the WHILE loop, but with the difference that CODESYS only
checks the abort condition after the execution of the loop. The consequence of this behavior is
that the REPEAT loop is executed at least once, regardless of the abort condition.

Syntax:
REPEAT
<instructions>
 UNTIL <boolean expression>
 END_REPEAT;

CODESYS executes the <instructions> until the <boolean expression> returns TRUE.

If the boolean expression already returns TRUE at the first evaluation, CODESYS executes the
instructions precisely once. If the boolean expression never adopts the value TRUE, then the
instructions are repeated endlessly, as a result of which a runtime error results.

REPEAT
Var1 := Var1*2;
iCounter := iCounter-1;
UNTIL
iCounter = 0
END_REPEAT;

Example

In a certain sense the WHILE and REPEAT loops are more powerful than the FOR loop, since
the number of executions of the loop doesn't already need to be known before its execution. In
some cases you can only work with these two kinds of loop. If the number of executions of the
loop is clear, however, then a FOR loop is preferable in order to avoid endless loops.

As an extension to the IEC 61131-3 standard you can use the CONTINUE instruction within the
WHILE loop.

See also
● Ä Chapter 1.4.1.19.1.3.5.4 “ST instruction 'WHILE'” on page 471
● Ä Chapter 1.4.1.19.1.3.5.2 “ST instruction 'FOR'” on page 469
● Ä Chapter 1.4.1.19.1.3.5.9 “EXST Statement 'CONTINUE'” on page 474

ST statement 'RETURN'
Use the RETURN statement in order to exit from a function block. You can make this dependent
on a condition, for example.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US472

IF xIsDone = TRUE THEN
 RETURN;
END_IF;

iCounter := iCounter + 1;
If the value of xIsDone is equal to TRUE, then the function block is exited immediately and the
statement iCounter := iCounter + 1; is not executed.

Example

See also
● Ä Chapter 1.4.1.19.1.3.5.1 “ST statement 'IF'” on page 469

ST instruction 'JMP'
The JMP instruction is used to execute an unconditional jump to a program line that is marked
by a jump label.
Syntax:
<label>: <instructions>
JMP <label>;
The jump label <label> is any unique identifier that you place at the beginning of a program
line. On reaching the JMP instruction, a return to the program line with the <label> takes
place.

iVar1 := 0;
_label1: iVar1 := iVar1+1;
(*instructions*)

IF (iVar1 < 10) THEN
JMP _label1;
END_IF;

Example

NOTICE!
You must ensure by programming means that no endless loops are caused. For
example, you can make the jump conditional.

ST instruction 'EXIT'
The EXIT instruction is used in a FOR, WHILE or REPEAT loop in order to end the loop regard-
less of other abort conditions.
See also
● Ä Chapter 1.4.1.19.1.3.5.2 “ST instruction 'FOR'” on page 469
● Ä Chapter 1.4.1.19.1.3.5.4 “ST instruction 'WHILE'” on page 471
● Ä Chapter 1.4.1.19.1.3.5.5 “ST Statement 'REPEAT'” on page 472

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 473

EXST Statement 'CONTINUE'
CONTINUE is an instruction of the Extended Structured Text (ExST).

The instruction is used inside FOR, WHILE and REPEAT loops in order to jump to the beginning
of the next execution of the loop.

FOR Counter:=1 TO 5 BY 1 DO
INT1:=INT1/2;
 IF INT1=0 THEN
 CONTINUE; (* to avoid a division by zero *)
 END_IF
Var1:=Var1/INT1; (* executed, if INT1 is not 0 *)
END_FOR;

Erg:=Var1;

Example

See also
● Ä Chapter 1.4.1.19.1.3.5.2 “ST instruction 'FOR'” on page 469
● Ä Chapter 1.4.1.19.1.3.5.4 “ST instruction 'WHILE'” on page 471
● Ä Chapter 1.4.1.19.1.3.5.5 “ST Statement 'REPEAT'” on page 472

ST function block call
Syntax
<FB-instance>(<FB input variable>:=<value or address>|, <other FB input
variables>);

 TMR:TON;

 TMR (IN:=%OX5, PT:=T#300ms);
 varA:=TMR.Q;

The timer function block TON is instanced in TMR:TON and called with assignments for the
parameters IN and PT.

The output Q is addressed with TMR.Q and assigned to the variable varA.

Example

See also
● Ä Chapter 1.4.1.20.2.18.2 “Object 'Function Block'” on page 883

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US474

ST – Comments

Comment Description Example
Single-line There are two ways of marking:

● Starts with // and ends at the end of the
line

● Starts with /// and ends at the end of
the line

In CODESYS, these comments are handled
the same way.
However, if library documentation is created
using the LibDoc Scripting Collection, the
following applies:
● When the property LibDocContent =

DocsOnly is entered in the project infor-
mation, only comments marked with ///
are processed into library documenta-
tion. See the example for this below the
table.

● When LibDocContent =
CommentsAndDocs (default setting) is
defined, all comments are processed
into library documentation.

/// This is a comment.
/// This is a comment.

Multiline Starts with (* and ends with *). (* This is a multiline comment
*)

Nested Starts with (* and ends with *). Additional
comments (*....*) can be contained
within this comment.

(* a:=inst.out; (* comment 1 *)
b:=b+1; (* comment 2 *) *)

A tooltip in the header of a POU is defined by the following
comment:
 // tooltip text – line 1
 // tooltip text – line 2
 // tooltip text – line 3

 Afterwards the documentation is defined as follows:
 /// reStructuredText

Comments for
tooltips and
POU documen-
tation

Note: It is not recommended to mix the different comment types because this can cause
unwanted side-effects when the documentation is generated.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 475

Sequential Function Chart (SFC)
1.4.1.19.1.4.1 SFC editor... 476
1.4.1.19.1.4.2 SFC Editor in Online Mode.. 476
1.4.1.19.1.4.3 Processing order in SFC... 477
1.4.1.19.1.4.4 Qualifiers for Actions in SFC... 479
1.4.1.19.1.4.5 Implicit variables.. 480
1.4.1.19.1.4.6 SFC Flags.. 481
1.4.1.19.1.4.7 Library "Analyzation"... 485
1.4.1.19.1.4.8 Elements.. 486

SFC editor
The SFC editor is graphical editor. A new SFC POU includes an Init step and a subsequent
transition.
In the SFC editor, you can insert individual elements into the diagram by means of commands in
the “SFC” menu, the context menu, or the “ToolBox” view.
When inserting by means of a menu command, the elements that can be inserted at the
currently selected position are available.
Before inserting branches parallel to multiple actions and transitions, you must highlight these
actions and transitions in a multiple selection.
You can also drag SFC elements from the “ToolBox” view to the diagram. When you drag an
element over the editor, CODESYS marks all possible insertion points with gray boxes. If you
move the mouse over a gray box, then the color of the box changes to green. When you release
the mouse button, the object is inserted at that location.
If you drag a branch into the diagram, then you must set the beginning and the end of the
branch using the mouse pointer. You set the beginning of the branch by releasing the mouse
button at an insertion point. The color of the box then changes to red. You set the end of the
branch by clicking the second insertion point. Then CODESYS inserts a branch around the
objects between the beginning and end markers.
For copying step and transition elements that call action objects or transition objects, two
different duplication modes can be set. Either the references are copied at the same time, or the
referenced objects are embedded and duplicated when copying.
You define the look and feel of the editor in the CODESYS options (“SFC Editor”).
See also
● Ä Chapter 1.4.1.19.1.2 “Common functions in graphical editors” on page 462
● Ä Chapter 1.4.1.19.1.4 “Sequential Function Chart (SFC)” on page 476
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255
● Ä Chapter 1.4.1.20.4.13.22 “ Dialog 'Options' - 'SFC Editor'” on page 1200

SFC Editor in Online Mode
In the SFC editor, the variables and expressions in use on the controller can be displayed at
runtime. You can also write and force variables and expressions. Debugging functions, such as
breakpoints and step-by-step execution, are not available yet.
In the SFC editor options, you can set the online representation of the SFC elements and
attributes.
In the case that you have declared SFC flags explicitly, then they are displayed in the declara-
tion part in online mode. They are not displayed in offline mode.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US476

Note the processing order of elements in an SFC diagram.

In online mode, CODESYS displays active steps in blue.

See also
● Ä Chapter 1.4.1.19.1.4.5 “Implicit variables” on page 480
● Ä Chapter 1.4.1.8.2.1 “Using the declaration editor” on page 226
● Ä Chapter 1.4.1.19.1.4.3 “Processing order in SFC” on page 477
● Ä Chapter 1.4.1.20.4.13.22 “ Dialog 'Options' - 'SFC Editor'” on page 1200

Processing order in SFC
Basic element behavior
● Active step: An active step includes actions currently being executed. In online mode,

CODESYS displays active steps in blue.
● Initial step: In the first cycle after calling a POU in SFC, the initial step is activated automati-

cally and the step action is executed.
● CODESYS executes IEC actions at least two times: the first time is when the step is

activated, and the second time when the step is deactivated (but not until the next cycle).
● Alternative branches: If the step before the branch is active, then CODESYS passes the

first transition of each alternative branch line from left to right. CODESYS activates the
subsequent step in the first branch line with a transition yielding TRUE.

● Parallel branches: If the step before the branch (horizontal double line) is active and the
transition before the branch yields TRUE, then CODESYS activates the first steps in every
branch line. The branch lines are then processed at the same time. The step after the end of
the branch is activated when every last step in each branch line is active and the transition
after the double line yields TRUE.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 477

1. Reset IEC actions
CODESYS resets the internal action control flags of the action qualifiers (N, R, S, L, D, P,
SD, DS, SL). These flags control IEC actions. However, flags are not reset when they are
called within actions.

2. Execute exit actions
CODESYS verifies whether all steps fulfill the condition for executing the exit action for
each step. The order of verification follows the layout in the SFC diagram, from top to
bottom and from left to right.
CODESYS executes an exit action when the step is deactivated (after any entry and step
actions have been executed in the preceding cycle and the condition for the subsequent
step yields TRUE).

3. Execute entry actions
CODESYS verifies whether all steps fulfill the condition for executing the entry action for
each step. The order of verification follows the layout in the SFC diagram, from top to
bottom and from left to right. If the conditions are fulfilled, then CODESYS executes the
entry actions.
CODESYS executes an entry action as soon as the transition of the preceding step has
been processed and yields TRUE, thus indicating that the step has been activated.

4. Time check / Execute step actions
CODESYS performs the following check for each step in the order of the SFC layout:
● CODESYS copies the elapsed time of the active step to the respective implicit step

variable <step name>.t. (not yet implemented)
● If a timeout occurs, then CODESYS sets the respective error flags. (not yet imple-

mented)
● For non-IEC steps: CODESYS executes the step action.

5. Execute IEC actions
CODESYS executes the IEC actions in alphabetical order, passing through the list of
actions two times. In the first pass, CODESYS executes the IEC actions for each step that
was deactivated in the preceding cycle. In the second pass, the IEC actions are executed
for each active step.

6. Transition check / Activate next steps
The transitions are passed as follows: If a step is active in the current cycle and the
subsequent transition yields TRUE and any defined minimum time of the step has elapsed,
then the subsequent step is activated.

NOTICE!
Please note when executing actions:
An action can be executed multiple times within the same cycle if you use it in
multiple SFC diagrams. For example, if a sequential function chart includes two
IEC actions A and B, both of which are programmed in SFC and call an IEC
action C, then the IEC action C is called two times.
If you use the same IEC action at the same time in different levels of an SFC
diagram, then this can lead to unpredictable results when processing. For this
reason, CODESYS issues a corresponding error message. This error message
can appear for projects that have been created in an earlier version of the
development system.

Processing
order

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US478

Please note: It is possible to use implicit variables to monitor the processing
status of steps and actions and to control processing.

See also
● Ä Chapter 1.4.1.19.1.4.5 “Implicit variables” on page 480
● Ä Chapter 1.4.1.19.1.4.4 “Qualifiers for Actions in SFC” on page 479

Qualifiers for Actions in SFC
You assign qualifiers to IEC steps. Qualifiers describe how a step action is processed.
Qualifiers are processed by the SFCActionControl function block in the library
IecSfc.library. The library is automatically integrated into the project by the SFC plug-in.

Table 31: Available qualifiers
N Non-stored The action is active as long as the step.
R overriding Reset The action is deactivated.
S Set (Stored) CODESYS executes this action as soon as the step is active. The action

execution is continued even when the step has been deactivated until it
gets a reset.

L time Limited CODESYS executes this action as soon as the step is active. The action is
executed until the step is deactivated or the given time span has elapsed.

D time Delayed CODESYS begins executing the action only after the given delay time has
elapsed following step activation and the step is still active. The action is
executed until the step is deactivated.

P Pulse CODESYS executes the action exactly two times: one time when the step
is activated and one time when the step is deactivated.

SD Stored and time
Delayed

CODESYS begins executing the action only after the given delay time has
elapsed following step activation. The action is executed until it gets a
reset.

DS Delayed and
Stored

CODESYS begins executing the action only after the given delay time has
elapsed following step activation and the step is still active. The action is
executed until it gets a reset.

SL Stored and time
limited

CODESYS executes this action as soon as the step is activated. It is
executed until the specified time has elapsed or it gets a reset.

You have to specify the times for the L, D, SD, DS, and SL qualifiers in the format of a TIME
constant.

When an IEC action is deactivated, it is executed one more time. This means
that CODESYS executes this kind of action at least two times. This also applies
to actions with the P qualifier.

See also
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 479

Implicit variables
Every SFC object supplies implicit variables for you to monitor the status of steps and IEC
actions at runtime. These implicit variables are declared automatically by CODESYS for each
step and each IEC action.
The implicit variables are structure instances of the type SFCStepType for steps and type
SFCActionType for actions. The variables have the same names as their elements, for
example "step1" variable name for "step1" step name. The structure members describe the
status of a step or action or the currently elapsed time in an active step.

In the element properties, you can define whether CODESYS should export a
symbol definition for this flag to the symbol configuration.

See also
● Ä Chapter 1.4.1.19.1.4.8.6 “SFC element properties” on page 493

Syntax for the implicit variable declaration:
<step name>:SFCStepType;
_<action name>:SFCActionType;

Table 32: The following implicit variables are available for step or IEC action status:
Step
<step name>.x Shows the activation status in the current cycle.

When <step name>.x = TRUE, CODESYS processes the step in the
current cycle.

<step name>._x Shows the activation status for the next cycle.
When <step name>._x = TRUE and <step name>.x = FALSE,
CODESYS processes the step in the next cycle. This means that <step
name>._x is copied to <step name>.x at the beginning of a cycle.

<step name>.t The flag t yields the current elapsed time since the step was activated.
This applies only to steps, regardless of whether a minimum time has been
defined or not in the step properties.
Also see SFC flag SFCError.

<step name>._t For internal use only

IEC action
_<action name>.x TRUE when the action is being executed.

_<action name>._x TRUE when the action is active.

NOTICE!
You can use the above variables to force a specific status value to a step
(activate a step). However, note that this can cause an unstable status in the
SFC.

See also
● Ä Chapter 1.4.1.19.1.4.6 “SFC Flags” on page 481

Step and action
status

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US480

Syntax for access:
Assign the implicit variable directly in the POU: <variable name>:=<step
name>.<implicit variable> or <variable name>:=_<action name>.<implicit
variable>

status:=step1._x;Example

From another POU, with the POU name: <variable name>:=<POU name>.<step
name>.<implicit variable> or <variable name>:=<POU name>._<action
name>.<implicit variable>

status:=SFC_prog.step1._x;Example

In the element properties of a step or action, you define whether CODESYS should add a
symbol definition for the step or action flag. In the “Properties” view, you have to select the
necessary access rights in the “Symbol” column.
See also
● Ä Chapter 1.4.1.19.1.4.8.6 “SFC element properties” on page 493

SFC Flags
SFC flags are implicitly generated variables with predefined names. You can use them to
influence the processing of an SFC diagram. You can use these flags, for example, to display
timeouts or reset step chains. In addition, you can activate jogging mode specifically to activate
transitions. You have to declare and activate these variables in order to have access to them.

Name Data Type Description
SFCInit Bool TRUE: CODESYS resets the sequence to the initial step. The other SFC flags are

also reset (initialization). While the variable is TRUE, the initial step remains set
(active), but its actions are not executed. Only when you set SFCInit again to
FALSE is the POU further processed normally.

SFCReset Bool This function behaves similar to SFCInit. However, CODESYS continues pro-
cessing after the initialization of the initial step. For example, in the initial step, you
could immediately reset the SFCReset flag to FALSE.

SFCError Bool TRUE if a timeout occurs in an SFC diagram. If second timeout occurs in the
program, it is not registered unless you previously reset the variable SFCError.
The declaration of SFCError is a requirement for other flag variables to func-
tion for controlling the chronological sequence (“SFCErrorStep”, SFCErrorPOU,
SFCQuitError).

SFCEnableLim
it

Bool Used specifically for activating (TRUE) and deactivating (FALSE) the timeout con-
trol in steps using SFCError. If you declare and activate this variable (SFC
settings), then you must set it to TRUE for SFCError to work. If you do not, then
the timeouts are ignored. The is useful, for example, at start-up or in manual oper-
ation. If you do not declare the variable, then SFCError will work automatically.

The requirement is the declaration of SFCError.

SFCErrorStep String Stores the name of the step that caused a timeout, which was registered by
SFCError. The name is kept until the registered step error is reset by means of
SFCQuitError (FALSE -> TRUE).

The requirement is the declaration of SFCError.

Access to
implicit varia-
bles

Symbol genera-
tion

SFC flags

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 481

Name Data Type Description
SFCErrorPOU String Stores the name of the block in which a timeout occurred and was registered by

SFCError. The name is saved until the timeout is reset by SFCQuitError.

The requirement is the declaration of SFCError.

SFCQuitError Bool As long as this Boolean variable is TRUE, CODESYS pauses the processing of
the SFC diagram and any timeout, saved in the variable SFCError, is reset. If
you reset the variable to FALSE, then all previous times in the active steps are
reset.
The requirement is the declaration of SFCError.

SFCPause Bool As long as this variable is TRUE, CODESYS pauses the processing of the SFC
diagram.

SFCTrans Bool TRUE if a transition is active.

SFCCurrentSt
ep

String Shows the name of the active step, regardless of the time monitoring. In parallel
branches, the name of the step of the rightmost branch line is always stored.

SFCTip,
SFCTipMode

Bool Controls the jogging mode of the SFC block.
If you enable this flag with SFCTipMode=TRUE, then you can activate the next
step only by setting SFCTip to TRUE. While SFCTipMode is set to FALSE, transi-
tions can also be used to continue activation.

SFCErrorAnal
yzation,

 Contains as string all variables that contribute to the total value TRUE of
SFCError (timeout in one step). SFCError needs to be activated for this.

SFCErrorAnalyzation implicitly uses the function of the POU
AnalyzeExpression of the library Analyzation.

SFCErrorAnal
yzationTable,

 Contains in a table all variables that contribute to the total value TRUE of
SFCError (timeout in one step). SFCError needs to be activated for this.

SFCErrorAnalyzationTable implicitly uses the function of the POU
AnalyzeExpressionTable of the library Analyzation.

CODESYS declares SFC flags automatically when you activate the respective options. You can
set this option in the “SFC Settings” tab of the properties dialog for each POU, or in the “SFC”
project settings dialog for each SFC POU in the project.

The SFC settings for the SFC flags of individual POUs are effective only if you
have not selected the “Use defaults” option. When you select this option, the
settings apply that were defined in the project settings.

SFC flags that you declare in the SFC settings dialog are visible only in the
online view of the SFC block.

See also
● Ä “Flag” on page 1166

Manual declaration, which was necessary in CoDeSys V2.3, is now only required to enable
write access from another block. In this case, you should note that when you declare the flag in
a global variable list, you must deactivate its “Declare” setting in the SFC settings dialog. If you
do not do this, then a local SFC flag is implicitly declared that CODESYS uses instead of the
global variable.

Implicit genera-
tion of SFC
flags

Explicit genera-
tion of SFC
flags

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US482

You have created an SFC block named sfc1, which contains the s1 step. You have defined
timeouts in the step properties. (See "Online view of SFC block sfc1" below.)

If for any reason the s1 step remains active longer than its time properties have permitted
(timeout), then CODESYS sets the SFCError flag to permit access by the application.

To permit access, you have to declare and activate the SFC flag in the SFC settings. If you
have only declared it, then the SFC flag is only displayed in the online view of sfc1 in the
declaration part, but it has no function.

Now the SFC flag can be referenced within the POU, for example in an action (2) or outside of
the block (1).

Online view of the SFC block sfc1

Example

Application
example for
SFCError

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 483

SFCError is TRUE as soon as a timeout occurs within sfc2.

Note that you can use the flags SFCErrorAnalyzation and
SFCErrorAnalyzationTable to determine the components of the expression that contrib-
utes to the value TRUE of the SFCError.

See also
● Ä Chapter 1.4.1.19.1.4.7 “Library "Analyzation"” on page 485

Syntax for access:
You assign the flag directly within the POU: <variable name>:=<SFC flag>

checkerror:=SFCerror;Example

From another POU with POU name: <variable name>:=<POU name>.<SFC flag>

checkerror:=SFC_prog.SFCerror;Example:

If you need write access from another block, then you also have to declare the SFC flag
explicitly as a VAR_INPUT variable in the SFC block or globally in a GVL.

Access to the
flags

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US484

Local declaration:
PROGRAM SFC_prog
VAR_INPUT
 SFCinit:BOOL;
END_VAR

Global declaration in a global variable list:
VAR_GLOBAL
 SFCinit:BOOL;
END_VAR
PROGRAM PLC_PRG
VAR
 setinit: BOOL;
END_VAR
SFC_prog.SFCinit:=setinit; // write access to SFCinit in SFC_prog

Example

See also
● Ä Chapter 1.4.1.19.1.4.7 “Library "Analyzation"” on page 485

Library "Analyzation"
This library contains POUs for the analysis of expressions. When a composite expres-
sion has the total value of FALSE, those of its components that contribute to this
result can be determined. In the SFC editor, the flags SFCErrorAnalyzation and
SFCErrorAnalyzationTable use these functions implicitly to examine the transition expres-
sions. Then the flags provide the identifiers of the variables that contributed to a timeout
error. They keep this information until they are reset explicitly by means of the SFC flag
SFCQuitError.

An analysis POU cannot be called by means of a pointer. This kind of call is ignored. Call the
POU as a single instance.
For a description of the library POUs and an example of how the SFC flags display the analysis
results in CODESYS, see the documentation for the library (online help or directly in the Library
Manager).

See also
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255
● Ä Chapter 1.4.1.19.1.4.6 “SFC Flags” on page 481

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 485

Elements
1.4.1.19.1.4.8.1 SFC elements 'Step' and 'Transition'...................................... 486
1.4.1.19.1.4.8.2 SFC Element 'Action'.. 488
1.4.1.19.1.4.8.3 SFC element 'Branch'... 491
1.4.1.19.1.4.8.4 SFC element 'Jump'... 492
1.4.1.19.1.4.8.5 SFC element 'Macro'.. 492
1.4.1.19.1.4.8.6 SFC element properties... 493

SFC elements 'Step' and 'Transition'
Step symbol ; Transition symbol
As a rule, CODESYS inserts steps and transitions as combinations. Inserting a step without a
transition or a transition without a step causes an error when compiling. You can modify this by
double-clicking the name.

NOTICE!
Step names must be unique within the scope of the parent block. Consider this
especially when using actions that were also programmed in SFC.

Please note that you can convert a step into an initial step by clicking “Init step” or by setting the
respective property in the SFC properties.
All steps are defined by the step properties, which you can display and edit in the “Properties”
view, depending on the set options.
You have to add those actions to the step which are to be executed when the step is active.
A distinction is made between IEC actions and step actions. Details for this are found in the
chapter about the SFC element "Action".
A transition must include the condition for the subsequent step to be active as soon as the value
of the condition yields TRUE. Therefore, a transition condition must yield TRUE or FALSE. It can
be defined in one of two ways:
● (1) Inline condition (direct): You replace the default transition name with either the name of

a Boolean variable, a Boolean address, a Boolean constant, or a statement with a Boolean
result, for example (i<100) AND b. You cannot specify programs, function blocks, or
assignments here.

● (2) Multi-use condition (separate transition or property object): You replace the default tran-
sition name with the name of a transition or property object (,). You create these
objects by clicking “Project è Add Object”. This allows multiple use of transitions, for
example "condition_xy" in the figures below. Like an inline condition, the object can contain
a Boolean variable, Boolean address, Boolean constant, or an statement with a Boolean
result. In addition, it can also contain multiple statements with any code.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US486

NOTICE!
The user is responsible for assigning the required expression to a transition
variable if the transition includes multiple instructions.

Transitions that reference a transition or property object are marked with a small triangle in the
upper right corner of the transition box.

As opposed to CoDeSys V2.3, now CODESYS treats a transition condition like a method call.
The entry has the following syntax:
<transition name>:=<transition condition>

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 487

(for example trans1:= a=100)

or only
<transition condition>
(for example a=100)

You will find an example (condition_xy) in the figure above.
See also
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255
● Ä Chapter 1.4.1.20.3.11.6 “Command 'Insert Step-Transition'” on page 1081
● Ä Chapter 1.4.1.19.1.4.8.2 “SFC Element 'Action'” on page 488
● Ä Chapter 1.4.1.20.3.11.1 “Command 'Init Step'” on page 1079
● Ä Chapter 1.4.1.19.1.4.8.6 “SFC element properties” on page 493
● Ä Chapter 1.4.1.8.22.4 “Calling methods” on page 314

SFC Element 'Action'
Symbol:
An action includes one or more statements in one of the valid implementation languages. You
can assign an action to a step.
Actions that you use in SFC steps have to be created as POUs in the project.

Exception: In the case of IEC actions, which you add to a step as action association, you can
also specify a Boolean variable instead of an action object. The value of these variables is
switched between FALSE and TRUE each time the action is executed.

NOTICE!
You have to define unique step names within the scope of the parent block. An
action written in SFC must not contain a step with a name identical to the step
to which the action is assigned.

A distinction is made between IEC actions and step actions:

IEC actions comply with the IEC 61131-3 standard. They are executed according to their
qualifiers.
IEC actions are executed two times: first when the step is activated and second when the step
is deactivated. If you assign multiple actions to one step, then the action list is processed from
top to bottom.
Each action box includes the qualifier in the first column and the action name in the second
column. Both can be edited directly.

1. IEC actions

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US488

NOTICE!
When the same global Boolean variable is associated as an IEC action in
different SFC POUs, unwanted overwriting can result.

In contrast to step actions, you can use different qualifiers for IEC actions. Moreover, each IEC
action is provided with a control flag. This directs CODESYS to execute an action only one time
at any moment, even if the action is called by another step at the same time. This cannot be
guaranteed for step actions.
You assign IEC actions to steps by clicking “SFC è Insert Action Association”.
See also
● Ä Chapter 1.4.1.20.3.11.14 “Command 'Insert Action Association'” on page 1084
● Ä Chapter 1.4.1.19.1.4.4 “Qualifiers for Actions in SFC” on page 479

These are actions that you can use to extend the IEC standard.
● Entry action:

CODESYS executes this action after the step is activated and before the main action is
executed.
You reference a new action, or an action created below the SFC object, from a step by
means of the “Entry action” element property (2). You can also add a new action to the step
by means of the “Add Entry Action” command. The entry action is marked with an E in the
lower left corner of the step box.

● Main action:
CODESYS executes this action when the step is active and any entry actions have already
been processed. However, in contrast to IEC actions (see above), these step actions are not
executed a second time when the step is deactivated. Moreover, you cannot use qualifiers
here.
You add an existing action to a step by means of the “Main action” element property (1). You
can create and add a new action by clicking the step element. A main action is marked with
a filled triangle in the upper right corner of the step box.

● Exit action:
CODESYS executes this action one time when the step is deactivated. However, note that
an exit action is not executed in the same cycle, but at the beginning of the next cycle.
You reference a new action, or an action created below the SFC object, from a step by
means of the “Exit action” element property (3). You can also add a new action to the step
by means of the “Insert Exit Action” command. The exit action is marked with an X in the
lower right corner of the step box.

2. Step actions

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 489

See also
● Ä Chapter 1.4.1.19.1.4.8.6 “SFC element properties” on page 493

The main difference between step actions and IEC actions with a qualifier N is that an IEC
action is always executed two times: when the step is activated and when the step is deacti-
vated. See the following example:

You have attached the Action_AS1 action to the AS1 step as a step action (left) and as an
IEC action with qualifier N (right). Because two transitions are activated in each case, the time
to reach the initial step again is two PLC cycles. This is true as long as the iCounter counter
variable was initialized at 0 and then incremented in the Action_AS1 action. After the Init
step is reactivated, iCounter returns a value of 1 in the example on the left. In the example
on the right, a value of 2 is returned because the IEC action is executed a second time due to
the deactivation of AS1.

Example

Another difference: Step actions can be pseudo-embedded. In this case, they can be called only
from the related step. If you copy this step, CODESYS creates new action objects automatically
and copies the respective implementation code. You define whether or not a step action is
embedded, either when the first action is inserted into the step, or later in the “Duplicate when
copying” element property. In general, this behavior can also be preset in the SFC options.
Moreover, for IEC actions, a Boolean variable can be specified instead of an action object. This
is not possible for step actions.

Difference
between IEC
actions and step
actions

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US490

SFC element 'Branch'
Symbol
Use branches to program parallel or alternative sequences in the sequential function chart.
For alternative branches, CODESYS processes just one of the branch lines at a time,
depending on the preceding transition condition. Parallel branches are processed at the same
time.
See also
● Ä Chapter 1.4.1.19.1.4.3 “Processing order in SFC” on page 477
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255
● Ä Chapter 1.4.1.20.3.11.13 “Command 'Insert Branch Right'” on page 1083

For parallel branches, the branch lines must begin and end with steps. Parallel branch lines can
contain additional branches.
The horizontal lines before and after the branch are double lines.

Processing in online mode: If the preceding transition (t2 in the example) yields TRUE, then the
first steps in all parallel branch lines are active (Step11 and Step21). CODESYS processes the
individual branch lines at the same time and the subsequent transition is passed afterwards (t3).
The "Branch<n>" jump marker is added automatically to the horizontal line that indicates the
beginning of a branch. You can define this marker as the jump destination.
Please note that you can convert a parallel branch into an alternative branch by clicking
“Alternative”.
See also
● Ä Chapter 1.4.1.20.3.11.11 “Command 'Alternative'” on page 1083

The horizontal line before and after the branch is a single line.
In an alternative branch, the branch lines must begin and end with transitions. The branch lines
can contain additional branches.

Parallel branch

Alternative
branch

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 491

If the step before the branch is active, then CODESYS passes the first transition of each
alternative branch line from left to right. For the first transition that yields TRUE, the associated
branch line opens, thus activating the step following the transition.
Please note that you can convert an alternative branch into a parallel branch by clicking
“Parallel”.
See also
● Ä Chapter 1.4.1.20.3.11.10 “Command 'Parallel'” on page 1082

SFC element 'Jump'
Symbol
Use a jump to define which actions in a step should be executed next as soon as the transition
preceding the jump is TRUE. Jumps may become necessary, as execution paths cannot cross or
lead upwards.
Excluding the required jump at the end of a diagram, you can generally insert jumps only at the
end of a branch.
The destination of a jump is defined by the added text string, which you can edit directly. The
jump destination can be a step name or the marker for a parallel branch.

See also
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255
● Ä Chapter 1.4.1.20.3.11.16 “Command 'Insert Jump'” on page 1085

SFC element 'Macro'
Symbol

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US492

A macro includes part of the SFC diagram, but it is not displayed in detail in the main view of the
editor.
Using macros does not influence the processing flow. Macros are used for hiding specific parts
of the diagram, for example to increase overall clarity.
You open the macro editor by double-clicking the macro box or by clicking “SFC è Zoom Into
Macro”. You can program here just like in the main view of the SFC editor. To close the macro
editor, click “SFC è Zoom Out of Macro”.

① Main view in the SFC editor
② Macro editor view for Macro1
 Macros can also include other macros. The caption of the macro editor always shows the path
of the open macro within the diagram, for example:

See also
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255
● Ä Chapter 1.4.1.20.3.11.20 “Command 'Zoom Into Macro'” on page 1086
● Ä Chapter 1.4.1.20.3.11.21 “Command 'Zoom Out of Macro'” on page 1086

SFC element properties
You edit the properties of an SFC element in the “Properties” view. Click “View è Element
Properties” to open this view. The properties to be displayed depend on the currently selected
element.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 493

The properties that are displayed in the SFC diagram next to the element
depend on the settings in the “View” tab of the SFC editor options.

Property Value description
“Name” Element name, by default "<element><consecutive number>", for example step

name "Step0", "Step1", branch name "Branch0”, etc.

“Comment” Element comment in text, for example “counter reset”. You can insert line breaks
by pressing [Ctrl]+[Enter].

“Symbol” For each SFC element, CODESYS declares an implicit variable with the same
name as the element.
The configuration determines whether this flag variable should be exported to
the symbol configuration and which access rights for the symbol should be
applied in the PLC.
● “No access”: The symbol is exported to the symbol configuration but cannot

be accessed from the PLC.
● “Read”: The symbol is exported to the symbol configuration and can be read

from the PLC.
● “Write”: The symbol is exported to the symbol configuration and can be

written from the PLC.
● “Read/Write”: Combination of read and write.
● Empty: A symbol is not exported to the symbol configuration.

Property Value description
“Init step” : This option is activated only for the defined initial step. By default, this is the

first step in an SFC diagram.
Note: If you activate this property for another step, then it must be deactivated in
the previous step to prevent compilation errors.

“Duplicate when copying” This option is available for steps that contain a step action (entry action, main
action, or exit action), and for transitions that are linked to a transition object.

: When copying the step or transition, a new object is created for each called
action or transition. It contains a copy of the implementation code of the copied
object.

: When copying a step or transition, the link to the called object is retained for
the respective action or transition. No new objects are generated. The source
and the copies of the step or transition call the same action or transition.

General

Specific

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US494

Property Value description
“Times”

● “Minimum active”
● “Maximum active”

Minimum time that the step is active, even when the subsequent transition is
TRUE.
Maximum time that the step can be active. If this time is exceeded, then
CODESYS sets the SFCError implicit variable to TRUE.

Times according to IEC syntax (for example t#8s) or the TIME variable; default:
t#0s.

“Actions”

● “Entry action”
● “Step action”
● “Exit action”

● “Entry action”: CODESYS executes these actions after activating the step.
● “Step action”: CODESYS executes this action when the step is active and

any entry actions have already been processed.
● “Exit action”: CODESYS executes this action in the subsequent cycle when

the step is deactivated.
Please note the processing sequence.

When using the respective implicit SFC variables and flags, you receive infor-
mation about the status of a step or an action or about timeouts.

See also
● Ä Chapter 1.4.1.20.4.13.22 “ Dialog 'Options' - 'SFC Editor'” on page 1200
● Ä Chapter 1.4.1.19.1.4.5 “Implicit variables” on page 480
● Ä Chapter 1.4.1.19.1.4.8.2 “SFC Element 'Action'” on page 488

Function Block Diagram / Ladder Diagram / Instruction List (FBD/LD/IL)
1.4.1.19.1.5.1 FBD/LD/IL Editor... 495
1.4.1.19.1.5.2 FBD/LD/IL editor in online mode... 499
1.4.1.19.1.5.3 Modifiers and operators in IL... 500
1.4.1.19.1.5.4 Elements.. 504

FBD/LD/IL Editor
The FBD/LD/IL editor is a combined editor of the programming languages FBD, LD and IL.

If necessary, IL can be activated in the CODESYS options.

There is a common set of commands and elements and CODESYS automatically converts the 3
programming languages into one another internally.
The code in the implementation part is structured in all three languages with the aid of networks.
The “FBD/LD/IL” menu provides the commands for working in the editor.
In offline and online modes, you can switch editors at any time by using the menu command in
“View”.
The behavior of the FBD/LD/IL editor is defined by the settings in “Tools è Options” (category
“FBD, LD and IL”).

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 495

NOTICE!
There are some special elements that CODESYS cannot convert and thus it
displays only in the applicable language. There are also constructs that are
not clearly convertible between IL and FBD and are therefore 'normalized', i.e.
nullified, when converted back to FBD. This concerns: negation of expressions
and explicit/implicit assignment of function block inputs and outputs.
An error-free conversion between the languages requires syntactically correct
code. Otherwise parts of the implementation can be lost.

See also
● Ä Chapter 1.4.1.8.3.1 “FBD/LD/IL” on page 235 (programming)
● Ä Chapter 1.4.1.20.3.13 “Menu 'FBD/LD/IL'” on page 1104 (commands)
● Ä Chapter 1.4.1.20.4.13.9 “Dialog 'Options' - 'FBD, LD, and IL'” on page 1192
● Ä Chapter 1.4.1.19.1.2 “Common functions in graphical editors” on page 462

Inserting and arranging elements
You can drag elements with the mouse from the view “Tools” (toolbox) into the implementa-
tion part of the editor. Alternatively you can use the commands of the context menu or the
“FBD/LD/IL” menu.
Settings for the display and interface are defined in the CODESYS options, category “FBD/LD/
IL”.
If you drag an element with the mouse over a network in the editor, all possible insertion
positions are displayed with gray diamond-shaped, triangular or arrow-shaped position marks.
As soon as the mouse pointer is located over one of these marks, the mark turns green. If the
mouse button is now released, CODESYS inserts the element at this position.

Example

If you drag a function block or an operator from the toolbox or a network at the left-hand side of
the network onto one of the two arrows, then CODESYS automatically creates a new network
and inserts the element there.
In order to replace an element, drag a suitable other element onto its position with the mouse.
Elements that you can replace by the new element are marked by CODESYS in the editor with
text fields, for example “Replace”, “Attach input”.
You can use the usual commands in the menu “Edit” for cutting, copying, pasting and deleting
elements. Copying also works with drag-and-drop by holding down the [Ctrl] key.

NOTICE!
The operators with EN/ENO functionality can only be inserted in the FBD and IL
editors.

Selecting elements
A box or a connecting line in the editor is selected by clicking on it with the mouse so that it has
the focus. Multiple selection is possible by keeping the [Ctrl] key pressed. A selected element is
shaded red.
Tooltip

FBD and LD
editor

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US496

If the cursor points to certain elements, for example to a variable or to an input, a tooltip appears
showing information about this element.
In the case of elements underlined with a wavy red line, the tooltip shows the pre-compile error
message of the error that occurs with this element.
Navigating in the editor

Table 33: Navigating in the editor
With the help of the keys and commands described below, you can place the focus within the
editor on a different cursor position. The change between the positions is also network-span-
ning in function.

[¬]

[®]

Change to the neighboring cursor position, along the signal flow, i.e. from
left to right and vice versa.

[][¯]

[¯]

Change to the next cursor position above or below the current position, if
this neighboring position belongs to the same logical group. For example,
all connections of a box form a logical group.
If such a logical group does not exist: change to the first cursor position
in the next higher or lower neighboring element. In the case of parallel-con-
nected elements, navigation takes place along the first branch.

[Ctrl] + [Home] Change to the first network; this will be selected.

[Ctrl] + [End] Change to the last network; this will be selected.

[Page Up] Scroll upwards by one page; the highest network on this page is selected.

[Page Down] Scroll downwards by one page; the lowest network on this page is
selected.

Command “Go
to…”

Change to a certain network.

Opening function blocks
If a function block is inserted in the editor, then you can open its implementation by a double-
click or with the context menu command “Browse for symbol è Go to Definition”.
See also
● Ä “Function block diagram (FBD)” on page 235
● Ä “Ladder diagram (LD)” on page 235
● Ä Chapter 1.4.1.8.3.1.1 “Programming function block diagrams (FBD)” on page 237
● Ä Chapter 1.4.1.8.3.1.2 “Programming ladder diagrams (LD)” on page 239
● Ä Chapter 1.4.1.19.1.5.4 “Elements” on page 504
● Ä Chapter 1.4.1.20.4.13.9 “Dialog 'Options' - 'FBD, LD, and IL'” on page 1192
● Ä Chapter 1.4.1.19.1.5.2 “FBD/LD/IL editor in online mode” on page 499
● Ä Chapter 1.4.1.20.3.13.44 “Command 'Go to'” on page 1116

Inserting and arranging elements:
You can insert elements with the help of the commands of the menu “FBD/LD/IL” in the context
menu. You can also drag a new network from the tool box into the implementation part of the
editor by drag-and-drop.
You can use the usual commands in the menu “Edit” for cutting, copying, pasting and deleting
elements. Copying also works with drag-and-drop by holding down the [Ctrl] key.

NOTICE!
Please note that operators with EN/ENO functionality can only be inserted in the
FBD and IL editors.

IL editor

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 497

Each program line is entered in a table row.

Table 34: Structure of networks in the IL editor
1st line: Network title
Requirement: The option is activated in the CODESYS options.

2nd line: Network comment
Requirement: The option is activated in the CODESYS options.

3rd line and on:

Column Contents Description
1 Operator Contains the IL operator (LD, ST, CAL, AND, OR,

etc.) or a function name. If you call a function block,
you must additionally specify the corresponding
parameters here; in the preceding field you must
enter in this case := or =>.

2 Operand Contains precisely one operand or the name of a
jump label.
In the case of several operands you must enter
them in several rows and when doing so insert a
comma directly behind the individual operands. (See
example below)

3 Address Contains the address of the operand as defined in its
declaration.
non-editable
You can activate/deactivate the display via the option
“Display symbol address”. To do this, select the com-
mand “Tools è Options” and the “General” tab in the
category “FBD, LD and IL”.

4 Symbol comment Contains the comment that was specified for the
operand if necessary in the declaration.
non-editable
You can activate/deactivate the display via the option
“Display symbol comment” if you select the com-
mand “Tools è Options” and the “General” tab in the
category “FBD, LD and IL”.

5 Operand comment Comment for the current program line.
You can activate/deactivate the display via the option
“Operand comment” if you select the command
“Tools è Options” and the “General” tab in the cate-
gory “FBD, LD and IL”.

Example

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US498

Table 35: Navigating in the editor
Key(s)/
command

Cursor movement

[↑]

[↓]

Jumps to the field located above/below.

[Tab] Jumps one field to the right within the row.

[Shift]+ [Tab] Jumps to the left to the preceding field within the row

[Space] Opens the editing frame for the selected field. Alternatively you can click
with the mouse on the field. If applicable the button for the input assistant
dialog box is available.

[Ctrl] + [Enter] Inserts a new row below the current row.

[Del] Deletes the current row.

[Ctrl] + [Home] Sets the focus at the start of the document and marks the first network.

[Ctrl] + [End] Sets the focus at the end of the document and marks the last network.

[Page Down] Scrolls up by one page and marks the top rectangle.

[Page Up] Scrolls down by one page and marks the top rectangle.

See also
● Ä “Instruction list (IL)” on page 236
● Ä Chapter 1.4.1.8.3.1.3 “Programming in instruction list (IL)” on page 240
● Ä Chapter 1.4.1.19.1.5.3 “Modifiers and operators in IL” on page 500
● Ä Chapter 1.4.1.20.4.13.9 “Dialog 'Options' - 'FBD, LD, and IL'” on page 1192
● Ä Chapter 1.4.1.19.1.5.2 “FBD/LD/IL editor in online mode” on page 499

FBD/LD/IL editor in online mode
In online mode the current value of each variable is displayed behind the variable in the editor.
Writing/forcing and the setting of breakpoints is possible.

If the variable is presently forced, this is indicated directly in front of the forced value by . If a
value has been prepared for writing or forcing, this value is displayed directly behind the current
value in square brackets <value>.

Forced variable:

Prepared value

Example

In the online view of a ladder diagram (LD) the connecting lines are marked in color: connec-
tions with the value TRUE are displayed as a thick blue line, connections with the value FALSE
as a thick black line. Conversely, connections with an unknown or analog value are displayed
normally (thin black line).

NOTICE!
Note that values of the connections are calculated from the monitored variables.
This is not a genuine flow control.

Breakpoints

FBD/LD/IL editor
in online mode

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 499

Possible positions for breakpoints are in principle the positions at which values of variables can
change (instructions), at which the program branches or at which another box is called.
Possible breakpoint positions:
● On the entire network: causes the breakpoint to be set at the first possible position in the

network.
● On a box, if the box contains an assignment. Not possible with operator boxes, for example

ADD, DIV.
● On assignments.
● At the end of the box at the position of the return to the calling box. In online mode an empty

network automatically appears here; it is marked by 'RET' in place of a network number.

NOTICE!
At present you cannot directly set a breakpoint on the first box in the network.
However, if you set a breakpoint on the entire network, this breakpoint marking
is transferred automatically to the first box in online mode.

NOTICE!
Breakpoints in methods: CODESYS automatically sets a breakpoint in all
methods that can be called. Therefore, if a method managed by an interface
is called, breakpoints are set in all methods that occur in function blocks that
implement this interface as well as in all derived function blocks that use the
method. If a method is called by a pointer to a function block, CODESYS sets
the breakpoints in the method of the function block and in all derived function
blocks that use the method.

See also
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395

Modifiers and operators in IL
Table 36: Modifiers
Modifier Combined with oper-

ator
Description

C JMP, CAL, RET The command is only executed if the result of
the preceding expression is TRUE.

N JMPC, CALC, RETC The command is only executed if the result of
the preceding expression is FALSE.

N otherwise negation of the operand (not of the accumu-
lator).

Table 37: Operators with the possible modifiers
Operator N Meaning Example
LD N Loads the (negated) the value of the operand

into the accumulator.
LD ivar

ST N Stores the (negated) content of the accumu-
lator in the operand.

ST iErg

S Sets the operand (type BOOL) to TRUE if the
content of the accumulator is TRUE.

S bVar1

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US500

Operator N Meaning Example
R Sets the operand (type BOOL) to FALSE if the

content of the accumulator is TRUE.
R bVar1

AND N,(Bitwise AND of the accumulator value and
(negated) operand

AND bVar2

OR N,(Bitwise OR of the accumulator value and
(negated) operand

OR xVar

XOR N,(Bitwise exclusive OR of the accumulator value
and (negated) operand

XOR N,
(bVar1,bVa
r2)

NOT Bitwise negation of the accumulator value
ADD (Addition of the accumulator value and the

operand; result is written into the accumulator.
ADD ivar1

SUB (Subtraction of the operand from the accumu-
lator value; result is written into the accumu-
lator.

SUB iVar2

MUL (Multiplication of accumulator value and
operand; result is written into the accumulator.

MUL ivar2

DIV (Division of the accumulator value by the
operand; result is written into the accumulator.

DIV 44

GT (Checks whether the accumulator value is
greater than the operand value; result (BOOL)
is written into the accumulator; >

GT 23

GE (Checks whether the accumulator value is
greater than or equal to the operand value;
result (BOOL) is written into the accumulator.

GE iVar2

EQ (Checks whether the accumulator value is
equal to the operand value; result (BOOL) is
written into the accumulator.

EQ iVar2

NE (Checks whether the accumulator value is not
equal to the operand value; result (BOOL) is
written into the accumulator;

NE iVar1

LE (Checks whether the accumulator value is
smaller than or equal to the operand value;
result (BOOL) is written into the accumulator.

LE 5

LT (Checks whether the accumulator value is
smaller than the operand value; result (BOOL)
is written into the accumulator.

LT cVar1

JMP CN Unconditional (conditional) jump to the speci-
fied jump label

JMPN next

CAL CN (Conditional) call of a program or a function
block (if the accumulator value is TRUE)

CAL prog1

RET Exit the box and return to the calling box. RET
RET C If the accumulator value is TRUE: exit the box

and return to the calling box.
RETC

RET CN If the accumulator value is FALSE: exit the box
and return to the calling box.

RETCN

) Evaluation of the reset operation

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 501

Example

Application Description Examples
Several operands for 1 oper-
ator

Options
● You enter the operands

into consecutive rows,
separated by commas in
the 2nd column.

● You repeat the operator in
consecutive rows.

Variant 1 :

Variant 2 :

Complex operands For a complex operand, you
enter the opening parenthesis
(in the first column. You enter
the closing parenthesis in the
first column in a separate row
following the operand entries
of the following rows.

A string is rotated by a char-
acter each cycle:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US502

Application Description Examples
Function block call, program
call

Column 1: Operator CAL or
CALC
Column 2: Name of the func-
tion block instance or the pro-
gram and opening parenthesis
(. If no parameters follow,
the closing parenthesis) is
entered here.
rows following that:
Column 1: parameter name
followed by := for input
parameter or => for output
parameter
Column 2: parameter value
followed by a comma , if fur-
ther parameters follow. The
closing parenthesis) is input
after the last parameter.
As a limitation according to
the IEC standard, complex
expressions cannot be used
here. You must assign such
constructs to the function
block or the program before
the call.

Function Call Row 1: Column 1: LD
Column 2: input variable
Row 2: Column 1: Func-
tion name Column 2: further
input parameters separated
by commas.
CODESYS writes the return
value into the accumulator.
Row 3: Column 1: ST Column
2: variable into which the
return value is written

Action call Like function block call or pro-
gram call.
The action name is appended
to the name of the FB
instance or the program.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 503

Application Description Examples
Jump Column 1: operator JMP or

JMPC.

Column 2: Name of the jump
label of the destination net-
work.
In the case of an uncondi-
tional jump, the preceding
instruction sequence must
end with one of the following
commands: ST, STN, S, R,
CAL, RET, JMP
In the case of a conditional
jump the execution of the
jump depends on the loaded
value.

See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä “Instruction list (IL)” on page 236
● Ä Chapter 1.4.1.8.3.1.3 “Programming in instruction list (IL)” on page 240

Elements
1.4.1.19.1.5.4.1 FBD/LD/IL element 'Network'... 504
1.4.1.19.1.5.4.2 FBD/LD/IL element 'Box'.. 505
1.4.1.19.1.5.4.3 FBD/LD/IL element 'Assignment'.. 505
1.4.1.19.1.5.4.4 FBD/LD/IL element 'Box with EN/ENO'.................................. 505
1.4.1.19.1.5.4.5 FBD/LD/IL element 'Input'... 506
1.4.1.19.1.5.4.6 FBD/LD/IL element 'Label'.. 506
1.4.1.19.1.5.4.7 FBD/LD/IL element 'Jump'.. 506
1.4.1.19.1.5.4.8 FBD/LD/IL element 'Return'.. 506
1.4.1.19.1.5.4.9 FBD/LD/IL element 'Branch'... 506
1.4.1.19.1.5.4.10 FBD/LD/IL element 'Execute'.. 507
1.4.1.19.1.5.4.11 LD element 'Contact'... 507
1.4.1.19.1.5.4.12 LD element 'Coil'... 508
1.4.1.19.1.5.4.13 LD element 'Branch Start/End'... 508
1.4.1.19.1.5.4.14 Closed branch.. 509

FBD/LD/IL element 'Network'
Symbol
A network is the base unit of an FBD or LD program. In the FBD/LD/IL editor, the networks
are arranged in a list. Each network is provided with a sequential network number on the left
side and can include: logical and arithmetic expressions, program/function/function block calls,
jumps, or return statements.
An IL program consists of at least one network. This network can include all IL statements of the
program.
You can provide each network with a title, comment, or label. In the CODESYS options (cate-
gory “FBD, LD, and IL”, you can define whether network title, comment, and separator between
individual networks are displayed in the editor.
Click the first line of the network to enter a network title. Click the second line of the network to
enter a network comment.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US504

See also
● Ä Chapter 1.4.1.20.4.13.9 “Dialog 'Options' - 'FBD, LD, and IL'” on page 1192
● Ä Chapter 1.4.1.20.3.13.1 “Command 'Insert Network'” on page 1104

FBD/LD/IL element 'Box'
Symbol:
A box and its call can represent additional functions, for example IEC function blocks, IEC
functions, library function blocks, operators.
A box can have any number of inputs and outputs.
If the box also provides an image file, the box icon is displayed inside the box. The requirement
is that the option “Show box symbol” is activated in the CODESYS options, category “FBD, LD
and IL”.
If you have changed the box interfaces, you can update the box parameters with the command
“FBD/LD/IL è Update Parameters” without having to re-insert the box.
See also
● Ä Chapter 1.4.1.20.3.13.5 “Command 'Insert Box'” on page 1105
● Ä Chapter 1.4.1.20.4.13.9 “Dialog 'Options' - 'FBD, LD, and IL'” on page 1192
● Ä Chapter 1.4.1.20.3.13.38 “Command 'Update Parameters'” on page 1114

FBD/LD/IL element 'Assignment'
Symbol:
The FBD editor shows a newly inserted assignment as a line with 3 question marks after it. The
LD editor shows a newly inserted assignment as a coil with 3 question marks located above it.
After insertion you can replace the placeholder ??? by the name of the variable to which the
signal coming from the left is to be assigned. The input assistant is available to you for this.

In IL an assignment is programmed via the operators LD and ST.

● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.20.3.13.4 “Command 'Insert Assignment'” on page 1105

FBD/LD/IL element 'Box with EN/ENO'
Symbol:
The element is available only in the FBD and LD editors.
The box generally corresponds to the FBD/LD/IL element “Box”; however, this box additionally
contains an EN input and an ENO output. EN and ENO have the data type BOOL.

Function of the EN input and ENO output: if the input EN has the value FALSE at the time of the
calling the box, the operations defined in the box are not executed. Otherwise, i.e. if EN has the
value TRUE, these operations are executed. The ENO output has the same value as the EN
input.
See also
● Ä Chapter 1.4.1.20.3.13.6 “Command 'Insert Box with EN/ENO'” on page 1106
● Ä Chapter 1.4.1.19.1.5.4.2 “FBD/LD/IL element 'Box'” on page 505

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 505

FBD/LD/IL element 'Input'
Symbol:
The maximum number of inputs depends on the type of box.
A newly added input is first marked with ???. You can replace the string ??? by a variable or a
constant.
See also
● Ä Chapter 1.4.1.20.3.13.13 “Command 'Insert Input'” on page 1107
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

FBD/LD/IL element 'Label'
The label is an optional identifier for a network in FBD and LD, which you can specify as a
destination for a jump.
If you insert a jump label in a network, it will be added as an editable field “Label:” in the
network.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.20.3.13.11 “Command 'Insert Label'” on page 1107

FBD/LD/IL element 'Jump'
Symbol
In FBD or LD a jump is inserted either directly before an input, directly after an output or at the
end of the network, depending on the current cursor position.
You enter a jump label as the jump destination directly behind the jump element.
In IL you program a jump with the instruction JMP.

See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.20.3.13.10 “Command 'Insert Jump'” on page 1107
● Ä Chapter 1.4.1.19.1.5.4.6 “FBD/LD/IL element 'Label'” on page 506

FBD/LD/IL element 'Return'
This element immediately interrupts the execution of the box if the input of the RETURN element
goes TRUE.

In an FBD or LD network you can place the Return instruction parallel to or after the preceding
elements.
In IL the RET instruction is available to you for this purpose.

See also
● Ä Chapter 1.4.1.20.3.13.12 “Command 'Insert Return'” on page 1107
● Ä Chapter 1.4.1.19.1.5.3 “Modifiers and operators in IL” on page 500

FBD/LD/IL element 'Branch'
Symbol:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US506

The element is available in the LD and FBD editor and represents an open line branch. A line
branch splits the processing line from the current cursor position onwards into 2 subnetworks,
which are executed in succession from top to bottom. You can branch each subnetwork further,
as a result of which multiple branches are created within a network.
Each subnetwork is given a marker symbol (rectangle) at the branch point, which you can select
in order to execute further commands.

The commands “Copy”, “Cut” and “Paste” are not available for subnetworks.

In order to delete a subnetwork, you must first delete all elements of the network and then the
marker symbol of the subnetwork.
See also
● Ä Chapter 1.4.1.20.3.13.33 “Command 'Insert Branch'” on page 1113
● Ä Chapter 1.4.1.20.3.13.34 “Command 'Insert Branch Above'” on page 1113
● Ä Chapter 1.4.1.20.3.13.35 “Command 'Insert Branch Below'” on page 1113

FBD/LD/IL element 'Execute'
Symbol:
The element is a box that enables you to directly enter ST code in the FBD and LD editors.
You can drag the “Execute” element with the mouse from the “Tools” view into the implementa-
tion part of your POU. If you click on “Enter ST code here...”, an input field opens where you can
input multiple-line ST code.
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

LD element 'Contact'
Symbol: , in the editor
The element is available only in the LD editor.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 507

A contact passes on the signal TRUE (ON) or FALSE (OFF) from left to right until the signal
finally reaches a coil in the right-hand part of the network. For this purpose a boolean variable
containing the signal is assigned to the contact. To do this, replace the placeholder ??? above
the contact with the name of a boolean variable.
You can arrange several contacts both in series and in parallel. In the case of two parallel
contacts, only one needs to obtain the value TRUE in order for ON to be passed on to the right.
If contacts are connected in series, all of them must obtain the value TRUE in order for ON to
be passed on to the right by the last contact in the series. Hence, you can program electrical
parallel and series connections with LD.

A negated contact forwards the signal TRUE if the variable value is FALSE. You can negate
an inserted contact with the help of the command “FBD/LD/IL è Negation” or insert a negated
contact from the “Tools” view.
If you place the mouse pointer on a contact with the left mouse button pressed and with a
network selected, the button “Convert to coil” appears in the network. If you now move the
mouse pointer onto this button, still with the mouse button pressed, and then release the mouse
button over this button, CODESYS converts the contact into a coil.
See also
● Ä Chapter 1.4.1.20.3.13.17 “Command 'Insert Contact'” on page 1108
● Ä Chapter 1.4.1.20.3.13.22 “Command 'Insert Negated Contact'” on page 1110
● Ä Chapter 1.4.1.20.3.13.18 “Command 'Insert Contact (Right)'” on page 1109
● Ä Chapter 1.4.1.20.3.13.20 “Command 'Insert Contact in Parallel (Above)'” on page 1109
● Ä Chapter 1.4.1.20.3.13.19 “Command 'Insert Contact in Parallel (Below)'” on page 1109
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

LD element 'Coil'
Symbol: , in the editor
The element is available only in the LD editor.
A coil adopts the value supplied from the left and saves it in the boolean variable assigned to
the coil. Its input can have the value TRUE (ON) or FALSE (OFF).

Several coils in a network can only be arranged in parallel.

In a negated coil the negated value of the incoming signal is stored in the boolean variable
that is assigned to the coil.
Set coil, Reset coil
Symbol: , , in the editor: ,
Set coil: If the value TRUE arrives at a set coil, the coil retains the value TRUE. As long as the
application is running, the value can no longer be overwritten here.
Reset coil: If the value TRUE arrives at a reset coil, the coil retains the value FALSE. As long as
the application is running, the value can no longer be overwritten here.
You can define an inserted coil as a set or reset coil with the help of the command “FBD/LD/IL
è Set/Reset” or insert it as an element “Set Coil” and “Reset Coil” from the “Tools” view.
See also
● Ä Chapter 1.4.1.20.3.13.14 “Command 'Insert Coil'” on page 1108
● Ä Chapter 1.4.1.20.3.13.16 “Command 'Insert Reset Coil'” on page 1108
● Ä Chapter 1.4.1.20.3.13.29 “Command 'Negation'” on page 1112
● Ä Chapter 1.4.1.20.3.13.31 “Command 'Set/Reset'” on page 1112

LD element 'Branch Start/End'
Symbol:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US508

The element serves the closed line branch.
See also
● Ä Chapter 1.4.1.19.1.5.4.14 “Closed branch” on page 509
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.20.3.13.36 “Command 'Set Branch Start Point'” on page 1113
● Ä Chapter 1.4.1.20.3.13.37 “Command 'Set Branch End Point'” on page 1114

Closed branch
A closed branch is available in LD only, and it contains a starting point and an end point. It is
used for implementing parallel analyses of logical elements.
Inserting a closed branch
● Command “FBD/LD/IL è Insert Contact Parallel (Below) ”
● Command “FBD/LD/IL è Insert Contact Parallel (Above) ”
● Command “FBD/LD/IL è Set Branch Start/End Point”

When you select one or more contacts and then execute the command “Insert Contact in
Parallel”, a parallel branch is added with a single vertical line. For this kind of branching, the
signal flow passes through both branches. This is an OR construct of both branches.

New: When you select a box and execute the command “Insert Contact in Parallel”, a parallel
branch is inserted with a double vertical line. This indicates that a short-circuit evaluation (SCE)
is implemented. SCE allows for the execution of a function block with a Boolean output to be
bypassed if a specific condition is TRUE. The condition can be displayed in the LD editor as a
branch connected parallel to the function block branch. The short circuit condition is defined by
one or more contacts in this branch that are interconnected parallel or sequentially.
Functional principle:
The branches that do not include the function block are processed first. If CODESYS detects
the value TRUE for one of these branches, then the function block is not called in the parallel
branch. In this case, the value at the input of the function block is sent directly to the output.
If CODESYS determines FALSE for the SCE condition, then the box will be called and the
Boolean result of its processing is passed on. If all branches contain function blocks, they are
analyzed from top to bottom and their outputs are logically ORed. If there are no branches with
function blocks, normal OR operations are performed.

Closed branch
at a contact

Closed branch
at a block, OR
evaluation, or
short-circuit
evaluation

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 509

The function block instance x1 (TON) has a Boolean input and a Boolean output. The execu-
tion of x1 is skipped if TRUE is determined for the condition in the parallel line branch. The
condition value results from the OR and AND operations that connect contacts cond1, cond2
and cond3.

x1 is executed if the condition value from the connection of the contacts cond1, cond2 and
cond3 is FALSE.

(1) Indicates from the double vertical connections that it is a construct subject to an SCE.
(2) Indicates from the single vertical connections that it is an OR construct.
The given LD example is shown below as ST code. P_IN and P_OUT are the Boolean values
at the input (split point) and output (reunification point) of the parallel line branch.
P_IN := b1 AND b2;

IF ((P_IN AND cond1) AND (cond2 OR cond3)) THEN
 P_OUT := P_IN;
ELSE
 x1(IN := P_IN, PT := {p 10}t#2s);
 tElapsed := x1.ET;
 P_OUT := x1.Q;
END_IF
bRes := P_OUT AND b3;

Example

See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.20.3.13.36 “Command 'Set Branch Start Point'” on page 1113
● Ä Chapter 1.4.1.20.3.13.37 “Command 'Set Branch End Point'” on page 1114
● Ä Chapter 1.4.1.20.3.13.20 “Command 'Insert Contact in Parallel (Above)'” on page 1109
● Ä Chapter 1.4.1.20.3.13.19 “Command 'Insert Contact in Parallel (Below)'” on page 1109
● Ä Chapter 1.4.1.20.3.13.21 “Command 'Toggle Parallel Mode'” on page 1110

Continuous Function Chart (CFC) and Page-Oriented CFC
1.4.1.19.1.6.1 CFC Editor... 511
1.4.1.19.1.6.2 CFC editor, page-oriented... 514
1.4.1.19.1.6.3 Keyboard Shortcuts in the CFC Editors.................................... 515
1.4.1.19.1.6.4 CFC Editor in Online Mode... 516
1.4.1.19.1.6.5 Elements.. 522

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US510

From an external point of view, a Function Block Diagrams consists of inputs and outputs, with
data being processed between them. From an internal point of view, a Function Block Diagrams
consists of POUs and their connections which represent data (signals) and act as assignment
operators in ST. The overall behavior is composed of the behavior of the inserted POUs which
call other POUs or library POUs.
Code in the “Continuous Function Chart (CFC)” implementation language mainly illustrates the
data flow through the system. Therefore, a continuous function chart is also referred to as a
"signal flow chart".
In the page-oriented CFC editor, you can wire POUs to each other and create well-structured
Function Block Diagrams distributed over multiple pages. The page-oriented editor behaves like
the CFC editor, but provides the following functionality:

The page-oriented editor behaves like the CFC editor, but provides additional functionality.
The editor supports you with the following functions:
● Creating pages
● Setting the page size
● Copying and inserting pages in the page navigator
● Copying the implementation of a POU in the CFC implementation language and inserting

into a page
● Well-structured and space-saving arranging of inputs, outputs, and connection marks in the

border areas
● Connection over pages with connection marks

CFC Editor
You can configure the appearance, behavior, and printing for the entire project in the CODESYS
options in the “CFC Editor” category. For example, on the “View” tab, you can configure the
color of the connecting lines depending on the data type.

Cursor symbol: Requirement: “Pointer” is selected in the “Toolbox” view.
The symbol indicates that you can edit in the editor. Select elements or connec-
tions to move them or to execute commands.

Cursor symbol: Requirement: An element is selected in the “Toolbox” view.
Clicking in the editor inserts the selected element. You can also drag an element
to the editor.

Dragging a function block
instance from the declaration
to the editor

Requirement: A line is selected in the declaration of the CFC.
The instance is inserted as a box with name, type, and all pins.

Dragging a variable from the
declaration to a box pin to the
editor

The variable is inserted as an input or output with a connection to the box pin in
focus.
Hint: The cursor indicates when your focused location is valid for a variable:

Configuring the
editor

Editing

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 511

Dragging a variable from the
declaration part to the editor

Requirement: The respective element is selected in the declaration.
● Function block instance: A POU with the corresponding data type is created.
● Declaration of VAR_INPUT or CONSTANT: An input element is inserted.
● Declaration of VAR_OUTPUT: An output element is inserted.
● Declaration of VAR, VAR_GLOBAL: A window opens at the insert location,

where you can select whether an input element or output element should be
inserted.

When a variable is dragged from the declaration part to an existing replaceable
element, the existing element is replaced.

Dragging a function block or
POU to the editor from the
“Devices” view, “POUs” view,
or from the Library Manager.

A box element with the corresponding type is inserted.
● When a box is dragged to an existing connecting line and both the input and

output of the box are compatible with the data type of the line, the box is
inserted in the line. Here its first matching input and output are connected to
the elements that were previously connected by the connecting line.

● When a box is dragged to an existing box, the existing box is replaced.

Resorting the order of inputs
and outputs within a function
block by means of drag&drop

Requirement: The text field of the input or output, which should be resorted to
another location, is selected.

[Ctrl] + click in the programing
area

Requirement: An element is selected in the “Toolbox” view.
As long as you hold down the [Ctrl] key, a selected element is created each time
you click in the programming area.

[Ctrl]+[Right Arrow] Requirement: In the CFC program, exactly one output pin is selected for an
element.
The selection is moved so that the input pin at the end of the connecting line is
selected. In the case of multiple pins, all are selected.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US512

[Ctrl]+[Left Arrow] Requirement: In the CFC program, exactly one input pin is selected for an
element.
The selection is moved so that the output pin at the beginning of the connecting
line is selected. In the case of multiple pins, all are selected.
Example:

See also
● Ä Chapter 1.4.1.19.1.2 “Common functions in graphical editors” on page 462

You can insert connecting lines between element connections. Connecting lines are inserted
by means of auto-routing so that connecting lines are automatically optimal and as short as
possible. The connecting lines are checked for collisions.

Dragging a pin to another A connecting line is inserted between the two element pins.

Dragging a pin to a function
block

Dropping can be done on a pin or on the text field of a pin.
In the case of extendable operators (example: ADD), dropping can also be
done within the box. The following behavior applies for this: If there are still
unconnected input pins, then the top free pin is connected. If there are no more
unconnected input pins, then a new pin is automatically inserted below.

Command “Connect Selected
Pins”

Requirement: Multiple pins are selected. The pins are marked in red.

Move an inserted element so
that it touches the pin of
another element.

Requirement: The “Enable AutoConnect” option is selected.
The touching pins are connected automatically.

The connection icon is located in the upper right corner of the editor. A green
icon indicates collision-free connections. A red icon indicates collisions. Clicking
the icon opens a menu with commands for collision processing, for example the
“Show Next Collision” command.

Requirement: A connection is selected and the “Connection Mark” command is
executed.
Instead of a long connecting line, a connection is represented by connection
marks.

See also
● Ä Chapter 1.4.1.20.3.12.22 “Command 'Show Next Collision'” on page 1098

See also
● Ä Chapter 1.4.1.20.3.12 “Menu 'CFC'” on page 1089

Connecting

Commands
when editing

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 513

See also
● Ä Chapter 1.4.1.19.1.2 “Common functions in graphical editors” on page 462
● Ä Chapter 1.4.1.8.3.2.2 “ Programming in the CFC editor” on page 246
● Ä Chapter 1.4.1.8.3.2.1 “Automatic Execution Order by Data Flow” on page 242
● Ä Chapter 1.4.1.20.3.12 “Menu 'CFC'” on page 1089
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165

CFC editor, page-oriented

POUs generated in the “Continuous Function Chart (CFC) - page-oriented”
cannot be converted into “Continuous Function Chart (CFC)” POUs or back.

● (1) Page navigator
● (2) Page header with name and description
● (3) Left border area reserved for inputs and sink connection marks
● (4) Program area
● (5) Right border area reserved for outputs and source connection marks

You can drag a “Page” element from the “ToolBox” view to the page navigation. Then an
additional page is inserted.
You can select existing pages in the page navigation and duplicated them by clicking “Edit
è Copy” and “Edit è Paste”.
The size of the page is changed by means of the “Edit Page Size” command.
Connections over multiple pages are established by means of the “Connection Mark - Source”
and “Connection Mark - Sink” elements. When you drag a connecting line from an input pin
or an output pin to the border area, a new connection mark is created automatically. The
advantage is that the "List components" input assistance provides all previously defined connec-
tion mark sources.
If you have selected an element in the editor, then you can use the arrow keys to move the
selection from one element to the next to navigate through the circuit. If you then select a
connection mark and press another arrow key, even the corresponding connection mark of the
next/previous page will be selected.

Editing

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US514

You can transfer networks from a CFC POU to the program area of a page-oriented CFC by
clicking “Edit è Copy” and “Edit è Paste” (from the clipboard). You can also use drag&drop.

The execution order is determined automatically according to the order of the pages as they are
sorted in the page navigator of the editor. Within a page, a page-oriented CFC object behaves
like a CFC object. Therefore, you can switch between “Auto Data Flow Mode” and “Explicit
Execution Order Mode”.

See also
● Ä Chapter 1.4.1.20.3.12.2 “Command 'Edit Page Size’” on page 1090
● Ä Chapter 1.4.1.20.3.12.1 “Command 'Edit Worksheet'” on page 1089

See also
● Ä Chapter 1.4.1.19.1.2 “Common functions in graphical editors” on page 462
● Ä Chapter 1.4.1.8.3.2.2 “ Programming in the CFC editor” on page 246
● Ä Chapter 1.4.1.8.3.2.1 “Automatic Execution Order by Data Flow” on page 242
● Ä Chapter 1.4.1.20.3.12 “Menu 'CFC'” on page 1089
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165

Keyboard Shortcuts in the CFC Editors

Keyboard shortcuts Command
[Ctrl]+[Shift]+[A] Select All

Insert elements:
[Ctrl]+[B] Insert Box

The “Input Assistant” dialog opens in order to select the box.

[Ctrl]+[Shift]+[B] Insert Empty Box

[Ctrl]+[Shift]+[E] Insert Box with EN/ENO
The “Input Assistant” dialog opens in order to select the box.

[Ctrl]+[Q] Insert Input
Inserts an input element

[Ctrl]+[A] Insert Output
Inserts an output element

[Ctrl]+[L] Insert Jump

Edit already inserted
elements:

[Ctrl]+[N] Negate

[Ctrl]+[M] Toggle between Set, Reset, REF, and None

[Ctrl]+[U] Reset Pins

After inserting an element, the inserted element is selected in the editor.
See also
● Ä Chapter 1.4.1.19.1.6.5.5 “CFC Element 'Box'” on page 523
● Ä Chapter 1.4.1.19.1.6.5.3 “CFC Element 'Input'” on page 522
● Ä Chapter 1.4.1.19.1.6.5.4 “CFC Element 'Output'” on page 522
● Ä Chapter 1.4.1.19.1.6.5.6 “CFC element 'Jump'” on page 523

Execution order

Additional com-
mands in “CFC
page-oriented”

Keyboard short-
cuts in the CFC
editor and page-
oriented CFC
editor

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 515

● Ä Chapter 1.4.1.20.3.12.3 “Command 'Negate'” on page 1090
● Ä Chapter 1.4.1.20.3.12.7 “Command 'S (Set)'” on page 1091
● Ä Chapter 1.4.1.20.3.12.6 “Command 'R (Reset)'” on page 1091
● Ä Chapter 1.4.1.20.3.12.8 “Command 'REF= (Reference Assignment)'” on page 1091
● Ä Chapter 1.4.1.20.3.12.5 “Command 'None'” on page 1091
● Ä Chapter 1.4.1.20.3.12.24 “Command 'Reset Pins'” on page 1098

CFC Editor in Online Mode
In online mode, you can monitor and change variable values of the controller. In addition,
debugging features are provided such as breakpoints and stepping.

As usual, you can monitor values in the declaration part as well as in the implementation part
(with inline monitoring).
Inline monitoring of a function block is possible only when an instance of the function block is
open. No values are displayed in the basic implementation view.

The connections between Boolean variables are displayed in color according to their actual
value: TRUE in blue and FALSE in black. The element pins are decorated with the actual value.

Monitoring

Monitoring a
Boolean vari-
able

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US516

An application contains a CFC POU. An internal Boolean variable is switched there. With each
cycle, the variable iToggle switches its state from TRUE to FALSE.

Example

In the case of scalar variables, the element pins are decorated with the actual values.Monitoring a
scalar variable

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 517

Example

In online mode in the declaration editor, you can prepare a value for forcing or writing a
monitored variable.
When you select the “Prepare values in implementation part” check box in the “CFC Editor”
category of the CODESYS options, you can also prepare values in the implementation part.
To do this, open the “Prepare Value” dialog by double-clicking an element or the monitoring box
next to an element. No dialog appears for Boolean variables. However, with each mouse click
on the value displayed next to the variable, the values TRUE and FALSE are toggled.

Prepared values are displayed in angle brackets. After executing a write or a force, a red "F" is
shown in the monitoring box.

You can write input parameters of function block instances of type VAR_INPUT CONSTANT
in online mode and modify the parameters in this way. After logging out, you save these
parameters by clicking “Save Prepared Parameters to Project”.

Forcing and
writing of varia-
bles

Changing of
constant input
parameters of
function block
instances

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US518

Requirement: A CFC editor is active. An instantiated function block has VAR_INPUT
CONSTANT variables in its declaration.

1. In the editor, open the POU by calling the function block instance.

ð
FUNCTION_BLOCK FB_DoIt
VAR_INPUT
 iAlfa : INT;
 iBravo: INT;
 sCharlie : STRING := 'Charlie';
 xItem : BOOL;
 iDelta : INT;
END_VAR
VAR_INPUT CONSTANT
 MAXIMUM : INT := 12;
END_VAR
VAR_OUTPUT
 iResult : INT;
 sResult : STRING;
 xResult : BOOL;
END_VAR
The declaration of FB_DOIt has been supplemented by the constant MAXIMUM.

The graphical representation of the function block instances contains the “Parameters”
button.

2. Login to the controller.
3. Click the “Parameters” button of the function block instance.

ð The “Edit Parameters” dialog opens.

4. Click the “Value” column in an inline monitoring field of a parameter.

ð The “Prepare Value” dialog opens.

5. Type 20 in the “Prepare a new value for the next write or force operation” field.

6. Click “OK” to confirm the entry.

ð The prepared value is shown in angle brackets next to the current value (for example,
<20>).

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 519

7. Click “Debug è Write Values”.

ð The prepared value is written. The parameter is changed and displayed in the project
in brackets after the value.

The difference between both values is shown by a red cross next to the parameter
field of the function block instance.

8. Click “Edit Parameters” to close the dialog. Logout.
9. Click “CFC è Save Prepared Parameters to Project”.

ð The change parameter values are saved to the project. The asterisk next to the
parameter field disappears.

Possible position of a breakpoint
● Element “Output”

Variables are described.
● Element “Box”

POUs are called.
● Element “RETURN”

The program flow is branched.
● Element “Selector”

Structure elements are described.
Click “Debug è Toggle Breakpoint” to set a new breakpoint or delete an existing breakpoint. A
red circle in the block diagram represents an active breakpoint.

Breakpoint loca-
tions

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US520

NOTICE!
A breakpoint is set automatically in all methods that can be called.
Therefore, if a method is called that is defined over an interface, then break-
points are set in all methods of function blocks that implement this interface.
This also applies to all inherited function blocks that define methods.

You can process a POU in steps in debug mode. A called POU is supplemented internally by
a RETURN at the beginning before the element with the number 0 and at the end after the last
element. When stepping, these are started automatically.

See also
● Ä Chapter 1.4.1.20.3.12.35 “Command 'Force Function Block Input'” on page 1101
● Ä Chapter 1.4.1.20.3.12.34 “Command 'Prepare Box for Forcing'” on page 1101
● Ä Chapter 1.4.1.20.3.12.18 “Command 'Edit Parameters'” on page 1096
● Ä Chapter 1.4.1.20.3.12.19 “Command 'Save Prepared Parameters to Project'”

on page 1097

See also
● Ä Chapter 1.4.1.12.1 “Monitoring of Values” on page 409
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401
● Ä “Forcing a function block input in CFC” on page 403
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395
● Ä Chapter 1.4.1.11.3 “Stepping Through a Program” on page 399

Stepping into a
POU

Commands in
online mode

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 521

Elements
1.4.1.19.1.6.5.1 CFC element 'Page'.. 522
1.4.1.19.1.6.5.2 CFC element 'Control Point'... 522
1.4.1.19.1.6.5.3 CFC Element 'Input'.. 522
1.4.1.19.1.6.5.4 CFC Element 'Output'... 522
1.4.1.19.1.6.5.5 CFC Element 'Box'... 523
1.4.1.19.1.6.5.6 CFC element 'Jump'... 523
1.4.1.19.1.6.5.7 CFC element 'Label'... 524
1.4.1.19.1.6.5.8 CFC element 'Return'... 524
1.4.1.19.1.6.5.9 CFC element 'Composer'... 524
1.4.1.19.1.6.5.10 CFC element 'Selector'... 524
1.4.1.19.1.6.5.11 CFC element 'Comment'... 524
1.4.1.19.1.6.5.12 CFC element 'Connection Mark - Source/Sink'.................... 525
1.4.1.19.1.6.5.13 CFC element 'Input Pin'.. 525
1.4.1.19.1.6.5.14 CFC element 'Output Pin'... 525

CFC element 'Page'
Symbol:
The element inserts a new page into the editor. It is available only in the page-oriented CFC
editor. The number of the page is automatically assigned in accordance with its position. You
can enter the name and the description of the page into the orange header. The page size is
adapted with the “Edit Page Size” command.
See also
● Ä Chapter 1.4.1.20.3.12.2 “Command 'Edit Page Size’” on page 1090

CFC element 'Control Point'
Symbol:
Use a control point in order to fix points of a connection before you adapt the line routing. To do
this, drag the element to the desired position on a connecting line. Connecting lines with control
points are no longer routed automatically.
See also
● Ä Chapter 1.4.1.8.3.2.2 “ Programming in the CFC editor” on page 246
● Ä Chapter 1.4.1.20.3.12.30 “Command 'Create Control Point'” on page 1100
● Ä Chapter 1.4.1.20.3.12.29 “Command 'Remove Control Point'” on page 1099

CFC Element 'Input'
Symbol:
Keyboard shortcuts for inserting the element: [Ctrl]+[Q]

By default, CODESYS inserts an input element with the text "???". You can edit this input field
directly by clicking it and typing in a constant value or a variable name. Alternatively, you could
click to open the Input Assistant to select a variable.

CFC Element 'Output'
Symbol:
Keyboard shortcuts for inserting the element: [Ctrl]+[A]

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US522

By default, CODESYS inserts an output element with the text "???". You can edit this input field
directly by clicking it and typing in a constant value or a variable name. Alternatively, you could
click to open the Input Assistant to select a variable.

CFC Element 'Box'
Symbol:
Keyboard shortcuts for inserting the element
● [Ctrl]+[B]
● [Ctrl]+[Shift]+[B]: Empty box
● [Ctrl]+[Shift]+[E]: Box with EN/ENO

You use the element in order to insert an operator, a function, a function block, or a program.
By default, CODESYS inserts the element with the name “???”. You can edit this field directly
by clicking it and typing in a function block name. Alternatively, you could click to open the
Input Assistant and select a function block
In the case of a function block, CODESYS also displays an input field (“???”) above the function
block symbol. You have to replace this name with the name of the function block instance. If
you instantiate a function block with constant input parameters, then the function block element
displays the "Parameter..." field in the bottom left corner. You click on this field to edit the
parameters.
In order to replace an existing box, you replace only the currently inserted identifier with the new
desired name. When you do this, note that CODESYS adapts the number of input and output
pins according to the definition of the POU and that existing assignments may be deleted as a
result.

NOTICE!
Because feedback is allowed in CFC, implicit variables with the data type of the
input variable are created at the output of a box (in the example: temp_USINT).
If the result of the operation of a function block is a value which exceeds
the number range of the data type of the input variable, then the overflow is
written to the implicit variable. The actual output variable gets the value of the
implicit variable, thus the overflow and not the actual result of the operation (see
example).

Implicitly generated variables at the box output:

Implicitly generated code:
temp_USINT := USINT1 * temp_USINT;
UDINT1 := temp_USINT;

Example

See also
● Ä Chapter 1.4.1.20.3.12.18 “Command 'Edit Parameters'” on page 1096

CFC element 'Jump'
Symbol:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 523

You use the element in order to define a position at which program execution is to continue. You
must define this target position by a label. To do this, enter the name of the mark in the input
field “???”. If you have already inserted the corresponding label, you can also select it via the
input assistant ().
See also
● Ä Chapter 1.4.1.19.1.6.5.7 “CFC element 'Label'” on page 524

CFC element 'Label'
Symbol:
A label defines a position to which program execution jumps with the help of a jump element.
In online mode CODESYS automatically inserts a RETURN flag at the end of a CFC function
block.
See also
● Ä Chapter 1.4.1.19.1.6.5.6 “CFC element 'Jump'” on page 523

CFC element 'Return'
Symbol:
Use the element in order to exit the function block.
Please note that in online mode in the CFC editor a return element is automatically inserted
before the first line and after the last element. In single-step execution CODESYS automatically
jumps to the return element at the end before exiting the function block.

CFC element 'Composer'
Symbol:
The composer element is for handling structural components. The individual components of a
structure are made available to you as an input. For this purpose you must name the composer
element like the structure concerned (replace the “???”).
The composer element is the counterpart to the selector element.
See also
● Ä Chapter 1.4.1.19.1.6.5.10 “CFC element 'Selector'” on page 524

CFC element 'Selector'
Symbol:
The selector element is for handling structural components. The individual components of a
structure are made available to you as an output. For this purpose you must name the selector
element like the structure concerned (replace the “???”)
The selector element is the counterpart to the composer element.
See also
● Ä Chapter 1.4.1.19.1.6.5.9 “CFC element 'Composer'” on page 524

CFC element 'Comment'
Symbol:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US524

With this element you input a comment in the CFC editor. Replace the placeholder text in the
element by the comment text. A line break can be inserted with the aid of the shortcut [Ctrl] +
[Enter].

CFC element 'Connection Mark - Source/Sink'
Symbol: ,
You can use connection marks instead of a connecting line between elements. That helps you
to display complex diagrams more clearly.
For a valid connection you must connect an element “Connection Mark - Source” with the output
of an element and an element “Connection Mark - Sink” with the input of another element. Both
marks must bear the same name. The names are not case-sensitive.
Notes on naming
● The standard name for connection marks is C-<nr>. <nr> is a sequential number starting

with 1.
● You can rename the standard name. In doing so, you must make sure that the connection

mark - source and connection mark - sink have the same name.
● If you change the name of the connection mark - source, the destination name is automati-

cally renamed.
● If you change the name of the connection mark - sink, the source name is retained.

Observe the command “Connection Mark” for the automatic transformation of
an existing connection.

See also
● Ä Chapter 1.4.1.20.3.12.31 “Command 'Connection Mark'” on page 1100
● Ä Chapter 1.4.1.19.1.6.1 “CFC Editor” on page 511

CFC element 'Input Pin'
Symbol:
Depending on the type of function block you can add further inputs to an inserted function block
element. To do this you must select the function block element and drag the function block input
element onto the body of the function block.
Please note: You can drag an input or output connection to another position on the function
block with the [Ctrl] key pressed.
See also
● Ä Chapter 1.4.1.19.1.6.5.14 “CFC element 'Output Pin'” on page 525

CFC element 'Output Pin'
Symbol:
Depending on the type of function block you can add further outputs to an inserted function
block element. To do this you must select the function block element and drag the function block
output element onto the body of the function block.
Please note: You can drag an input or output connection to another position on the function
block with the [Ctrl] key pressed.
See also
● Ä Chapter 1.4.1.19.1.6.5.13 “CFC element 'Input Pin'” on page 525

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 525

1.4.1.19.2 Variables
1.4.1.19.2.1 Local variables - VAR... 526
1.4.1.19.2.2 Input variables - VAR_INPUT... 526
1.4.1.19.2.3 Output variables - VAR_OUTPUT.. 527
1.4.1.19.2.4 Input/Output Variable (VAR_IN_OUT).. 527
1.4.1.19.2.5 Global variables - VAR_GLOBAL... 531
1.4.1.19.2.6 Temporary variable - VAR_TEMP... 532
1.4.1.19.2.7 Static variables - VAR_STAT.. 532
1.4.1.19.2.8 External variables - VAR_EXTERNAL.. 533
1.4.1.19.2.9 Instance variables - VAR_INST.. 533
1.4.1.19.2.10 Configuration variables - VAR_CONFIG.................................... 534
1.4.1.19.2.11 Constant Variables - 'CONSTANT'.. 534
1.4.1.19.2.12 Persistent Variable - PERSISTENT.. 535
1.4.1.19.2.13 Retain Variable - RETAIN... 537
1.4.1.19.2.14 SUPER... 538
1.4.1.19.2.15 THIS... 539

The scope of a variable defines how and where you can use a variable. You define the scope in
the variable declaration.

Local variables - VAR
Local variables are declared between the keywords VAR and END_VAR in the declaration part of
programming objects.
You have read-only access to local variables by using the instance path.
You can extend local variables with an attribute keyword.

VAR
 iVar1 : INT;
END_VAR

Example

See also
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301

Input variables - VAR_INPUT
Input variables are used at the inputs of function blocks.
VAR_INPUT variables are declared between the keywords VAR_INPUT and END_VAR in the
declaration part of programming objects.
You can extend input variables with an attribute keyword.

VAR_INPUT
 iIn1 : INT; (* 1st input variable *)
END_VAR

Example

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US526

See also
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301

Output variables - VAR_OUTPUT
Output variables are used at the outputs of function blocks.
VAR_OUTPUT variables are declared between the keywords VAR_OUTPUT and END_VAR in the
declaration part of programming objects. CODESYS returns the values of this variable to the
calling POU. There you can retrieve the values and continue using them.
You can extend output variables with an attribute keyword.

VAR_OUPUT
 iOut1 : INT; (*1st output variable *)
END_VAR

Example

See also
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301

According to the IEC 61131-3 standard, functions and methods have additional outputs. You
have to assign these additional outputs when calling the function, as shown below.

fun(iIn1 := 1, iIn2 := 2, iOut1 => iLoc1, iOut2 => iLoc2);
Example

Input/Output Variable (VAR_IN_OUT)
A VAR_IN_OUT variable is an input/output variable, which is part of a POU interface and serves
as a formal pass-by-reference parameter.

<keyword> <POU name>
VAR_IN_OUT
 <variable name> : <data type> (:= <initialization value>)? ;
END_VAR
<keyword> : FUNCTION | FUNCTION_BLOCK | METHOD | PRG
You can declare an input/output variable in the VAR_IN_OUT declaration section in the POUs
PRG, FUNCTION_BLOCK, METHOD, or FUNCTION. As an option, a constant of the declared data
type can be assigned as an initialization value. The VAR_IN_OUT variable can be read and
written.
Usage
● Call: When a POU is called, the formal VAR_IN_OUT variable receives the actual variable

(pass-by-reference variable) as the argument. At runtime, no copies are generated when
parameters are passed. Instead, the formal variable receives a reference to the actual
variable passed remotely. The referential variables contain a memory address internally as
a value to the actual value (pass as pointer, call-by reference). It is not possible to specify a
constant (literal) or a bit variable directly as an argument.

● Read/write access within the POU: If the variable is written to within the POU, then this
affects the passed variable. When the POU is exited, any performed changes are retained.
This means that a POU uses its VAR_IN_OUT variables just like the calling POU uses its
variables. Read access is always permitted.

Output variables
in functions and
methods

Syntax declara-
tion

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 527

● Read/write access remotely: VAR_IN_OUT variables cannot be directly read or written
remotely via <function block instance name>.<variable name>. This works only
for VAR_INPUT and VAR_OUTPUT variables.

● Passing string variables: If a string variable is passed as an argument, then the actual var-
iable and the formal variable should have the same length. Otherwise the passed string can
be manipulated unintentionally. This problem does not occur in the case of VAR_OUTPUT
CONSTANT parameters.

● Passing bit variables: A bit variable cannot be passed directly to a VAR_IN_OUT variable
because it needs an intermediate variable.

● Passing properties: Not permitted.

If a string is passed as a variable or a constant to a formal VAR_IN_OUT
CONSTANT variable, then the string is automatically passed completely. You do
not have to check the string length.

See also
● Chapter Ä “Transfer variable VAR_IN_OUT CONSTANT” on page 530

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US528

TYPE DUT_A :
STRUCT
 xA: BOOL;
 iB: INT;
END_STRUCT
END_TYPE

FUNCTION_BLOCK FB_SetArray
VAR_IN_OUT
 aData_A : ARRAY[0..1] OF DUT_A; // Formal variable
END_VAR
aData_A[0].xA := TRUE;
aData_A[0].iB := 100;

PROGRAM PLC_PRG
VAR
 fbSetA : FB_SetArray;
 aSpecialData : ARRAY[0..1] OF DUT_A; // Actual variable
END_VAR
fbSetA(aData_A := aSpecialData);

{attribute 'qualified_only'}
VAR_GLOBAL
 g_sDEV_STATUS : STRING(25) := 'Device_A';
END_VAR

FUNCTION_BLOCK FB_SetStatus
VAR_IN_OUT
 sDeviceStatus : STRING(25); // Formal parameter
END_VAR
sDeviceStatus := CONCAT(sDeviceStatus, ' Activ');

PROGRAM PLC_PRG
VAR
 fbDoB : FB_SetStatus;
END_VAR
fbDoB(sDeviceStatus := GVL.g_sDEV_STATUS); //Call with actual
parameter

The variable sDeviceStatus is part of the POU interface of FB_B. When calling fbDoB, first
a device name is assigned to the string and then the string is manipulated.

VAR_GLOBAL
 xBit0 AT %MX0.1 : BOOL;
 xTemp : BOOL;
END_VAR

FUNCTION_BLOCK FB_DoSomething
VAR_INPUT

Example
Passing arrays

Passing
strings

Passing bit
variables

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 529

 xIn : BOOL;
END_VAR
VAR_IN_OUT
 xInOut : BOOL;
END_VAR
IF xIn THEN
 xInOut := TRUE;
END_IF

PROGRAM PLC_PRG
VAR
 xIn : BOOL;
 DoSomething_1 : FB_DoSomething;
 DoSomething_2 : FB_DoSomething;
END_VAR

// The following line of code causes a compiler error:
// C0201: Typ 'BIT' is not equal to type 'BOOL' of VAR_IN_OUT
'xInOut'
DoSomething_1(xIn := xIn, xInOut := xBit0);

// Workaround
xTemp := xBit0;
DoSomething_2(xIn := xIn, xInOut := xTemp);
xBit0 := xTemp;

The program calls the function block instances DoSomething_1 and DoSomething_2. As
a result of the direct assignment of the bit variable xBit0 to the VAR_IN_OUT input, a
compiler error is generated when the DoSomething_1 instance is called. In contrast, calling
the DoSomething_2 instance with the assignment of an intermediate variable is correct code.

A VAR_IN_OUT CONSTANT variable serves as a constant pass-by-reference parameter, to
which a STRING or WSTRING type variable or constant (literal) can be passed. The parameter
can be read, but not written. Passing of properties is not permitted.

<keyword> <POU name>
VAR_IN_OUT CONSTANT
 <variable name> : <data type>; // formal parameter
END_VAR
<keyword> : FUNCTION | FUNCTION_BLOCK | METHOD | PRG
VAR_IN_OUT CONSTANT variables are declared without assigning an initialization value.

Usage
● When calling the POU, a STRING or WSTRING constant variable or literal can be passed.

Consequently, write access is not permitted.
● Passing parameters of a string constant: The string length of the constants can be any size,

and the string length does not depend on the string length of the VAR_IN_OUT CONSTANT
variables.

If the “Replace constants” option is selected in “Project è Project Settings” in
the “Compile Options” category, then passing the parameters of a constant with
basic data type or a constant variable with basic data type generates a compiler
error.

The variable is supported in compiler version >= 3.5.2.0.

Transfer vari-
able
VAR_IN_OUT
CONSTANT
Syntax declara-
tion

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US530

FUNCTION funManipulate : BOOL
VAR_IN_OUT
 sReadWrite : STRING(16); (* Can be read or written here in POU
*)
 dwVarReadWrite : DWORD; (* Can be read or written here in POU *)
END_VAR
VAR_IN_OUT CONSTANT
 c_sReadOnly : STRING(16); (* Constant string variable can only
be read here in POU *)
END_VAR

sReadWrite := 'String_from_POU';
dwVarReadWrite := STRING_TO_DWORD(c_sReadOnly);

PROGRAM PRG_A
VAR
 sVarFits : STRING(16);
 sValFits : STRING(16) := '1234567890123456';
 dwVar: DWORD;
END_VAR

// The following line of code causes the compiler error C0417:
// C0417: VAR_IN_OUT parameter 'sReadWrite' needs a variable with
write access as input.
funManipulate(sReadWrite:='1234567890123456',
c_sReadOnly:='1234567890123456', dwVarReadWrite := dwVar);

// Correct code
funManipulate(sReadWrite := sValFits, c_sReadOnly := '23',
dwVarReadWrite := dwVar);
funManipulate(sReadWrite := sVarFits, c_sReadOnly := sValFits,
dwVarReadWrite := dwVar);

In the code, strings are passed to the funManipulate function via different VAR_IN_OUT
variables. When passing a string literal, a compiler error is output to a VAR_IN_OUT variable.
When passing a constant variable to a VAR_IN_OUT CONSTANT variable, correct code is
generated even for passing string variables.

Example
Passing
parameters of
string con-
stants and
string varia-
bles

See also
● Ä Chapter 1.4.1.8.2 “Declaration of Variables ” on page 222
● Ä Chapter 1.4.1.20.4.11.3 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 1173
● Ä Chapter 1.4.1.20.2.18.3 “Object 'Function'” on page 886
● Ä Chapter 1.4.1.20.2.18.2 “Object 'Function Block'” on page 883
● Ä Chapter 1.4.1.20.2.18.5 “Object 'Method'” on page 889
● Ä Chapter 1.4.1.20.2.18.4 “Object 'Interface'” on page 888
● Ä Chapter 1.4.1.20.2.18.6 “Object 'Interface Method'” on page 894
● Ä Chapter 1.4.1.19.2.11 “Constant Variables - 'CONSTANT'” on page 534

Global variables - VAR_GLOBAL
Global variables are ordinary variables, constants, external or remanent variables that are
recognized within the entire project.
You declare global variables in global variable lists or in the declaration section of programming
objects between the keywords VAR_GLOBAL and END_VAR.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 531

The system recognizes a global variable when you prepend the variable name with a dot (for
example, .iGlobVar1).

NOTICE!
If a local variable that is declared in a block has the same name as a global
variable, then it has precedence within the block.

NOTICE!
For compiler version 3.2.0.0 and later, CODESYS always initializes global varia-
bles before the local POU variables.

VAR_GLOBAL
 iVarGlob1 : INT;
END_VAR

Example

See also
● Ä Chapter 1.4.1.20.2.10 “Object 'GVL' - Global Variable List” on page 871
● Ä Chapter 1.4.1.19.3.69 “Operator - Global namespace” on page 629

Temporary variable - VAR_TEMP
This function is an extension of the IEC 61131-3 standard.
You declare temporary variables locally between the keywords VAR_TEMP and END_VAR.

VAR_TEMP declarations are possible only in program blocks and function blocks.

CODESYS initializes temporary variables each time the block is called.
The application can access the temporary variables only in the implementation section of a
program block or a function block.

VAR_TEMP
 iVarTmp1 : INT; (*1st temporary variable *)
END_VAR

Example

Static variables - VAR_STAT
This function is an extension of the IEC 61131-3 standard.
You declare static variables locally between the keywords VAR_STAT and END_VAR. CODESYS
initializes static variables the first time each block is called.
You can access static variables only from within the namespace where the variables are
declared (like static variables in C). But static variables retain their values when the application
leaves the block. For example, you can use static variables as counters for function calls.
You can extend static variables with an attribute keyword.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US532

VAR_STAT
 iVarStat1 : INT;
END_VAR

Example

See also
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301

External variables - VAR_EXTERNAL
External variables are global variables that are imported into a block.
You declare these variables between the keywords VAR_EXTERNAL and END_VAR. If the global
variable does not exist, then an error message is printed.

NOTICE!
CODESYS does not require you to declare a global variable as external in order
to use it in a POU. The keyword exists only for maintaining compliance with
IEC 61131-3.

<POU keyword> <POU name>
VAR_EXTERNAL
 <variable name> : <data type>;
END_VAR
Initialization is not permitted.

FUNCTION_BLOCK FB_DoSomething
VAR_EXTERNAL
 iVarExt1 : INT; (* 1st external variable *)
END_VAR

Example

See also
● Ä Chapter 1.4.1.20.2.10 “Object 'GVL' - Global Variable List” on page 871

Instance variables - VAR_INST
CODESYS does not save a VAR_INST method variable in a method stack, but in the stack
of the function block instance. This means that the VAR_INST variable functions like other
Variables of the function block instance, and it is not reinitialized each time the method is called.
VAR_INST variables are permitted in methods only and you can access these variables only
within the method. The variable values of instance variables are monitored in the declaration
section of the method.
You can extend instance variable with an attribute keyword.

Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 533

METHOD meth_last : INT
VAR_INPUT
 iVar : INT;
END_VAR
VAR_INST
 iLast : INT := 0;
END_VAR
meth_last := iLast;
iLast := iVar;

Example

Configuration variables - VAR_CONFIG
Use configuration variables for assigning complete addresses to variables that are declared in
function blocks with incomplete addresses and will be mapped on device I/Os.
Declare the variables in a global variables list between VAR_CONFIG and END_VAR. The global
variables list is termed "variables configuration", where you type the configuration variables with
a complete instance path and the correct address.

Declaration of the variable xLocIn with incomplete address %I* in a function block:
FUNCTION_BLOCK locio

VAR
 xLocIn AT %I* : BOOL := TRUE;
END_VAR

The locio function block is used in the PLC_PRG program:
PROGRAM PLC_PRG

VAR
 locioVar1 : locio;
END_VAR

The correct variables configuration in the global variable list is as follows:
VAR_CONFIG

 PLC_PRG.locioVar1.xLocIn AT %IX1.0 : BOOL;

END_VAR

Example

See also
● Ä Chapter 1.4.1.8.11.1 “Variables configuration - VAR_CONFIG” on page 279

Constant Variables - 'CONSTANT'
Constant variables are declared in global variable lists or in the declaration part of programming
objects. In implementations, constant variables can be accessed as read-only via the instance
path.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US534

<scope> CONSTANT
 <identifier> : <data type> := <initial value> ;
END_VAR

<scope> : VAR | VAR_INPUT | VAR_STAT | VAR_GLOBAL
<data type>: <elementary data type> | <user defined data type> |
<function block>
<initial value> : <literal value> | <identifier> | <expression>
Always assign an initialization value when declaring a constant variable. Then the constant
cannot be written any more.

VAR CONSTANT
 c_rTAXFACTOR : REAL := 1.19;
END_VAR
rPrice := rValue * c_rTAXFACTOR;

You have read-only access to constant variables in an implementation. Constant variables are
located to the right of the assignment operator.

Example
Declaration

Call

See also
● Ä Chapter 1.4.1.19.2.4 “Input/Output Variable (VAR_IN_OUT)” on page 527
● Ä “Constants and literals” on page 632

Persistent Variable - PERSISTENT
Persistent variables are declared in the declaration section VAR_GLOBAL RETAIN
PERSISTENT in the persistent global variable list. For variables that are marked with the
PERSISTENT keyword outside of the persistence editor, instance paths are added there.

As of CODESYS version 3.3.0.1, a variable declaration with PERSISTENT
RETAIN has the same effect as with RETAIN PERSISTENT or PERSISTENT.

VAR_GLOBAL PERSISTENT RETAIN
 <identifier> : <data type> (:= <initialization>)?;
 <instance path to POU variable>
END_VAR

<scope> PERSISTENT RETAIN
 <identifier> : <data type> (:= <initialization>)?; //
(...)? : Optional
END_VAR
<scope> : VAR | VAR_INPUT | VAR_OUTPUT | VAR_IN_OUT | VAR_STAT |
VAR_GLOBAL

An assignment of inputs, outputs, or memory addresses with the AT keyword is not permitted.

Never use the POINTER TO data type in persistent variable lists. If the applica-
tion is downloaded again, their addresses could change. The corresponding
compiler warnings are shown in the message window.

Syntax

Syntax of the
declaration in
the global per-
sistent variable
list
PersistentVar
s:
Syntax of the
declaration in
POUs

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 535

If you frequently change the names or data types of remanent variables, then it
is better to declare them as retain variables with the RETAIN keyword only.

NOTICE!
Avoid inserting instance paths because in this case twice as much memory is
used and a higher cycle time can occur. Instead, declare variables in the list of
persistent variables.

{attribute 'qualified_only'}
VAR_GLOBAL PERSISTENT RETAIN
 g_iCounter : INT;
 // Generated instance path of persistent variable
 PLC_PRG.fb_A.iPersistentCounter_A: INT;
END_VAR

FUNCTION_BLOCK FB_A
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR PERSISTENT
 iPersistentCounter_A : INT;
END_VAR

VAR
 fb_A1 : FB_A;
END_VAR

Example
Declaration in
the persistent
variable list
PersistentVa
rs:

Declaration in
the function
block FB_A:

Declaration in
the program
PLC_PRG:

Directly in the persistent global
variable list

The variable is persistent and lies in the protected memory area.

Locally in a program with an
instance path in the persistent
variable list
Locally in a function block with
an instance path in the persis-
tent variable list

The variable is persistent and located in the protected memory area and in the
memory (double allocation).

Only locally in a program
Only locally in a function block

This variable is not persistent. A warning is shown in the message window.
Hint: Click “Declarations è Add All Instance Paths” to import the variables into
the persistent variable list.

Locally in a function This declaration does not have any effect. The variable is not persistent.

Possible decla-
ration locations

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US536

In the persistence editor, click “Declarations è Add All Instance Paths” if local
variables are marked with PERSISTENT.

Whenever possible, avoid marking variables, which are declared in a function
block, with PERSISTENT. This is because the function block instance is stored
entirely in remanent memory and not just the marked variable.

See also
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301
● Ä Chapter 1.4.1.8.19.5 “Declaring VAR PERSISTENT Variables ” on page 308
● Ä Chapter 1.4.1.20.3.17.4 “Command 'Add all instance paths'” on page 1124
● Ä Chapter 1.4.1.8.19.1 “Preserving data with persistent variables” on page 304

Retain Variable - RETAIN
Retain variables are declared by the keyword RETAIN is added in programming objects in the
scope VAR, VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT, VAR_STAT, or VAR_GLOBAL.

<scope> RETAIN
 <identifier>: <data type> (:= <initialization>)? // (...)? :
Optional
END_VAR
<scope> : VAR | VAR_INPUT | VAR_OUTPUT | VAR_IN_OUT | VAR_STAT |
VAR_GLOBAL
An assignment of inputs, outputs, or memory addresses with the AT keyword is not permitted.

VAR RETAIN
 iVarRetain: INT;
END_VAR

VAR_GLOBAL RETAIN
 g_iVarRetain: INT;
END_VAR

Example
In a POU:

In a GVL:

Locally in a program Only the variable is located in the retain memory area.
Info: When using redundancy, the entire program with all of its data is located in
the retain memory area.

Globally in a global variable list Only the variable is located in the retain memory area.
Info: When using redundancy, the entire global variable list with all of its data is
located in the retain memory area.

Syntax for the
declaration

Possible decla-
ration locations

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 537

Locally in a function block The entire instance of the function block with all of its data is located in the retain
memory area. Only the declared retain variable is protected.

Locally in a function The variable is not located in the retain memory area. This declaration does not
have any effect.

Locally and persistently in a
function

The variable is not located in the retain memory area. This declaration does not
have any effect.

Whenever possible, avoid using RETAIN to mark the variables of a function
block.

See also
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301
● Ä Chapter 1.4.1.8.19.5 “Declaring VAR PERSISTENT Variables ” on page 308
● Ä Chapter 1.4.1.20.3.17.4 “Command 'Add all instance paths'” on page 1124
● Ä Chapter 1.4.1.8.19.2 “Preserving data with retain variables” on page 306

SUPER
SUPER is a special variable and is used for object-oriented programming.

SUPER is the pointer of a function block to the basic function block instance from which the func-
tion block was generated. The SUPER pointer thus also permits access to the implementation of
the methods of the basic function block (basic class). A SUPER pointer is automatically available
for each function block.
You can use SUPER only in methods and in the associated function block implementations.

Dereferencing of the pointer: SUPER^
Use of the SUPER pointer: with the help of the keyword SUPER you call a method that is valid in
the instance of the basic class or parent class.

ST:
SUPER^.METH_DoIt();
FBD/CFC/LD

Examples

THIS is not yet implemented for the instruction list (IL).

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US538

Use of SUPER and THIS pointers
FUNCTION_BLOCK FB_Base
VAR_OUTPUT
 iCnt : INT;
END_VAR

METHOD METH_DoIt : BOOL
 iCnt := -1;

METHOD METH_DoAlso : BOOL
 METH_DoAlso := TRUE;

FUNCTION_BLOCK FB_1 EXTENDS FB_Base
VAR_OUTPUT
 iBase : INT;
END_VAR

THIS^.METH_DoIt(); //Call of the methods of FB_1
THIS^.METH_DoAlso();

SUPER^.METH_DoIt(); //Call of the methods of FB_Base
SUPER^.METH_DoAlso();
iBase := SUPER^.iCnt;

METHOD METH_DoIt : BOOL
 iCnt := 1111;
 METH_DoIt := TRUE;

PROGRAM PLC_PRG
VAR
 myBase : FB_Base;
 myFB_1 : FB_1;
 iTHIS : INT;
 iBase : INT;
END_VAR

myBase();
iBase := myBase.iCnt;
myFB_1();
iTHIS := myFB_1.iCnt;

Examples

See also
● Ä Chapter 1.4.1.19.5 “Data Types” on page 646
● Ä Chapter 1.4.1.19.2.15 “THIS” on page 539

THIS
THIS is a special variable and is used for object-oriented programming.

THIS is the pointer of a function block to its own function block instance. A THIS pointer is
automatically available for each function block.
You can use THIS only in methods and in function blocks. THIS is available for the implementa-
tion in the input assistant in the category “Keywords”.
Dereferencing of the pointer: THIS^

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 539

Use of the THIS pointer

● If a local variable obscures a function block variable in a method, you can set the function
block variable with the THIS pointer. See example below (1)

● If the pointer to the function block's own function block instance is referenced for use in a
function. (See example below (2))

ST:
THIS^.METH_DoIt();
FBD/CFC/LD:

Examples

THIS is not yet implemented for the instruction list (IL).

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US540

(1) The local variable iVarB obscures the function block variable iVarB.
FUNCTION_BLOCK fbA
VAR_INPUT
 iVarA: INT;
END_VAR
iVarA := 1;

FUNCTION_BLOCK fbB EXTENDS fbA
VAR_INPUT
 iVarB: INT := 0;
END_VAR
iVarA := 11;
iVarB := 2;

METHOD DoIt : BOOL
VAR_INPUT
END_VAR
VAR
 iVarB: INT;
END_VAR
iVarB := 22; // The local variable iVarB is set.
THIS^.iVarB := 222; // The function block variable iVarB is set
even though iVarB is obscured.

PROGRAM PLC_PRG
VAR
 MyfbB: fbB;
END_VAR

MyfbB(iVarA:=0, iVarB:= 0);
MyfbB.DoIt();

(2) A function call requires the reference to its own instance.
FUNCTION funA
VAR_INPUT
 pFB: fbA;
END_VAR
...;

FUNCTION_BLOCK fbA
VAR_INPUT
 iVarA: INT;
END_VAR
...;

FUNCTION_BLOCK fbB EXTENDS fbA
VAR_INPUT
 iVarB: INT := 0;
END_VAR
iVarA := 11;
iVarB := 2;

METHOD DoIt : BOOL
VAR_INPUT
END_VAR
VAR
 iVarB: INT;
END_VAR
iVarB := 22; //The local variable iVarB is set.
funA(pFB := THIS^); //funA is called via THIS^.
PROGRAM PLC_PRG

Examples

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 541

VAR
 MyfbB: fbB;
END_VAR
MyfbB(iVarA:=0 , iVarB:= 0);
MyfbB.DoIt();

See also
● Ä Chapter 1.4.1.19.5.12 “Pointers” on page 656
● Ä Chapter 1.4.1.19.2.14 “SUPER” on page 538

1.4.1.19.3 Operators
CODESYS V3 supports all IEC-61131-3 operators. These operators are recognized implicitly
throughout the project. In addition to these IEC operators, CODESYS also supports some
non-IEC 61131-3 operators.
Operators are used in blocks, such as functions.

For information about the processing order (binding strength) of the ST opera-
tors, please refer to the section on ST expressions.

CAUTION!
For operations with floating-point data types, the computational result depends
on the applied target system hardware.

CAUTION!
For operations with overflow or underflow in the data type, the computational
result depends on the applied target system hardware.

The CODESYS compiler generates code for the target device and computes temporary results
always with the native size that is defined by the target device. For example, computation is
performed at least with 32-bit temporary values on x86 and ARM systems and always with
64-bit temporary values on x64 systems. This provides considerable advantages in the compu-
tation speed and often also produces the desired result. But this also means that an overflow or
underflow in the data type is not truncated in some cases.

Overflow/under-
flow in the data
type

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US542

Example 1
The result of this addition is not truncated and the result in dwVar is 65536.
VAR
wVar : WORD;
dwVar: DWORD;
END_VAR

wVar := 65535;
dwVar := wVar + 1;

Example 2
The overflow and underflow in the data type is not truncated and the results (bVar1, bVar2)
of both comparisons are FALSE on 32-bit and 64-bit hardware.
VAR
wVar1 : WORD;
wVar2 : WORD;
bVar1 : BOOL;
bVar2 : BOOL;
END_VAR

wVar1 := 65535;
wVar2 := 0;
bVar1 := (wVar1 + 1) = wVar2;
bVar2 := (wVar2 - 1) = wVar1;

Example 3
By the assignment to wVar3, the value is truncated to the target data type WORD and the result
bvar1 is TRUE.
VAR
wVar1 : WORD;
wVar2 : WORD;
wVar3 : WORD;
bVar1 : BOOL;
END_VAR

wVar1 := 65535;
wVar2 := 0;
wVar3 := (wVar1 + 1);
bVar1 := wVar3 = wVar2;

Example 4
In order to force the compiler to truncate the temporary results, a conversion can be inserted.
The type conversion makes sure that both comparisons are 16-bit only and the results
(bVar1, bVar2) of both comparisons are each TRUE.
VAR
wVar1 : WORD;
wVar2 : WORD;
bVar1 : BOOL;
bVar2 : BOOL;
END_VAR

wVar1 := 65535;
wVar2 := 0;
bVar1 := TO_WORD(wVar1 + 1) = wVar2;
bVar2 := TO_WORD(wVar2 - 1) = wVar1;

Examples

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 543

Ä Chapter 1.4.1.19.3.1 “Operator 'ADD'” on page 546

Ä Chapter 1.4.1.19.3.3 “Operator 'SUB'” on page 548

Ä Chapter 1.4.1.19.3.2 “Operator 'MUL'” on page 547

Ä Chapter 1.4.1.19.3.4 “Operator 'DIV'” on page 549

Ä Chapter 1.4.1.19.3.5 “Operator 'MOD'” on page 550

Ä Chapter 1.4.1.19.3.6 “Operator 'MOVE'” on page 550

Ä Chapter 1.4.1.19.3.7 “Operator 'INDEXOF'” on page 550

Ä Chapter 1.4.1.19.3.8 “Operator 'SIZEOF'” on page 551

Ä Chapter 1.4.1.19.3.9 “Operator 'XSIZEOF'” on page 551

Ä Chapter 1.4.1.19.3.11 “Operator 'AND'” on page 552

Ä Chapter 1.4.1.19.3.12 “Operator 'OR' ” on page 552

Ä Chapter 1.4.1.19.3.13 “Operator 'XOR'” on page 553

Ä Chapter 1.4.1.19.3.10 “Operator 'NOT'” on page 552

Ä Chapter 1.4.1.19.3.14 “Operator 'AND_THEN'” on page 553

Ä Chapter 1.4.1.19.3.15 “Operator 'OR_ELSE'” on page 553

Ä Chapter 1.4.1.19.3.16 “Operator 'SHL'” on page 554

Ä Chapter 1.4.1.19.3.17 “Operator 'SHR'” on page 555

Ä Chapter 1.4.1.19.3.18 “Operator 'ROL'” on page 556

Ä Chapter 1.4.1.19.3.19 “Operator 'ROR'” on page 557

Ä Chapter 1.4.1.19.3.20 “Operator 'SEL'” on page 558

Ä Chapter 1.4.1.19.3.21 “Operator 'MAX'” on page 559

Ä Chapter 1.4.1.19.3.22 “Operator 'MIN'” on page 559

Ä Chapter 1.4.1.19.3.23 “Operator 'LIMIT'” on page 560

Ä Chapter 1.4.1.19.3.24 “Operator 'MUX'” on page 560

A comparison operator is a Boolean that compares two inputs (first and second operand).
Ä Chapter 1.4.1.19.3.25 “Operator 'GT'” on page 561

Ä Chapter 1.4.1.19.3.26 “Operator 'LT'” on page 561

Ä Chapter 1.4.1.19.3.27 “Operator 'LE'” on page 561

Ä Chapter 1.4.1.19.3.28 “Operator 'GE'” on page 562

Ä Chapter 1.4.1.19.3.29 “Operator 'EQ'” on page 562

Ä Chapter 1.4.1.19.3.30 “Operator 'NE'” on page 562

Ä Chapter 1.4.1.19.3.31 “Operator 'ADR'” on page 563

Ä Chapter 1.4.1.19.3.32 “Operator 'Content Operator'” on page 564

Ä Chapter 1.4.1.19.3.33 “Operator 'BITADR'” on page 564

Ä Chapter 1.4.1.19.3.34 “Operator 'CAL'” on page 565

Arithmetic oper-
ators

Bitstring opera-
tors

Bitshift opera-
tors

Selection opera-
tors

Comparison
operators

Address opera-
tors

Call operators

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US544

You can explicitly call type conversion operators. The type conversion operators described
below are available for typed conversions from one elementary type to another elementary type,
as well as for overloading. Conversions from a larger type to a smaller type are also implicitly
possible (for example, from INT to BYTE or from DINT to WORD).

Typed conversion: <elementary data type> _TO_ <another elementary data
type>
Overloaded conversion: TO_ <elementary data type>

<elementary data type> =
__UXINT | __XINT | __XWORD | BIT | BOOL | BYTE | DATE | DATE_AND_TIME
| DINT | DT | DWORD | INT | LDATE | LDATE_AND_TIME | LDT | LINT |
LREAL | LTIME | LTOD | LWORD | REAL | SINT | TIME | TOD | UDINT |
UINT | ULINT | USINT | WORD
The keywords T, TIME_OF_DAY and DATE_AND_TIME are alternative forms for the data types
TIME, TOD, and DT. T, TIME_OF_DAY and DATE_AND_TIME are not represented as a type
conversion command.

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

NOTICE!
String manipulation when converting to STRING or WSTRING
When converting the type to STRING or WSTRING, the typed value is left-
aligned as a character string and truncated if it is too long. Therefore, declare
the return variable for the type conversion operators <>_TO_STRING and
<>_TO_WSTRING long enough that the character string has enough space
without any manipulation.

See also
● Ä Chapter 1.4.1.19.3.38 “ Floating-Point Number Conversion” on page 584
● Ä Chapter 1.4.1.19.3.40 “Time Conversion” on page 595
● Ä Chapter 1.4.1.19.3.41 “Date and Time Conversion” on page 600
● Ä Chapter 1.4.1.19.3.39 “String Conversion” on page 587
● Ä Chapter 1.4.1.19.3.42 “Operator 'TRUNC' ” on page 606
● Ä Chapter 1.4.1.19.3.43 “Operator 'TRUNC_INT' ” on page 606

Ä Chapter 1.4.1.19.3.44 “Operator 'ABS'” on page 607

Ä Chapter 1.4.1.19.3.45 “Operator 'SQRT'” on page 607

Ä Chapter 1.4.1.19.3.46 “Operator 'LN'” on page 607

Ä Chapter 1.4.1.19.3.47 “Operator 'LOG'” on page 608

Ä Chapter 1.4.1.19.3.48 “Operator 'EXP'” on page 608

Ä Chapter 1.4.1.19.3.49 “Operator 'EXPT'” on page 608

Ä Chapter 1.4.1.19.3.50 “Operator 'SIN'” on page 609

Ä Chapter 1.4.1.19.3.53 “Operator 'ASIN'” on page 610

Ä Chapter 1.4.1.19.3.51 “Operator 'COS'” on page 609

Type conversion
operators

Elementary data
types:

Numeric Opera-
tors

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 545

Ä Chapter 1.4.1.19.3.52 “Operator 'TAN'” on page 610

Ä Chapter 1.4.1.19.3.54 “Operator 'ACOS'” on page 611

Ä Chapter 1.4.1.19.3.55 “Operator 'ATAN'” on page 611

Namespace operators are extended from IEC 61131-3 operators. They make it possible for
you to provided unique access to variables and modules, even when you use the same name
multiple times for variables or modules in a project.
Ä Chapter 1.4.1.19.3.69 “Operator - Global namespace” on page 629

Ä Chapter 1.4.1.19.3.70 “Operator - Namespace for global variables lists” on page 629

Ä Chapter 1.4.1.19.3.72 “Operator - Enumeration namespace” on page 630

Ä Chapter 1.4.1.19.3.71 “Operator - Library namespace” on page 630

Ä Chapter 1.4.1.19.3.73 “Operator '__POOL'” on page 630

Working with different tasks requires the synchronization of these tasks. This is especially true
when working on multicore platforms. Some special operators are provided in CODESYS to
support this synchronization.
These operators are extensions of IEC-61131-3. The operators TEST_AND_SET and
__COMPARE_AND_SWAP are used for similar tasks.

Ä Chapter 1.4.1.19.3.68 “Operator 'TEST_AND_SET'” on page 628

Ä Chapter 1.4.1.19.3.64 “Operator '__COMPARE_AND_SWAP” on page 625

Ä Chapter 1.4.1.19.3.65 “Operator '__XADD'” on page 626

Ä Chapter 1.4.1.19.3.56 “Operator '__DELETE'” on page 611

Ä Chapter 1.4.1.19.3.57 “Operator '__ISVALIDREF'” on page 614

Ä Chapter 1.4.1.19.3.58 “Operator '__NEW'” on page 614

Ä Chapter 1.4.1.19.3.59 “Operator '__QUERYINTERFACE'” on page 617

Ä Chapter 1.4.1.19.3.60 “Operator '__QUERYPOINTER'” on page 618

Ä Chapter 1.4.1.19.3.74 “Operator 'INI'” on page 631

Ä Chapter 1.4.1.19.3.61 “Operators '__TRY', '__CATCH', '__FINALLY', '__ENDTRY'”
on page 619

Ä Chapter 1.4.1.19.3.66 “Operator '__POSITION'” on page 627

Ä Chapter 1.4.1.19.3.67 “Operator '__POUNAME'” on page 627

Operator 'ADD'
The IEC operator adds variables.
Permitted data types: __UXINT | __XINT | __XWORD | BYTE | DATE |
DATE_AND_TIME | DINT | DT | DWORD | INT | LDATE | LDATE_AND_TIME |
LDT | LINT | LREAL | LTIME | LTOD | LWORD | REAL | SINT | TIME |
TIME_OF_DAY | TOD | UDINT | UINT | ULINT | USINT | WORD
Possible combinations for time data types:
● TIME + TIME = TIME
● TIME + LTIME = LTIME
● LTIME + LTIME = LTIME

Namespace
operators

Multicore opera-
tors

Other operators

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US546

Possible combinations for date and time data types:
● TOD + TIME = TOD
● DT + TIME = DT
● TOD + LTIME = LTOD
● DT + LTIME = LDT
● LTOD + TIME = LTOD
● LDT + LTIME = LDT
● LTOD +LTIME = LTOD
● LDT + LTIME = LDT
Feature in the FBD/LD editor: You can extend the ADD operator to function block inputs. The
number of additional function block inputs is limited.

ST:
var1 := 7+2+4+7;

FBD:

Examples

Operator 'MUL'
This IEC operator is used for multiplying variables.
Permitted data types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,
LINT, ULINT, REAL, LREAL, TIME
Feature in the FBD/LD editor: You can extend the MUL operator to additional function block
inputs. The number of additional function block inputs is limited.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 547

ST:
var1 := 7*2*4*7;

FBD:

Examples

Operator 'SUB'
The IEC operator subtracts variables.
Permitted data types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,
LINT, ULINT, REAL, LREAL, TIME, LTIME, TIME_OF_DAY (TOD), LTIME_OF_DAY (LTOD),
DATE, LDATE, DATE_AND_TIME (DT) LDATE_AND_TIME (DT)

Possible combinations for time data types:
● TIME - TIME = TIME
● LTIME - LTIME = LTIME
Possible combinations for date and time data types:
● DATE - DATE = TIME
● LDATE - LDATE = LTIME
● TOD - TIME = TOD
● LTOD - LTIME = LTOD
● TOD - TOD = TIME
● LTOD - LTOD = LTIME
● DT - TIME = DT
● LDT - LTIME = LDT
● DT - DT = TIME
● LDT - LDT = LTIME

Negative TIME/LTIME values are undefined.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US548

ST:
var1 := 7-2;

FBD:

Examples

Operator 'DIV'
This IEC operator is used for dividing variables.
Permitted data types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,
LINT, ULINT, REAL, LREAL, TIME

NOTICE!
Division by zero may have different results depending on the target system.

ST:
var1 := 8/2;

FBD:
1. Series of DIV blocks, 2. Single DIV block, 3. DIV blocks with EN/ENO parameters

Examples

Please note that it is possible to monitor division by zero at runtime by using the
implicit monitoring functions CheckDivInt, CheckDivLint, CheckDivReal,
and CheckDivLReal.

See also
● Ä Chapter 1.4.1.20.2.19.2 “POU 'CheckDivInt'” on page 909
● Ä Chapter 1.4.1.20.2.19.3 “POU 'CheckDivLInt'” on page 909
● Ä Chapter 1.4.1.20.2.19.4 “POU 'CheckDivReal'” on page 910
● Ä Chapter 1.4.1.20.2.19.5 “POU 'CheckDivLReal'” on page 911

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 549

Operator 'MOD'
This IEC operator is used for modulo division.
The result of the function is the integer remainder of division.
Permitted data types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,
LINT, ULINT

NOTICE!
Division by zero may have different results depending on the target system.

Result in Var1: 1
ST:
var1 := 9 MOD 2;

FBD:

Examples

Operator 'MOVE'
This IEC operator is used for assigning a variable to another variable of a corresponding type.
Because the MOVE block is available in the CFC, FBD, and LD editors, you can also use the
EN/ENO functionality for variable assignment.

CFC with EN/ENO function:
CODESYS assigns the value of var1 to var2 only if "en_i" yields TRUE.

ST:
ivar2 := MOVE(ivar1);
This corresponds to:
ivar2 := ivar1;

Operator 'INDEXOF'
This operator is an extension of the IEC 61131-3 standard.
Instead of the INDEXOF operator, the ADR operator is provided in CODESYS V3 for obtaining a
pointer at the index of a block.
See also
● Ä Chapter 1.4.1.19.3.31 “Operator 'ADR'” on page 563

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US550

Operator 'SIZEOF'
The operator is an extension of the IEC 61131-3 standard.
The operator is used for defining the number of bytes that are required by the variable x. The
operator SIZEOF always yields an unsigned value. The type of return variable adapts to the
detected size of the variable x.

In compiler version 3.5.16.0 and higher, the operator XSIZEOF should be used
instead of this operator.

Return value of SIZEOF(x) Data type of the constant which CODESYS
uses implicitly for the detected size.

0 <= size of x < 256 USINT
256 <= size of x < 65536 UINT
65536 <= size of x < 4294967296 UDINT
4294967296 <= size of x ULINT

Result in var1: 10.

ST:
arr1 : ARRAY[0..4] OF INT;
var1 : INT;
var1 := SIZEOF(arr1); (* var1 := USINT#10; *)

Examples

See also
● Ä Chapter 1.4.1.19.3.9 “Operator 'XSIZEOF'” on page 551

Operator 'XSIZEOF'
The operator is an extension of the IEC 61131-3 standard.
The operator is used for defining the number of bytes that are required by the variable x. The
data type of the return value is ULINT on 64-bit platforms and UDINT on all other platforms.

The operator XSIZEOF should be used instead of the operator SIZEOF.
Because the data type of the return value is fixed, problems do not occur for
XSIZEOF, which do occur in the case of the operator SIZEOF.

Variable udiVarX is
ST:
udiVarX : UDINT; (* Data type for 64-bit platforms: ULINT *)
udiVarX := XSIZEOF(<variable>);

The variable udiVarX contains the number of bytes that the variable <variable> requires.

Example

See also
● Ä Chapter 1.4.1.19.3.8 “Operator 'SIZEOF'” on page 551

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 551

Operator 'NOT'
This IEC operator is used for the bitwise NOT of a bit operand.

When the respective input bit yields 0, the output bit also yields 1, and vice-versa.
Permitted data types: BOOL, BYTE, WORD, DWORD, LWORD

Result in var1: 2#0110_1100
ST:
var1 := NOT 2#1001_0011;

FBD:

Examples

Operator 'AND'
This IEC operator is used for the bitwise AND of bit operands.

When the input bits all yield 1, the output bit also yields 1; otherwise 0.
Permitted data types: BOOL, BYTE, WORD, DWORD, LWORD

Result in var1 ist 2#1000_0010
ST:
var1 := 2#1001_0011 AND 2#1000_1010;

FBD:

Examples

Operator 'OR'
This IEC operator is used for the bitwise OR of bit operands.

When at least one of the input bits yields 1, the output bit also yields 1; otherwise 0.
Permitted data types: BOOL, BYTE, WORD, DWORD, LWORD

Result in Var1 ist 2#1001_1011
ST:
Var1 := 2#1001_0011 OR 2#1000_1010;

FBD:

Examples

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US552

Operator 'XOR'
This IEC operator is used for the bitwise XOR of bit operands.

When only one of the two input bits yields 1, the output bit also yields 1. When both inputs yield
1 or 0, then the output yields 0.
Permitted data types: BOOL, BYTE, WORD, DWORD, LWORD

NOTICE!
Please note the following behavior of the XOR block in extended form (more
than two inputs): CODESYS compares the inputs in pairs and then the corre-
sponding results (according to the standard, but not necessarily according to
expectations).

Result in var1: 2#0001_1001
ST:
var1 := 2#1001_0011 XOR 2#1000_1010;

FBD:

Examples

Operator 'AND_THEN'
This operator is an extension of the IEC 61131-3 standard.
The AND_THEN operator is permitted only for programming in structured text with the AND
operation of BOOL and BIT operands with short-circuit evaluation. This means that:

When all operands yield TRUE, the result of the operands also yield TRUE; otherwise FALSE.

However, CODESYS also executes the expressions on other operands only if the first operand
of the AND_THEN operator is TRUE. This can prevent problems with null pointers, for example in
conditions such as IF (ptr <> 0 AND_THEN ptr^ = 99) THEN....

In contrast, CODESYS always evaluates all operands when using the AND IEC operator.

See also
● Ä Chapter 1.4.1.19.3.11 “Operator 'AND'” on page 552

Operator 'OR_ELSE'
This operator is an extension of the IEC 61131-3 standard.
The OR_ELSE operator is permitted only for programming in structured text: OR operation of
BOOL and BIT operands; with short-circuit evaluation. This means:

When at least one of the operands yields TRUE, the result of the operation also yields TRUE;
otherwise FALSE.

In contrast to using the OR IEC operator, for OR_ELSE the expressions on all other operators are
not evaluated as soon as one of the operands is evaluated as TRUE.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 553

VAR
 bEver: BOOL;
 bX: BOOL;
 dw: DWORD := 16#000000FF;
END_VAR
bEver := FALSE;
bX := dw.8 OR_ELSE dw.1 OR_ELSE dw.1 OR_ELSE (bEver := TRUE);
dw.8 is FALSE and dw.1 is TRUE; therefore bX is the result of the operation TRUE. However,
the expression at the third input is not executed, and bEver remains FALSE. On the other
hand, if the standard OR operation was used, bEver would be set to TRUE.

Example

See also
● Ä Chapter 1.4.1.19.3.12 “Operator 'OR' ” on page 552

Operator 'SHL'
This IEC operator is used for bitwise shift of an operand to the left.
erg := SHL (in, n)
in: Operand that is shifted to the left

n: Number of bits to shift in to the left

NOTICE!
If n overwrites the data type width, then it depends on the target system how
the BYTE, WORD, DWORD, and LWORD operands are padded. The target systems
cause padding with zeros or n MOD <tab width>.

NOTICE!
Please note the number of bits that CODESYS uses for this operation as
defined by the data type of the input variable in.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US554

The results for erg_byte and erg_word are different, although the values of the in_byte
and in_word input variables are the same and the data types of the input variables are
different.
ST:
PROGRAM shl_st
VAR
 in_byte : BYTE := 16#45; (* 2#01000101)
 in_word : WORD := 16#0045; (* 2#0000000001000101)
 erg_byte : BYTE;
 erg_word : WORD;
 n: BYTE := 2;
END_VAR

erg_byte := SHL(in_byte,n); (* Result is 16#14, 2#00010100 *)
erg_word := SHL(in_word,n); (* Result is 16#0114,
2#0000000100010100 *)

FBD:

Examples

Operator 'SHR'
This IEC operator is used for bitwise shift of an operand to the right.
erg := SHR (in, n)
in: Operand that is shifted to the right

n: Number of bits for shifting in to the right

NOTICE!
If n overwrites the data type width, then it depends on the target system how
the BYTE, WORD, DWORD, and LWORD operands are padded. The target systems
cause padding with zeros or n MOD <tab width>.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 555

ST:
PROGRAM shr_st
VAR
 in_byte : BYTE:=16#45; (* 2#01000101)
 in_word : WORD:=16#0045; (* 2#0000000001000101)
 erg_byte : BYTE;
 erg_word : WORD;
 n: BYTE :=2;
END_VAR

erg_byte := SHR(in_byte,n); (* Result is 16#11, 2#00010001 *)
erg_word := SHR(in_word,n); (* Result is 16#0011,
2#0000000000010001 *)

FBD:

Examples

Operator 'ROL'
This IEC operator is used for bitwise rotation of an operand to the left.
Permitted data types: BYTE, WORD, DWORD, LWORD
erg := ROL (in, n)
CODESYS moves in n-times one bit to the left and adds the bit to the leftmost position from
the right.

NOTICE!
Please note the number of bits that CODESYS uses for this operation as
defined by the data type of the input variable in. If this is a constant, then
CODESYS uses the smallest possible data type. The data type of the output
variables still does not influence this operation.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US556

The results for erg_byte and erg_word are different depending on the data type of the input
variables, although the values of the in_byte and in_word input variables are the same.

ST:
PROGRAM rol_st

VAR
 in_byte : BYTE := 16#45;
 in_word : WORD := 16#45;
 erg_byte : BYTE;
 erg_word : WORD;
 n: BYTE := 2;
END_VAR

erg_byte := ROL(in_byte,n); (* Result: 16#15 *)

erg_word := ROL(in_word,n); (* Result: 16#0114 *)
FBD:

IL:

Examples

Operator 'ROR'
This IEC operator is used for bitwise rotation of an operand to the right.
Permitted data types: BYTE, WORD, DWORD, LWORD
erg := ROR(in,n)
CODESYS moves in n-times one bit to the right and adds the bit to the rightmost position from
the left.

Please note the number of bits that CODESYS uses for this operation as
defined by the data type of the input variable in. If this is a constant, then
CODESYS uses the smallest possible data type. The data type of the output
variables still does not influence this operation.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 557

The results for erg_byte and erg_word are different depending on the data type of the input
variables, although the values of the in_byte and in_word input variables are the same.

ST:
PROGRAM ror_st

VAR
 in_byte : BYTE := 16#45;
 in_word : WORD := 16#45;
 erg_byte : BYTE;
 erg_word : WORD;
 n: BYTE := 2;
END_VAR

erg_byte := ROR(in_byte,n); (* Result: 16#51 *)

erg_word := ROR(in_word,n); (* Result: 16#4011 *)
FBD:

Examples

Operator 'SEL'
The IEC operator is used for bitwise selection.
OUT := SEL(G, IN0, IN1) means:

OUT := IN0; if G = FALSE
OUT := IN1; if G = TRUE
Permitted data types:
IN0, ..., INn and OUT: Any identical data type. Make sure that variables of the identical type are
used at all three positions, especially when using user-defined data types. The compiler checks
for type identity and returns any compile errors. The assignment of function block instances to
interface variables is specifically not supported.
G: BOOL

NOTICE!
When G is TRUE, CODESYS does not compute an expression that precedes
IN0.When G is FALSE, CODESYS does not compute an expression that pre-
cedes IN1.

Caution: In the case of graphical programming languages, the expressions at
IN0 and IN1 are computed independently of the G input when a “Box”, “Jump”,
“Return”, “Line Branch”, or “Edge Detection” precedes.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US558

ST:
Var1 := SEL(TRUE,3,4); (* Result: 4 *)

FBD:

Examples

Operator 'MAX'
This IEC operator is used for the maximum function. It yields the largest value of two values.
OUT := MAX(IN0, IN1)
Permitted data types: all

ST:
Result: 90
Var1 := MAX(30,40);

Var1 := MAX(40,MAX(90,30));
FBD:
Result: 90

Examples

Operator 'MIN'
This IEC operator is used for the minimum function. It yields the smallest value of two values.
OUT := MIN(IN0,IN1)
Permitted data types: all

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 559

Result: 30
ST:
Var1:=MIN(90,30);

Var1 := MIN(MIN(90,30),40);
FBD:

Examples

Operator 'LIMIT'
This IEC selection operator is used for limiting.
OUT := LIMIT(Min, IN, Max)
Means: OUT := MIN (MAX (IN, Min), Max)
Max is the upper limit and Min is the lower limit for the result. If the IN value is above the Max
upper limit, then LIMIT yields Max. If the value of IN is below the Min lower limit, then the result
is Min.

Permitted data types for IN and OUT: all

Result in Var1 is 80
ST:
Var1 := LIMIT(30,90,80);

Examples

Operator 'MUX'
This IEC operator is used as a multiplexer.
OUT := MUX(K, IN0,...,INn)
Means: OUT = IN_K
Permitted data type for K: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, LINT,
ULINT, oUDINT.

IN0, ..., INn, and OUT: Any identical data type. Make sure that variables of the identical type
are used at all three positions, especially when using user-defined data types. The compiler
checks for type identity and returns any compile errors. The assignment of function block
instances to interface variables is specifically not supported.
MUX selects the K-th value from a set of values. The first value is K=0. If K is greater than the
number of other inputs (n), then CODESYS passes on the last value (INn).

NOTICE!
For runtime optimization, CODESYS computes only the expression that pre-
cedes IN_K. However, CODESYS computes all branches in simulation mode.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US560

Result in Var1 is 30.

ST:
Var1 := MUX(0,30,40,50,60,70,80);

Examples

Operator 'GT'
This IEC operator is used for the "greater than" function.
Permitted data types of the operands: any basic data type.
If the first operand is greater than the second operand, then the operator yields the result TRUE;
otherwise FALSE.

Result: FALSE
ST:
VAR1 := 20 > 30;

FBD:

Examples

Operator 'LT'
This IEC operator is used for the "less than" function.
Permitted data types of the operands: any basic data type.
If the first operand is less than the second operand, then the operator yields the result TRUE;
otherwise FALSE.

Result: TRUE
ST:
Var1 := 20 < 30;

Examples

Operator 'LE'
This IEC operator is used for the "less than or equal to" function.
Permitted data types of the operands: any basic data type.
If the first operand is less than or equal to the second operand, then the operator yields the
result TRUE; otherwise FALSE.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 561

Result in Var1: TRUE
ST:
Var1 := 20 <= 30;

Examples

Operator 'GE'
This IEC operator is used for the "greater than or equal to" function.
Permitted data types of the operands: any basic data type.
If the first operand is greater than or equal to the second operand, then the operator yields the
result TRUE; otherwise FALSE.

Result: TRUE
ST:
VAR1 := 60 >= 40;

FBD:

Examples

Operator 'EQ'
This IEC operator is used for the "equals" function.
Permitted data types of the operands: any basic data type, depending on target system and
compiler version: structure data type.
If the operands are equal, then then the operator yields the result TRUE, otherwise FALSE.

Result: TRUE
ST:
VAR1 := 40 = 40;

FBD:

Examples

Operator 'NE'
This IEC operator is used for the "does not equal" function.
Permitted data types of the operands: any basic data type, depending on target system and
compiler version: structure data type.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US562

If the operands are not equal, then then the operator yields the result TRUE; otherwise FALSE.

If the target system supports the data type, then as from compiler version >= 3.5.7.0 also
operands of type STRIUCT (structure) can be compared. Example: IF (stStruct1 :=
stStruct2) THEN....

Result in Var1 is FALSE
ST:
Var1 := 40 <> 40;

FBD:

Examples

Operator 'ADR'
The operator is an extension of the IEC 61131-3 standard.
ADR yields the 32-bit address (or the 64-bit address, if possible) of its argument. You can pass
this address to the manufacturer functions or assign them to a pointer in the project.

VAR
 <address name> : DWORD | LWORD | POINTER TO < basis data type>
END_VAR

<address name> := ADR(<variable name>);

FUNCTION_BLOCK FB_Address
VAR
 piAddress1: POINTER TO INT;
 iNumber1: INT := 5;
 lwAddress2
 iNumber2: INT := 10;
END_VAR

piAddress1 := ADR(iNumber1); // piNumber is assigned to address of
iNumber1
lwAddress2 := ADR(iNumber2); // 64 bit runtime system

Example

NOTICE!
In contrast to CoDeSys V2.3, you can use the ADR operator with function
names, program names, function block names, and method names. Therefore,
ADR replaces the INDEXOF operator.

When using function pointers, note that you can pass a function pointer to
external libraries, but it is not possible to call a function pointer from within
CODESYS. To enable a system call (runtime system), you must set the respec-
tive object property (“Build” tab) for the function object.

Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 563

CAUTION!
When you use an online change, the contents of addresses can shift. As a
result, POINTER TO variables could point to an invalid memory area. To avoid
problems, you should make sure that the value of pointers is updated in every
cycle.

CAUTION!
Do not return Pointer-TO variables of functions and methods to the caller or
assign them to global variables.

See also
● Ä Chapter 1.4.1.19.5.12 “Pointers” on page 656

Operator 'Content Operator'
This operator is an extension of the IEC 61131-3 standard.
You can use this operator to dereference pointers by appending the operator as ^ to the pointer
identifier.

CAUTION!
When using pointers to addresses, please note that applying an online change
can shift address contents.

ST:
pt : POINTER TO INT;
var_int1 : INT;
var_int2 : INT;
pt := ADR(var_int1);
var_int2 := pt^;

Example

Operator 'BITADR'
The operator is an extension of the IEC 61131-3 standard.
BITADR yields the bit offset within a segment in a DWORD.

NOTICE!
The offset depends on whether the "Byte addressing" option is selected or
cleared in the target system settings.

The highest value nibble (4 bits) in this DWORD defines the memory range:

Marker M: 16#40000000
Input I: 16#80000000
Output Q: 16#C0000000

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US564

CAUTION!
When using pointers to addresses, note that applying an online change can
shift the contents of addresses.

ST implementation language:

VAR
 xVar AT %IX2.3 : BOOL;
 dwBitoffset : DWORD;
END_VAR

dwBitoffset := BITADR(xVar); (* If byte addressing = TRUE, result =
16#80000013; if byte addressing = FALSE, result = 16#80000023 *)

Example

Operator 'CAL'
This IEC operator is used for calling function blocks.
In IL, CAL calls the instance of a function block.
CAL <function block> (<input variable1> := <value>, <input
variableN> := <value>)

Call of the Inst instance of a function block with assignment of the input variables Par1 and
Par2 with 0 or TRUE.
CAL Inst(Par1 := 0, Par2 := TRUE);

Example

Overloading

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

NOTICE!
The rounding logic for borderline cases depends on the target system or the
FPU (Floating Point Unit) of the target system. For example, a value of -1.5
can be converted differently on different controllers.
Catch value ranges overflows across the application to program code-inde-
pendent from the target system.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 565

The IEC61131-3 specification does not provide for overloaded functions.

If you want to program strictly according to IEC61131-3, then you should use
the operators of the syntax <type> _TO_ <another type> as described in
the following sections.

The rules for typed conversions also apply here for overloading.

The operators convert values into other data types, explicitly specifying only a target data type
and no initial data type (data type of the operands) ("overloaded conversion"). Overloading is
not part of the IEC 61131-3 specification.

<variable name> := <TO operator> (<operand>);
<operand> = <variable name> | <literal>

TO___UXINT
TO___XINT
TO___XWORD
TO_BIT
TO_BYTE
TO_BOOL
TO_DATE
TO_DINT
TO_DT
TO_DWORD
TO_INT
TO_LDATE
TO_LDT
TO_LINT
TO_LREAL
TO_LTIME
TO_LTOD
TO_LWORD
TO_REAL
TO_SINT
TO_STRING
TO_TIME
TO_TOD
TO_UDINT
TO_UINT
TO_ULINT
TO_USINT
TO_WORD
TO_WSTRING

Call syntax

Operators

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US566

VAR
 iNumber_1 : INT;
 rNumber_2 : REAL := 123.456;
 iNumber_2 : INT;
 xIsTrue : BOOL;
 sOutputText : STRING;
 sText : STRING := 'Hello World!';
 wsText: WSTRING;
 dateEvent : DATE := D#2019-9-3;
 uiEvent : UINT;
 uxiData : __UXINT;
END_VAR

iNumber_1 := TO_INT(4.22); (* Result: 4 *)
iNumber_2 := TO_INT(rNumber_2); (* Result: 123 *)
xIsTrue := TO_BOOL(1); (* Result: TRUE *)
sOutputText := TO_STRING(342); (* Result: '342' *)
wsText := TO_WSTRING(sText); (* Result: "Hello World!" *)
uiEvent := TO_UINT(dateEvent); (* Result: 44288 *)
uxiData := TO___UXINT(iNumber_2); (* Result: 123 *)

ST implemen-
tation lan-
guage:

See also
● Ä “Type conversion operators” on page 545
● Ä Chapter 1.4.1.19.3.36 “Boolean Conversion” on page 567
● Ä Chapter 1.4.1.19.3.37 “Integer Conversion” on page 572
● Ä Chapter 1.4.1.19.3.38 “ Floating-Point Number Conversion” on page 584
● Ä Chapter 1.4.1.19.3.39 “String Conversion” on page 587
● Ä Chapter 1.4.1.19.3.41 “Date and Time Conversion” on page 600
● Ä Chapter 1.4.1.19.3.40 “Time Conversion” on page 595

Boolean Conversion

NOTICE!
String manipulation when converting to STRING or WSTRING
When converting the type to STRING or WSTRING, the typed value is left-
aligned as a character string and truncated if it is too long. Therefore, declare
the return variable for the type conversion operators <>_TO_STRING and
<>_TO_WSTRING long enough that the character string has enough space
without any manipulation.

The operators convert a Boolean value into the specified data types and return a type-converted
value.

<variable name> := <BOOL to operator> (<operand>);
<operand> = <variable name> | <literal>

Examples

Call syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 567

BOOL_TO___UXINT
BOOL_TO___XINT
BOOL_TO___XWORD
BOOL_TO_BIT
BOOL_TO_BYTE
BOOL_TO_DATE
BOOL_TO_DINT
BOOL_TO_DT
BOOL_TO_DWORD
BOOL_TO_INT
BOOL_TO_LDATE
BOOL_TO_LDT
BOOL_TO_LINT
BOOL_TO_LREAL
BOOL_TO_LTIME
BOOL_TO_LTOD
BOOL_TO_LWORD
BOOL_TO_REAL
BOOL_TO_SINT
BOOL_TO_STRING
BOOL_TO_TIME
BOOL_TO_TOD
BOOL_TO_UDINT
BOOL_TO_UINT
BOOL_TO_ULINT
BOOL_TO_USINT
BOOL_TO_WORD
BOOL_TO_WSTRING
When the operand value is TRUE, the following typed values are returned:

● BOOL_TO_DATE: D#1970-1-1 // The zeroth bit is set, but does not
effect the display.

● BOOL_TO_DT: DT#1970-01-01-0:0:1
● BOOL_TO_LTIME: LTIME#1NS
● BOOL_TO_REAL: '1'
● BOOL_TO_STRING: 'TRUE'
● BOOL_TO_TOD: TOD#0:0:0.001
● BOOL_TO_TIME: T#1MS
● BOOL_TO_WSTRING: "TRUE"
When the operand value is FALSE, the following typed values are returned:

● BOOL_TO_DATE: D#1970-1-1
● BOOL_TO_DT: DT#1970-01-01-00:00:00
● BOOL_TO_LTIME: LTIME#0NS
● BOOL_TO_REAL: '0.0'
● BOOL_TO_STRING: 'FALSE'
● BOOL_TO_TOD: TOD#0:0:0
● BOOL_TO_TIME: T#0MS
● BOOL_TO_WSTRING: "FALSE"

Operators

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US568

FUNCTION_BLOCK FB_ConvertFromBool
VAR
VAR
 uxiReturn_1: __UXINT;
 uxiReturn_10: __UXINT;
 iReturn_2: __XINT;
 iReturn_20: __XINT;
 xwReturn_3: __XWORD;
 xwReturn_30: __XWORD;
 bitReturn_4: BOOL;
 bitReturn_40: BOOL;
 bReturn_6: BYTE;
 bReturn_60: BYTE;
 dateReturn_7: DATE;
 dateReturn_70: DATE;
 dtReturn_8: DATE_AND_TIME;
 dtReturn_80: DATE_AND_TIME;
 diReturn_9: DINT;
 diReturn_90: DINT;
 dtReturn_10: DATE_AND_TIME;
 dtReturn_100: DATE_AND_TIME;
 dwReturn_11: DWORD;
 dwReturn_110: DWORD;
 iReturn_12: INT;
 iReturn_120: INT;
 liReturn_13: LINT;
 liReturn_130: LINT;
 lrReturn_14: LREAL;
 lrReturn_140: LREAL;
 lwReturn_15: LWORD;
 lwReturn_150: LWORD;
 rReturn_16: REAL;
 rReturn_160: REAL;
 siReturn_17: SINT;
 siReturn_170: SINT;
 sReturn_18: STRING;
 sReturn_180: STRING;
 todReturn_19: TIME_OF_DAY;
 todReturn_190: TIME_OF_DAY;
 timReturn_20: TIME;
 timReturn_200: TIME;
 todReturn_21: TIME_OF_DAY;
 todReturn_210: TIME_OF_DAY;
 udiReturn_22: UDINT;
 udiReturn_220: UDINT;
 uiReturn_23: UINT;
 uiReturn_230: UINT;
 uliReturn_24: ULINT;
 uliReturn_240: ULINT;
 usiReturn_25: USINT;
 usiReturn_250: USINT;
 wReturn_26: WORD;
 wReturn_260: WORD;
 wsReturn_27: WSTRING;
 wsReturn_270: WSTRING;
END_VAR

// Return value of operand = TRUE or FALSE
uxiReturn_1 := BOOL_TO___UXINT(TRUE);

ST implemen-
tation language

Examples

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 569

uxiReturn_10 := BOOL_TO___UXINT(FALSE);

iReturn_2 := BOOL_TO___XINT(TRUE);
iReturn_20 := BOOL_TO___XINT(FALSE);

xwReturn_3 := BOOL_TO___XWORD(TRUE);
xwReturn_30 := BOOL_TO___XWORD(FALSE);

bitReturn_4 := BOOL_TO_BIT(TRUE);
bitReturn_40 := BOOL_TO_BIT(FALSE);

bReturn_6 := BOOL_TO_BYTE(TRUE);
bReturn_60 := BOOL_TO_BYTE(FALSE);

dateReturn_7 := BOOL_TO_DATE(TRUE);
dateReturn_70 := BOOL_TO_DATE(FALSE);

dtReturn_8 := BOOL_TO_DT(TRUE);
dtReturn_80 := BOOL_TO_DT(FALSE);

diReturn_9 := BOOL_TO_DINT(TRUE);
diReturn_90 := BOOL_TO_DINT(FALSE);

dwReturn_11 := BOOL_TO_DWORD(TRUE);
dwReturn_110 := BOOL_TO_DWORD(FALSE);

iReturn_12 := BOOL_TO_INT(TRUE);
iReturn_120 := BOOL_TO_INT(FALSE);

liReturn_13 := BOOL_TO_LINT(TRUE);
liReturn_130 := BOOL_TO_LINT(FALSE);

lrReturn_14 := BOOL_TO_LREAL(TRUE);
lrReturn_140 := BOOL_TO_LREAL(FALSE);

lwReturn_15 := BOOL_TO_LWORD(TRUE);
lwReturn_150 := BOOL_TO_LWORD(FALSE);

rReturn_16 := BOOL_TO_REAL(TRUE);
rReturn_160 := BOOL_TO_REAL(FALSE);

siReturn_17 := BOOL_TO_SINT(TRUE);
siReturn_170 := BOOL_TO_SINT(FALSE);

sReturn_18 := BOOL_TO_STRING(TRUE);
sReturn_180 := BOOL_TO_STRING(FALSE);

timReturn_20 := BOOL_TO_TIME(TRUE);
timReturn_200 := BOOL_TO_TIME(FALSE);

todReturn_21 := BOOL_TO_TOD(TRUE);
todReturn_210 := BOOL_TO_TOD(FALSE);

udiReturn_22 := BOOL_TO_UDINT(TRUE);
udiReturn_220 := BOOL_TO_UDINT(FALSE);

uiReturn_23 := BOOL_TO_UINT(TRUE);
uiReturn_230 := BOOL_TO_UINT(FALSE);

uliReturn_24 := BOOL_TO_ULINT(TRUE);
uliReturn_240 := BOOL_TO_ULINT(FALSE);

usiReturn_25 := BOOL_TO_USINT(TRUE);
usiReturn_250 := BOOL_TO_USINT(FALSE);

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US570

wReturn_26 := BOOL_TO_WORD(TRUE);
wReturn_260 := BOOL_TO_WORD(FALSE);

wsReturn_27 := BOOL_TO_WSTRING(TRUE);
wsReturn_270 := BOOL_TO_WSTRING(FALSE);

FBD implemen-
tation language

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 571

See also
● Ä “Type conversion operators” on page 545
● Ä Chapter 1.4.1.19.3.35 “Overloading” on page 565
● Ä Chapter 1.4.1.19.3.37 “Integer Conversion” on page 572
● Ä Chapter 1.4.1.19.3.38 “ Floating-Point Number Conversion” on page 584
● Ä Chapter 1.4.1.19.3.39 “String Conversion” on page 587
● Ä Chapter 1.4.1.19.3.41 “Date and Time Conversion” on page 600
● Ä Chapter 1.4.1.19.3.40 “Time Conversion” on page 595

Integer Conversion

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

The operators convert an integer value into the specified data types and return this type-con-
verted value. If the number to be converted exceeds the range limit, then the first bytes of the
number are ignored.

<variable name> := <integer conversion type operator> (<integer
operand>);

<integer conversion type operator> = <integer data type> _TO_ <data
type>
<integer operand> = <variable name> | <literal>

<integer data type> =
__UXINT | __XINT | __XWORD | BIT | BYTE | DINT | DWORD | INT | LINT |
LWORD | SINT | UDINT | UINT | ULINT | USINT | WORD

__UXINT_TO___XINT
__UXINT_TO___XWORD
__UXINT_TO_BIT
__UXINT_TO_BOOL
__UXINT_TO_BYTE
__UXINT_TO_DATE
__UXINT_TO_DINT
__UXINT_TO_DT
__UXINT_TO_DWORD
__UXINT_TO_INT
__UXINT_TO_LDATE
__UXINT_TO_LDT
__UXINT_TO_LINT
__UXINT_TO_LREAL
__UXINT_TO_LTIME
__UXINT_TO_LTOD
__UXINT_TO_LWORD
__UXINT_TO_REAL
__UXINT_TO_SINT
__UXINT_TO_STRING

Call syntax

Operators

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US572

__UXINT_TO_TIME
__UXINT_TO_TOD
__UXINT_TO_UDINT
__UXINT_TO_UINT
__UXINT_TO_ULINT
__UXINT_TO_USINT
__UXINT_TO_WORD
__UXINT_TO_WSTRING

__XINT_TO___UXINT
__XINT_TO___XWORD
__XINT_TO_BIT
__XINT_TO_BOOL
__XINT_TO_BYTE
__XINT_TO_DATE
__XINT_TO_DINT
__XINT_TO_DT
__XINT_TO_DWORD
__XINT_TO_INT
__XINT_TO_LDATE
__XINT_TO_LDT
__XINT_TO_LINT
__XINT_TO_LREAL
__XINT_TO_LTIME
__XINT_TO_LTOD
__XINT_TO_LWORD
__XINT_TO_REAL
__XINT_TO_SINT
__XINT_TO_STRING
__XINT_TO_TIME
__XINT_TO_TOD
__XINT_TO_UDINT
__XINT_TO_UINT
__XINT_TO_ULINT
__XINT_TO_USINT
__XINT_TO_WORD
__XINT_TO_WSTRING

__XWORD_TO_UXINT
__XWORD_TO_XINT
__XWORD_TO_BIT
__XWORD_TO_BOOL
__XWORD_TO_BYTE
__XWORD_TO_DATE
__XWORD_TO_DINT
__XWORD_TO_DT
__XWORD_TO_DWORD
__XWORD_TO_INT
__XWORD_TO_LDATE
__XWORD_TO_LDT
__XWORD_TO_LINT
__XWORD_TO_LREAL
__XWORD_TO_LTIME
__XWORD_TO_LTOD
__XWORD_TO_LWORD
__XWORD_TO_REAL
__XWORD_TO_SINT
__XWORD_TO_STRING
__XWORD_TO_TIME
__XWORD_TO_TOD
__XWORD_TO_UDINT
__XWORD_TO_UINT
__XWORD_TO_ULINT
__XWORD_TO_USINT
__XWORD_TO_WORD

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 573

__XWORD_TO_WSTRING

BIT_TO___UXINT
BIT_TO___XINT
BIT_TO___XWORD
BIT_TO_BOOL
BIT_TO_BYTE
BIT_TO_DATE
BIT_TO_DINT
BIT_TO_DT
BIT_TO_DWORD
BIT_TO_INT
BIT_TO_LDATE
BIT_TO_LDT
BIT_TO_LINT
BIT_TO_LREAL
BIT_TO_LTIME
BIT_TO_LTOD
BIT_TO_LWORD
BIT_TO_REAL
BIT_TO_SINT
BIT_TO_STRING
BIT_TO_TIME
BIT_TO_TOD
BIT_TO_UDINT
BIT_TO_UINT
BIT_TO_ULINT
BIT_TO_USINT
BIT_TO_WORD
BIT_TO_WSTRING

BYTE_TO___UXINT
BYTE_TO___XINT
BYTE_TO___XWORD
BYTE_TO_BOOL
BYTE_TO_BIT
BYTE_TO_DATE
BYTE_TO_DINT
BYTE_TO_DT
BYTE_TO_DWORD
BYTE_TO_INT
BYTE_TO_LDATE
BYTE_TO_LDT
BYTE_TO_LINT
BYTE_TO_LREAL
BYTE_TO_LTIME
BYTE_TO_LTOD
BYTE_TO_LWORD
BYTE_TO_REAL
BYTE_TO_SINT
BYTE_TO_STRING
BYTE_TO_TIME
BYTE_TO_TOD
BYTE_TO_UDINT
BYTE_TO_UINT
BYTE_TO_ULINT
BYTE_TO_USINT
BYTE_TO_WORD
BYTE_TO_WSTRING

DINT_TO___UXINT
DINT_TO___XINT
DINT_TO___XWORD
DINT_TO_BOOL
DINT_TO_BIT

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US574

DINT_TO_BYTE
DINT_TO_DATE
DINT_TO_DT
DINT_TO_DWORD
DINT_TO_INT
DINT_TO_LDATE
DINT_TO_LDT
DINT_TO_LINT
DINT_TO_LREAL
DINT_TO_LTIME
DINT_TO_LTOD
DINT_TO_LWORD
DINT_TO_REAL
DINT_TO_SINT
DINT_TO_STRING
DINT_TO_TIME
DINT_TO_TOD
DINT_TO_UDINT
DINT_TO_UINT
DINT_TO_ULINT
DINT_TO_USINT
DINT_TO_WORD
DINT_TO_WSTRING

DWORD_TO___UXINT
DWORD_TO___XINT
DWORD_TO___XWORD
DWORD_TO_BIT
DWORD_TO_BOOL
DWORD_TO_BYTE
DWORD_TO_DATE
DWORD_TO_DINT
DWORD_TO_DT
DWORD_TO_INT
DWORD_TO_LDATE
DWORD_TO_LDT
DWORD_TO_LINT
DWORD_TO_LREAL
DWORD_TO_LTIME
DWORD_TO_LTOD
DWORD_TO_LWORD
DWORD_TO_REAL
DWORD_TO_SINT
DWORD_TO_STRING
DWORD_TO_TIME
DWORD_TO_TOD
DWORD_TO_UDINT
DWORD_TO_UINT
DWORD_TO_ULINT
DWORD_TO_USINT
DWORD_TO_WORD
DWORD_TO_WSTRING

INT_TO___UXINT
INT_TO___XINT
INT_TO___XWORD
INT_TO_BIT
INT_TO_BOOL
INT_TO_BYTE
INT_TO_DATE
INT_TO_DINT
INT_TO_DT
INT_TO_DWORD
INT_TO_LDATE
INT_TO_LDT

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 575

INT_TO_LINT
INT_TO_LREAL
INT_TO_LTIME
INT_TO_LTOD
INT_TO_LWORD
INT_TO_REAL
INT_TO_SINT
INT_TO_STRING
INT_TO_TIME
INT_TO_TOD
INT_TO_UDINT
INT_TO_UINT
INT_TO_ULINT
INT_TO_USINT
INT_TO_WORD
INT_TO_WSTRING

LINT_TO___UXINT
LINT_TO___XINT
LINT_TO___XWORD
LINT_TO_BIT
LINT_TO_BOOL
LINT_TO_BYTE
LINT_TO_DATE
LINT_TO_DINT
LINT_TO_DT
LINT_TO_DWORD
LINT_TO_INT
LINT_TO_LDATE
LINT_TO_LDT
LINT_TO_LREAL
LINT_TO_LTIME
LINT_TO_LTOD
LINT_TO_LWORD
LINT_TO_REAL
LINT_TO_SINT
LINT_TO_STRING
LINT_TO_TIME
LINT_TO_TOD
LINT_TO_UDINT
LINT_TO_UINT
LINT_TO_ULINT
LINT_TO_USINT
LINT_TO_WORD
LINT_TO_WSTRING

LWORD_TO___UXINT
LWORD_TO___XINT
LWORD_TO___XWORD
LWORD_TO_BIT
LWORD_TO_BOOL
LWORD_TO_BYTE
LWORD_TO_DATE
LWORD_TO_DINT
LWORD_TO_DT
LWORD_TO_DWORD
LWORD_TO_INT
LWORD_TO_LDATE
LWORD_TO_LDT
LWORD_TO_LINT
LWORD_TO_LREAL
LWORD_TO_LTIME
LWORD_TO_LTOD
LWORD_TO_REAL
LWORD_TO_SINT

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US576

LWORD_TO_STRING
LWORD_TO_TIME
LWORD_TO_TOD
LWORD_TO_UDINT
LWORD_TO_UINT
LWORD_TO_ULINT
LWORD_TO_USINT
LWORD_TO_WORD
LWORD_TO_WSTRING

SINT_TO___UXINT
SINT_TO___XINT
SINT_TO___XWORD
SINT_TO_BIT
SINT_TO_BOOL
SINT_TO_BYTE
SINT_TO_DATE
SINT_TO_DINT
SINT_TO_DT
SINT_TO_DWORD
SINT_TO_INT
SINT_TO_LDATE
SINT_TO_LDT
SINT_TO_LINT
SINT_TO_LREAL
SINT_TO_LTIME
SINT_TO_LTOD
SINT_TO_LWORD
SINT_TO_REAL
SINT_TO_STRING
SINT_TO_TIME
SINT_TO_TOD
SINT_TO_UDINT
SINT_TO_UINT
SINT_TO_ULINT
SINT_TO_USINT
SINT_TO_WORD
SINT_TO_WSTRING

UDINT_TO___UXINT
UDINT_TO___XINT
UDINT_TO___XWORD
UDINT_TO_BIT
UDINT_TO_BOOL
UDINT_TO_BYTE
UDINT_TO_DATE
UDINT_TO_DINT
UDINT_TO_DT
UDINT_TO_DWORD
UDINT_TO_INT
UDINT_TO_LDATE
UDINT_TO_LDT
UDINT_TO_LINT
UDINT_TO_LREAL
UDINT_TO_LTIME
UDINT_TO_LTOD
UDINT_TO_LWORD
UDINT_TO_REAL
UDINT_TO_SINT
UDINT_TO_STRING
UDINT_TO_TIME
UDINT_TO_TOD
UDINT_TO_UINT
UDINT_TO_ULINT
UDINT_TO_USINT

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 577

UDINT_TO_WORD
UDINT_TO_WSTRING

UINT_TO___UXINT
UINT_TO___XINT
UINT_TO___XWORD
UINT_TO_BIT
UINT_TO_BOOL
UINT_TO_BYTE
UINT_TO_DATE
UINT_TO_DINT
UINT_TO_DT
UINT_TO_DWORD
UINT_TO_INT
UINT_TO_LDATE
UINT_TO_LDT
UINT_TO_LINT
UINT_TO_LREAL
UINT_TO_LTIME
UINT_TO_LTOD
UINT_TO_LWORD
UINT_TO_REAL
UINT_TO_SINT
UINT_TO_STRING
UINT_TO_TIME
UINT_TO_TOD
UINT_TO_UDINT
UINT_TO_ULINT
UINT_TO_USINT
UINT_TO_WORD
UINT_TO_WSTRING

ULINT_TO___UXINT
ULINT_TO___XINT
ULINT_TO___XWORD
ULINT_TO_BIT
ULINT_TO_BOOL
ULINT_TO_BYTE
ULINT_TO_DATE
ULINT_TO_DINT
ULINT_TO_DT
ULINT_TO_DWORD
ULINT_TO_INT
ULINT_TO_LDATE
ULINT_TO_LDT
ULINT_TO_LINT
ULINT_TO_LREAL
ULINT_TO_LTIME
ULINT_TO_LTOD
ULINT_TO_LWORD
ULINT_TO_REAL
ULINT_TO_SINT
ULINT_TO_STRING
ULINT_TO_TIME
ULINT_TO_TOD
ULINT_TO_UDINT
ULINT_TO_UINT
ULINT_TO_USINT
ULINT_TO_WORD
ULINT_TO_WSTRING

USINT_TO___XINT
USINT_TO___XINT
USINT_TO___XWORD
USINT_TO_BIT

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US578

USINT_TO_BOOL
USINT_TO_BYTE
USINT_TO_DATE
USINT_TO_DINT
USINT_TO_DT
USINT_TO_DWORD
USINT_TO_INT
USINT_TO_LDATE
USINT_TO_LDT
USINT_TO_LINT
USINT_TO_LREAL
USINT_TO_LTIME
USINT_TO_LTOD
USINT_TO_LWORD
USINT_TO_REAL
USINT_TO_SINT
USINT_TO_STRING
USINT_TO_TIME
USINT_TO_TOD
USINT_TO_UDINT
USINT_TO_UINT
USINT_TO_ULINT
USINT_TO_WORD
USINT_TO_WSTRING

WORD_TO___XINT
WORD_TO___XINT
WORD_TO___XWORD
WORD_TO_BIT
WORD_TO_BOOL
WORD_TO_BYTE
WORD_TO_DATE
WORD_TO_DINT
WORD_TO_DT
WORD_TO_DWORD
WORD_TO_INT
WORD_TO_LDATE
WORD_TO_LDT
WORD_TO_LINT
WORD_TO_LREAL
WORD_TO_LTIME
WORD_TO_LTOD
WORD_TO_LWORD
WORD_TO_REAL
WORD_TO_SINT
WORD_TO_STRING
WORD_TO_TIME
WORD_TO_TOD
WORD_TO_UDINT
WORD_TO_UINT
WORD_TO_ULINT
WORD_TO_USINT
WORD_TO_WSTRING

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 579

NOTICE!
String manipulation when converting to STRING or WSTRING
When converting the type to STRING or WSTRING, the typed value is left-
aligned as a character string and truncated if it is too long. Therefore, declare
the return variable for the type conversion operators <>_TO_STRING and
<>_TO_WSTRING long enough that the character string has enough space
without any manipulation.

The operators that convert a value into a character string of type STRING or WSTRING require
an operand that matches the target data type.

Example

Converting to a
string

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US580

When a larger data type is converted to a smaller data type, the more high-order (front)
bytes are truncated. When a smaller data type is converted to a larger data type, the more
high-order bytes filled with zeros.
FUNCTION_BLOCK FB_ConvertIntegersFromInt
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 uxiReturn: __UXINT;
 xiReturn: __XINT;
 xwReturn: __XWORD;
 bitReturn: BIT;
 xReturn: BOOL;
 bReturn: BYTE;
 dateReturn: DATE;
 diReturn: DINT;
 dtReturn: DATE_AND_TIME;
 dwReturn: DWORD;
 liReturn: LINT;
 lrReturn: LREAL;
 lwReturn: LWORD;
 siReturn: SINT;
 sReturn: STRING;
 timReturn: TIME;
 todReturn: TIME_OF_DAY;
 udiReturn: UDINT;
 uiReturn: UINT;
 usiReturn: USINT;
 wReturn: WORD;
 wsReturn: WSTRING;
 uliReturn: ULINT;
END_VAR

uxiReturn := INT_TO___UXINT(127);
xiReturn := INT_TO___XINT(127);
xwReturn := INT_TO___XWORD(127);
bitReturn := INT_TO_BIT(127);
xReturn := INT_TO_BOOL(127);
bReturn := INT_TO_BYTE(127);
dateReturn := INT_TO_DATE(127);
diReturn := INT_TO_DINT(127);
dtReturn := INT_TO_DT(127);
dwReturn := INT_TO_DWORD(127);
liReturn := INT_TO_LINT(127);
lrReturn := INT_TO_LREAL(127);
lwReturn := INT_TO_LWORD(127);
siReturn := INT_TO_SINT(127);
sReturn := INT_TO_STRING(127);
timReturn := INT_TO_TIME(127);
todReturn := INT_TO_TOD(127);
udiReturn := INT_TO_UDINT(127);
uiReturn := INT_TO_UINT(127);
uliReturn := INT_TO_ULINT(127);
usiReturn := INT_TO_USINT(127);
wReturn := INT_TO_WORD(127);
wsReturn := INT_TO_WSTRING(127);

FUNCTION_BLOCK FB_ConvertIntegersToInt
VAR_INPUT
END_VAR
VAR_OUTPUT

ST implemen-
tation language

Examples

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 581

END_VAR
VAR
 iReturn_uxi: INT;
 iReturn_xi: INT;
 iReturn_xw: INT;
 iReturn_bit: INT;
 iReturn_bool: INT;
 iReturn_b: INT;
 iReturn_d: INT;
 iReturn_di: INT;
 iReturn_dt: INT;
 iReturn_dw: INT;
 iReturn_li: INT;
 iReturn_lr: INT;
 iReturn_lw: INT;
 iReturn_r: INT;
 iReturn_si: INT;
 iReturn_s: INT;
 iReturn_tim: INT;
 iReturn_tod: INT;
 iReturn_tod_0: INT;
 iReturn_udi: INT;
 iReturn_ui: INT;
 iReturn_uli: INT;
 iReturn_usi: INT;
 iReturn_w: INT;
 iReturn_ws: INT;
END_VAR

iReturn_uxi := __UXINT_TO_INT(18446744073709551615);
iReturn_xi := __XINT_TO_INT(9223372036854775807);
iReturn_xw := __XWORD_TO_INT(16#FFFF_FFFF_FFFF_FFFF);
iReturn_bit := BIT_TO_INT(1);
iReturn_bool := BOOL_TO_INT(TRUE);
iReturn_b := BYTE_TO_INT(2#1111_0000);
iReturn_d := DATE_TO_INT(DATE#2019-9-13);
iReturn_di := DINT_TO_INT(2147483647);
iReturn_dt := DT_TO_INT(DT#1979-1-1-00:00:00);
iReturn_dw := DWORD_TO_INT(16#FFFF_FFFF);
// iReturn_i := INT_TO_<>(iData_12);
iReturn_li := LINT_TO_INT(9223372036854775807);
iReturn_lr := LREAL_TO_INT(1.7976931348623157E+30);
iReturn_lw := LWORD_TO_INT(16#FFFF_FFFF_FFFF_FFFF);
iReturn_r := REAL_TO_INT(3.402823E+38);
iReturn_si := SINT_TO_INT(127);
iReturn_s := STRING_TO_INT('127');
iReturn_tim := TIME_TO_INT(T#49D17H2M47S295MS);
iReturn_tod := TOD_TO_INT(TOD#23:59:59.999);
iReturn_tod_0 := TOD_TO_INT(TOD#1:1:1.001);
iReturn_udi := UDINT_TO_INT(4294967295);
iReturn_ui := UINT_TO_INT(65535);
iReturn_uli := ULINT_TO_INT(18446744073709551615);
iReturn_usi := USINT_TO_INT(255);
iReturn_w := WORD_TO_INT(16#FFFF);
iReturn_ws := WSTRING_TO_INT("1234567890");

PROGRAM PLC_PRG
VAR
 fbConvertIntegersFromInt : FB_ConvertIntegersFromInt;
 fbConvertIntegersToInt : FB_ConvertIntegersToInt;
END_VAR

fbConvertIntegersFromInt();
fbConvertIntegersToInt();

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US582

FBD implemen-
tation language

See also
● Ä “Type conversion operators” on page 545
● Ä Chapter 1.4.1.19.3.36 “Boolean Conversion” on page 567
● Ä Chapter 1.4.1.19.3.35 “Overloading” on page 565

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 583

● Ä Chapter 1.4.1.19.3.38 “ Floating-Point Number Conversion” on page 584
● Ä Chapter 1.4.1.19.3.39 “String Conversion” on page 587
● Ä Chapter 1.4.1.19.3.41 “Date and Time Conversion” on page 600
● Ä Chapter 1.4.1.19.3.40 “Time Conversion” on page 595

Floating-Point Number Conversion

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

NOTICE!
If the floating-point number is within the value range of the target data type, then
the conversion operates the same way on all systems.

NOTICE!
If the floating-point number to be converted exceeds the range limit, then the
first bytes of the number are ignored.

The operators convert a floating-point number into the specified data types and return a type-
converted value. If applicable, the conversion is rounded.

<variable name> := <floating-point conversion operator> (<floating-
point operand>);

<floating-point operand> = <variable name> | <literal>

<floating-point type> =
REAL |
LREAL

REAL_TO___UXINT
REAL_TO___XINT
REAL_TO___XWORD
REAL_TO_BIT
REAL_TO_BOOL
REAL_TO_BYTE
REAL_TO_DATE
REAL_TO_DINT
REAL_TO_DT
REAL_TO_DWORD
REAL_TO_INT
REAL_TO_LINT
REAL_TO_LREAL
REAL_TO_LTIME
REAL_TO_LWORD
REAL_TO_SINT

Call
Syntax

Operators

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US584

REAL_TO_STRING
REAL_TO_TIME
REAL_TO_TOD
REAL_TO_UDINT
REAL_TO_UINT
REAL_TO_ULINT
REAL_TO_USINT
REAL_TO_WORD
REAL_TO_WSTRING

LREAL_TO___UXINT
LREAL_TO___XINT
LREAL_TO___XWORD
LREAL_TO_BIT
LREAL_TO_BOOL
LREAL_TO_BYTE
LREAL_TO_DATE
LREAL_TO_DINT
LREAL_TO_DT
LREAL_TO_DWORD
LREAL_TO_INT
LREAL_TO_LINT
LREAL_TO_LTIME
LREAL_TO_LWORD
LREAL_TO_REAL
LREAL_TO_SINT
LREAL_TO_STRING
LREAL_TO_TIME
LREAL_TO_TOD
LREAL_TO_UDINT
LREAL_TO_UINT
LREAL_TO_ULINT
LREAL_TO_USINT
LREAL_TO_WORD
LREAL_TO_WSTRING

When converting to an integer, the operand is rounded up or down to an integer value. For 1
to 4 after the decimal point, the number is rounded down. For 5 to 9, the number is rounded
up. Then the rounded number is converted to the specified integer type. If the rounded value
is outside of the integer value range, then an undefined, target system-dependent value is
returned. An exception error is also possible then.

NOTICE!
The rounding logic for borderline cases depends on the target system or the
FPU (Floating Point Unit) of the target system. For example, a value of -1.5
can be converted differently on different controllers.
To program target system-independent code, you have to catch value range
overflows across the application.

NOTICE!
String manipulation when converting to STRING or WSTRING
When converting the type to STRING or WSTRING, the typed value is left-
aligned as a character string and truncated if it is too long. Therefore, declare
the return variable for the type conversion operators <>_TO_STRING and
<>_TO_WSTRING long enough that the character string has enough space
without any manipulation.

Rounding

Converting to a
string

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 585

For a floating-point number conversion to a string, the number of decimal places of the mantissa
is limited to 6. If the number is < 1, then the mantissa is 1 <= m < 10. If the mantissa has
more digits after the comma, then it is rounded to the 6th digit and then converted.
The string variable may also be declared too short for the return value. In this case, the return
string is truncated on the right.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US586

ST implemen-
tation language

See also
● Ä “Type conversion operators” on page 545
● Ä Chapter 1.4.1.19.3.36 “Boolean Conversion” on page 567
● Ä Chapter 1.4.1.19.3.35 “Overloading” on page 565
● Ä Chapter 1.4.1.19.3.37 “Integer Conversion” on page 572
● Ä Chapter 1.4.1.19.3.39 “String Conversion” on page 587
● Ä Chapter 1.4.1.19.3.41 “Date and Time Conversion” on page 600
● Ä Chapter 1.4.1.19.3.40 “Time Conversion” on page 595

String Conversion

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

Examples

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 587

The operators convert a character string (STRING or WSTRING) into the specified target data
type and return a type-converted value.
A conversion with a meaningful result is only possible when the operand matches the target
data type according to the IEC 61131-3 standard. This is the case if the value of the operand
corresponds to a valid constant (literal) of the target data type.
Convertible strings contain:
● Number with type prefix (example: '16#FFFFFFFF')
● Number with grouping characters (example: '2#1111_1111')

Note: The international weight and measure grouping character (thin space) is not accepted.
Only the underscore is accepted.

● Floating-point number, also in exponential notation (example: '9.876' or '1.2E-34')
Note: Floating-point numbers are not convertible. The comma is treated and truncated like a
following character.

● Time, time of day, and date specification with prefix and size (example: 'T#2h',
'DT#2019-9-9-12:30:30.9')

● Infinite values (example: '1.7E+400')
● Additional character after a number (example: '2m' or '3.14'). These are truncated.

Additional characters before a number are not permitted.
● Spaces before (example: ' 3.14')

<variable name> := <string to operator> (<operand>);

<operand> = <variable name> | <literal>

STRING_TO___UXINT
STRING_TO___XINT
STRING_TO___XWORD
STRING_TO_BIT
STRING_TO_BOOL
STRING_TO_BYTE
STRING_TO_DATE
STRING_TO_DINT
STRING_TO_DT
STRING_TO_DWORD
STRING_TO_INT
STRING_TO_LDATE
STRING_TO_LDT
STRING_TO_LINT
STRING_TO_LREAL
STRING_TO_LTIME
STRING_TO_LWORD
STRING_TO_LTIME
STRING_TO_LTOD
STRING_TO_REAL
STRING_TO_SINT
STRING_TO_TIME
STRING_TO_TOD
STRING_TO_UDINT
STRING_TO_UINT
STRING_TO_ULINT
STRING_TO_USINT
STRING_TO_WORD
STRING_TO_WSTRING

WSTRING_TO___UXINT
WSTRING_TO___XINT
WSTRING_TO___XWORD

Call syntax

Operators

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US588

WSTRING_TO_BIT
WSTRING_TO_BOOL
WSTRING_TO_BYTE
WSTRING_TO_DATE
WSTRING_TO_DINT
WSTRING_TO_DT
WSTRING_TO_DWORD
WSTRING_TO_INT
WSTRING_TO_LDATE
WSTRING_TO_LDT
WSTRING_TO_LINT
WSTRING_TO_LREAL
WSTRING_TO_LTIME
WSTRING_TO_LTOD
WSTRING_TO_LWORD
WSTRING_TO_LTIME
WSTRING_TO_REAL
WSTRING_TO_SINT
WSTRING_TO_STRING
WSTRING_TO_TIME
WSTRING_TO_TOD
WSTRING_TO_UDINT
WSTRING_TO_UINT
WSTRING_TO_ULINT
WSTRING_TO_USINT
WSTRING_TO_STRING
WSTRING_TO_WORD

Operator STRING_TO_BOOL: A value of TRUE is returned only if the operand value is 'TRUE'
or 'true'. On the other hand, FALSE is returned for 'True'.

Operator WSTRING_TO_BOOL: A value of TRUE is returned only if the operand value is "TRUE"
or "true". On the other hand, FALSE is returned for "True".

Converting to a
Boolean value

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 589

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US590

FUNCTION_BLOCK FB_ConvertStrings
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 xReturn_0: BOOL;
 xReturn_1: BOOL;
 dateReturn: DATE;
 dtReturn: DATE_AND_TIME;
 iReturn: INT;
 lrReturn: LREAL;
 lrReturn_0: LREAL;
 lwReturn: LWORD;
 lwReturn_0: LWORD;
 lwReturn_1: LWORD;
 ltReturn: LTIME;
 ltReturn_0: LTIME;
 ltReturn_1: LTIME;
 ltReturn_2: LTIME;
 rReturn: REAL;
 rReturn_0: REAL;
 timReturn: TIME;
 timReturn0: TIME;
 timReturn1: TIME;
 timReturn2: TIME;
 todReturn: TIME_OF_DAY;
 todReturn0: TIME_OF_DAY;
 todReturn1: TIME_OF_DAY;
 todReturn2: TIME_OF_DAY;
 uliReurn: ULINT;
 uliReurn_0: ULINT;
 uliReurn_1: ULINT;
 wReturn: WORD;
 wReturn_0: WORD;
 wReturn_1: WORD;
 wstrReturn: WSTRING;
 wstrReturn_0: WSTRING;
END_VAR
xReturn_0 := STRING_TO_BOOL('FALSE');
xReturn_1 := STRING_TO_BOOL('TRUE');
dateReturn := STRING_TO_DATE('DATE#2019-9-9');
dtReturn := STRING_TO_DT('DT#2019-9-9-1:1:1.1');
iReturn := STRING_TO_INT('123abc');
lrReturn := STRING_TO_LREAL('4.94E-323');
lrReturn_0 := STRING_TO_LREAL('1.7E+308');
lwReturn := STRING_TO_LWORD('16#FFFF_FFFF_FFFF_FFFF');
lwReturn_0 := STRING_TO_LWORD('16#0123456789ABCDEF');
lwReturn_1 := STRING_TO_LWORD('16#0123456789ABCDEF');
ltReturn :=
STRING_TO_LTIME('LTIME#213503d23h34m33s709ms551us615ns');
ltReturn_0 := STRING_TO_LTIME('LTIME#0ns');
ltReturn_1 := STRING_TO_LTIME('LTIME#1ms');
ltReturn_2 := STRING_TO_LTIME('LTIME#2s');
rReturn := STRING_TO_REAL('6.543e21');
rReturn_0 := STRING_TO_REAL('1.234');
timReturn := STRING_TO_TIME('T#5d4h3m2s');
timReturn0 := STRING_TO_TIME('TIME#1s');
timReturn1 := STRING_TO_TIME('1s');

ST implemen-
tation language

Examples

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 591

timReturn2 := STRING_TO_TIME('TIME#5s');
todReturn := STRING_TO_TOD('TOD#12:0:0.1');
todReturn0 := STRING_TO_TOD('TOD#0:0:0.0');
todReturn1 := STRING_TO_TOD('20:15');
todReturn2 := STRING_TO_TOD('TOD#20:15');
uliReurn := STRING_TO_ULINT('18446744073709551615');
uliReurn_0 := STRING_TO_ULINT('1');
uliReurn_1 := STRING_TO_ULINT('0');
wReturn := STRING_TO_WORD('16#FFFF_0000');
wReturn_0 := STRING_TO_WORD('34abc');
wReturn_1 := STRING_TO_WORD('16#34abc');
wstrReturn := STRING_TO_WSTRING('Hello World!');
wstrReturn_0 := STRING_TO_WSTRING('123456789');

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US592

FUNCTION_BLOCK FB_ConvertWstrings
VAR
 xReturn_0: BOOL;
 xReturn_1: BOOL;
 dateReturn: DATE;
 dtReturn: DATE_AND_TIME;
 iReturn: INT;
 lrReturn: LREAL;
 lrReturn_0: LREAL;
 lwReturn: LWORD;
 lwReturn_0: LWORD;
 lwReturn_1: LWORD;
 ltReturn: LTIME;
 ltReturn_0: LTIME;
 ltReturn_1: LTIME;
 ltReturn_2: LTIME;
 rReturn: REAL;
 rReturn_0: REAL;
 timReturn: TIME;
 timReturn0: TIME;
 timReturn1: TIME;
 timReturn2: TIME;
 todReturn: TIME_OF_DAY;
 todReturn0: TIME_OF_DAY;
 todReturn1: TIME_OF_DAY;
 todReturn2: TIME_OF_DAY;
 uliReurn: ULINT;
 uliReurn_0: ULINT;
 uliReurn_1: ULINT;
 wReturn: WORD;
 wReturn_0: WORD;
 wReturn_1: WORD;
 wstrReturn: WSTRING;
 wstrReturn_0: WSTRING;
END_VAR

xReturn_0 := WSTRING_TO_BOOL("FALSE");
xReturn_1 := WSTRING_TO_BOOL("TRUE");
dateReturn := WSTRING_TO_DATE("DATE#2019-9-9");
dtReturn := WSTRING_TO_DT("DT#2019-9-9-1:1:1.1");
iReturn := WSTRING_TO_INT("123abc");
lrReturn := WSTRING_TO_LREAL("4.94E-323");
lrReturn_0 := WSTRING_TO_LREAL("1.7E+308");
lwReturn := WSTRING_TO_LWORD("16#FFFF_FFFF_FFFF_FFFF");
lwReturn_0 := WSTRING_TO_LWORD("16#0123456789ABCDEF");
lwReturn_1 := WSTRING_TO_LWORD("16#0123456789ABCDEF");
ltReturn :=
WSTRING_TO_LTIME("LTIME#213503d23h34m33s709ms551us615ns");
ltReturn_0 := WSTRING_TO_LTIME("LTIME#0ns");
ltReturn_1 := WSTRING_TO_LTIME("LTIME#1ms");
ltReturn_2 := WSTRING_TO_LTIME("LTIME#2s");
rReturn := WSTRING_TO_REAL("6.543e21");
rReturn_0 := WSTRING_TO_REAL("1.234");
timReturn := WSTRING_TO_TIME("T#5d4h3m2s");
timReturn0 := WSTRING_TO_TIME("TIME#1s");
timReturn1 := WSTRING_TO_TIME("1s");
timReturn2 := WSTRING_TO_TIME("TIME#5s");
todReturn := WSTRING_TO_TOD("TOD#12:0:0.1");
todReturn0 := WSTRING_TO_TOD("TOD#0:0:0.0");
todReturn1 := WSTRING_TO_TOD("20:15");
todReturn2 := WSTRING_TO_TOD("TOD#20:15");

WSTRING con-
version in ST

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 593

uliReurn := WSTRING_TO_ULINT("18446744073709551615");
uliReurn_0 := WSTRING_TO_ULINT("1");
uliReurn_1 := WSTRING_TO_ULINT("0");
wReturn := WSTRING_TO_WORD("16#FFFF_0000");
wReturn_0 := WSTRING_TO_WORD("34abc");
wReturn_1 := WSTRING_TO_WORD("16#34abc");

FBD implemen-
tation language

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US594

See also
● Ä “Type conversion operators” on page 545
● Ä Chapter 1.4.1.19.3.36 “Boolean Conversion” on page 567
● Ä Chapter 1.4.1.19.3.35 “Overloading” on page 565
● Ä Chapter 1.4.1.19.3.37 “Integer Conversion” on page 572
● Ä Chapter 1.4.1.19.3.38 “ Floating-Point Number Conversion” on page 584
● Ä Chapter 1.4.1.19.3.41 “Date and Time Conversion” on page 600
● Ä Chapter 1.4.1.19.3.40 “Time Conversion” on page 595

Time Conversion

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

The operators convert time values (TIME or LIME) into the specified data types and return this
type-converted value.

<variable name> := <time conversion operator> (<operand>);

<operand> = <variable name> | <literal>

TIME_TO___UXINT
TIME_TO___XINT
TIME_TO___XWORD
TIME_TO_BIT
TIME_TO_BOOL
TIME_TO_BYTE
TIME_TO_DATE
TIME_TO_DINT
TIME_TO_DT
TIME_TO_DWORD
TIME_TO_INT
TIME_TO_LDATE
TIME_TO_LDINT
TIME_TO_LINT
TIME_TO_LREAL
TIME_TO_LTIME
TIME_TO_LTOD
TIME_TO_LWORD
TIME_TO_REAL
TIME_TO_SINT
TIME_TO_STRING
TIME_TO_TOD
TIME_TO_UDINT
TIME_TO_UINT
TIME_TO_ULINT
TIME_TO_USINT
TIME_TO_WORD
TIME_TO_WSTRING

Call syntax

Operators

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 595

LTIME_TO___UXINT
LTIME_TO___XINT
LTIME_TO___XWORD
LTIME_TO_BIT
LTIME_TO_BOOL
LTIME_TO_BYTE
LTIME_TO_DATE
LTIME_TO_DINT
LTIME_TO_DT
LTIME_TO_DWORD
LTIME_TO_INT
LTIME_TO_LDATE
LTIME_TO_LDINT
LTIME_TO_LINT
LTIME_TO_LREAL
LTIME_TO_LTOD
LTIME_TO_LWORD
LTIME_TO_REAL
LTIME_TO_SINT
LTIME_TO_STRING
LTIME_TO_TIME
LTIME_TO_TOD
LTIME_TO_UDINT
LTIME_TO_UINT
LTIME_TO_ULINT
LTIME_TO_USINT
LTIME_TO_WORD
LTIME_TO_WSTRING

The operator returns FALSE if and only if the operand value can be interpreted as "0".

xTime := TIME_TO_BOOL(T#0MS); xTime = FALSE
xLongTime := TIME_TO_BOOL(T#0NS); xLongTime = FALSE
xTime := TIME_TO_BOOL(T#1MS); xDate = TRUE
xLongTime := TIME_TO_BOOL(T#1NS); xLongTime = TRUE

NOTICE!
String manipulation when converting to STRING or WSTRING
When converting the type to STRING or WSTRING, the typed value is left-
aligned as a character string and truncated if it is too long. Therefore, declare
the return variable for the type conversion operators <>_TO_STRING and
<>_TO_WSTRING long enough that the character string has enough space
without any manipulation.

sTime := TIME_TO_STRING(T#0MS); sTime = 'T#0MS'
wsLongTime :=
LTIME_TO_WSTRING(T#0US);

wsLongTime = "T#0US"

Converting to
Boolean values

Converting to a
string

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US596

FUNCTION_BLOCK FB_ConvertTimeAndDate
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 ltReturn_1: LTIME;
 lwReturn_2: LWORD;
 rReturn_3: REAL;
 strReturn_4: STRING;
 timReturn_5: TIME;
 todReturn_6: TIME_OF_DAY;
 uliReurn_7: ULINT;
 wstrReturn_8: WSTRING;
 wstrReturn_80: WSTRING;
 uliReurn_70: ULINT;
 todReturn_60: TIME_OF_DAY;
 timReturn_50: TIME;
 strReturn_40: STRING;
 rReturn_30: REAL;
 lwReturn_20: LWORD;
 ltReturn_10: LTIME;
 ltReturn_11: LTIME;
 lwReturn_21: LWORD;
 rReturn_31: REAL;
 strReturn_41: STRING;
 timReturn_51: TIME;
 todRedurn_61: TIME_OF_DAY;
 uliReurn_71: ULINT;
 wstrReturn_81: WSTRING;
 ltReturn_12: LTIME;
 xReturn_9: BOOL;
 xReturn_90: BOOL;
 xReturn_91: BOOL;
 xReturn_92: BOOL;
 dateReturn_6: DATE;
 timReturn_60: TIME;
 wReturn_61: WORD;
 todReturn_61: TIME_OF_DAY;
END_VAR

ltReturn_1 := DT_TO_LTIME(DT#2019-9-9-23:59:59);
ltReturn_10 := DT_TO_LTIME(DT#1970-1-1-0:0:0);
ltReturn_11 := DT_TO_LTIME(DT#1970-1-2-0:0:1);
ltReturn_12 := DT_TO_LTIME(DT#1970-1-3-12:30:30);

lwReturn_2 := TIME_TO_LWORD(T#5D4H2M3S2MS);
lwReturn_20 := TIME_TO_LWORD(T#0D0H0M0S0MS);

rReturn_3 := TIME_TO_REAL(T#5D4H2M3S2MS);
rReturn_30 := TIME_TO_REAL(T#0D0H0M0S0MS);

strREturn_4 := TIME_TO_STRING(T#5D4H2M3S2MS);
strREturn_40 := TIME_TO_STRING(T#0D0H0M0S0MS);

timReturn_5 := TOD_TO_TIME(TOD#23:59:59.999);
timReturn_50 := TOD_TO_TIME(TOD#0:0:0.000);
timReturn_51 := TOD_TO_TIME(TOD#0:0:0.001);

ST implemen-
tation language

Examples

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 597

dateReturn_6 := TOD_TO_DATE(TOD#23:59:59.999);
timReturn_60 := TOD_TO_TIME(TOD#0:0:0.000);
wReturn_61 := TOD_TO_WORD(TOD#0:0:0.001);

uliReurn_7 := DATE_TO_ULINT(D#2019-9-9);
uliReurn_70 := DATE_TO_ULINT(D#1970-1-1);
uliReurn_71 := DATE_TO_ULINT(D#1970-1-2);

wstrReturn_8 := DATE_TO_WSTRING(D#2019-9-9);
wstrReturn_80 := DATE_TO_WSTRING(D#1970-1-1);
wstrReturn_81 := DATE_TO_WSTRING(D#1970-1-2);

xReturn_9 := DATE_TO_BOOL(D#2019-9-9);
xReturn_90 := DATE_TO_BOOL(D#1970-1-1);
xReturn_91 := DATE_TO_BOOL(D#1970-1-2);
xReturn_92 := DATE_TO_BOOL(D#1970-1-3);

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US598

FBD implemen-
tation language

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 599

See also
● Ä “Type conversion operators” on page 545
● Ä Chapter 1.4.1.19.3.36 “Boolean Conversion” on page 567
● Ä Chapter 1.4.1.19.3.35 “Overloading” on page 565
● Ä Chapter 1.4.1.19.3.37 “Integer Conversion” on page 572
● Ä Chapter 1.4.1.19.3.38 “ Floating-Point Number Conversion” on page 584
● Ä Chapter 1.4.1.19.3.39 “String Conversion” on page 587
● Ä Chapter 1.4.1.19.3.41 “Date and Time Conversion” on page 600

Date and Time Conversion

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

The operators convert a date and time value into the specified data type and return a type-con-
verted value.

<variable name> := <date and time conversion operator> (<operand>);

<operand> = <variable name> | <literal>
The data types DATE and DT use the same memory format internally and are stored as DWORD.
The resolution for DATE is 1 day. The resolution for DT is 1 second. Both begin at January 1,
1970.TOD is stored as DWORD with a resolution of 1 millisecond.

DATE_TO___UXINT
DATE_TO___XINT
DATE_TO___XWORD
DATE_TO_BIT
DATE_TO_BOOL
DATE_TO_BYTE
DATE_TO_DINT
DATE_TO_DT
DATE_TO_DWORD
DATE_TO_INT
DATE_TO_LINT
DATE_TO_LREAL
DATE_TO_LTIME
DATE_TO_LWORD
DATE_TO_REAL
DATE_TO_SINT
DATE_TO_STRING
DATE_TO_TIME
DATE_TO_TOD
DATE_TO_UDINT
DATE_TO_UINT
DATE_TO_ULINT
DATE_TO_USINT
DATE_TO_WORD

Call syntax

Operators

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US600

DATE_TO_WSTRING

DT_TO___UXINT
DT_TO___XINT
DT_TO___XWORD
DT_TO_BIT
DT_TO_BOOL
DT_TO_BYTE
DT_TO_DATE
DT_TO_DINT
DT_TO_DWORD
DT_TO_INT
DT_TO_LINT
DT_TO_LREAL
DT_TO_LTIME
DT_TO_LWORD
DT_TO_REAL
DT_TO_SINT
DT_TO_STRING
DT_TO_TIME
DT_TO_TOD
DT_TO_UDINT
DT_TO_UINT
DT_TO_ULINT
DT_TO_USINT
DT_TO_WORD
DT_TO_WSTRING

TOD_TO___UXINT
TOD_TO___XINT
TOD_TO___XWORD
TOD_TO_BOOL
TOD_TO_BIT
TOD_TO_BYTE
TOD_TO_DATE
TOD_TO_DINT
TOD_TO_DT
TOD_TO_DWORD
TOD_TO_INT
TOD_TO_LINT
TOD_TO_LREAL
TOD_TO_LTIME
TOD_TO_LWORD
TOD_TO_REAL
TOD_TO_SINT
TOD_TO_STRING
TOD_TO_TIME
TOD_TO_UDINT
TOD_TO_UINT
TOD_TO_ULINT
TOD_TO_USINT
TOD_TO_WORD
TOD_TO_WSTRING

LDATE_TO___UXINT
LDATE_TO___XINT
LDATE_TO___XWORD
LDATE_TO_BIT
LDATE_TO_BOOL
LDATE_TO_BYTE
LDATE_TO_DATE
LDATE_TO_DINT
LDATE_TO_DT
LDATE_TO_DWORD

Long operators

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 601

LDATE_TO_INT
LDATE_TO_LDT
LDATE_TO_LINT
LDATE_TO_LREAL
LDATE_TO_LTIME
LDATE_TO_LTOD
LDATE_TO_LWORD
LDATE_TO_REAL
LDATE_TO_SINT
LDATE_TO_STRING
LDATE_TO_TIME
LDATE_TO_TOD
LDATE_TO_UDINT
LDATE_TO_UINT
LDATE_TO_ULINT
LDATE_TO_USINT
LDATE_TO_WORD
LDATE_TO_WSTRING

LDT_TO___UXINT
LDT_TO___XINT
LDT_TO___XWORD
LDT_TO_BIT
LDT_TO_BOOL
LDT_TO_BYTE
LDT_TO_DATE
LDT_TO_DINT
LDT_TO_DWORD
LDT_TO_INT
LDT_TO_LDATE
LDT_TO_LINT
LDT_TO_LREAL
LDT_TO_LTIME
LDT_TO_LTOD
LDT_TO_LWORD
LDT_TO_REAL
LDT_TO_SINT
LDT_TO_STRING
LDT_TO_TIME
LDT_TO_TOD
LDT_TO_UDINT
LDT_TO_UINT
LDT_TO_ULINT
LDT_TO_USINT
LDT_TO_WORD
LDT_TO_WSTRING

LTOD_TO___UXINT
LTOD_TO___XINT
LTOD_TO___XWORD
LTOD_TO_BOOL
LTOD_TO_BIT
LTOD_TO_BYTE
LTOD_TO_DATE
LTOD_TO_DINT
LTOD_TO_DT
LTOD_TO_DWORD
LTOD_TO_INT
LTOD_TO_LDATE
LTOD_TO_LDT
LTOD_TO_LINT
LTOD_TO_LREAL
LTOD_TO_LTIME
LTOD_TO_LWORD
LTOD_TO_REAL

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US602

LTOD_TO_SINT
LTOD_TO_STRING
LTOD_TO_TIME
LTOD_TO_UDINT
LTOD_TO_UINT
LTOD_TO_ULINT
LTOD_TO_USINT
LTOD_TO_WORD
LTOD_TO_WSTRING

The operator returns FALSE if and only if the operand value can be interpreted as "0".

xDate := DATE_TO_BOOL(D#1970-1-1); xDate = FALSE
xDateAndTime :=
DT_TO_BOOL(DT#1970-1-1-0:0:0);

xDateAndTime = FALSE

xTimeOfDay :=
TOD_TO_BOOL(TOD#0:0:0);

xTimeOfDay = FALSE

xDate := DATE_TO_BOOL(D#2019-9-1); xDate = TRUE
xDateAndTime :=
DT_TO_BOOL(DT#2019-9-1-12:0:0);

xDateAndTime = TRUE

xTimeOfDay :=
TOD_TO_BOOL(TOD#12:0:0);

xTimeOfDay = TRUE

The data types DATE and DT use the same memory format internally, namely a DWORD. The
resolution for DATE is 1 day. The resolution for DT is 1 second. Both begin at January 1, 1970.

TOD is stored as DWORD with a resolution of 1 millisecond.

diReturn_0 :=
DT_TO_DINT(DT#1970-1-1-0:0:0);

diReturn_0 = 0

diReturn_1 :=
DATE_TO_DINT(D#1970-1-1);

diReturn_1 = 0

diReturn_2 :=
TOD_TO_DINT(TOD#0:0:0);

diReturn_2 = 0

diReturn_1 :=
DT_TO_DINT(DT#1970-1-1-0:0:1);

diReturn_3 = 1

diReturn_3 :=
DATE_TO_DINT(D#1970-1-2);

diReturn_4 = 86400

diReturn_5 :=
DT_TO_DINT(DT#2019-9-1-12:0:0.0);

diReturn_5 = 1567339200

diReturn_6 :=
DATE_TO_DINT(D#2019-9-1);

diReturn_6 = 1567339200

diReturn_7 :=
TOD_TO_DINT(TOD#12:0:0);

diReturn_7 = 43200000

Converting to a
Boolean value

Converting to
an integer

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 603

NOTICE!
String manipulation when converting to STRING or WSTRING
When converting the type to STRING or WSTRING, the typed value is left-
aligned as a character string and truncated if it is too long. Therefore, declare
the return variable for the type conversion operators <>_TO_STRING and
<>_TO_WSTRING long enough that the character string has enough space
without any manipulation.

The operands of type DATE, DATE_AND_TIME, TIME_OF_DAY, DT, or TOD, which are passed
to an operator for a data and time conversion, are converted to their constant syntax (literal
syntax). The generated string contains the keyword D#, DT# or TOD# and then the size with its
data and time unit, as indicated in the IEC 61131-3 specification.

Examples

Converting to a
string

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US604

The controller is in online mode in order to monitor the variables.FBD implemen-
tation language

See also
● Ä “Type conversion operators” on page 545
● Ä Chapter 1.4.1.19.3.36 “Boolean Conversion” on page 567
● Ä Chapter 1.4.1.19.3.35 “Overloading” on page 565
● Ä Chapter 1.4.1.19.3.37 “Integer Conversion” on page 572
● Ä Chapter 1.4.1.19.3.38 “ Floating-Point Number Conversion” on page 584
● Ä Chapter 1.4.1.19.3.39 “String Conversion” on page 587
● Ä Chapter 1.4.1.19.3.40 “Time Conversion” on page 595

Examples

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 605

Operator 'TRUNC'
The IEC operator is used for converting the REAL data type into the DINT data type. CODESYS
takes only the integer part of the number.

In CoDeSys V2.3, the TRUNC operator converts REAL into INT. If you import a
V2.3 project, then CODESYS automatically replaces TRUNC with TRUNC_INT.

If CODESYS cannot represent the input value by a DINT or INT, then the result of this function
is undefined. The behavior of such input values is platform-dependent.

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

Result in diVar: 1
ST
diVar := TRUNC(1.9); (* Result: 1 *)

diVar := TRUNC(-1.4); (* Result: -1 *)

Examples

See also
● Ä “Type conversion operators” on page 545

Operator 'TRUNC_INT'
The IEC operator is used for converting the REAL data type into the INT data type. CODESYS
takes only the integer part of the number.

TRUNC_INT corresponds to the TRUNC operator in CoDeSys V2.3, and it is
used automatically at this point when importing V2.3 projects. Note the change
function of TRUNC.

If CODESYS cannot represent the input value by a DINT or INT, then the result of this function
is undefined. The behavior of such input values is platform-dependent.

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US606

Result in iVAR: 1
ST:
iVar := TRUNC_INT(1.9); (* Result: 1 *)

iVar := TRUNC_INT(-1.4); (* Result: -1 *)

Examples

See also
● Ä “Type conversion operators” on page 545

Operator 'ABS'
This IEC operator yields the absolute value of a number.
Permitted data types for input and output variables and numeric constants: any numeric basic
data type

Result in i: 2
ST:
i := ABS(-2);

FBD:

Examples

Operator 'SQRT'
This IEC of course yields the square root of a number.
Permitted data types for input variables: any numeric basic data type
Permitted data types for output variables: REAL or LREAL

Result in q: 4
ST:
q := SQRT(16);

FBD:

Examples

Operator 'LN'
This IEC operator yields the natural logarithm of a number.
Permitted data types for input variables: any numeric basic data type
Permitted data types for output variables: REAL and LREAL

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 607

Result: 3.80666
ST:
q := LN(45);

FBD:

Examples

Operator 'LOG'
This IEC operator yields the base-10 logarithm of a number.
The input variable can be any numeric basic data type, but the output variable must be the data
type REAL or LREAL.

Result in q: 2.49762
ST:
q := LOG(314.5);

FBD:

Examples

Operator 'EXP'
This IEC operator yields the exponential function.
Permitted data types for input variables: any numeric basic data type
Permitted data types for output variables: REAL and LREAL

Result in q: 7.389056099
ST:
q := EXP(2);

FBD:

Examples

Operator 'EXPT'
This IEC operator raises a number to a higher power and returns the power of the base raised
to the exponent: power = baseexponent. The input values (parameters) are the base and the
exponent. The power function is undefined if the base is zero and the exponent is negative.
However, the behavior depends on the platform in this case.
Syntax:
EXPT(<base>,<exponent>)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US608

Permitted data types for the input values: Numeric base data types (SINT, USINT, INT, UINT,
DINT, UDINT, LINT, ULINT, REAL, LREAL, BYTE, WORD, DWORD, and LWORD)

Permitted data types for the return value: Floating-point number types (REAL and LREAL)

Var1 := EXPT(7,2);
FBD:

Return value: Var1 = 49

Example
Power function
with literals

PROGRAM PLC_PRG
VAR
 lrPow : LREAL;
 iBase : INT := 2;
 iExponent : INT := 7;
END_VAR

lrPow := EXPT(iBase, iExponent);
Return value: lrPow = 128

Example
Power function
with variables

Operator 'SIN'
The IEC operator yields the sine value of a number.
Permitted data types for input variables that measure the angle in radians: any numeric basic
data type
Permitted data types for output variable: REAL and LREAL

The permitted range for the input value is -263 to +263. On x86 and x64 systems:
If the input value is outside of the permitted range, the function returns the input
value

Result in q: 0.479426
ST:
q := SIN (0.5);

FBD:

Examples

Operator 'COS'
The IEC operator yields the cosine value of a number.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 609

Permitted data types for input variables that measure the angle in radians: any numeric basic
data type
Permitted data types for output variables: REAL and LREAL

The permitted range for the input value is -263 to +263. On x86 and x64 systems:
If the input value is outside of the permitted range, the function returns the input
value

Result in q: 0.877583
ST:
q := COS(0.5);

FBD:

Examples

Operator 'TAN'
This IEC operator yields the tangent value of a number.
Permitted data types for input variables that measure the angle in radians: any numeric basic
data type
Permitted data types for output variables: REAL and LREAL

Result in q: 0.546302
ST:
q := TAN(0.5);

FBD:

Examples

Operator 'ASIN'
This IEC operator yields the arcsine value of a number.
Permitted data types for input variables: any numeric basic data type
Permitted data types for output variables: REAL and LREAL

Result in q: 0.523599
ST:
q := ASIN(0,5);

FBD:

Examples

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US610

Operator 'ACOS'
This IEC operator yields the arccosine value of a number. The value is computed in radians.
Permitted data types for input variables that measure the angle in radians: any numeric basic
data type
Permitted data types for output variables: REAL and LREAL

Result in q: 1.0472
ST:
q := ACOS(0.5);

FBD:

Examples

Operator 'ATAN'
This IEC operator yields the arctangent value of a number. The value is computed in radians.
Permitted data types for input variables that measure the angle in radians: any numeric basic
data type
Permitted data types for output variables: REAL and LREAL

Result in q: 0.463648
ST:
q := ATAN(0.5);

FBD:

Examples

Operator '__DELETE'
This operator is an extension of the IEC 61131-3 standard.

NOTICE!
For compatibility, the compiler version must be >= 3.3.2.0.

The operator releases the memory of instances that the "__NEW" operator generated dynami-
cally. The __DELETE operator does not have a return value and the operand is set to zero after
this operation.
Requirement: In the properties dialog of the application, the “Use dynamic memory allocation”
check box is selected in the “Application Build Options” tab.
__DELETE (<pointer>)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 611

NOTICE!
Two tasks should not call __DELETE simultaneously. Either you use a sema-
phore (SysSemEnter) or comparable method to prevent any concurrent calling
of __DELETE , or you use __DELETE in one tasks only (recommended).

You can use a semaphore (SysSemEnter) to prevent two tasks from allocating memory at the
same time. As a consequence, the extensive use of __DELETE causes higher jitter.

If Pointer references a function block, then CODESYS calls the associated FB_EXIT method
before the pointer is set to zero.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US612

FUNCTION_BLOCK FBDynamic

VAR_INPUT
 in1, in2 : INT;
END_VAR

VAR_OUTPUT
 out : INT;
END_VAR

VAR
 test1 : INT := 1234;
 _inc : INT := 0;
 _dut : POINTER TO DUT;
 neu : BOOL;
END_VAR

out := in1 + in2;

METHOD FB_Exit : BOOL

VAR_INPUT
 bInCopyCode : BOOL;
END_VAR

__Delete(_dut);

METHOD FB_Init : BOOL

VAR_INPUT
 bInitRetains : BOOL;
 bInCopyCode : BOOL;
END_VAR

_dut := __NEW(DUT);

METHOD INC : INT

VAR_INPUT
END_VAR

_inc := _inc + 1;
INC := _inc;

PLC_PRG(PRG)

VAR
 pFB : POINTER TO FBDynamic;
 bInit: BOOL := TRUE;
 bDelete: BOOL;
 loc : INT;
END_VAR

IF (bInit) THEN
 pFB := __NEW(FBDynamic);
 bInit := FALSE;
END_IF

Examples

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 613

IF (pFB <> 0) THEN
 pFB^(in1 := 1, in2 := loc, out => loc);
 pFB^.INC();
END_IF

IF (bDelete) THEN
 __DELETE(pFB);
END_IF

Operator '__ISVALIDREF'
This operator is an extension of the IEC 61131-3 standard.
The operator is used for checking whether a reference refers to a valid value. For a description
of use and an example, refer to the description for the REFERENCE data type.

See also
● Ä Chapter 1.4.1.19.5.13 “Reference” on page 658

Operator '__NEW'
The operator is an extension of the IEC 61131-3 standard.
The __NEW operator reserves dynamic memory to instantiate function blocks, user-defined data
types, or arrays of standard types. The operator returns a matching typed pointer.
Requirement: In the properties dialog of the parent application, on the “Application Build
Options” tab, the “Use dynamic memory allocation” option is selected.

<pointer name> := __NEW(<type> (, <size>)?);
__DELETE(<pointer name>);

<type> : <function block> | <data unit type> | <standard data type>
The operator generates an instance of the type <type> and returns a pointer to this instance.
Then the initialization of the instance is called. If <type> is a scalar standard data type, then
the optional operand <size> is also evaluated. Then the operator generates an array of type
<standard data type> and size <size>. If the attempt to allocate memory fails, then
__NEW returns the value 0.

Use the operator within the assignment ":=". Otherwise an error message is displayed.

A function block or a user-defined data type whose instance is created dynamically with __NEW
uses a fixed memory area. Here it is required that you mark the objects with the pragma
{attribute 'enable_dynamic_creation'}. It is not required for function blocks that are
part of a library.

If you change the data layout of the function block in online mode, then you
cannot execute a login with an online change afterwards. This is because the
memory area of the function block instance has been invalidated. You change
the data layout when you add new variables to the function block, delete
existing variables, or change the data types of variables.

Syntax

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US614

PROGRAM PLC_PRG
VAR
 pdwScalar : POINTER TO DWORD; //Typed pointer
 xInit : BOOL := TRUE;
 xDelete : BOOL;
END_VAR

IF (xInit) THEN
 pdwScalar := __NEW(DWORD, 16); // Allocates memory (16 dwords)
and assigns them to pointer pdwScalar
END_IF
IF (xDelete) THEN
 __DELETE(pdwScalar); // Frees memory of pointer
END_IF

{attribute 'enable_dynamic_creation'}
FUNCTION_BLOCK FBComputeGamma
VAR_INPUT
 iAlpha : INT;
 iBeta : INT;
END_VAR
VAR_OUTPUT
 iGamma : INT;
END_VAR
VAR
END_VAR

iGamma := iAlpha + iBeta;

PROGRAM PLC_PRG
VAR
 pComputeGamma : POINTER TO FBComputeGamma; // Typed pointer
 xInit : BOOL := TRUE;
 xDelete : BOOL;
 iResult : INT;
END_VAR

IF (xInit) THEN
 pComputeGamma := __NEW(FBComputeGamma); // Allocates memory
 xInit := FALSE;
END_IF
pComputeGamma^.iAlpha := (pComputeGamma^.iAlpha + 1)MOD 100; //
Sets first input of pComputeGamma
pComputeGamma^.iBeta := 10; // Sets second input of pComputeGamma
pComputeGamma^(); // Calls the FB pComputeGamma is pointing to
iResult := pComputeGamma^.iGamma; // Reads output of pComputeGamma
IF (xDelete) THEN
 __DELETE(pComputeGamma); // Frees memory
END_IF

{attribute 'enable_dynamic_creation'}
TYPE ABCDATA :
STRUCT
 iA, iB, iC, iD : INT;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 pABCData : POINTER TO ABCDATA; // Typed pointer
 xInit : BOOL := TRUE;

Example
Array (DWORD):

Function
block:

User-defined
data type
(DUT):

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 615

 xDelete : BOOL;
END_VAR

IF (xInit) THEN
 pABCData := __NEW(ABCDATA); // Allocates memory
 xInit := FALSE;
END_IF
IF (xDelete) THEN
 __DELETE(pABCData); // Frees memory
END_IF

PROGRAM PLC_PRG
VAR
 pbDataAlpha : POINTER TO BYTE;
 pbDataBeta : POINTER TO BYTE;
 xInit : BOOL := TRUE;
 xDelete : BOOL;
 usiCnt : USINT;
 bTestC: BYTE;
END_VAR

IF (xInit) THEN
 pbDataAlpha := __NEW(BYTE, 16); // Allocates 16 bytes for
pbDataAlpha
 pbDataBeta := __NEW(BYTE); // Allocates memory for pbDataBeta
 xInit := FALSE;

 FOR usiCnt := 0 TO 15 DO
 pbDataAlpha[usiCnt] := usiCnt; // Writes to new array
 END_FOR
 pbDataBeta^:= 16#FF; // Writes to new data
END_IF

bTestC := pbDataAlpha[12]; // Reads new array by index access

IF (xDelete) THEN // Frees memory
 __DELETE(pbDataAlpha);
 __DELETE(pbDataBeta);
END_IF

Array (BYTE):

NOTICE!
We do not recommend the simultaneous execution of two tasks that both call
the __NEW operator. You use either a semaphore (SysSemEnter) or a compa-
rable technique to prevent a concurrent call of __NEW. However, this results in a
higher jitter when __NEW is applied extensively.

We recommend that you call __NEW operators in one task only.

See also
● Ä Chapter 1.4.1.20.4.10.9 “Dialog 'Properties - Application Build Options'” on page 1162
● Ä Chapter 1.4.1.20.2.6 “Object 'DUT'” on page 835
● Ä Chapter 1.4.1.20.2.18.2 “Object 'Function Block'” on page 883
● Ä Chapter 1.4.1.19.6.2.12 “Attribute 'enable_dynamic_creation'” on page 695
● Ä Chapter 1.4.1.19.11.159 “Compiler error C0509” on page 815

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US616

Operator '__QUERYINTERFACE'
This operator is an extension of the IEC 61131-3 standard.
At runtime, the operator executes a type conversion of an interface reference into another type.
The operator returns a BOOL result. TRUE means that CODESYS has performed the conversion
successfully.
__QUERYINTERFACE(<ITF_Source>,<ITF_Dest>);
1.Operand: Interface reference or FB interface
2.Operand: Interface reference with required target type
The requirement for the explicit conversion is that both the ITF_Source and ITF_Dest are
derived from Interface __System.IQueryInterface. This interface is implicitly available
does not require a library.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 617

INTERFACE ItfBase EXTENDS __System.IQueryInterface
METHOD mbase : BOOL
END_METHOD

INTERFACE ItfDerived1 EXTENDS ItfBase
METHOD mderived1 : BOOL
END_METHOD

INTERFACE ItfDerived2 EXTENDS ItfBase
METHOD mderived2 : BOOL
END_METHOD

FUNCTION_BLOCK FB1 IMPLEMENTS ItfDerived1
METHOD mbase : BOOL
 mbase := TRUE;
END_METHOD
METHOD mderived1 : BOOL
 mderived1 := TRUE;
END_METHOD
END_FUNCTION_BLOCK

FUNCTION_BLOCK FB2 IMPLEMENTS ItfDerived2
METHOD mbase : BOOL
 mbase := FALSE;
END_METHOD
METHOD mderived2 : BOOL
 mderived2 := TRUE;
END_METHOD
END_FUNCTION_BLOCK

PROGRAMM POU
VAR
 inst1 : FB1;
 inst2 : FB2;
 itfbase1 : ItfBase := inst1;
 itfbase2 : ItfBase := inst2;
 itfderived1 : ItfDerived1 := 0;
 itfderived2 : ItfDerived2 := 0;
 xResult1, xResult2, xResult3, xResult4: BOOL;
END_VAR

xResult1 := __QUERYINTERFACE(itfbase1, itfderived1); // xResult =
TRUE, itfderivedi1 <>0
 // references
the instance inst1
xResult2 := __QUERYINTERFACE(itfbase1, itfderived2); // xResult =
FALSE, itfderived2 = 0
xResult3 := __QUERYINTERFACE(itfbase2, itfderived1); // xResult =
FALSE, itfderived1 = 0
xResult4 := __QUERYINTERFACE(itfbase2, itfderived2); // xResult =
TRUE, itfderived2 <> 0
 // references
the instance inst2

Example

Operator '__QUERYPOINTER'
This operator is an extension of the IEC 61131-3 standard.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US618

At runtime, the operator makes it possible to convert the type of an interface reference of a
function block to a pointer. The operator returns a BOOL result. TRUE means that CODESYS has
performed the conversion successfully.

NOTICE!
For compatibility, the definition of the pointer to be converted must be an exten-
sion of the base interface "__SYSTEM.IQueryInterface".

__QUERYPOINTER (<ITF_Source>, <Pointer_Dest>)
The operator receives an interface reference or a FB instance with the required target types
as the first operand and a pointer as the second operand. After processing __QUERYPOINTER,
Pointer_Dest receives the pointer to the reference or instance of a function block that the
ITF_Source interface reference currently refers to. Pointer_Dest is not typed and can be cast to
any type. You have to make sure of the type. For example, the interface could offer a method
that returns a type code.

Operators '__TRY', '__CATCH', '__FINALLY', '__ENDTRY'
These operators are extended from the IEC 61131-3 standard and they are used for specific
exception handling in IEC code.

__TRY
 <statements_try>
__CATCH(exec)
 <statements_catch>
__FINALLY
 <statements_finally>
__ENDTRY
 <statements_next>
When a statement in the __Try operator throws an exception, the application does not stop.
Instead, the application executes the statements in __Catch, starts the exception handling, and
then executes the statements in __FINALLY. The exception handling ends with __ENDTRY, and
the application executes the subsequent statements.
An IEC variable for an exception has the data type __System.ExceptionCode.

Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 619

If the statement in __TRY throws an exception, then program execution is not stopped.
Instead, the statement in __CATCH is executed. Therefore, in this example, the application
executes the exc function, then the statement in __FINALLY, and finally the statement in
__ENDTRY.

FUNCTION Tester : UDINT
VAR_INPUT
 count : UDINT;
END_VAR
VAR_OUTPUT
 strExceptionText : STRING;
END_VAR
VAR
 exc : __SYSTEM.ExceptionCode;
END_VAR

__TRY
Tester := tryFun(count := count, testcase := g_testcase); // This
statement is tested. If it throws an exception, then the statement
in __CATCH is executed first, and then the statement in __FINALLY.
__CATCH(exc)
HandleException(exc, strExceptionText => strExceptionText);
__FINALLY
GVL.g_count := GVL.g_count + 2;
__ENDTRY

Example

See also
● Ä Chapter 1.4.1.20.3.6.19 “Command 'Stop Execution on Handled Exceptions'”

on page 1043

TYPE ExceptionCode :
(
RTSEXCPT_UNKNOWN := 16#FFFFFFFF,
RTSEXCPT_NOEXCEPTION := 16#00000000,
RTSEXCPT_WATCHDOG := 16#00000010,
RTSEXCPT_HARDWAREWATCHDOG := 16#00000011,
RTSEXCPT_IO_CONFIG_ERROR := 16#00000012,
RTSEXCPT_PROGRAMCHECKSUM := 16#00000013,
RTSEXCPT_FIELDBUS_ERROR := 16#00000014,
RTSEXCPT_IOUPDATE_ERROR := 16#00000015,
RTSEXCPT_CYCLE_TIME_EXCEED := 16#00000016,
RTSEXCPT_ONLCHANGE_PROGRAM_EXCEEDED := 16#00000017,
RTSEXCPT_UNRESOLVED_EXTREFS := 16#00000018,
RTSEXCPT_DOWNLOAD_REJECTED := 16#00000019,
RTSEXCPT_BOOTPROJECT_REJECTED_DUE_RETAIN_ERROR := 16#0000001A,
RTSEXCPT_LOADBOOTPROJECT_FAILED := 16#0000001B,
RTSEXCPT_OUT_OF_MEMORY := 16#0000001C,
RTSEXCPT_RETAIN_MEMORY_ERROR := 16#0000001D,
RTSEXCPT_BOOTPROJECT_CRASH := 16#0000001E,
RTSEXCPT_BOOTPROJECTTARGETMISMATCH := 16#00000021,
RTSEXCPT_SCHEDULEERROR := 16#00000022,
RTSEXCPT_FILE_CHECKSUM_ERR := 16#00000023,
RTSEXCPT_RETAIN_IDENTITY_MISMATCH := 16#00000024,
RTSEXCPT_IEC_TASK_CONFIG_ERROR := 16#00000025,
RTSEXCPT_APP_TARGET_MISMATCH := 16#00000026,
RTSEXCPT_ILLEGAL_INSTRUCTION := 16#00000050,
RTSEXCPT_ACCESS_VIOLATION := 16#00000051,

Data Type
'__System.Exce
ptionCode'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US620

RTSEXCPT_PRIV_INSTRUCTION := 16#00000052,
RTSEXCPT_IN_PAGE_ERROR := 16#00000053,
RTSEXCPT_STACK_OVERFLOW := 16#00000054,
RTSEXCPT_INVALID_DISPOSITION := 16#00000055,
RTSEXCPT_INVALID_HANDLE := 16#00000056,
RTSEXCPT_GUARD_PAGE := 16#00000057,
RTSEXCPT_DOUBLE_FAULT := 16#00000058,
RTSEXCPT_INVALID_OPCODE := 16#00000059,
RTSEXCPT_MISALIGNMENT := 16#00000100,
RTSEXCPT_ARRAYBOUNDS := 16#00000101,
RTSEXCPT_DIVIDEBYZERO := 16#00000102,
RTSEXCPT_OVERFLOW := 16#00000103,
RTSEXCPT_NONCONTINUABLE := 16#00000104,
RTSEXCPT_PROCESSORLOAD_WATCHDOG := 16#00000105,
RTSEXCPT_FPU_ERROR := 16#00000150,
RTSEXCPT_FPU_DENORMAL_OPERAND := 16#00000151,
RTSEXCPT_FPU_DIVIDEBYZERO := 16#00000152,
RTSEXCPT_FPU_INEXACT_RESULT := 16#00000153,
RTSEXCPT_FPU_INVALID_OPERATION := 16#00000154,
RTSEXCPT_FPU_OVERFLOW := 16#00000155,
RTSEXCPT_FPU_STACK_CHECK := 16#00000156,
RTSEXCPT_FPU_UNDERFLOW := 16#00000157,
RTSEXCPT_VENDOR_EXCEPTION_BASE := 16#00002000
RTSEXCPT_USER_EXCEPTION_BASE := 16#00010000
) UDINT ;
END_TYPE

Operator '__VARINFO'
This operator is an extension of the IEC 61131-3 standard.
The operator yields information about a variable. You can save the information as data structure
in a variable of data type __SYSTEM.VAR_INFO.

<name of the info variable> : __SYSTEM.VAR_INFO; // Data structure
for info variable

<name of the info variable> := __VARINFO(<variable name>); // Call
of the operator

Syntax in the
declaration:

Syntax for the
call:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 621

FUNCTION_BLOCK FB_Velocity
VAR_INPUT
 rVelocity: REAL := 1.2;
END_VAR
VAR_OUTPUT
END_VAR
VAR
 infoVelocity: __SYSTEM.VAR_INFO; //Info of Velocity
END_VAR

infoVelocity := __VARINFO(rVelocity); // Gets the info of Velocity
locally

PROGRAM PLC_PRG
VAR
 iCounter : INT := 0; // Counts the calls
 infoCounter : __SYSTEM.VAR_INFO; //Info of Counter
 arrA : ARRAY [1..2, 1..2, 1..2] OF INT := [0, 1, 2, 3, 4, 5, 6,
7]; // Stores the A data
 infoA : __SYSTEM.VAR_INFO; //Info of A
 fbVel : FB_Velocity;
END_VAR

iCounter := iCounter + 1;
infoCounter := __VARINFO(iCounter);
infoA := __VARINFO(arrA);
fbVel();

The iCounter and arrA variables are recognized in the application code. The variable
information is saved in the infoCounter and infoA variables. Moreover, the FB_Velocity
function block is instantiated.

Example

Name Data type Initialization Description
ByteAddres
s

DWORD 0 Address of the variable
Example: 16#072E35EC
Note: For bit access of a variable <variable
name>.<bit index>, the address of the
variable that contains the bit is given.

ByteOffset DWORD 0 Offset of the variable address (in bytes).
Example: 13936 bytes.

Note: If the variable is global, then the offset
is relative to the beginning of the area. If
the variable is a local variable in a function
or method, then the offset is relative to the
current stack frame. If the variable is a local
variable in a function block, then the offset is
relative to the function block instance.

Data type
__SYSTEM.VAR_
INFO

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US622

Name Data type Initialization Description
Area DINT 0 Memory area number Area in the runtime

system.
Example: -1: Means that the variable is
not global in the memory, but relative to an
instance or on the stack.
Note: The memory areas are device-
dependent.

BitNr INT 0 Number of bits (in bytes)
Example: 16#00FF bytes

Note: If the variable is not an integer data
type, then: BitNr = -1 = 16#FFFF.

BitSize INT 0 Memory size of the variable (in bits)
Example: 16 bits

BitAddress UDINT 0 Bit address of the variable
Requirement: The variable is located in the
input memory area I, output memory area
Q, or marker memory area M. Otherwise the
value is undefined.

TypeClass TYPE_CLASS TYPE_BOOL Data type class of the variable
Example: TYPE_INT, TYPE_ARRAY
Note: For user-defined data types or function
block instances, TYPE_USERDEF is output as
the data type class.

TypeName STRING(79) '' Date type name of the variable as
STRING(79)
Note: For user-defined data types, the func-
tion block name or the DUT name is output.
Example: 'INT', 'ARRAY'

NumElement
s

UDINT 0 Number of array elements
Requirement: The variable has the data type
ARRAY.

Example: 8
BaseTypeCl
ass

TYPE_CLASS TYPE_BOOL Elementary basic data type of the array ele-
ments.
Requirement: The variable has the data type
ARRAY.

Example: TYPE_INT for arrA : ARRAY
[1..2,1..2,1..2] OF INT;

ElemBitSiz
e

UDINT 0 Memory size of the array element (in bits)
Requirement: The variable has the data type
ARRAY.

Example: 16 bits for arrA : ARRAY
[1..2,1..2,1..2] OF INT;

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 623

Name Data type Initialization Description
MemoryArea MEMORY_ARE

A
MEM_MEMORY Information about the memory area

● MEM_GLOBAL: Global memory area
For example in Area 0

● MEM_LOCAL: Local memory area
in Area -1

● MEM_MEMORY: Marker memory area %M
For example in 16#10 in Area 1

● MEM_INPUT: Input memory area %I
For example in 16#04 in Area 2

● MEM_OUTPUT: Output memory area %Q
For example in 16#08 in Area 3

● MEM_RETAIN: Retain memory area
For example in 16#20 in Area 0

Example: MEM_GLOBAL
Note: The memory area configuration is
device-dependent.

Symbol STRING(39) '' Variable name as STRING(39)
Example: 'iCounter', 'arrA'

Comment STRING(79) '' Comment of the variable declaration
Example: 'Counts the calls' or
'Stores the A data'

Operator '__CURRENTTASK'
This operator is an extension of the IEC 61131-3 standard.
In runtime mode, the operator provides information about the IEC task that is currently running.

The operator is supported only on target systems in which the target system
setting memory-layout\max-stack-size is set to a value > 0.

The operator allows for access to a structure with two variables:
● TaskIndex: Zero-based index that identifies the task
● pTaskInfo: Detailed information about the currently running task. It can be assigned to a

POINTER TO Task_Info2 from the library CmpIecTask.

The operator cannot be used in the declaration of a POU. This would result in an error mes-
sage. If the current task cannot be determined, then the TaskIndex -1 and the pTaskInfo
are zero.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US624

//Declaration
VAR
 idx : INT;
 pInfo : POINTER TO Task_Info2;
END_VAR

//Program code

idx := __CURRENTTASK.TaskIndex;
pInfo := __CURRENTTASK.pTaskInfo;

Example

Operator '__COMPARE_AND_SWAP
The multicore operator is an extension of the IEC 61131-3 standard.
The operator can be used for implementing a semaphore, for example to guarantee exclusive
access to a variable written to by different tasks.

__COMPARE_AND_SWAP gets a pointer to a data type __XWORD variable, an old value, and
a new value as its input (example: bMutex := __COMPARE_AND_SWAP(ADR(dwSynch),
dwOld, dwNew);). The old and new values can also be data type __XWORD variables. The
referenced __XWORD variable is compared with the old value and if both are equal, then the new
value is written. The result of the function is TRUE when the new value could be written.

The compiler automatically replaces the data type __XWORD with DWORD on
32-bit systems and LWORD on 64-bit systems.

This operation is atomic, so it cannot be interrupted by another task, even on multicore plat-
forms.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 625

The following example shows a typical usage. Exclusive access to a type STRING variable,
which is addressed via the pstrOutput pointer, should be implemented.

The access to a string is not atomic. If multiple tasks write to the same string at the same time,
then the contents may be inconsistent.
With this function, it is now possible to write the same STRING variable in different tasks.
FUNCTION ExclusiveStringWrite : BOOL
VAR_INPUT
 strToWrite : STRING;
 pstrOutput : POINTER TO STRING;
END_VAR
VAR_STAT
 dwSynch : __XWORD;
END_VAR
VAR
 bMutex: BOOL;
END_VAR

bMutex:= __COMPARE_AND_SWAP(ADR(dwSynch), 0, 1);
(* compare with 0 and write 1 as atomic operation *)
IF bMutex THEN // bMutex is TRUE if write
could be done
 pstrOutput^ := strToWrite; // Now you can write safely
on the string
 dwSynch := 0; // The __XWORD variable must
be reset.
 ExclusiveStringWrite := TRUE; // Writing was successful
ELSE
 ExclusiveStringWrite := FALSE; // Writing was not successful
END_IF

Example

See also
● Ä “Multicore operators” on page 546
● Ä Chapter 1.4.1.19.3.68 “Operator 'TEST_AND_SET'” on page 628

Operator '__XADD'
The multicore operator is an extension of the IEC 61131-3 standard.
The operator can be used for implementing an atomic counter. If an integer variable is incre-
mented by means of ordinary addition, for example iTest := iTest + 1;, then this opera-
tion is not executed atomically. Another access to the variable could take place between reading
and writing the variable.
If the counter is incremented in multiple tasks, then the counter result can be less than the
number of counting cycles. So if two tasks execute the above code one time and the variable
previously had the value 0, then the variable can then have the value 1. This is especially
problematic if arrays are being processed in multiple tasks and a unique index is required for the
array in each processing cycle.
When the __XADD operator is called, it gets a pointer to a type DINT variable as the first
summand and a type DINT value as the second summand. __XADD returns the old value of the
first summand and in the same step adds the second summand to the first summand.
For example, the function call can look like this: diOld := __XADD(ADR(diVar), deAdd);

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US626

The following example shows a typical usage. An array should be populated from two tasks. In
the process, all positions in the array should be used and no position should be overwritten.
With this function, multiple tasks can populate a Boolean array.
FUNCTION WriteToNextArrayPosition : BOOL
VAR_EXTERNAL
 g_diIndex : DINT; // Index and array are globally defined and
used by multiple tasks
 g_boolArray : ARRAY [0..1000] OF BOOL;
END_VAR
VAR_INPUT
 bToWrite : BOOL;
END_VAR
VAR
 diIndex : DWORD;
END_VAR

diIndex := __XADD(ADR(g_diIndex), 1); // Returns a unique
index
WriteToNextArrayPosition := FALSE;
IF (diIndex >= 0 AND diIndex <= 1000) THEN
 g_boolArray[diIndex] := bToWrite; //Writes to unique
index
 WriteToNextArrayPosition := TRUE; // TRUE: Array was
not full yet
END_IF

Example

See also
● Ä “Multicore operators” on page 546

Operator '__POSITION'
The operator is an extension of the IEC 61131-1 standard.
At runtime, the operator yields the position of a variable in the declaration part or in the imple-
mentation part of a POU. The operator has to be assigned the variables of type STRING in the
declaration part or in the implementation part.
Result of __POSITION
● Declaration part: 'Line <line number> (Decl)'
● Implementation part: 'Line <line number>, Column <column number> (Impl)'

PROGRAM PROG1
VAR
 strPOS : STRING := __POSITION(); //Yields the line number of
this declaration
 strlocalPOS : STRING;
END_VAR

 strlocalPOS := __POSITION(); //Yields the line and column
number of this assignment

Example

Operator '__POUNAME'
The operator is an extension of the IEC 61131-1 standard.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 627

At runtime, the operator yields the name of the POU that contains the operator __POUNAME.
The result is of type STRING.

The result of __POUNAME depends where it is used:

● In a program: program name
● In a function name: function name
● In a function block: function block name
● In a method: the method name qualified with the FB name
● In a Get/Set accessor of a property: the property name + Get/Set qualified with the FB name
● In a GVL: GVL name
● In a structure: structure name
● In a data structure UNION: union name

PROGRAM PROG1
VAR
 strPOU : STRING := __POUNAME(); //Yields 'PROG1'
 strlocalPOU : STRING;
END_VAR

 strlocalPOU := __POUNAME(); //Yields 'PROG1'

Example

Operator 'TEST_AND_SET'
The multicore operator is an extension of the IEC 61131-3 standard.
The operator can be used for implementing a semaphore, for example to guarantee exclusive
access to a variable written to by different tasks.
TEST_AND_SET gets a type DWORD variable as its input. Write access to this variable must be
possible. The variable is set to 1 and the previous value is returned as the result.

The operation is atomic, which means that it cannot be interrupted by another task. This also
applies to multicore platforms.
For example, the call in the program is dwOldValue := TEST_AND_SET(dw);, in which the
variables dwOldValue and dw must be of data type DWORD.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US628

The following example shows a typical usage. Exclusive access to a type STRING variable,
which is addressed via the pstrOutput pointer, should be implemented. The access to a
string is not atomic. If multiple tasks write to the same string at the same time, then the
contents may be inconsistent. With the TEST_AND_SET function, it is now possible to write the
same STRING variable in different tasks.
FUNCTION ExclusiveStringWrite : BOOL
VAR_INPUT
 strToWrite : STRING;
 pstrOutput : POINTER TO STRING;
END_VAR
VAR_STAT
 dwSynch : DWORD;
END_VAR
VAR
 dwOldValue: DWORD;
END_VAR

dwOldValue := TEST_AND_SET(dwSynch); // Write the 1 and read the
old value at the same time
IF dwOldValue = 0 THEN // 0 means: no other task is
currently writing
 pstrOutput^ := strToWrite; // Now you can write safely
on the string
 dwSynch := 0; // The DWORD must be reset
 ExclusiveStringWrite := TRUE; // Writing was successful
ELSE
 ExclusiveStringWrite := FALSE; // Writing was not successful

Example

See also
● Ä Chapter 1.4.1.19.3.64 “Operator '__COMPARE_AND_SWAP” on page 625
● Ä “Multicore operators” on page 546

Operator - Global namespace
This operator is an extension of the IEC 61131-3 standard.
An instance path that begins with a dot (.) always opens a global namespace. If there is a local
variable that has the same name <varname> as a global variable, then you refer to the global
variable as .<varname>.

Operator - Namespace for global variables lists
This operator is an extension of the IEC 61131-3 standard.
You can use the name of a global variables list (GVL) as a namespace identifier for the
variables that are defined in the list. This makes is possible to use variables with the same
name in different global variables lists and still access specific variables uniquely. You use a dot
(.) to prepend the name of the global variables list to the variable name.
<global variable list name>.<variable>

globlist1.varx := globlist2.varx;
The globlist1 and globlist2 global variables lists each contain a varx variable.
CODESYS copies the varx global variable from the globlist2 list to varx in the
globlist1 list.

Example

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 629

If you reference a variable that is declared in several global variables lists without referencing
the prepended list name, then an error message is printed.

Operator - Library namespace
This operator is an extension of the IEC 61131-3 standard.
Syntax: <library namespace>.<library identifier>
Example: LIB_A.FB_A
A library module identifier is appended with the library namespace (as a prefix separated by a
dot) for unique and qualified access to the library module. The namespace usually coincides
with the library name.

A library is included in a project and contains the module FB_A. However, the function block
with the same name is already available locally in the project. Identify the library module as
LIB_A.FB_A in order to access the library module, not the local function block.

var1 := FB_A(in := 12); // Call of the project function FB_A
var2 := LIB_A.FB_A(in := 22); // Call of the library function FB_A

Example

You can define another identifier for the namespace. To do this, specify a namespace in the
project information (library developers: when creating a library project). As an alternative, you
can specify a specific namespace for a library in the library manager in the “Properties” dialog
box (application developers: when creating an application).
See also
● Ä Chapter 1.4.1.16 “Using Libraries” on page 448
● Ä Chapter 1.4.1.20.3.14.4 “Command 'Placeholders'” on page 1120
● Ä Chapter 1.4.1.20.2.14 “Object 'Library Manager'” on page 874

Operator - Enumeration namespace
This operator is an extension of the IEC 61131-3 standard.
You can use the TYPE name of an enumeration for unique access to an enumeration constant.
In this way, you can use the same constant names in different enumerations.
The enumeration name is prepended to the constant name with a dot (.).
<enumeration name>.<constant name>

The constant Blue is a component of both the enumeration Colors and the enumeration
Feelings.
color := Colors.Blue; // Access to component blue in enumeration
Colors

feeling := Feelings.Blue; // Access to component blue in
enumeration Feelings

Example

Operator '__POOL'
The operator is an extension of the IEC 61131-3 standard.
The operator is used to reference objects which are managed in the global POU pool (in the
“POUs” view). The operator directly accesses objects in the “POUs” view.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US630

PROGRAM PLC_PRG
VAR
 svar_pou : STRING;
END_VAR

svar_pou := __POOL.POU();

Example

See also
● Ä Chapter 1.4.1.19.8 “Shadowing Rules” on page 745

Operator 'INI'

The INI operator is a CoDeSys V2.3 operator. In CODESYS V3, the FB_init
method replaces the INI operator. You can still use this operator in projects
that are imported from CoDeSys V2.3.

The INI operator is used for initializing retain variables of a function block instance used in a
POU.
Assign the operator to a Boolean variable.
<Boolean variable name> := INI <FB instance name> , <Boolean value>);
<Boolean value> : TRUE | FALSE
If the second parameter of the operator yields TRUE, then CODESYS initializes all retain varia-
bles that are defined in the function block <FB instance name>.

fbinst is the instance of the function block fb1, where the retain variable retvar is defined.

ST:

Declaration in the block:

VAR
 fbinst : fb1;
 b : BOOL;
END_VAR

Program part:

b := INI(fbinst, TRUE);
ivar := fbinst.retvar; (* => retvar is initialized *)

FBD

Examples

See also
● Ä Chapter 1.4.1.19.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 748
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301

Syntax:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 631

1.4.1.19.4 Operands
Constants are identifiers for unchangeable values. You can declare constants locally within a
POU or globally within a global variable list. The declaration segment is extended with the
keyword CONSTANT.

Constants are also character strings that represent the value of a base type, such as integers
or floating-point numbers (for example, 16#FFFF_FFFF, T#5s, or -1.234 E-5). To distinguish
between them, these constants are also called literals, literal constants, or unnamed constants.
There are logical (TRUE, FALSE) or numeric literals (3.1415, T#5s), but also character string
literals ('Hello world!', "black").

<scope> CONSTANT
 <identifier> : <data type> := <initial value> ;
END_VAR

<scope> : VAR | VAR_INPUT | VAR_STAT | VAR_GLOBAL
<data type>: <elementary data type | user defined data type |
function block >
<initial value> : literal value | identifier | expression
Allowed initial values:
● Literal (example: TRUE, FALSE, 16#FFFF_FFFF)
● Named constant that was declared at another location
● Simple expression composed of literals, also combined with simple operators, such as + - *
Inputs or function calls cannot be specified as an initial value.

VAR_GLOBAL CONSTANT
 g_ciMAX_A : INT := 100;
 g_ciSPECIAL : INT := g_ciMAX_A - 10;
END_VAR

Example

Constants are defined only for the declaration. The assignment of an initial value is required.
Within an implementation, constants are only read and therefore always appear on the right of
the assignment operator in a statement.
The constants are replaced with the initial value when the code is compiled. It also has to be
possible to calculate the initial value at compile time.
Constants of structured or user-defined types are calculated not until runtime. Structured con-
stants in programs or GVLs are calculated one time at program start. Structured constants in
functions or methods are calculated every time the function or method is called. Therefore, the
initialization of structured constants can depend on inputs or execute function calls.
See also
● Ä Chapter 1.4.1.19.4.1 “BOOL constants” on page 633
● Ä Chapter 1.4.1.19.4.2 “Numeric constants” on page 633
● Ä Chapter 1.4.1.19.4.3 “REAL/LREAL constants” on page 634
● Ä Chapter 1.4.1.19.4.4 “String Constants” on page 634
● Ä Chapter 1.4.1.19.4.6 “Date and Time Constants” on page 637
● Ä Chapter 1.4.1.19.4.5 “TIME/LTIME Constant” on page 635
● Ä Chapter 1.4.1.19.4.7 “Typed literals” on page 640

You can declare variables as either local in the declaration part of a POU or in a global variable
list. The allowed location of a variable depends on its data type.

Constants and
literals

Syntax declara-
tion

Variables

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US632

See also
● Ä Chapter 1.4.1.19.4.8 “Access to Variables in Arrays, Structures, and Blocks”

on page 641
● Ä Chapter 1.4.1.19.4.9 “Bit Access in Variables” on page 641

● Ä Chapter 1.4.1.19.4.10 “Addresses” on page 643
● Ä Chapter 1.4.1.19.4.11 “Functions” on page 645

See also
● Ä Chapter 1.4.1.8.2 “Declaration of Variables ” on page 222
● Ä Chapter 1.4.1.8.5 “Using input assistance” on page 260
● Ä Chapter 1.4.1.19.2.11 “Constant Variables - 'CONSTANT'” on page 534
● Ä Chapter 1.4.1.19.1.3.3 “ST expressions” on page 464

BOOL constants
BOOL constants are the truth values TRUE (1) and FALSE (0).

See also
● Ä Chapter 1.4.1.19.5.1 “Data type 'BOOL'” on page 647

Numeric constants
Numeric values can be binary, octal, decimal, and hexadecimal numbers. If an integer value is
not a decimal number, then you must write its base followed by the number sign (#) before the
integer constant. You enter the hexadecimal digit values for the numbers 10 to 15 as usual with
the letters A-F.
You can use an underscore within a numeric value.

14 decimal number
2#1001_0011 binary number
8#67 octal number
16#A hexadecimal number
DINT#16#A1 typed data type DINT# and base 16# combined

Examples:

This type of numeric value can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL, or LREAL.

Implicit conversions from "larger" to "smaller" types are not permitted. You
cannot simply use a DINT variable as an INT variable. For this, you have to
use a type conversion function.

See also
● Ä Chapter 1.4.1.19.3 “Operators” on page 542
● Ä Chapter 1.4.1.19.4.7 “Typed literals” on page 640

Other

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 633

As number constants basically are treated as integers, in divisions you must
enter a constant in the format of a floating-point number in order not to loose the
remainder. For example: Division 1/10 results in 0, division 1.0/10 results in
0.1.

REAL/LREAL constants
You can specify floating-point numbers as REAL and LREAL constants either in decimal notation
or exponential notation with mantissa and exponent The decimal point serves as the decimal
separator according to the International System of Units (English).

<significand> e | E <exponent>

exponent : -44..38 // REAL
exponent : -324..308 // LREAL

Table 38: REAL literal
7.4 Decimal number. 7,4 with a comma returns a compiler

error

1/3.0 Decimal fraction for 0.333333343
Note: In the case of division of integer types, the result
remains an integer type. In this case, the value is
rounded. For example, 1/3 yields 0 as the result.

1.64e+009 Exponential notation

-3.402823e+38 Smallest number

-1E-44 Largest negative number

1.0E-44 Smallest positive number

3.402823e+38 Largest number

Table 39: LREAL literal
-1.7976931348623157E+308 Smallest number

-4.94065645841247E-324 Largest negative number

4.94065645841247E-324 Smallest positive number

1.7976931348623157E+308 Largest number

Example

See also
● Ä Chapter 1.4.1.19.5.3 “Data type 'REAL' / 'LREAL'” on page 648

String Constants
A string constant is a character string enclosed in single straight quotation marks. The charac-
ters are coded according to the character set specified in ISO/IEC 8859-1. Therefore, a string
constant can include spaces and accented characters, as these belong to this character set.
This is also referred to as a string literal, or simply a string.

Syntax of expo-
nential notation

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US634

Example: 'Hello world!'
When a dollar sign ($) is in a string constant, the following two characters are interpreted as
a hexadecimal code according to the coding in ISO/IEC 8859-1. The code also corresponds to
ASCII code. In addition, please note the special cases.

Table 40: Hexadecimal code
String with $ code Interpretation
'$<8-bit code>' 8-bit code: Two-digit hexadecimal number that is interpreted according to

ISO/IEC 8859-1.
'$41' A
'$A9' ©
'$40' @
'$0D' Control character: Line break (corresponds to '$R')
'$0A' Control character: New line (corresponds to '$L' and '$N')

Table 41: Special cases
String with $ code Interpretation
'$L', ' $l' Control character: Line feed (corresponds to '$0A')

'$N', '$n' Control character: New line (corresponds to '$0A')

'$P', '$p' Control character: Form feed

'$R', '$r' Control character: Line break (corresponds to '$0D')

'$T', '$t' Control character: Tab

'$$' Dollar sign: §
'$'' Single straight quotation mark: '

Constant declaration

VAR CONSTANT
 constA : STRING := 'Hello world';
 constB : STRING := 'Hello world $21'; // Hello world!
END_VAR

Example

TIME/LTIME Constant
You can use TIME constants to operate the standard timer modules. The constant has a size of
32 bits and a resolution in milliseconds.
In addition, the time constant LTIME is available as a time basis for high-resolution timers. The
LTIME constant has a dimension of 64 bits and a resolution in nanoseconds.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 635

<time keyword> # <length of time>

<time keyword> : TIME | time | T | t
<length of time> : (<number of days>d)? (<number of hours>h)?
(<number of minutes>m)? (<number of seconds>s)? (<number of
milliseconds>ms)? // (...)? Optional
The order of time units must not be changed. However, it is not required to specify all units. It is
permitted to specify the units in uppercase.
Time units
● D | d: Days
● H | h: Hours
● M | m: Minutes
● s | s: Seconds
● MS | ms: Milliseconds

VAR
 timLength : TIME := T#14ms;
 timLength1 : TIME := T#100s12ms; // Overflow in the highest
unit is allowed.
 timLength2 : TIME := T#12h34m15s;
 timCompare : TIME;
 xIsOK: BOOL;

 timLongest := T#49D17H2M47S295MS; // 4294967295
END_VAR

IF timLength < T#15MS THEN
 IF timCompare < timLength1 THEN
 xIsOK := TRUE;
 END_IF;
END_IF

Table 42: Incorrect usage:
timIncorrect := t#5m68s; Overflow at a lower position
timIncorrect1 := 15ms; Time marker T# missing

timIncorrect2 := t#4ms13d; Incorrect order of time units

Examples
Correct time
constants of
an ST assign-
ment

<long time keyword> # <length of high resolution time>

<long time keyword> : LTIME | ltime
<length of high resolution time> : <length of time> (<number of
microseconds>us)? (<number of nanoseconds>ns)? // (...)? Optional
You can use the same units for LTIME constants as for TIME constants. You can also specify
microseconds and nanoseconds because the specified time is calculated in higher time resolu-
tion. LTIME literals are treated internally as data type LWORD and therefore the value resolved in
nanoseconds.

TIME constant
Syntax

LTIME constant
Syntax

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US636

Additional time units
● US | us: Microseconds
● NS | ns: Nanoseconds

PROGRAM PLC_PRG
VAR
 ltimLength := LTIME#1000d15h23m12s34ms2us44ns;
 ltimLength1 := LTIME#3445343m3424732874823ns;
END_VAR

Examples of
correct usage
of an ST
assignment:

See also
● Ä Chapter 1.4.1.19.5.5 “Data Type 'TIME'” on page 649
● Ä Chapter 1.4.1.19.4.6 “Date and Time Constants” on page 637

Date and Time Constants
Use the keyword DATE (D) to specify a date.

<date keyword>#<year>-<month>-<day>

<date keyword> : DATE | date | D | d
<year> : 1970-2106
<month> : 1-12
<day> : 1-31

DATE literals are treated internally as data type DWORD, which corresponds to an upper limit of
DATE#2106-2-7.

PROGRAM PRG_Date
VAR
 dateStart : DATE := DATE#2018-8-8;
 dateEnd : DATE := D#2018-8-31;
 dateCompare: DATE := date#1996-05-06;
 xIsDuringTheTime: BOOL;

 dateEarliest : DATE := d#1970-1-1; // = 0
 dateLatest : DATE := DATE#2106-2-7; // = 4294967295
END_VAR

IF dateStart < dateCompare THEN
 IF dateCompare < dateEnd THEN
 xIsDuringTheTime := TRUE;
 END_IF;
END_IF

Example

32-bit date spec-
ifications 'DATE'
Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 637

Use the keyword LDATE (LD) to specify a date.

<date keyword>#<year>-<month>-<day>

<date keyword> : LDATE | ldate | LD | ld
<year> : 1970-2262
<month> : 1-12
<day> : 1-31

LDATE literals are treated internally as data type LWORD, which corresponds to an upper limit of
DATE#2554-7-21.

PROGRAM PRG_Ldate
VAR
 ldateStart : LDATE := LDATE#2018-8-8;
 ldateEnd : LDATE := ldate#2018-8-31;
 ldateCompare: LDATE := LD#1996-05-06;
 xIsDuringTheTime: BOOL;

 ldateEarliest : LDATE := ld#1970-1-1; // = 0
 ldateLatest : LDATE := LDATE#2262-4-10; // = 16#7FFF63888C620000

 lwValue: LWORD;
END_VAR

IF ldateStart < ldateCompare THEN
 IF ldateCompare < ldateEnd THEN
 xIsDuringTheTime := TRUE;
 END_IF;
END_IF
lwValue := LDATE_TO_LWORD(ldateCompare);

Example

Use the keyword DATE_AND_TIME (DT) to specify a date and time.

<date and time keyword>#<date and time value>

<date and time keyword> : DATE_AND_TIME | date_and_time | DT | dt
<date and time value> : <year>-<month>-<day>-<hour>:<minute>:<second>
<year> : 1970-2106
<month> : 1-12
<day> : 1-31
<hour> : 0-24
<minute> : 0-59
<second> : 0-59
DATE_AND_TIME literals are treated internally as data type DWORD. The time is processed in
seconds and as a result can take on values from January 1, 1970 00:00 to February 7, 2106
06:28:15.

64-bit date spec-
ifications
'LDATE'
Syntax

32-bit date and
time specifica-
tions
'DATE_AND_TIM
E'
Syntax

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US638

PROGRAM PLC_PRG
VAR
 dtDate : DATE_AND_TIME := DATE_AND_TIME#1996-05-06-15:36:30;
 dtDate1: DATE_AND_TIME := DT#1972-03-29-00:00:00;
 dtDate2: DATE_AND_TIME := DT#2018-08-08-13:33:20.5;

 dtEarliest : DATE_AND_TIME :=
DATE_AND_TIME#1979-1-1-00:00:00; // 0
 dtLatest : DATE_AND_TIME := DATE_AND_TIME#2106-2-7-6:28:15; //
4294967295
END_VAR

Example

Use the keyword LDATE_AND_TIME (LDT) to specify a date and time.

<date and time keyword>#<long date and time value>

<date and time keyword> : LDATE_AND_TIME | ldate_and_time | LDT | ldt
<date and time value> : <year>-<month>-<day>-<hour>:<minute>:<second>
<year> : 1970-2106
<month> : 1-12
<day> : 1-31
<hour> : 0-24
<minute> : 0-59
<second> : 0-59 LDATE_AND_TIME#2262-4-10-23:59:59.99999999

DATE_AND_TIME literals are treated internally as data type LWORD. The time is processed in
seconds and as a result can take on values from January 1, 1970 00:00 to July 21, 2554
23:59:59.999999999.

PROGRAM PLC_PRG
VAR
 ldtDate : LDATE_AND_TIME := LDATE_AND_TIME#1996-05-06-15:36:30;
 ldtDate1: LDATE_AND_TIME := LDT#1972-03-29-00:00:00;
 ldtDate2: LDATE_AND_TIME := LDT#2018-08-08-13:33:20.5;

 dtEarliest : LDT := LDT#1979-1-1-00:00:00; // 0
 dtLatest : LDT := LDT#2266-4-10-23:59:59; // =
16#7FFF63888C620000
END_VAR

Example

Use the keyword TIME_OF_DAY (TOD) to specify a time.

64-bit date and
time specifica-
tions
'LDATE_AND_TI
ME'
Syntax

32-bit time spec-
ifications
'TIME_OF_DAY'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 639

<time keyword>#<time value>

<time keyword> : TIME_OF_DAY | time_of_day | TOD | tod
<time value> : <hour>:<minute>:<second>
<hour> : 0-23
<minute> : 0-59
<second> : 0.000-59.999
You can also specify fractions of a second. TIME_OF_DAY literals are treated internally as
DWORD and the value is resolved in milliseconds.

PROGRAM POU
VAR
 todClockTime : TIME_OF_DAY := TIME_OF_DAY#15:36:30.123;
 todEarliest : TIME_OF_DAY := TIME_OF_DAY#0:0:0.000;
 todLatest : TOD := TOD#23:59:59.999;
END_VAR

Examples

Use the keyword LTIME_OF_DAY (LTOD) to specify a time.

<time keyword>#<time value>

<time keyword> : LTIME_OF_DAY | ltime_of_day | LTOD | ltod
<time value> : <hour>:<minute>:<second>
<hour> : 0-23
<minute> : 0-59
<second> : 0.000-59.999999999
You can also specify fractions of a second. LTIME_OF_DAY literals are treated internally as
LWORD and the value is resolved in nanoseconds.

PROGRAM POU
VAR
 ltodClockTime : LTIME_OF_DAY := TIME_OF_DAY#15:36:30.123456789;
 todEarliest : TIME_OF_DAY := TIME_OF_DAY#0:0:0;
 todLatest : TOD := TOD#23:59:59.999999999;
END_VAR

Examples

See also
● Ä Chapter 1.4.1.19.5.7 “Date and Time Data Types” on page 650

Typed literals
With the exception of REAL/LREAL constants (LREAL is always used here), CODESYS uses
the smallest possible data type when calculating with IEC constants. If you want to use another
data type, then you can use typed literals without having to declare the constants explicitly.
When doing this, provide the constants with a prefix that indicates the type.
Syntax:
<type>#<literal>

Syntax

64-bit time spec-
ifications
'LTIME_OF_DAY'
Syntax

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US640

<type> defines the desired data type; possible values: BOOL, SINT, USINT, BYTE, INT, UINT,
WORD, DINT, UDINT, DWORD, REAL, LREAL. You must capitalize the entire type name.

<literal> defines the constants. The entry must match the data type defined in <Type>.

var1 := DINT#34;Example:

If CODESYS cannot convert the constant into the target type without data loss, then an error
message is issued.
You can use typed constants wherever you can use normal constants.

Access to Variables in Arrays, Structures, and Blocks
Syntax for access to
● Two-dimensional array component: <array name> [<1st dimension> , <2nd

dimension>]
● Structural variable: <structure name> . <component name>
● Function block and program variable: <function block name> | <program name> .

<variable name>
See also
● Ä Chapter 1.4.1.19.5.14 “Data Type 'ARRAY'” on page 660
● Ä Chapter 1.4.1.19.5.16 “Structure” on page 674
● Ä Chapter 1.4.1.20.2.18.2 “Object 'Function Block'” on page 883
● Ä Chapter 1.4.1.20.2.18.1 “Object 'Program'” on page 882

Bit Access in Variables

NOTICE!
Implement concurrent bit access by two tasks only if the processor can execute
bit access directly on the memory. All x86 and x64 systems have commands
for bit access in memory. Systems such as ARM and PPC cannot access bits
directly in the memory.
If two tasks execute bit access simultaneously, even though the processor
cannot perform bit access directly in the memory, then proceed as follows. Use
a semaphore (SysSemEnter) or a similar technique to prevent competing bit
access. However, it is best to execute the bit access within a task.

With index access, individual bits can be addressed in integer variables. Using a structure
variable or a function block instance, individual bits can be addressed symbolically.

You can address individual bits in integer variables. To do this, append the variable with a dot
and the index of the addressed bit. The bit-index can be given by any constant. Indexing is
0-based.
<integer variable name> . <index>
<integer data type> = BYTE | WORD | DWORD | LWORD | SINT | USINT |
INT | UINT | DINT | UDINT | LINT | ULINT

Index access to
bits integer vari-
ables
Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 641

In the program, the third bit of the variable wA is set to the value of variable xB. The constant
c_usiENABLE acts as an index to access the third bit of the variable iX.

PROGRAM PLC_PRG
VAR
 wA : WORD := 16#FFFF;
 xB : BOOL := 0;
END_VAR

// Index access in an integer variable
wA.2 := xB;

Result: wA = 2#1111_1111_1111_1011 = 16#FFFB

// GVL declaration
VAR_GLOBAL CONSTANT
 gc_usiENABLE : USINT := 2;
END_VAR

PROGRAM PLC_PRG
VAR
 iX : INT := 0;
END_VAR

// Constant as index
iX.gc_usiENABLE := TRUE; // Third bit in iX is set TRUE

Result: iX = 4

Example

Index access

Constant as
index

With the BIT data type, you can combine individual bits into a structure and then access them
individually. Then the bit is addressed with the component name.

TYPE S_CONTROLLER :
STRUCT
 bitOperationEnabled : BIT;
 bitSwitchOnActive : BIT;
 bitEnableOperation : BIT;
 bitError : BIT;
 bitVoltageEnabled : BIT;
 bitQuickStop : BIT;
 bitSwitchOnLocked : BIT;
 bitWarning : BIT;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 ControlDriveA : S_CONTROLLER;
END_VAR

// Symbolic bit access to bitEnableOperation
ControlDriveA.bitEnableOperation := TRUE;

Example
Type declara-
tion of the
structure:

Declaration
and write
access to a bit:

Symbolic bit
access in struc-
ture variables

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US642

In function blocks, you can declare variables for individual bits.

FUNCTION_BLOCK FB_Controller
VAR_INPUT
 bitSwitchOnActive : BIT;
 bitEnableOperation : BIT;
 bitVoltageEnabled : BIT;
 bitQuickStop : BIT;
 bitSwitchOnLocked : BIT;
END_VAR
VAR_OUTPUT
 bitOperationEnabled : BIT;
 bitError : BIT;
 bitWarning : BIT;
END_VAR
VAR
END_VAR
;

PROGRAM PLC_PRG
VAR
 fbController : FB_Controller;
END_VAR
// Symbolic bit access to bitSwitchOnActive
fbController(bitSwitchOnActive := TRUE);

Example

See also
● Ä Chapter 1.4.1.19.5.2 “Integer data types” on page 647
● Ä “Symbolic bit access in structure variables” on page 675
● Ä Chapter 1.4.1.19.5.10 “Data Type 'BIT'” on page 656

Addresses

CAUTION!
If you use pointers to addresses, then the contents of addresses can be moved
during an online change. If you use absolute addresses, then the contents of
addresses does not change during an online change.

%<memory area prefix> (<size prefix>)? <memory position>

<memory area prefix> : I | Q | M
<size prefix> : X | B | W | D
<memory position> : <number> (.<number>)* // Depends on the target
system
When defining an address, you use specific character strings to express memory position and
size. An address is marked with the percent sign (%), followed by the memory range prefix, the
optional size prefix, and the memory range position. The numbering that you use for addressing
the memory position depends on the target system.

Symbolic bit
access in func-
tion block
instances

Syntax:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 643

Memory
Range
Prefix

I Input memory range for "Inputs"
For physical inputs via input drivers, "Sensors"

Q Output memory range for "Outputs"
For physical outputs via output drivers, "Actuators"

M Flag memory range

Size Prefix Data Type Data Width
No size prefix Single bit
X Single bit
B BYTE 8 bits
W WORD 16 bits
D DWORD 32 bits

%QX7.5
%Q7.5

Single bit address of the output bit 7.5

%IW215 Word address of the input word 215
%QB7 Byte address of the output byte 7
%MD48 Address of a double word at memory position 48 in

flag memory
%IW2.5.7.1 Word address of an input word; interpretation

dependent on the current controller configuration
VAR wVar AT %IW0 : WORD; END_VAR Variable declaration with address information of an

input word
VAR xActuator AT %QW0 : BOOL; END_VAR Boolean variable declaration

Note: For Boolean variables, one byte is allocated
internally if a single bit address is not specified. A
change in the value of xActuator affects the range
from QX0.0 to QX0.7.

VAR xSensor AT IX7.5 : BOOL; END_VAR Boolean variable declaration with explicit specification
of a single bit address. On access, only the input bit
7.5 is read.

Examples

Make sure that the address is valid as follows:
To map a valid address in an application, you must know the required position (applicable
memory range) in the process image: input memory range (I), output memory range (Q), and
flag memory range (M) — see above. Furthermore, you have to specify the required size prefix:
bit, BYTE, WORD, DWord (see above: X, B, W, D)

Memory posi-
tion

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US644

The current device configuration and device settings (hardware structure, device description,
I/O settings) play a decisive part. Note specifically the differences in the interpretation of
bit addresses for devices with "byte addressing mode" and devices with "word-oriented IEC
addressing mode". For example, in a byte addressing device, the number before the point
of bit address %IX5.5 addresses byte 5. On the other hand, in a word-addressed device, it
addresses word 5. In contrast, addressing with a word or byte address is independent of the
device type: with %IW5 always word 5 is addressed and with byte address %IB5 always byte 5.
Regardless of size and addressing mode, you can address different memory cells therefore with
the same address information.
The following table shows the comparison of byte addressing and word-oriented IEC addressing
for bits, bytes, words, and double words. It also shows the overlapping memory ranges that are
present in the case of byte addressing (see also the example below the table).
Regarding syntax, note that the IEC addressing mode is always word-oriented. In this case, the
word number is located before the point and the bit number ofter the point.

n = byte number

D0 contains B0 - B3, W0 contains B0 and B1, W1 contains B1 and B2, and W2 contains B2
and B3. Consequently, in order to avoid overlap, you must not use W1 (also D1, D2, and D3)
for addressing.

Example of
memory range
overlapping in
the case of the
byte
addressing
mode

See also
● Ä Chapter 1.4.1.8.11.2 “AT declaration” on page 281

Functions
In ST, you can use a function call as an operand.

Result := Fct(7) + 3;Example:

This function yields the time (in milliseconds) that has elapsed since system boot.TIME() function

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 645

The data type is TIME.

systime := TIME();

Example in ST:

See also
● Ä Chapter 1.4.1.20.2.18.3 “Object 'Function'” on page 886

1.4.1.19.5 Data Types
In the programming, a variable is identified by its name and has an address in the memory of
the target system. Accordingly, variable names are identifiers under which the allocated memory
is addressed. The size of the variable is determined by its data type. This determines how much
memory is reserved for the variable and how the values in memory are to be interpreted. The
data type also determines which operators are allowed.
In CODESYS, there is also the capability of instantiating function blocks. Function block
instances then use memory like variables do. The memory requirement is determined by the
function block.
The following groups of data types are available.

A standard data type (or standard data type) is an elementary data type or a string data type.
<standard data type> : __UXINT | __XINT | __XWORD | BIT | BOOL |
BYTE | DATE | DATE_AND_TIME | DINT | DT | DWORD | INT | LDATE |
LDATE_AND_TIME | LDT | LINT | LREAL | LTIME | LTOD | LWORD | REAL |
SINT |STRING | TIME | TOD | TIME_OF_DAY | UDINT | UINT | ULINT | USINT
| WORD | WSTRING
See also
● Ä Chapter 1.4.1.19.5.10 “Data Type 'BIT'” on page 656
● Ä Chapter 1.4.1.19.5.1 “Data type 'BOOL'” on page 647
● Ä Chapter 1.4.1.19.5.2 “Integer data types” on page 647
● Ä Chapter 1.4.1.19.5.11 “Special Data Types '__UXINT', __XINT, and '__XWORD'”

on page 656
● Ä Chapter 1.4.1.19.5.3 “Data type 'REAL' / 'LREAL'” on page 648
● Ä Chapter 1.4.1.19.5.4 “Data Type 'STRING'” on page 649
● Ä Chapter 1.4.1.19.5.9 “Data type 'WSTRING'” on page 655
● Ä Chapter 1.4.1.19.5.5 “Data Type 'TIME'” on page 649
● Ä Chapter 1.4.1.19.5.6 “Data Type 'LTIME'” on page 650
● Ä Chapter 1.4.1.19.5.7 “Date and Time Data Types” on page 650

See also
● Ä Chapter 1.4.1.19.5.10 “Data Type 'BIT'” on page 656
● Ä Chapter 1.4.1.19.5.12 “Pointers” on page 656
● Ä Chapter 1.4.1.19.5.19 “Data type 'UNION'” on page 681
● Ä Chapter 1.4.1.19.5.15 “Data Type '__VECTOR'” on page 666

You can declare your own data types which are based on the default predefined data types or
existing data types.
These kinds of data types are called user-defined or user-specific. The data types are either
organized as its own DUT object or declared within the declaration part of a programming
object. Moreover, they are differentiated according to their purpose and syntax.

Standard data
types

Extensions of
the IEC 61131-3
standard

User-defined
data types

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US646

User-Defined
Data Type

Declaration See also

Alias DUT object Ä Chapter 1.4.1.19.5.18 “Alias” on page 680

Arrays Programming
object

Ä Chapter 1.4.1.19.5.14 “Data Type 'ARRAY'”
on page 660

Enumeration DUT object, pro-
gramming object

Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Reference Programming
object

Ä Chapter 1.4.1.19.5.13 “Reference” on page 658

Pointer Programming
object

Ä Chapter 1.4.1.19.5.12 “Pointers” on page 656

Structure DUT object Ä Chapter 1.4.1.19.5.16 “Structure” on page 674

Subrange type Programming
object

Ä Chapter 1.4.1.19.5.20 “Subrange types”
on page 681

Union DUT object Ä Chapter 1.4.1.19.5.19 “Data type 'UNION'”
on page 681

Vector DUT object Ä Chapter 1.4.1.19.5.15 “Data Type '__VECTOR'”
on page 666

NOTICE!
Note the recommendations for naming an identifier.

See also
● Ä Chapter 1.4.1.19.7 “Identifiers” on page 740

Data type 'BOOL'

Data Type Values Memory
BOOL TRUE (1), FALSE (0) 8 bit

See also
● Ä Chapter 1.4.1.19.4.1 “BOOL constants” on page 633

Integer data types
CODESYS provides the following integer data types.

Data Type Lower Limit Upper Limit Memory
BYTE 0 255 8 bit

WORD 0 65535 16 bit

DWORD 0 4294967295 32 bit

LWORD 0 264-1 64 bit

SINT -128 127 8 bit

USINT 0 255 8 bit

INT -32768 32767 16 bit

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 647

Data Type Lower Limit Upper Limit Memory
UINT 0 65535 16 bit

DINT -2147483648 2147483647 32 bit

UDINT 0 4294967295 32 bit

LINT -263 263-1 64 bit

ULINT 0 264-1 64 bit

NOTICE!
Information can be lost when converting from larger to smaller types.

See also
● Ä Chapter 1.4.1.19.4.2 “Numeric constants” on page 633

Data type 'REAL' / 'LREAL'
The data types REAL and LREAL are floating-point types according to IEEE 754. They are
necessary when using decimal numbers and floating-point numbers in decimal notation or
exponential notation.

Table 43: Target system: CODESYS Control Win V3
Data type Smallest value number Largest value number Storage space
REAL 1.0E-44 3.402823E+38 32 bit
LREAL 4.94065645841247E-32

4
1.7976931348623157E+308 64 bit

PROGRAM PLC_PRG
VAR
 rMax: REAL := 3.402823E+38; // Largest number
 rPosMin : REAL := 1.0E-44; // Smallest positive number
 rNegMax: REAL := -1.0E-44; // Largest negative number
 rMin: REAL := -3.402823E+38; // Smallest number

 lrMax: LREAL := 1.7976931348623157E+308; // Largest number
 lrPosMin : LREAL := 4.94065645841247E-324; // Smallest positve
number
 lNegMax: LREAL := -4.94065645841247E-324; // Largest negative
number
 lrMin: LREAL := -1.7976931348623157E+308; // Smallest number
END_VAR

Example

NOTICE!
Support for the LREAL data type depends on the target device in use. Refer
to the respective documentation as to whether or not the 64-bit type LREAL
is converted to REAL or remains as LREAL when compiling the application.
Conversion may result in the loss of information.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US648

NOTICE!
If the value of the REAL/LREAL number is outside of the value range of the
integer, then an undefined result is yielded from a data type conversion from
REAL or LREAL to SINT, USINT, INT, UINT, DINT, UDINT, LINT, or ULINT.
The result depends on the target system. An exception error is also possible.
To get code that is independent of the target system, the application must catch
value range violations.
If the REAL/LREAL number is within the value range of the integer data type,
then the conversion operates the same way on all systems.

See also
● Ä Chapter 1.4.1.19.4.3 “REAL/LREAL constants” on page 634

Data Type 'STRING'
A variable of data type STRING can have contain any character string. The amount of memory
that is reserved during a declaration refers to characters and is shown in parentheses or
brackets. If a size is not defined, then CODESYS allocates 80 characters by default.
As a rule, CODESYS does not limit the string length. However, the string function processes
lengths of 1–255 only. If a variable is initialized with a string that is too long for the data type,
then CODESYS truncates the string accordingly from the right.

NOTICE!
The memory required for a STRING variable is always one byte per character
plus one additional byte (for example, 81 bytes for a "STRING(80)" declaration).

str : STRING(35):= 'This is a String';Example of a
string declara-
tion with 35
characters:

See also
● Ä Chapter 1.4.1.19.4.4 “String Constants” on page 634
● Ä Chapter 1.4.1.19.5.9 “Data type 'WSTRING'” on page 655

Data Type 'TIME'
The data type is treated internally as DWORD. TIME is resolved in milliseconds.

Data type Lower limit Upper limit Storage space Resolution
TIME T#0d0h0m0s0ms T#49d17h2m47s29

5ms
32 bit Milliseconds

See also
● Ä Chapter 1.4.1.19.5.6 “Data Type 'LTIME'” on page 650
● Ä Chapter 1.4.1.19.4.5 “TIME/LTIME Constant” on page 635
● Ä Chapter 1.4.1.19.4.6 “Date and Time Constants” on page 637

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 649

Data Type 'LTIME'
You can use the data type LTIME as a time base for high-resolution timer. A high-resolution
timer has a resolution in nanoseconds.

Data Type Lower Limit Upper Limit Memory
LTIME LTIME#0NS LTIME#213503D23H34M3

3S709MS551US615NS
64 bits

Syntax:
LTIME#<long time declaration>
The time declaration can include units of time that apply for the TIME constant as well as:
● "US": microseconds
● "NS": nanoseconds

LTIME1 := LTIME#1000D15H23M12S34MS2US44NSExample:

See also
● Ä Chapter 1.4.1.19.5.5 “Data Type 'TIME'” on page 649
● Ä Chapter 1.4.1.19.3.40 “Time Conversion” on page 595

Date and Time Data Types
The data types DATE, DATE_AND_TIME (DT), and TIME_OF_DAY (TOD) are handled internally
like a DWORD (32-bit value).

The data types LDATE, LDATE_AND_TIME (LDT), and LTIME_OF_DAY (LTOD) are treated inter-
nally like an LWORD (64-bit value).

The values of these data types are measured in seconds, milliseconds, and
nanoseconds since 01/01/1970.

Data Type Lower Limit Upper Limit Memory Resolution
DATE DATE#1970-01-01

D#1970-01-01
DATE#2106-02-07
D#2106-02-07

32-bit Seconds
(although
only the day
is displayed)

DATE_AND_TIME
DT

DATE_AND_TIME#1970-1
-1-0:0:0
DT#1970-1-1-0:0:0

DATE_AND_TIME#2106-0
2-07-06:28:15
DT#2106-02-07-06:28:
15

32-bit Seconds

TIME_OF_DAY
TOD

TIME_OF_DAY#0:0:0
TOD#0:0:0

TIME_OF_DAY#23:59:59
.999
TOD#23:59:59.999

32-bit Milliseconds

Data Type
'LTIME'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US650

Data Type Lower Limit Upper Limit Memory Resolution
LDATE LDATE#1970-1-1

LD#1970-1-1
LDATE#2554-7-21
LD#2554-7-21

64-bit Nanosec-
onds
(although
only the day
is displayed)

LDATE_AND_TIME
LDT

LDATE_AND_TIME#1970-
1-1-0:0:0
LDT#1970-1-1-0:0:0

LDATE_AND_TIME#2554-
7-21:23:59:59.999999
99
LDT#2554-7-21-23:59:
59.99999999

64-bit Nanosec-
onds

LTIME_OF_DAY
LTOD

LTIME_OF_DAY#0:0:0
LTOD#0:0:0

LTIME_OF_DAY#23:59:5
9.999999999
LTOD#23:59:59.999999
999

64-bit Nanosec-
onds

VAR
 //Date
 dateBottom : DATE := DATE#1970-1-1;
 dateTop : DATE := DATE#2106-2-7;
 dateAppointment : DATE := D#2020-2-7; // D prohibited

 //Date and time
 dtBottom : DATE_AND_TIME := DATE_AND_TIME#1970-1-1-0:0:0;
 dtTop : DT := DATE_AND_TIME#2106-02-07-06:28:15;
 dtAppointment : DT := DT#2020-2-7-12:55:1.234;

 //Time of day
 todBottom : TIME_OF_DAY := TIME_OF_DAY#0:0:0;
 todTop : TOD := TIME_OF_DAY#23:59:59.999;
 todAppointment : TOD := TOD#12:3:4.567;

 // Long date
 ldateBottom : LDATE := LDATE#1970-1-1;
 ldateTop : LDATE := LDATE#2106-2-7;
 ldateAppointment : LDATE := LD#2020-2-7; // LD prohibited

 // Long date and time
 ldtBottom : LDATE_AND_TIME := LDATE_AND_TIME#1970-1-1-0:0:0;
 ldtTop : LDT := LDATE_AND_TIME#2262-4-10-23:59:59.99999999;
 ldtAppointment : LDT := LDT#2020-2-7-12:55:1.234567891;

 //Long time of day
 ltodBottom : LTIME_OF_DAY := LTIME_OF_DAY#0:0:0;
 ltodTop : LTOD := LTIME_OF_DAY#23:59:59.999999999 ;
 ltodAppointment : LTOD := LTOD#12:3:4.567890123;

END_VAR

See also
● Ä Chapter 1.4.1.19.4.6 “Date and Time Constants” on page 637

Data Type 'ANY' and 'ANY_<type>'
The data types ANY or ANY_<type> are used in interfaces of functions, function blocks, or
methods in order to type input parameters whose type is unknown or unspecified: The input
variables (VAR_INPUT) have a generic data type.

Example

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 651

The compiler replaces the type of input variable internally with the data structure described
below, whereby the value is not passed directly. Instead, a pointer is passed to the actual value
so only a variable can be passed. Therefore, the data type is only specified when it is called.
As a result, calls of such POUs can be made using arguments which each have different data
types.

Literals, replaced constants, and results of function calls or expressions cannot
be passed to input variables (VAR_IN_OUT).

When code is compiled, the input variables are typed internally with ANY data type by the
following structure. When the POU is called (at runtime), the argument is passed to a reference
parameter.

TYPE AnyType :
STRUCT
 // the type of the actual parameter
 typeclass : __SYSTEM.TYPE_CLASS ;
 // the pointer to the actual parameter
 pvalue : POINTER TO BYTE;
 // the size of the data, to which the pointer points
 diSize : DINT;
END_STRUCT
END_TYPE

You can access the input variable within the POU via this structure by means of
this structure, and for example query the passed value.

Internal data
structure for
'ANY' and
'ANY_<type>'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US652

This compares whether or not two input variables have the same type and the same value.

FUNCTION funGenericCompare : BOOL
VAR_INPUT
 any1 : ANY;
 any2 : ANY;
END_VAR
VAR
 pTest : POINTER TO ARRAY [0..100] OF POINTER TO DWORD;
 diCount: DINT;
END_VAR

pTest := ADR(any1);
Generic_Compare := FALSE;
IF any1.typeclass <> any2.typeclass THEN
 RETURN;
END_IF
IF any1.diSize <> any2.diSize THEN
 RETURN;
END_IF
// Byte comparison
FOR iCount := 0 TO any1.diSize-1 DO
 IF any1.pvalue[iCount] <> any2.pvalue[iCount] THEN
 RETURN;
 END_IF
END_FOR
Generic_Compare := TRUE;
RETURN;
// END_FUNCTION

Example

The syntax descriptions refer to a POU with exactly one parameter (an input variable).

FUNCTION | FUNCTION_BLOCK | METHOD <POU name> (: <return data
type>)?
VAR_INPUT
 <input variable name> : <generic data type>;
END_VAR

<generic data type> = ANY | ANY_BIT | ANY_DATE | ANY_NUM | ANY_REAL |
ANY_INT | ANY_STRING

Declaration
Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 653

FUNCTION funComputeAny : BOOL
VAR_INPUT
 anyInput1 : ANY; // valid data type see table
END_VAR
// END_FUNCTION

FUNCTION_BLOCK FB_ComputeAny
VAR_INPUT
 anyInput1 : ANY;
END_VAR
// END_FUNCTION_BLOCK

FUNCTION_BLOCK FB_ComputeMethod
METHOD methComputeAnny : BOOL
VAR_INPUT
 anyInput1 : ANY_INT; // valid data types are SINT, INT, DINT,
LINT, USINT, UINT, UDINT, ULINT
END_VAR
//END_METHOD

Example

With compiler versions > 3.5.1.0, the generic IEC data types in the table are
supported.

The table represents the hierarchy of the generic data types and provides information as to
which generic data type of the formal parameter (declaration) allows which elementary data
types of the argument (call).

Generic data type in the case of a
formal parameter

Permitted elementary data type in the case of
an actual parameter (argument)

ANY ANY_BIT ● BYTE
● WORD
● DWORD
● LWORD

ANY_DATE ● DATE
● DATE_AND_TIME, DT
● TIME_OF_DAY, TOD
● LDATE
● LDATE_AND_TIME, LDT
● LTIME_OF_DAY, LTOD

ANY_NUM ANY_REAL REAL, LREAL
ANY_INT USINT, UINT, UDINT, ULINT

SINT, INT, DINT, LINT
ANY_STRING STRING, WSTRING

The syntax descriptions refer to a POU with exactly one parameter, to which an argument is
passed. As a result, the data type of the argument specifies the generic data type of the input
variable. For example, arguments of the type BYTE, WORD, DWORD, LWORD can be passed to
a type ANY_BIT input variable.

Call

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US654

<variable name> := <function name> (<argument name>);
<argument name> : variable with valid data type

<function block name> (<input variable name> := <argument name>);

<function block name> . <method name> (<input variable name> :=
<argument name>);

PROGRAM PLC_PRG
VAR
 byValue : BYTE := 16#AB;
 iValue : INT := -1234;
 xResultByte : BOOL;
 xResultInt : BOOL;

 fbComputeAnyByte : FB_ComputeAny;
 fbComputeAnyInt : FB_ComputeAny;

 fbComputeM1 : FB_ComputeMethod;
 fbComputeM2 : FB_ComputeMethod;

 byN : BYTE := 1;
 wBitField1 : WORD := 16#FFFF;
 wBitField2 : WORD := 16#0001;
 xInit : BOOL;
 xResult : BOOL;
END_VAR

xResultByte := funComputeAny(byValue);
xResultInt := funComputeAny(iValue);

xResult := funGenericCompare(wBitField1, wBitField2);

fbComputeAnyByte(anyInput1 := byValue);
fbComputeAnyInt(anyInput1 := iValue);

fbComputeM1.methComputeAnny(anyInput1 := byValue);
fbComputeM2.methComputeAnny(anyInput1 := iValue);
// END_PRG

Example

Data type 'WSTRING'
The data type WSTRING is interpreted in Unicode format as opposed to the data type STRING
(ASCII). As a result of this coding, the number of displayed characters for WSTRING depends
on the characters. A length of 10 for WSTRING means that the length of the WSTRING can
take a maximum of 10 WORDs. However, for some characters in Unicode, multiple WORDS are
required for coding a character so that the number of characters do not have to correspond to
the length of the WSTRING (10 in this case). The data type requires 1 WORD of memory per
character plus 1 WORD of extra memory. Each STRING requires only 1 byte. The data type
WSTRING is terminated with a 0.

wstr : WSTRING := "This is a WString";Example:

See also
● Ä Chapter 1.4.1.19.5.4 “Data Type 'STRING'” on page 649
● Ä Chapter 1.4.1.19.4.4 “String Constants” on page 634

Syntax of func-
tion call

Syntax of func-
tion block call
Syntax of
method call

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 655

Data Type 'BIT'
The data type BIT is valid only in structures for the declaration of structure members or in a
function block for the declaration of variables. A BIT variable can have the values TRUE (1) and
FALSE (0). In this case, the variable requires exactly one bit of memory.

As a result, you can symbolically address individual bits by a name. BIT variables that are
declared in succession are bundled in bytes. In this way, you can optimize memory use as
opposed to BOOL types, which reserve 8 bits each. On the other hand, bit access is significantly
more time-consuming. Therefore, you should use the BIT data type only when you need to
define data in a predefined format.
See also
● Ä Chapter 1.4.1.19.4.9 “Bit Access in Variables” on page 641
● Ä Chapter 1.4.1.19.5.16 “Structure” on page 674

Special Data Types '__UXINT', __XINT, and '__XWORD'
Variables with these data types are converted to a platform-compliant data type, depending on
the target system.
CODESYS supports systems with address registers of 32-bit and 64-bit widths. For making the
IEC code as independent from the target system as possible, you use the pseudo data types
__UXINT, __XINT, and __XWORD. The compiler checks which target system types are current
and then converts these data types into the appropriate standard data types.
Moreover, type conversion operators are provided for variables of these data types.

 Type conversion on 64-bit
platforms

Type conversion on 32-bit
platforms

__UXINT ULINT UDINT
__XINT LINT DINT
__XWORD LWORD DWORD

See also
● Ä Chapter 1.4.1.19.3.37 “Integer Conversion” on page 572
● Ä Chapter 1.4.1.19.3.35 “Overloading” on page 565

Pointers
A pointer stores the memory address of objects, such as variables or function block instances,
at runtime.
Syntax of the pointer declaration:
<pointer name>: POINTER TO <data type | data unit type | function
block>;

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US656

FUNCTION_BLOCK FB_Point
VAR
 piNumber: POINTER TO INT;
 iNumber1: INT := 5;
 iNumber2: INT;
END_VAR

piNumber := ADR(iNumber1); // piNumber is assigned to address of
iNumber1
iNumber2 := piNumber^; // value 5 of iNumber1 is assigned to
variable iNumber2 by dereferencing of pointer piNumber

Example

Dereferencing a pointer means obtaining the value to which the pointer points. A pointer
is dereferenced by appending the content operator ^ to the pointer identifier (for example,
piNumber^ in the example above). To assign the address of an object to a pointer, the address
operator ADR is applied to the object: ADR(iNumber1).

In online mode, you can click “Edit è Browse è Go to Reference” to jump from a pointer to the
declaration location of the referenced variable.

NOTICE!
When a pointer points to an I/O input, write access applies. This leads to the
compiler warning “'<pointer name >' is not a valid assignment target” when the
code is generated. Example: pwInput := ADR(wInput);
If you require a construct of this kind, you have to first copy the input value
(wInput) to a variable with write access.

CODESYS permits the index access [] to variables of type POINTER TO, as well as to the
data types STRING or WSTRING.

The data, which the pointer points to, can also be accessed by appending the bracket operator
[] to the pointer identifier(for example, piData[i]). The base data type of the pointer deter-
mines the data type and the size of the indexed component. In this case, the index access to
the pointer is done arithmetically by adding the index dependent offset i * SIZEOF(<base
type>) to the address of the pointer. The pointer is dereferenced implicitly at the same time.

Calculation: piData[i] := (piData + i * SIZEOF(INT))^;

This is not: piData[i] != (piData + i)^.

Index access STRING
When you use the index access with a variable of the type STRING, you get the character at the
offset of the index expression. The result is of type BYTE. For example, sData[i] returns the
i-th character of the character string sData as SINT (ASCII).

Index access WSTRING
When you use the index access with a variable of the type WSTRING, you get the character at
the offset of the index expression. The result is of type WORD. For example, wsData[i] returns
the i-th character of the character string as INT (Unicode).

The result of the difference between two pointers is a value of type DWORD, even on 64-bit
platforms when the pointers are 64-bit pointers.

Index access to
pointers

Subtracting
pointers

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 657

Using references provides the advantage of guaranteeing type safety. That is
not the case with pointers.

The memory access of pointers can be checked at runtime by the implicit
monitoring function CheckPointer.

See also
● Ä Chapter 1.4.1.20.3.2.38 “Command 'Go To Reference'” on page 979
● Ä Chapter 1.4.1.20.4.10.4 “Dialog 'Properties' - 'Build'” on page 1159
● Ä Chapter 1.4.1.19.3.32 “Operator 'Content Operator'” on page 564
● Ä Chapter 1.4.1.19.3.31 “Operator 'ADR'” on page 563
● Ä Chapter 1.4.1.20.2.19.10 “POU 'CheckPointer'” on page 917

Reference
A reference implicitly refers to another object. When accessed, the reference is implicitly dere-
ferenced, and therefore does not need a special content operator ^ such as a pointer.
<identifier> : REFERENCE TO <data type> ;
<data type>: base type of the reference

PROGRAM PLC_PRG
VAR
 rspeA : REFERENCE TO DUT_SPECIAL;
 pspeA : POINTER TO DUT_SPECIAL;
 speB : DUT_SPECIAL;
END_VAR

rspeA REF= speB; // Reference rspeA is alias for speB. The code
corresponds to pspeA := ADR(speB);
rspeA := speD; // The code corresponds to pspeA^ := speB;

Example

The readability of a program is made difficult when the same memory cell is
accessed simultaneously by means of an identifier and its alias (for example,
speB and rspeA).

NOTICE!
With compiler version >= V3.3.0.0, references are initialized (at 0).

Syntax

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US658

NOTICE!
If a reference refers to a device input, then the access (for example, rInput
REF= Input;) is applies as write access. This leads to a compiler warning
when the code is generated: "...invalid assignment target".

If you require a construct of this kind, you have to first copy the input value
(rInput) to a variable with write access.

ariTest : ARRAY[0..9] OF REFERENCE TO INT;
priTest : POINTER TO REFERENCE TO INT;
rriTest : REFERENCE TO REFERENCE TO INT;
rbitTest : REFERENCE TO BIT;
A reference type must not be used as the base type of an array, pointer, or reference. Further-
more, a reference must not refer to a bit variable. These kinds of constructs generate compiler
errors.

A reference has the following advantages over a pointer:
● Easier to use:

A reference can access the contents of the referenced object directly and without derefer-
encing.

● Finer and simpler syntax when passing values:
Call of a function block which passes a reference without an address operator instead of a
pointer
Example: fbDoIt(riInput:=iValue);
Instead of: fbDoIt_1(piInput:=ADR(iValue));

● Type safety:
When assigning two references, the compiler checks whether their base types match. This
is not checked in the case of pointers.

You can use the operator __ISVALIDREF to check whether or not a reference points to a valid
value (meaning a value not equal to 0).

<Boolean variable name> := __ISVALIDREF(<reference name>);
<reference name>: Identifier declared with REFERENCE TO
The Boolean variable is TRUE when the reference points to a valid value. Otherwise it is FALSE.

Invalid declara-
tions

Comparison of
reference and
pointer

Testing the val-
idity of a refer-
ence
Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 659

PROGRAM PLC_PRG
VAR
iAlfa : INT;
riBravo : REFERENCE TO INT;
riCharlie : REFERENCE TO INT;
bIsRef_Bravo : BOOL := FALSE;
bIsRef_Charlie : BOOL := FALSE;
END_VAR

iAlfa := iAlfa + 1;
riBravo REF= iAlfa;
riCharlie REF= 0;
bIsRef_Bravo := __ISVALIDREF(riBravo); (* becomes TRUE,
because riBravo references to iAlfa, which is non-zero
*)
bIsRef_Charlie := __ISVALIDREF(riCharlie); (* becomes FALSE,
because riCharlie is set to 0 *)

Example

In compiler version 3.5.7.40 and later, the implicit monitoring function
“CheckPointer” acts on variables of type REFERENCE TO in the same way as
for pointer variables.

See also
● Ä Chapter 1.4.1.19.1.3.4.6 “Assignment Operator 'REF='” on page 468
● Ä Chapter 1.4.1.20.2.19.10 “POU 'CheckPointer'” on page 917

Data Type 'ARRAY'
An array is a collection of data elements of the same data type. CODESYS supports one- and
multi-dimensional arrays of fixed or variable length.

You can define arrays in the declaration part of a POU or in global variable lists.

<variable name> : ARRAY[<dimension>] OF <data type> (:=
<initialization>)? ;

<dimension> : <lower index bound>..<upper index bound>
<data type> : elementary data types | user defined data types |
function block types
// (...)? : Optional

<variable name> : ARRAY[<1st dimension> (, <next dimension>)+]
OF <data type> (:= <initialization>)? ;

<1st dimension> : <1st lower index bound>..<1st upper index bound>
<next dimension> : <next lower index bound>..<next upper index bound>
<data type> : elementary data types | user defined data types |
function block types
// (...)+ : One or more further dimensions
// (...)? : Optional
The index limits are integers; maximum of the data type DINT.

Array of fixed
length
Syntax of the
declaration of a
one-dimen-
sional array

Syntax of the
declaration of a
multi-dimen-
sional array

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US660

<variable name>[<index of 1st dimension> (, <index of next
dimension>)*]
// (...)* : 0, one or more further dimensions

Note the capability of using the implicit monitoring function CheckBounds() to
monitor the maintenance of the index limits at runtime.

VAR
 aiCounter : ARRAY[0..9] OF INT;
END_VAR

Lower index limit: 0
Upper index limit: 9

aiCounter : ARRAY[0..9] OF INT := [0, 10, 20, 30, 40, 50, 60, 70,
80, 90];

iLocalVariable := aiCounter[2];
The value 20 is assigned to the local variable.

Example
One-dimen-
sional array of
10 integer ele-
ments

Initialization

Data access

VAR
 aiCardGame : ARRAY[1..2, 3..4] OF INT;
END_VAR

1st dimension: 1 to 2
2nd dimension: 3 to 4

aiCardGame : ARRAY[1..2, 3..4] OF INT := [2(10),2(20)]; // Short
notation for [10, 10, 20, 20]

iLocal_1 := aiCardGame[1, 3]; // Assignment of 10
iLocal_2 := aiCardGame[2, 4]; // Assignment of 20

Example
2-dimensional
array

Initialization

Data access

Syntax for data
access

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 661

VAR
 aiCardGame : ARRAY[1..2, 3..4, 5..6] OF INT;
END_VAR

1st dimension: 1 to 2
2nd dimension: 3 to 4
3rd dimension: 5 to 6
2 * 2 * 2 = 8 array elements

aiCardGame : ARRAY[1..2, 3..4, 5..6] OF INT := [10, 20, 30, 40, 50,
60, 70, 80];

iLocal_1 := aiCardGame[1, 3, 5]; // Assignment of 10
iLocal_2 := aiCardGame[2, 3, 5]; // Assignment of 20
iLocal_3 := aiCardGame[1, 4, 5]; // Assignment of 30
iLocal_4 := aiCardGame[2, 4, 5]; // Assignment of 40
iLocal_5 := aiCardGame[1, 3, 6]; // Assignment of 50
iLocal_6 := aiCardGame[2, 3, 6]; // Assignment of 60
iLocal_7 := aiCardGame[1, 4, 6]; // Assignment of 70
iLocal_8 := aiCardGame[2, 4, 6]; // Assignment of 80

aiCardGame : ARRAY[1..2, 3..4, 5..6] OF INT := [2(10), 2(20),
2(30), 2(40)]; // Short notation for [10, 10, 20, 20, 30, 30, 40,
40]

iLocal_1 := aiCardGame[1, 3, 5]; // Assignment of 10
iLocal_2 := aiCardGame[2, 3, 5]; // Assignment of 10
iLocal_3 := aiCardGame[1, 4, 5]; // Assignment of 20
iLocal_4 := aiCardGame[2, 4, 5]; // Assignment of 20
iLocal_5 := aiCardGame[1, 3, 6]; // Assignment of 30
iLocal_6 := aiCardGame[2, 3, 6]; // Assignment of 30
iLocal_7 := aiCardGame[1, 4, 6]; // Assignment of 40
iLocal_8 := aiCardGame[2, 4, 6]; // Assignment of 40

Example
3-dimensional
array

Initialization

Data access

Initialization

Data access

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US662

TYPE DATA_A
STRUCT
 iA_1 : INT;
 iA_2 : INT;
 dwA_3 : DWORD;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 aData_A : ARRAY[1..3, 1..3, 1..10] OF DATA_A;
END_VAR

The array aData_A consists of a total of 3 * 3 * 10 = 90 array elements of data type DATA_A.

aData_A : ARRAY[1..3, 1..3, 1..10] OF DATA_A := [(iA_1 := 1,
iA_2 := 10, dwA_3 := 16#00FF),(iA_1 := 2, iA_2 := 20, dwA_3 :=
16#FF00),(iA_1 := 3, iA_2 := 30, dwA_3 := 16#FFFF)];

In the example, only the first 3 elements are initialized explicitly. Elements to which no initiali-
zation value is assigned explicitly are initialized internally with the default value of the basic
data type. This initializes the structure components at 0 starting with the element aData_A[2,
1, 1].

iLocal_1 := aData_A[1,1,1].iA_1; // Assignment of 1
dwLocal_2 := aData_A[3,1,1].dwA_3; // Assignment of 16#FFFF

Example
3-dimensional
arrays of a
user-defined
structure

Initialize parti-
ally

Data access

FUNCTION BLOCK FBObject_A
VAR
 iCounter : INT;
END_VAR
...

PROGRAM PLC_PRG
VAR
 aObject_A : ARRAY[1..4] OF FBObject_A;
END_VAR

The array aObject_A consists of 4 elements. Each element instantiates a FBObject_A
function block.

aObject_A[2]();

Example
Array of a
function block

Function call

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 663

FUNCTION_BLOCK FB_Something
VAR
 _nId : INT;
 _lrIn : LREAL;
END_VAR
...

METHOD FB_Init : BOOL
VAR_INPUT
 bInitRetains : BOOL;
 bInCopyCode : BOOL;
 nId : INT;
 lrIn : LREAL;
END_VAR

_nId := nId;
_lrIn := lrIN;

The function block FB_Something has a method FB_Init that requires 2 parameters.

PROGRAM PLC_PRG
VAR
 fb_Something_1 : FB_Something(nId := 11, lrIn := 33.44);
 a_Something : ARRAY[0..1, 0..1] OF FB_Something[(nId := 12,
lrIn := 11.22), (nId := 13, lrIn := 22.33), (nId := 14, lrIn :=
33.55),(nId := 15, lrIn := 11.22)];
END_VAR

Example
Implementa-
tion of
FB_Something
with method
FB_Init

Instantiation of
the array with
initialization

The declaration of an "array of arrays" is an alternative syntax for multidimensional arrays. A
collection of elements is nested instead of dimensioning the elements. The nesting depth is
unlimited.

<variable name> : ARRAY[<first>] (OF ARRAY[<next>])+ OF <data
type> (:= <initialization>)? ;

<first> : <first lower index bound>..<first upper index bound>
<next> : <lower index bound>..<upper index bound> // one or more
arrays
<data type> : elementary data types | user defined data types |
function block types
// (...)+ : One or more further arrays
// (...)? : Optional

<variable name>[<index of first array>] ([<index of next array>])+ ;
// (...)* : 0, one or more further arrays

Array of arrays

Syntax for dec-
laration

Syntax for data
access

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US664

PROGRAM PLC_PRG
VAR
 aiPoints : ARRAY[1..2,1..3] OF INT := [1,2,3,4,5,6];
 ai2Boxes : ARRAY[1..2] OF ARRAY[1..3] OF INT := [[1, 2, 3],
[4, 5, 6]];
 ai3Boxes : ARRAY[1..2] OF ARRAY[1..3] OF ARRAY[1..4] OF INT :=
[[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], [[13, 14, 15,
16], [17, 18, 19, 20], [21, 22, 23, 24]]];
 ai4Boxes : ARRAY[1..2] OF ARRAY[1..3] OF ARRAY[1..4] OF
ARRAY[1..5] OF INT;
END_VAR

aiPoints[1, 2] := 1200;
ai2Boxes[1][2] := 1200;

The variables aiPoints and ai2Boxes collect the same data elements, however the syntax
for the declaration differs from that of the data access.

Example

In function blocks, functions, or methods, you can declare arrays of variable length in the
VAR_IN_OUT declaration section.

The LOWER_BOUND and UPPER_BOUND operators are provided for determining the index limits
of the actual used array at runtime.

Only statically declared arrays (not arrays generated by means of the operator
__NEW) may be passed to an array with variable length.

Array of variable
length

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 665

<variable name> : ARRAY[*] OF <data type> (:= <initialization>)? ;

<data type> : elementary data types | user defined data types |
function block types
// (...)? : Optional

<variable name> : ARRAY[* (, *)+] OF <data type> (:=
<initialization>)? ;

<data type> : elementary data types | user defined data types |
function block types
// (...)+ : One or more further dimensions
// (...)? : Optional

LOWER_BOUND(<variable name> , <dimension number>)
UPPER_BOUND(<variable name> , <dimension number>)

The SUM function adds the integer values of the array elements and returns the calculated sum
as a result. The sum is calculated across all array elements available at runtime. As the actual
number of array elements will only be known at runtime, the local variable is declared as a
one-dimensional array of variable length.

FUNCTION SUM: INT;
VAR_IN_OUT
 aiData : ARRAY[*] OF INT;
END_VAR
VAR
 diCounter, diResult : DINT;
END_VAR

diResult := 0;
FOR diCounter := LOWER_BOUND(aiData, 1) TO UPPER_BOUND(aiData, 1)
DO // Calculates the length of the current array
 diResult := diResult + A[i];
END_FOR;
SUM := diResult;

Example

See also
● Ä Chapter 1.4.1.8.2.3 “Declaring arrays” on page 228
● Ä Chapter 1.4.1.20.2.19.1 “POU 'CheckBounds'” on page 906

Data Type '__VECTOR'

Vector operations are supported natively only on 64-bit processors and offer
a performance advantage only on these processors. The data sheet of the
controller provides information about the processor used on the controller.

Currently, vector operations on the x86/64-bit platforms with SSE2 and ARM64 with NEON are
supported natively. On all other platforms, vector operations are translated into individual state-
ments. For example, vector addition is then executed with multiple single addition operations.

Syntax of the
declaration of a
one-dimen-
sional array of
variable length

Syntax of the
declaration of a
multi-dimen-
sional array of
variable length

Syntax of the
operators for
calculating the
limit index

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US666

The command set extensions of the processors are SIMD extensions. SIMD (Single Instruction,
Multiple Data) describes a computer architecture in which multiple data sets of the same type
are processed simultaneously in parallel and therefore faster with one command call. In vector
operations, for example, 4 pairs of numbers can then be added at the same time.

<variable name> : __VECTOR[<vector size>] OF <element type> (:=
<initialization>)? ;

<vector size> : 1 |2 | 3 | 4 | 5| 6 | 7| 8
<element type> : REAL | LREAL
// (...)? : Optional
A vector data type is an array of floating-point numbers with a maximum of 8 elements. The
operators __vc<operator name> are available for this data type. You can use these to
implement vector operations without additional function calls.

<variable name>[<index>]
<index> : 0 | 1 | 2| 3 | 4 | 5| 6 | 7
When indexing a vector variable, you can access a single element of the vector. The index
starts at 0 and goes until <vector size> - 1.

PROGRAM PLC_PRG
VAR
 vcA : __VECTOR[3] OF REAL;
END_VAR

vcA[0] := 1.1;
vcA[1] := 2.2;
vcA[2] := 3.3;

Example

Use the optimal vector size depending on your target system as the vector size
in order to program the most efficient code possible.

For target systems whose computer architecture is generally suitable for vector processing, we
do not recommend using vectors of arbitrary size. There is an optimal vector size depending on
the type of data processing of the processor. Vectors that are declared with this array size are
processed as quickly as possible. Vectors that are declared as a larger array do not have an
advantage in speed. Vectors that are declared as smaller arrays do not take full advantage of
the processor's capabilities.
You can query the optimal size at runtime. You can find the information in
the constants Constants.vcOptimalREAL (for vectors with REAL elements) and
Constants.vcOptimalLREAL (for vectors with LREAL elements). The constants have the
LREAL data type. If a constant returns the value 1 as the optimal value, then this means that
accelerated vector processing is not available for the target system.

Syntax

Syntax for index
access

Determining the
optimal vector
size

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 667

PROGRAM PLC_PRG
VAR
 iOVS_REAL : INT; // Optimal vector size for REAL elements
 iOVS_LREAL : INT; // Optimal vector size for LREAL elements
END_VAR

iOVS_REAL := Constants.vcOptimalREAL;
iOVS_LREAL := Constants.vcOptimalLREAL;

An application that is loaded on the CODESYS Control Win V3 x64 target system returns the
following values at runtime:

Example

The operator calculates the sum of two vectors.

<vector variable> := <1st vector operand> __VCADD <2nd vector
operand>;

FUNCTION_BLOCK FB_ADD
VAR
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 3);
 vcResult : __VECTOR[3] OF REAL;
END_VAR

vcResult := vcA __VCADD vcB;

Example of
addition

The operator calculates the difference between two vectors.

<vector variable> := <vector minuend> __VCSUB <vector subtrahend>;

Operator
__VCADD
Syntax

Operator
__VCSUB
Syntax

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US668

FUNCTION_BLOCK FB_SUB
VAR
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 3);
 vcResult0 : __VECTOR[3] OF REAL;
 vcResult1 : __VECTOR[3] OF REAL;
END_VAR

vcResult0 := vcA __VCSUB vcB;
vcResult1 := vcB __VCSUB vcA;

Example of
subtraction

The operator calculates the product of two vectors or a scalar (floating-point number) and a
vector.

<vector variable> := <1st vector operand> __VCMUL <2nd vector
operand> | <scalar operand> __VCMUL <vector operand> | <vector
operand> __VCMUL <scalar operand> ;

FUNCTION_BLOCK FB_MUL
VAR
 rScalar : REAL := 1.1;
 vcA : __VECTOR[3] OF REAL;
 vcB : __VECTOR[3] OF REAL;
 vcResult0 : __VECTOR[3] OF REAL;
 vcResult1 : __VECTOR[3] OF REAL;
 vcResult2 : __VECTOR[3] OF REAL;
END_VAR

vcResult0 := vcA __VCMUL vcB;
vcResult1 := rScalar __VCMUL vcB;
vcResult2 := vcA __VCMUL 3.3;

Example of
multiplication

The operator calculates the quotient of two vectors or a vector and a scalar.

<vector variable> := <vector dividend> __VCDIV <vector divisor> | <
vector dividend> __VCMUL <scalar divisor> ;

Operator
__VCMUL
Syntax

Operator
__VCDIV
Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 669

FUNCTION_BLOCK FB_DIV
VAR
 iScalar : INT := 3;
 rScalar : REAL := 1.5;
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 3);
 vcResult0 : __VECTOR[3] OF REAL;
 vcResult1 : __VECTOR[3] OF REAL;
 vcResult2 : __VECTOR[3] OF REAL;
END_VAR

vcResult0 := vcA __VCDIV vcB;
// ERROR CODE vcResult1 := rScalar __VCDIV vcB;
// ERROR CODE vcResult1 := iScalar __VCDIV vcB;
// ERROR CODE vcResult1 := 3.3 __VCDIV vcB;
vcResult2 := vcA __VCDIV 1.5;
vcResult2 := vcA __VCDIV iScalar;
vcResult2 := vcA __VCDIV rScalar;

Example of
division

The operator calculates the dot product (scalar product) of two vectors.

<scalar variable> := <1st vector operand> __VCDOT <2nd vector
operand> ;

FUNCTION_BLOCK FB_DOT
VAR
 rResult : REAL;
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 3);
END_VAR

rResult := vcA __VCDOT vcB; // = 18

Example of a
dot product

The operator calculates the square root of each element in the vector.

<vector variable> := __VCSQRT(<vector operand>);

FUNCTION_BLOCK FB_SQRT
VAR
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(4, 9, 16);
 vcResult0 : __VECTOR[3] OF REAL;
END_VAR

vcResult0 := __VCSQRT(vcA);

Example of a
square root

Operator
__VCDOT
Syntax

Operator
__VCSQRT
Syntax

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US670

The operator calculates the maximum vector of two vectors. The maximum is determined
element by element.

<vector variable> := __VCMAX(<1st vector operand>, <2nd vector
operand>);

FUNCTION_BLOCK FB_MAX
VAR
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 6);
 vcResult0 : __VECTOR[3] OF REAL;
END_VAR

vcResult0 := __VCMAX(vcA, vcB);

Example of a
maximum
vector

The operator calculates the minimum vector of two vectors. The minimum is determined ele-
ment by element.

<vector variable> := __VCMIN(<1st vector operand>, <2nd vector
operand>);

FUNCTION_BLOCK FB_MIN
VAR
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 6);
 vcResult0 : __VECTOR[3] OF REAL;
END_VAR

vcResult0 := __VCMIN(vcA, vcB);

Example of a
minimum
vector

The operator sets all elements of a vector in a statement. The elements have the REAL data
type.

<vector variable> := __VCSET_REAL(<first literal>, (< next
literal>)+) ;
(...)+ // number of elements have to match

FUNCTION_BLOCK FB_SET
VAR
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 3);
END_VAR

vcA := __VCSET_REAL(4, 4, 4);
vcB := __VCSET_REAL(1.1, 2.2, 3.3);

Example

Operator
__VCMAX
Syntax

Operator
__VCMIN
Syntax

Operator
__VCSET_REAL
Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 671

The operator sets all elements of a vector at once in a statement. The elements have the LREAL
data type.
They can be used wherever variables are valid, such as in assignments in implementations or
as parameters in function calls.

<vector variable> := __VCSET_LREAL(<first literal>, (< next
literal>)+) ;
(...)+ // number of elements have to match

FUNCTION_BLOCK FB_SET
VAR
 vclA : __VECTOR[3] OF LREAL := __VCSET_LREAL(3, 3, 3);
 vclB : __VECTOR[3] OF LREAL := __VCSET_LREAL(1, 2, 3);
END_VAR

vclA := __VCSET_LREAL(-1.7976931348623158E+308, 0.0,
1.7976931348623158E+308);
vclB := __VCSET_LREAL(-1.7976931348623158E+308, 0.0,
1.7976931348623158E+308);

Example

The operator interprets any arbitrary memory area as a vector. This is helpful for connecting
vector variables to existing code. The operator requires 2 parameters. The first parameter
indicates the number of vector elements. The second parameter is a pointer to the REAL data.

<vector variable> := __VCLOAD_REAL(<vector size>, <pointer to data
of type REAL>) ;
<vector size> : 2 | 3 | 4 | 5| 6 | 7| 8

FUNCTION_BLOCK FB_LOAD
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 rData0 : REAL := 1.234;
 rData1: REAL := 5.678;
 rData2 : REAL := 9.123;
 pData: POINTER TO REAL := ADR(rData0);

 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
END_VAR

vcA := __VCLOAD_REAL(3, pData);

Example of
vectorization

The operator interprets any arbitrary memory area as a vector. This is helpful for connecting
vector variables to existing code. The operator requires 2 parameters. The first parameter
indicates the number of vector elements. The second parameter is a pointer to the LREAL data.

<vector variable> := __VCLOAD_REAL(<vector size>, <pointer to data
of type LREAL>);
<number of vector elements> : 1 | 2 | 3 | 4 | 5| 6 | 7| 8

Operator
__VCSET_LREA
L

Syntax

Operator
__VCLOAD_RE
AL
Syntax

Operator
__VCLOAD_LRE
AL
Syntax

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US672

FUNCTION_BLOCK FB_LOAD
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 lrData0 : LREAL := -1.7976931348623158E+308;
 lrData1: LREAL := 1.6E+308;
 lrData2 : LREAL := 1.7E+308;
 lrData3 : LREAL := -1.6E+308;
 plData: POINTER TO LREAL := ADR(lrData0);

 vclA : __VECTOR[4] OF LREAL := __VCSET_LREAL(4, 4, 4, 4);
END_VAR
vclA := __VCLOAD_LREAL(4, plData);

Example of
vectorization

The operator saves/copies the contents of the vector to the specified memory address. The
number and the types of elements are automatically applied from the vector variables.

__VCSTORE(<pointer to data>, <vector variable>);

FUNCTION_BLOCK FB_STORE
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 rData0 : REAL := 3;
 rData1: REAL := 3;
 rData2 : REAL := 3;
 pData: POINTER TO REAL := ADR(rData0);

 lrData0 : LREAL := 4;
 lrData1: LREAL := 4;
 lrData2 : LREAL := 4;
 lrData3 : LREAL := 4;
 plData: POINTER TO LREAL := ADR(lrData0);

 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(1.234, 5.678, 9.123);
 vclA : __VECTOR[4] OF LREAL :=
__VCSET_LREAL(-1.7976931348623158E+308, 1.6E+308, 1.7E+308,
-1.6E+308);
END_VAR

__VCSTORE(pData, vcA);
__VCSTORE(plData, vclA);

Example of
storage

See also
● Ä Chapter 1.4.1.8.2.3 “Declaring arrays” on page 228
● Ä Chapter 1.4.1.20.2.19.1 “POU 'CheckBounds'” on page 906

Operator
__VCSTORE
Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 673

Structure
A structure is a user-defined data type, which combines multiple variables of any data type into
a logical unit. The variables declared within a structure are called members.
You make the type declaration of a structure in a “DUT” object which you create in the “Project
è Add Object è DUT” menu or in the context menu of an application.

TYPE <structure name> :
STRUCT
 (<variable declaration optional with initialization>)+
END_STRUCT
END_TYPE
<structure name> is an identifier which is valid in the entire project so that you can use it like
a standard data type. Moreover, you can declare any number of variables (at least one) which
are supplemented optionally by an initialization.
Structures can also be nested. This means that you declare a structure member with an existing
structure type. Then the only restriction is that you must not assign any address to the variable
(structure member). (The AT declaration is not permitted here.)

TYPE S_POLYGONLINE :
STRUCT
 aiStart : ARRAY[1..2] OF INT := [-99, -99];
 aiPoint1 : ARRAY[1..2] OF INT;
 aiPoint2 : ARRAY[1..2] OF INT;
 aiPoint3 : ARRAY[1..2] OF INT;
 aiPoint4 : ARRAY[1..2] OF INT;
 aiEnd : ARRAY[1..2] OF INT := [99, 99];
END_STRUCT
END_TYPE

Example
Type declara-
tion

An additional structure is declared from an existing structure. In addition to its own members,
the extended structure also has the same structure members as the base structure.

TYPE <structure name> EXTENDS <basis structure> :
STRUCT
 (<variable declaration optional with initialization>)+
END_STRUCT
END_TYPE

TYPE S_PENTAGON EXTENDS S_POLYGONLINE :
STRUCT
 aiPoint5 : ARRAY[1..2] OF INT;
END_STRUCT
END_TYPE

Example
Type declara-
tion

Syntax

Extension of a
type declaration
Syntax

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US674

PROGRAM progLine
VAR
 sPolygon : S_POLYGONLINE := (aiStart:=[1,1], aiPoint1:=[5,2],
aiPoint2:=[7,3], aiPoint3:=[8,5], aiPoint4:=[5,7], aiEnd:=[1,1]);
 sPentagon : S_PENTAGON := (aiStart:=[0,0], aiPoint1:=[1,1],
aiPoint2:=[2,2], aiPoint3:=[3,3], aiPoint4:=[4,4], aiPoint5:=[5,5],
aiEnd:=[0,0]);
END_VAR

Example

You must not permitted to use initializations with variables. For an example of initializing an
array of a structure, see the help page for the data type ARRAY.

You access structure members with the following syntax:
<variable name> . <component name>

PROGRAM prog_Polygon
VAR
 sPolygon : S_POLYGONLINE := (aiStart:=[1,1], aiPoint1:=[5,2],
aiPoint2:=[7,3], aiPoint3:=[8,5], aiPoint4:=[5,7], aiEnd:=[1,1]);
 iPoint: INT;
END_VAR

// Assigns 5 to aiPoint
iPoint := sPolygon.aiPoint1[1];

Result: iPoint = 5

Example

You can declare a structure with variables of data type BIT to combine individual bits into a
logical unit. Then you can symbolically address individual bits by a name (instead of by a bit
index).

TYPE <structure name> :
STRUCT
 (<bit name> : BIT;)+
END_STRUCT
END_TYPE
<structure name> . <bit name>

Declaration and
initialization of
structure varia-
bles

Access to a
structure
member

Symbolic bit
access in struc-
ture variables
Syntax declara-
tion

Syntax of bit
access

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 675

TYPE S_CONTROL :
STRUCT
 bitOperationEnabled : BIT;
 bitSwitchOnActive : BIT;
 bitEnableOperation : BIT;
 bitError : BIT;
 bitVoltageEnabled : BIT;
 bitQuickStop : BIT;
 bitSwitchOnLocked : BIT;
 bitWarning : BIT;
END_STRUCT
END_TYPE

FUNCTION_BLOCK FB_Controller
VAR_INPUT
 xStart : BOOL;
END_VAR
VAR_OUTPUT
END_VAR
VAR
 ControlDriveA : S_CONTROL;
END_VAR

IF xStart = TRUE THEN
 // Symbolic bit access
 ControlDriveA.bitEnableOperation := TRUE;
END_IF

PROGRAM PLC_PRG
VAR
 fbController : FB_Controller;
END_VAR

fbController();
fbController.xStart := TRUE;

Example
Type declara-
tion

Bit access

References and pointers to BIT variables are invalid declarations, as well as
array elements with base type BIT.

See also
● Ä Chapter 1.4.1.19.4.9 “Bit Access in Variables” on page 641

See also
● Ä Chapter 1.4.1.19.5.14 “Data Type 'ARRAY'” on page 660
● Ä Chapter 1.4.1.19.5.10 “Data Type 'BIT'” on page 656
● Ä Chapter 1.4.1.20.2.6 “Object 'DUT'” on page 835

Enumerations
An enumeration is a user-defined data type composed of a series of comma-sepa-
rated components (enumeration values) for declaring user-defined variables. Moreover,
you can use the enumeration components like constants whose identifier <enumeration
name>.<component name> is recognized globally in the project.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US676

You declare an enumeration in a DUT object, which you have already created in the project by
clicking “Add Object”.

({attribute 'strict'})? // Pragma optional but recommended
TYPE <enumeration name> :
(
 <first component declaration>,
 (<component declaration> ,)+
 <last component declaration>
)(<basic data type>)? (:= <default variable initialization>)? ;
END_TYPE

(...)? : Optional
<component declaration> : <component name> (:= <component
initialization>)?
<basic data type> : INT | UINT | SINT | USINT | DINT | UDINT | LINT |
ULINT | BYTE | WORD | DWORD | LWORD
<variable initialization> : <one of the component names>
In an enumeration declaration, at least 2 components are usually declared. However, you can
declare as many as you want. Every single component can be assigned its own initialization.
Enumerations automatically have the basic data type INT, but you can specify another basic
data type. Moreover, you can specify a component in the declaration with which an enumeration
variable is then initialized.
The pragma {attribute 'strict'} causes a strict type test to be performed as described
below.

{attribute 'qualified_only'}
{attribute 'strict'}
TYPE COLOR_BASIC :
(
 yellow,
 green,
 blue,
 black
)
; // Basic data type is INT, default initialization for all
COLOR_BASIC variables is yellow
END_TYPE

Example

Extensions to the IEC 61131-3 standard
The basic data type for an enumeration declaration is INT by default. However, you can also
declare enumerations that are based explicitly on another integer data type.
<basic data type> : INT | UINT | SINT | USINT | DINT | UDINT | LINT |
ULINT | BYTE | WORD | DWORD | LWORD

Declaration
Syntax

Enumeration
with explicit
basic data type

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 677

TYPE COLOR :
(
 white := 16#FFFFFF00,
 yellow := 16#FFFFFF00,
 green := 16#FF00FF00,
 blue := 16#FF0000FF,
 black := 16#88000000
) DWORD := black; // Basic data type is DWORD, default
initialization for all COLOR variables is black
END_TYPE

Example
Enumeration
with basic data
type DWORD

NOTICE!
In CODESYS V3.5 SP7 and later, the pragma {attribute 'strict'} is
added automatically in the first line when declaring an enumeration.

The strict programming rules are activated when adding the pragma {attribute
'strict'}.

The following code is considered a compiler error:
● Arithmetic operations with enumeration components

For example, an enumeration variable cannot be used as a counter variable in a FOR loop.
● Assignment of a constant value, which does not correspond to an enumeration value, to an

enumeration component
● Assignment of a non-constant variable, which has another data type as the enumeration, to

an enumeration component
Arithmetic operations can lead to undeclared values being assigned to enumeration compo-
nents. A better programming style is to use SWITCH/CASE statements for processing component
values.

<variable name> : <enumeration name> (:= <initialization>)? ;
For a declaration of an enumeration variable with user-defined data type <enumeration
name>, this can be initialized with an enumeration component.

PROGRAM PLC_PRG
VAR
 colorCar: COLOR;
 colorTaxi : COLOR := COLOR.yellow;
END_VAR

The variable colorCar is initialized with COLOR.black. That is the default initialization for all
enumeration variables of type COLOR and defined this way in the type declaration. The variable
colorTaxi has its own initialization.

Example

If no initializations are specified, then the initialization value is 0.

Strict program-
ming rules

Declaration and
initialization of
enumeration
variables
Syntax

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US678

PROGRAM PLC_PRG
VAR
 cbFlower : COLOR_BASIC;
 cbTree: COLOR_BASIC := COLOR_BASIC.green;
END_VAR

The variable cbFlower is initialized with COLOR_BASIC.yellow. That is the default initializa-
tion for all enumeration variables of type COLOR_BASIC. Because the enumeration declaration
does not specify a component for initialization, the system automatically initializes with the
component that has the value 0. This is usually the first of the enumeration components. How-
ever, it can also be another component that is not in the first position but explicitly initialized
with 0.
The variable cbTree has an explicit initialization.

Example

If no value is specified for both the type and the variable, then the following rule applies: If an
enumeration contains a value for 0, then this value is the default initialization, and if not, then
the first component in the list.

TYPE ENUM :
(
 e1 := 2,
 e2 := 0,
 e3
)
;
END_TYPE

PROGRAM PLC_PRG
VAR
 e : ENUM;
END_VAR

The variable e is initialized with ENUM.e2.

TYPE ENUM2 :
(
 e1 := 3,
 e2 := 1,
 e3
)
;
END_TYPE

PROGRAM PLC_PRG
VAR
 e2 : ENUM2;
END_VAR

The variable e2 is initialized with ENUM.e1.

Example
Initialization
with the 0 com-
ponent

Initialization
with the first
component

Extensions to the IEC 61131-3 standard
The enumeration components can also be used as constant variables with the identifier
<enumeration name>.<component name>. Enumeration components are recognized glob-
ally in the project and access to them is unique. Therefore, a component name can be used in
different enumerations.

Unique access
to enumeration
components

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 679

PROGRAM PLC_PRG
VAR
 cbFlower : COLOR_BASIC;
 colorCar : COLOR;
END_VAR

(* unambiguous identifiers although the component names are
identical *)
cbFlower := COLOR_BASIC.blue;
colorCar := COLOR.blue;

(* invalid code *)
cbFlower := blue;
colorCar := blue;

Example
Component
blue

See also
● Ä Chapter 1.4.1.19.3.72 “Operator - Enumeration namespace” on page 630

Alias
An alias is a user-defined data type with which an alternative name for a basic type, data type,
or function block is generated.
You make the type declaration of an alias in a “DUT” object which you create in the “Project
è Add Object è DUT” menu or in the context menu of an application.
TYPE <DUT name> : <basic type> | <data type> | <function block
name> ;
END_TYPE

FUNCTION_BLOCK FB_Machine
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iCounter : INT;
END_VAR
iCounter := iCounter + 1;

// Alias for FB_Machine
TYPE A_ROBOT : FB_Machine;
END_TYPE

PROGRAM prog_Robot
VAR
 fbRobot : A_ROBOT;
END_VAR
fbRobot();

Example

Syntax

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US680

Data type 'UNION'
A UNION is a data structure that usually contains different data types.
In a union, all components have the same offset and therefore the same amount of memory. In
the following declaration example of a union, an assignment to name.a will also affect name.b.

TYPE name:
UNION
 a : LREAL;
 b : LINT;
END_UNION
END_TYPE

Example

Subrange types
A subrange type is a data type whose value range is a subset of a base type.
Syntax for the declaration:

<name> : <int type> (<lower limit>..<upper limit>);

<name> valid IEC identifier
<int
type>

data type of the subrange
(SINT, USINT, INT, UINT, DINT, UDINT, BYTE, WORD, DWORD, LINT, ULINT,
LWORD).

<lower
limit>

Lower limit of the range: constants that have to be compatible with the basic data
type. The lower limit is also included in this range.

<upper
limit>

Upper limit of the range: constants that have to be compatible with the base data
type. The upper limit is also included in this range.

VAR
 i : INT (-4095..4095);
 ui : UINT (0..10000);
END_VAR

Examples:

If you assign a value to a subrange type in the declaration or implementation section that is not
within this range (example: i:=5000), then CODESYS issues an error message.

Please note: In runtime mode, it is possible to monitor the range limits of a
subrange type by using the implicit monitoring functions CheckRangeSigned
and CheckRangeUnsigned.

See also
● Ä Chapter 1.4.1.20.2.19.7 “POU 'CheckLRangeSigned'” on page 914
● Ä Chapter 1.4.1.20.2.19.9 “POU 'CheckLRangeUnsigned'” on page 916

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 681

Redundancy State
The library Redundancy provides the structure RedundancyState with the components
describes below.
● By calling GetRedundancyState(ADR(<RedundancyState name>));, the state of the

redundancy system is read and stored. As a result, you get programmatic access to the
redundancy state and can display it, for example in a visualization.

● The redundancy state is also automatically displayed in the “Redundancy Configuration”
editor, on the “Redundancy State” tab. There in the system graphic in the lower right corner
of the respective PLC, the redundancy state is displayed symbolically by circle symbols.
Moreover, the state is output as text below in the “Redundancy State” field. In this way, you
can monitor the state of the redundancy system.

The following table compares these two options.

Circle
Symbol

Output text
under
“Redundanc
y State”

STRUCT
Redundancy
State

Description

 RS_START Initial state
Tries (when configured correctly) to syn-
chronize with the other PLC
If not correctly configured, then the state is set
to RS_SIMULATION_START.

 RS_SYNCHRO Boot application downloaded, data synchron-
ized, and task started
Fieldbus deactivated

“Active” RS_CYCLE_A
CTIVE

Works in redundant synchronized mode as
active PLC
Fieldbus activated

“Passive” RS_CYCLE_S
TANDBY

Works in redundant synchronized mode as
passive PLC
Fieldbus deactivated

“Standalone” RS_CYCLE_S
TANDALONE

Works in standalone mode, not synchronized
with the other PLC
Fieldbus activated

“Error” RS_CYCLE_E
RROR

Fieldbus error, occurred in redundant
synchronized mode as active PLC
Fieldbus deactivated

“Simulation” RS_SIMULAT
ION

If not configured
Works in standalone mode, not synchronized
with the other PLC
Fieldbus deactivated

 RS_BOOTUP_
ERROR

If in state RS_CYCLE_ACTIVE
The other PLC will become active because
the PROFIBUS displays a problem with the
active PLC (us).
Fieldbus deactivated

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US682

Circle
Symbol

Output text
under
“Redundanc
y State”

STRUCT
Redundancy
State

Description

 RS_SHUTDOW
N_ACTIVE

Ends the runtime systems in state
RS_CYCLE_STANDALONE
Note: Leave the fieldbus activated on down-
load.

 RS_SHUTDOW
N_STANDBY

Ends the runtime systems in state
RS_CYCLE_STANDBY
Note: Deactivate the fieldbus on download.

 RS_SYNCHRO
_ERROR

Error occurred during the state RS_SYNCHRO
Fieldbus deactivated

 RS_SIMULAT
ION_START

With setting Simulation=1
Works in standalone mode after the start, not
synchronized with the other PLC
Fieldbus deactivated
Note: A synchronization can be triggered later
with library functions.

 RS_NO_LICE
NCE

If no license is installed and the demo time
has expired.
No operation

“Unknown” No assign-
ment

Indicates that the connection to the PLC is not
online

See also
●
●

1.4.1.19.6 Pragmas
1.4.1.19.6.1 Message Pragmas... 683
1.4.1.19.6.2 Attribute Pragmas... 685
1.4.1.19.6.3 Conditional Pragmas.. 732
1.4.1.19.6.4 Region Pragma.. 739

Pragma instructions affect the properties of one or more variables with regard to the compilation
or pre-compilation process. Various categories of pragmas are available to you for this.

Message Pragmas
Message pragmas serve to force the display of messages in the Message window during the
compilation process.
Insertion position: separate or already existing line in the text editor of a POU.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 683

Table 44: 4 types of message pragmas
Pragma Message type
{text
<'textstring'
>}

“Text”: display of <textstring>.

{info
<'textstring'
>}

“Information ”: display of <textstring>.

{warning
<'textstring'
>}

“Warning”: display of <textstring>.
Unlike the attribute pragma 'obsolete', you define the warning locally
for the current position.

{error
<'textstring'
>}

“Error ”: display of <textstring>.

In the CODESYS Message window you can jump with the help of the com-
mands “Next Message” and “Previous Message” from a message of the cate-
gory “Information”, “Warning” and “Error” to the source position of the message.
This means you jump to the position where the pragma is added in the source
code.

VAR
 var : INT; {info 'TODO: should get another name'}
 bvar : BOOL;
 arrTest : ARRAY [0..10] OF INT;
 i:INT;

END_VAR
 arrTest[i] := arrTest[i]+1;
 ivar:=ivar+1;

 {warning 'This is a warning'}
 {text 'Part xy has been compiled completely'}

Display in the Message window:

Example

See also
● Ä Chapter 1.4.1.19.6.3 “Conditional Pragmas” on page 732

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US684

Attribute Pragmas
1.4.1.19.6.2.1 User-defined attributes.. 686
1.4.1.19.6.2.2 Attribute 'call_after_global_init_slot'.. 687
1.4.1.19.6.2.3 Attribute 'call_after_init'.. 687
1.4.1.19.6.2.4 Attribute 'call_after_online_change_slot'................................... 688
1.4.1.19.6.2.5 Attribute 'call_before_global_exit_slot'...................................... 689
1.4.1.19.6.2.6 Attribute 'call_on_type_change'... 689
1.4.1.19.6.2.7 Attribute 'conditionalshow'... 690
1.4.1.19.6.2.8 Attribute 'conditionalshow_all_locals'.. 691
1.4.1.19.6.2.9 Attribute 'const_replaced', Attribute 'const_non_replaced'........ 692
1.4.1.19.6.2.10 Attribute 'dataflow'... 693
1.4.1.19.6.2.11 Attribute 'displaymode'... 694
1.4.1.19.6.2.12 Attribute 'enable_dynamic_creation'.. 695
1.4.1.19.6.2.13 Attribute 'estimated-stack-usage'... 695
1.4.1.19.6.2.14 Attribute 'ExpandFully'... 698
1.4.1.19.6.2.15 Attribute 'global_init_slot'... 699
1.4.1.19.6.2.16 Attribute 'hide'.. 700
1.4.1.19.6.2.17 Attribute 'hide_all_locals'... 703
1.4.1.19.6.2.18 Attribute 'initialize_on_call'... 704
1.4.1.19.6.2.19 Attribute 'init_namespace'.. 705
1.4.1.19.6.2.20 Attribute 'init_on_onlchange'.. 705
1.4.1.19.6.2.21 Attribute 'instance-path'... 706
1.4.1.19.6.2.22 Attribute 'io_function_block', 'io_function_block_mapping'...... 707
1.4.1.19.6.2.23 Attribute 'is_connected'.. 707
1.4.1.19.6.2.24 Attribute 'linkalways'.. 708
1.4.1.19.6.2.25 Attribute 'monitoring'.. 709
1.4.1.19.6.2.26 Attribute 'no_assign', Attribute 'no_assign_warning'................ 711
1.4.1.19.6.2.27 Attribute 'no_check'... 712
1.4.1.19.6.2.28 Attribute 'no_copy'... 713
1.4.1.19.6.2.29 Attribute 'no-exit'.. 713
1.4.1.19.6.2.30 Attribute 'noinit'.. 713
1.4.1.19.6.2.31 Attribute 'no_instance_in_retain'.. 714
1.4.1.19.6.2.32 Attribute 'no_virtual_actions'.. 714
1.4.1.19.6.2.33 Attribute 'pingroup'... 716
1.4.1.19.6.2.34 Attribute 'pin_presentation_order_inputs/outputs'................... 717
1.4.1.19.6.2.35 Attribute 'obsolete'... 718
1.4.1.19.6.2.36 Attribute 'pack_mode'.. 719
1.4.1.19.6.2.37 Attribute 'ProcessValue'... 726
1.4.1.19.6.2.38 Attribute 'qualified_only'... 726
1.4.1.19.6.2.39 Attribute 'reflection'.. 727
1.4.1.19.6.2.40 Attribute 'subsequent'.. 727
1.4.1.19.6.2.41 Attribute 'symbol'... 728
1.4.1.19.6.2.42 Attribute 'to_string'... 728
1.4.1.19.6.2.43 Attribute 'warning disable', attribute 'warning restore'.............. 729
1.4.1.19.6.2.44 Effects of Pragmas on Symbols ... 729

Attribute pragmas affect the compilation and the pre-compilation.
CODESYS supports a series of pre-defined attribute pragmas. In addition you can use user-
defined pragmas, which you can query with the help of conditional pragmas before the compila-
tion of the project.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 685

Attributes are defined within the declaration part. Exception: For the objects Action and Transi-
tion, which have no own declaration part, you can define the attributes at the beginning of the
implementation part

When you define own attributes, please make them unambiguous. Uniqueness
can be reached for example by adding a prefix to the attribute name. OEMs can
use the vendor prefix for this purpose.

User-defined attributes
User-defined attributes are any application-defined or user-defined attributes that you can apply
to POUs, actions, data type definitions and variables. You can query a user-defined attribute
with the help of conditional pragmas before the compilation of the application.

You can query user-defined attributes with conditional pragmas with the oper-
ator hasattribute.

More detailed information and examples can be found in the chapter 'Condi-
tional pragmas'.

Syntax:
{attribute 'attribute'}

{attribute 'vision'}
FUNCTION fun1 : INT
VAR_INPUT
 i : INT;
END_VAR

Attribute
'vision' for
function “fun1”

PROGRAM PLC_PRG
VAR
 {attribute 'DoCount'};
 ivar:INT;
 bvar:BOOL;
END_VAR

Attribute
'DoCount' for
variable ivar :

Example for
POUs and
actions

Example for var-
iables

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US686

{attribute 'aType'}
TYPE DUT_1 :
STRUCT
 a:INT;
 b:BOOL;
END_STRUCT
END_TYPE

Attribute
'aType' for
data type
DUT_1:

See also
● Ä Chapter 1.4.1.19.6.3 “Conditional Pragmas” on page 732

Attribute 'call_after_global_init_slot'

NOTICE!
VAR_INPUT declarations in functions or methods that use the attribute lead to
compile errors. Reason: Input variables are unknown in this case at the time of
the call, which occurs implicitly during the online change.

The effect of this pragma is that all functions and programs containing this attribute are called
after the global initialization. You define the order of calling by means of the attribute value.
Syntax:
{attribute 'call_after_global_init_slot' := '<slot>'}
<slot>: Integer value that defines the ranking in the order of the calls; the lower the value, the
earlier the call takes place. If several function blocks have the same ranking for the attribute,
then the order of their calls remains indefinite.
Insert location: First line above the declaration part of functions and programs
If a method possesses the attribute, CODESYS determines all instances of the corresponding
function block and calls all instances in the specified slot. In this case you have no influence on
the order of the instances among themselves.
See also
● Ä Chapter 1.4.1.19.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 748

Attribute 'call_after_init'

NOTICE!
VAR_INPUT declarations in functions or methods that use the attribute lead to
compile errors. Reason: Input variables are unknown in this case at the time of
the call, which occurs implicitly during the online change.

The effect of this pragma is that a method is called implicitly after the initialization of a function
block instance. For reasons of performance you must add the attribute both to the function block
and to the method in its own first line above the declaration part.

Example for
data types

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 687

Syntax:
{attribute 'call_after_init'}
Call: First line above the declaration part of the method and the function block.
CODESYS calls the method after the method FB_init and after the variable values of an initiali-
zation expression in the instance declaration have become valid.
This functionality is supported from compiler version 3.4.1.0.

Definition:
{attribute 'call_after_init'}
FUNCTION_BLOCK FB
... <function block definition>

{attribute 'call_after_init'}
METHOD FB_AfterInit
... <method definition>

The definition implements, for example, the following declaration in the subsequent code
processing:
inst : FB := (in1 := 99);

Code processing:
inst.FB_Init();
inst.in1 := 99;
inst.FB_AfterInit();

This allows a reaction to the user-defined initialization in FB_AfterInit.

Example

See also
● Ä Chapter 1.4.1.19.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 748

Attribute 'call_after_online_change_slot'

NOTICE!
VAR_INPUT declarations in functions or methods that use the attribute lead to
compile errors. Reason: Input variables are unknown in this case at the time of
the call, which occurs implicitly during the online change.

The effect of this pragma is that all functions and programs containing this attribute are called
after an online change. You define the order of calling by means of the attribute <slot>.

Syntax:
{attribute 'call_after_online_change_slot' := '<slot>'}
<slot>: Integer value that defines the ranking in the order of the calls; the lower the value, the
earlier the call takes place. If several function blocks have the same ranking for the attribute,
then the order of their calls remains indefinite.
Call: First line above the declaration part of functions and programs.
If a method possesses the attribute, then CODESYS determines all instances of the function
block concerned. CODESYS calls all instances in the specified slot. In this case you have no
influence on the order of the instances among themselves.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US688

NOTICE!
Since the application cannot run during the online change, each code executed
in this situation can lead to a jitter. Therefore, keep the extent of the executive
code as small as possible.

See also
● Ä Chapter 1.4.1.20.3.6.6 “Command 'Online Change'” on page 1033

Attribute 'call_before_global_exit_slot'

NOTICE!
VAR_INPUT declarations in functions or methods that use the attribute lead to
compile errors. Reason: Input variables are unknown in this case at the time of
the call, which occurs implicitly during the online change.

The effect of this pragma is that all functions and programs containing this attribute in a dedi-
cated first line of their declaration are called before the GlobalExit. The GlobalExit takes place
before a new download or a reset. Function blocks provided with an FB_Exit method are
affected. The order of calling is defined by means of the attribute value.
Syntax:
{attribute 'call_before_global_exit_slot' := '<slot>'}
Insert location: First line above the declaration part of functions and programs.
<slot>: Integer value that defines the ranking in the order of the calls; the lower the value, the
earlier the call takes place. If several function blocks have the same ranking for the attribute,
then the order of their calls remains indefinite.
If a method possesses the attribute, then the method is called for all instances of the function
block concerned. CODESYS calls all instances in the specified slot. In this case you have no
influence on the order of the instances among themselves.
See also
● Ä Chapter 1.4.1.19.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 748

Attribute 'call_on_type_change'
With this pragma, you can mark a method of a function block A that should be called when
the data type changes for one or more function blocks B, C, etc. that are referenced by A. The
referencing can be defined by a pointer variable or a REFERENCE variable.

Syntax:
{attribute 'call_on_type_change':= '<name of the first referenced
function block>|<name of the second referenced function block>|<name
of the ... referenced function block>'}
Insert location: Line above the first line in the method declaration.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 689

FUNCTION_BLOCK FB_A
...
VAR
 var_pt: POINTER TO FB_B;
 var_ref: REFERENCE TO FB_C;
END_VAR
...

{attribute 'call_on_type_change' := 'FB_B, FB_C'}
METHOD METH_react_on_type_change : INT
VAR_INPUT
...

Example
Function
blocks with ref-
erences

Method for
reaction to a
type change in
the references
FB_B and
FB_C

Attribute 'conditionalshow'
The pragma has the effect that the identifiers of an integrated compiled library <library
name> .compiled-library, which are decorated with the pragma, are hidden before pro-
gramming an application. The POUs can be called but the variables are invisible in the
CODESYS user interface.
Affected features
● Library management
● Debugging
● Input Assistant
● Function "List components"
● Monitoring
● Symbol configuration
This is useful when you develop libraries. As the library developer, you decorate function blocks
or variables with the pragma. As a result, you determine which identifiers are hidden in an
application after integration. If you want to show the hidden identifiers later, for example for
debugging or further development of the library, you can reactivate its visibility.
Syntax
{attribute 'conditionalshow' (:= ' <some text> ')? }
<some text>: Optional string literal to control the visibility of the identifiers decorated with this
kind of pragma by means of a command-line command and this literal. When the pragma is
specified without a literal, the variables in the CODESYS development environment are always
hidden, regardless of how CODESYS was started. For more help about this, see the document
"Library Development Summary".
Insert location: Top line in the declaration part of a function block, above a variable

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US690

For more examples, see the document "Library Development Summary".
FUNCTION_BLOCK FB_DataManager
VAR
 {attribute 'conditionalshow' := 'Library_Developer'}
 iLocal : INT;
 iCounter : INT;
END_VAR

The variable iLocal is invisible.
{attribute 'conditionalshow' := 'Library_Developer'}
FUNCTION_BLOCK FB_DataManager
VAR
 iLocal : INT;
 iCounter : INT;
END_VAR

The identifiers FB_DataManager, iLocal, and iCounter are invisible.

Example
Hiding a vari-
able

Hiding a func-
tion block

When the source code file <library name> .library from an integrated library also exists
at the same memory location (repository), the identifiers are visible despite the pragmas. That is
regardless of whether or not an attribute value has been specified in the declaration.

You can also enable the visibility of the hidden variable without a source code file by starting
CODESYS with the command-line option conditionalshowsymbols. To enable the visibility,
specify the attribute values of the pragma which are separated by commas.
codesys.exe --conditionalshowsymbols=" <some text> (,<next text>)*
"

codesys.exe --conditionalshowsymbols="Library_Developer"
codesys.exe --conditionalshowsymbols="Group_A,Group_B"

Example

See also
● Ä Chapter 1.4.1.15 “Using the Command-Line Interface” on page 442
● Ä Chapter 1.4.1.19.6.2.16 “Attribute 'hide'” on page 700
● Ä Chapter 1.4.1.19.6.2.8 “Attribute 'conditionalshow_all_locals'” on page 691
● "Library Development Summary", "Visibility Control" Chapter

Attribute 'conditionalshow_all_locals'
The pragma has the effect that all local variables of a library POU decorated with the
pragma are hidden from application programmers. The POUs of an integrated compiled library
<library name> .compiled-library can be called, but the variables are invisible in the
CODESYS user interface.
Affects features:
● Library management
● Debugging
● Input Assistant
● Function "List components"
● Monitoring
● Symbol configuration

Visibility in case
of existing
source code file

Command-line
call to activate
visibility
Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 691

This is useful when you develop libraries. As the library developer, you decorate function blocks
with the pragma. As a result, you determine that their identifiers are hidden in an application
after integration. If you want to show these identifiers later, for example for debugging or further
development of the library, you can reactivate its visibility.
Syntax
{attribute 'conditionalshow_all_locals' (:= ' <some text> ')? }
<some text>: Optional string literal to control the visibility of the identifiers decorated with this
kind of pragma by means of a command-line command and this literal. When the pragma is
specified without a literal, the variables in the CODESYS development environment are always
hidden, regardless of how CODESYS was started. For more help about this, see the document
"Library Development Summary".
Insert location: Top line in the declaration part of the function block.

{attribute 'conditionalshow_all_locals' := 'Library_Developer'}
FUNCTION_BLOCK FB_DataManager
VAR
 iLocal : INT;
 iCounter : INT;
END_VAR

For more examples, see the document "Library Development Summary".

Example
Hiding all local
variables

When the source code file <library name> .library from an integrated library also exists
at the same memory location (repository), the library POU variables are visible despite the
pragmas. That is regardless of whether or not an attribute value has been specified in the
declaration.

You can also enable the visibility of the hidden variable without a source code file by starting
CODESYS with the command-line option conditionalshowsymbols. To enable the visibility,
specify the attribute values of the pragma which are separated by commas.
codesys.exe --conditionalshowsymbols=" <some text> (,<next text>)*
"

codesys.exe --conditionalshowsymbols="Library_Developer"
codesys.exe --conditionalshowsymbols="Group_A,Group_B"

Example

See also
● Ä Chapter 1.4.1.19.6.2.17 “Attribute 'hide_all_locals'” on page 703
● Ä Chapter 1.4.1.19.6.2.7 “Attribute 'conditionalshow'” on page 690
● "Library Development Summary", chapter "Visibility Control"

Attribute 'const_replaced', Attribute 'const_non_replaced'
The attribute 'const_replaced' has the effect that the constant is replaced in the code,
independently of the setting of the “Replace constants” compiler option. The attribute has an
effect for variables of scalar types only, but not for compound types like arrays and structures.
You insert the pragma {attribute 'const_non_replaced'} accordingly in order to explic-
itly deactivate the “Replace constants” compiler option. This has the effect, for example in the
symbol configuration, that the constant is available and can be exported despite the compiler
option.

Visibility in case
of existing
source code file

Command-line
call to activate
visibility
Syntax

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US692

The “Replace constants” option in the “Compile Options” category of the “Project Settings”
dialog is preset for the entire project, because replacing constants generally leads to faster code
and less memory usage.
Syntax:
{attribute 'const_replaced'}
{attribute 'const_non_replaced'}
Insert location: Line above the declaration line of the global variables.

The constants iTestCon and xTestCon are available in the symbol configuration because
the “Replace constants” option deactivated.
{attribute 'qualified_only'}
VAR_GLOBAL CONSTANT
 {attribute 'const_non_replaced'}
 iTestCon : INT := 12;
 {attribute 'const_non_replaced'}
 xTestCon : BOOL := TRUE;
 rTestCon : REAL := 1.5;
END_VAR

VAR_GLOBAL
 iTestVar : INT := 12;
 xTestVar : BOOL := TRUE;
END_VAR

Example

See also
● Ä Chapter 1.4.1.20.4.11.3 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 1173
● Ä Chapter 1.4.1.9.2 “Symbol Configuration” on page 357

Attribute 'dataflow'
With this pragma you control the data flow in the processing of function blocks in the FBD/LD/IL
editor. The attribute defines the input or output of a function block to which the continuing
connection to the next or previous function block is connected.
You may provide only 1 input and 1 output with the attribute in the declaration of a function
block.
Syntax:
{attribute 'dataflow'}
Insertion position: line above the line with the declaration of the corresponding variables.
In the case of function blocks without the attribute 'dataflow', CODESYS determines the
data flow as follows: first of all the connection is placed between an output and an input of same
data type. The highest input or output variable of the function blocks is always taken. If there
are no variables of a corresponding data type, CODESYS connects the highest output with the
highest input of the neighboring function blocks.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 693

The connection between FB and the preceding function block is established via the input
variable i1. The connection between FB and the following function block is established via the
output variable outRes1.
FUNCTION_BLOCK FB
VAR_INPUT
 r1 : REAL;
 {attribute 'dataflow'}
 i1 : INT;
 i2 : INT;
 r2 : REAL;
END_VAR

VAR_OUTPUT
{attribute 'dataflow'}
 outRes1 : REAL;
 out1 : INT;
 g1 : INT;
 g2 : REAL;
END_VAR

Example

See also
● Ä Chapter 1.4.1.8.3.1.1 “Programming function block diagrams (FBD)” on page 237

Attribute 'displaymode'
With this pragma you define the display mode of an individual variable. This definition overwrites
the global setting for the display of the monitoring variable, which takes place via the commands
in the menu “Debug è Display Mode”.
Syntax:
{attribute 'displaymode':=<displaymode>}
The following definitions are possible
● Binary format

– {attribute 'displaymode':='bin'}
– {attribute 'displaymode':='binary'}

● Decimal format
– attribute 'displaymode':='dec'}
– {attribute 'displaymode':='decimal'}

● Hexadecimal format
– {attribute 'displaymode':='hex'}
– attribute 'displaymode':='hexadecimal'}

Insertion position: line above the line with the declaration of the corresponding variables.

VAR
 {attribute 'displaymode':='hex'}
 dwVar1: DWORD;
END_VAR

Example

See also
● Ä Chapter 1.4.1.20.3.7.24 “Command 'Display Mode' - 'Binary', 'Decimal', 'Hexadecimal'”

on page 1058

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US694

Attribute 'enable_dynamic_creation'
The pragma enable_dynamic_creation is needed for using the __NEW operator for function
blocks.
Syntax:
{attribute 'enable_dynamic_creation'}
Insert location: First line in the declaration of the function block.
See also
● Ä Chapter 1.4.1.19.3.58 “Operator '__NEW'” on page 614

Attribute 'estimated-stack-usage'
The pragma provides an estimated value for the stack size requirement.
Methods with recursive calls cannot pass a stack check because stack usage cannot be deter-
mined. As a result, a warning is issued. To prevent this warning, you can give the method an
estimated value (in bytes) for the stack size requirement. Then the method passes the stack
check successfully.
 {attribute 'estimated-stack-usage' := '<estimated stack size in
bytes>'}

{attribute 'estimated-stack-usage' := '127'} // 127 bytes
METHOD PUBLIC DoIt : BOOL
VAR_INPUT
END_VAR

Example

Insert location: First line above the declaration part of the method.
The section "Method call" includes an example that uses this pragma.

Within its implementation, a method can call itself, either directly by means of the THIS pointer,
or by means of a local variable for the assigned function block.

Use recursions mainly for processing recursive data types such as linked lists.
In general, we recommend to be careful when using recursion, as unexpectedly
deep recursions can cause stack overflow and machine downtime.

Syntax

Recursive
method call

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 695

The following program PLC_PRG calculates the factorial of a number in the FB_Factorial
function block in a different way, each in its own method.
● Method m_Iterative: Iterative
● Method m_Pragmaed: Recursive with warning suppression
● Method m_Recursive: Recursive
● Method m_Temp: Temporary with warning suppression

A warning is issued for the m_Recursive method only.

// Contains the data of the factorial calculation of uiNumber
TYPE FACTORIAL_RESULT :
STRUCT
 uiNumber : UINT;
 udiIterative : UDINT;
 udiRecursive : UDINT;
 udiPragmaed : UDINT;
 udiTemp : UDINT;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 fb_Factorial_A : FB_Factorial;
 factorial_A : FACTORIAL_RESULT := (uiNumber := 9,
udiIterative := 0, udiRecursive := 0, udiPragmaed := 0);
END_VAR
fb_Factorial_A.p_Number := factorial_A.uiNumber;
factorial_A.udiIterative := fb_Factorial_A.m_Iterative();
factorial_A.udiRecursive := fb_Factorial_A.m_Recursive(uiN :=
factorial_A.uiNumber);
factorial_A.udiPragmaed := fb_Factorial_A.m_Pragmaed(uiN :=
factorial_A.uiNumber);
factorial_A.udiTemp := fb_Factorial_A.m_Temp(uiN :=
factorial_A.uiNumber);

Calculation of
the factorial

Example

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US696

//Factorial calculation in different ways
FUNCTION_BLOCK FB_Factorial
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 uiN : UINT;
 udiIterative : UDINT;
 udiPragmaed : UDINT;
 udiRecursive : UDINT;
END_VAR

// Iterative calculation
METHOD PUBLIC m_Iterative : UDINT
VAR
 uiCnt : UINT;
END_VAR
m_Iterative := 1;
IF uiN > 1 THEN
 FOR uiCnt := 1 TO uiN DO
 m_Iterative := m_Iterative * uiCnt;
 END_FOR;
 RETURN;
ELSE
 RETURN;
END_IF;

//Recursive calculation with suppressed warning
{attribute 'estimated-stack-usage' := '99'}
METHOD PUBLIC m_Pragmaed : UDINT
VAR_INPUT
 uiN : UINT;
END_VAR
VAR
END_VAR
m_Pragmaed := 1;
IF uiN > 1 THEN
 m_Pragmaed := uiN * THIS^.m_Pragmaed(uiN := (uiN - 1));
 RETURN;
ELSE
 RETURN;
END_IF;

//Recursive calculation
METHOD PUBLIC m_Recursive : UDINT
VAR_INPUT
 uiN : UINT;
END_VAR
VAR
END_VAR
m_Recursive := 1;
IF uiN > 1 THEN
 m_Recursive := uiN * THIS^.m_Recursive(uiN := (uiN - 1));
 RETURN;
ELSE
 RETURN;
END_IF;

// Called by temporary FB instance
{attribute 'estimated-stack-usage' := '99'}
METHOD PUBLIC m_Temp : UDINT
VAR_INPUT
 uiN : UINT;
END_VAR

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 697

VAR
 fb_Temp : FB_Factorial;
END_VAR
m_Temp := 1;
IF uiN > 1 THEN
 m_Temp := uiN * fb_Temp.m_Temp(uiN := (uiN - 1));
 RETURN;
ELSE
 RETURN;
END_IF;

PROPERTY p_Number : UINT
uiN := p_Number; //Setter method
Only the m_Recursive issues a warning when the program is executed.

See also
● Ä Chapter 1.4.1.8.22.4 “Calling methods” on page 314
● Ä Chapter 1.4.1.8.22 “Object-Oriented Programming” on page 310
● Ä Chapter 1.4.1.20.2.18.5 “Object 'Method'” on page 889
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897

Attribute 'ExpandFully'
The effect of this pragma is that the components of an array used as an input variable for
referenced visualizations are made visible in the Properties dialog box of the visualization.
Syntax:
{attribute 'ExpandFully'}
Insertion position: the line above the line with the declaration of the array.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US698

The visualization “visu” is to be inserted into a frame inside the visualization “visu_main”. arr
is defined as an input variable in the interface editor of “visu” and will thus be available later for
assignments in the Properties dialog box of the frames in “visu_main”. In order to also make
the individual components of arr available in this Properties dialog box, you must insert the
attribute 'ExpandFully' directly before arr in the interface editor of visu. Declaration in the
interface editor of “visu”:
VAR_INPUT
 {attribute 'ExpandFully'}
 arr : ARRAY[0..5] OF INT;
END_VAR

Example

Attribute 'global_init_slot'
The pragma defines the initialization order of programming blocks and global variable lists.
Variables in a list (GVL or POU) are initialized from top to bottom.
If there are several global variable lists, then the initialization order is not defined.
The initialization does not apply for the initialization of literal values, for example 1, 'hello',
3.6, or constants of base data types. However, you must define the initialization order yourself
if there are dependencies between the lists. You can assign a defined initialization slot to a GVL
or POU with the 'global_init_slot' attribute.

Constants are initialized before the variables and in the same order as the variables. During
initialization, the POUs are sorted according to the value for <slot>. Then the code for initializing
the constants is generated and afterwards the code for initializing the variables.
Syntax:
{attribute 'global_init_slot' := '<slot>'}
<slot>: Integer value that defines the position in the call order. The default value for a POU
(program, function block) is 50000. The default value for a GVL is 49990. A lower value means
an earlier initialization. Caution: If several blocks or GVLs receive the same value for the
'global_init_slot' attribute, then the initialization order remains undefined.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 699

Insert location: The pragma always affects the entire GVL or POU and therefore it must be
located above the VAR_GLOBAL or POU declaration.

If several programming blocks have got assigned the same value for the
attribute 'global_init_slot', the order of their initialization remains unde-
fined.

The program includes two global variable lists GVL_1 and GVL_2, as well as a PLC_PRG
program that uses variables from both lists. GVL_1 uses the variable B for initializing a variable
A, which is initialized in GVL_2 with a value of 1000.
VAR_GLOBAL //49990
 A : INT := GVL_2.B*100;
END_VAR
VAR_GLOBAL //49990
 B : INT := 1000;
 C : INT := 10;
END_VAR
PROGRAM PLC_PRG //50000
VAR
 ivar: INT := GVL_1.A;
 ivar2: INT;
END_VAR

ivar:=ivar+1;
ivar2:=GVL_2.C;

In this case, the compiler prints an error because GVL_2.B is used for initializing GVL_1.A
before GVL_2 has been initialized. You can prevent this by using the global_init_slot
attribute to position GVL_2 before GVL_1 in the initialization sequence.

In this example, GVL_1 must have at least one slot value of 49989 in order to achieve the
earliest initialization within the program. Every lower value has the same effect:
{attribute 'global_init_slot' := '100'}
VAR_GLOBAL
 B : INT := 1000;
END_VAR

Using GVL_2.C in the implementation part of PLC_PRG is also not critical even without using a
pragma because both GVLs are initialized before the program in either case.

Example

GVL_1

GVL_2

PLC_PRG

GVL_2

Attribute 'hide'

Using the pragma {attribute 'hide'} to hide variables and POUs does
not have the desired effect in most cases. Instead, you should use the pragma
{attribute 'conditionalshow'}.

The pragma prevents the variables and POUs defined with it from being shown in the
CODESYS user interface. As a result, you can intentionally hide these identifiers without
restricting the access. This can be useful when you develop libraries.
Affected features:
● Library management
● Debugging
● Input Assistant
● Function "List components"

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US700

● Monitoring
● Symbol configuration
The variables or POUs defined with the pragma are neither visible in the Library Manager nor
are they suggested in the Input Assistant or in the "List components" function. The pragma
prevents those marked variables from being displayed in the symbol configuration. As a result,
you cannot export these kinds of variables as symbols. The variables are also invisible in
online mode, and therefore their values cannot be monitored. Moreover, you cannot use any
debugging functionalities and you do not have any support when checking for bugs.
Syntax:
{attribute 'hide'}
Insert location: For variables, above the line with the declaration of the variables. For POUs, in
the first line.
If you, the application developer, know the exact instance path of the hidden POUs and varia-
bles, then you can access them in the code.

The function block FB_MyA contains the attribute pragma {attribute 'hide'} to hide the
local variable xInvisibleIn.
FUNCTION_BLOCK FB_MyA
VAR_INPUT
 iInA : INT;
 {attribute 'hide'}
 xInvisibleIn : BOOL;
 xInit: BOOL;
END_VAR
VAR_OUTPUT
 iOutA : INT;
END_VAR
VAR
 iCounter : INT;
END_VAR

Two instances of the function block FB_MyA are defined in the main program.
PROGRAM PLC_PRG
VAR
 fbMyA1, fbMyA2 : FB_MyA;
 xVar2 : BOOL;
 iVar1 : INT;
 iVar2 : INT;
END_VAR
fbMyA1(iInA := 1, xInit := TRUE, xInvisibleIn := TRUE, iOutA =>
iVar1);
fbMyA2(iInA := 1, xInit := TRUE, iOutA => iVar2);

When the input value for fbMyA1 is implemented, the "List components" function, which opens
when you type fbMyA1. (in the implementation part of PLC_PRG), displays the variables
iInA, xInit, and iOutA, but not the hidden variable xInvisibleIn.

Example of
hidden variable

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 701

FB_A is a function block of the library HiddenFunctionality with the default namespace
HIDDEN. To hide the identifier and the POU code from application developers, begin the
declaration of the POU with the attribute pragma {attribute 'hide'}. To hide the subordi-
nate POUs (actions, methods, properties, and transitions) in the same way, also begin their
declarations with {attribute 'hide'}.
{attribute 'hide'}
FUNCTION_BLOCK FB_A
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iA : INT;
 iCount : INT;
 iInvisible : INT;
END_VAR

{attribute 'hide'}
METHOD METH_Count : INT
VAR_INPUT
END_VAR
iCount := iCount + 1;

{attribute 'hide'}
METHOD METH_Invisible : BOOL
VAR_INPUT
END_VAR
iInvisible := iInvisible + 1;

{attribute 'hide'}
PROPERTY PUBLIC prop_iA : INT

For you as the application developer, all POUs are invisible. You can use them only if you
know the instance path.
PROGRAM PLC_PRG
VAR
 fbHidden : HIDDEN.FB_A; // Hidden function block from library
HiddenFunctionality
 iCounter : INT;
END_VAR
fbHidden.METH_Invisible();
iCounter := fbHidden.iInvisible;

In online mode, no monitoring is performed.

Example of
hidden library
POU

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US702

With the pragma hide_all_locals you can hide all local variables of a POU.

See also
● Ä Chapter 1.4.1.19.6.2.17 “Attribute 'hide_all_locals'” on page 703
● Ä Chapter 1.4.1.19.6.2.7 “Attribute 'conditionalshow'” on page 690
● Ä Chapter 1.4.1.19.6.2.8 “Attribute 'conditionalshow_all_locals'” on page 691

Attribute 'hide_all_locals'
The pragma prevents all local variables of a signature from being visible in the display of the
'List components' function, in the Input Assistant or in the declaration part in online mode.
Moreover, these variables are hidden in the symbol configuration and therefore cannot be
exported as symbols. The pragma is especially useful in library POUs to hide POU variables
from users.
Affected features
● Library management
● Debugging
● Input Assistant
● Function "List components"
● Monitoring
● Symbol configuration
Syntax:
{attribute 'hide_all_locals'}
Insert location: First line above the declaration part of the POU

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 703

The function block FB_MyB uses the attribute:
{attribute 'hide_all_locals'}
FUNCTION_BLOCK FB_MyB
VAR_INPUT
 iInB : INT;
 {attribute 'hide'}
 xInvisibleIn : BOOL;
 xInit: BOOL;
END_VAR
VAR_OUTPUT
 iOutB : INT;
END_VAR
VAR
 iCounter : INT;
 xVar : BOOL;
END_VAR

Two instances of the function block FB_MyB are defined in the main program.
PROGRAM PLC_PRG
VAR
 fbMyB1, fbMyB2: FB_MyB;
 iVar3: INT;
 iVar4: INT;
END_VAR

fbMyB1(iInB := 2, xInvisibleIn := TRUE, iOutB => iVar3);
fbMyB2(iInB := 2, iOutB => iVar4);
IF fbMyB2.iCounter > 100 THEN
 fbMyB2.xInit := TRUE;
END_IF

Now when you download the program to the controller, start it, and switch to online mode, the
variables iInB, xInit, iOutB, and xReset are displayed in the declaration editor. However,
the hidden local variables iCounter and xVar are not displayed.

Example

See also
● Ä Chapter 1.4.1.19.6.2.16 “Attribute 'hide'” on page 700

Attribute 'initialize_on_call'
The pragma causes input variables of a function block to be initialized on each call of the
function block. If an input variable is affected which expects a pointer and this pointer has been
removed during an online change, then the variable is initialized to zero.

Syntax:
{attribute 'initialize_on_call'}
Insert location: Always in the first line of the declaration part for the entire function block, and
also in a line above the declaration of the individual input variable.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US704

{attribute 'initialize_on_call'}
FUNCTION_BLOCK fb
VAR_INPUT
 {attribute 'initialize_on_call'}
 pInt : POINTER TO INT := 0;
 {attribute 'initialize_on_call'}
 iVal : INT := 0;
END_VAR

Example

Attribute 'init_namespace'
The effect of this pragma is that a variable of the type STRING or WSTRING, which is declared in
a library function block with this pragma, is initialized when used in the project with the current
namespace of the library.
Syntax
{attribute 'init_namespace'}
Insertion position: the line above the line with the declaration of the variables in a library function
block.

The function block “POU” is provided with the necessary attributes:
FUNCTION_BLOCK POU
VAR_OUTPUT
 {attribute 'init_namespace'}
 myStr: STRING;
END_VAR

An instance fb of the function block POU is defined within the main program PLC_PRG:
PROGRAM PLC_PRG
VAR
 fb:POU;
 newString: STRING;
END_VAR
 newString := fb.myStr;

The variable myStr is initialized with the current namespace, for example MyLib. This value is
assigned to newString in the main program.

Example

See also
● Ä Chapter 1.4.1.20.2.14 “Object 'Library Manager'” on page 874

Attribute 'init_on_onlchange'
The effect of this pragma is that the variable to which the pragma is applied is initialized with
each online change.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 705

NOTICE!
For compiler version 3.5.0.0 and later, a fast online change is performed for
minor changes. In this case, only the modified blocks are compiled and down-
loaded. In particular, no initialization code is generated. This means that also no
code is generated when variables with the init_on_onlchange attribute are
initialized. As a rule, this has no effect because the attribute is used primarily for
initializing variables with addresses. However, it cannot happen that a variable
changes its address during an online change.
To secure the effect of the init_on_onlchange attribute in the entire appli-
cation code, you must deactivate the fast online change in general for the
application by using the compiler definition no_fast_online_change. To do
this, insert the definition in the application “Properties” (“Build” tab).

Syntax:
{attribute 'init_on_onlchange' }
Insert location: The line above the line with the declaration of the variables.
See also
● Ä Chapter 1.4.1.20.4.10.4 “Dialog 'Properties' - 'Build'” on page 1159

Attribute 'instance-path'
This pragma can be applied to a local STRING variable and causes this local STRING variable
to be initialized in sequence with the device tree path of the POU to which it belongs. This
can be useful for error messages. The application of the pragma requires the application of the
attribute 'reflection' to the associated POU, as well as the application of the additional
attribute 'noinit' to the STRING variable.

Syntax:
{attribute 'instance-path'}
Insertion position: the line above the line with the declaration of the STRING variable.

The following function block contains the attributes 'reflection', 'instance-path' and
'noinit'.
{attribute 'reflection'}
FUNCTION_BLOCK POU
VAR
 {attribute 'instance-path'}
 {attribute 'noinit'}
 str: STRING;
END_VAR

An instance “myPOU” of the function block “POU” is defined within the main program
“PLC_PRG”:
PROGRAM PLC_PRG
VAR
 myPOU:POU;
 myString: STRING;
END_VAR
myPOU();
myString:=myPOU.str;

Following the initialization of the instance myPOU, the path of the instance myPOU is assigned
to the string variable str, in the example PLCWinNT.Application.PLC_PRG.myPOU. This
path is assigned in the main program to the variable myString.

Example

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US706

NOTICE!
You can define the length of a string to be whatever you like (even >255), but
you must consider that the string will be truncated at the end if it is assigned to
a variable whose data type is too small for it.

See also
● Ä Chapter 1.4.1.19.6.2.39 “Attribute 'reflection'” on page 727
● Ä Chapter 1.4.1.19.6.2.30 “Attribute 'noinit'” on page 713

Attribute 'io_function_block', 'io_function_block_mapping'
With the 'io_function_block' attribute, you mark a function block in order to prepare it for
the assignment to a channel in the I/O mapping of the device configuration. Then it is shown in
the “Select function block” dialog.
With the 'io_function_block_mapping' attribute, you mark a parameter that should be
used when mapping the FB to a device channel in this kind of function block. You can provide
the attribute to multiple parameters of the function block. For I/O mapping, the first one is used
automatically whose type matches the channel (input, output, data type).
Syntax:
{attribute 'io_function_block'}
{attribute 'io_function_block_mapping'}
Insert location: The line above the first line in the declaration of the function block, or the line
above the parameter declaration.

{attribute 'io_function_block'}
FUNCTION_BLOCK Scale_Output_Int
VAR_INPUT
 iInput : INT;
 iNumerator : INT;
 iDenominator : INT :=1;
 iOffset : INT := 0;
END_VAR
VAR_OUTPUT
 {attribute 'io_function_block_mapping'}
 iOutput : INT;
END_VAR
VAR

Example

See also
● Ä Chapter 1.4.1.20.4.3 “Dialog 'Select Function Block'” on page 1150
● Ä “Linking a device with a function block instance” on page 218

Attribute 'is_connected'
You use the pragma 'is_connected' to mark a Boolean function block variable which, when
a function module instance is called, provides information about whether the associated input of
the POU has an assignment.
The use of the pragma requires the use of the attribute 'reflection' on the affected function
block.
Syntax:
{attribute 'is_connected' := '<input variable>'}

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 707

In the function block FB, a local variable is declared for each input variable (in1 and in2)
and the attribute 'is connected' is prepended to it each time with the name of the input
variable. The func itself gets the pragma attribute 'reflection'.

When an instance of the function block is called, the local variable is TRUE in the case that the
input assigned to it has received an assignment.
{attribute 'reflection'}
FUNCTION_BLOCK FB
VAR_INPUT
 in1: INT;
 in2: INT;
END_VAR
VAR
 {attribute 'is_connected' := 'in1'}
 in1_connection_info: BOOL;
 {attribute 'is_connected' := 'in2'}
 in2_connection_info: BOOL;
END_VAR

Assumption: When the function block instance is called, in1 receives an external assignment
and in 2 does not receive an assignment. This results in the following code:
in1_connection_info := TRUE;
in2_connection_info := FALSE;

Example

See also
● Ä Chapter 1.4.1.19.6.2.39 “Attribute 'reflection'” on page 727
● Ä Chapter 1.4.1.20.2.18.2 “Object 'Function Block'” on page 883

Attribute 'linkalways'
The pragma {attribute 'linkalways'} instructs the compiler to always include a POU or
a library POU in the compile information. During the build, the POU is compiled and is part of
the application code. During the download, the POU is downloaded to the PLC.
Syntax:
{attribute 'linkalways'}
Insertion location: The first line in the declaration part of the POU or library POU
The POU may be valid throughout the project (saved in the “POUs” view) or throughout the
application (saved in the “Devices” view).

You can also select the “Link always” option in the “Build” tab of a POU's object
properties.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US708

The “MoreSymbols” GVL contains the pragma {attribute 'linkalways'}. The variables
declared there are also part of the application code, regardless of any access.

{attribute 'linkalways'}
VAR_GLOBAL
 g_iAlpha: INT;
 g_iBravo: INT;
 g_iCharlie: INT;
END_VAR

The symbol configuration also accesses the compile information. As a result, the variables of
the MoreSymbols GVL are always provided for selection in the “Symbol Configuration” editor.

Example

GVL
MoreSymbols

See also
● Ä Chapter 1.4.1.20.4.10.4 “Dialog 'Properties' - 'Build'” on page 1159
● Ä Chapter 1.4.1.9.2 “Symbol Configuration” on page 357

Attribute 'monitoring'
The effect of this pragma is that you can monitor values of properties or function calls in the
online view of the IEC editor or in a watch list. There are two possible attribute values for this:
'variable' and 'call'

{attribute 'monitoring' := 'variable'}
{attribute 'monitoring' := 'call'}

In the online view of a function block or program, you can monitor the subordinate properties
in addition to the local variables. This allows you to monitor the values of the Get and Set
methods.
Insert either the pragma {attribute 'monitoring' := 'variable'} or {attribute
'monitoring' := 'call'} in the declaration of the property block. The current values of
the property are then displayed automatically in the IEC editor or in a watch list.

Syntax

Monitoring of
programming
objects and
their properties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 709

In online mode, the PLC_PRG object shows the value of the Minutes property at the call
location inline in the ST editor. This is because the pragma {attribute 'monitoring' :=
'variable'} is located in the declaration of the Minutes property.

Example

Check carefully for each application which attribute pragma is suitable for displaying the desired
value. This depends on whether further operations with the variables are implemented within the
property.
1. Pragma {attribute 'monitoring':='variable'}:

An implicit variable is created for the property, which is then always given the current property
value when the application calls the Set or Get method. The value stored last in this variable is
displayed in the monitoring.
2. Pragma {attribute 'monitoring':='call'}:

You can use this attribute only for properties that return simple data types or pointers, but not
for structured types. The value to be monitored is read or written by calling the property directly.
This means that the monitoring service of the runtime executes the Get or Set method of the
property.

NOTICE!
When you insert the pragma {attribute 'monitoring':='call'} for
monitoring, you have to pay attention to possible side effects. These kinds of
side effects can occur if additional operations are implemented in the property.

NOTICE!
The pragma {attribute 'monitoring'} is also evaluated for the symbol
configuration. Only read access is possible for the value 'variable'.

With the context menu command “Add Watch”, a variable on which the cursor is
currently positioned is applied directly into the monitoring list in online mode.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US710

The forcing or writing of functions is not supported. However, you can implicitly
implement forcing by adding an additional input parameter for the respective
function, which serves as an internal force flag.

Function monitoring is not possible in the compact runtime.

See also
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897

Attribute 'no_assign', Attribute 'no_assign_warning'
The pragma 'no_assign' results in compiler errors being displayed if an instance of the
function block is assigned to another instance of the same function block. Such assignments
are often to be avoided if the function block contains pointers and pointers lead to problems,
because they are copied as well during the value assignment.
The pragma 'no_assign_warning' results in the same as for the pragma 'no_assign'
with compiler warnings instead of compiler errors.
Syntax:
{attribute 'no_assign'}
Insert location: First line in the declaration part of a function block.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 711

Assignment of function block instances containing pointers.
In this example the value assignment of the function block instances will lead to problems
during the execution of fb_exit:
VAR_GLOBAL
inst1 : TestFB;
 awsBufferLogFile : ARRAY [0..9] OF WSTRING(66);(* Area: 0,
Offset: 0x1304 (4868)*)
 LogFile : SEDL.LogRecord := (sFileName := 'LogFile.log',
pBuffer := ADR(awsBufferLogFile), udiMaxEntriesFile := UDINT#10000,
udiMaxBuffered := UDINT#10, uiLineSize := UINT#64, wsSep := " ",
xCircular := TRUE, siDateFormat := SINT#0, siTimeFormat := SINT#0);
END_VAR

 PROGRAM PLC_PRG
VAR
 inst2 : TestFB := inst1;
 LogFileNew
END_VAR

In this case LogRecord manages a list of pointers, for which various actions are executed in
the case of fb_exit. Problems result due to the assignment, because fb_exit will be exe-
cuted twice. You should prevent this by adding the attribute 'no_assign' in the declaration
of the function block “TestFB”:
{attribute 'no_assign'}
FUNCTION_BLOCK TestFB
VAR_INPUT
...

The following compiler errors are then displayed:
C0328: Assignment not allowed for type TestFB
C0328: Assignment not allowed for type LogRecord

If the pragma no_assign_warning is used instead of the pragma no_assign for the func-
tion block “TestFB ”, then the C0328 message is issued as compiler warning, not as a compiler
error.

Example

Attribute 'no_check'
This pragma prevents the check function being called for the POU (POUs for implicit checks).
Since the check functions can affect the processing speed of the program, it can be useful to
apply the attribute to function blocks that have already been checked or are frequently called.
You add the pragma to the declaration of a POU.
Syntax:
{attribute 'no_check'}
Insertion position: first line in the declaration part of the POU.

NOTICE!
The attribute also automatically affects the child objects of a POU!
Example: If the attribute is entered in a program, check functions will also not be
carried out for actions that are assigned to this program.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US712

Attribute 'no_copy'
In general an online change requires a re-allocation of instances, for example of a POU. In the
process, the value of the variable contained in the instance is copied.
The pragma prevents the value of the variable contained in the instance from being copied in
the course of an online change; instead, the variable is re-initialized in the course of an online
change. This can be useful for a local pointer variable that points to a variable that has just been
shifted by the online change and thus has a changed address.
You insert the attribute in the declaration part above the line of the declaration of the variables
concerned.
Syntax:
{attribute 'no_copy'}

Attribute 'no-exit'
This attribute suppresses the call of the FB_exit method of a function block for a certain one of
its instances. To do this you insert the attribute in the line before the declaration of the function
block instance.
Syntax:
{attribute 'no-exit'}

The method “FB_exit” is added to the function block “POU_ex”. Two instances of the function
block “POU_ex” are created in the main program “PLC_PRG”.
PROGRAM PLC_PRG
VAR
 POU1 : POU_ex;
 {attribute 'no-exit'}
 POU2 : POU_ex;
END_VAR

POU1 is called, POU2 is not called.

Example

See also
● Ä Chapter 1.4.1.19.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 748

Attribute 'noinit'
This pragma is applied to variables that should not be implicitly initialized.
Syntax:
{attribute 'no_init'}
{attribute 'no-init'}
{attribute 'noinit'}
Insertion position: line above the declaration line of the variables concerned in the declaration
part.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 713

PROGRAM PLC_PRG
VAR
 A : INT;

 {attribute 'no_init'}
 B : INT;
END_VAR

When the associated application is reset, the integer variable A is implicitly re-initialized with 0,
whereas the variable B retains its current value.

Example

Attribute 'no_instance_in_retain'
You can use this pragma to prevent the instance of a function block from being stored in the
retain memory.
Syntax:
{attribute 'no_instance_in_retain'}
Insert location:
Lines above the FUNCTION_BLOCK declaration in the declaration part of the function block.

Now when you declare an instance declaration of the function block as a RETAIN variable, an
error message is issued.

See also
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301

Attribute 'no_virtual_actions'
The pragma is used for function blocks that are derived from a function block implemented
in SFC and use the fundamental SFC sequence of this base class. The actions called from
it exhibit the same virtual behavior as methods. This means that the implementations of the
actions in the base class can be replaced by the derived class with its own specific implementa-
tions.
If you apply the pragma to the base class, then its actions are protected against overloading.
Syntax:
{attribute 'no_virtual_actions'}
Insert location: Top line in the declaration part of the function block

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US714

The function block POU_SFC is the base class for the derived function block POU_child. The
derived class POU_child calls the sequence of the base class written in SFC with the special
variable SUPER.

The exemplary implementation of this sequence is limited to the initial step, followed by a
single step with a linked step action ActiveAction. This step with a linked step action takes
care of the configuration of the output variables.
an_int:=an_int+1; // Counting the action calls
test_act:='father_action';
METH(); // Call of the method METH in order to set the
string variable test_meth

In the case of the derived class POU_child the step action is replaced by a special implemen-
tation of ActiveAction. Active Action differs from the original only by the assignment of
the string 'child_action' in place of 'father_action' at the variable test_act.

Likewise, the method METH, which assigns the string 'father_method' to the variable
test_meth in the base class, is overwritten so that test_meth now gets the value
'child_method'. The main program PLC_PRG calls an instance of the function block
POU_child, named Child. As expected, the value of the strings reflects the call of the action
and method of the derived class:

Example

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 715

Now, however, you place the pragma {attribute 'no_virtual_actions'} in front of
the base class:
{attribute 'no_virtual_actions'}

FUNCTION_BLOCK POU_SFC...
This changes the behavior: While the implementation of the derived class is still used for the
method METH, the call of the step action now results in a call of the action ActiveAction of
the base class. Therefore test_act is now given the value 'father_action':

Attribute 'pingroup'
The effect of this pragma is that the input pins or output pins (parameters) are grouped in the
declaration of a function block. In the FBD/LD editor a pin group defined in this way can be
displayed as an enlarged or reduced unit on the inserted function block. Several groups are
possible and are distinguished by their names. CODESYS saves the respective state (reduced)
per function block box with the project options.
Syntax:
{attribute 'pingroup' := '<group name>'}
Insertion position: line above the declaration of the input or output variables concerned in the
declaration part of a function block.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US716

Two groups are defined: general (i1, out1) and group1 (i2, g1). r1, r2, outRes1
and g2 are always displayed
FUNCTION_BLOCK FB
VAR_INPUT
 r1 : REAL;
 {attribute 'pingroup' := 'general'}
 i1 : INT;
 {attribute 'pingroup' := 'group1'}
 i2 : INT;
 r2 : REAL;
END_VAR

VAR_OUTPUT
 outRes1 : REAL;
 {attribute 'pingroup' := 'general'}
 out1 : INT;
 {attribute 'pingroup' := 'group1'}
 g1 : INT;
 g2 : REAL;
END_VAR

Example

Attribute 'pin_presentation_order_inputs/outputs'
The pragmas are evaluated in the CFC, FBD, and LD graphical editors, causing the order of
inputs/outputs of the affected function block to be displayed as specified. You program the order
by assigning the names of the inputs/outputs to the attribute in the desired order.

{attribute 'pin_presentation_order_inputs' := '<First_Input_Name>,
(<Next_Input_Name>,)* (*,)? (<Next_Input_Name>,)*
<Last_Input_Name>'}
{attribute 'pin_presentation_order_outputs' := '<First_Output_Name>,
(<Next_Output_Name>,)* (*,)? (<Next_Output_Name>,)*
<Last_Output_Name>'}
● *

The terminal character serves as a wildcard for all inputs/outputs that are not specified in
the display order. If the terminal character is missing, then the missing inputs/outputs are
appended at the end.

● (...)?
The contents of the parentheses are optional.

● (...)*
The contents of the parentheses are optional again and can therefore occur not at all, one
time, or several times.

● Insert location: First line in the declaration part of a function block.

NOTICE!
This pragma is not evaluated when pragma {attribute 'pingroup' :=
'<Group_Name>'} is used.

Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 717

{attribute 'pin_presentation_order_inputs' := 'input_2,*,input_1'}
{attribute 'pin_presentation_order_outputs' := 'output_2, output_1'}
FUNCTION_BLOCK POU_BASE
VAR_INPUT
 input_1 : BOOL;
 input_2 : INT;
 input_3 : INT;
 input_4 : INT;
END_VAR

VAR_OUTPUT
 output_1 : BOOL;
 output_2 : INT;
 output_3 : INT;
 output_4 : BOOL;
END_VAR

FUNCTION_BLOCK PLC_PRG
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 pouBase_A: POU_BASE;
END_VAR

In the representation of function module instance pouBase_A, the pragmas result in the
following arrangement of input and output pins:

Example

See also
● Ä Chapter 1.4.1.19.6.2.33 “Attribute 'pingroup'” on page 716

Attribute 'obsolete'
The effect of this pragma is that a defined warning is displayed for a data type definition during
compilation if the data type (structure, function block, etc.) is used in the project. This enables
you, for example, to draw attention to the fact that a data type is no longer valid because, for
example, an interface has changed and this should also be implemented in the project.
In contrast to a message pragma this warning is defined centrally for all instances of a data
type.
Syntax:
{attribute 'obsolete' := 'user defined text'}
Insertion position: line of the data type definition or in a line above it.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US718

The pragma is inserted in the definition function block fb1:
{attribute 'obsolete' := 'datatype fb1 not valid!'}
FUNCTION_BLOCK fb1
VAR_INPUT
 i:INT;
END_VAR

If you use fb1 as a data type, for example in fbinst:fb1, the following warning will be
displayed when compiling the project: "datatype fb1 not valid".

Example

See also
● Ä Chapter 1.4.1.19.6.1 “Message Pragmas” on page 683

Attribute 'pack_mode'
The pragma defines how a data structure is packed during the allocation. The attribute has to
be inserted above the data structure and affects the packing of the entire structure.
Syntax:
{attribute 'pack_mode' := ' <pack mode value>' }
Insert location: above the declaration of the data structure

Table 45: Possible values for <value>:
<pack mode

value>
Associated
packing
method

Description

0 Aligned All variables are allocated to byte addresses. There are no memory gaps.

1 1-byte-aligned

2 2-byte-aligned There are
● 1-byte variables at byte addresses
● 2-byte variables at addresses divisible by 2. A maximum gap of 1 byte

results.
● 4-byte variables at addresses divisible by 2. A maximum gap of 1 byte

results.
● 8-byte variables at addresses divisible by 2. A maximum gap of 1 byte

results.
● Strings always at byte addresses. No gaps result.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 719

<pack mode
value>

Associated
packing
method

Description

4 4-byte-aligned There are
● 1-byte variables at byte addresses
● 2-byte variables at addresses divisible by 2. A maximum gap of 1 byte

results.
● 4 byte variables at addresses divisible by 4. A maximum gap of 3 byte

results.
● 8-byte variables at addresses divisible by 4. A maximum gap of 3 byte

results.
● Strings always at byte addresses. No gaps result.

8 8-byte-aligned There are
● 1-byte variables at byte addresses
● 2-byte variables at addresses divisible by 2. A maximum gap of 1 byte

results.
● 4 byte variables at addresses divisible by 4. A maximum gap of 3 byte

results.
● 8 byte variables at addresses divisible by 8. A maximum gap of 7 byte

results.
● Strings always at byte addresses. No gaps result.

Depending on the structure, there may be no difference in the memory mapping
of the individual modes. Therefore, the memory allocation of a structure with
<pack mode value> = 4 can correspond to that of <pack mode value>
= 8.

Arrays of structures: If the structures are combined in arrays, then bytes are
added at the end of the structure so that the next structure is aligned.

NOTICE!
If the “Compatibility layout” option is selected in the symbol configuration and at
the same time the attribute 'pack_mode' is used in the code, then problems can
occur due to unintentional memory misalignment.

See also
● Ä Chapter 1.4.1.20.2.25 “Object 'Symbol Configuration'” on page 927

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US720

{attribute 'pack_mode' := '1'}

TYPE myStruct:
STRUCT
 Enable: BOOL;
 Counter: INT;
 MaxSize: BOOL;
 MaxSizeReached: BOOL;
 END_STRUCT
END_TYPE

The memory range for a variable of the data type myStruct is allocated 'aligned'. If
the storage address of its component Enable is 0x0100, for example, then the com-
ponent Counter follows at the address 0x0101, MaxSize at address 0x0103 and
MaxSizeReached at address 0x0104. In the case of 'pack_mode':=2, Counter would
be at 0x0102, MaxSize at 0x0104 and MaxSizeReached at 0x0106.

Example

Example 1

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 721

STRUCT
 Var1 : BOOL := 16#01;
 Var2 : BYTE := 16#11;
 Var3 : WORD := 16#22;
 Var4 : BYTE := 16#44;
 Var5 : DWORD := 16#88776655;
 Var6 : BYTE := 16#99;
 Var7 : BYTE := 16#AA;
 Var8 : DWORD := 16#AA;
END_TYPE

 pack_mode = 0 pack_mode = 1 pack_mode = 2 pack_mode = 4 pack_mode = 8
 Variable Value Variable Value Variable Value Variable Value Variable Value
0 Var1 01 Var1 01 Var1 01 Var1 01 Var1 01

1 Var2 11 Var2 11 Var2 11 Var2 11 Var2 11

2 Var3 22 Var3 22 Var3 22 Var3 22 Var3 22

3 ... 00 ... 00 ... 00 ... 00 ... 00

4 Var4 44 Var4 44 Var4 44 Var4 44 Var4 44

5 Var5 55 Var5 55

6 ... 66 ... 66 Var5 55

7 ... 77 ... 77 ... 66

8 ... 88 ... 88 ... 77 Var5 55 Var5 55

9 Var6 99 Var6 99 ... 88 ... 66 ... 66

10 Var7 AA Var7 AA Var6 99 ... 77 ... 77

11 Var8 AA Var8 AA Var7 AA ... 88 ... 88

12 ... 00 ... 00 Var8 AA Var6 99 Var6 99

13 ... 00 ... 00 ... 00 Var7 AA Var7 AA

14 ... 00 ... 00 ... 00

15 ... 00

16 Var8 AA Var8 AA

17 ... 00 ... 00

18 ... 00 ... 00

19 ... 00 ... 00

20

21

22

23

24

25

26

27

Example

Example 2

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US722

 pack_mode = 0 pack_mode = 1 pack_mode = 2 pack_mode = 4 pack_mode = 8
 Variable Value Variable Value Variable Value Variable Value Variable Value

28

29

30

31

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 723

STRUCT
 Var1 : BYTE := 16#01;
 Var2 : LWORD := 16#11;
 Var3 : BYTE := 16#22;
 Var4 : BYTE := 16#44;
 Var5 : DWORD := 16#88776655;
 Var6 : BYTE := 16#99;
 Var7 : BYTE := 16#AA;
 Var8 : WORD := 16#AA;
END_TYPE

 pack_mode = 0 pack_mode = 1 pack_mode = 2 pack_mode = 4 pack_mode = 8
 Variable Value Variable Value Variable Value Variable Value Variable Value
0 Var1 01 Var1 01 Var1 01 Var1 01 Var1 01

1 Var2 11 Var2 11

2 ... 00 ... 00 Var2 11

3 ... 00 ... 00 ... 00

4 ... 00 ... 00 ... 00 Var2 11

5 ... 00 ... 00 ... 00 ... 00

6 ... 00 ... 00 ... 00 ... 00

7 ... 00 ... 00 ... 00 ... 00

8 ... 00 ... 00 ... 00 ... 00 Var2 11

9 Var3 22 Var3 22 ... 00 ... 00 ... 00

10 Var4 44 Var4 44 Var3 22 ... 00 ... 00

11 Var5 55 Var5 55 Var4 44 ... 00 ... 00

12 ... 66 ... 66 Var5 55 Var3 22 ... 00

13 ... 77 ... 77 ... 66 Var4 44 ... 00

14 ... 88 ... 88 ... 77 ... 00

15 Var6 99 Var6 99 ... 88 ... 00

16 Var7 AA Var7 AA Var6 99 Var5 55 Var3 22

17 Var8 AA Var8 AA Var7 AA ... 66 Var4 44

18 ... 00 ... 00 Var8 AA ... 77

19 ... 00 ... 88

20 Var6 99 Var5 55

21 Var7 AA ... 66

22 Var8 AA ... 77

23 ... 00 ... 88

24 Var6 99

25 Var7 AA

26 Var8 AA

27 ... 00

Example

Example 3

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US724

 pack_mode = 0 pack_mode = 1 pack_mode = 2 pack_mode = 4 pack_mode = 8
 Variable Value Variable Value Variable Value Variable Value Variable Value

28

29

30

31

If pack mode is not used, then the compiler typically uses pack mode 4 or 8, depending on the
device description. In each case, a pack mode which is particularly beneficial for the processor
is used so that memory access can be performed. This is also called natural alignment or a
natural alignment of data.

Unaligned memory access can be the result of using the attribute 'pack_mode'. This means,
for example, that a data type with a size of 4 bytes is then located at an address which is not
divisible by 4. Normally, on a 32-bit system a 32-bit data type can be read and written with
a single memory access. On some platforms, for example on ARM platforms, this is possible
only when this value is aligned in the memory. On other platforms, it can be that the access is
possible but it is performed much more slowly.

{attribute 'pack_mode':=1}

TYPE DUT
STRUCT
by1 : BYTE;
dw1 : DWORD;
END_STRUCT
END_TYPE

On an ARM platform, the value dw1 cannot be read with a single access. When an attempt is
made to access this element directly, the ARM processor will throw an exception.
Assumption: The following read access is performed: dwTest := dut1.dw1;
For this access to the DWORD dw1, four memory accesses are required because each byte is
read, shifted, and disjuncted individually. The flow is somewhat the same as in the following
example in which a DWORD is generated from an array of four bytes:
dwHelp := bytes[0];
dwResult := dwHelp;
dwHelp := bytes[1];
dwHelp := SHL(dwHelp, 8);
dwResult := dwResult OR dwHelp;
dwHelp := bytes[2];
dwHelp := SHL(dwHelp, 16);
dwResult := dwResult OR dwHelp;
dwHelp := bytes[3];
dwHelp := SHL(dwHelp, 24);
dwResult := dwResult OR dwHelp;

Obviously, this kind of access is much slower than access to a DWORD, which is aligned
appropriately in the memory.
pdw := ADR(dut1.dw1);
dwTest := pdw^;

Example

Behavior
without pack
mode

Negative effects
when using
pack mode

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 725

However, the compiler will not generate the access of the example when this kind of member is
accessed by means of a pointer. This means that the following code results in an exception on
an ARM platform.
pdw := ADR(dut1.dw1);
dwTest := pdw^;
For performance reasons, you should therefore avoid working with structures which are not
naturally aligned.
A packed structure must not contain an unpacked structure.

Attribute 'ProcessValue'
With the 'ProcessValue' attribute, you mark a component of a structure. In the CFC editor,
you can then use the command “Use attributed member as input” in order to connect this
structure to an input of scalar type.
Syntax:
{attribute 'ProcessValue'}
Insert location: Line above the affected structure variable.

TYPE QINT :
STRUCT
 Status : STRING;
 {attribute 'ProcessValue'}
 Value1 : INT;
 Value2 : INT;
END_STRUCT
END_TYPE

Example

See also
● Ä Chapter 1.4.1.20.3.12.36 “Command 'Use Attributed Member as Input'” on page 1102

Attribute 'qualified_only'
The effect of this pragma is that variables of a global variable list are only addressed by
specifying the global variable name, for example gvl.g_var. This also applies to variables of
the type Enumeration and can be helpful in avoiding being mistaken for local variables.
Syntax:
{attribute 'qualified_only'}
Insertion position: line above VAR_GLOBAL in a GVL

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US726

Global Variable List “GVL”:
{attribute 'qualified_only'}
VAR_GLOBAL
 iVar:INT;
END_VAR

Within a POU, for example “PLC_PRG”, the global variable iVar can only be addressed using
the prefix GVL:
GVL.iVar:=5;

Conversely, the following incomplete call of the variable will create an error:
iVar:=5;

Example

Attribute 'reflection'
The pragma is used to identify POUs in which some variables require special treatment and
are tagged with a specific attribute for this purpose. Currently, this applies to the attributes
'instance-path' and 'is-connected' for function block variables. The compiler searches
only blocks marked with 'reflection' for variables with these attributes and therefore needs
less time.
Syntax:
{attribute 'reflection'}
For examples, see the description of the attributes 'instance-path' and 'is-connected'.
See also
● Ä Chapter 1.4.1.19.6.2.21 “Attribute 'instance-path'” on page 706
● Ä Chapter 1.4.1.19.6.2.23 “Attribute 'is_connected'” on page 707

Attribute 'subsequent'
The pragma is used to allocate consecutive variables in memory. When the list changes, the
entire variable list is allocated to a new memory area. This pragma is used in programs and
global variable lists.
Syntax:
{attribute 'subsequent'}

NOTICE!
VAR_TEMP in a program with attribute 'subsequent' leads to a compiler error.

When a variable in the list is qualified with RETAIN, all variables of the declara-
tion part are stored in the memory area for RETAIN.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 727

Attribute 'symbol'
The pragma {attribute 'symbol'} defines which variables of a program or a global vari-
able list are to be adopted into the symbol configuration. This means that the variables are
exported as symbols to a symbol list. This symbol list is then available for external access
both as an XML file in the project directory and as a file that is invisible to the user on the
target system. For example, the symbol list is then available for access by an OPC server. The
variables thus equipped with a symbol are loaded by CODESYS to the controller, even if they
are not explicitly configured or visible in the editor of the symbol configuration.
In any case, however, an object “Symbol configuration” must be created below the application
concerned in the device tree.
Syntax:
{attribute 'symbol' := '<access possibilities>'}
<access possibilities>: none, read, write, readwrite. The default value
readwrite applies if no parameter is specified.

Insertion position:
● in order to affect only an individual variable, you must place the pragma in the line before

the variable declaration.
● In order to be effective for all variables in the declaration part of a program, you must

place the pragma in the first line of the declaration editor. In this case, too, you can still set
instructions for individual variables explicitly in the respective line.

With the following configuration the variables A and B are exported with read and write permis-
sion. Variable D is exported with read permission.
{attribute 'symbol' := 'readwrite'}
PROGRAM PLC_PRG
VAR
 A : INT;
 B : INT;
{attribute 'symbol' := 'none'}
 C : INT;
{attribute 'symbol' := 'read'}
 D : INT;
END_VAR

Example

See also
● Ä Chapter 1.4.1.8.6 “Using Pragmas” on page 263
● Ä Chapter 1.4.1.9.2 “Symbol Configuration” on page 357

Attribute 'to_string'
The pragma affects how the result of converting an enumeration component with the
TO_STRING operator is output. If the enumeration declaration has the pragma, then the name
of the enumeration component appears as a string instead of the numeric value.
Syntax:
{attribute 'to_string'}
Insert location: First line above the declaration part of the enumeration.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US728

Declaration of the enumeration color:
{attribute 'to_string'}
TYPE color :
(
 red := 0,
 blue := 1,
 green := 2
);
END_TYPE

Conversion with TO_STRING:
PROGRAM PLC_PRG
VAR
 i_color: Color;
 s_show_color: STRING;
END_VAR
i_color := 1;
s_show_color := TO_STRING(i_color);

In this case, str_show_color gets the value 'blue' instead of '1' as the conversion
result.

Example

See also
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Attribute 'warning disable', attribute 'warning restore'
This pragma causes certain warnings to be suppressed. The warning restore pragma
causes a suppressed message to be reactivated.
Syntax:
{warning disable <compiler ID>}
{warning restore <compiler ID>}
<compiler ID>: ID located at the beginning of an error or a warning message.

Compiler message:
typify code ...
C0196: Implicit conversion from unsigned Type 'UINT' to signed Type
'INT' : possible change of sign
Compile complete -- 0 errors

Applying the pragma to a variable declaration:
VAR
 {warning disable C0195}
 test1 : UINT := -1;
 {warning restore C0195}
 test2 : UINT := -1;
END_VAR
test1 does not generate an error message, test2 generates an error message.

Example

Effects of Pragmas on Symbols
POUs and variables can change their behavior with respect to the symbol configuration as a
result of pragmas. A detailed description can be found on the help page of each pragma.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 729

Pragma with attribute Effect See also
{attribute
'call_after_global_init_slot'
:= ' <slot> '}

None

{attribute 'call_after_init'} None
{attribute
'call_after_online_change_slot
' := ' <slot> '}

None

{attribute
'call_before_global_exit_slot'
:= ' <slot> '

None

{attribute
'call_on_type_change':= '
comma separated list of
referenced function blocks> '}

None

{attribute
'conditionalshow' := ' <some
text> '}
{attribute 'conditionalshow'}
{attribute
'conditionalshow_all_locals' :
= ' <some text> '}
{attribute
'conditionalshow_all_locals'}

The marked variables are hidden and
therefore cannot be exported.
However, if the source code file
from the compiled library is avail-
able, or if CODESYS has been
started with the command-line option
conditionalshowsymbols, then the
marked variables are visible despite the
pragma.

Ä Chapt
er
1.4.1.19.6.2.7
“Attribute
'conditio-
nal-
show'”
on page 690

Ä Chapt
er
1.4.1.19.6.2.8
“Attribute
'conditio-
nal-
show_all
_locals'”
on page 691

{attribute 'const_replaced'}
{attribute
'const_non_replaced'}

Replaced constants are not available
in the symbol configuration editor and
therefore cannot be exported.
A constant being replaced depends on
whether or not the “Replace constants”
compiler option has been selected for all
constants and whether or not pragmas
overwrite the compiler option for indi-
vidual constants.

Ä Chapt
er
1.4.1.19.6.2.9
“Attribute
'const_re
placed',
Attribute
'const_n
on_repla
ced'”
on page 692

{attribute 'dataflow'} None
{attribute 'displaymode':=
<displaymode> }

None

{attribute
'enable_dynamic_creation'}

None

{attribute 'estimated-stack-
usage' := ' <estimated stack
size in bytes> '}

None

{attribute 'ExpandFully'} None
{attribute
'global_init_slot' :=
'<slot>'}

None

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US730

Pragma with attribute Effect See also
{attribute 'hide'} Variables are hidden and therefore

cannot be exported.
Ä Chapt
er
1.4.1.19.6.2.16
“Attribute
'hide'”
on page 700

{attribute 'hide_all_locals'} Variables are hidden and therefore
cannot be exported.

Ä Chapt
er
1.4.1.19.6.2.17
“Attribute
'hide_all
_locals'”
on page 703

{attribute
'initialize_on_call'}

None

{attribute 'init_namespace'} None
{attribute
'init_on_onlchange' }

None

{attribute 'instance-path'} None
{attribute
'io_function_block'}
{attribute
'io_function_block_mapping'}

None

{attribute 'is_connected' := '
<input variable> '}

None

{attribute 'linkalways'} POUs and library POUs are integrated in
the compile list and therefore cannot be
exported.

Ä Chapt
er
1.4.1.19.6.2.24
“Attribute
'linkal-
ways'”
on page 708

{attribute 'monitoring' :=
'variable'}
{attribute 'monitoring' :=
'call'}

Properties PROPERTY or functions
(FUNCTION) are provided as symbols.

Ä Chapt
er
1.4.1.19.6.2.25
“Attribute
'monitor-
ing'”
on page 709

{'no_assign' }
{'no_assign_warning' }

None

{attribute 'no_check'} None
{attribute 'no_copy'} None
{attribute 'no-exit'} None
{attribute 'no_init'}
{attribute 'no-init'}
{attribute 'noinit'}

None

{attribute
'no_instance_in_retain'}

None

{attribute
'no_virtual_actions'}

None

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 731

Pragma with attribute Effect See also
{attribute 'pingroup' := '
<group name> '}

None

{attribute
'pin_presentation_order_inputs
' := '< input name > '(,
<next input name>)* }
{attribute
'pin_presentation_order_output
s' := '< output name > '(,
<next output name>)* }

None

{attribute 'obsolete' := 'user
defined text'}

None

{attribute 'pack_mode' := '
<pack mode value> '}

Can lead to intentional memory misalign-
ment

Ä Chapt
er
1.4.1.20.2.25
“Object
'Symbol
Configu-
ration'”
on page 927

{attribute 'ProcessValue'} None
{attribute 'qualified_only'} None

{attribute 'reflection'} None
{attribute 'subsequent'} None
{attribute 'symbol' :=
'<access possibilities>'}

Variable is exported as symbol. The
variable is displayed in the symbol list
only when the “View”, “Symbols Exported
via Attribute” option is selected in the
symbol configuration editor. The access
rights, which have been defined with the
pragma, are displayed In the “Attribute”
column.

Ä Chapt
er
1.4.1.19.6.2.41
“Attribute
'symbol'”
on page 728

{attribute 'to_string'} None
{warning disable <compiler
ID> }
{warning restore <compiler
ID> }

None

See also
● Ä Chapter 1.4.1.9.2 “Symbol Configuration” on page 357
● Ä Chapter 1.4.1.20.2.25 “Object 'Symbol Configuration'” on page 927

Conditional Pragmas
The purpose of conditional pragmas is to influence the generation of code in the pre-compilation
process or the compilation process. The ST implementation language supports these pragmas.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US732

NOTICE!
They use conditional pragmas in the implementations of POUs. CODESYS
does not evaluate these conditional pragmas if you use them in the declaration
part.

With conditional pragmas you affect whether implementation code is taken into account for
the compilation. For example, you can make this dependent on whether a certain variable is
declared, whether a certain function block exists, etc.

Pragma Description
{define <identifier> <string>}The value can be queried and compared later with hasvalue.

{undefine <identifier>}The {define} statement of the identifier <identifier> is can-
celed, and the identifier is 'undefined' again from now on. The pragma
is ignored if the specified identifier is not defined at all.

{IF <expr>}...
{ELSIF
<expr>}...
{ELSE}...
END_IF}

These are pragmas for the conditional compilation.
The specified expressions <expr> must be constant at the time of
compilation; they are evaluated in the order in which they appear here
until one of the expressions indicates a non-zero value. The text linked
to the instruction is compiled; the other lines are ignored. The order of
the sections is fixed. The ELSIF and ELSE sections are optional. The
ELSIF-segments may occur any number of times. You can use sev-
eral conditional compilation operators within the constants <expr>.

<expr> You can use one or more operators within the constant expression
<expr> within the conditional compilation pragma {IF} or {ELSIF} .

You can enter expressions and define definitions as “compiler definitions”
in the “Compile” tab in the Properties dialog of POUs. If you enter define
definitions in the properties dialog, you must omit the term {define}, contrary
to the definition in the implementation code. In addition, you can specify several
define definitions in the properties dialog, separated by commas.

See also
● Ä Chapter 1.4.1.8.3.3 “Structured Text (ST), Extended Structured Text (ExST)” on page 253

This operator causes the expression to be given the value TRUE. The requirement is that
the identifier <identifier> was defined with the help of a {define} instruction and not
undefined again afterwards with an {undefine} instruction; otherwise FALSE is returned.

Operator
defined
(<identifier>
)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 733

Requirement: The applications App1 and App2 exist. The variable pdef1 is defined by a
{define} statement in App1, but not in App2.

{IF defined (pdef1)}
(* This code is processed in App1 *)
{info 'pdef1 defined'}
 hugo := hugo + SINT#1;
{ELSE}
(* the following code is only processed in App2 *)
{info 'pdef1 not defined'}
 hugo := hugo - SINT#1;
{END_IF}

This also contains an example of a message pragma: Only the message pdef1 defined is
displayed in the message view when the application is compiled, because pdef1 is actually
defined. The message pdef1 not defined is displayed if pdef1 is not defined.

Example

This operator causes the expression to be given the value TRUE if the variable <variable> is
declared within the current scope; otherwise FALSE is returned.

Requirement: The two applications App1 and App2 exist. The variable g_bTest is declared in
App1, but not in App2.

{IF defined (variable: g_bTest)}
(* the following code is only processed in App2*)
 g_bTest := x > 300;
{END_IF}

Example

The operator causes the expression to be given the value TRUE if a data type is declared with
the identifier <identifier>; otherwise FALSE is returned.

Requirement: The two applications App1 and App2 exist. The data type DUT is declared in
App1, but not in App2.

{IF defined (type: DUT)}
(* the following code is only processed in App1*)
 bDutDefined := TRUE;
{END_IF}

Example

The operator causes the expression to be given the value TRUE if a function block or an action
with name <pou-name> exists; otherwise FALSE is returned.

Operator
defined
(variable:
<variable>)

Operator
defined
(type:
<identifier>)

Operator
defined (pou:
<pou name>)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US734

Requirement: The two applications App1 and App2 exist. The function block CheckBounds
exists in App1, but not in App2.

{IF defined (pou: CheckBounds)}
(* the following code is only processed in App1 *)
 arrTest[CheckBounds(0,i,10)] := arrTest[CheckBounds(0,i,10)] +
1;
{ELSE}
(* the following code is only processed in App2 *)
 arrTest[i] := arrTest[i]+1;
{END_IF}

Example

Not yet implemented!
The operator causes the expression to be given the value TRUE if a task is defined with the
name <identifier>; otherwise FALSE is returned.

Requirement: The two applications App1 and App2 exist. The task PLC_PRG_Task is defined
in App1, but not in App2.

IF defined (task: PLC_PRG_Task)}
(* the following code is only processed in App1 *)
 erg := plc_prg.x;
{ELSE}
(* the following code is only processed in App2 *)
 erg := prog.x;
{END_IF}

Example

Not yet implemented!
The operator causes the expression to be given the value TRUE if a resource object with the
name <identifier> exists for the application; otherwise FALSE is returned.

Requirement: The two applications App1 and App2 exist. A resource object glob_var1 of the
global variable list exists for App1, but not for App2.

{IF defined (resource:glob_var1)}
(* the following code is only processed in App1 *)
 gvar_x := gvar_x + ivar;
{ELSE}
(* the following code is only processed in App2 *)
 x := x + ivar;
{END_IF}

Example

The operator causes the expression to be given the value TRUE if the application runs on a
simulated device, i.e. in simulation mode.
See also
● Ä Chapter 1.4.1.11.1 “Testing in simulation mode” on page 394

Operator
defined
(task:
<identifier>)

Operator
defined
(resource:
<identifier>)

Operator
defined
(IsSimulation
Mode)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 735

The operator causes the expression to be given the value FALSE, if the CPU memory is
organized in Big Endian (Motorola byte order).

If the expression returns the value TRUE, then the code generator produces an FPU code
(for the floating-point unit processor) when calculating with REAL values. Otherwise CODESYS
emulates FPU operations, which is much slower.

<register size>: Size of a CPU register in bits

This operator causes the expression to return the value TRUE if the size of a CPU register is
equal to <register size>.

Possible values for <register size>
● 16 for C16x,
● 64 for X86-64 bit
● 32 for X86-32 Bit

The checked pack mode depends on the device description, not on the pragma that can be
specified for individual DUTs.

This operator causes the expression to be given the value TRUE if the attribute <attribute>
is specified in the first line of the declaration part of the function block <pou name>; otherwise
FALSE is returned.

Requirement: The two applications App1 and App2 exist. The function fun1 is declared
in App1 and App2. However, in App1 it is also provided with the pragma {attribute
'vision'}.

{attribute 'vision'}
FUNCTION fun1 : INT
VAR_INPUT
 i : INT;
END_VAR
VAR
END_VAR

FUNCTION fun1 : INT
VAR_INPUT
 i : INT;
END_VAR
VAR
END_VAR

{IF hasattribute (pou: fun1, 'vision')}
(* the following code is only processed in App1 *)
 ergvar := fun1(ivar);
{END_IF}

Example

In App1:

In App2:

Pragma
instruction:

See also
● Ä Chapter 1.4.1.19.6.2.1 “User-defined attributes” on page 686

Operator
defined
(IsLittleEndi
an)
Operator
defined
(IsFPUSupport
ed)

Operator
hasvalue
(RegisterSize
, '<register
size>')

Operator
hasvalue
(PackMode,
'<pack mode
value>')
Operator
hasattribute
(pou: <pou
name>,
'<attribute>'
)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US736

This operator causes the expression to be given the value TRUE if the pragma {attribute
'<attribute>'} is assigned to the variable in the line before the variable declaration; other-
wise FALSE is returned.

Requirement: The two applications App1 and App2 exist. The variable g_globalInt is used
in App1 and App2, but in App1 the attribute 'DoCount' is assigned to it in addition.

VAR_GLOBAL
 {attribute 'DoCount'}
 g_globalInt : INT;
 g_multiType : STRING;
END_VAR

VAR_GLOBAL
 g_globalInt : INT;
 g_multiType : STRING;
END_VAR

{IF hasattribute (variable: g_globalInt, 'DoCount')}
 (* the following code is only processed in App1 *)
 g_globalInt := g_globalInt + 1;
{END_IF}

Example

Declaration of
g_GlobalInt
in App1

Declaration
g_GlobalInt
in App2:

Pragma
instruction:

See also
● Ä Chapter 1.4.1.19.6.2.1 “User-defined attributes” on page 686

This operator causes the expression to be given the value TRUE if the variable <variable> is
of the data type <type-spec>; otherwise FALSE is returned.

Possible data types for <type-spec>:

● BOOL
● BYTE
● DATE
● DATE_AND_TIME (DT)
● DINT
● DWORD
● INT
● LDATE
● LDATE_AND_TIME (LDT)
● LINT
● LREAL
● LTIME
● LTIME_OF_DAY (LTOD)
● LWORD
● REAL
● SINT
● STRING
● TIME
● TIME_OF_DAY (TOD)
● ULINT

Operator
hasattribute
(variable:
<variable>,
'<attribute>'
)

Operator
hastype
(variable:
<variable>,
<type-spec>)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 737

● UDINT
● UINT
● USINT
● WORD
● WSTRING

Requirement: The two applications App1 and App2 exist. The variable g_multitype is
declared in App1 with data type LREAL, in App2 with data type STRING.

{IF (hastype (variable: g_multitype, LREAL))}
(* the following code is only processed in App1 *)
 g_multitype := (0.9 + g_multitype) * 1.1;
{ELSIF (hastype (variable: g_multitype, STRING))}
(* the following code is only processed in App2 *)
 g_multitype := 'this is a multitalent';
{END_IF}

Example

This operator causes the expression to be given the value TRUE if a variable is defined with the
identifier <define-ident> and has the value <char-string>; otherwise FALSE is returned.

Requirement: The two applications App1 and App2 exist. The variable test is used in the
applications App1 and App2; in App1 it is given the value 1, in App2 the value 2.

{IF hasvalue(test,'1')}
(* the following code is only processed in App1 *)
x := x + 1;
{ELSIF hasvalue(test,'2')}
(* the following code is only processed in App2 *)
 x := x + 2;
{END_IF}

Example

You can use this operator to query the declared value of a constant.

{IF hasconstantvalue(test,'1')}
(* the following code is only processed in App1 *)
 x := x + 1;
{ELSIF hasconstantvalue(test,'2')}
(* the following code is only processed in App2 *)
 x := x + 2;
{END_IF}

Example
Requirement:

The expression is given the value TRUE if the reverse value of <operator> returns the value
TRUE. <operator> can be one of the operators described in this chapter.

Operator
hasvalue
(<define-
ident>,
'<char-
string>')

Operator
hasconstantva
lue(<variable
>, <literal
expression>)

Operator NOT
<operator>

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US738

Requirement: The two applications App1 and App2 exist.PLC_PRG1 exists in App1 and App2,
and the POU CheckBounds exists only in App1.

{IF defined (pou: PLC_PRG1) AND NOT (defined (pou: CheckBounds))}
(* the following code is only processed in App2 *)
 bANDNotTest := TRUE;
{END_IF}

Example

The expression is given the value TRUE if the two specified operators return TRUE.
<operator> can be one of the operators described in this chapter.

Requirement: The applications App1 and App2 exist.PLC_PRG1 exists in App1 and App2, the
POU CheckBounds only in App1.

{IF defined (pou: PLC_PRG1) AND (defined (pou: CheckBounds))}
 (* the following code is only processed in App1 *)
 bANDTest := TRUE;
{END_IF}

Example

The expression returns TRUE if one of the two specified operators returns TRUE. <operator>
can be one of the operators described in this chapter.

Requirement: The two applications App1 and App2 exist. The POU PLC_PRG1 exists in App1
and App2, and the POU CheckBounds exists only in App1.

{IF defined (pou: PLC_PRG1) OR (defined (pou: CheckBounds))}
(* the following code is only processed in App1 and in App2 *)
 bORTest := TRUE;
{END_IF}

Example

() parenthesizes the operators.

See also
● Ä Chapter 1.4.1.8.6 “Using Pragmas” on page 263
● Ä Chapter 1.4.1.19.6.2.1 “User-defined attributes” on page 686

Region Pragma
This pragma is used for grouping several lines into one block in a text editor. The block can be
named. Region pragmas can also be nested.
Code with region pragma: Expanded and collapsed views

Operator
<operator>
AND
<operator>

Operator
<operator> OR
<operator>

Operator
(<operator>)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 739

The pragma can be used in the ST editor and all declaration editors. Syntax highlighting can be
customized in the options.
See also
● Ä Chapter 1.4.1.20.3.2.18 “Command 'Collapse All Folds'” on page 971
● Ä Chapter 1.4.1.20.3.2.17 “Command 'Expand All Folds'” on page 971

1.4.1.19.7 Identifiers
Rules for identifiers of variables
● An identifier must not contain spaces or special characters.
● Capitalization is ignored. For example, VAR1 and var1 refer to the same variable.
● The underscore is recognized. For example, A_BCD and AB_CD are treated as two different

identifiers. Multiple consecutive underscores are not permitted.
● The length of an identifier is unrestricted.
Rules for multiple use of identifiers (namespaces)
● An identifier must not be declared two times locally.
● An identifier can be used more than one time globally. If a local variable has the same name

as a global variable, then the local variable has priority within the POU.
● An identifier must not be identical to a keyword, such as the scope VAR_Global.
● A variable that is declared in a global variable list can have the same name as a variable

defined in another GVL. CODESYS provides features that extend the standard for the
namespace or scope of variables:
– Global namespace operator:

An instance path that begins with a dot always opens a global namespace. If there is
a local variable (for example, ivar) that has the same name as a global variable, then
you refer to the global variable as .ivar.

– The name of a global variable list can define the namespace uniquely for the include
variables. Therefore, you can declare variables with the same name in different global
variables list and still uniquely reference by prepending the list name.
For example, globlist1.ivar := globlist2.ivar; (* ivar from GVL
globlist2 is copied to ivar in GVL globlist1 *).

– Variables that are defined in the global variable list of a library included in the project can
be addressed uniquely according to the following syntax:
<name scope library>.< GVL name>.<variable name>
For example, globlist1.ivar := lib1.globlist1.ivar (* ivar from GVL
globlist1 in library lib1 is copied to ivar in GVL globlist1 *).

● When inserting a library, you also use the Library Manager to define a namespace. In this
way, you can make unique references to a library block or library variable by <namespace
library>.<block name|variable name>. Note that when libraries are nested, you
have to reference the namespaces of all libraries are in succession
Example: If Lib1 is referenced by Lib0, then the POU func in Lib1 is addressed by
Lib0.Lib1.fun: ivar := Lib0.Lib1.fun(4, 5); (* return value from func
is copied to variable ivar in the project *)

We recommend that you apply the following rules in addition to the items that you have to
consider specifically for variables declaration. By doing this, you get the best possible harmoni-
zation when assigning names.

Whenever possible, you should name variables in Hungarian notation in applications and libra-
ries. Find a meaningful, short, English name for each variable as a base name, which can
consist of several words. Write the first letter of each word in uppercase, the remaining letters in
lowercase. In front of the base name, append a prefix in lowercase to indicate the data type of
the variable.
Example: iFileSize : INT;

Rules for identi-
fier designation

Recommenda-
tions for vari-
able names

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US740

Data Type Prefix Description
BOOL x We expressly recommend x as the prefix for Boolean

variables in order to distinguish them from identifiers of
the data type BYTE. The prefix indicates the view of an
IEC programmer.

 b Reserved
BYTE by Bit string; not for arithmetic operations
WORD w Bit string; not for arithmetic operations
DWORD dw Bit string; not for arithmetic operations
LWORD lw Bit string; not for arithmetic operations

SINT si Arithmetic integer data type, 8-bit
USINT usi Arithmetic integer data type, 8-bit
INT i Arithmetic integer data type, 16-bit
UINT ui Arithmetic integer data type, 16-bit
DINT di Arithmetic integer data type, 32-bit
UDINT udi Arithmetic integer data type, 32-bit
LINT li Arithmetic integer data type, 64-bit
ULINT uli Arithmetic integer data type, 64-bit

REAL r Arithmetic floating-point data type, 32-bit
LREAL lr Arithmetic floating-point data type, 64-bit

STRING s Single-byte character string of variable length (default

setting: 80 characters)
WSTRING ws Double-byte character string of variable length (default

setting: 80 characters)

TIME tim Time duration, 32-bit
LTIME ltim Time duration, 64-bit

● TIME_OF_DAY
● TOD

tod Time of day, 32-bit

● LTIME_OF_DAY
● LTOD

ltod Time of day, 64-bit

● DATE_AND_TIME
● DT

dt Date and time

● LDATE_AND_TIME
● LDT

ldt

DATE ● dat
● d

Calender date

LDATE ● ldat
● ld

Calender date

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 741

Data Type Prefix Description
POINTER p
ARRAY a

Enumeration e

VAR
 bySubIndix: BYTE;
 xFlag: BOOL;
 udiCounter: UDINT;
END_VAR

Example

Identifier Description Example
Nested declaration Prefixes are attached suc-

cessively in the order of
declaration.

pabyTelegramData: POINTER TO ARRAY [0..7]
OF BYTE;

Function block instance
Variable of user-defined
data type

Prefix: Abbreviation for the
name of the function block
or data type

cansdoReceivedTelegram: CAN_SDOTelegram;
TYPE CAN_SDOTelegram : (* prefix: sdo *)
STRUCT
ﾠwIndex: WORD;
ﾠbySubIndex:BYTE;
ﾠbyLen:BYTE;
ﾠaby: ARRAY [0..3] OF BYTE;
END_STRUCT
END_TYPE

Local constant
Local constant variable

Prefix: c_, followed by the
type prefix and the variable
name

VAR CONSTANT
ﾠc_uiSyncID: UINT := 16#80;
END_VAR

Global variable An additional prefix is
appended to the library
prefix.
g_

VAR_GLOBAL
ﾠCAN_g_iTest: INT;
END_VAR

Global constants
Global constant variable

An additional prefix is
appended to the library
prefix.
gc_

VAR_GLOBAL CONSTANT
ﾠCAN_gc_dwExample: DWORD;
END_VAR

Recommenda-
tions for vari-
able names
CODESYS V3.x
libraries

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US742

Identifier Description Example
Variable Corresponds to the

description for variable
names, with the exception
that global variables and
constants do not require
library prefixes because
the namespace replaces
the function.

g_iTest: INT; // Declaration
CAN.g_iTest; // Implementation; call in
the program

Identifier for Description Example
Structures Library prefix followed by

an underscore and a short,
informative description of
the structure. The asso-
ciated prefix for created
variables of this structure
should follow the colon as
a comment.

TYPE CAN_SDOTelegram : (* prefix: sdo *)
STRUCT
ﾠwIndex : WORD;
ﾠbySubIndex : BYTE;
ﾠbyLen : BYTE;
ﾠabyData: ARRAY [0..3] OF BYTE;
END_STRUCT
END_TYPE

Enumerations Library prefix followed by
an underscore and the
identifier in uppercase.
Note: In past CODESYS
versions, enumeration
values > 16#7FFF caused
errors because they
were not automatically
converted to INT. For
this reason, enumerations
should always be declared
with correct INT values.

TYPE CAL_Day :
(
ﾠCAL_MONDAY,
ﾠCAL_TUESDAY,
ﾠCAL_WEDNESDAY,
ﾠCAL_THURSDAY,
ﾠCAL_FRIDAY,
ﾠCAL_SATURDAY,
ﾠCAL_SUNDAY
);
Declaration:
eToday: CAL_Day;

Recommenda-
tions for identi-
fiers for user-
defined data
types (DUT)

Recommenda-
tions for identi-
fiers for user-
defined data
types (DUT) in
CODESYS V3
libraries

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 743

Identifier for Description Example
DUT names in CODESYS
V3 libraries

The namespace replaces
the need for the library
prefix. Therefore, it
is omitted. Enumeration
values are also defined
without a library prefix.

Library with namespace CAL
TYPE DAY :
(
ﾠMONDAY
ﾠTUESDAY,
ﾠWEDNESDAY,
ﾠTHURSDAY,
ﾠFRIDAY,
ﾠSATURDAY,
ﾠSUNDAY
);
Declaration:
eToday: CAL.Day;
Usage in the application
IF eToday = CAL.Day.MONDAY THEN

Identifier for Description Example
POUs: Func-
tions, function
blocks, pro-
grams

Library prefix followed by an underscore and
a short, informative POU name. Like for varia-
bles, the first letter of each word is uppercase
and all other letters are lowercase. We recom-
mend that you compose the POU name from a
verb and a noun.
For function blocks, the associated prefix for
created instances should follow the name as a
comment.

FUNCTION_BLOCK CAN_SendTelegram (*
prefix: canst *)

Actions Only actions that the block itself calls, beginning
with prv_. Otherwise, actions do not have a
prefix.

Recommenda-
tions for identi-
fiers for POUs,
functions, func-
tion blocks, pro-
grams

Recommenda-
tions for identi-
fiers for POUs in
CODESYS V3
libraries

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US744

Identifier for Description Example
POU The library prefix is omitted because the name-

space replaces the function of the library prefix.
FUNCTION_BLOCK SendTelegram (*
prefix: canst *)

Method Only methods that the block itself calls, begin-
ning with prv_.

Otherwise, methods do not have a prefix.

Interface
Interface

I ICANDevice

NOTICE!
Note that a visualization is not named the same as another block in the project
because this may cause problems when changing visualizations.

See also
● Ä Chapter 1.4.1.8.2 “Declaration of Variables ” on page 222
● Ä Chapter 1.4.1.19.5 “Data Types” on page 646
● Ä Chapter 1.4.1.19.2 “Variables” on page 526

1.4.1.19.8 Shadowing Rules
In CODESYS, you are generally allowed to use the same identifier for different elements. For
example, a POU and a variable can be named the same. However, you should avoid this
practice in order to prevent confusion.
Negative example: In the following code snippet, a local function block instance has the same
name as a function:

FUNCTION YYY : INT
;
END_FUNCTION

FUNCTION_BLOCK XXX
;
END_FUNCTION_BLOCK

PROGRAM PLC_PRG
VAR
 YYY : XXX;
END_VAR
YYY();
END_PROGRAM

In such a case as this, it is unclear whether the instance or the function is called in the
program.

Example

To make sure that names are always unique, you should follow naming conventions, such as
certain prefixes for variables. Rules for assigning identifiers can be found in the "Identifiers"
chapter of the help.
Naming conventions can be checked automatically using the static code analysis of CODESYS.
Static code analysis could also detect the duplicate use of the name YYY and report it as an
error.

Recommenda-
tions for identi-
fiers for visuali-
zations

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 745

The consistent use of the attribute qualified_only for enumerations and global variable lists
and the use of qualified libraries can also prevent ambiguous situations.
To make sure that a POU of the same name in the “Devices” view is not called when a
POU in the “POUs” view is called, the operator __POOL should be prepended (for example,
svar_pou := __POOL.POU();) when the name of the POU is called.

Shadowing: The compiler does not report any errors or warnings if the same identifier is
used for different elements. Instead, the compiler searches the code in a specific order for the
declaration of the identifier. If a declaration is found, then the compiler does not search for any
other declarations elsewhere. If other declarations do exist, then they are "shadowed" for the
compiler. The following section describes the shadowing rules (that is, the search order that
the compiler uses when searching for the declaration for identifiers). The section "Ambiguous
access and qualified access" provides ways to prevent ambiguous access and bypass shad-
owing rules.

When the compiler encounters a single identifier in the code of an application, it searches for
the corresponding declaration in the following order:
1. Local variables of a method
2. Local variables in the function block, program, or function, and in any base function blocks
3. Local methods of the POU
4. Global variables in the application, if the qualified_only attribute is not set in the variable
list where the global variables are declared
5. Global variables in a parent application, if the qualified_only attribute is not set in the
variable list where the global variables are declared
6. Global variables in referred libraries when neither the library nor the variable list requires
qualified access
7. POU or type names from the application (that is, names of global variable lists, function
blocks, and so on)
8. POU or type names from a parent application
9. POU or type names from a library
10. Namespaces of locally referred libraries and libraries that are published by libraries
11. Global variables in the “POUs” view, unless the qualified_only attribute is set in the
variable list where they are declared
12. POU or type names from the “POUs” view (that is, names of global variable lists, function
blocks, and so on)

Libraries that are inserted in the Library Manager of the “POUs” view are
mirrored in the Library Manager in all applications in the project with the appro-
priate placeholder resolution. These libraries then form a common namespace
with the libraries in the application. Therefore, there is no shadowing of libraries
in the pool by libraries in the application.

When the compiler encounters a single identifier in the code of a library, it searches for the
corresponding declaration in the following order:
1. Local variables of a method
2. Local variables in the function block, program, or function, and in any base function blocks
3. Local methods of the POU
4. Global variables in the local library, if the qualified_only attribute is not set in the variable
list where the global variables are declared
5. Global variables in referred libraries when neither the library nor the variable list requires
qualified access

Search order in
the application

Search order in
the library

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US746

6. POU or type names from the local library (that is, names of global variable lists, function
blocks, and so on)
7. POU or type names from a referred library
8. Namespaces of locally referred libraries and libraries that are published by locally refereed
libraries

Despite these search orders, ambiguous access can still occur. For example, this is the case
when a variable with the same name exists in two global variable lists that do not require
qualified access. Such a case is reported by the compiler as an error (for example: ambiguous
use of the name XXX).

This kind of ambiguous usage can be made unique by means of qualified access, for example
by accessing via the name of the global variable list (example: GVL.XXX).

Qualified access can also always be used to avoid shadowing rules.
● The name of the global variable list can be used to uniquely access a variable in the list.
● The name of a library can be used to uniquely access elements in the library.
● The THIS pointer be used to uniquely access variables in a function block, even if a local

variable with the same name exists in a method of the function block.
To find the declaration location of an identifier at any time, use the command “Edit è Browse
è Go to Definition”. This can be especially helpful if the compiler produces an apparently
obscure error message.

The search orders described above do not apply to identifiers that exist as components in an
instance path or to identifiers that are used as inputs in calls.
For access of the following type yy.component, it depends on the entity described by yy
where the declaration of component is searched for.

If yy denotes a variable with a structured data type (that is, type STRUCT or UNION), then
component is searched for in the following order:

● Local variables of the function block
● Local variables of the base function block
● Methods of the function block
● Methods of the base function block
If yy denotes a global variable list or a program, then component is searched for in this list
only.
If yy denotes a namespace of a library, then component is searched for in this library exactly
as described in the section above "Search order in the library".
Only in the second instance does the compiler decide whether access to the found element is
granted (that is, whether the variable is only locally accessible, or whether a method is private).
If access is not allowed, an error is issued.

See also
● Ä Chapter 1.4.1.19.7 “Identifiers” on page 740
● Ä Chapter 1.4.1.19.6.2.38 “Attribute 'qualified_only'” on page 726
● Ä Chapter 1.4.1.19.2.15 “THIS” on page 539
● Ä Chapter 1.4.1.19.3.73 “Operator '__POOL'” on page 630

1.4.1.19.9 Keywords
In all editors, you must capitalize keywords that for example denote scopes, data types, or
operators.
Keywords cannot be used as variable names.

Ambiguous
access and
qualified access

Searching in
instance paths

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 747

VAR
END_VAR
BOOL_TO_INT
IF
THEN
ELSE
LTIME
MUL
XOR
PERSISTENT
PROGRAM

Examples

CODESYS checks the correct use of keywords automatically and highlights errors immediately
during input with a wavy underline.

When CODESYS creates implicit code, variables and functions are generally
given a name that is prepended with two underscores (__). The use of double
underscores in the implementation code is prevented automatically. This elimi-
nates conflicts between internal system identifiers and identifiers assigned by
the programmer.

The following keywords are used in the CODESYS export format. Therefore, you may not use
them as identifiers:
● ACTION
● END_ACTION
● END_FUNCTION
● END_FUNCTION_BLOCK
● END_PROGRAM
Other valid keywords:
● VAR_ACCESS
● READ_ONLY
● READ_WRITE
● PARAMS

1.4.1.19.10 Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'
You can declare the methods explicitly in order to influence the initialization of function block
variables, as well as the behavior when exiting function blocks.

The type of the return value for the implicit methods is BOOL. The value is not
evaluated by the system, but the type should not be changed.

FB_Init is always available implicitly and it is used primarily for initialization. For a specific
influence, you can also declare the methods explicitly and provide additional code there with the
standard initialization code.
FB_Reinit must be implemented explicitly. If this method exists, then it is called after the
instance of the affected function block is copied. That happens during an online change after
changes to the function block declaration (signature change) in order to reinitialize the new
instance module. To reinitialize the basic implementation of the function block, you must call
FB_Reinit explicitly.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US748

FB_Exit must be implemented explicitly. If there is an implementation, then the method is
called before the controller removes the code of the function block instance (implicit call).
The following shows some use cases of these methods for different operating conditions.

When downloading an application to a PLC with factory settings, the memory of all variables
must be offset to the required initial state. In this way, the data areas of function block instances
are assigned the required values. By the explicit implementation of FB_Init for function blocks,
you can react specifically to this situation in the application code. By evaluating the method
parameters bInCopyCode (FALSE) and bInitRetains (TRUE), you can detect this operating
condition clearly. (See "Operating condition "Online Change"" and "Operating condition "Re-
download"".)

Within the scope of the online change, you can influence the initialization of function block
instances by means of the methods FB_Exit, FB_Init, and FB_Reinit. During the online
change, the changes to the application that were made in offline mode are applied in the run-
ning PLC. This is the reason that the old instances of the function blocks are replaced by new
instances as much as possible without incident. If no changes were made to the declaration part
of a function block in the application before login, but in the implementation only, then the data
areas are not replaced. Only code blocks are replaced. Then the methods FB_Exit , FB_Init,
and FB_Reinit are not called.

If you have made changes to the declaration of a function block that lead to
the copying operation described above, then you receive a message during
the online change about possible unintended effects. In the “Details” of the
message view, you see a list of all instances to be copied.

In the code of the FB_Init method, the parameter bInCopyCode (TRUE) can be evaluated to
detect whether or not an online change is being executed.
The following calls occur in succession during an online change:
1. FB_Exit

old_inst.FB_Exit(bInCopyCode := TRUE);
You can call FB_Exit when exiting the old instance in order to trigger specific cleanup
tasks before the copy operation. In this way, you can prepare the data for the following
copy operation and influence the state of the new instance. You can notify other parts of
the application about the pending change in location in the memory. Pay special attention
to the variables of type POINTER and REFERENCE. These may no longer refer to the
required memory locations after the online change. Interface variables (INTERFACE) are
handled separately by the compiler and they are adapted accordingly during the online
change. External resources such as sockets, files, or other handles can be applied by the
new instance, in some case unchanged. Often they do not have to be treated specially
during an online change. (See "Operating condition "Re-download"")

2. FB_Init
new_inst.FB_Init(bInitRetains := FALSE, bInCopyCode := TRUE);
FB_Init is called before the copy operation and can be used in order to execute specific
operations for the online change. For example, you can initialize variables accordingly at
the new location in the memory, or notify other parts of the application about the new
location of specific variables in the memory.

3. Copy operation: copy
copy(&old_inst, &new_inst);
Existing values remain unchanged. For this purpose, they are copied from the old instance
into the new instance.

Operating con-
dition "First
download"

Operating con-
dition "Online
Change"

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 749

4. FB_Reinit
new_inst.FB_Reinit();
This method is called after the copy operation and should set defined values for the
variables of the instance. For example, you can initialize variables accordingly at the new
location in the memory, or notify other parts of the application about the new location of
specific variables in the memory. Design the implementation independent of the online
change. The method can also be called from the application at any time in order to reset a
function block instance to its original state.

With the {attribute 'no_copy'} attribute, you can prevent that this is
copied during the online change for a single variable of the function block. It
always retains the initial value.

See also
● Ä Chapter 1.4.1.20.3.3.19 “Command 'Settings of Memory Reserve for Online Change' ”

on page 998

When downloading an application, an existing application may be replaced on the PLC. There-
fore, the provision of memory for the present function blocks must be regulated. You can use
the FB_Exit method for implementing the required steps for this. For example, you can offset
external resources (with socket and file handles) in a defined state.
You can detect this operating condition by checking whether or not the parameter
bInCopyCode = FALSE for the FB_Exit method.

The initial assignments are processed before the first cycle of the application tasks.

T1 : TON := (PT:=t#500ms);Example

These kinds of assignments are executed only after calling FB_Init. In order to control the
effects of these assignments, you can provide a function block or a method of a function
block with the {attribute ‘call_after_init‘} attribute. You must add the attribute
above the declaration part of the function block body and above the declaration part of
the corresponding method. A POU that extends another POU which uses the {attribute
'call_after_init'} attribute must also have the attribute. For the benefit of clarity, we
recommend that the corresponding methods are overwritten with the same name, the same
signature, and the same attribute. This requires calling SUPER^.MyInit. The name of the
method can be chosen without restriction. (Exceptions: FB_Init, FB_Reinit, and FB_Exit).
The method is called after processing the initial assignments and before starting the application
tasks. Therefore, the method can react to user input.
When using FB_Init or {attribute 'call_after_init'}, remember that detecting
errors in the FB_Init method or in methods decorated with the {attribute
'call_after_init'} attribute is tedious, because the setting of breakpoints may not have
the expected effect.

NOTICE!
If the explicitly defined initialization code is reached during execution, then the
function block instance is already completely initialized via the implicit initializa-
tion code. Therefore, there must not be a SUPER^.FB_Init call.

Operating con-
dition "New
download"

Operating con-
dition "Start of
application"

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US750

NOTICE!
FB_Init replaces the INI operator used in CoDeSys V2.3. The methods
cannot be compared to the design of a constructor, such as in C#, C++, or Java.
This has consequences for function blocks that extend other function blocks.
(See below: "Derived function blocks")

METHOD FB_Init : BOOL
VAR_INPUT
 bInitRetains : BOOL; // TRUE: the retain variables are initialized
(reset warm / reset cold)
 bInCopyCode : BOOL; // TRUE: the instance will be copied to the
copy code afterward (online change)
END_VAR
You can declare additional function block inputs in an FB_init method. Then you have to set
these inputs in the declaration of the function block instance.

Method FB_Init for the serialdevice function block

METHOD PUBLIC FB_Init : BOOL
VAR_INPUT
 bInitRetains : BOOL; // initializing of retain variable
 bInCopyCode : BOOL; // instance is copied to copy code
 iCOMnum : INT; // additional input: number of the COM
interface, that is to be observed
END_VAR

Instantiation of the serialdevice function block:

com1: serialdevice(iCOMnum:=1);
com0: serialdevice(iCOMnum:=0);

Example

METHOD FB_Reinit : BOOL

There is the mandatory parameter bInCopyCode.

METHOD FB_Exit : BOOL
VAR_INPUT
 bInCopyCode : BOOL; // TRUE: the exit method is called in order to
leave the instance which will be copied afterwards (online change).
END_VAR

Interface of
method
FB_Init

Interface of
method
FB_Reinit

Interface of
method
FB_Exit

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 751

If a function block is derived from another function block, then the FB_Init method of the
derived function block must define the same parameters as the FB_Init method of the basic
function block. However, you can add further parameters in order to set up a special initialization
for the instance.

The function blocks MainFB, SubFB, and SubSubFB are derived from each other. Therefore,
SubFB EXTENDS MainFB and SubSubFB EXTENDS SubFB apply.

1. fbSubSubFb.FB_Exit(...);
2. fbSubFb.FB_Exit(...);
3. fbMainFb.FB_Exit(...);
4. fbMainFb.FB_Init(...);

5. fbSubFb.FB_Init(...);
6. fbSubSubFb.FB_Init(...);

Example

Calling order
of methods
FB_Exit and
FB_Init:

See also
● Ä Chapter 1.4.1.20.2.18.5 “Object 'Method'” on page 889
● Ä Chapter 1.4.1.19.6.2.3 “Attribute 'call_after_init'” on page 687
● Ä Chapter 1.4.1.19.6.2.28 “Attribute 'no_copy'” on page 713
● Ä Chapter 1.4.1.19.2.14 “SUPER” on page 538

Behavior for
derived function
blocks

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US752

1.4.1.19.11 Error Messages and Warnings
1.4.1.19.11.1 Compiler error C0001... 756
1.4.1.19.11.2 Compiler error C0002... 756
1.4.1.19.11.3 Compiler error C0003... 756
1.4.1.19.11.4 Compiler Error C0004... 757
1.4.1.19.11.5 Compiler error C0005... 757
1.4.1.19.11.6 Compiler error C0006... 757
1.4.1.19.11.7 Compiler error C0007... 758
1.4.1.19.11.8 Compiler error C0008... 758
1.4.1.19.11.9 Compiler error C0009... 759
1.4.1.19.11.10 Compiler error C0010... 759
1.4.1.19.11.11 Compiler error C0011.. 759
1.4.1.19.11.12 Compiler error C0013... 760
1.4.1.19.11.13 Compiler error C0016... 760
1.4.1.19.11.14 Compiler error C0018... 760
1.4.1.19.11.15 Compiler error C0020... 761
1.4.1.19.11.16 Compiler error C0022... 761
1.4.1.19.11.17 Compiler error C0023... 761
1.4.1.19.11.18 Compiler error C0026... 762
1.4.1.19.11.19 Compiler error C0027... 762
1.4.1.19.11.20 Compiler error C0030... 762
1.4.1.19.11.21 Compiler error C0031... 763
1.4.1.19.11.22 Compiler error C0032... 763
1.4.1.19.11.23 Compiler Error C0033... 763
1.4.1.19.11.24 Compiler error C0035... 764
1.4.1.19.11.25 Compiler Error C0036... 764
1.4.1.19.11.26 Compiler error C0037... 764
1.4.1.19.11.27 Compiler error C0038... 765
1.4.1.19.11.28 Compiler error C0039... 765
1.4.1.19.11.29 Compiler error C0040... 766
1.4.1.19.11.30 Compiler error C0041... 766
1.4.1.19.11.31 Compiler Error C0042 (Compiler Version <= 3.4.10)................ 767
1.4.1.19.11.32 Compiler error C0043... 767
1.4.1.19.11.33 Compiler error C0044... 768
1.4.1.19.11.34 Compiler error C0045... 768
1.4.1.19.11.35 Compiler error C0046... 768
1.4.1.19.11.36 Compiler error C0047... 769
1.4.1.19.11.37 Compiler error C0048... 769
1.4.1.19.11.38 Compiler error C0049... 770
1.4.1.19.11.39 Compiler error C0050... 770
1.4.1.19.11.40 Compiler Error C0051... 770
1.4.1.19.11.41 Compiler Error C0053... 771
1.4.1.19.11.42 Compiler error C0061... 771
1.4.1.19.11.43 Compiler error C0062... 771
1.4.1.19.11.44 Compiler error C0064... 772
1.4.1.19.11.45 Compiler Error C0065... 772
1.4.1.19.11.46 Compiler error C0066... 772
1.4.1.19.11.47 Compiler error C0068... 773
1.4.1.19.11.48 Compiler error C0069... 773
1.4.1.19.11.49 Compiler error C0070... 774
1.4.1.19.11.50 Compiler error C0072... 774

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 753

1.4.1.19.11.51 Compiler error C0074... 774
1.4.1.19.11.52 Compiler error C0075... 775
1.4.1.19.11.53 Compiler error C0076... 775
1.4.1.19.11.54 Compiler error C0077... 775
1.4.1.19.11.55 Compiler Error C0078... 776
1.4.1.19.11.56 Compiler error C0080... 776
1.4.1.19.11.57 Compiler error C0081... 777
1.4.1.19.11.58 Compiler error C0082... 777
1.4.1.19.11.59 Compiler error C0084... 777
1.4.1.19.11.60 Compiler Error C0085... 778
1.4.1.19.11.61 Compiler error C0086... 778
1.4.1.19.11.62 Compiler error C0087... 779
1.4.1.19.11.63 Compiler error C0089... 779
1.4.1.19.11.64 Compiler error C0090... 780
1.4.1.19.11.65 Compiler error C0091... 780
1.4.1.19.11.66 Compiler error C0094... 780
1.4.1.19.11.67 Compiler error C0096... 781
1.4.1.19.11.68 Compiler error C0097... 781
1.4.1.19.11.69 Compiler error C0098... 782
1.4.1.19.11.70 Compiler Error C0099 (Compiler Version < 3.5.7.0)................. 782
1.4.1.19.11.71 Compiler error C0101... 783
1.4.1.19.11.72 Compiler error C0102... 783
1.4.1.19.11.73 Compiler error C0104... 783
1.4.1.19.11.74 Compiler error C0114... 783
1.4.1.19.11.75 Compiler Error C0115... 784
1.4.1.19.11.76 Compiler error C0116... 784
1.4.1.19.11.77 Compiler error C0117... 784
1.4.1.19.11.78 Compiler error C0118... 784
1.4.1.19.11.79 Compiler error C0119... 785
1.4.1.19.11.80 Compiler error C0120... 785
1.4.1.19.11.81 Compiler error C0122... 786
1.4.1.19.11.82 Compiler error C0124... 786
1.4.1.19.11.83 Compiler error C0125... 786
1.4.1.19.11.84 Compiler error C0126... 787
1.4.1.19.11.85 Compiler error C0130... 787
1.4.1.19.11.86 Compiler error C0131... 788
1.4.1.19.11.87 Compiler error C0132... 788
1.4.1.19.11.88 Compiler error C0136... 788
1.4.1.19.11.89 Compiler Error C0138... 789
1.4.1.19.11.90 Compiler error C0139... 789
1.4.1.19.11.91 Compiler error C0140... 789
1.4.1.19.11.92 Compiler error C0141... 790
1.4.1.19.11.93 Compiler error C0142... 790
1.4.1.19.11.94 Compiler error C0143... 790
1.4.1.19.11.95 Compiler error C0144... 791
1.4.1.19.11.96 Compiler error C0145... 791
1.4.1.19.11.97 Compiler error C0149... 792
1.4.1.19.11.98 Compiler error C0161... 792
1.4.1.19.11.99 Compiler error C0162... 792
1.4.1.19.11.100 Compiler Error C0164... 793
1.4.1.19.11.101 Compiler Error C0165... 793

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US754

1.4.1.19.11.102 Compiler error C0168... 794
1.4.1.19.11.103 Compiler error C0169... 794
1.4.1.19.11.104 Compiler Error C0173... 795
1.4.1.19.11.105 Compiler error C0174... 795
1.4.1.19.11.106 Compiler error C0175... 795
1.4.1.19.11.107 Compiler error C0177... 796
1.4.1.19.11.108 Compiler error C0178... 796
1.4.1.19.11.109 Compiler Error C0179... 797
1.4.1.19.11.110 Compiler Error C0180... 797
1.4.1.19.11.111 Compiler error C0182.. 797
1.4.1.19.11.112 Compiler Error C0183... 798
1.4.1.19.11.113 Compiler error C0185... 798
1.4.1.19.11.114 Compiler Error C0186... 798
1.4.1.19.11.115 Compiler Error C0188... 799
1.4.1.19.11.116 Compiler error C0189... 799
1.4.1.19.11.117 Compiler error C0190... 800
1.4.1.19.11.118 Compiler error C0191... 800
1.4.1.19.11.119 Compiler error C0195... 800
1.4.1.19.11.120 Compiler error C0196... 800
1.4.1.19.11.121 Compiler error C0197... 801
1.4.1.19.11.122 Compiler error C0198... 801
1.4.1.19.11.123 Compiler error C0199... 801
1.4.1.19.11.124 Compiler error C0201... 802
1.4.1.19.11.125 Compiler error C0203... 802
1.4.1.19.11.126 Compiler error C0204... 803
1.4.1.19.11.127 Compiler error C0205... 803
1.4.1.19.11.128 Compiler error C0206... 803
1.4.1.19.11.129 Compiler Error C0207... 803
1.4.1.19.11.130 Compiler error C0208... 804
1.4.1.19.11.131 Compiler Error C0209... 804
1.4.1.19.11.132 Compiler error C0211... 804
1.4.1.19.11.133 Compiler error C0212... 805
1.4.1.19.11.134 Compiler Error C0215... 805
1.4.1.19.11.135 Compiler error C0216... 805
1.4.1.19.11.136 Compiler error C0217... 805
1.4.1.19.11.137 Compiler error C0218... 806
1.4.1.19.11.138 Compiler error C0219... 806
1.4.1.19.11.139 Compiler error C0221... 807
1.4.1.19.11.140 Compiler error C0222... 807
1.4.1.19.11.141 Compiler error C0224... 807
1.4.1.19.11.142 Compiler Error C0225... 808
1.4.1.19.11.143 Compiler error C0227... 808
1.4.1.19.11.144 Compiler error C0228... 809
1.4.1.19.11.145 Compiler Error C0230... 809
1.4.1.19.11.146 Compiler Error C0232... 809
1.4.1.19.11.147 Compiler Error C0233... 810
1.4.1.19.11.148 Compiler error C0234... 810
1.4.1.19.11.149 Compiler error C0235... 811
1.4.1.19.11.150 Compiler error C0236... 811
1.4.1.19.11.151 Compiler error C0237... 811
1.4.1.19.11.152 Compiler error C0238... 812

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 755

1.4.1.19.11.153 Compiler error C0239... 812
1.4.1.19.11.154 Compiler error C0240... 813
1.4.1.19.11.155 Compiler error C0241... 813
1.4.1.19.11.156 Compiler error C0242... 813
1.4.1.19.11.157 Compiler error C0243... 814
1.4.1.19.11.158 Compiler Error C0380... 814
1.4.1.19.11.159 Compiler error C0509... 815
1.4.1.19.11.160 Compiler error C0511... 816
1.4.1.19.11.161 Compiler Error C0542... 816
1.4.1.19.11.162 Compiler Error C0543... 817

Compiler error C0001
Message: Constant '<constant value>' too large for type '<data type>'
Possible error cause: A typed constant is too large for the given data type or a constant is too
large for each possible data type.
Error correction: Use smaller constants or an appropriate data type for a typed constant.

PROGRAM PLC_PRG
VAR
 test1: INT;
 test2: INT;
 test3: LREAL;
END_VAR

test1 := 12345678912345566991923939292939911;
test2 := INT#123456;
test3 := 10E500;

--> C0001: Constant '12345678912345566991923939292939911' too large
for type 'ANY_INT'
--> C0001: Constant 'INT#123456' too large for type 'INT'
--> C0001: Constant '10E500' too large for type 'ANY_REAL'

Compiler error C0002
Message: '<operator 1>' or '<operator 2>' expected instead of '<tag>'
Possible error cause: Syntax error
Error correction: Use the correct syntax.

PROGRAM PLC_PRG
Fun(1;

--> C0002: ',' or ')' expected instead of ';'

Compiler error C0003
Message: '<value>' is not a valid bit number for '<variable>'
Possible error cause: Attempted access to a bit that is outside of the range for a data type.
Error correction: Use a bit value for the bit access that is lower than the number of bits in the
data type of the variable.

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US756

PROGRAM PLC_PRG
VAR
 test1: WORD;
 test2: BOOL;
END_VAR

test1 := test2.17;

--> C0003: '17' is not a valid bit number for 'w'

Compiler Error C0004
Message: '<variable>' is not a component of '<structure>'
Possible error cause: Component access with "." to a variable that is not a structured value or
does not exist as a component of the structure.
Error correction: Access a defined component, or change the definition of the component in
the data type. The input assistance "List components" provides all valid access to this position.

TYPE DUT:
STRUCT
 x, y : INT;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 test1 : DUT;
 test2 : INT;
END_VAR

test2 := test1.z;

--> C0032: Type 'Unknown type: 'test1.z'' cannot be converted to
type 'INT'
--> C0004: 'z' is to a component of 'DUT'

Compiler error C0005
Message: Constant overflow in address '<address>'
Possible error cause: At least one component in the address does not fit into a 32-bit integer
value.
Error correction: Use a valid address expression.

PROGRAM PLC_PRG
VAR
 X: BYTE;
END_VAR

X := %QB5555555555;

--> C0005: Constant overflow in address '%??'

Compiler error C0006
Message: '<operator>' expected instead of '<token>'

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 757

Possible error cause: Syntax error
Error correction: Use the correct syntax.

PROGRAM PLC_PRG
VAR
 x: INT;
 bTest : BOOL;
END_VAR

IF bTest
 x := 9;
END_IF

--> C0006: 'THEN' expected instead of 'x'

Compiler error C0007
Message: Expression expected instead of '<token>'
Possible error cause: Syntax error
Error correction: Use the correct syntax.

PROGRAM PLC_PRG
VAR
 x: INT;
 bTest : BOOL;
END_VAR

IF THEN
 x := 9;
END_IF

--> C0007: Expression expected instead of 'THEN'

Compiler error C0008
Message: Unexpected end-of-file found: '<operator 1>', '<operator 2>', or '<operator 3>'
expected
Possible error cause: Syntax error
Error correction: Use the correct syntax.

PROGRAM PLC_PRG
VAR
 x: INT;
 bTest : BOOL;
END_VAR

IF bTest THEN
 x := 9;

--> C0008: Unexpected end-of-file found: 'ELSIF', 'ELSE' or 'END_IF'
expected

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US758

Compiler error C0009
Message: Unexpected token '<token>' found
Possible error cause: Syntax error
Error correction: Use the correct syntax.

PROGRAM PLC_PRG
VAR
END_VAR

END_FOR;

--> C0009: Unexpected token 'END_FOR' found

Compiler error C0010
Message: Unexpected end-of-file found: '<token>' expected
Possible error cause: Syntax error
Error correction: Use the correct syntax.

PROGRAM PLC_PRG
VAR
 i: INT;
END_VAR

FOR i := 0 TO 2 DO
;

--> C0010: Unexpected end-of-file 'END_FOR' found

Compiler error C0011
Message: No 'CASE' label found
Possible error cause: Syntax error in a CASE statement. A statement in a CASE statement is
not assigned to a CASE label.
Error correction: Add a CASE label.

PROGRAM PLC_PRG
VAR
 i: INT;
 x: INT;
END_VAR

CASE i OF
 x := 9;
END_CASE

--> C0011: No 'CASE' label found
CASE i OF
0:
 x := 9;
END_CASE

Example of the
error:

Example of the
error:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 759

Compiler error C0013
Message: At least one statement is expected.
Possible error cause: At least one statement is expected at some positions in the code. For
example, in the THEN and ELSE part of an IF statement, or in the body of a FOR loop.
Error correction: Add at least one statement at the selected position. It is enough to write a
blank statement ";".

PROGRAM PLC_PRG
VAR
 bTest: BOOL;
END_VAR

IF bTest THEN
END_IF

--> C0013: At least one statement is expected

Compiler error C0016
Message: Counter initialization expected
Possible error cause: Syntax error in a FOR loop. The counter variable is not initialized
correctly.
Error correction: Pay attention to the correct syntax of the FOR loop.
FOR i := 0 TO 10 DO
 ;
END_FOR

PROGRAM PLC_PRG
VAR
 i: INT;
END_VAR

FOR i TO 10 DO
 ;
END_FOR

--> C0015: Counter initialization expected
FOR i := 0 TO 10 DO
 ;
END_FOR

Compiler error C0018
Message: <expression> is not a valid assignment target
Possible error cause: An expression with no write permission is on the left side of an assign-
ment. Example: a constant.
Error correction: Assign only to variables that have write access.

PROGRAM PLC_PRG
VAR
 i: INT;
END_VAR
VAR CONSTANT

Example of the
error:

Example of the
error:

Error correc-
tion:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US760

 j: INT := 0;
END_VAR

j := i;

--> C0018: 'j' is not a valid assignment target

Compiler error C0020
Message: '<statement>' is no valid statement
Possible error cause: Syntax error (for example, too few or too many characters)
Error correction: Make sure that the syntax is correct.

PROGRAM PLC_PRG
VAR
 x : INT;
END_VAR

x = 2;

--> C0020: '(x = 2); ' is no valid statement
Example:
x := 2;

Compiler error C0022
Message: '<operator>' needs exactly '<number of operands>' operands
Possible error cause: Too many or too few operands are assigned to an operator.
Error correction: Assign the required number of operands to the operator.

PROGRAM PLC_PRG
VAR
 i : INT;
 pt: POINTER TO INT;
END_VAR

pt := ADR(i,1);

--> C0022: 'ADR' needs exactly '1' operands
Example:
pt := ADR(i);

Compiler error C0023
Message: '<operator>' needs at least '<number of operands>' operands
Possible error cause: Too few operands are assigned to an operator.
Error correction: Assign the required number of operands to the operator.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 761

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR

i := MUX(30,40);

--> C0023: 'MUX' needs at least '3' operands
Example:
i := MUX(30,40,50);

Compiler error C0026
Message: Identifier expected instead of '<invalid identifier>'
Possible error cause: An invalid identifier is passed to a method.
Error correction: Use valid identifiers.

METHOD 123
VAR_INPUT
END_VAR

--> C0243: The name used in the signature is not identical to the
object name
--> C0026: Identifier expected instead of '123'
Example:
METHOD METH123

Compiler error C0027
Message: size of string expected after '('
Possible error cause: The length of the string is not specified.
Error correction: Specify a string length between the parentheses.

PROGRAM PLC_PRG
VAR
 str : STRING();
END_VAR

--> C0027: size of string expected after '('
--> C0006: ';, :=, REF=, (or [' expected instead of ')'
Example:
str : STRING(100);

Compiler error C0030
Message: Direct Address expected after 'AT' instead of '<identifier>'
Possible error cause: Either an invalid address or no address is assigned after 'AT'.
Error correction: Specify a valid address.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US762

PROGRAM PLC_PRG
VAR
 i AT ABC : INT;
END_VAR

--> C0030: Direct Address expected after 'AT' instead of 'ABC'
Example:
i AT %IW0 : INT;

Compiler error C0031
Message: Type definition expected instead of '<no data type>'
Possible error cause: An invalid type definition is assigned to the identifier.
Error correction: Specify a valid type definition.

PROGRAM PLC_PRG
VAR
 i : 0;
END_VAR

--> C0031: Type definition expected instead of '0'
Example:
i : INT;

Compiler error C0032
Message: Type '<type 1>' can not be converted to type '<type 2>'
Possible error cause: A variable is assigned to another variable with an incompatible type.
Error correction: Use a type conversion.

PROGRAM PLC_PRG
VAR
 test1: INT;
 test2: STRING;
END_VAR

test1 := test2;

-->C0032: Type 'STRING' cannot be converted to type 'INT'
Example:
test1 := TO_INT(test2);

Compiler Error C0033
Message: Type '<pointer type>' possibly not convertible to type '<data type>' .
Possible error cause: This error occurs only when checking pool objects. An attempt was
made to convert a pointer to an integer. Because the size of pointers in a library is unknown,
errors may occur when using the library.
Error correction: Use the type __UXINT or __XWORD for platform-independent calculations
with pointers.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 763

PROGRAM PLC_PRG
VAR
 ptr : POINTER TO INT;
 dw : DWORD;
END_VAR
 dw := ptr;

--> C0033: Type 'POINTER TO INT‘ possibly not convertible to type
'DWORD‘.

Compiler error C0035
Message: Program name, function or function block instance expected instead of '<invalid
function>'
Possible error cause: A function is called that does not exist.
Error correction: Make sure that only program names, functions, and function Block Instances
that exist are called.

PROGRAM PLC_PRG
VAR
END_VAR

PLC_PRG.METH1();

METHOD METH
VAR_INPUT
END_VAR

--> C0004: 'METH1' is no component of 'PLC_PRG'
--> C0035: Program name, function or function block instance expected
instead of 'PLC_PRG.METH1'
Example:
PLC_PRG.METH();

Compiler Error C0036
Message: Cannot call object of type <type>
Possible error cause: An attempt has been made to call an object that does not support any
calls.
Error correction: Only functions, function blocks, programs, methods, and actions can be
called.

VAR_GLOBAL GVL
 value : INT;
END_VAR
PROGRAM PLC_PRG
GVL();

--> C0036: Cannot call object of type 'VAR_GLOBAL‘.

Compiler error C0037
Message: '<invalid input>' is no input of '<function name>'

Example of the
error:

Example of the
error:

Error correc-
tion:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US764

Possible error cause: A local variable is defined in a function call.
Error correction: Declare the variable as an input parameter.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
i := TEST(iVar := 1);

FUNCTION TEST : INT
VAR
 iVar : INT;
END_VAR

--> C0037: 'iVar' is no input of 'TEST'
Example:
VAR_INPUT
 iVar : INT;
END_VAR

Compiler error C0038
Message: '<invalid output>' is no output of '<function name>'
Possible error cause: A local variable is handled as an output in a function call.
Error correction: Declare the variable as an output parameter.

PROGRAM PLC_PRG
VAR
 i : INT;
 x : INT;
END_VAR
i := TEST(iVar => x);

FUNCTION TEST : INT
VAR
 iVar : INT;
END_VAR

--> C0038: 'iVar' is no output of 'TEST'
Example:
VAR_OUTPUT
 iVar : INT;
END_VAR

Compiler error C0039
Message: VAR_IN_OUT '<invalid variable>' must be assigned in call of '<function block name>'
Possible error cause: An IN_OUT variable is not passed to a function block that requires an
IN_OUT variable.
Error correction: Assign the IN_OUT variable.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 765

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR
inst();

FUNCTION_BLOCK FB
VAR_IN_OUT
 inout : INT;
END_VAR

--> C0039: VAR_IN_OUT 'inout' must be assigned in call of 'FB'
Example:
inst(inout := i);

Compiler error C0040
Message: Function '<function name>' requires exactly '<number of inputs>' input
Possible error cause: Too many or too few parameters are passed to the called function.
Error correction: Pass exactly as many parameters to the function as are expected.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
i := TEST(1,2);

FUNCTION TEST : INT
VAR_INPUT
 IN: INT;
END_VAR

--> C0040: Function 'TEST' requires exactly '1' inputs
Example:
i := Test(1);

Compiler error C0041
Message: VAR_IN_OUT parameter '<parameter name>' of '<function name>' needs variable
with write access as input
Possible error cause: The passed parameter is not a variable with write access (but a constant
for example).
Error correction: Pass a VAR_IN_OUT parameter with write access to the function.

PROGRAM PLC_PRG
VAR
 i : INT;
 x : INT;
END_VAR
i := Test(31415);

FUNCTION TEST : INT

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US766

VAR_IN_OUT
 in_out: INT;
END_VAR

--> C0041: VAR_IN_OUT' parameter 'in_out' of 'TEST' needs variable
with write access as input
Example:
i := Test(x);

Compiler Error C0042 (Compiler Version <= 3.4.10)
Message: Either all or none formal parameter have to be denoted in function call
Possible error cause: The parameters are explicitly assigned to the function in the wrong
order.
Error correction: Use uniform formal parameters or implicit parameters.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
 i := Test(iPar1:=2, 5);

FUNCTION Test : INT
VAR_INPUT
 iPar1 : INT;
 iPar2 : INT;
END_VAR

--> Either all or none formal parameter have to be denoted in
function call

Compiler error C0043
Message: Wrong formal parameter: '<parameter name>' expected in this place
Possible error cause: The parameters are assigned to the function explicitly in the wrong
order.
Error correction: Specify the parameters in the correct order.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
i := Test(iPar2 := 2, 5);

FUNCTION Test : INT
VAR_INPUT
 iPar1 : INT;
 iPar2 : INT;
END_VAR

--> C0043: Wrong formal parameter: 'iPar1' expected in this place
--> C0412: Multiple input assignments for parameter ''

Error correc-
tion:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 767

Example:
i := Test(5, iPar2 := 2);

Compiler error C0044
Message: Assignment to input missing for parameter '<input variable name>' in call of '<func-
tion block name>'
Possible error cause: A parameter is passed although an input variable is not declared.
Error correction: Declare an input variable.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR
inst(1);

FUNCTION_BLOCK FB
VAR_INPUT

END_VAR

--> C0044: Assignment to input missing for parameter '1' in call of
'FB'
Example:
VAR_INPUT
 in : INT;
END_VAR

Compiler error C0045
Message: Use of 'THIS' is not allowed in this context
Possible error cause: In order to be assigned to the current instance, THIS can be used only
in a method, action, transition, or in the body of a function block. This error message appears for
all other positions.
Error correction: Use THIS in an allowed context only.

PROGRAM PLC_PRG
VAR
 test1: INT;
END_VAR

THIS^.test1 := 19;

--> C0018: 'THIS^.test1' is not a valid assignment target
--> C0062: 'THIS^' is not a structure variable
--> C0045: Use of 'THIS' is not allowed in this context

Compiler error C0046
Message: Identifier '<identifier name>' not defined
Possible error cause: An identifier is used that is not declared.

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US768

Error correction: Declare the variables that you want to use.

PROGRAM PLC_PRG
VAR

END_VAR

i := 1;

--> C0018: 'i' is no valid assignment target
--> C0046: Identifier 'i' not defined
Example:
VAR
 i : INT;
END_VAR

Compiler error C0047
Message: Cannot apply indexing with '[]' to an expression of type '<data type>'
Possible error cause: A data type that is not an array is indexed with '[]'.
Error correction: Index data types with '[]' only if they are declared as arrays.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
i[1];

--> C0047: Cannot apply indexing with '[]' to an expression of type
'INT'

Compiler error C0048
Message: Array requires exactly '<number>' indexes
Possible error cause: Too many or too few indexes are specified when using an array.
Error correction: Specify as many indexes as there are dimensions assigned to the array.

PROGRAM PLC_PRG
VAR
 arr1 : ARRAY[1..2,1..3] OF INT;
END_VAR
arr1[1] := 5;

--> C0048: Array requires exactly 2 indexes
Example:
arr1[1,2] := 5;

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 769

Compiler error C0049
Message: The constant index '<index value>' is not within the range from '<start index>' to
'<end index>'
Possible error cause: An index is specified that is outside the size of the array.
Error correction: Use only indexes that are within the size of he array.

PROGRAM PLC_PRG
VAR
 arr1 : ARRAY[1..2] OF INT;
END_VAR
arr1[3] := 1;

--> C0049: The constant index '3' is not within the range from '1' to
'2'
Example:
arr1[2] := 1;

Compiler error C0050
Message: Bitaccess requires literal or symbolic integer constant
Possible error cause: No literal or an integer constant is specified in a bit access.
Error correction: Use a literal or an integer constant.

PROGRAM PLC_PRG
VAR
 i : INT;
 x : INT;
END_VAR

i.x := FALSE;

--> C0018: 'i.x' is no valid assignment target
--> C0050: Bitaccess requires literal or symbolic integer constant
Example:
i := Test(x);

Compiler Error C0051
Message: Single byte string expected for an attribute value instead of '<value>‘.
Possible error cause: A character string does not appear at the displayed location as
expected.
Error correction: Replace the current value with a string.

PROGRAM PLC_PRG
{IF hasattribute(pou: MyPOU, MyAttribute)}
{END_IF}

--> C0051: Single byte string expected for an attribute value instead
of 'MyAttribute'.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US770

PROGRAM PLC_PRG
{IF hasattribute(pou: MyPOU, 'MyAttribute')}
{END_IF}

Compiler Error C0053
Message: Compiler version <version> has been withdrawn. Please use a higher compiler
version instead.
Possible error cause: The current compiler version cannot ne used.
Error correction: Adapt the current compiler version in the project (Project Environment,
Project Settings).

Compiler error C0061
Message: Bitaccess on function call is not allowed
Possible error cause: Bit access is performed on a function.
Error correction: Use bit access only for supported data types.

PROGRAM PLC_PRG
VAR
END_VAR

Test().2;

FUNCTION Test : INT
VAR_INPUT

END_VAR

--> C0061: Bitaccess on function call is not allowed

Compiler error C0062
Message: '<variable name>' is no structured variable
Possible error cause: A variable that is not a structure variable is treated like a structure
variable.
Error correction: Make sure that the variable is a structure variable.

PROGRAM PLC_PRG
VAR
 pt : PUNKT;
 i : INT;
END_VAR

i.x := 1024;

TYPE Punkt :
STRUCT
 x : REAL;
 y : REAL;
END_STRUCT

Error correc-
tion:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 771

END_TYPE

--> C0018: 'i.x' is no valid assignment target
--> C0062: 'Variable' is no structured variable
Example:
pt.x := 1024;

Compiler error C0064
Message: Dereferencing requires a pointer
Possible error cause: A variable that is not a pointer variable is dereferenced.
Error correction: Dereference only variables that are pointer variables.

PROGRAM PLC_PRG
VAR
 i : INT;
 pi : POINTER TO INT;
END_VAR
i^:=1;

--> C0018: 'i^' not a valid assignment target
--> C0064: Dereferencing requires a pointer
Example:
pi := ADR(i);
pi^ := 1;

Compiler Error C0065
Message: There is no global definition for '<name>'.
Possible error cause: The value searched for is not a global variable, global POU, or other
value that can be accessed globally.
Error correction: Declare '<name>' as a global variable.

PROGRAM PLC_PRG
.someValue := 5;

--> C0065: There is no global definition for 'someValue‘
Example:
VAR_GLOBAL
 someValue : INT;
END_VAR

Compiler error C0066
Message: Cannot compare type '<data type>' with type '<data type>'
Possible error cause: Two data types are compared which cannot be compared with each
other.
Error correction: Compare only data types that can be compared with each other.

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US772

PROGRAM PLC_PRG
VAR
 i : INT;
 re : REAL;
 str: STRING;
 b : BOOL;
END_VAR

b := i > str;

--> C0066: Cannot compare type 'INT' with type 'STRING'
Example:
b := i > re;

Compiler error C0068
Message: Compare not possible on objects of type '<data type>'
Possible error cause: Objects are being compared in which a comparison is not possible.
Error correction: Compare only data types in which a comparison is possible (INT, REAL, etc.).

PROGRAM PLC_PRG
VAR
 b : BOOL;
 arr1 : ARRAY [1..2] OF INT;
 arr2 : ARRAY [1..2] OF INT;
END_VAR

b := arr1 > arr2;

--> C0068: Compare not possible on objects of type 'ARRAY [1..2]'

Compiler error C0069
Message: Compare not possible on objects of type '<data type>' or '<data type>'
Possible error cause: Two different objects are being compared in which a comparison is not
possible.
Error correction: Compare only data types in which a comparison is possible (INT, REAL, etc.).

PROGRAM PLC_PRG
VAR
 b : BOOL;
 arr1 : ARRAY [1..2] OF INT;
 arr2 : ARRAY [1..3] OF INT;
END_VAR

b := arr1 > arr2;

--> C0069: Compare not possible on objects of type 'ARRAY [1..2]' or
'ARRAY [1..3]'

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 773

Compiler error C0070
Message: 'INI' operator needs function block instance or data unit type instance
Possible error cause: Neither a function block instance nor a DUT instance is applied to the
INI operator.
Error correction: Pass only function block instances or DUT instances to the INI operator.

PROGRAM PLC_PRG
VAR
 b : BOOL;
 inst : FB;
END_VAR

b := INI(b, TRUE);

FUNCTION_BLOCK FB
VAR
END_VAR

--> C0070: 'INI' operator needs function block instance or data unit
type instance
Example:
b := INI(inst, TRUE);

Compiler error C0072
Message: Operator <operator name>' is not possible on type '<data type>'
Possible error cause: An operator is applied to an incompatible type.
Error correction: Apply operators only on compatible types.

PROGRAM PLC_PRG
VAR
 i : INT;
 str : STRING;
END_VAR

str := ABS(str);

--> C0072: Operator 'Abs' is not possible on type 'STRING'
Example:
i := ABS(i);

Compiler error C0074
Message: Unexpected array initialisation
Possible error cause: Syntax error in the array initialization
Error correction: Correct the syntax

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US774

PROGRAM PLC_PRG
VAR
 arr1 : INT := [1,2,3,4,5,6];
END_VAR

--> C0074: Unexpected array initialisation
--> C0032: Cannot convert type 'Unknown type: [1,2,3,4,5,6]' to type
'INT'
Example:
arr1 : ARRAY [1..6] OF INT := [1,2,3,4,5,6];

Compiler error C0075
Message: Too many initializers for array
Possible error cause: Too many values are specified for the size of the array.
Error correction: The number of assigned values must correspond to the size of the array.

PROGRAM PLC_PRG
VAR
 arr1 : ARRAY [1..5] OF INT := [1,2,3,4,5,6];
END_VAR

--> C0075: Unexpected array initialisation
Example:
arr1 : ARRAY [1..6] OF INT := [1,2,3,4,5,6];

Compiler error C0076
Message:Unexpected structure initialisation
Possible error cause: Syntax error in the structure initialization
Error correction: Make sure that the syntax is correct.

PROGRAM PLC_PRG
VAR
 st1 : INT := (p1 := 1);
END_VAR

--> C0076: Unexpected structure initialisation
--> C0032: Cannot convert type 'STRUCT(p1:=1)' to type 'INT'
--> C0046: Identifier 'p1' not defined
--> C0018: 'p1' is no valid assignment target
Example:
st1 : STRUCT1 := (p1:=1,p2:=10);

Compiler error C0077
Message: Unknown type: '<data type>'
Possible error cause: Invalid data type in the declaration (maybe a syntax error)
Error correction: Specify valid data types only.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 775

PROGRAM PLC_PRG
VAR
 i : INTEGER;
END_VAR

--> C0077: Unknown type: 'INTEGER'
Example:
arr1 : ARRAY[1..2] OF STRUCT1 := (p1:=1,p2:=10);

Compiler Error C0078
Message: Unsupported type: '<data type>'
Possible error cause: The used type is not supported by the current device and therefore
cannot be used.
Error correction: If possible, use a different type. For example, REAL instead of LREAL.

PROGRAM PLC_PRG
VAR
 value : LREAL;
END_VAR

--> C0078: Unsupported type: 'LREAL‘
Example:
PROGRAM PLC_PRG
VAR
 value : REAL;
END_VAR

Compiler error C0080
Message: Functionblock '<function block name>' must be instantiated to be accessed
Possible error cause: Missing function Block Instantiation
Error correction: Instantiate the function block.

PROGRAM PLC_PRG
VAR
END_VAR

FB();

FUNCTION_BLOCK FB
VAR
END_VAR

--> C0080: Functionblock 'FB' must be instantiated to be accessed
Example:
VAR
 inst : FB;
END_VAR
inst();

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US776

Compiler error C0081
Message: Unexpected Pragma: '<pragma name>' found without matching 'if'
Possible error cause: The IF condition is missing when using the pragma.
Error correction: Complete the IF condition of the pragma.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR

i := 5;
{END_IF}

--> C0081: Unexpected Pragma: 'END_IF' found without matching 'if'
Example:
{IF <expression>}
i := 5;
{END_IF}

Compiler error C0082
Message: '<invalid pragma>' is no valid condition for pragma
Possible error cause: When using a pragma, an invalid expression is used in the IF condition.
Error correction: Use valid pragma conditions.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR

{IF abc}
i := 5;
{END_IF}

--> C0082: '!!!ERROR!!!' is no valid condition for pragma
Example:
{IF defined (abc)}

Compiler error C0084
Message: '<pragma operand>' is no valid operand for pragma
Possible error cause: Syntax error
Error correction: Use valid pragma operands.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 777

PROGRAM PLC_PRG
VAR
END_VAR

{IF defined(0)}
{END_IF}

--> C0084: 'defined(null)' is no valid operand for pragma
Example:
{IF defined (abc)}

Compiler Error C0085
Message: Define value expected instead of '<value>‘.
Possible error cause: A string is expected instead of the current value at the displayed location
of the pragma.
Error correction: Replace the current value with a string.

PROGRAM PLC_PRG

{IF hasvalue(define, defineValue)}
{END_IF}

--> C0086: C:0085: Define value expected instead of 'defineValue‘
Example:
PROGRAM PLC_PRG

{IF hasvalue(define, '120')}
{END_IF}

Compiler error C0086
Message: No definition found for interface '<interface name>'
Possible error cause: An undefined interface is used.
Error correction: Define the interface.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB IMPLEMENTS XY
VAR
END_VAR

--> C0086: No definition found for interface 'XY'
Example:
INTERFACE XY

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US778

Compiler error C0087
Message: There is no implementation for method '<method name>' defined in interface '<inter-
face name>'.
Possible error cause: One of the methods specified by the interface has not be provided by
the implemented function block.
Error correction: Implement all methods that are specified by the interface.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

INTERFACE XY
METHOD METH1
VAR_INPUT
END_VAR

FUNCTION_BLOCK FB IMPLEMENTS XY
VAR
END_VAR
METHOD METH2
VAR_INPUT
END_VAR

--> C0087: There is no implementation for method 'METH1' defined in
interface 'XY'

Compiler error C0089
Message: Interface of overridden method '{0}' of interface '{1}' does not match declaration
Possible error cause: The signature of the implemented method does not match the signature
of the method in the interface.
Error correction: Make sure that the same return types and parameters are declared.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

INTERFACE XY
METHOD METH1
VAR_INPUT
 iPar : INT;
END_VAR

FUNCTION_BLOCK FB IMPLEMENTS XY
VAR
END_VAR
METHOD METH1
VAR_INPUT

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 779

END_VAR

--> C0089: Interface of overridden method 'METH1' of interface 'XY'
does not match declaration

Compiler error C0090
Message: No definition found for base class '<function name>'
Possible error cause: The function block specified as the base does not exist or is not a
function block.
Error correction: Use a function block as the base.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB EXTENDS POU
VAR
END_VAR

FUNCTION POU
VAR
END_VAR

--> C00090: No definition found for base class 'POU'

Compiler error C0091
Message: Recursion in base function block list: <function name>
Possible error cause: A base function block is extended by itself.
Error correction: Recursion in base function block lists is not possible.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB EXTENDS FB
VAR
END_VAR

--> C00091: Recursion in base function block list: FB -> FB

Compiler error C0094
Message: Interface of overridden method '<method name>' of interface '<function block name>'
doesn't match declaration
Possible error cause: The signature of the method of the first interface does not match the
signature of the method in the second interface, which is extended by the first.

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US780

Error correction: Align the signatures.

PROGRAM PLC_PRG
VAR
 xyz : XY2;
END_VAR

FUNCTION_BLOCK XY
METHOD METH1
VAR_INPUT
END_VAR

FUNCTION_BLOCK XY2 EXTENDS XY
METHOD METH1
VAR_INPUT
 iPar : BOOL;
END_VAR

--> C00094: Interface of the overridden method METH1 of interface XY
doesn't match declaration

Compiler error C0096
Message: Only one base function block may be defined in EXTENDS-list.
Possible error cause: Two or more base function blocks are defined in the EXTENDS list.

Error correction: Define only one base function block in the EXTENDS list.

PROGRAM PLC_PRG
VAR
 fb : FB;
END_VAR

FUNCTION_BLOCK FB EXTENDS FB2, FB3
VAR
END_VAR

FUNCTION_BLOCK FB2
VAR
END_VAR

FUNCTION_BLOCK FB3
VAR
END_VAR

--> C00096: Only one base function block may be defined in EXTENDS-
list

Compiler error C0097
Message: Duplicate definition of variable '<variable name>' in function block '<function block
name>' and in base '<base function block name>'
Possible error cause: A variable is declared with the same name in a function block and its
base.
Error correction: Use different variable names.

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 781

PROGRAM PLC_PRG
VAR
 fb : FB;
END_VAR

FUNCTION_BLOCK FB EXTENDS FB2
VAR
 i : INT;
END_VAR

FUNCTION_BLOCK FB2
VAR
 i : INT;
END_VAR

--> C00097: Duplicate definition of variable 'i' in function block
'FB' and in base 'FB2'

Compiler error C0098
Message: The keyword "FUNCTIONBLOCK" is no longer supported. Use "FUNC-
TION_BLOCK" instead.
Possible cause of error: Syntax error
Error correction: Use the keyword "FUNCTION_BLOCK".

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTIONBLOCK FB
VAR
END_VAR

--> C00098: The keyword "FUNCTIONBLOCK" is no longer supported. Use
"FUNCTION_BLOCK" instead. Use "FUNCTION_BLOCK" instead.

Compiler Error C0099 (Compiler Version < 3.5.7.0)
Message: Local defined enumeration are no longer supported. Use datatype definition instead.
Possible error cause: A local enumeration declaration was used together with a compiler
version that does not support this.
Error correction: Use a later compiler version, or define the enumeration in a DUT.

PROGRAM PLC_PRG
VAR
 localEnumVar : (RED, GREEN, BLUE) := RED;
END_VAR

--> C0099: Local defined enumeration are no longer supported. Use
datatype definition instead.

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US782

Compiler error C0101
Message: Data Recursion: '<recursion>'
Possible error cause: Recursive data initialization over two function blocks
Error correction: Avoid recursions for data initialization.

PROGRAM PLC_PRG
VAR
 inst0 : FB1;
END_VAR

FUNCTION_BLOCK FB1
VAR
 inst1 : FB2;
END_VAR

FUNCTION_BLOCK FB2
VAR
 inst2 : FB1;
END_VAR

--> C0101: Data Recursion: FB1->FB2->FB1

Compiler error C0102
Message: Out of retain memory: Variable '<variable name>', <byte size> bytes.
Possible error cause: More retain memory is used than is available on the PLC. It is also
possible that the retain memory is too fragmented due to incremental builds.
Error correction: Use the “Clean” for fragmenting the memory. This will force the reallocation of
all data at the next build.

Compiler error C0104
Message: 'Out of global data memory: Variable '<variable name>', <byte size> bytes.
Possible error cause: More memory for data is used than is available on the PLC. It is also
possible that the memory is too fragmented due to incremental builds.
Error correction: Use the “Clean” for fragmenting the memory. This will force the reallocation of
all data at the next build.

Compiler error C0114
Message: Invalid destination <jump label> for 'JMP'
Possible error cause: Syntax error or typographical error in the JMP destination
Error correction: Correct the typographical or syntax error.

PROGRAM PLC_PRG
VAR
END_VAR
JMP 0;

--> C0114: Invalid destination 0 for 'JMP'

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 783

Compiler Error C0115
Message: The second parameter of a conditional call (????ALWAYS CALC????) has to be a
valid call statement.
Error correction: Specify the call of a function, method, or function block in the second param-
eter of the conditional ????CALC??? call.

PROGRAM PLC_PRG
VAR
 condition : BOOL;
END_VAR
CALC(condition, 1+2);

--> C0115: The second parameter of a conditional call has to be a
valid call statement.
Example:
CALC(condition, MyFunction(1,2))

Compiler error C0116
Message: The label '<jump label>' is a duplicate
Possible error cause: A label is defined multiple times.
Error correction: Define each label one time only.

PROGRAM PLC_PRG
VAR
END_VAR
JMP label;
label:

label:

--> C0116: The label 'LABEL' is a duplicate

Compiler error C0117
Message: No such label '<jump label>' within the scope of the 'JMP' statement
Possible error cause: A jump is made to a label that does not exist.
Error correction: Define the label that you specify as the destination.

PROGRAM PLC_PRG
VAR
END_VAR
JMP A;

--> C0117: No such label 'A' within the scope of the 'JMP' statement

Compiler error C0118
Message: The label '<jump label>' has not been referenced.

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US784

Possible error cause: A jump label is defined that is not referenced.
Error correction: Remove the unused jump labels.

PROGRAM PLC_PRG
VAR
END_VAR
LABEL:

--> C0118: The label ' LABEL' has not been referenced

Compiler error C0119
Message: An 'FB_init'-Method of a functionblock or struct needs two inputs 'bInitRetains' and
'bInCopyCode' of type BOOL
Possible error cause: One or both of the inputs 'bInitRetains' and 'bInCopyCode' of type BOOL
is missing.
Error correction: Define the missing inputs.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB
METHOD FB_init
VAR_INPUT
END_VAR

--> C0119: An 'FB_init'-Method of a functionblock or struct needs two
inputs 'bInitRetains' and 'bInCopyCode' of type BOOL
Example:
METHOD FB_init
VAR_INPUT
 bInitRetains : BOOL;
 bInCopyCode : BOOL;
END_VAR

Compiler error C0120
Message: An 'FB_Exit'-Method of a functionblock or struct needs an input 'bInCopyCode' of
type BOOL.
Possible error cause: The input 'bInCopyCode' of type BOOL is missing.
Error correction: Define the input.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB

Example of the
error:

Example of the
error:

Error correc-
tion:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 785

METHOD FB_exit
VAR_INPUT
END_VAR

--> C0120: An 'FB_Exit'-Method of a functionblock or struct needs an
input 'bInCopyCode' of type BOOL.
Example:
METHOD FB_exit
VAR_INPUT
 bInCopyCode : BOOL;
END_VAR

Compiler error C0122
Message: Expression 'SUPER' is not allowed in this context
Possible error cause: "SUPER^" is used outside of derived function blocks.
Error correction: Use "SUPER^" in function blocks only.

PROGRAM PLC_PRG
VAR
END_VAR

SUPER^.METH(TRUE, TRUE);

--> C0122: Expression 'SUPER' is not allowed in this context

Compiler error C0124
Message: 'Initialization' is no valid initialization for an enumeration
Possible error cause: A data type that is not ANY_INT is used for the enum initialization.
Error correction: Use only ANY_INT for enum initializations.

PROGRAM PLC_PRG
VAR
 inst : DUT;
END_VAR

TYPE DUT :
(
 enum_member := 1.5
) DWORD;
END_TYPE

--> C0032: Cannot convert type 'LREAL' to type 'DUT'
--> C0124: 'Initialization' is no valid initialization for an
enumeration

Compiler error C0125
Message: The constant <constant value> is assigned to more than one enumeration.
Possible error cause: The same value is assigned to two or more enumerations.

Error correc-
tion:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US786

Error correction: Assign different values to the enumerations.

PROGRAM PLC_PRG
VAR
 inst : DUT;
END_VAR

TYPE DUT :
(
 enum_member := 0,
 enum_member2 := 0
);
END_TYPE

--> C0125: The constant 0 is assigned to more than one enumeration

Compiler error C0126
Message: Variable of type '<data type>' requires exactly 1 Index
Possible error cause: Multiple indexes are assigned to a variable with one index.
Error correction: Assign only one index.

PROGRAM PLC_PRG
VAR
 pi : POINTER TO INT;
END_VAR
pi[0,1] := 0;

--> C0126: Variable of type 'POINTER TO INT' requires exactly 1 Index
Example:
pi[0] := 0;

Compiler error C0130
Message: <object> '<object name>' referenced without parentheses '()'
Possible error cause: A method is referenced without parentheses.
Error correction: Always reference methods by means of parentheses.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR
inst.METH1

--> C0130: METHOD 'METH1' referenced without parentheses '()'
Example:
inst.METH1();

Example of the
error:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 787

Compiler error C0131
Message: '<value>' is not allowed as operand for 'ADR'
Possible error cause: A constant is passed as an operand to the operator ADR.
Error correction: Use only valid operands for ADR.

PROGRAM PLC_PRG
VAR
 i : INT;
 pt : POINTER TO INT;
END_VAR

pt := ADR(1);

--> C0131: '1' is not allowed as operand for 'ADR'
Example:
pt := ADR(i);

Compiler error C0132
Message: No enclosing loop of which to EXIT
Possible error cause: EXIT is used outside of a loop.
Error correction: Use EXIT inside of a loop only.

PROGRAM PLC_PRG
VAR
END_VAR

EXIT
;

--> C0132: No enclosing loop of which to EXIT

Compiler error C0136
Message: ambiguous use of name '<variable name>'
Possible error cause: A variable is declared in multiple GVLs.
Error correction: Qualify the variable with the desired GVL.

PROGRAM PLC_PRG
VAR
 j : INT := g_i;
END_VAR

GVL1:
VAR_GLOBAL
 g_i : INT;
END_VAR

GVL2:

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US788

VAR_GLOBAL
 g_i : INT;
END_VAR

--> C0136: ambiguous use of name 'g_i'
Example:
j : INT := GVL1.g_i;

Compiler Error C0138
Message: No matching 'FB_Init' method found for instantiation of POU.
Possible error cause: No FB_Init method exists that accepts the passed parameters.

Error correction: Check which arguments FB_Init has to receive and adjust the passed
arguments.

PROGRAM PLC_PRG
VAR
 myPOU : POU(arg1 := 1, arg2 := 2);
END_VAR

--> C0138: No matching 'FB_Init‘ method found for instantiation of
POU.

Compiler error C0139
Message: The code <code> has no effect. Is this the intent?
Possible error cause: The written code is syntactically correct but does not do anything.
Error correction: Write code that has a purpose.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR

i;

--> C0139: The code 'i;' has no effect. Is this the intent?

Compiler error C0140
Message: Reference assign is only allowed to variables of Reference type
Possible error cause: An attempt is made to assign a reference value to a variable not defined
as a reference type.
Error correction: Define the variable as a reference type.

PROGRAM PLC_PRG
VAR
 i : INT;
 I_r : INT;
END_VAR

Error correc-
tion:

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 789

I_r REF= i;

--> C0140: Reference assign is only allowed to variables of Reference
type
Example:
I_r : REFERENCE TO INT;

Compiler error C0141
Message: Reference assign needs variable with write access
Possible error cause: A constant is assigned to the reference assignment.
Error correction: Assign a writable variable.

PROGRAM PLC_PRG
VAR
 i : INT;
 I_r : REFERENCE TO INT;
END_VAR

I_r REF= 314;

--> C0141: Reference assign needs variable with write access
Example:
I_r REF= i;

Compiler error C0142
Message: A local variable named '<variable name>' is already defined in '<pou name>'
Possible error cause: The same variable name is used two times.
Error correction: Use different variable names.

PROGRAM PLC_PRG
VAR
 i : INT;
 i : INT;
END_VAR

--> C0142: A local variable named 'i' is already defined in 'PLC_PRG'

Compiler error C0143
Message: The property '<property name>' cannot be used in this context because it lacks the
get accessor
Possible error cause: The property does not have Get access.
Error correction: Make sure that the property has a Get access definition.

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US790

PROGRAM PLC_PRG
VAR
 i : INT;
 inst: FB;
END_VAR

i := inst.Prop;

FUNCTION_BLOCK FB
VAR
END_VAR

PROPERTY Prop : INT
Set;

--> C0143: The property 'Prop' cannot be used in this context because
it lacks the get accessor

Compiler error C0144
Message: Inheritance only allowed in Functionblocks, Interfaces and Structures
Possible error cause: An attempt is made to use inheritance in an object that does not permit
inheritance.
Error correction: Use EXTENDS in function blocks, interfaces, and structures only.

PROGRAM PLC_PRG
VAR
 inst : DUT_1;
END_VAR

TYPE DUT:
(
 enum_member := 0
);
END_TYPE

TYPE DUT_1 EXTENDS DUT:
(
 enum_memberX := 0
);
END_TYPE

--> C0144: Inheritance only allowed in Functionblocks, Interfaces and
Structures

Compiler error C0145
Message: Interfaces can only be implemented by Functionblocks
Possible error cause: An attempt is made to implement an interface outside of a function
block.
Error correction: Implement interfaces only in function blocks.

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 791

PROGRAM PLC_PRG
VAR
END_VAR

POU();

FUNCTION POU IMPLEMENTS ITF
VAR
END_VAR

--> C0145: Interfaces can only be implemented by Functionblocks

Compiler error C0149
Message: Variable declarations are not allowed in interfaces
Possible error cause: An attempt is made to define a variable in an interface.
Error correction: Do not define variables in interfaces.

PROGRAM PLC_PRG
VAR
 inst : ITF;
END_VAR

INTERFACE ITF
VAR_INPUT
 i : INT;
END_VAR

--> C0149: Variable declarations are not allowed in interfaces

Compiler error C0161
Message: Border <array bound> of array is no constant value
Possible error cause: A variable is specified as an array bound.
Error correction: Use constants for the array bounds.

PROGRAM PLC_PRG
VAR
 i : INT := 3;
 arr1 : ARRAY[1..i] OF INT;
END_VAR

--> C0161: Border 'i' of array is no constant value
Example:
arr1 : ARRAY[1..3] OF INT;

Compiler error C0162
Message: Number <number of array values> of array initialisations is no constant value
Possible error cause: The initialization [Wert1,AnzahlWert2(Wert2)] works only with a
constant for AnzahlWert2.

Error correction: Use constants only.

Example of the
error:

Example of the
error:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US792

PROGRAM PLC_PRG
VAR
 i : INT := 3;
 arr1 : ARRAY[1..4] OF INT := [1,i(7)];
END_VAR

--> C0162: Number 'i' of array initialisations is no constant value
Example:
arr1 : ARRAY[1..4] OF INT := [1,3(7)];

Compiler Error C0164
Message: POU <name> writes to output <name> and is called in several tasks.
Possible error cause: The device setting codegenerator\check-multiple-task-
output-write is set and multiple tasks access the same output.

Error correction: Do not call a program that changes outputs in multiple tasks.

PROGRAM PLC_PRG
VAR
 Output AT %QB7 : BYTE
END_VAR

Output := 0;

--> C0164: POU 'PLC_PRG' writes to output 'QB7' and is called in
several tasks

Compiler Error C0165
Message: Variable '<variable name>‘, which is mapped on address '<address>‘ is written in
different tasks.
Possible error cause: The device setting codegenerator\check-multiple-task-
output-write is set and multiple tasks access the same output.

Error correction: Write an output in one fixed task only. If multiple tasks need to calculate data
for one output, then you should try to transfer this information by means of global variables to
one fixed task, which then writes the data to one output.

Example of the
error:

Error correc-
tion:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 793

PROGRAM PLC_PRG_1
VAR
 Output AT %QB7 : BYTE;
END_VAR
Output := 0;

PROGRAM PLC_PRG_2
VAR
 Output AT %QB7 : BYTE;
END_VAR
Output := 1;

--> C0165: Variable 'Output‘, which is mapped on address 'QB7‘ is
written in different tasks.

Compiler error C0168
Message: 'VAR_CONFIG' declaration only allowed in VAR_CONFIG - list
Possible error cause: 'VAR_CONFIG' is used outside of a VAR_CONFIG list.
Error correction: Use 'VAR_CONFIG' only in VAR_CONFIG lists.

PROGRAM PLC_PRG
VAR_CONFIG
 i : INT;
END_VAR

--> C0168: 'VAR_CONFIG' declaration only allowed in VAR_CONFIG - list

Compiler error C0169
Message: 'VAR_GLOBAL' declaration only allowed in Global variable list
Possible error cause: 'VAR_GLOBAL' is used outside of global variable lists.
Error correction: Use 'VAR_GLOBAL' in global variable lists only.

PROGRAM PLC_PRG
VAR_GLOBAL
 i : INT;
END_VAR

--> C0169: 'VAR_GLOBAL' declaration only allowed in Global variable
list

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US794

Compiler Error C0173
Message: '<keyword>' not allowed in this place
Possible error cause: A declaration keyword (example: VAR_INPUT, VAR_OUTPUT, or VAR) is
not allowed at this location.
Error correction: Correct the declaration: Inputs and outputs are not useful or necessary in
type definitions or global variable lists.
TYPE DUT :
STRUCT
 member : INT;
END_STRUCT
END_TYPE

TYPE DUT :
STRUCT
 VAR_INPUT
 member : INT;
 END_VAR
END_STRUCT
END_TYPE

--> C0173: 'VAR_INPUT' not allowed in this place.
Example:
TYPE DUT :
STRUCT
 member : INT;
END_STRUCT
END_TYPE

Compiler error C0174
Message: 'VAR_TEMP' declaration not allowed in this place
Possible error cause: 'VAR_TEMP' is used outside of a program or function block.
Error correction: Use 'VAR_TEMP' inside of programs and function blocks only.

PROGRAM PLC_PRG
VAR
END_VAR

FUN();

FUNCTION FUN
VAR_TEMP
END_VAR

--> C0174: 'VAR_TEMP' declaration not allowed in this place

Compiler error C0175
Message: 'RETAIN' or 'PERSISTENT' not allowed in this place
Possible error cause: 'RETAIN' or 'PERSISTENT' is used in a function.
Error correction: Use 'RETAIN' or 'PERSISTENT' at the intended locations.

Example of the
error:

Error correction

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 795

PROGRAM PLC_PRG
VAR
END_VAR

POU_1();

FUNCTION POU_1
VAR RETAIN
END_VAR

--> C0175: 'RETAIN' or 'PERSISTENT' not allowed in this place
See also
● Ä Chapter 1.4.1.19.2.13 “Retain Variable - RETAIN” on page 537
● Ä Chapter 1.4.1.19.2.13 “Retain Variable - RETAIN” on page 537

Compiler error C0177
Message: '<object>' is of type 'type' and cannot be instantiated
Possible error cause: An attempt is made to instantiate a function.
Error correction: Instantiate only objects that can be instantiated.

PROGRAM PLC_PRG
VAR
 inst : POU;
END_VAR

FUNCTION POU
VAR
END_VAR

--> C0177: 'POU' is of type 'FUNCTION' and cannot be instantiated

Compiler error C0178
Message: No external access to 'VAR_IN_OUT' parameter '<parameter name>' of '<object
name>'
Possible error cause: An attempt is made to remotely access a 'VAR_IN_OUT' parameter.
Error correction: Do not remotely access 'VAR_IN_OUT' parameters.

PROGRAM PLC_PRG
VAR
 inst : FB;
 i : INT;
END_VAR
i := inst.in_out;

FUNCTION_BLOCK FB
VAR_IN_OUT
 in_out : INT;
END_VAR

--> C0178: No external access to 'VAR_IN_OUT' parameter 'in_out' of
'FB'

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US796

Compiler Error C0179
Message: '<identifier>' is no output of 'Function block'
Possible error cause: The initialization of a function block instance must not contain
VAR_IN_OUT variables.

Error correction: Use VAR_IN_OUT variables in function block calls only. When initializing a
function block instance, only assign the inputs of a function block.

Example:
FUNCTION_BLOCK MyFB
VAR_IN_OUT
 inOut : INT;
END_VAR

PROGRAM PLC_PRG
VAR
 iValue : INT;
 fb : MyFB := (inOut := iValue);
END_VAR

--> C0179: 'inOut' is no output of 'MyFB'

Compiler Error C0180
Message: Ambiguous namespace '<library 1>' defined by library '<library 2>'
Possible error cause: The namespace of the library <library 1> is not unique. It is already used
for <library 2>.
Error correction: Change the namespace of the library accordingly (“Properties” button in the
Library Manager).

--> C0180: Ambiguous namespace 'STANDARD' defined by library
'Standard, 3.5.15.0 (System)'

Compiler error C0182
Message: Return type is only possible for POUs of Type FUNCTION and METHOD
Possible error cause: An attempt is made to define a return value in a program.
Error correction: Define a return value only in methods and functions.

PROGRAM PLC_PRG : BOOL
VAR
END_VAR

--> C0182: Return type is only possible for POUs of Type FUNCTION and
METHOD

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 797

Compiler Error C0183
Message: Global scope operation '.' is not valid on expression '<expression>'
Possible error cause: The '.' operator is used to access a global variable. However, at this
location it is not followed by a valid IEC identifier, but for example a character such as ";" or a
reserved identifier such as FUNCTION, or an operator such as TO_STRING.

Error correction: Use a valid IEC identifier for a global variable.

PROGRAM PLC_PRG
...

iVar := .FUNCTION;// ERROR: C0183 because ; is not a valid identifier
strVar := .TO_STRING;
--> C0183: Global scope operation '.' is not valid on expression
'<expression>'
Example: globalValue is declared in a GVL.
PROGRAM PLC_PRG
iVar := .globalValue;

Compiler error C0185
Message: It is not possible to perform component access '.', index access '[]' or call '()' on result
of function call. Assign result to help variable first.
Possible error cause: Component or index access to the result of a function call is performed.
Error correction: Assign the result to a variable in order to access.

PROGRAM PLC_PRG
VAR
 it : ITF;
END_VAR

POU_1()[0].METH1();

FUNCTION POU_1 : ARRAY[0..0] OF ITF

INTERFACE ITF

METHOD METH1

--> C0185: It is not possible to perform component access '.', index
access '[]' or call '()' on result of function call. Assign result to
help variable first.

Compiler Error C0186
Message: It is not possible to compare interface that is return value of call. Assign to variable
first.
Possible error cause: A comparison operation is applied to an interface that is returned by a
function.
Error correction: First assign the result of the function call to a variable and then compare the
value of the variable. This will also reduce the number of function calls that are required.

Example of the
error:

Error correction

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US798

INTERFACE MyInterface

FUNCTION GetInterface : MyInterface

PROGRAM PLC_PRG
IF GetInterface() <> 0 THEN
 // ...
END_IF

--> C0186: It is not possible to compare interface that is return
value of call. Assign to variable first.
Example:
PROGRAM PLC_PRG
VAR_TEMP
 tempInterface : MyInterface;
END_VAR
tempInterface := GetInterface();
IF tempInterface <> 0 THEN
 // ...
END_IF

Compiler Error C0188
Message: Device not installed to the system. No code generation possible.
Possible error cause: The desired device is not installed.

Error correction: Install the missing device in the device repository, or replace the existing
device already inserted in the device tree with another existing device (“Update Device”).

Compiler error C0189
Message: ';' expected instead of '<token>'
Possible error cause: Syntax error
Error correction: Make sure that the syntax is correct.

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 799

PROGRAM PLC_PRG
VAR
 INT
END_VAR

--> C0009: Unexpected Token '<Token>' found
--> C0189: ';' expected instead of 'INT'

Compiler error C0190
Message: ';' expected instead of end of POU
Possible error cause: Syntax error in the POU
Error correction: Make sure that the syntax is correct.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
i := 5

--> C0190: ';' expected instead of end of POU

Compiler error C0191
Message: The operator 'INDEXOF' is no longer supported. Use ADR instead. ADR on a POU-
Name returns a Pointer to a Pointer to the function code.
Possible error cause: The outdated operator 'INDEXOF' is used.
Error correction: Use the operator 'ADR'.

Compiler error C0195
Message: Implicit conversion from signed Type '<data type 1>' to unsigned Type '<data type
2>' : possible change of sign
Possible error cause: A sign conflict may have been missed in the implicit conversion.
Error correction: Convert only data types with the same sign implicitly.

PROGRAM PLC_PRG
VAR
 i : INT;
 b : UINT;
END_VAR

b := i;

--> C0195: Implicit conversion from signed Type 'INT' to unsigned
Type 'UINT' : possible change of sign

Compiler error C0196
Message: Implicit conversion from unsigned Type '<data type 1>' to signed type '<data type
2>' : possible change of sign

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US800

Possible error cause: A sign conflict may have been missed in the implicit conversion.
Error correction: Use explicit conversions.

PROGRAM PLC_PRG
VAR
 i : INT;
 b : UINT;
END_VAR

i := b;

--> C0196: Implicit conversion from unsigned Type 'UINT' to signed
type 'INT' : possible change of sign

Compiler error C0197
Message: Implicit conversion from '<data type 1>' to '<data type 2>': possible loss of informa-
tion
Possible error cause: An attempt is made to convert a variable from data type DINT or LINT to
data type REAL.
Error correction: For DINT, use the data type LREAL, and when converting from LINT to
LREAL make sure that the value of LINT does not exceed the capacity of LREAL.

PROGRAM PLC_PRG
VAR
 i : DINT;
 b : REAL;
END_VAR
b := i;

--> C0197: Implicit conversion from 'DINT' to 'REAL': possible loss
of information

Compiler error C0198
Message: String constant '<string value>' too long for destination type '<data type>'
Possible error cause: The string constant has too many characters.
Error correction: Use shorter string constants or declare larger strings.

PROGRAM PLC_PRG
VAR
 str : STRING(4) := '12345';
END_VAR

--> C0198: String constant '12345' too long for destination type
'STRING(4)'

Compiler error C0199
Message: Interface '<interface name>' must be instantiated to be accessed
Possible error cause: An attempt is made to access an interface method without the interface
being instantiated.

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 801

Error correction: Instantiate the interface.

PROGRAM PLC_PRG
VAR
END_VAR

ITF.METH();

INTERFACE ITF

METHOD METH
VAR_INPUT
END_VAR

--> C0199: Interface 'ITF' must be instantiated to be accessed
Example:
itest: ITF;

Compiler error C0201
Message: Type '<data type 1>' is not equal to type '<data type 2>' of VAR_IN_OUT 'Variable'
Possible error cause: The data type that is passed to the function as a VAR_IN_OUT param-
eter does not match the data type defined in it.
Error correction: Pass a variable with the correct data type.

PROGRAM PLC_PRG
VAR
 Inst: POU;
 b : BOOL;
END_VAR

inst(in_out := b);

FUNCTION_BLOCK POU
VAR_IN_OUT
 in_out : INT;
END_VAR

--> C0201: Type 'BOOL' is not equal to type 'INT' of VAR_IN_OUT
'Variable'

Compiler error C0203
Message: Only Structures and Function Blocks can contain variables of type BIT.
Possible error cause: An attempt is made to declare a variable of type BIT outside of struc-
tures and function blocks.
Error correction: Declare variables of type BIT only in structures and function blocks.

PROGRAM PLC_PRG
VAR
 b : BIT;
END_VAR

--> C0203: Only Structures and Function Blocks can contain variables
of type BIT.

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US802

Compiler error C0204
Message: Variables of type BIT must be declared within a VAR_INPUT-, VAR_OUTPUT or
VAR-block
Possible error cause: An attempt is made to define a variable of type BIT or as a
VAR_IN_OUT parameter.
Error correction: Define variables of type BIT only within a VAR_INPUT, VAR_OUTPUT or
VAR block.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB
VAR_IN_OUT
 b : BIT;
END_VAR

--> C0204: Variables of type BIT must be declared within a
VAR_INPUT-, VAR_OUTPUT or VAR-block

Compiler error C0205
Message: POINTER TO BIT is not allowed
Possible error cause: An attempt is made to declare a POINTER TO BIT.
Error correction: Do not declare POINTER TO BIT.

PROGRAM PLC_PRG
VAR
 pt : POINTER TO BIT;
END_VAR

--> C0205: POINTER TO BIT is not allowed

Compiler error C0206
Message: BIT is not allowed as base type of an array
Possible error cause: An attempt is made to declare a BIT array.
Error correction: Do not declare BIT arrays.

PROGRAM PLC_PRG
VAR
 arr : ARRAY[1..2] OF BIT;
END_VAR

--> C0206: BIT is not allowed as base type of an array

Compiler Error C0207
Message: There is no system definition for '<identifier>'

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 803

Possible error cause: An attempt was made to access a variable in __SYSTEM that does not
exist.
Error correction: Check and correct the specified identifier of the respective variable.

PROGRAM PLC_PRG
VAR
 Value : INT;
END_VAR
Value := __SYSTEM.UnknownVariable;

--> C0207: There is no system definition for 'UnkownVariable‘

Compiler error C0208
Message: 'MOD' is not defined for 'REAL'
Possible error cause: An attempt is made to perform a modulo operation with a variable of
type REAL.

Error correction: Modulo operations are only possible with variables of type ANY_INT.

PROGRAM PLC_PRG
VAR
 r1 : REAL;
END_VAR
r1 := r1 MOD 2;

--> C0208: 'MOD' is not defined for 'REAL'

Compiler Error C0209
Message: You have defined '<number>' applications for device '<device name>'. The maximum
number is '<number>'. So you will not be able to download all applications.
Possible error cause: Some devices only support a specific number of applications (device
description). If a project contains more applications, then not all will be downloaded to the
device.
Error correction: Remove applications from your project or use another device.

Compiler error C0211
Message: Variable declaration expected instead of <expression>
Possible error cause: Syntax error
Error correction: Make sure that the syntax is correct.

PROGRAM PLC_PRG
VAR
 VAR

 END_VAR
END_VAR

--> C0211: Variable declaration expected instead of VAR END_VAR

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US804

Compiler error C0212
Message: VAR, VAR_INPUT, VAR_OUTPUT or VAR_INOUT expected instead of <expression>
Possible error cause: Syntax error
Error correction: Make sure that the syntax is correct.

PROGRAM PLC_PRG
i : INT;

--> C0212: VAR, VAR_INPUT, VAR_OUTPUT or VAR_INOUT expected instead
of i : INT;

Compiler Error C0215
Message: Direct address declaration is not possible in persistent list
Possible error cause: Persistent variables are not allowed to have a direct address.
Error correction: Remove the direct address assignment in the persistent variable list.

VAR_GLOBAL PERSISTENT RETAIN
 directAddressVar AT %QB7 : BYTE;
END_VAR

--> C0215: Direct address declaration is not possible in persistent
list.

Compiler error C0216
Message: Case label duplicate
Possible error cause: A CASE label is used multiple times.
Error correction: Use each CASE label only one time.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR

CASE i OF
 1: i := i+1;
 1: i := i+2;
ELSE
 i := i+10;
END_CASE;

--> C0216: Case label duplicate

Compiler error C0217
Message: Case label <case label> also contained in range <case range begin> .. <case range
end>
Possible error cause: A CASE label is part of the range of another CASE label.
Error correction: Make sure that there is no intersecting.

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 805

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
CASE i OF
 3..5: i := i+2;
 4: i := i+2;
ELSE
 i := i+10;
END_CASE;

--> C0217: Case label 4 also contained in range 3 .. 5

Compiler error C0218
Message: Case label requires literal or symbolic integer constant
Possible error cause: An attempt is made to use a variable as a CASE label.
Error correction: Use only literals and symbolic integer constants.

PROGRAM PLC_PRG
VAR
 i : INT;
 a : INT := 2;
END_VAR

CASE i OF
 1: i := i+1;
 a: i := i+2;
ELSE
 i := i+10;
END_CASE;

--> C0218: Case label requires literal or symbolic integer constant

Compiler error C0219
Message: Case contains overlapping range <case range 1 begin> .. <case range 1 end> and
<case range 2 begin> .. <case range 2 end>
Possible error cause: Two branches of CASE markers have the same elements or subsets.
Error correction: Make sure that there is no intersecting.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
CASE i OF
 3..5: i := i+2;
 1..4: i := i+2;
ELSE
 i := i+10;
END_CASE;

--> C0219: Case contains overlapping range 1 .. 4 and 3 .. 5

Example of the
error:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US806

Compiler error C0221
Message: Direct Address '<address>' malformed
Possible error cause: An address is not displayed completely.
Error correction: Make sure that the address is displayed correctly.

PROGRAM PLC_PRG
VAR
 xVar : BOOL;
END_VAR;
xVar := %IX0;

--> C0221: Direct Address '%IXO' malformed
Example:
xVar := %IX0.2;

Compiler error C0222
Message: Outputs can't be of type 'REFERENCE TO'
Possible error cause: An attempt is made to define REFERNCE TO as an output parameter.

Error correction: Do not use REFERENCE TO as an output parameter.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB
VAR_OUTPUT
 re : REFERENCE TO INT;
END_VAR

--> C0222: Outputs can't be of type 'REFERENCE TO'

Compiler error C0224
Message: Call Recursion: <recursion>
Possible error cause: A function calls itself.
Error correction: Make sure that functions are not recursive.

PROGRAM PLC_PRG
VAR
END_VAR

POU();

FUNCTION POU
VAR
END_VAR

POU();

--> C0224: Call Recursion: POU -> POU

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 807

Compiler Error C0225
Message: '<name>' is not an instance of '<name>'
Possible error cause: A function block in a graphical programming language has been
assigned with an explicitly specified type that does not match the declared type.
Error correction: Replace the explicit type with the one used in the declaration part, or remove
the specification of the explicit type from the POU.

PROGRAM PLC_PRG
VAR
 fbVar : MyFB;
END_VAR

--> C0225: 'fbVar‘ is not an instance of 'MyFB2‘
Error correction:

or

Compiler error C0227
Message: Initialisation of constant variable <constant name> not constant
Possible error cause: A constant is initialized with a variable.
Error correction: Initialize constants only with constant values.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
VAR CONSTANT
 k : INT := i;
END_VAR

--> C0227: Initialisation of constant variable 'k' not constant

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US808

Compiler error C0228
Message: No initial value for constant variable '<constant name>'
Possible error cause: A constant is not initialized.
Error correction: Initialize the constants.

PROGRAM PLC_PRG
VAR
END_VAR
VAR CONSTANT
 k : INT;
END_VAR

--> C0228: No initial value for constant variable 'k'
Example:
k : INT := 1;

Compiler Error C0230
Message: Type name '<data type>' not expected in this place
Possible error cause: The data type name of an enumeration is used at an invalid position.
Error correction: Check whether the data type name is used correctly at this location. Maybe
there is a spelling error.

TYPE MyEnum :
(
 enum_member := 0
);
END_TYPE

PROGRAM PLC_PRG
VAR
 value : INT;
END_VAR
value := MyEnum;
MyEnum := value;

--> For PLC_PRG, the error message is issued 2x:
C0230: Type name 'MyEnum' not expected in this place
Example:
value := MyEnum.enum_member;
MyEnum.enum_member := value;

Compiler Error C0232
Message: Array initialisation expected
Possible error cause: An array of arrays is initialized, but the initialization values are not
nested.
Error correction: Use a nested array initialization as shown in the example below.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 809

PROGRAM PLC_PRG
VAR
 value : ARRAY[0..2] OF ARRAY[0..2] OF INT := [1,2,3];
END_VAR

--> C0232: Array initialisation expected
Example:
value : ARRAY[0..2] OF ARRAY[0..2] OF INT := [
[1,2,3],
[4,5,6],
[7,8,9]];

Compiler Error C0233
Message: Initialisation list for {0} <data type> expected
Possible error cause: An array of the type of a structure is initialized with elements that are not
structure initializations or variables.
Error correction: As shown in the example below, use structure initializations or existing varia-
bles to initialize arrays of structures.

PROGRAM PLC_PRG
VAR
 values : ARRAY[0..2] OF COLOR := [1,2,3];
END_VAR

--> C0233: Initialisation list for COLOR expected
Example:
PROGRAM PLC_PRG
VAR
 colorVariable : COLOR := (red:=0, green:=0, blue:=255);
 value : ARRAY[0..2] OF COLOR := [
 colorVariable,
 (red:=255, green:=0, blue:=0),
 (red:=0, green:=255, blue:=0)];
END_VAR

Compiler error C0234
Message: First Operand of __QueryInterface must be an interface reference or the instance of
a function block
Possible error cause: Incorrect operands are passed to the operator __QueryInterface.

Error correction: Pass an interface reference or the instance of a function block.

PROGRAM PLC_PRG
VAR
 a : INT;
 ITFref, ITFref2 : ITF;
 ITFref2 : ITF2;
END_VAR

__QueryInterface(a ,ITFref);

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US810

INTERFACE ITF EXTENDS __SYSTEM.IQueryInterface
INTERFACE ITF2 EXTENDS ITF

--> C0234: First Operand of __QueryInterface must be an interface
reference or the instance of a function block
Example:
__QueryInterface(ITFref2, ITFref);

Compiler error C0235
Message: Second Operand of __QueryInterface must be an interface reference
Possible error cause: Incorrect operands are passed to the operator __QueryInterface.

Error correction: Pass an interface reference.

PROGRAM PLC_PRG
VAR
 a : INT;
 ITFref, ITFref2 : ITF;
 ITFref2 : ITF2;
END_VAR

__QueryInterface(ITFref2, a);

INTERFACE ITF EXTENDS __SYSTEM.IQueryInterface
INTERFACE ITF2 EXTENDS ITF

--> C0235: Second Operand of __QueryInterface must be an interface
reference
Example:
__QueryInterface(ITFref2, ITFref);

Compiler error C0236
Message: Wrong type definition for VAR_EXTERNAL <variable name>
Possible error cause: The variable is declared in VAR_GLOBAL / VAR_EXTERNAL as different
types.
Error correction: Use the same type definition in VAR_GLOBAL and VAR_EXTERNAL.

PROGRAM PLC_PRG
VAR_EXTERNAL
 ig : STRING;
END_VAR

VAR_GLOBAL
 ig : INT;
END_VAR

--> C0236: Wrong type definition for VAR_EXTERNAL ig

Compiler error C0237
Message: No global definition found for VAR_EXTERNAL '<variable name>'

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 811

Possible error cause: An attempt is made to declare a variable in VAR_EXTERNAL which does
not exist in VAR_GLOBAL.

Error correction: Make sure that the identifiers match.

PROGRAM PLC_PRG
VAR_EXTERNAL
 i : INT;
END_VAR

VAR_GLOBAL
 ig : INT;
END_VAR

--> C0237: No global definition found for VAR_EXTERNAL 'i'

Compiler error C0238
Message: No initial value allowed for VAR_EXTERNAL <variable name>
Possible error cause: An attempt is made to initialize a variable in VAR_EXTERNAL.

Error correction: Do not initialize variables in VAR_EXTERNAL.

PROGRAM PLC_PRG
VAR_EXTERNAL
 ig : INT := 2;
END_VAR

VAR_GLOBAL
 ig : INT;
END_VAR

--> C0238: No initial value allowed for VAR_EXTERNAL ig

Compiler error C0239
Message: Interface <interface name 1> does not extend <interface name 2>
Possible error cause: The used interface does not extend another interface.
Error correction: Extend the interface.

PROGRAM PLC_PRG
VAR
 ITFref : ITF;
 ITFref2 : ITF2;
END_VAR

__QueryInterface(ITFref2,ITFref);

INTERFACE ITF
INTERFACE ITF2 EXTENDS ITF

--> C0239: Interface ITF__Union does not extend
__System.IQueryInterface
Example:
INTERFACE ITF EXTENDS __System.IQueryInterface

Example of the
error:

Example of the
error:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US812

Compiler error C0240
Message: First Operand of __QueryPointer must be an interface reference or the instance of a
function block
Possible error cause: Incorrect operands are passed to the operator __QueryPointer.

Error correction: Pass an interface reference or the instance of a function block.

PROGRAM PLC_PRG
VAR
 a : INT;
 ITFref : ITF;
 pt : POINTER TO FB;
END_VAR

__QueryPointer(a,pt);

--> C0240: First Operand of __QueryPointer must be an interface
reference or the instance of a function block
Example:
__QueryPointer (ITFref, pt);

Compiler error C0241
Message: Second Operand of __QueryPointer must be pointer
Possible error cause: Incorrect operands are passed to the operator __QueryPointer.

Error correction: Pass a pointer.

PROGRAM PLC_PRG
VAR
 b : INT;
 ITFref : ITF;
 pt : POINTER TO FB;
END_VAR

__QueryPointer(ITFref,b);

INTERFACE ITF EXTENDS __System.IQueryInterface

--> C0241: Second Operand of __QueryPointer must be pointer
Example:
__QueryPointer (ITFref, pt);

Compiler error C0242
Message: Operand of __DELETE must be pointer
Possible error cause: An incorrect operand is passed to the operator __DELETE.

Error correction: Pass a pointer.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 813

PROGRAM PLC_PRG
VAR
 a : INT;
 pt : POINTER TO INT;
END_VAR

__DELETE(a);

--> C0242: Operand of __DELETE must be pointer
Example:
__DELETE (pt);

Compiler error C0243
Message: The name used in the signature is not identical to the object name
Possible error cause: The object name differs from the name used in the code.
Error correction: make sure that the names are the same.

Compiler Error C0380
Message: The Operators LOWER_BOUND and UPPER_BOUND are only supported for arrays
of variable length.
Possible error cause: One of the two operators LOWER_BOUND or UPPER_BOUND is not
used for an array of variable length.
Error correction: Use the operators LOWER_BOUND and UPPER_BOUND only for an array
of variable length.

For compiler version 3.5.14.0 and higher, the operators can also be used for
static arrays. As a result, the error C0380 occurs only in the case of earlier
compiler versions.

FUNCTION_BLOCK POU
VAR_IN_OUT
 arrin : ARRAY [*] OF INT;
END_VAR
VAR
 arrtest : ARRAY [0..5] OF INT;
 test1: DINT;
 test2: DINT;

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US814

END_VAR

test1 := UPPER_BOUND(arrin, 1);
test2 := UPPER_BOUND(arrtest, 1);

--> C0380: The operators LOWER_BOUND and UPPER_BOUND are supported
only for arrays with variable length.

Compiler error C0509
Message: Multiple assignments for operator '__New' not allowed
Possible error cause: In one line of code, the assignment operator ":=" is called a multiple
number of times with the __New operator.

Error correction: Program the memory allocation with the __New operator in a separate line of
code for each pointer that points to dynamically allocated memory.

PROGRAM PLC_PRG
VAR
 pbAlpha : POINTER TO BYTE; // Typed pointer to Alpha
 pbBeta: POINTER TO BYTE; // Typed pointer to Beta
 xInit : BOOL := TRUE;
 xDelete : BOOL;
END_VAR

IF (xInit) THEN
 pbBeta := pbAlpha := __NEW(BYTE); // Incorrect code for memory
allocation
END_IF

pbBeta := pbAlpha := 16#01;

IF (xDelete) THEN
 __DELETE(pbAlpha); // Frees memory of pointer
END_IF

--> C0509: Multiple assignments for operator '__New' not allowed

PROGRAM PLC_PRG
VAR
 pbAlpha : POINTER TO BYTE; // Pointer to Alpha
 pbBeta: POINTER TO BYTE; // Pointer to Beta
 xInit : BOOL := TRUE;
 xDelete : BOOL;
END_VAR

IF (xInit) THEN
 pbAlpha := __NEW(BYTE); // Allocates memory for Alpha
 pbBeta := __NEW(BYTE); // Allocates memory for Beta
END_IF

pbBeta := pbAlpha := 16#01; // Multiple assignment

IF (xDelete) THEN
 __DELETE(pbAlpha); // Frees memory of pointer
END_IF

Example of the
error:

Error correc-
tion:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 815

See also
● Ä Chapter 1.4.1.19.3.58 “Operator '__NEW'” on page 614
● Ä Chapter 1.4.1.19.6.2.12 “Attribute 'enable_dynamic_creation'” on page 695

Compiler error C0511
Message: The function block '<function block name>' is ABSTRACT and cannot be used as a
target for an assignment.
Possible error cause: A value was assigned to an abstract function block. The concrete
function blocks may have different types and therefore cannot be copied.
Error correction: In order to copy the data of the function block, concrete function blocks have
to be used.

PROGRAM PLC_PRG
VAR
refAbstract1 : REFERENCE TO AbstractPOU;
refAbstract2 : REFERENCE TO AbstractPOU;
END_VAR

refAbstract1 := refAbstract2;
--> C0511: The function block 'refAbstract1' is ABSTRACT and cannot
be used as a target for an assignment.
Error correction:
Use the reference assignment REF= to assign the reference refAbstract1 to the same
function block as refAbstract2.

Compiler Error C0542
Message: Inheritance is not intended for the data type "UNION" <data type name>.
Possible error cause: A structured data type (DUT) is derived from a UNION by extending with
EXTENDS, or a UNION is derived from a DUT. This kind of derivation is not permitted. However,
for reasons of compatibility only a warning is issued.

TYPE U_StringExt EXTENDS U_StringBase :
UNION
 str10 : STRING(10);
END_UNION
END_TYPE TYPE U_StringBase :
UNION
 str20 : STRING(20);
END_UNION
END_TYPE PROGRAM PLC_PRG
VAR
 uStringExt : U_StringExt;
END_VAR

uStringExt.str20 := 'a234567890b234567890'; -> C0542

Example of the
error:

Example of the
error

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US816

Compiler Error C0543
Message: The name <keyword> is a reserved keyword in the IEC 1131-3 standard. An error
will be issued in future versions.
Possible error cause: A reserved keyword was assigned as the name of a variable.
Error correction: Rename the variable.

PROGRAM PLC_PRG
VAR
 char : BYTE;
END_VAR

--> C0543: The name 'char' is a reserved keyword in the IEC 1131-3
standard. An error will be issued in future versions.
Note: For violations in compiled libraries, only a text message (information) will be issued
instead of a warning.
The following keywords are reserved:
● CHAR
● WCHAR
● ANY_DERIVED
● ANY_ELEMENTARY
● ANY_MAGNITUDE
● ANY_SIGNED
● ANY_DURATION
● ANY_CHARS
● ANY_CHARS
● CHAR_TO
● TO_CHAR
● WCHAR_TO
● TO_WCHAR
● ATAN2
● USING
● CLASS

See also
● Ä Chapter 1.4.1.19.9 “Keywords” on page 747

1.4.1.20 Reference, User Interface
1.4.1.20.1 Notifications... 817
1.4.1.20.2 Objects.. 818
1.4.1.20.3 Menu Commands.. 955
1.4.1.20.4 Dialogs... 1149

1.4.1.20.1 Notifications
Notifications inform you about important information, such as available updates or security
notices.

To open the “Notifications” view, click the icon in the upper right corner of the frame window
of CODESYS. All received notifications are displayed in this view. Notifications marked as “read”
are deleted from the list the next time CODESYS is started.

Example of the
error:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 817

The red icon indicates that new notifications are available, as well as how many.

1.4.1.20.2 Objects
1.4.1.20.2.1 Object 'Application'... 819
1.4.1.20.2.2 Object 'POU Locations'... 820
1.4.1.20.2.3 Objects for Alarm Management.. 821
1.4.1.20.2.4 Object 'Data Source Manager'.. 821
1.4.1.20.2.5 Object 'Data Source'... 823
1.4.1.20.2.6 Object 'DUT'... 835
1.4.1.20.2.7 Object 'External File'... 838
1.4.1.20.2.8 Object 'Device' and Generic Device Editor................................... 839
1.4.1.20.2.9 Object 'GlobalTextList'.. 871
1.4.1.20.2.10 Object 'GVL' - Global Variable List... 871
1.4.1.20.2.11 Object 'GVL' - Global Variable List (task-local)........................... 872
1.4.1.20.2.12 Object 'Persistent variable list'.. 872
1.4.1.20.2.13 Object 'Image Pool'... 873
1.4.1.20.2.14 Object 'Library Manager'... 874
1.4.1.20.2.15 Object 'OPC UA Information Model'... 877
1.4.1.20.2.16 Object 'Network Variable List (Sender)'...................................... 880
1.4.1.20.2.17 Object 'Network Variable List (Receiver)'................................... 880
1.4.1.20.2.18 Object 'POU'... 881
1.4.1.20.2.19 Object 'POUs for Implicit Checks'... 904
1.4.1.20.2.20 Object 'Project Settings'.. 918
1.4.1.20.2.21 Object 'Project Information'... 919
1.4.1.20.2.22 Object 'Recipe Manager'.. 923
1.4.1.20.2.23 Object 'Recipe Definition'.. 926
1.4.1.20.2.24 Object 'Text List'.. 927
1.4.1.20.2.25 Object 'Symbol Configuration'.. 927
1.4.1.20.2.26 Object 'Task Configuration'... 937
1.4.1.20.2.27 Object 'Task'... 942
1.4.1.20.2.28 Object 'Trace'.. 945
1.4.1.20.2.29 Object 'DeviceTrace'... 948
1.4.1.20.2.30 Object 'Trend Recording Manager'... 949
1.4.1.20.2.31 Object 'Trend Recording'.. 949
1.4.1.20.2.32 Object 'Trend Recording Task'.. 952
1.4.1.20.2.33 Object 'Unit Conversion'... 952

Objects in CODESYS provide special functionalities to create applications. Examples: Applica-
tion, program, function, Library Manager, devices, image pool. Objects are managed in tree
structures in the views “Devices”, “POUs” and “Modules”.
You can add an object to the belonging "tree" by use of the command “Project è Add Object”.
The possible insert positions depends on the position within the tree.
Each object provides properties, which can be viewed and accessed with the command from
the context menu of the object.
See also
● Ä Chapter 1.4.1.20.3.3.22 “Command 'Properties'” on page 1000

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US818

Object 'Application'
Symbol:
The object is displayed as a node in the device tree. It comprises the objects which are required
for a controller program to run.
You can insert an application object below a “PLC Logic” node (below a programmable device)
or as a child application below an existing application (parent application).
Below each application, there has to be a “Task Configuration” where you configure which
program of the application will be called by which task and using which settings.
Furthermore, you insert the POUs of your controller program below an application, for example
POUs, global variables lists, and the Library Manager. These POUs are available only for this
application and its child applications.
In addition, the application can also use instances of project-global POUs. You manage project-
global POUs in the “POUs” view. The use of these kinds of instances follows the thinking behind
object-oriented programming.
Multiple applications can be inserted below a PLC device object. To do this, they have to have
unique names.

NOTICE!
An online change after a changing the parent application will remove the child
application from the PLC.

When multiple applications are directly below a device object, for the I/O handling of the device
you have to define the application whose variables CODESYS should use for communication
with the target system. The settings are configured on the “PLC Settings” tab of the device
editor.
The application that you want to work with in online mode has to be set as the "active applica-
tion" (see “App2” in the figure above).
You can set special properties for an application on the “Application Build Options” tab of the
“Properties” dialog of the application object. Example: Activation of dynamic memory allocation.
When downloading the application to the PLC, you can include information about the application
contents. This is also a setting on the “Application Build Options” tab. Then later you can
compare the application on the controller with the active application in CODESYS.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 819

If you want to add individual information about the author, version, and an individual short
description, you can modify the information in the general “Project Information” on the
“Information” tab of the “Properties” dialog.
When you want to log in to the target system (PLC or simulation) with an application, it will
first be checked which applications are currently on the PLC and whether or not the application
parameters on the controller match those in the project configuration. Corresponding messages
will notify you about mismatches and possible options for further action. In this step, you can
also delete applications from the PLC.
On the “Application” tab of the device editor, you can see which applications currently exist on
the device. There you can also delete applications from the target system. It is possible that you
also see additional applications which are not represented by a separate object in the device
tree, for example the <application>_symbols.app, which contains a symbol list created for
the application (see “Symbol Configuration”).
See also
● Ä Chapter 1.4.1.20.2.26 “Object 'Task Configuration'” on page 937
● Ä Chapter 1.4.1.20.4.10.9 “Dialog 'Properties - Application Build Options'” on page 1162
● Ä Chapter 1.4.1.10 “Downloading an Application to the PLC” on page 379
● Ä Chapter 1.4.1.20.2.8.9 “Tab 'PLC Settings'” on page 850
● Ä Chapter 1.4.1.9.2 “Symbol Configuration” on page 357
● Ä Chapter 1.4.1.13.1 “Executing the online change” on page 439
● Ä Chapter 1.4.1.20.3.4.13 “Command 'Project information'” on page 1007

Object 'POU Locations'
This object is available only for specific controllers. It is displayed automatically in the device
tree. The object cannot be added or removed manually. The object can be used for mapping
the executable code of an application in different code areas on the controller. Specifically small
controllers often have limited internal code areas (flash memory). If one or more additional code
areas (for example, external flash memory) are available on the controller, then the location of
the code POUs of an application can be changed specifically.
If there are no specific requirements, then the code POUs are stored sequentially in the code
areas (“default”). This means that the next code POUs are stored in the next areas only when
the first code area is filled. In the “POU Locations” editor, you will see the current location of the
POUs in the memory areas and you can change them specifically.

Double-clicking the “POU Locations” object in the device tree of the controller opens the editor.
Then it receives the entry “<application>”. After a code generation, all program blocks of the
application are displayed with the respective object type, current location in the memory, and
code size.
In the “Configured Location” column, you can set one of the memory areas other than the
“Current Location” for each POU or library.
In order to move the POUs to the recently configured memory locations, you first have to
“Clean” and then “Generate Code” again.

Make sure to pay attention to the messages in the category “POU Locations”.
This also shows when a code POU cannot be moved as expected.

Editor 'POU
Locations'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US820

“Clean” Deletion of the compile information for the application. Corresponds to the menu
command “Build è Clean”. Requirement for moving the POUs to the configured
memory locations.

“Generate code” Starting of the code generation for the application. Corresponds to the menu
command “Build è Generate Code”. Requirement for moving the POUs to the
configured memory locations.

“Objects” Objects of the application, including the objects from the referenced libraries

“Type” Object type; examples: “Function block”, “Method”, “Library”

“Current location” Current memory location of the POU: area_<n>.

“Configured location” Configured memory location where the POU is moved at the next code genera-
tion. Possible values:
● “default”: Automatically assigned area.
● “area_<n>”: Explicitly assigned memory area (n=number)

“Code size” Code size of the POU (in bytes)

● Ä Chapter 1.4.1.20.3.5.2 “Command 'Clean'” on page 1021
● Ä Chapter 1.4.1.20.3.5.1 “Command 'Generate Code'” on page 1021

Objects for Alarm Management
The help pages for alarm management are summarized in the help for CODESYS Visualization.
So please see there for help on the following objects::
● Object “Alarm Configuration”
● Object “Alarm Class”
● Object “Alarm Group”
● Object “Alarm Storage”
● Object “Remote Alarms”

Object 'Data Source Manager'
Symbol:
The object is used as a node for data sources below it. At least one data source has to exist. An
application with the data source manager communicates with remote devices.
See also
● Ä Chapter 1.4.1.9.4 “Data Link with Data Sources” on page 363

Function: The command opens the “Add Data Source” dialog.
Call
● Menu bar: “Project”
● Context menu in the “Devices” view of the CODESYSperspective
● Context menu in the “Data Sources” view of the “HMI” perspective
Requirement: The “Data Source Manager” object is selected that should have an additional
data source.

Command 'Add
Object' > 'Data
Source'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 821

“Name” Example: Data_Source_A
“Select data source type” Data source type that matches the controller configuration in order to establish

communication.
● “CODESYS Symbolic”:

Requirement: The local device is a CODESYS HMI.
The data is transmitted by means of symbolic monitoring. This requires that
symbols are configured in the symbol configuration of the remote PLC appli-
cation.
Note: As long as the symbol configuration is not impacted by an application
change, you have the advantage that the application in the local device does
not have to be updated.
Hint: Use this communication connection unless there are no resources
available in the remote PLC for a symbol configuration.

● “CODESYS ApplicationV3”:
The data is transmitted via the CODESYS address protocol. This requires
that the address information between the remote PLC and the local device
match. Otherwise a connection cannot be established.
Advantage: A symbol configuration is not required in the remote application.
Note: For changes to the remote application, the local application has to be
updated (for example, the HMI application).
Hint: Use this communication for embedded or mini PLCs when there are no
available resources for the symbol configuration.

● “OPC UA Server”:
Data is transferred from an OPC UA server to the local controller via a TCP
connection.

“Add” Opens the “Initialize Data Source - Provider settings” dialog. The contents of the
dialog depend on the selected data source type.

NOTICE!
The remote PLC should be running and the remote PLC application loaded and
started.

See also
● Ä Chapter 1.4.1.20.2.4 “Object 'Data Source Manager'” on page 821
● Ä Chapter 1.4.1.20.2.5.1 “Tab 'Variables'” on page 824

The settings of this dialog are described in the following chapter: Object 'Data
Source' - Tab 'Communication".

The dialog is used to configure the connection initially when you have selected “CODESYS
Symbolic” as the data source type. The communication is done by means of symbolic mon-
itoring. The configuration can be modified later in the editor of the data source on the
“Communication” tab.
See also
● Ä Chapter 1.4.1.20.2.5.3 “Tab 'Communication' via CODESYS Symbolic” on page 826

Dialog 'Add
Data Source'

Dialog 'Initialize
Data Source
Wizard - Pro-
vider settings'
(for 'CODESYS
Symbolic')

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US822

The settings of this dialog are described in the following chapter: Object 'Data
Source' - Tab 'Communication".

The dialog is used to configure the connection initially when you have selected “CODESYS
ApplicationV3” as the data source type. The communication is done by means of address
monitoring.
See also
● Ä Chapter 1.4.1.20.2.5.4 “Tab 'Communication' via CODESYS ApplicationV3” on page 831

The settings of this dialog are described in the following chapter: Object 'Data
Source' - Tab 'Communication".

The dialog is used to configure the connection initially when you have selected “OPC UA
Server” as the data source type. The communication takes place over a TCP connection.
See also
● Ä Chapter 1.4.1.20.2.5.5 “Tab 'Communication' via OPC UA Server” on page 834

The settings of this dialog are described in the following chapter: Object 'Data
Source' - Dialog 'Choose Variables'.

Function: You can select the variables for data transmission from the variables of the remote
PLC. By clicking “Finish”, the data source is initialized and the data types and variables (data
interface) are declared below the folder “DataSources_Objects”. You can modify the settings in
the editor of the data source object.
Call: Automatic
See also
● Ä “Dialog 'Choose Variables'” on page 824

Object 'Data Source'
Symbol:
In the editor (object type “Data Source”), the access to the data of a remote device is managed
on the “Variables”, “Type Mappings”, “Communication”, and “General and Diagnosis” tabs.

The status bar which is always visible notifies you about the data source type and the most
important communication settings. When the communication is established by means of the
data source type CODESYS Symbolic, the name of the data source type, the connection
type, and the network name of the remote device are displayed. When the communication is
established by means of data source type CODESYS ApplicationV3 , then the name of the data
source type, the location of the remote project, and the instance name of the remote application.
Example:
CODESYS Symbolic (CODESYS V3): PLC_Name
CODESYS ApplicationV3 (D:\Projects\Project_A): Project_A.App_A

Dialog 'Initialize
Data Source
Wizard - Pro-
vider settings'
(for 'CODESYS
ApplicationV3')

Dialog 'Initialize
Data Source
Wizard - Pro-
vider settings'
(for 'OPC UA
Server')

Dialog 'Initialize
Data Source
Wizard - Browse
data items'

Status bar

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 823

See also
● Ä Chapter 1.4.1.9 “Working with Controller Networks” on page 352

Tab 'Variables'
The variables for the data originating from the remote source are declared in the global variable
list <name of data source>. The global variable list acts as a data interface to the remote
PLC. The object is located below the application and below the “DataSources_Objects” folder.

“Update variables” Establishes a connection to the remote device and opens the “Choose
Variables” dialog.

“Local variable” Variable in the local application. Contains the remote data.

“Access rights” Access rights of the variables. The respective remote variable has the same
access rights.

● : Write access. Every time the values changes, the variable is updated on
the controller.

● : Read access. Every time the values changes on the controller, the vari-
able is updated in the application.

● : Read/Write access
Note: If you change the access rights, then a download is required for the
change to go into effect.

“Update always” : The controller data is updated automatically (via the data source). A variable
is updated automatically if it is used in the visualization, trend, recipe, or as an
alarm.
Note: This is the recommended setting type.

: The variable is updated in each cycle.
Note: Select the option only when the variable is used exclusively in IEC code. If
a variable is used in the visualization code, then it is updated automatically.
Note: When an instance of a function block or a data type is updated in this way,
the instance is always transferred completely.

“Create or map” Mapping type for how the remote variable is mapped to the local variable.

● : Mapping to a specific created variable with the data type of the remote
variable. The control data is mapped 1:1. That is the recommended mapping
type. The variable is declared in the GVL <name of data source>.

● : Mapping to an existing variable. This requires that the existing variable
has the same data type.

● : Mapping to a specific created variable with type-conforming data type to
the remote data type: remote and local data types are not the same, but
compatible. For example, a type-conforming data type can be available in a
library. The variable is declared in the GVL <name of data source>.

“Type mapping” Data type of the remote variable. If the variable is not a scalar type, then the type
is listed on the “Type Mappings” tab.

“Remote variable” Variable in the remote PLC

Symbol:
Function: The dialog lists the remote variables that are accessed by means of the configured
connection.
Call: “Update variables” command on the “Variables” tab.

Dialog 'Choose
Variables'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US824

Requirement: The remote PLC is running. The control application is downloaded.

“Variables” The remote variables are listed in the tree view. The top node is identified by the
remote application name. Its variables are listed below that. Structured data is
listed with all of its subordinate elements.
Example: appControl_A

: The variable is selected for transferring to the local device. When the variable
is structured, it is applied with all subelements. If the variables themselves are
subelements, then only this subelement is applied without accepting the struc-
ture completely.
Red font: When a variable is displayed in a red font, the variable is not available
(anymore) in the remote PLC.
Note: You can click “Uncheck unavailable variables” to remove the variable from
the list.

: The variable is not selected for the transfer.

The variable has expandable elements. By clicking the symbol, the variable is
extended by their elements.

“Insert the items structured” : The selected variables are transferred with this structure if they are struc-
tured.

: The variable is transferred unstructured with a scalar data type.

“Uncheck unavailable
variables”

Requirement: The link is visible when previously are no longer available in the
variable available on the remote PLC. These variables are marked in red in the
window above. The symbol configuration or the application presumably changed
in the remote PLC.
By clicking the command, the red variables are removed from the list box.

Tab 'Type Mappings'
The tab lists the non-scalar data types as they are currently available in the
“DataSources_Objects” folder. You can edit or delete the data type declaration by selecting
a data type and then the declared elements in the lower window. Moreover, you can modify the
name, reset access rights, map another type, or select another remote variable.

“Local type” Data type in the local application

“Create or map” ● : Mapping to a new created data type. Declared in the
“DataSources_Objects” folder.

● : Mapping to an existing data type
● : Mapping to a type-conforming data type. Declared in the

“DataSources_Objects” folder.

“Mapping name” Name of the data type

“Remote type” Data type of the remote PLC

List with the subordinate elements of the selected data type.

“Local variable” Local variable name of the element of the selected data type

“Access right” Access rights to the element

Tab 'Type Map-
pings'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 825

“Type mapping” Data type of the element

“Remote variable” Remote variable name of the element of the selected data type

[Del] Removes the selected element

See also
● Ä Chapter 1.4.1.9.4.2 “Editing data source variables” on page 370

Tab 'Communication' via CODESYS Symbolic
The tab includes the communication settings via CODESYS Symbolic for the remote data
source.
When initially adding a data source, you have selected the “CODESYS Symbolic” data source
type, and depending on that the communication settings to the data source were configured.
Afterwards, the communication settings are outdated on this tab. You can only initially set the
“Data source type” setting.
CODESYS Symbolic means that in the case of an active connection the communication is
done via symbolic monitoring. This kind of symbolic access is possibly for CODESYS V2 and
CODESYS V3 controller variants. In addition, the runtime system has to support the symbol
configuration.

You can develop a local application offline based on the symbol information
without a connection to the data source. To do this, you refer to a symbol file
in the configuration settings in which all required variable information has been
stored. Then no active connection is established.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US826

“Variable information” Source of the variable information
● “From connection settings”

A connection is established actively according to the communication settings
specified below (“Connection type” and “Connection Settings”). The variable
information is read from the remote controller application.

● “<device name>.<application name>.symbol configuration”
The variable information is read from the symbol configuration. The symbol
configuration is part of the active project and located in the device tree at the
object of the remote controller below the application. An active connection is
not established to the controller.

● “From symbol file”
The variable information is read from a symbol configuration file that is
stored on the development system. In the “Choose symbol file” field, specify
this data. An active connection is not established to the controller.

“Choose symbol file” The path of the symbol file for the “Variable information” selection is “From
symbol file”.
The symbol file is stored on the development system and contains the
required variable information. By default, a symbol file path is created in the
project directory in the following structure: <project folder>\<project
name>.<device name>.<application name>.xml.

Example:
D:\Projects\Project_A\VisualizeWithHMI.Device.Application.x
ml
Note: If the “Alarm Table” element or “Trend” element is used in the visualization,
then the symbol file required for symbolic access and the respective project
must both be saved in the same folder. The project contains the configuration for
the alarm table element or the trend recording for the trend element. This is the
default case for automatically generated symbol files.
Example: D:\Projects\Project_A\VisualizeWithHMI.project

“Connection type” Connection type between the remote PLC and the local device.
Depending on the selected connection type, the following settings below change.
Note: Whenever possible, avoid a direct connection without a gateway.
● “CODESYS V2”

The devices exist in the same network. The V2 runtime on the remote PLC
provides a communication interface.

● “CODESYS V2 (Via gateway)”
The devices do not exist in the same network. They are connected via a V2
gateway.

● “CODESYS V3”
The devices exist in the same network. The V3 runtime on the remote PLC
provides a communication interface.

● “CODESYS V3 (Via gateway)”
The devices do not exist in the same network. They are connected via a V3
gateway.

Tab 'Communi-
cation' via
CODESYS Sym-
bolic

Connection set-
tings for con-
nection type
'CODESYS V2'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 827

“PLC”

“Driver type” ● “Tcp/Ip (Level 2 Route)”
● “Tcp/Ip (Level 2)”
● “Tcp/Ip”

“Address” Example: localhost (for the currently used system on your computer)

“Port” Example: 1200
“Block size” Example: 128

Requirement: The driver type is “Tcp/Ip (Level 2)”.

“Target ID” Example: 0
Requirement: The driver type is “Tcp/Ip (Level 2 Route)”.

“Motorola byte order” : Byte order on the PLC in big endian (Motorola format)

: Byte order in little endian (Intel format)

“Gateway” The gateway settings are configured in addition to the PLC settings.
Note: For this connection, a “CoDeSys V2.3 Gateway Server” (V2 Gateway)
also has to be installed on the development computer where CODESYS V3 is
running.

“IP address” Example: localhost
“Port” Example: 1217

“PLC”

“Name or address of device” The setting that you make here varies according to the selection in the “Type of
name or address” list box. For options that are derived automatically, you do not
have to specify the setting here. The setting can remain empty.
Example: Nothing specified for “...(automatically derived)”

Example: PLC_A for “Node name”

Example: [ABCD] for “Node address”

Example: 192.168.1.5:11741 for “IP address”

Example: POU.dssCommVar with data type
DatasourceSym.ConnectionSetup for “Dynamic from variable”

Hint: : Opens the input to select the program variables for
dynamic configuration. This variable has to be the data type
DatasourceSym.ConnectionSetup.

Connection set-
tings for con-
nection type
'CODESYS V2
(Via gateway)'

Connection set-
tings for con-
nection type
'CODESYS V3'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US828

“Type of name or address” ● “Node name (automatically derived)”
● “Node address (automatically derived)”
● “IP address (automatically derived)”
● “Node name”
● “Node address”
● “IP address”
● “Dynamic from variable”

“Dynamic from variable” The device name or address is configured dynamically at runtime by means
of an IEC variable of data type DatasourceSym.ConnectionSetup. The
data type DatasourceSym.ConnectionSetup (STRUCT) is defined in the
Datasource Symbolic Access library. For the configuration, the structure
member xDataValid first has to be set to FALSE. If the address data has been
specified, then xDataValid has to be set back to TRUE.

Use case: The device name or address is not available when a project is being
created.
The dynamic configuration can also be used to change the settings at runtime
without restarting the HMI application.
Note: For this connection type, the connection is also not done dynamically via
gateway.

“Gateway” The gateway settings are configured in addition to the PLC settings.

“IP address” Example: localhost
“Port” Example: 1217

NOTICE!
It is not recommended to configure the PLCHandler manually.

The connection to the controller is established via the CODESYS PLCHandler communication
interface. In this case, the configuration is performed in the PLCHandler INI format and allows
for advanced parameterization.

“Advanced”

“Used as” ● “Don't use”
Recommended setting
The “INI content” property as well as any specified configuration settings
there are ignored.

● “Extend the configuration by the following content”
As a rule, the configuration settings are used which are specified in the
“Connection Settings for CODESYS V3 (Via gateway)” property. Moreover,
the configuration settings are used in the “INI content” property.

● “Configure completely with the following content”
The configuration settings of the “Configuration Settings for CODESYS V3
(Via gateway)” property are ignored. Instead, only the configuration settings
are used in the “INI content” property.

Connection set-
tings for con-
nection type
'CODESYS V3
(Via gateway)'

Extending the
communication
settings for the
PLCHandler
interface

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 829

“INI content” Requirement: “Used as” is set to “Extend the configuration by the following
content”.
Example:

logfilter=16#000000FF
Example:

parameter0=EncryptCommunication
value0=1
Note: If the parameters are generic, then they can be specified as 0-based
(parameter0 and value0). When extending, the numbering is automatically
adjusted so that the extended parameters connect to the existing ones. The
number of parameters (parameters=<n>) is also set to the correct value.

“INI content” Requirement: “Used as” is set to “Configure completely with the following
content”.
Example:

[PLC:PLC_IdArti]
interfacetype=ARTI
active=1
logevents=1
motorola=0
nologin=0
timeout=10000
precheckidentity=0
tries=3
waittime=12
reconnecttime=10
buffersize=0
device=Tcp/Ip (Level 2 Route)
instance=PLCWinNT_TCPIP_L2Route
parameters=4
parameter0=Address
value0=localhost
parameter1=Port
value1=1200
parameter2=TargetId
value2=0
parameter3=Motorola byteorder
value3=No

“Login Configuration” If a visualization user management is configured on the remote device, then
valid credentials are required at login.

“Type” Defines how the visualization user management gets credentials
● “Login using the following credentials”

The credentials are hard-coded into the “User name” and “Password” set-
tings. They are used each time a connection is attempted.

● “Login using the credentials determined at runtime”
At runtime, a dialog opens and prompts the user to specify a user name and
password. Hard-coded credentials, which have nonetheless been specified
in “User name” and “Password”, are ignored.

Communication
settings for con-
trollers with vis-
ualization user
management

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US830

“User name” Example: max.smith
“Password” Example: ···

See also
● Ä Chapter 1.4.1.9.4.1 “Initially Adding a Data Source” on page 365
● Ä Chapter 1.4.1.20.2.4 “Object 'Data Source Manager'” on page 821

Tab 'Communication' via CODESYS ApplicationV3
The tab includes the communication settings for a remote data source.
When initially adding a data source, you have selected the CODESYS ApplicationV3 data
source type, and depending on that the communication settings to the data source were config-
ured. Afterwards, the communication settings are outdated on this tab. You can only initially set
the “Data source type” and “Select the project type” settings.
CODESYS ApplicationV3 means that in the case of an active connection the communication is
done via address monitoring. In this case, the remote PLC is configured by directly specifying
the device address or automatically via network scan.

“Select the project type” The project type indicates where the controller is configured: in the same project
as the HMI application or in a separate project.
● “Current project”

The control application is part of the currently open project. The communica-
tion settings can be updated automatically or manually.

● “Other Project”
The control application is part of a separate project whose location is speci-
fied in “Choose file”. The communication settings are done manually.

In the initial setting of the data source object, this option is fixed and influences
which settings are available for “Target device”.

“Choose file” Name and path of the project that contains the control application (source
project)
Example: D:\PLCs\PLC_A.project
Requirement: The “Select the project type” is “Other Project”.

Window area for controllers of
the project

Controllers and their subordinate applications, read from the selected project
Example:

Tab 'Communi-
cation' via
CODESYS
ApplicationV3

Settings for 'Se-
lect the project
type' == 'Current
project'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 831

“Target device” Note: The following settings are available when “Select the project type” is set to
“Current project”.

“Automatic configuration” : The configuration is read automatically from the source project. This is the
recommended setting.
Example: “[DEVICE_A]”

Example: “[undetermined]”: No configuration can be read.
Note: Make sure that the application is running on the controller and the network
path is active. The communication settings of the controller are applied only
then. These are the communication settings that were configured in the source
project in the device editor on the “Communication Settings” tab.

“Manual configuration” : More configuration settings are displayed.
See "Manual configuration" below.

The communication setting is done only manually.
See "Manual configuration" below.

“Dynamic from variable” : The communication parameters are configured at applica-
tion runtime by means of an IEC variable of data type
DatasourceAppV3.ConnectionSetup.

: Opens the input for selecting the IEC variables for a dynamic configuration.
The data type DatasourceAppV3.ConnectionSetup (STRUCT) is defined in
the Datasource ApplicationV3 Access library. For the configuration, the
structure member xDataValid first has to be set to FALSE. If the address data
has been specified, then xDataValid has to be set back to TRUE.

Use case: The communication parameters are not available yet when a project is
being created.

“Use device address” : The communication is done via the address specified here.
Example: 0101
Hint: Click “From device” for an automatic address setting.

“From device” The data of the currently connected data source device is read automatically and
specified in “Use device address”. The address corresponds to the setting of the
device in the device editor in “Communication Settings”.

“Search for the target device
using the network scan”

: The data source manager starts the network scan for devices in the network.
The scan is successfully when controllers are found whose communication set-
tings match the selected search criteria. The result is displayed in the input
fields.

“Node name” : Search for the specified node name
Example: WST06

“Target type” : Search for the specified target type
Example. 4096

“Target ID” : Search for the specified target ID
Example: 0000 0001

“Target version” : Search for the specified target version
Example: 1.0.0.0

Settings for 'Se-
lect the project
type' == 'Other
Project'

Manual configu-
ration

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US832

“Network location” ● “Direct child of the data sources PLC”: The scanned remote PLC has an
address that is running with the address of the local controller (of the data
source manager).
Example: Data sources PLC: 0000.0001; remote source PLC:
0000.0001.0001

● “Direct child of node with address”: Specify the address of the parent node
● “Direct child of the data source PLC or of the node with address”: Combina-

tion of both options above.

“Search type” ● “First found device”: The first controller in the device tree is selected that
fulfills the specified criteria.

● “Exactly found device”: The controller is selected that fulfills the specified
criteria exactly.
Note: The data source manager waits until the network scan is complete.
This usually takes about 10 seconds.

“Login Configuration” If a visualization user management is configured on the remote device, then
valid credentials are required at login.

“Type” Defines how the visualization user management gets credentials
● “Login using the following credentials”

The credentials are hard-coded into the “User name” and “Password” set-
tings. They are used each time a connection is attempted.

● “Login using the credentials determined at runtime”
At runtime, a dialog opens and prompts the user to specify a user name and
password. Hard-coded credentials, which have nonetheless been specified
in “User name” and “Password”, are ignored.

“User name” Example: max.smith
“Password” Example: ···

“Advanced” : The subsequent settings are changed.

“Default communication buffer
size”

Default setting: 50000

See also
● Ä Chapter 1.4.1.9.4.1 “Initially Adding a Data Source” on page 365
● Ä Chapter 1.4.1.20.2.4 “Object 'Data Source Manager'” on page 821

Communication
settings for con-
trollers with vis-
ualization user
management

Specific set-
tings of the
communication
buffer

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 833

Tab 'Communication' via OPC UA Server

“Server URI” URI of the OPC UA Server
Editable

“Information Model Source ”

The information model defines how the data is structured and organized on the OPC UA Server.

“ Online” The client connects to the server and detects the existing variables and types.
Requirement: There exists an unencrypted connection to the server.

“Offline” The client reads the variables and types from the information model. A connec-
tion to the server is not required. The list box includes the OPC UA information
models which are installed in the “OPC UA Information Model Repository”.

“Security”

“Messages Security Mode” Type of encryption
● “None”: No encryption and no signing

Note: if you select this option, there can be no guarantee who receives the
data. Therefore, “None” should be used exclusively in closed networks.

● “Sign and Encrypt”: The transferred data will be signed and encrypted.
Signing makes sure that the data is not manipulated and the receiver is
correct.

● “Sign”: The transferred data will be signed.
Signing and encryption work only for certificates.

“Security Policy” List box for the encryption method to be used:
● Basic256sha256
Requirement: Either “Sign and Encrypt” or “Sign” was selected for “Messages
Security Mode”.

See also
● Ä Chapter 1.4.1.9.4.7 “Establishing an Encrypted Connection of a Data Source OPC UA

Client to an OPC UA Server” on page 377
● Ä Chapter 1.4.1.20.2.4 “Object 'Data Source Manager'” on page 821

Tab 'General and Diagnosis'
The “General and Diagnosis” tab provides information about the status of the data source
communication.

“Update Configuration”

“Update rate (ms)” Example: 200

“Connection Information”

“Connection status” Example: online
“Error information” Example: OK

See also
● Ä Chapter 1.4.1.9.4.4 “ Updating data interfaces” on page 373

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US834

Object 'DUT'
Symbol:

● for a DUT without text list support
● for an enumeration data type with text list support
A DUT (Data Unit Type) declares a user-specific data type.
You can add this kind of object below the application or in the “POUs” view. When the object is
created, the “Add DUT” dialog opens. There you select among the “Structure”, “Enumeration”,
“Alias”, or “Union” data types.
Moreover, enumerations can have a text list stored to localize the enumeration values. Then the
object also has a localization view.
TYPE <identifier> : <data type declaration with optional
initialization>
END_TYPE
How the data type declaration has to be done syntactically depends in detail on the selected
data type.

Syntax

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 835

TYPE S_POLYGONLINE :
STRUCT
 aiStart : ARRAY[1..2] OF INT := [-99, -99];
 aiPoint1 : ARRAY[1..2] OF INT;
 aiPoint2 : ARRAY[1..2] OF INT;
 aiPoint3 : ARRAY[1..2] OF INT;
 aiPoint4 : ARRAY[1..2] OF INT;
 aiEnd : ARRAY[1..2] OF INT := [99, 99];
END_STRUCT
END_TYPE

TYPE S_PENTAGON EXTENDS S_POLYGONLINE :
STRUCT
 aiPoint5 : ARRAY[1..2] OF INT;
END_STRUCT
END_TYPE
{attribute 'qualified_only'}
{attribute 'strict'}
TYPE E_TRAFFICSIGNAL :
(
 eRed,
 eYellow,
 eGreen := 10
);
END_TYPE

Enumeration with text list support in the localization view

The “Textual View” and “Localization View” buttons are located on the right edge of the
editor. Click the buttons to toggle between the views.
TYPE A_MESSAGE : STRING[50];
END_TYPE
TYPE U_DATA :
UNION
 lrA : LREAL;
 liA : LINT;
 dwA : DWORD;
END_UNION
END_TYPE

Examples
Declaration of
a structure

Extension of a
structure

Declaration of
an enumera-
tion

Declaration of
an alias
Declaration of
a union of
components
with different
data types

Function: The dialog is used to configure a new DUT (Data Unit Type).
Call: Menu bar: “Project è Add Object è DUT”; context menu of the application object.

Dialog 'Add
DUT'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US836

“Name” Name of the new DUT data type
Example: S_POLYGONLINE

Table 46: “Type”
“Structure” Creates an object which declares a structure that combines multiple variables

with different data types into a logical unit. The variables declared within the
structure are called members.
Example: S_POLYGONLINE

“Extends” : Extends an existing structure by more members. In the input field, specify
an existing structure. The members of the existing structure are automatically
available in the new structure.
Example: S_PENTAGON

“Enumeration” Creates an object which declares an enumeration that combines multiple integer
constants into a logical unit. The constants declared within an enumeration are
also called enumeration values.
Example: E_TRAFFICSIGNAL

“Add Text List Support” : Enumeration that does not have any text list support

: Enumeration with additionally stored text list for the enumeration values. The
text list allows you to localize the names of the enumeration values.
Example: ETL_TRAFFICSIGNAL
Note: In the case of an existing enumeration type, text list support can be added
or removed at any time. As a result, the “Add Text List Support” and “Remove
Text List Support” commands are provided in the context menu of the object.
Hint: The localized texts can be displayed, for example, in a visualization. In
this case, the text output of a visualization element displays the symbolic enu-
meration values in the current language instead of the numeric enumeration
values. When an enumeration with text list support is specified in the “Text
variable” property of a visualization element, it gets the additional property < <
enumeration name> >.

Example: In a visualization, you use the variable PLC_PRG.eTrafficLight of
type ETL_TRAFFICSIGNAL. ETL_TRAFFICSIGNAL is an enumeration with text
list support. Then the entry in the properties editor of the visualization element
looks like this: PLC_PRG.eTrafficLight <ETL_TRAFFICSIGNAL>.

Hint: When you edit the enumeration type in the application, a prompt opens
when you close the application and asks whether the affected visualizations
should be updated automatically.
See also: Help for "Enumerations" with information about the declaration syntax

“Alias” Creates an object which declares an alias with which an alternative name is
declared for a base type, data type, or function block

“Union” Creates an object which declares a union that combines multiple members with
mostly different data types into a logical unit.
All members have the same offset so that they are occupy the same memory.
The memory requirement of a union is determined by the memory requirement of
its "largest" component.

“Add” Closes the dialog and creates the new object

The object is displayed with the symbol in the device tree or in the “POUs”
view. When a text list is also stored for the object, the symbol is displayed.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 837

See also
● Ä Chapter 1.4.1.19.5.18 “Alias” on page 680
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676
● Ä Chapter 1.4.1.19.5.16 “Structure” on page 674
● Ä Chapter 1.4.1.19.5.19 “Data type 'UNION'” on page 681
● Ä Chapter 1.4.1.20.3.20.12 “Command 'Add Text List Support'” on page 1136
● Ä Chapter 1.4.1.20.3.20.13 “Command 'Remove Text List Support'” on page 1136
● Help for CODESYS Visualization: Using Texts

Object 'External File'
An “External File” is any file that you add to the project in the “POUs” view or “Devices” view.
Click “Project è Add Object” to open the “Add External File” dialog and define how the file
belongs to the project.
An external file which was inserted in the “POUs” view is never downloaded to the controller.
An external file which was added in the “Devices” view is always downloaded to the controller
when an online change or a download is performed due to an IEC code change.
When an external file is downloaded to the controller, it is not updated in the project.

“File path” The button opens a dialog for selecting a file in the local file system.

“Name” Object name for the file in CODESYS. If you do not type anything, the file will
have its previous name.

Table 47: “File Handling”
“Remember the link” The file is available in the project only as long as it exists in the defined file path.

“Remember the link and
embed into project”

CODESYS saves an internal copy of the file in the project, as well as the link to
the defined file path. The update option selected below applies as long as the
external file exists there. Otherwise CODESYS uses the version saved in the
project.

“Embed into project” CODESYS saves only one copy of the file in the project. There is no longer a link
to the external file.

Table 48: “Change Tracking”
“Reload the file automatically” If the external file changes, then CODESYS updates the file in the project.

“Prompt whether to reload the
file”

If the external file changes, then a dialog prompt opens whether CODESYS
should also update the file in the project.

“ Do nothing” The file remains unchanged in the project, even if the external file changes.

“Display File Properties” Clicking this button opens the default “Properties of <file name>” dialog, which
you can also open in the Windows file system by right-clicking the file.

“Open” The file object is inserted into the device tree (“Devices” or “POUs” view) and
opened in the editor for the matching file format.

Dialog 'Add
External File'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US838

ms-its:core_visualization.chm::/_visu_use_texts.htm

See also
● Ä Chapter 1.4.1.20.3.4.1 “Command ‘Add Object’” on page 1001
● Ä Chapter 1.4.1.20.4.10.7 “Dialog 'Properties' - 'External file'” on page 1161

Object 'Device' and Generic Device Editor
Symbol:
A device object represents a type of hardware; examples: control device, fieldbus node, bus
node, drive, I/O module, monitor. The arrangement of the device objects in the device tree,
that is the view “Devices” in CODESYS, maps the hardware structure. In the device object
configuration editors inter alia you connect the controller I/Os with project variables.
Use command “Add Device” or “Insert Device” to insert a device object in the device tree.
Depending on the insert position CODESYS always offers the currently matching devices.
A double-click on a device object in the device tree opens the associated device editor. The
editor provides generic and device-specific tabs for the device configuration.
See also
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839

Generic device editor
The generic device editor contains tabs for the configuration of a PLC device in CODESYS.
Additionally there are device-specific tabs, so that the configuration editor consists of many
different dialogs, depending on the device.
The editor opens after a double-click the device object in the device tree (“Devices” view).
You can make general settings for a device editor in the CODESYS “Options” in the “Device
Editor” category. For example, you can show and hide the tabs of the generic device editor.
A device editor is given the name of the device. The following tabs of the generic device editor
can be included:
● “Communication”: Configuration of the connection between the development system and a

programmable device (PLC). Not available in the case of pure I/O devices.
● “Applications”: List of the applications on the controller.
● “<device> Parameters”: Display and configuration of device parameters.
● “Files”: Configuration of the file transfers between a host file system and the device.
● “Log”: Display of the PLC log file.
● “PLC Settings”: Configuration of the handling of the I/Os: which application, behavior in the

stop state, updating, bus cycle options, etc.
● “PLC Shell”: Text-based control monitor for interrogating certain information from the con-

troller.
● “Users and Groups”: User management with regard to the device at runtime.
● “Access Rights”: Rights for access to objects and files on the device.
● “Symbol Rights”: Access rights of individual user groups to symbols (symbol sets) on the

device.
● “Task List”: Overview of all inputs and outputs, which are assigned to tasks – useful for

troubleshooting.
● “Status”: Device-specific status and diagnostic messages.
● “Information”: General information about the device (name, vendor, version etc.)
See also
● Ä Chapter 1.4.1.7 “Configuring I/O Links” on page 213

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 839

Tab 'Communication Settings'
On this tab of the generic device editor, you define the connection between CODESYS and the
device on which your application(s) should run.

If you prefer the classic mode of display for the dialog, then select it in the
CODESYS “Options” (“Device Editor” category).

You select a gateway and a target device from the list boxes. The possible selections depend
on the entries in the “Manage Gateways” and “Manage Favorite Devices” dialogs (see the
“Gateway” menu).
You can also specify the target directly with the IP address (example: "192.168.101.109"),
device address (example: "[056D]"), or device name (example: "MyDevice"). After the device is
entered, CODESYS searches for the device in the network of the gateway.

The option of searching by device name requires unique device names in the
network.

The solid circle on the lower right corner of the gateway symbol provides information about the
connection status:
● Red: CODESYS cannot establish the connection.
● Green: The connection is established.
● Black: The connection status is unknown.

Some communication protocols allow regular checking of the gateway so that
the status cannot be displayed.

Clicking the solid circle of the target device starts a network scan for the device. This works only
if the network is not already being scanned.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US840

“Scan Network” This button opens the “Select Device” dialog. It lists all configured gateways
with the associated devices. You can select one target device from this list. If
the name of the selected device is unique, then the name will be used in the
connection settings. Otherwise, the unique device address is applied.
For details about this dialog, see the description of the classic view below.

“Gateway ” This menu includes the following commands:
● “Add New Gateway”: Opens the “Gateway” dialog for defining a new

gateway channel.
● “Manage Gateways”: Opens the “Manage Gateways” dialog with an overview

of all gateways. You can add or delete entries here or change their order.
● “Configure Local Gateway”: Opens the “Gateway Configuration” dialog. You

can configure the block drivers for the local gateway.

“ Device” This menu includes the following commands:
● “Add Current Device to Favorites”: Adds the currently set device to the list of

favorite devices.
● “Manage Favorite Devices”: Opens the favorites dialog with a list of all pre-

ferred devices. In this dialog, you can add or delete entries or change their
order. The top device is the default.

● “Rename Active Device”: Opens the “Change Device Name” dialog.
● “Wink Current Device”: Devices that support this function illuminate a

flashing signal.
● “Send Echo Service”: CODESYS sends five echo services to the controller.

These are used to test the network connection, similar to the ping function.
The services are sent first without a payload and then with a payload. The
scope of the payload depends on the communication buffer of the PLC. A
message view opens with information about the average echo service delay
and the scope of the sent payload.

● “Store Communication Settings in Project”:
: CODESYS saves the communication settings in the project for reuse on

the same computer.
Note: If you use the project on another computer, then you have to reset the
active path.

: CODESYS saves the communication settings in the options of the local
installation for reuse on the same computer.
Note: When using CODESYS SVN, the option should be cleared in order to
prevent blocking the device object.

● “Confirmed Online Mode”:
: For security reasons, CODESYS requires you to confirm the following

when calling the following online commands: Force Values, Write Values,
Multiple Loading, Release Force List, Single Cycle, Start, Stop.

● “Filter Network Scans by Target ID”:
: The display is limited on the devices that have the same target ID as the

current device configured in the project.
● “Encrypted Communication”:

: The communication to this controller is encrypted. A certificate of the
controller is required in order to log in to the controller. If the certificate is
not available, then an error message opens prompting whether or not the
certificate should be displayed and installed.
If the “Enforce encrypted communication” option is selected as “Security
level” in the “Security Screen” view, then the “Encrypted Communication”
command is disabled here.

● “Change Communication Policy”
Opens the “Change Communication Policy” dialog for changing the device
setting for the encryption of communication.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 841

Table 49: Dialog “Change Communication Policy”
If a new communication policy is selected in this dialog, then the configuration on the controller is changed.

“Communication Settings”

“Current policy” Shows the currently selected policy for the encryption of communication

“New policy” List box for the new policy for encryption
● “No encryption”: The controller does not support encrypted communication.
● “Optional encryption”: The controller supports encrypted and unencrypted

communication.
● “Enforced encryption”: The controller supports encrypted communication

only.

“Device User Management”

“Current policy” Shows the currently selected policy for user management

“New policy” List box for the new policy for user management
● “Optional user management”: It is the responsibility of the user to enable

user management on the device or leave the device unprotected.
● “Enforced user management”: The user management on the device is ena-

bled and cannot be disabled by the user.

“Allow anonymous login” : Specific registered components (for example, OPC UA) can connect to the
controller without the providing any credentials. Even if anonymous access to
the OPC UA is permitted, the created device user management for the controller
remains active.

See also
● Ä Chapter 1.4.1.10.2 “Encrypting Communication, Changing Security Settings” on page 381
● Ä Chapter 1.4.1.20.4.13.6 “Dialog 'Options' - 'Device Editor'” on page 1190
● Ä Chapter 1.4.1.20.3.4.5 “Command 'Scan for Devices'” on page 1003
● Ä Chapter 1.4.1.20.3.18.1 “Command 'Add New Gateway'” on page 1124
● Ä Chapter 1.4.1.20.3.4.3 “Command 'Insert Device'” on page 1002
● Ä Chapter 1.4.1.20.3.18.2 “Command 'Configure the Local Gateway'” on page 1125

In the CODESYS options, you can activate the classic mode of the dialog (“Tools è Options”,
"Device Editor" category).

“Select the network path to the
controller”

Gateway channel for the connection.
Select the channel from the lower part of the view.

Communication
Settings -
Classic Mode

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US842

Table 50: “View displaying configured gateway channels and network devices”
Left side of view Tree structure of the configured gateway channels with the connected devices in

the local network:

Note: CODESYS saves these entries on the local system, not in the project.

The device entries are preceded by a device symbol (). Entries with a target ID
that are different from those currently configured in the project are displayed in
gray.
Click “Scan Network” to refresh the list.
Note: If you created the first project on the local system, then the local gateway is
listed as an entry in the tree by default. CODESYS starts this gateway automati-
cally on system boot.
The solid circle on the lower right corner of the gateway symbol provides infor-
mation about the connection status:
● Red: CODESYS Development System cannot establish the connection.
● Green: The connection is established:
● Black: The connection status is unknown.

Note: Some communication protocols allow regular checking of the gateway
so that the status cannot be displayed.

Each of the device entries in the tree consists of a symbol followed by the
“Device name”> [“Device address”]. On the right side of the view, you also
see the “Target ID”, “Target Name”, “Target Type, Target Vendor”, and “Target
Version”.

Right side of view Information about the gateway channel of device selected on the left side of the
view.
When a gateway channel is selected in the left view, the following information is
displayed: “Device name”, “IP address”, “Port”, “Driver”

When a device is selected in the left view, the following information is dis-
played (depending of the device): “Device name”, “Device address”, “Number
of channels”, “Block driver”, “Serial number”, “Encrypted communication”, “Target
vendor”, “Target ID”, “Target name”, “Target type”,“ Target version”.

Table 51: “Filter and sorting functions on the right side of the dialog”
“Filter” You can reduce the displayed list of devices that have the same “Target ID” as

the current device configured in the project.

“Sorting order” You can sort the list by “Name” or “Device Address” in alphabetical or ascending
order.

Table 52: Command buttons on the right side of the dialog
“Set Active Path” The command sets the selected communications channel as active. Double-

clicking the entry in the channel tree achieves the same result.

“Add Gateway” The command opens the “Gateway” dialog where you can define a gateway that
CODESYS should add to the current configuration.

“Add Device” The command opens the “Add Device” dialog. Here you can manually define a
device that is to be inserted under the gateway entry currently selected in the
tree. Note the functionality of “Scan Network” as well.

“Scan Network” The command starts a search for available devices in the local network. The
configuration tree of the gateway is refreshed accordingly.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 843

Table 53: “Commands in the context menu of the gateway tree and device tree in the dialog”
“Scan for Device by Address” The command searches the network for devices with a unique address as given

in the configuration tree. CODESYS displays the detected devices with the given
address below the gateway. The search always applies to the devices below the
selected gateway or below the selected entry.

“Scan for Device by Name” The command searches the network for devices with the same name as given in
the configuration tree. Capitalization is ignored. CODESYS displays the detected
devices below the gateway with the given name together with its unique device
address. The search always applies to the devices below the selected gateway
or below the selected entry.

“Scan for Device by IP
Address”

The command searches the network for devices with a unique IP address as
given in the configuration tree. CODESYS displays the detected devices with
the given address below the gateway together with its name. The search always
applies to the devices below the selected gateway or below the selected entry.

“Send Echo Service” CODESYS sends five echo services to the controller. These are used to test
the network connection, similar to the ping function. The services are sent first
without a payload and then with a payload. The scope of the payload depends
on the communication buffer of the PLC. A message view opens with information
about the average echo service delay and the scope of the sent payload.

“Delete Selected Device” The command deletes the selected device from the channel tree.

“Edit Gateway” The command opens the “Gateway” dialog for editing the settings for the
selected gateway.

“Configure the Local Gateway” The command opens a dialog for configuring a local gateway. This provides an
alternative to manually editing the Gateway.cfg file.

Table 54: Options in the lower part of the dialog
“Don't store
communication
settings in project”

● : CODESYS saves the communication settings in the options of the local installation
for reuse on the same computer.
Note: When using CODESYS SVN, the option should be selected in order to prevent
blocking the device object.

● : CODESYS saves the communication settings in the project for reuse on the same
computer.
Note: If you use the project on another computer, then you have to reset the active
path.

“Confirmed Online
Mode”

: For security reasons, CODESYS requires you to confirm the following when calling the
following online commands: “Force Values”, “Write Values”, “Multiple Loading”, “Release
Force List”, “Single Cycle”, “Start”, “Stop”.

See also
● Ä Chapter 1.4.1.20.4.13.6 “Dialog 'Options' - 'Device Editor'” on page 1190
● Ä Chapter 1.4.1.20.3.4.5 “Command 'Scan for Devices'” on page 1003
● Ä Chapter 1.4.1.20.3.18.1 “Command 'Add New Gateway'” on page 1124
● Ä Chapter 1.4.1.20.3.4.3 “Command 'Insert Device'” on page 1002
● Ä Chapter 1.4.1.20.3.18.2 “Command 'Configure the Local Gateway'” on page 1125

Tab 'Parameters'

This dialog is intended for test purposes. Its values should be changed only by
experts.

The device-specific parameters are displayed in a table on this tab of the generic device editor.
The device description defines which parameters you can edit in this dialog.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US844

You can sort the entries in alphabetically ascending or descending order or in the default order
by clicking the column header.

“Parameter” Parameter name, not editable

“Type” Data type of the parameter, not editable

“ Value” Initially displays the default value of the parameter, directly or the corresponding
symbol name. Non-editable parameters are displayed in light-gray. If the param-
eter is editable you can open an input field, a drop-down list or a file selection
dialog with a double-click the table field and use it to change the value.

“Default value” Default value of the parameter defined by the device description, not editable

“Unit” Unit of measure for the value (example: "ms" for milliseconds; not editable)

“Description” Short description of the parameter specified by the device description, not edit-
able

See also
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839

Tab 'Applications'
On this tab of the generic device editor you can see which applications exist on the device.
Depending on the system you can delete the applications from the device or retrieve detailed
information about the application.

“Applications on the PLC” List of the applications found via “Refresh list” during the last scan of the control
device.

“Delete”

“Delete All”

Deletes the application selected in the list or all listed applications on the con-
troller
Note: If a safety controller is inserted below a PLC, then this command can
permanently interrupt the communication links of the safety controller to other
safety controllers (via safety network variables), to field devices, and to the
development system. The safe field devices and the other safety controller can
enter the safe state as a reaction. The connection to the development system
is affected only in the case of a safety controller that is connected to the main
controller via a fieldbus. For more information, refer to the section "Subordinate
Safety Controller".

“Details” Opens the dialog box “Details”. It displays information defined for the application
on the “Information” tab of the dialog box “Properties”.

“ Contents” Requirement: The “Download the application info” option is activated in the
“Properties” of the application object on the “Application generation options” tab.
This causes information about the contents of the application to be additionally
loaded to the PLC.
The “Contents” button opens a dialog box with additional information about the
differences between the latest generated code and the application code that
exists on the controller. The different modules are displayed in a comparison
view.

“Refresh List” The controller is scanned for applications and the list is refreshed accordingly

You can configure the commands “Remove Application from Device” and
“Remove Applications from Device” by means of the dialog box form “Tools
è Customize”. These commands correspond to the “Delete” and “Delete All”
buttons.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 845

See also
● Ä Chapter 1.4.1.20.2.8 “Object 'Device' and Generic Device Editor” on page 839
● Ä Chapter 1.4.1.20.2.1 “Object 'Application'” on page 819
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839
● Ä Chapter 1.4.1.20.2.8.19 “Tab 'Information'” on page 870
● Ä Chapter 1.4.1.20.4.10.9 “Dialog 'Properties - Application Build Options'” on page 1162
● Ä Chapter 1.4.1.20.3.6.2 “Command 'Login'” on page 1028
● Ä Chapter 1.4.1.9.5 “Subordinate safety controller” on page 378

Tab 'Backup and Restore'
In this tabbed page of the generic device editor, you can backup and restore the application-
specific file on the PLC by saving and reading a zip archive.
Requirement: The communication settings are correct for connection to the device. The applica-
tion for backup is available on the PLC.

Table 55: Menu Bar
“Backup” This button opens a menu with the following commands:

● “Read Backup Information from Device”: This command searches for
application-specific files from the $PlcLogic$ directory of the PLC and lists
them in a table in the lower part of the tabbed page.

● “Create Backup File and Save to Disk”:
Requirement: The “Read Backup Information from Device” command was
used for determining the backup-related files. These files are located in the
table in the lower part of the tabbed page.
This command compresses the files in the table set as “Active” and the
meta.info information file into a backup zip file. The file extension is tbf
(="Target Backup File").

● “Save Backup File to Device”:
Requirement: The backup file has been saved to the disk. This command
saves the backup file to the TBF directory of the PLC.

“Restore” This button opens a menu with the following commands:

● “Load Backup File from Disk”: This command opens the “Open” dialog
box for navigating the file system for a saved backup file. The included files
are listed in a table in the lower part of the tabbed page.

● “Load Backup File from Device”: This command generates a list of all
backup files found on the PLC. Select one of these files to view its contents
in a table on the tabbed page. For the restore operation, you can deactivate
optional components and edit the comments.

● “Restore on Device”: This command is available if at least one component
of the backup file that is currently loaded in the tabbed page is set to active.
It prompts for restoring the application status on the device. The user inter-
face is blocked during restore. You can cancel the operation.

Table 56: “Target Information”
“ID” ID of the PLC (example: 0000 0001)

“Type” Device type (example: 4096)

“Version” Device version (example: 3.5.8.0)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US846

Table 57: “Backup Information”
“File name” Storage path of the backup file. Clicking the symbol () opens the file system

dialog box. Example: PlcLogic$/Application/Application.crc
“Size of active files” (in kilobytes) Total size of the files set as active in the table (example: 206 KB

(210965 bytes)).

“Mode” Defines the scope of the backup: “Application”. The application-related files are
added to the archive.

“Comment” Optional entry for comments to be saved in the meta.info file of the backup
and reading when the files are restored.

Table 58: Table of files for backup
“Active” : Optional files can be deactivated here for exclusion in the backup file.

Required components are shown here with a green check mark (no check box).

“Component” Affected components (example: file system)

“File” Name of the component file to back up (example: $PlcLogic$/
Application/Application.app)

“Size” File size in bytes (example: 43280)

“Requires STOP” : For components, the application must be stopped before backup and restore.
A dialog prompt will open to warn you of any backup or restore conflicts.

See also
● Ä Chapter 1.4.1.12.9 “Backup and restore” on page 438

Tab 'Synchronized Files'
The tab of the generic device editor lists the files that are downloaded to the PLC when
the application is downloaded. For example, these are external files that were added to an
application.
Implicit files, such as the source code archive file, are displayed here only if their time of
download is configured for this and the “Show implicit files for application download on the
editor of a PLC” option is activated in the CODESYS options (“Device Editor” category).

“Refresh” Refreshes the view

“Download 'on-demand' files” For internal use only.

“File Name” Name of the file below the application, or direct name of the implicitly transferred
file (example: archive.prj).

Double-click the file name to open the file.

“Host Path” Location or original location of the file (example: D:\Proj1\Files).

Double-click the path to open the directory in the file explorer.

“Timing” Time interval of the file update on the PLC (example: “After application
download/online change”).

“Information” Object-dependent additional information (example: “Object: External File”).

“Provider” General origin type of the file (example: “External File Objects”, “Source code
download provider”).

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 847

See also
● Ä Chapter 1.4.1.20.4.13.6 “Dialog 'Options' - 'Device Editor'” on page 1190
● Ä Chapter 1.4.1.20.2.7 “Object 'External File'” on page 838

Tab 'Files'
In this tab of the generic device editor, you can transfer files between CODESYS (host) and
the PLC. If the communication settings are correct and the PLC is online, then CODESYS
establishes the connection automatically to the PLC for the duration of the file transfer.

Table 59: “Host” / “Runtime”
 Access to the file system of the host with the functionalities of a standard file

manager

“Location” Current directory for the file transfer on the host side

Opens a dialog to create a new directory in the set path

“” Deletes the selected files or directories

Updates the list of files and directories there for the set location

Copies the selected files and directories to the respective other file system from
the host and runtime system
If a file is not already available in the target directory, then it is created. If it
is already available and not write-protected, then it is overwritten. Then a corre-
sponding message is displayed.

 corresponds to the “Write File to Controller” command.

 corresponds to the “Write File from Controller” command.

By default, the “Write File to Controller” and “Write File from Controller” com-
mands are not included in any menu. You can add it to a menu by means of the
“Tools è Customize” dialog, in the “Online” command category.

See also
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839
● Ä Chapter 1.4.1.14 “Copying files to/from PLC” on page 441

Tab 'Log'
You can view the PLC log on this tab of the generic device editor. It lists the events that were
recorded on the target system. This concerns the following:
● Events during the startup and shutdown of the system (components loaded, with version)
● Application download and loading of the boot application
● Custom entries
● Log entries from I/O drivers
● Log entries from data sources

The “Log” tab also opens when you click “Open Log Page”. You can configure
this as a menu command in the “Customize” dialog.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US848

Table 60: Menu bar
Refreshes the list of log events for all runtime system component

“Components” Filters the display of log events by the runtime system components selected in
the list box
Example:
CmpApp displays all events which occur in these components, for example
"Application [<name>] loaded via [OnlineChange]".

“<all components>”: Displays the reported events of all components

Loads the next page with newer log messages

Loads the previous page with older log messages

Loads the page with the newest log entries and enables automatic scrolling

: Indicates that there are new log messages which have not been displayed
yet.
Hint: This is also displayed on the status bar as “Auto-Scroll: ON”.

Loads the page with oldest log messages

Filters events with the severity “Warning” and notifies about how many
Blue-outlined button: Warnings are displayed.

Filters events with the severity “Error” and notifies about how many
Blue-outlined button: Errors are displayed.

Filters events with the severity “Exception” and notifies about how many
Blue-outlined button: Exceptions are displayed.

Filters events with the severity “Information” and notifies about how many
Blue-outlined button: Information is displayed.

Filters events with the severity “Debug” and notifies about how many
Blue-outlined button: Debug messages are displayed.

Logger Enables a logger for displaying its recorded events
By default, the <default logger> defined by the system is set. For example,
that is the logger PlcLog for a CODESYS Control Win V3 runtime system.

“UTC time” : Converts the times displayed below “Timestamp” to the local time of the
development system. The conversion is based on the time zone of the operating
system where the CODESYS is running. (default setting)

: Displays the original time stamp of the runtime system
If you change the option, then the displayed time stamp is converted automati-
cally.

Exports the list contents to an xml file. You can select the file name and location.

Imports an XML file with log messages stored in the file system . A separate
window opens to display the log messages.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 849

Table 61: Display window with log file
Tabular display of the log messages
Ten thousand log messages are displayed per page.

“Severity” ● : Warning
● : Error
● : Exception
● : Information
● : Debug message

“Time Stamp” Date and time of the development system or of the runtime system)
Example: 01/12/07 09:48

“Description” Description of the event
Example: PLC started

“Component” Runtime component where the reported event occurred

Table 62: Status bar
“Auto-Scroll” Displays whether auto-scrolling is enabled (“ON”) or disabled (“OFF”)

Hint: Click the button to enable “Auto-Scroll”.
● “ON”: The log list is refreshed automatically when changes occur.
● “OFF”: When a new log event occurs, it is displayed next to “Off”. Moreover,

the button is decorated on the menu bar: .

Note for error checking

For exceptions with the description *SOURCEPOSITION*, the affected function
opens in the editor by double-clicking it or by means of the “Display Source
Code in Editor” command in the context menu. The cursor jumps to the
line that is causing the error. You can also perform this diagnosis when you
have the CODESYS project archive, including the download information files
and the exported log file. When the affected function is protected, then the
following message appears: "The source code is not available for
<function name>".

If a VendorException is reported, then a manufacturer-specific exception
error has occurred in the CODESYS runtime. Contact the PLC manufacturer for
more information.

See also
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839
● Ä Chapter 1.4.1.20.2.8 “Object 'Device' and Generic Device Editor” on page 839
● Ä Chapter 1.4.1.12.6 “Reading the PLC log” on page 435
● Ä Chapter 1.4.1.20.4.14.1 “Dialog 'Customize' - 'Menu'” on page 1206

Tab 'PLC Settings'
On this tab of the generic device editor you make the basic settings for the configuration of the
PLC, for example the handling of inputs and outputs and the bus cycle task.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US850

“Application for I/O handling” Application that is responsible for the I/O handling.

Table 63: “PLC Settings”
“Update IO while in stop” : CODESYS refreshes the values of the input and output channels even if the

PLC is in the stop state. If the watchdog detects a malfunction, the outputs are
set to the predefined default values.

: CODESYS does not refresh the values of the input and output channels
when the PLC is in the stop state.

“Behavior for outputs in stop” Handling of the output channels when the controller enters the stop state:
● “Keep current values”: The current values are retained.
● “Set all outputs to default”: The default values resulting from the I/O mapping

are assigned.
● “Execute program”: You can control the handling of the output values via

a program contained in the project, which CODESYS executes at "STOP".
Enter the name of the program in the field on the right.

“Always update variables” Global setting that defines whether or not CODESYS updates the I/O variables
in the bus cycle task. This setting is effective for I/O variables of the slaves and
modules only if 'deactivated' is defined in their update settings.
● “Disabled (update only if used in a task)”: CODESYS updates the I/O varia-

bles only if they are used in a task.
● “Enabled 1 (use bus cycle task if not used in any task)”: CODESYS updates

the I/O variables in the bus cycle task if they are not used in any other task.
● “Enabled 2 (always in bus cycle task)”: CODESYS updates all variables in

each cycle of the bus cycle task, regardless of whether they are used and
whether they are mapped to an input or output channel.

Table 64: “Bus Cycle Options”
“Bus cycle task” Task that controls the bus cycle. By default the task defined by the device

description is entered.
By default the bus cycle setting of the superordinate bus device (use cycle set-
tings of the superordinate bus) applies, i.e. the device tree is scanned upwards
for the next valid bus cycle task definition.
Pay strict attention to the following notes!

NOTICE!
Before you select the “<unspecified>” setting for the bus cycle task, you should
be aware that "<unspecified>" means that the default setting given in the device
description goes into effects. You should therefore check this description. Use
of the task with the shortest cycle time may be defined as the default there, but
use of the task with the longest cycle time could equally well be defined!

NOTICE!
For fieldbuses, a fixed cycle matrix is necessary to assure a determined
behavior. Therefore, do not use the type 'free-running' for a bus cycle task.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 851

Table 65: “Additional Settings”
“Generate force variables for
IO mapping ”

This setting is available only if it is supported by the device.

: When compiling the application CODESYS creates two global variables for
each I/O channel that is mapped to a variable in the dialog “I/O Mapping”. You
can use these variables for the forcing of the input or output value on this
channel, for example via an HMI visualization.

“Enable Diagnosis for devices” : CODESYS automatically integrates the library CAA Device Diagnosis
in the project and creates an implicit function block for each device. If there is
already a function block for the device, then either an extended FB is used (for
example with EtherCAT) or a further FB instance is added. This then contains a
general implementation of the device diagnostics.
By means of the FB instances you can determine the status of all devices in the
application and evaluate errors. In addition, the library contains functions for the
programmatic editing of the device tree. Example: Scanning of all children of a
bus system, jumping to the parent element.

“Create additional parameters” This setting is available only if it is supported by the device.
Create additional parameters.

“ Show I/O warnings as errors ” Warnings concerning the I/O configuration are displayed as errors.

See also
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839
● Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854
● Ä Chapter 1.4.1.20.3.5.4 “Command 'Build'” on page 1022
● PDF document 'CAA Device Diagnosis', which is a component of the library.

Tab 'PLC Shell'
This tab of the generic device editor includes a text-based control monitor for querying spe-
cific information from the controller. You can specify device-dependent commands for this and
receive the response from the controller in a result window.

Table 66: ABB AG standard commands
Command with Possible Parameters Description
? List of available PLC shell commands with possible parameters and

short description
getcmdlist List of names of available PLC shell commands
mem <memory address> [<size>] Provides a hex dump of the defined memory range.

The size parameter is optional and describes the number of bytes
that are output. Default value: 16
Example: mem 16x0422139C 8

reflect Repeats the given command (for testing the connection)
applist Provides a list of all loaded applications

The order in the list defines the application index beginning with 0.

pid [<application name>|
<application index>] *

Provides the GUID (application index) of one or all loaded applica-
tions

pinf [<application name>|
<application index>] *

Provides the contents of the following fields from the project infor-
mation: title, version, author, and description.
Requirement: The option “Create POU for properties access
automatically” in the “Project Information” dialog is activated.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US852

Command with Possible Parameters Description
startprg [<application name>|
<application index>] *

Starts the given application, or all loaded applications if no applica-
tion is given

stopprg [<application name>|
<application index>] *

Stops the given application, or all loaded applications if no applica-
tion is given

resetprg [<application name>|
<application index>] *

Resets the given application, or all loaded applications if no appli-
cation is given

resetprgcold [<application
name>|<application index>] *

Executes a cold boot of the given application, or all loaded applica-
tions if no application is given

reload[<application name>|
<application index>] *

Loads the boot application of the given application, or the boot
projects of all loaded applications if no application is given

getprgstat [<application name>|
<application index>] *

Provides the program status of the given application, or the pro-
gram status of all loaded applications if no application is given

plcload Shows the processor load of the controller (in percent)
rtsinfo Provides information about the runtime system, for example the

processor and version of the runtime system
channelinfo Provides information about the communication channel
rtc-get Provides the universal time (UTC) via the DataTime string

rtc-set Sets the universal time (UTC) via the DataTime string (see
ISO 8601)

listpcicards [<VendorID>] Provides a list of PCI adapters (all or by <VendorID>)
gettaskgroups Provides a list of all task groups, their tasks, and the CPU core

binding
cert-getapplist Provides all registered and used certificates (ID of the component

and usage).
cert-genselfsigned [<number
for search result by "cert-
getapplist"> <expdays=>]

Generates self-signed certificates
The validity period of the certificate can be specified by means of
expdays=.

Default value: 365 days
cert-gendhparams [length in
bits]

Generates the parameters for the Diffie-Hellman key exchange
Caution: This operation can take several minutes to complete.

cert-getcertlist [<trust level>] Lists all certificates of the specified trust level
If a trust level is not given, then all certificates are listed.
Possible trust levels
● untrusted: Untrustworthy certificates
● trusted: Trustworthy certificates
● own: Certificate of the controller
● quarantine: Certificates whose trust level (trusted, untrusted)

cannot be determined by validation. Incoming connections were
therefore denied.

cert-createcsr [<number for
search result by "cert-
getapplist">]

Generates CSR files for all applications

cert-import <trust level> <file
name.cer>

Imports the specified certificate

cert-export <trust level>
[<number for search result by
"cert-getcertlist">]

Exports the specified certificate

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 853

Command with Possible Parameters Description
cert-remove <trust level>
<number for search result by
"cert-getcertlist" or "all">

Removes the specified certificate

cpuload Shows the processor load of the CPU (for multicore, each pro-
cessor core)

gettaskgroups Provides a list of defined task groups
The assigned tasks are shown for each task group.

getmulticoreinfo Shows whether or not multicore is supported and the number of
available processor cores

sessinfo-list Provides a list of all currently logged in clients/users
sessinfo-getcnt Provides the number of currently logged in clients/users

* Application name: Name of the application in the device tree
Application index: Results from the list of all applications on the controller that you can call with
the “applist” command. Index 0 stands for the first application in the list, 1 for the second, and
so on.

See also
● Ä Chapter 1.4.1.12.7 “Using PLC shell for requesting information” on page 436
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839
● Ä Chapter 1.4.1.20.3.4.13 “Command 'Project information'” on page 1007

Tab '<device name> I/O Mapping'
This tab is displayed in device editors for devices with I/O channels. It shows the available
channels and allows for the mapping of input, output, and memory addresses of the controller to
variables or entire function blocks of the application. In this way, you create the 'I/O Mapping'.
The application that is to take care of the I/O handling is defined on the “PLC Settings” tab.

You can use the "Online Configuration Mode" if the device supports it. In this
mode, you can access the I/Os of the hardware without having to download an
actual application to the device beforehand.

You can also create the I/O mapping in the “Edit I/O Mapping” dialog. Here you
get a mapping list with search and filter functions for an entire device tree.

NOTICE!
Mapping 'too large' data types
If a variable of a data type that is larger than a byte is mapped to a byte
address, the value of the variable will be truncated to byte size there. For
monitoring the variable value in the “I/O Mapping” dialog, this means that, in the
root element of the address, the value is displayed which the variable currently
has in the project. The current individual bit values of the byte are displayed in
succession in the bit elements below that, but this may not be sufficient for the
entire variable value.

Example of the “<device name> I/O Mapping” tab for a CAN bus slave:

Devices with I/O
channels

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US854

The tab contains a table for editing the I/O mapping. The information displayed for the inputs
and outputs originates from the device description.

“Find” (1) Input field for a search string for the mapping table. The search results are
marked in yellow.

“Filter” (2) List box with filters for the I/O mappings displayed in the mapping table:
● “Show all”
● “Show only outputs”
● “Show only inputs”
● “Show only unmapped variables”
● “Show only mapped variables”
● “Show only mapping to existing variables”
● “ Show only mapping to new variables”

 “Add FB for IO channel” (11) Depending on the device, available if the channel entry is selected in the map-
ping table. Opens the “Select Function Block” dialog for selecting the function
block that should be linked directly to the channel.

 “Go to instance” (12) Available if the entry is selected in the mapping table. Jumps to the corre-
sponding entry on the “<device name> IEC Objects” tab.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 855

“Variable” Depending on the device, the inputs and outputs of the device are displayed as
nodes and below them, indented, the associated channels or, depending on the
device, only the implicitly created device instance.
The symbol indicates the type of channel:

: Input

: Output
Double-click the cell to open an input field.
● Option 1: The variable already exists; specify complete path: <application

name>.<module name>.<variable name>; example: app1.plc_prg.ivar;
input assistance via .

● Option 2: The variable does not exist yet; enter a simple name; automatically
created internally as a global variable.

Depending on the device, inputs or outputs can be linked directly to a function
block. In this case, the “Add FB for IO channel” button can be clicked. See
above.

“Mapping” (3) Type of mapping:

● : Existing variable
● : New variable
● : Mapping to function block instance

“ Channel” (4) Symbolic name of the channel.

“Address” (5) Address of the channel (example: %IW0).

Address strikethrough: Indicates that you should not assign any more variables
to this address. Reason: Although the variable specified here is managed – as
an existing variable –at a different memory location, ambiguity could result when
the values are written, particularly with outputs.

: Indicates that this address has been edited and fixed. If the arrangement of
the device objects in the device tree changes, then CODESYS does not adapt
this address automatically.

“Type” (6) Data type of the channel (example: BOOL).

Structures or bit fields defined in the device description are displayed only if they
are part of the IEC standard and are identified as IEC data types in the device
description. Otherwise the table cell remains empty.
When mapping structured variables, the editor prevents you from specifying
both the structure variable (example: %QB0) and individual structure elements
(example: %QB0.1 and QB0.2). Therefore, if there is a main entry with a subtree
of bit channel entries in the mapping table, then the following applies: You can
input a variable either into the line of the main entry, or into the lines of the
subelements (bit channels), but not into both.

“Default value” Default value of the parameter that applies to the channel: Appears only if
the option “Set all outputs to default” is selected in the “PLC Settings” for the
behavior of the outputs at stop.
Note: For compiler version V3.5 SP11 and higher, the initialization value of the
variables is used automatically as the default value when mapping to an existing
variable. You can edit the “Default value” field only if you map to a new created
variable or if no mapping is specified. In older versions, users had to specify
explicitly that the default value and initialization value were identical.

“Unit” (7) Unit for the parameter value (example: ms for milliseconds).

“Description” (8) Short description of the parameter.

“Current value” Actual value of the parameter applied to the channel; displayed in online mode
only.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US856

The change of the default value by an online change is allowed, however the
value is applied only after a "Reset cold" or "Reset warm".

“Reset Mapping” (9) CODESYS resets the mapping settings to the default values as defined in the
device description file.

“Always update variables” (10) Definition for the device object about updating I/O variables. The default value is
defined in the device description:
● “Use parent device setting”: Update according to the setting of the superordi-

nate device.
● “Enabled 1 (use bus cycle task if not used in any task)”: CODESYS updates

the I/O variables in the bus cycle task if they are not used in any other task.
● “Enabled 2 (always in bus cycle task)”: CODESYS updates all variables in

each cycle of the bus cycle task, regardless of whether they are used and
whether they are mapped to an input or output channel.

If a UNION is represented by I/O channels in the mapping dialog, it depends on
the device whether mapping to the root element is also possible.

For devices with I/O drivers, you can set the bus cycle task here in the “I/O Mapping” tab if the
general settings should not be used (“PLC Settings” tab).

Table 67: Bus Cycle Options
“Bus Cycle Task ” The list box provides all tasks which are defined in the task configuration of

the active application (example: “MainTask”. In case of “Use parent bus cycle
setting”, the settings of the parent node will be used.

Generally, for each IEC task, the used input data is read at the start of each task (1) and the
written output data is transferred to the I/O driver at the end of the task (3). The implementation
in the I/O driver is decisive for additional transfer of the I/O data. It is responsible for the time
frame and time point that the actual transfer to the corresponding bus system occurs.
The bus cycle task of the PLC can be defined globally for all fieldbuses in the PLC settings. For
some fieldbuses, however, you can change this independent of the global setting. The task with
the shortest cycle time is used as the bus cycle task (setting: “unspecified” in the PLC settings).
The messages are normally sent on the bus in this task.
Other tasks copy only the I/O data from an internal buffer that is exchanged only with the
physical hardware in the bus cycle task.

Devices with I/O
drivers

General infor-
mation about
the bus cycle
task

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 857

(1) Read inputs from input buffer (2) IEC task
(3) Write outputs to output buffer (4) Bus cycle
(5) Input buffer (6) Output buffer
(7) Copy data to/from bus
(9) Bus cycle task, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5
Task usage
The “Task Deployment” tab provides an overview of used I/O channels, the set bus cycle task,
and the usage of channels.

WARNING!
If an output is written in various tasks, then the status is undefined, as this can
be overwritten in each case.
If the same inputs are used in various tasks, then it is possible for the input
to change during the processing of a task. This happens when the task is
interrupted by a task with a higher priority and causes the process image to be
read again. Solution: At the beginning of the IEC task, copy the input variables
to variables and then work only with the local variables in the rest of the code.
Conclusion: Using the same inputs and outputs in several tasks does not make
any sense and can lead to unexpected reactions in some cases.

See also
● Ä Chapter 1.4.1.7.1 “Configuring Devices and I/O Mapping” on page 213
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839
● Ä Chapter 1.4.1.20.3.4.35 “Command 'Edit I/O Mapping'” on page 1018
● Ä Chapter 1.4.1.20.2.8.12 “Tab '<device name> IEC Objects'” on page 859
● Ä Chapter 1.4.1.20.4.3 “Dialog 'Select Function Block'” on page 1150
● Ä Chapter 1.4.1.20.3.4.39 “Command 'Online Config Mode'” on page 1019
● Ä Chapter 1.4.1.20.2.8.9 “Tab 'PLC Settings'” on page 850

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US858

Tab '<device name> IEC Objects'

NOTICE!
Please note that manually creating another instance of the device object can
lead to malfunctions.

In this tab of the generic device editor, "objects" are listed that allow for access to the device
from the IEC application. In online mode, this is used as the monitoring view.
For devices for which a function block instance is created implicitly, at least this instance is listed
as an object here in the table. This instance can be used, for example, in order to restart a bus
or to query information from the application. The device type determines whether this kind of
device instance is available and which access options it has. Please refer to the help for the
special device configuration.
Instances of function blocks that are linked with inputs or outputs of the device are also dis-
played here. The mapping of a function block to a channel is defined in the “<device name> I/O
Mapping” tab. The “Go to Instance” command takes you directly to the affected object from
there.
In addition, you can create more objects in the table here that are not yet linked with a device
channel.
In online mode, you can use the table of IEC objects as a monitoring view. It also shows the
current value, the address, and the comment for the function block variable at the channel.
Finally, it provides the capability of writing and forcing values.

 “Add”

 “Edit”

Opens the “Select Function Block” dialog for creating a new instance or for
editing the instance selected in the table.

 “Delete” Deletes the selected entry.

 “Go to Variable” Jumps from the selected entry directly to the corresponding mapping in the
“<device name> I/O Mapping” tab.

“Variable” The object name comprises the device name and the function block name.
Example: EL2004_Relay. Changing the device name has an immediate effect.
The part of the name after the device name is editable here.

“Mapping” Mapping type, as in the “<device name> I/O Mapping” tab

“Type” Data type: Here it is the name of the function block.

“Value”

“Prepared value”

“Address ”

“ Comment”

In online mode only:
Display of the current value, the address, and the comment for the variable at
the channel. Moreover, the option of specifying a value for writing or forcing the
variable.

See also
● Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 859

Tab 'Users and Groups'

NOTICE!
Recommendations regarding data security
In order to minimize the risk of data security violations, we recommend the
following organizational and technical actions for the system where your appli-
cations are running. Whenever possible, avoid exposing the PLC and control
networks to open networks and the Internet. Use additional data link layers
for protection, such as a VPN for teleaccess, and install firewall mechanisms.
Restrict access to authorized persons only, and change any existing default
passwords during the initial commissioning, and change them regularly.

On this tab of the generic device editor, you edit the device user management of the PLC.
Depending on how it is supported by the device, you can define user accounts and user groups.
In combination with the configuration on the “Access Rights” tab, you thus control access to
control objects and files at runtime.
Requirements: The controller has a user management and allows it to be edited. You have login
data in order to be able to log in to the controller.

It is possible to apply user account definitions from the project user manage-
ment into the device user management (see below: “Import” button).

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US860

Table 68: Toolbar of the tab
 Synchronization Switches on and off the synchronization between the editor and the user man-

agement on the device.
If the button is not pressed, then the editor is blank or it contains a configuration
that you loaded from the hard disk.
When the button is pressed, CODESYS synchronizes the display in the editor
continuously with the current user management on the connected device.
When you enable the synchronization while the editor contains a user configura-
tion that is not synchronized with the device yet, you are prompted what should
happen to the editor contents. Options:
● “Upload from the device and overwrite the editor content”: The configuration

on the device is loaded into the editor, overwriting the current contents.
● “Download the editor content to the device and overwrite the user

management there”: The configuration in the editor is transferred to the
device and applied there.

 Import from disk CAUTION: The import of a device user management by means of a *.dum2
file completely overwrites the existing user management on the device. In order
to log in to the device again afterwards, you need authentication data from the
new user management. This means that you have to log in as a user from the
imported user management after the import.
● When you click the button on the “Users and Groups” tab to import a “Device

user management file *.dum2”, the default dialog for selecting a file opens
to select a device user management file from the hard drive. After you
select the file, the “Enter Password” dialog opens. You have to specify the
password that was assigned when the file was exported. Then the user
management is enabled.
Note: Before V3.5 SP16, the “Device user management files (*.dum)” file
type was used which did not require any encryption.

● When you click the button on the “Access Rights” tab to import a “Device
rights management file *.drm”, the default dialog for selecting a file opens to
select a corresponding file from the hard drive. The existing configuration in
the dialog is overwritten by the imported file.

 Export to disk ● When you click the button on the “Users and Groups” tab, first the “Enter
Password” dialog opens for assigning a password to the device user man-
agement file. Note: This password has to be repeated later when this file is
imported to enable this user management on the controller.
After the password assignment dialog is closed, the default dialog for
selecting and importing a user management configuration from the hard disk
opens. In this case, the file type is “Device user management files (*.dum2)”.
Note: Before V3.5 SP16, the “Device user management files (*.dum)” file
type was used which did not require any encryption.

● When you click the button on the “Access Rights” tab, the file type is “Device
rights management files (*.drm)”. In this case, a password does not have to
be assigned for the file before saving.

“Device user” User name of the user currently logged in on the device

Table 69: “User”
All currently defined users, and below them their memberships of user groups, are listed in a tree structure.

 “Add” Opens the “Add User” dialog for creating a new user account.

 “Import” Opens the “Import User” dialog. It displays all the user accounts defined in the
project user management.
Select the desired entries and click “OK” in order to import them into the device
user management. CAUTION: The passwords are NOT applied.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 861

 “Edit” Opens the “Edit User <user name>” dialog. It corresponds to the “Add User”
dialog and you can change the settings of the user account.

 “Delete” Deletes the account of the currently selected user.

Table 70: “Groups”
All currently defined groups, and below them the users assigned to them, are listed in a tree structure.

 “Add” Opens the “Add Group” dialog.
Define a new group name. From the list of defined users, select those that are to
belong to the group. Click “OK” to confirm the selection. The group is displayed
in the tree.

 “Import” Opens the “Import User” dialog. It displays all the user groups defined in the
project user management.
Select the desired entries and click “OK” in order to import them into the device
user management.

 “Edit” Opens the “Edit Group <group name>” dialog. It corresponds to the “Add Group”
dialog where you can change the group definition.

 “Delete” Deletes the currently selected group.

Table 71: “Add Dialog 'Add User'”
“Name” Name of the new user

“Default group” List box with all configured user groups. Every user has to belong to at least one
group. You define this here as a default group.

“ Password”

“Confirm password”

“Password strength” Password security in a range from “Very weak” to “Very good”.

“Hide password” : The password is shown only with asterisks "*" when it is typed in.

“Password can be changed by
the user”

“Password must be changed at
first login”

See also
● Ä Chapter 1.4.1.20.2.8 “Object 'Device' and Generic Device Editor” on page 839
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385
● Ä Chapter 1.4.1.20.2.8.14 “Tab 'Access Rights'” on page 863
● Ä Chapter 1.4.1.20.3.6.16 “Command 'Add Device User'” on page 1041

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US862

Tab 'Access Rights'

NOTICE!
Recommendations regarding data security
In order to minimize the risk of data security violations, we recommend the
following organizational and technical actions for the system where your appli-
cations are running. Whenever possible, avoid exposing the PLC and control
networks to open networks and the Internet. Use additional data link layers
for protection, such as a VPN for teleaccess, and install firewall mechanisms.
Restrict access to authorized persons only, and change any existing default
passwords during the initial commissioning, and change them regularly.

NOTICE!
Detailed information on the concept and use of device user management is
provided in "Handling of Device User Management".
There you will also find the following instructions on how to use the editor:
– First-time login to the controller for editing and viewing its user management
– Setting up a new user in the user management of the controller
– Changing of access rights to controller objects in the user management of

the controller
– Loading user management from a *.dum file, modifying it, and downloading

it to the controller in offline mode

On this tab of the device editor, you define the device access rights of device users to objects
on the controller. As in the project user management, users must be members of at least one
user group and only user groups can be granted certain access rights.
Requirements for the “Access Rights” tab to be displayed:
● In the CODESYS options, in the “Device Editor” category, the “Show access rights page”

option has to be selected.
Note that this CODESYS option can be overwritten by the device description.

Requirements for the access rights to be granted to user groups
● A component for the user management has to be available on the controller. That is the

primary requirement.
● Users and user groups have to be configured on the “Users and Groups” tab.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 863

Table 72: Toolbar of the tab
 Synchronization Switches on and off the synchronization between the editor and the user man-

agement on the device.
If the button is not pressed, then the editor is blank or it contains a configuration
that you loaded from the hard disk.
When the button is pressed, CODESYS synchronizes the display in the editor
continuously with the current user management on the connected device.
When you enable the synchronization while the editor contains a user configura-
tion that is not synchronized with the device yet, you are prompted what should
happen to the editor contents. Options:
● “Upload from the device and overwrite the editor content”: The configuration

on the device is loaded into the editor, overwriting the current contents.
● “Download the editor content to the device and overwrite the user

management there”: The configuration in the editor is transferred to the
device and applied there.

 Import from disk CAUTION: The import of a device user management by means of a *.dum2
file completely overwrites the existing user management on the device. In order
to log in to the device again afterwards, you need authentication data from the
new user management. This means that you have to log in as a user from the
imported user management after the import.
● When you click the button on the “Users and Groups” tab to import a “Device

user management file *.dum2”, the default dialog for selecting a file opens
to select a device user management file from the hard drive. After you
select the file, the “Enter Password” dialog opens. You have to specify the
password that was assigned when the file was exported. Then the user
management is enabled.
Note: Before V3.5 SP16, the “Device user management files (*.dum)” file
type was used which did not require any encryption.

● When you click the button on the “Access Rights” tab to import a “Device
rights management file *.drm”, the default dialog for selecting a file opens to
select a corresponding file from the hard drive. The existing configuration in
the dialog is overwritten by the imported file.

 Export to disk ● When you click the button on the “Users and Groups” tab, first the “Enter
Password” dialog opens for assigning a password to the device user man-
agement file. Note: This password has to be repeated later when this file is
imported to enable this user management on the controller.
After the password assignment dialog is closed, the default dialog for
selecting and importing a user management configuration from the hard disk
opens. In this case, the file type is “Device user management files (*.dum2)”.
Note: Before V3.5 SP16, the “Device user management files (*.dum)” file
type was used which did not require any encryption.

● When you click the button on the “Access Rights” tab, the file type is “Device
rights management files (*.drm)”. In this case, a password does not have to
be assigned for the file before saving.

“Device user” User name of the user currently logged in on the device

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US864

Table 73: “Objects”
In the tree structure, the objects are listed to which actions can be executed at runtime. The objects are each
assigned by their object source and partially sorted in object groups. In the “Rights” view, you can configure the
access options for a user group to a selected object.

Object source (root node)
● “File system objects è Device”: In these objects, the rights can be granted to folders of the current execution

directory of the controller.
● “Runtime objects è /”: In these objects, all objects are managed that have online access in the controller and

therefore have to control the access rights.
A description of the objects is located in the table. Ä “Overview of the objects” on page 867

Object groups and objects (indented)
Example: “Device” with child nodes “Logger”, “PlcLogic”, “Settings”, “UserManagement”.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 865

Table 74: “Rights”
In general, the access rights are inherited from the root object (also “Device” or “/” to the subobjects. This means
that if a permission of a user group is denied or explicitly granted to a parent object, then this first affects all child
objects.
The table applies for the object that is currently selected in the tree. For every user group, it shows the rights
currently configured for the possible actions on this object.

Possible actions on the object:
● “Add/Remove”
● “Modify”
● “View”
● “Execute”

When an object is clicked, a table on the right side shows the access rights of the available user groups for the
selected object.
This allows you to quickly see:
● Which access rights are evaluated by an object
● Which user group has which effective rights to which object
Meanings of the symbols

● : Access right granted explicitly
● : Access right denied explicitly
● : Access right granted through inheritance
● : Access right denied through inheritance
● : The access right was not granted or denied explicitly and also not inherited by the parent object. Access is

not possible.
● No symbol: Multiple objects are selected that have different access rights.
Change the permission by clicking the symbol.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US866

The “Logger” object on the “Access Rights” tab was created by the "Logger" component and
controls its access rights. It is located directly below the “Device” runtime object.
The possible access rights for this object can be granted only for the “View” action.

Initially, each object has a read access. This means that every user can read the "Logger"
of a controller. If this access right should be denied for a single user group (“Service” in the
example), then the read access to the logger object has to be denied explicitly.

Example

“Runtime objects è Device”

“Logger” Online access to the logger is read only. Therefore, only the “View” access right can be
granted or denied here.

“PlcLogic” All IEC applications are inserted here automatically as child objects during download. When
an application is deleted, it is removed automatically. This allows specific control of online
access to the application. Access rights can be assigned centrally over all applications in
the “PlcLogic” The “Administrator” and “Developer” user groups have full access to the IEC
applications. The “Service” and “Watch” user groups only have read access (for example for
read-only monitoring of values).

 The following table shows which action is affected in particular when a specific access right is
granted for an IEC application.
x : The right has to be set explicitly.

- : The right is not relevant.

 “Application” Operation Access Rights
 “Add/

Remove”
“Execute” “Modify” “View”

 Login - - - x
 Create x - - -
 Create child

object
x - - -

 Delete x - - -
 Download /

online change
x - - -

 Create Boot
Application

x - - -

Overview of the
objects

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 867

 Read variable - - - x
 Write Variable - - x x
 Force variable - - x x
 Set and

delete break-
point

- x x -

 Set Next
Statement

- x x -

 Read call
stack

- - - x

 Single cycle - x - -
 Switch on flow

control
- x x -

 Start / Stop - x - -
 Reset - x - -
 Restore retain

variables
- x - -

 Save retain
variables

- - - x

“PlcShell” Only the “Modify” permission is evaluated at this time. This means that only when the “Modify”
permission has been granted to a user group can PLC shell commands also be evaluated.

“RemoteConnecti
ons”

Additional external connections to the controller can be configured below this node. Currently,
access to the CODESYS OPC UA server can be configured here.

“Settings” This is the online access to the configuration settings of a controller. By default, access to
“Modify” is granted only to the administrator.

“UserManagemen
t”

This is the online access to the user management of a controller. By default, read/write
access is granted only to the administrator.

“X509” This controls the online access to the X.509 certificates. Two types of access are distin-
guished here:
● Read (“View”)
● Write (“Modify”)
Every operation is assigned to one of these two access rights. Each operation is inserted as a
child object below X509. Therefore, access per operation can now be fine-tuned even more.

“File system objects è /”

 All folders from the execution path of the controller are inserted below the "“/”" file system
object. This allows you to grant specific rights to each folder of the file system.

See also
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839
● Ä Chapter 1.4.1.20.2.8.13 “Tab 'Users and Groups'” on page 860

Tab 'Symbol Rights'
In this tab of the generic device editor, you define the access rights of different user groups
(clients) to the individual symbol sets available on the controller.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US868

Requirement: User management must be set up on the PLC. An application was downloaded to
the controller for which symbol sets were defined in the CODESYS project. They have access
data for logging in to the controller.
In the “Symbol Sets” view, all symbol sets are listed below the “Application” node whose
definition was downloaded with the application to the controller.
In the “Rights” view, the user groups defined in the user management of the controller are listed
in a table. When a symbol set is selected, you see the access rights of the corresponding user
group to the symbols of this set. : Access granted; : Access not granted. You can change
the access rights by double-clicking the symbol.

Click the button to save the current access configuration to an XML file The file type is
“Device symbol management files (*.dsm)”. Click the button to read a file like this from the
hard drive.
See also
● Ä “Creating symbol sets with different access rights for different control clients” on page 359
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839
● Ä Chapter 1.4.1.20.2.8.14 “Tab 'Access Rights'” on page 863
● Ä Chapter 1.4.1.20.2.8.13 “Tab 'Users and Groups'” on page 860

Tab 'Licensed Software Metrics'
The tab of the device editor displays the code sizes of the applications of the open project in
a tree structure. The display is refreshed when you click “Build è Generate Code” or “Online
è Login” for the active application. When the compile information is deleted, the displayed code
size of the corresponding application is reset.

“Metric” Applications of the open project

“Size” ● “Size of User Code”: Sum of the displayed code sizes of the applications
listed below

● Code size of the respective application

“ Unit” Unit in which the “Size” is displayed

“Max. Allowed” Not implemented yet

Tab 'Task deployment'
This sub-dialog box of the device editor displays a table of inputs and outputs as well as their
assignment to the defined tasks.
The information only becomes visible after code has been generated for the application. It is
used for troubleshooting, because it shows where inputs or outputs are used in several tasks
with different priorities. Multiple use can lead to undefined values through overwriting.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 869

Table 75: “I/O Deployment for Tasks” (1)
“I/O Channels” (2) All inputs and outputs of the linked devices. The display corresponds to that in

the dialog box “I/O Mapping” of the device editor.
By double-clicking on an input or output you can open the associated I/O map-
ping editor.

“<task name>” (3) A column appears for every task defined in the task configuration. The title
contains the task name and priority.
The priority of the tasks decreases from first to the last column. A red cross
appears in the box for inputs and outputs that are written or read by a task: .
In addition, the task defined as a “Bus cycle task” in the “PLC Settings” of the
device editor is marked at these points with a blue double arrow symbol .
Following a mouse-click on the title cell, only the I/Os assigned to this task are
displayed.
Following a mouse-click on the “I/O Channels” cell, all channels are shown
again.

See also
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839
● Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854
● Ä Chapter 1.4.1.20.2.8.9 “Tab 'PLC Settings'” on page 850
● Ä Chapter 1.4.1.8.16.1 “Creating a task configuration” on page 293

Tab 'Status'
This tab of the generic device editor displays status information, for example 'Running' or
'Stopped', and specific diagnostic messages from the respective device, also information about
the card used and the internal bus system.
See also
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839

Tab 'Information'
This tab of the generic device editor displays general information that originates from the device
description file: name, vendor, categories, version, order number, description, if necessary an
illustration.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US870

See also
● Ä Chapter 1.4.1.20.2.8.1 “Generic device editor” on page 839

Object 'GlobalTextList'
Symbol:
This object is for the management and translation of texts that are written as static text in visual-
izations in the project. It contains a table with these texts. If you write a text in a visualization
in an element under the property “Texts”, CODESYS automatically adds a line in the table. You
cannot write any new text here, you can only edit an existing text.
In addition CODESYS makes the following commands available, in order to consolidate the
“GlobalTextList”:
● “Check Visualization Text IDs”
● “Update Visualization Text IDs”
● “Remove Unused Text List Entries”

The object is located in the POUs view and exists once at the most

“ID” Unambiguous identifier of the text

“Default” Source text as a character string with one formatting specification at the most,
for example Information A: %i possibilities. If no translation is written
under a language column , CODESYS uses this text.
Double-click in the field in order to edit the text.

The table contains as many language columns as you have added. A language column is named with a language
code that you entered when creating the column with the command “Insert Language”.

“<Language code>” Name of the language as a language code, for example en-US. This column
contains the translation of the text that is written under “Standard”.
If the language code is selected as a language in the visualization manager,
a visualization displays the translation during operation. A running visualization
can switch over during operation to another language at the request of a user.
Double-click in the field in order to edit the text.

See also
● Ä Chapter 1.4.1.20.3.20.1 “Command 'Add Language'” on page 1132
● Ä Chapter 1.4.1.20.3.20.2 “Command 'Create Global Text List'” on page 1132
● Ä Chapter 1.4.1.20.3.20.6 “Command 'Import/Export Text Lists'” on page 1133
● Ä Chapter 1.4.1.20.3.20.7 “Command 'Remove Language'” on page 1134
● Ä Chapter 1.4.1.20.3.20.9 “Command 'Remove Unused Text List Entries'” on page 1135
● Ä Chapter 1.4.1.20.3.20.10 “Command 'Check Visualization Text IDs'” on page 1135
● Ä Chapter 1.4.1.20.3.20.11 “Command 'Update Visualization Text IDs'” on page 1135
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927
● Ä Chapter 1.4.1.8.8 “Managing text in text lists” on page 266

Object 'GVL' - Global Variable List
Symbol:
A global variable list is used for the declaration, editing and display of global variables.
A GVL is added to the application or the project with the command “Project è Add Object
è Global Variable List”.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 871

If you insert a GVL under an application in the Device tree, the variables are valid within this
application. If you add a GVL in the POUs view, the variables are valid for the entire project.

You can apply settings for the editor of the object in the dialog “Tools è Options” in the
categories “Declaration Editor” and “Text Editor”.
If the target system supports network functionality, you can convert the variables of a GVL into
network variables and thus use them for data exchange with other devices in the network. To do
this you must define corresponding properties for the GVL in the “Network Variables” tab of the
“Properties” dialog.
See also
● Ä Chapter 1.4.1.8 “Programming of Applications” on page 222
● Ä Chapter 1.4.1.20.4.10.11 “Dialog 'Properties' - 'Network Variables'” on page 1163
● Ä Chapter 1.4.1.20.4.13 “Dialog 'Options'” on page 1186

Object 'GVL' - Global Variable List (task-local)
Symbol:
A global variable list (task-local) is used for the declaration, editing and display of global varia-
bles. For this special global variable list, the declared variables in the list can be written by one
task only. All other tasks have only read-only access. This makes sure that the values of these
variables are always consistent, even for multicore projects.
The object is available for compiler version 3.5.13.0 with the corresponding device description.

“Task with write access” Task that has exclusive write access to the variables.

See also
● Ä Chapter 1.4.1.8.2.5 “Using Task-Local Variables” on page 230
● Ä Chapter 1.4.1.8.2.4 “Declaring global variables” on page 229
● Ä Chapter 1.4.1.20.2.10 “Object 'GVL' - Global Variable List” on page 871
● Ä Chapter 1.4.1.20.2.26.5 “Tab 'Task Groups'” on page 941

Object 'Persistent variable list'
Symbol:
The object contains the declaration of global persistent variables in the declaration section
VAR_GLOBAL PERSISTENT RETAIN .. END_VAR. The variables are stored in special non-
volatile memory.
The persistence editor shows the variables as a list in the usual way. The displayed list does
not influence the persistence behavior of the variables, but only the list stored internally in
the process image. The list there contains all variables ever declared in chronological order.
Variables that you have removed are marked with a placeholder and continue to exist as a gap.
The declaration section can also contain instance paths, which refer to locally declared persis-
tent variables and were created with the command “Declarations è Add All Instance Paths”.

NOTICE!
Before you decide how to set up persistence for an application, it would
be helpful for you to be familiar with the use cases described in the “Data
Persistence” section. Moreover, it is helpful if you can differentiate between
the mechanisms of persistent variables, retain variables, variables of the Persis-
tence Manager, and recipe variables.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US872

The following commands are provided in the persistence editor:
● Command “Declarations è Add All Instance Paths”
● Command “Declarations è Reorder List and Clear Gaps”

See also
● TODO
● Ä Chapter 1.4.1.20.3.17.1 “Command 'Reorder List and Clean Gaps'” on page 1123
● Ä Chapter 1.4.1.8.19.1 “Preserving data with persistent variables” on page 304
● Ä Chapter 1.4.1.8.19.2 “Preserving data with retain variables” on page 306
● Ä Chapter 1.4.1.20.3.17.4 “Command 'Add all instance paths'” on page 1124

Object 'Image Pool'
The “Image Pool” object contains a table with image ID assignments.

“ID” ID of the image; you reference this ID, for example in the visualization of the
image.

“File name” File path of the image; if you click for more settings (), the “Select Image”
dialog box opens.

“Image” Show a thumbnail of the image.

“Link type” Opens the “Select Image” dialog box, where you define the link type.

“Image file” Name and directory of the image file (example: "C:\Pro-
gramme\images\logo.bmp") CODESYS supports the following image formats:
BMP, EMF, GIF, ICO, JPG, PNG, SVG, and TIFF. Please note that a controller
may not support all formats.
Whether or not you can use images formatted as scalable vector graphics (*.svg)
depends on the operating system. Any necessary information is located in the
device description of the hardware vendor.

Table 76: “File Handling”
“Remember the link” CODESYS saves only the link. CODESYS automatically updates any changes to

an image file in the image pool. You must ensure that the path of the image file
does not change.
When saving the project as an archive, CODESYS embeds the image file in the
project archive.

“Remember the link and
embed into project”

CODESYS copies the image to the image pool and the link information is
retained. In this way, CODESYS recognizes any changes to the image file and
then update the image pool can as needed. This behavior is controlled with the
options in the next table.
Embedded image files increase the memory requirement of the project.

“Embed into project” CODESYS copies the image to the image pool. If the image file is changed
again afterwards, then it is not updated in the project. For libraries, you must
embed the image in the project.
Embedded image files increase the memory requirement of the project.

Commands

Dialog box 'Se-
lect Image'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 873

Table 77: “Change Tracking”
These options are available only if you have selected the “Remember the link and embed into project” check box
as described above.

“Reload the file automatically” CODESYS automatically updates the image file in the project without prompting.

“Prompt whether to reload the
file”

If the image file has changed, you may be prompted whether or not the image
file should be updated.

“Do nothing” CODESYS does not update the image file in the image pool.

See also
● Ä Chapter 1.4.1.8.9 “Using image pools” on page 274

Object 'Library Manager'
Symbol:
The Library Manager lists all libraries that were integrated in the project for creating applica-
tions. It provides information about the type of library, its properties, and its contents.
You can expand or collapse the list of integrated libraries, as well as edit library properties for
non-dependent libraries.
The Library Manager consists of three views:
● Upper view: List of integrated libraries
● Lower left view: Tree structure with all modules of the library selected in the upper view
● Lower right view: Documentation for the module selected in the tree
See also
● Ä Chapter 1.4.1.16 “Using Libraries” on page 448

List of all libraries integrated in the project. If a library depends on other libraries, then these
referenced libraries are automatically integrated.

Displayed in gray fonts The library was added to the project automatically by means of a plug-in.

Displayed in black fonts The library was added to the project automatically by means of the “Add Library”
command.

“Name” Display of the integrated library in the following syntax:
“<placeholder name> = <library name>, <version> (<company>)”:
“<placeholder name>”: If it is a placeholder library for a library, then the place-
holder name is before a “ = ”.
“<library name>”: Name of the library that is used for management in the library
repository.
“<version>”: Version that was referenced at the first time it was integrated.
“ (<company>)”: Vendor (optional)

List of inte-
grated libraries

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US874

“Namespace” Namespace for unique access to the contents of the library.
It is prepended to a module identifier for this purpose:
<namespace>.<library module identifier>
The namespace usually coincides with the library name.
Note: If the library has the property LanguageModelAttribute
"qualified-access-only", then you must access the library module in
the application code by means of the namespace. Qualified (unique) access
is enforced.
You can modify the standard namespace for local use (within the project) in the
“Properties” dialog.

“ Effective version” Version of the library after the resolution. This version is used in the project.
Requirement: The Library Manager exists in the “Devices” view and a place-
holder library is selected.
Example: 3.5.10.0
A placeholder library that is integrated below an application is resolved by
assigning a special resolution to the placeholder library in the “Placeholders”
dialog. Then the selected library is loaded. Other resolutions are ignored. If no
special resolution is given, then a check is performed as to whether or not a res-
olution is specified in the device description and library profile of the application.
The first search hit is applied.

Symbol with tooltip to notify about the current device-dependent resolution of the
selected library.
Example when the Library Manager is in the “Devices” view: “This placeholder is
explicitly redirected to this version (see the Placeholders dialog)”

Example when the Library Manager is in the “POUs” view: “In the 'Device_1'
device, the placeholder is resolved to 'VisuElemsAlarms, 1.0.0.0 (System)”

A placeholder library that is integrated in the “POUs” view is resolved by
checking depending on the application whether or not a resolution is specified
in the device description. Afterwards, the library profile is checked. The first
detected resolution is used. If you have assigned a special resolution to the
placeholder library in the “Placeholders” dialog, then this will always be ignored.
The result is shown in the tooltip of the symbol.

Library that is signed with a trusted certificate (compatible with CODESYS >= V3
SP15)

Library that is signed with a trusted certificate, but references at least one
unsigned library

Library that is signed with a private key and token (compatible with CODESYS <
V3 SP15)

Library that is not signed, or signed with an untrusted or expired certificate. In
the case of an untrusted certificate, the “Trust Certificate” command is provided
in the context menu.

Library that is defined as optional and not currently available

Library whose status is being determined

Licensed library for which no valid license is currently available

Library symbol for a library that cannot be loaded because its signature (encryp-
tion) could not be verified

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 875

Table 78: Commands in the Library Manager
 “Add Library” Opens the dialog for selecting a library. All libraries installed in the library reposi-

tory are offered.

 “Delete Library” Removes the presently selected library from the project

 “Properties” Opens the dialog for the display and editing of the properties of the presently
selected library

 “Details” Opens a dialog with details for the presently selected library (general informa-
tion, contents, properties, license information)

 “Try to Reload Library” If you select a library marked as not found, you can attempt to load it into the
project again using this command.

 “Download Missing
Libraries”

CODESYS scans for the missing libraries in the download servers specified in
the project options.
After that you can download and install the library.

 “Placeholders” The “Placeholders” dialog opens. The current resolution is displayed there and
you can edit it.

 “Library Repository” Opens the “Library Repository” dialog for installing and uninstalling libraries and
for defining library locations

 “Icon legend” Opens the “Information” dialog with a legend of the icons that display the current
status of a library in the list of integrated libraries (see above)

 “Summary” Opens the “Library Summary” dialog. All libraries referenced in the project are
displayed in a tree structure in the dialog, and those libraries which reference
these libraries.
● Command “Display all occurrences in library hierarchy and close dialog”: In

the editor of the Library Manager, the libraries in the open tree structure
are marked which reference or use this library. Requirement: A library is
selected. The “Information” dialog is then closed.
This command is also executed when you double-click a library.

Display of the libraries
● “Managed Library”: Name and version of the library
● “Number of Occurrences”: Number of locations where this library is refer-

enced by other libraries.
When you click “+” for a library, the libraries, which reference this library, are
displayed in the next level down.

 “Trust Certificate” Only in the context menu of a library selected in the Library Manager, in which
the library has been signed with an untrusted certificate. The command turns the
untrusted certificate into a trusted certificate and the prepended icon changes
from to .

“Export Library” Only in the context menu of a library selected in the Library Manager: Opens the
default dialog for saving the library file in the file system

See also
● Ä Chapter 1.4.1.20.3.14.1 “Command 'Add Library'” on page 1116
● Ä Chapter 1.4.1.20.3.14.5 “Command 'Export Library'” on page 1120
● Ä Chapter 1.4.1.20.3.14.3 “Command 'Properties'” on page 1118
● Ä Chapter 1.4.1.20.3.8.5 “Command 'Library Repository'” on page 1061
● Ä Chapter 1.4.1.20.3.14.4 “Command 'Placeholders'” on page 1120
● Ä Chapter 1.4.1.20.4.13.15 “Dialog 'Options' – 'Library Download'” on page 1195
● Ä Chapter 1.4.1.20.2.21 “Object 'Project Information'” on page 919

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US876

All library modules that were integrated with the library are listed in the tree structure.
Requirement: A library is selected in the upper view.

The usual sorting and search functions are available in the menu bar.

Tab “Inputs/Outputs” Interface (inputs/outputs) of the library module

Tab “Graphical” Graphical display of the module

Tab “Documentation” Documentation for the library module.
Note: As a library developer, you have to follow the rules for documentation
inclusion in 'Guidelines for library development'.

Tab “Parameter List” Requirement: The library project contains a parameter list.
You can change the values of these parameters in the column “Value (editable)”.

See also
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449

Object 'OPC UA Information Model'
Symbol:
The “OPC UA Information Model” object is added to the “Communication Manager” in the
application. When added, an OPC UA publishing object and below that an information model
object as a child object are also added.
In the “Add OPC UA Information Model” dialog, specify a name for the information model and
select the OPC UA information model. The selection includes the OPC UA information models
which are installed in the “OPC UA Information Model Repository”.

Symbol:
The editor is used to select the object types and data types of the OPC UA information model
which you want to use in the open CODESYS project. The selected OPC UA types are con-
verted to IEC types in the editor.

Tree structure of
all modules of a
selected library

Documentation
for the library
module selected
in the lower left
view

OPC UA infor-
mation model
editor

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 877

“Browse Information Model ” List box
The currently used information model and the information models which are
referenced by the current model are displayed. The dependencies depend on
the respective information model. The OPC UA base model is always displayed.

“Generate IEC declarations ” Generates an IEC declaration for all OPC UA types converted into an IEC type.
The generated IEC types are saved in a folder (example: “OPC Objects”) in the
“Devices” view and can be used in the implementation of the IEC code. When
implementing the CODESYS project, you can select them in the “Input Assistant”
dialog.
When the IEC declarations are generated, the appropriate attrib-
utes are automatically added to the generated POUs (example:
'opcua.mapping.type','opcua.mapping.member.accesslevel').

Note: The attributes added by the system should not be changed by the user.

When the IEC type cannot be created, the entry UNKNOWN_TYPE is displayed
in the declaration instead of the data type. The user should delete this variable
because in this case it is almost always an OPC UA feature which is not sup-
ported yet. OPC UA features which are not supported yet are grayed out in the
left area.

“Data Model”

Left area: OPC UA data model

“Types” Display of the OPC UA data types and object types in a tree structure
When you drag an OPC UA type to the right area, CODESYS converts the OPC
UA type into the corresponding IEC type which can be used in the implementa-
tion of the CODESYS project. In this case, only the root node of an OPC UA type
can be dragged to the right area.
For a detailed description of the assignment of individual OPC UA types to the
corresponding IEC types in the mapping operation, see the chapters "Mapping of
OPC UA Types to IEC Types" and "Mapping of Reference Types".

“Element Type” OPC UA element type

“Reference Type” OPC UA reference types
Example: HasComponent, HasProperty
For a description of these reference types, see the chapter "Mapping of OPC UA
Types to IEC Types".

“Modelling Rule” ● “Mandatory”: For the corresponding OPC UA type, the respective members
are generated in the project when the “Generate IEC declarations” command
is executed. In the right area, the “Generate member” field is activated and
cannot be deactivated.

● “Optional”: Generating an IEC member for this OPC UA type is optional.
● “Optional placeholder”: in the right, you can drag another IEC type for this

placeholder. For an example as a screenshot, see the chapter "Using OPC
UA Companion Information Models".

Right area: Object types and data types of the OPC UA information model which are mapped to IEC types

“Name” Name of the IEC POU or data type in the project
By default, the name of the type is displayed in the OPC UA information
model. OPC UA also supports names which are invalid in IEC. In these cases,
CODESYS automatically generates a valid IEC name.
You can change the name.

“IEC Type” IEC type to which the OPC UA type was mapped (example: BOOL, “Method”).

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US878

“OPC UA Type” Corresponds to the “Element Type” displayed in the left area

“Generate member” ● : When the “Generate IEC declarations” command is executed, a corre-
sponding member or a placeholder is generated in the project. Only the
interfaces are automatically generated here. The implementation still has to
be manually created later in a POU.
When the “Modelling Rule” is “Mandatory” for the OPC UA type in the right
area, this option cannot be deactivated.

● : When the “Generate IEC declarations” command is executed, a corre-
sponding member is not generated in the project. Click this option to activate
it.

Symbol:
In the editor, the instances (OPC UA objects) of the OPC UA types are configured which should
be available to the OPC UA Clients via the controller

“Search for Mapped Instances” Searches in GVLs and PRGs below the current application for instances of the
mapped OPC UA types which have already been declared. The search result is
displayed in the list.
Note: Instances in the “POUs” view and in libraries are not taken into considera-
tion.

“Create New Instance” Opens the “Create New Instance” dialog to select the IEC type for which a new
instance should be generated.
Instances can be generated for the POUs which have been created in the OPC
UA information model editor from OPC UA types. These instances can be used
in POUs in the application.
Requirement: In the OPC UA information model editor, the “Generate IEC
declarations” command has been executed after mapping the OPC UA types
to the IEC types.

“Root Node” Selection of directories or the object instance of the server which is displayed
on the OPC UA Client for publishing the instances. The list box depends on the
applied OPC UA companion specification.

Tabular list of generated instances:

“OPC UA Variable” Variable which has been generated as an instance of an OPC UA type. This
variable can be published in an OPC UA Client.
You can edit the displayed name.

“OPC UA Type” OPC UA type of the “OPC UA Variable”

“Map or Generate” ● : The “OPC UA Variable” has been mapped to an existing variable.
● : The “OPC UA Variable” has been generated as a new instance.

“IEC Variable” Full variable name

“IEC Type” IEC type of the IEC variable

“Access Rights” Note that an OPC UA Client may have read/write access the OPC UA variable.
In the function blocks, the access rights to the variables can be changed by
attributes which can also be read from the XML file if necessary.
Reading and writing

“Maximal” Maximum possible permissions for the OPC UA variable

● Ä Chapter 1.4.1.20.3.8.12 “Command 'OPC UA Information Model Repository'”
on page 1069

OPC UA pub-
lishing editor

See also

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 879

Object 'Network Variable List (Sender)'
Symbol:
A network variable list (sender) is used for declaring and listing global variables that should be
sent to network variable lists (receiver) of other devices or network projects.
You add the object to the device tree by clicking “Add Object è Network Variable List (Sender)”
of an application.
You can configure the protocol and transfer parameters in the “Add Network Variable List
(Sender)” dialog box or “Properties” dialog box of the object in the “Network Variables” tab.

Function: This dialog box defines the network properties for the sender NVL. When you close
the dialog box, CODESYS adds the sender NVL of the application to the device tree.
Call: Main menu “Project è Add Object è Network Variable List (Sender)” while the application
is selected in the device tree.
This dialog box corresponds to the “Network Variables” tab in the “Properties” of the network
variable list object.
See also
● Ä Chapter 1.4.1.20.4.10.11 “Dialog 'Properties' - 'Network Variables'” on page 1163
● Ä Chapter 1.4.1.20.2.17 “Object 'Network Variable List (Receiver)'” on page 880
● Ä Chapter 1.4.1.9.3.1 “Configuring a Network Variable Exchange” on page 361

Object 'Network Variable List (Receiver)'
Symbol:
The object is used for listing the received network variables and displaying the information:
network and transmit information and sender.
You add the object to an application by clicking “Add Object è Network Variable List
(Receiver)”.
The network variable list (receiver) shows the received network variables, which were declared
in network variable list (sender) of another device or project. You cannot change the network
variables in the object editor.
The object editor consists of two parts:
● Information about the sender and transfer log of the list
● List of declarations of network variables

Function: This dialog box defines the receiver NVL to a sender NVL and adds the receiver NVL
to the application object in the device tree.
Call: Main menu “Project è Add Object è Network Variable List (Receiver)” (when the applica-
tion object is selected).

“Task” Task of the current application that controls the variables to be
received.

“Sender” Drop-down list
● Available sender NVLs of another device in the project
● “Import from file”: Required if the necessary sender NVL is

defined in another project. For this, the necessary sender NVL
must have been generated in another project as “GVL export file
*.gvl” in the properties dialog of the NVL in the “Link To File” tab.

“Import from file” File name in “GVL export file *.gvl” format if you have selected
“Import from file” for “Sender ”.

Dialog Box 'Add
Network Vari-
able List
(Sender)'

Dialog Box 'Add
Network Vari-
able List
(Receiver)'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US880

See also
● Ä Chapter 1.4.1.9.3.1 “Configuring a Network Variable Exchange” on page 361
● Ä Chapter 1.4.1.20.2.16 “Object 'Network Variable List (Sender)'” on page 880

Object 'POU'
Symbol:
An object of the type “POU” is a Program Organization Unit in a CODESYS project. You write
source code for your controller program in POUs.
There are the following types of POUs:
● Program
● Function
● Function block
A “POU” object is inserted by using the command “Project è Add Object” in the Device tree
or in the “POUs” view. When adding a POU you define the POU type and the implementation
language.
You can also add other programming objects (method, action, etc.) to these objects.
Calling POUs
Certain POUs can call other POUs. Recursions are not permitted.
When calling POUs via the namespace, CODESYS browses the project for the POU to be
called in accordance with the following order:
1. Current application
2. “Library Manager” of the current application
3. “POUs” view
4. “Library Manager” in the “POUs” view

If you want to call a POU that exists with the same name in a library used in the
application and as an object in the “POUs” view, note the following: There is no
syntax that allows you to call the POU in the “POUs” view only by its name. In
this case you must shift the library from the application's library manager to the
project's library manager (in the “POUs” view). After that you can call the POU
object in the “POUs” view purely by its name. If you add the namespace to the
library, you can call the POU of the library.

The term “POU” is also used in CODESYS for the “POUs” view in which
CODESYS manages the global objects in the project.

See also
● Ä Chapter 1.4.1.20.2.18 “Object 'POU'” on page 881
● Ä Chapter 1.4.1.20.4.10 “Dialog 'Properties'” on page 1157

Function: The dialog is used to configure a new POU according to the IEC 61131-3 standard.
This means that a POU can be a program, a function, or a function block.
Call: “Project è Add Object” menu; context menu in the “Devices” view when an application is
selected; context menu in the “POUs” view

Dialog 'Add
POU'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 881

“Name” Name of POU

Table 79: “Type”
“Program”

“Function Block” ● “Extends”: Specification or selection of a base function module in the
sense of object-oriented programming. Specified with the EXTENDS key-
word in the function block declaration

● “Implements”: Specification or selection of an interface in the sense of
object-oriented programming. Specified with the IMPLEMENTS keyword in
the function block declaration. When the POU is created, all methods are
created which are defined via the interface.

● “Final”: Derived access is not allowed. This means that you cannot extend
the function block with another function block. This allows for optimized code
generation.

● “Abstract”: Identifies that the function block has a missing or incomplete
implementation and cannot be instantiated. Abstract FBs are used exclu-
sively as base function blocks and the implementation typically occurs in
a derived FB. If a non-abstract function block is created, which in turn
extends an abstract function block, then all abstract methods of the abstract
basic function block are added to the new function block as (non-abstract)
methods.

● “Access specifier”
– “PUBLIC”: Corresponds to the specification of no access specifier.
– “INTERNAL”: Access to the function block is restricted to the namespace

(library).
● “Method implementation language”: When you select the “Implements”

option, you can select an implementation language here for all method
objects that CODESYS generates by means of the implementation of the
interface.
The “Method implementation language” does not depend on the implementa-
tion language of the function block.

“Function” Note: Not available when “Sequential Function Chart (SFC)” is selected as the
“Implementation language”.
“Return type:”: Data type of the return value

“Implementation language” Implementation language of the POU

See also
● Ä Chapter 1.4.1.20.2.18.2 “Object 'Function Block'” on page 883
● Ä Chapter 1.4.1.20.2.18.1 “Object 'Program'” on page 882
● Ä Chapter 1.4.1.20.2.18.3 “Object 'Function'” on page 886
● Ä Chapter 1.4.1.8.22.1 “Extension of function blocks” on page 310
● Ä Chapter 1.4.1.8.22.2 “Implementing interfaces” on page 312

Object 'Program'
A program is a POU that supplies one or more values during execution. After execution of the
program, all values are retained until the next execution. The order of calling the programs
within an application is defined in task objects.
A program is added to the application or the project using the command “Project è Add Object
è POU”. In the Device tree and in the “POUs” view the program POUs have the suffix “(PRG)”.
The editor of a program consists of the declaration part and the implementation part.
The uppermost line of the declaration part contains the following declaration:
PROGRAM <program>

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US882

Programs and function blocks can call a program. A program call is not permitted in a function.
There are no instances of programs.
If a POU calls a program and values of the program change as a result, these changes are
retained until the next program call. The values of the program are also retained even if the
repeat call takes place by another POU. This differs from the call of a function block. When
calling a function block only the values of the respective instance of the function block change.
The changes only need to be observed if a POU calls the same instance again.
You can also set the input or output parameters for a program directly when calling.
Syntax: <program>(<input variable> := <value>, <output value> =>
<value>):
If you insert a program call via the input assistant and the “Insert with arguments” option in the
input assistant is activated at the same time, CODESYS adds input and/or output parameters to
the program call in accordance with the syntax.

Calls:
IL:

With assignment of the parameters:

ST:
 PLC_PRG()
 erg := PLC_PRG.out2;

With assignment of the parameters:
PLC_PRG(in1:=2, out1=>erg);

Examples

See also
● Ä Chapter 1.4.1.20.2.18 “Object 'POU'” on page 881
● Ä Chapter 1.4.1.8.16 “Task Configuration” on page 292

Object 'Function Block'
A function block is a POU that yields one or more values when executed.
The object is added to the application or the project by clicking “Project è Add Object è POU”.
In the device tree or in the “POUs” view, function block POUs have the “(FB)” suffix.
It always calls a function block by means of an instance that is a copy of the function block.

Calling a pro-
gram

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 883

The editor of a function block consists of the declaration part and the implementation part.
The values of the output variables and the internal variables remain unchanged after execution
until the next execution. This means that the function block does not necessarily return the
same output values for multiple calls with the same input variables.
In addition to the functionality described in IEC 61131-3, you can also use function blocks in
CODESYS for the following functionalities of object-oriented programming:
● Extension of a function block
● Implementation of interfaces
● Methods
● Properties
The top line of the declaration part contains the following declaration:
FUNCTION_BLOCK <access specifier> <function block> | EXTENDS <function
block> | IMPLEMENTS <comma-separated list of interfaces>

The call is always made by means of an instance of the function block. When a function block is
called, only the values of the respective instance change.
Declaration of the instance:
<instance> : <function block>;
You access a variable of the function block in the implementation part as follows:
<instance> . <variable>

NOTICE!
Note the following:
– You can access only input and output variables of a function block from

outside the function block instance, not the internal variables.
– Access to a function block instance is restricted to the POU in which the

instance is declared, unless you have declared the instance globally.
– You can assign the desired values to the function block variables when you

call the instance.

Calling a func-
tion block

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US884

Access to function block variables:
The function block FB1 has the input variable iVar1 of type INT and the output variable
out1. In the following, the variable iVar1 is called from the program Prog.

PROGRAM Prog
VAR
inst1:FB1;
END_VAR

inst1.iVar1 := 33; (* FB1 is called and the value 33 is assigned
to the variable iVar1 *)

inst1(); (* FB1 is called, that's necessary for the
following access to the output variable *)

ires := inst1.out1 (* the output variable out1 of the FB1 is read
*)

In FBD:

Example

Assigning variable values when calling:
In the textual languages IL and ST, you can assign values directly to input and/or output
variables when you call the function block.
A value is assigned to an input variable with := .

A value is assigned to an output variable with => .

The instance CMD_TMR of the timer function block is called with assignments for the input
variables IN and PT. Then the output variable Q of the timer is assigned to the variable A.

PROGRAM PLC_PRG
VAR
 CMD_TMR : TOF;
END_VAR

CMD_TMR(IN := %IX5.1, PT := T#100MS);
A := CMD_TMR.Q;

Example

When you insert a function block instance by means of the “Input Assistant”
and select the “Insert with arguments” option in the “Input Assistant” dialog,
CODESYS inserts the call with all input and output variables. Then you only
have to insert the desired value assignment. In the example above, CODESYS
inserts the call as follows: CMD_TMR (IN:= ,PT:= , Q=>).

You can use the attribute 'is_connected' and a local variable to determine
at the time of the call in the function block instance whether or not a specific
input receives an external assignment.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 885

See also
● Ä Chapter 1.4.1.20.2.18 “Object 'POU'” on page 881
● Ä Chapter 1.4.1.8.22.1 “Extension of function blocks” on page 310
● Ä Chapter 1.4.1.8.22.2 “Implementing interfaces” on page 312
● Ä Chapter 1.4.1.20.2.18.5 “Object 'Method'” on page 889
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897
● Ä Chapter 1.4.1.19.6.2.23 “Attribute 'is_connected'” on page 707

Object 'Function'
A function is a POU that supplies precisely one data element when executed and whose call in
textual languages can occur as an operator in expressions. The data element can also be an
array or a structure.
The object is added to the application or the project by clicking “Project è Add Object è POU”.
In the device tree or in the “POUs” view, function POUs have the “(FUN)” suffix.

NOTICE!
Functions have no internal status information, which means that functions do
not save the values of their variables until the next call. Calls of a function with
the same input variable values always supply the same output value. Therefore,
functions must not use global variables and addresses!

The editor of a function consists of the declaration part and the implementation part.
The top line of the declaration part contains the following declaration:
FUNCTION <function> : <data type>
Below that, you declare the input and function variables.
The output variable of a function is the function name.

NOTICE!
If you declare a local variable in a function as RETAIN, this has no effect. In this
case, CODESYS issues a compiler error.

NOTICE!
You cannot mix explicit and implicit parameter assignments in function calls in
CODESYS V3. This means that you have to use either only explicit or only
implicit parameter assignments in function calls. The order of the parameter
assignments when calling a function is arbitrary.

In ST, you can use the call of a function as an operand in expressions.
In SFC, you can use a function call only within step actions or transitions.

Calling a func-
tion

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US886

Function with declaration part and a line implementation code

Function calls:
ST:
result := POU_Funct(5,3,22);

AWL:

FBD:

Examples

According to the IEC 61131-3 standard, functions can have additional outputs. You declare
the additional outputs in the function between the keywords VAR_OUTPUT and END_VAR. The
function is called according to the following syntax:
<function> (<function output variable1> => <output variable 1>,
<function output variable n> => <output variable n>)

The fun function is defined with two input variables in1 and in2. The output variable of the
fun function is written to the locally declared output variables loc1 and loc2.
fun(in1 := 1, in2 := 2, out1 => loc1, out2 => loc2);

Example

Functions with
additional out-
puts

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 887

See also
● Ä Chapter 1.4.1.20.2.18 “Object 'POU'” on page 881

Object 'Interface'
Symbol:
Keyword: INTERFACE
An interface is a means of object-oriented programming. The object ITF describes a set of
method and property prototypes. In this context, prototype means that the methods and proper-
ties contain only declarations and no implementation.
This allows different function blocks having common properties to be used in the same way. An
object “ITF” is added to the application or the project with the command “Project è Add Object
è Interface”.

Table 80: “Adding an interface”
“Inheritance”

“Name” Interface name

“Extends” : Extends the interface that you enter in the input field or via the input assistant
. This means that all methods of the interface that extend the new interface

are also available in the new interface.

You can add the objects “Interface property” and “Interface Method” to the object “ITF”. Interface
methods may contain only the declarations of input, output and input/output variables, but no
implementation.
So that you can also use an interface in the program, there must be a function block that
implements this interface.
This means:
● the function block contains the interface in its IMPLEMENTS list in its declaration part
● the function block contains an implementation for all methods and property prototypes of the

interface
A function block can implement one or more interfaces. You can use the same method with
identical parameters, but different implementation code in different function blocks.
Please note the following:
● You may not define variables within an interface. An interface has no implementation part

and no actions. Only a collection of methods is defined, in which you may define only input,
output and input/output variables.

● CODESYS always treats variables declared with the type of an interface as references.
● A function block that implements an interface must contain implementation code for the

methods of the interface. You have named the methods exactly as in the interface and the
methods contain the same input, output and input/output variables as in the interface.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US888

NOTICE!
Interface references and online change
The following can happen with a compiler version < 3.4.1.0: if a function block
changes its data because variables are added or deleted, or because the type
of variables changes, then CODESYS copies all instances of the function block
to a new memory location. In this case, however, an interface reference refers
not to the new memory location, but still to the old one.
In case of compiler versions >= 3.4.1.0, CODESYS automatically re-addresses
the interface references so that CODESYS also references the correct interface
in case of an online change. CODESYS requires additional code and more
time for this, so that jitter problems can occur depending on the number of
objects concerned. Therefore, CODESYS displays the number of variables and
interface references concerned before the execution of the online change and
you can then decide whether the online change should be executed or aborted.

Definition of an interface and its use in a function block
You have inserted the interface “ITF” below the application. The interface contains the
methods “Method1” and “Method2”. “ITF”, “Method1” and “Method2” contain no implementa-
tion code. You insert the required variable declarations only in the declaration part of the
methods.
If you subsequently insert a function block in the device tree that implements the interface
“ITF”, CODESYS automatically also inserts the methods “Method1” and “Method2” under the
function block. Here you can implement function-block-specific code in the methods.

Example

● Ä Chapter 1.4.1.8.22.2 “Implementing interfaces” on page 312
● Ä Chapter 1.4.1.8.22.3 “Extending interfaces” on page 314

Object 'Method'
Symbol:
Keyword: METHOD

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 889

Methods are an extension of the IEC 61131-3 standard and a tool for object-oriented program-
ming which is used for data encapsulation. A method contains a declaration and an implemen-
tation. However, unlike a function, a method is not an independent POU, and it is subordinated
to a function block or program. A method can access all valid variables of the superordinate
POU.
You can use interfaces for the organization of methods.
You can add a method below a program or a function block. Click “Project è Add Object
è Method” to open the “Add Method” dialog.

● The variables of a method contain temporary data that are valid only during the execution of
the method (stack variables). All variables that are declared and implemented in a method
are reinitialized each time the method is called.

● Like functions, methods can have additional outputs. You have to assign these additional
outputs in the method call.

● Depending on the declared access specifier, a method can be called only within its own
namespace (INTERNAL), only within its own POU and its derivatives (PROTECTED), or only
within its own POU (PRIVATE). For PUBLIC, the method can be called from anywhere.

Interface methods can have declared input, output, and VAR_IN_OUT variables, but do not
contain an implementation.
See also
● Ä Chapter 1.4.1.20.2.18.6 “Object 'Interface Method'” on page 894

● Access to function block instances or program variables is allowed in the implementation of
the method.

● The THIS pointer allows for access to its own function block instance. Therefore, the pointer
is allowed only in methods that are assigned to a function block.

● A method cannot access VAR_TEMP variables of the function block.
● A method can call itself recursively.

NOTICE!
When you copy a method below a POU and add it below an interface, or move
the method there, the contained implementation is removed automatically.

<return value variable> := <POU name> . <method name> (<method input
name> := <variable name> (, <further method input name> := <variable
name>)*);
For the method call, you assign transfer parameters to the input variables of the method.
Respect the declaration when doing this. It is enough to specify the names of the input variables
without paying attention to their order in the declaration.

Declaration

Implementation

Calling a
method
Syntax for calls:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US890

METHOD PUBLIC DoIt : BOOL
VAR_INPUT
 iInput_1 : DWORD;
 iInput_2 : DWORD;
 sInput_3 : STRING(12);
END_VAR

bFinishedMethod := fbInstance.DoIt(sInput_3 := 'Hello World ',
iInput_2 := 16#FFFF, iInput_1 := 16);

When the method is called, the return value of the method is assigned, for example, to
variables declared locally. When you omit the names of the input variables, you have to pay
attention to the declaration order.

Example
Declaration

Call

METHOD PUBLIC DoIt : BOOL
VAR_INPUT
 iInput_1 : DWORD;
 iInput_2 : DWORD;
 sInput_3 : STRING(12);
END_VAR

bFinishedMethod := fbInstance.DoIt(16, 16#FFFF,'Hello World ');

Example
Declaration

Call

Within the implementation, a method can call itself, either directly by means of the THIS pointer,
or by means of a local variable for the assigned function block.
● THIS^. <method name> (<parameter transfer of all input and output

variables>)
Direct call of the relevant function block instance with the THIS pointer

● VAR fb_Temp : <function block name>; END_VAR
Call by means of a local variable of the method that temporarily instantiates the relevant
function block

A compiler warning is issued for a recursive call. If the method
is provided with the pragma {attribute 'estimated-stack-usage' :=
'<sstimated_stack_size_in_bytes>'}, then the compiler warning is suppressed. For
an implementation example, see the "Attribute 'estimated-stack-usage'" chapter.
To call methods recursively, it is not enough to specify only the method name. If only the method
name is specified, then a compiler error is issued: “Program name, function or function block
instance expected instead of”

See also
● Ä Chapter 1.4.1.8.22.4 “Calling methods” on page 314
● Ä Chapter 1.4.1.19.6.2.13 “Attribute 'estimated-stack-usage'” on page 695
● Ä Chapter 1.4.1.19.2.15 “THIS” on page 539

Recursive
method call

Special
methods of a
function block

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 891

FB_Init Declarations automatically implicit, but explicit declaration also possible
Contains initialization code for the function block, as is defined in the declaration
part of the function block

FB_Reinit Explicit declaration is necessary.
Call after the instance of the function block was copied (as during an online
change). It reinitializes the new instance module.

FB_Exit Explicit declaration is necessary.
Call for each instance of the function block before a new download or a reset or
during an online change for all shifted or deleted instances.

Properties Provides Set and/or Get accessor methods.

See also
● Ä Chapter 1.4.1.19.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 748
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897
● Ä Chapter 1.4.1.20.2.18.7 “Object 'Interface Property'” on page 894

Function: Defines a method below the selected POU when the dialog is closed.
Call: Menu bar: “Project è Add Object è Method”; context menu
Requirement: A program (PRG) or a function block (FUNCTION_BLOCK) is selected in the
“POUs” view or the “Devices” view.
The interface of a method inserted below a basic function block is copied when a method with
the same name is inserted below a derived function block.

“Name” Example: meth_DoIt.

The standard methods FB_Init and FB_Exit are offered in a list box if they
are not already inserted below the POU. If it is a derived function block, then the
list box also offers all of the methods of the basic function block.

“Return type” Default data type or structured data type of return value
Example: BOOL

“Implementation language” Example: “Structured Text (ST)”

“Access specifier” Controls access to data.
● “PUBLIC” or not specified: Access is not restricted.
● “PRIVATE”: Access is restricted to the program, function block, or GVL.

The object is marked as (private) in the POU or device view. The decla-
ration contains the keyword PRIVATE.

● “PROTECTED”: Access is restricted to the program, function block, or GVL
with its derivations. The declaration contains the keyword PROTECTED.
The object is marked as (protected) in the POU or device view.

● “INTERNAL”: Access to the method is restricted to the namespace (library).
The object is marked as (internal) in the POU or device view. The
declaration contains the keyword INTERNAL.

“Abstract” : Identifies that the method does not have an implementation and the imple-
mentation is provided by the derived FB

“Add” Adds a new method below the selected object.

Dialog 'Add
Method'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US892

When you doing object-oriented programming and using the inheritance (keyword EXTENDS) of
POUs, you can get support as follows:
When you insert an action, a property, a method, or a transition below a POU derived from
a base POU, the “Add …” dialog opens. Then the input field for the name extends to a list
box. The list box contains a valid selection from the actions, properties, methods, or transitions
available in the base POU. Now you can, for example, easily accept a method of the base POU
and then adapt it to the derived function of the POU.
Methods and properties with the access modifier PRIVATE are not listed here because they are
also not inherited. Methods and properties with the access modifier PUBLIC automatically get a
blank access modifier field when accepting into the derived POU, which means the same thing
functionally.

Example

See also
● Ä Chapter 1.4.1.8.22.1 “Extension of function blocks” on page 310
● Ä Chapter 1.4.1.8.22 “Object-Oriented Programming” on page 310
● Ä Chapter 1.4.1.20.2.18.9 “Object 'Action'” on page 901
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897
● Ä Chapter 1.4.1.20.2.18.5 “Object 'Method'” on page 889
● Ä Chapter 1.4.1.20.2.18.10 “Object 'Transition'” on page 903

See also
● Ä Chapter 1.4.1.8.22.2 “Implementing interfaces” on page 312
● Ä Chapter 1.4.1.19.1.3.2 “ST editor in online mode” on page 463

Input support
when gener-
ating inheriting
POUs

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 893

● Ä Chapter 1.4.1.12.1.2 “Using watch lists” on page 416
● Ä Chapter 1.4.1.19.2.9 “Instance variables - VAR_INST” on page 533

Object 'Interface Method'
Symbol:
This object is used for object-oriented programming.
The object “Interface Method” is added to an interface via the command “Project è Add
Object”.
If a method is inserted underneath an interface, you can add and instance only variable declara-
tions (input, output and input/output variables) in this method.
You can only add program code to the method if a function block 'implements' the interface to
which the method belongs. CODESYS then inserts the method underneath the function block.
See also
● Ä Chapter 1.4.1.20.2.18.4 “Object 'Interface'” on page 888
● Ä Chapter 1.4.1.20.2.18.5 “Object 'Method'” on page 889
● Ä Chapter 1.4.1.8.22.2 “Implementing interfaces” on page 312

Object 'Interface Property'
Symbol:
Interface properties are an extension of the IEC 61131-3 standard and a tool for object-oriented
programming. An interface property declares the accessor methods Get and Set (no imple-
mentation code). Therefore, a function block that implements an interface also inherits their
interface properties.
You can add an interface property to the device tree for an interface. Then an interface is
extended with the accessor methods Get and Set. The Get accessor is for read access. The
Set accessor is for write access. You can delete an unneeded accessor. Click “Project è Add
Object è Interface Property” to add an accessor. The “Add Interface Property” dialog opens.
See also
● Ä Chapter 1.4.1.20.2.18.4 “Object 'Interface'” on page 888
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US894

This interface itf_A has the property Literal_A with the accessor methods Get and Set.

The function blocks fb_A1 and fb_A2 implement the interface itf_A and therefore inherit its
interface property. Each FB has its own implementation.

INTERFACE itf_A
VAR
END_VAR
PROPERTY Literal_A : STRING

FUNCTION_BLOCK fb_A1 IMPLEMENTS itf_A
VAR
 str_1 : STRING;
 str_2 : STRING;
 iCnt : INT;
END_VAR
iCnt := iCnt + 1;

str_1 := 'Function block A1';

Declaration
and implemen-
tation of the
interface prop-
erty
Literal_A

Interface
itf_A

FB fb_A1

Example

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 895

VAR
END_VAR
Literal_A := CONCAT (str_1,' and property.');

VAR
END_VAR
str_2 := Literal_A;

FUNCTION_BLOCK fb_A2 IMPLEMENTS itf_A
VAR
 str_1 : STRING;
 str_2 : STRING;
 iCnt : INT;
END_VAR

iCnt := iCnt + 1;
str_1 := 'Function block A2';

VAR
END_VAR
Literal_A := str_1;

VAR
END_VAR
str_2 := Literal_A;

PROGRAM PLC_PRG
VAR
 iCnt : INT;
 my_1 : fb_A1;
 my_2 : fb_A2;
 strName_1 : STRING;
 strName_2: STRING;
END_VAR

iCnt := iCnt + 1;
my_1();
my_2();
strName_1:= my_1.Literal_A;
strName_2:= my_2.Literal_A;
my_1.Literal_A := 'Hello 1';
my_2.Literal_A := 'World 2';

This leads to the following monitoring of PLC_PRG when the application is in runtime mode:

Accessor
fb_A1.Litera
l_A.Get

Accessor
fb_A1.Litera
l_A.Set

FB fb_A2

Accessor
fb_A2.Litera
l_A.Get

Accessor
fb_A2.Litera
l_A.Set

Program
PLC_PRG

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US896

Object 'Property'
Symbol:
Keyword: PROPERTY
Properties are an extension of the IEC 61131-3 standard and a tool for object-oriented program-
ming.
Properties are used for data encapsulation because they allow for external access to data and
act as filters at the same time. For this purpose, a property provides the accessor methods Get
and Set which allows for read and write access to the data of the instance below the property.

You can add a property with accessor methods below a program, a function block, or a global
variable list. Click “Project è Add Object è Property” to open the “Add Property” dialog.

You can add an interface property below an interface.

When you copy a property that is inserted below a POU and add it below an
interface, or if you move the property there, the included implementations are
removed automatically.

See also
● Ä Chapter 1.4.1.20.2.18.7 “Object 'Interface Property'” on page 894

Function: Creates a new property below the selected POU when the dialog is closed.
Call: Menu bar: “Project è Add Object è Property”; context menu
Requirement: A program (PRG), a function block (FUNCTION_BLOCK), or a global variable list
(GVL) is selected in the “POUs” view or the “Devices” view.

“Name” Name (identifier) of the property
Example: prop_iA

“Return type” Default type or structured type of return value
Example: INT

“Implementation language” Example: “Structured Text (ST)”

Dialog 'Add
Property'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 897

“Access specifier” Controls access to data

“PUBLIC” or unspecified Access is not restricted.

“PRIVATE” Access is restricted to the program, function block, or GVL.
The object is marked as (private) in the POU or device view. The declaration
contains the keyword PRIVATE.

“PROTECTED” Access is restricted to the program, function block, or GVL with its derivations.
The object is marked as (protected) in the POU or device view. The declara-
tion contains the keyword PROTECTED.

“INTERNAL” Access is restricted to the namespace (library).
The object is marked as (internal) in the POU or device view. The declara-
tion contains the keyword INTERNAL.

“Abstract” : Identifies that the property does not have an implementation and the imple-
mentation is provided by the derived FB

“Add” Adds a new property be low the selected object and below that the accessor
methods Get and Set
Note: When you select a property, you can also add a previously removed
accessor explicitly by clicking “Add Object”.

You can program the data access in the editor. The code can contain additional local variables.
However, it must not contain any additional input variables or (as opposed to a function or
method) output variables.

Editor 'Property'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US898

FUNCTION_BLOCK FB_A
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iA : INT;
END_VAR

iA := iA + 1;

PROPERTY PUBLIC prop_iA : INT

prop_iA := iA;

iA := prop_iA;

PROGRAM PLC_PRG
VAR
 fbA : FB_A;
 iVar: INT;
END_VAR

fbA();
IF fbA.prop_iA > 500 THEN
 fbA.prop_iA := 0;
END_IF
iVar := fbA.prop_iA;

Example

Function block
FB_A

Property
prop_iA
Accessor
method
FB_A.prop_iA.
Get
Accessor
method
FB_A.prop_iA.
Set

The call of the Set accessor is written to the property. Then it is used in the same way as an
input parameter. When the Get accessor is called, the property is read. It is used in the same
way as an output parameter. Access is restricted in each case by means of access modifiers
(qualifiers). As a result, the objects are identified accordingly.
When a property is accessed as read only or write only, you can delete the unneeded acces-
sors.
You can add accessors explicitly by selecting a property and clicking “Add Object”. A dialog
opens, either “Add Get accessor” or “Add Set accessor”. There you can set the implementation
language and the access.

Table 81: Dialog “Add Get (Set) Accessor”
“Implementation language” Example: “Structured Text (ST)”

Get and Set
accessors

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 899

“Access specifier” Qualifier for the declaration part

PUBLIC or unspecified Access is not restricted.

PRIVATE Access is restricted to the program, function block, or GVL.
The object is marked as (private) in the POU or device view. The declaration
contains the keyword.

PROTECTED Access to the property is restricted to the program, function block, or GVL and its
derivations. The declaration contains the keyword.
The object is marked as (protected) in the POU or device view.

INTERNAL Access to the method is restricted to the namespace (the library).
The object is marked as (internal) in the POU or device view. The declara-
tion contains the keyword.

“Add” Adds the accessor methods Get or Set below the selected property.

The following pragmas are provided for the monitoring of properties in online mode. You insert
them at the top position of the property definition:
● {attribute 'monitoring' := 'variable'}

Each time the property is accessed, CODESYS saves the actual value to a variable and
displays the value of this variable. This value can become outdated if no more access to the
property takes place in the code.

● {attribute 'monitoring' := 'call'}
Each time the value is displayed, CODESYS calls the code of the Get accessor. If this
code contains a side effect, then the monitoring executes the side effect.

You can monitor a property with the help of the following functions.
● Inline monitoring

Requirement: The “Enable inline monitoring” option is selected in the “Text Editor” category
of the “Options” dialog.

● Watch List
See also
● Ä Chapter 1.4.1.8.22.4 “Calling methods” on page 314
● Ä Chapter 1.4.1.19.6.2.25 “Attribute 'monitoring'” on page 709

When you doing object-oriented programming and using the inheritance (keyword EXTENDS) of
POUs, you can get support as follows:
When you insert an action, a property, a method, or a transition below a POU derived from
a base POU, the “Add …” dialog opens. Then the input field for the name extends to a list
box. The list box contains a valid selection from the actions, properties, methods, or transitions
available in the base POU. Now you can, for example, easily accept a method of the base POU
and then adapt it to the derived function of the POU.
Methods and properties with the access modifier PRIVATE are not listed here because they are
also not inherited. Methods and properties with the access modifier PUBLIC automatically get a
blank access modifier field when accepting into the derived POU, which means the same thing
functionally.

Monitoring of
properties in
online mode

Input support
when gener-
ating inheriting
POUs

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US900

Example

See also
● Ä Chapter 1.4.1.8.22.1 “Extension of function blocks” on page 310
● Ä Chapter 1.4.1.8.22 “Object-Oriented Programming” on page 310
● Ä Chapter 1.4.1.20.2.18.9 “Object 'Action'” on page 901
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897
● Ä Chapter 1.4.1.20.2.18.5 “Object 'Method'” on page 889
● Ä Chapter 1.4.1.20.2.18.10 “Object 'Transition'” on page 903

Object 'Action'
Symbol:
Implement more program code in an action. You can implement this program code as the base
implementation in another language. The base implementation is a function block or a program
where you inserted the action.
An action does not have its own declaration and it works with the data from the base implemen-
tation. This means that the action uses the input and output variables and the local variables
from its base implementation.
Add an “Action” to a function block or program by clicking “Project è Add Object è Action”.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 901

Table 82: “Add Action”
“Name” Name of the action

“Implementation language” List box of implementation language

When you doing object-oriented programming and using the inheritance (keyword EXTENDS) of
POUs, you can get support as follows:
When you insert an action, a property, a method, or a transition below a POU derived from
a base POU, the “Add …” dialog opens. Then the input field for the name extends to a list
box. The list box contains a valid selection from the actions, properties, methods, or transitions
available in the base POU. Now you can, for example, easily accept a method of the base POU
and then adapt it to the derived function of the POU.
Methods and properties with the access modifier PRIVATE are not listed here because they are
also not inherited. Methods and properties with the access modifier PUBLIC automatically get a
blank access modifier field when accepting into the derived POU, which means the same thing
functionally.

Example

See also
● Ä Chapter 1.4.1.8.22.1 “Extension of function blocks” on page 310
● Ä Chapter 1.4.1.8.22 “Object-Oriented Programming” on page 310
● Ä Chapter 1.4.1.20.2.18.9 “Object 'Action'” on page 901
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897
● Ä Chapter 1.4.1.20.2.18.5 “Object 'Method'” on page 889
● Ä Chapter 1.4.1.20.2.18.10 “Object 'Transition'” on page 903

Input support
when gener-
ating inheriting
POUs

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US902

Syntax:
<program>.<action> or <FB instance>.<action>
To call an action from only within the base implementation, you only have to provide the action
name.

Calling a “Reset” action from another POU The call is not executed from the base implementa-
tion.
Declaration:
PROGRAM PLC_PRG
VAR
 Inst : Counter;
END_VAR

Calling a “Reset” action from an IL POU
CAL Inst.Reset(In := FALSE)
LD Inst.Out
ST ERG

Calling a “Reset” action from an ST POU
Inst.Reset(In := FALSE);
Erg := Inst.out;

Calling a “Reset” action from an FBD POU

Examples

Actions are used frequently in the SFC implementation language.

See also
● Ä Chapter 1.4.1.19.1.4.8.2 “SFC Element 'Action'” on page 488

Object 'Transition'
Symbol:
The object can be used as a transition element in a program block implemented in SFC.
See also
● Ä Chapter 1.4.1.19.1.4.8.1 “SFC elements 'Step' and 'Transition'” on page 486

When you doing object-oriented programming and using the inheritance (keyword EXTENDS) of
POUs, you can get support as follows:
When you insert an action, a property, a method, or a transition below a POU derived from
a base POU, the “Add …” dialog opens. Then the input field for the name extends to a list
box. The list box contains a valid selection from the actions, properties, methods, or transitions
available in the base POU. Now you can, for example, easily accept a method of the base POU
and then adapt it to the derived function of the POU.

Calling an
action

Input support
when gener-
ating inheriting
POUs

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 903

Methods and properties with the access modifier PRIVATE are not listed here because they are
also not inherited. Methods and properties with the access modifier PUBLIC automatically get a
blank access modifier field when accepting into the derived POU, which means the same thing
functionally.

Example

See also
● Ä Chapter 1.4.1.8.22.1 “Extension of function blocks” on page 310
● Ä Chapter 1.4.1.8.22 “Object-Oriented Programming” on page 310
● Ä Chapter 1.4.1.20.2.18.9 “Object 'Action'” on page 901
● Ä Chapter 1.4.1.20.2.18.8 “Object 'Property'” on page 897
● Ä Chapter 1.4.1.20.2.18.5 “Object 'Method'” on page 889
● Ä Chapter 1.4.1.20.2.18.10 “Object 'Transition'” on page 903

Object 'POUs for Implicit Checks'
You can add these special POUs to an application to equip them with implicit monitoring
functions. At runtime, these functions check the limits of arrays or subrange types, the validity
of pointer addresses, and division by zero. Please note: This option can be disabled for devices
that are already equipped with these kinds of monitoring blocks by a special implicit library.
The command “Add Object è POU for Implicit Checks” is used for adding to the application.
The command opens the “Add POU for Implicit Checks” dialog where you can select a moni-
toring function type (see table below). Depending on the monitoring function, you have to adapt
the implementation code or create it yourself from scratch.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US904

To prevent multiple inclusions, monitoring functions that have already been inserted are disa-
bled in the “Add POU for Implicit Checks” dialog.

NOTICE!
To get the feature for monitoring functions, do not edit their declaration part.
However, you are permitted to add local variables.
After removing an implicit monitoring function (example: Check Bounds) from
the project, only a download is possible, not an online change. A corresponding
message is issued.

By default, CODESYS does not run implicit checks for function blocks from
libraries used in the application. However, you can extend the check to the
libraries by opening the “Properties” dialog of the application and specifying
the compiler definition checks_in_libs in the “Compiler-Defines” field in the
“Build” tab. This definition affects implementation libraries (*.library) only,
not protected libraries (*.compiled-library).

You can use the "no_check" attribute to deactivate the check for special POUs
in the project.

Table 83: “Available Functions”
Monitoring function Type
“Check Bounds” “Bound Checks”

Appropriate handling of bound violations; such handling includes setting flags or
changing field indices.

“CheckDivDInt” “Division checks”:
Monitors the divisor value to avoid division by zero.“CheckDivLInt”

“CheckDivReal”

“CheckDivLReal”

“CheckRangeSigned” “Range checks”:
Monitors the range limit of a subrange type in runtime mode. Valid for data types
DINT/UDINT.

“CheckRangeUnsigned”

“CheckLRangeSigned” “L-range checks”:
Monitors the range limit of a subrange type in runtime mode. Valid for data types
LINT/ULINT.

“CheckLRangeUnsigned”

“CheckPointer” “Pointer checks”

You are responsible for filling in this function completely with implementation
code. Refer to the help page for "POU 'CheckPointer'". The function should
monitor whether the passed pointer reference a valid memory address, and
whether the orientation of the referenced memory area matches the variable
type to which the pointer refers. If both conditions are fulfilled, then the pointer is
returned. If not, then CheckPointer should complete an appropriate error han-
dling. CheckPointer monitors the same way as variables of type REFERENCE
TO.

See also
● Ä Chapter 1.4.1.8.21 “Using POUs for implicit checks” on page 309
● Ä Chapter 1.4.1.20.2.19.1 “POU 'CheckBounds'” on page 906
● Ä Chapter 1.4.1.20.2.19.2 “POU 'CheckDivInt'” on page 909
● Ä Chapter 1.4.1.20.2.19.3 “POU 'CheckDivLInt'” on page 909

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 905

● Ä Chapter 1.4.1.20.2.19.5 “POU 'CheckDivLReal'” on page 911
● Ä Chapter 1.4.1.20.2.19.4 “POU 'CheckDivReal'” on page 910
● Ä Chapter 1.4.1.20.2.19.10 “POU 'CheckPointer'” on page 917
● Ä Chapter 1.4.1.20.2.19.6 “POU 'CheckRangeSigned'” on page 912
● Ä Chapter 1.4.1.20.2.19.8 “POU 'CheckRangeUnsigned'” on page 915
● Ä Chapter 1.4.1.20.2.19.7 “POU 'CheckLRangeSigned'” on page 914
● Ä Chapter 1.4.1.20.2.19.9 “POU 'CheckLRangeUnsigned'” on page 916
● Ä Chapter 1.4.1.20.4.10.4 “Dialog 'Properties' - 'Build'” on page 1159
● Ä Chapter 1.4.1.19.6.2.27 “Attribute 'no_check'” on page 712

POU 'CheckBounds'
The task of this monitoring function is to handle bound violations appropriately. Examples of
reactions to violations include setting error flags and changing the value of the array index. The
check is performed only for one variable array index. An incorrect constant array index causes
a compiler error. CODESYS calls the function implicitly when values are assigned to an ARRAY
variable.
After inserting the function, you receive automatically generated code in the declaration and
implementation parts. See below.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration part.
However, you are permitted to add local variables.

// Automatically generated code: DO NOT EDIT
FUNCTION CheckBounds : DINT
VAR_INPUT
 index, lower, upper: DINT;
END_VAR
// This automatically generated code is a suggested implementation.
IF index < lower THEN
 CheckBounds := lower;
ELSIF index > upper THEN
 CheckBounds := upper;
ELSE
 CheckBounds := index;
END_IF

(* It is also possible to set a breakpoint, log messages or e.g. to
halt on an exception:
Add CmpApp.library, SysExcept.library and SysTypes2_Itf as newest.
Declaration:
VAR
 _pApp : POINTER TO CmpApp.APPLICATION;
 _result : SysTypes.RTS_IEC_RESULT;
END_VAR

Implementation:
_pApp := AppGetCurrent(pResult:=_result);
IF index < lower THEN
 CheckBounds := lower;
 IF _pApp <> 0 THEN
 AppGenerateException(pApp:=_pApp,
ulException:=RtsExceptions.RTSEXCPT_ARRAYBOUNDS);
 END_IF
ELSIF index > upper THEN
 CheckBounds := upper;
 IF _pApp <> 0 THEN
 AppGenerateException(pApp:=_pApp,

Functions for
Bound Checks:
CheckBounds

Declaration part

Implementation

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US906

ulException:=RtsExceptions.RTSEXCPT_ARRAYBOUNDS);
 END_IF
ELSE
 CheckBounds := index;
END_IF
*)
When the “CheckBounds” function is called, it receives the following input parameters:
● index: Index of the array element
● lower: Lower limit of the array range
● upper: Upper limit of the array range

The return value is the index of the array element, as long as it is within a valid range. If not,
then the CODESYS returns either the upper or lower limit, depending on which threshold was
violated.

In the sample program below, the index falls short of the defined lower limit of the a array.

PROGRAM PLC_PRG
VAR
 a: ARRAY[0..7] OF BOOL;
 b: INT:=10;
END_VAR

a[b]:=TRUE;
In this example, the CheckBounds function causes a to change the upper limit of the array
range index to 10. The value TRUE is assigned then to the element a[7]. In this way, the
function corrects array access outside of the valid array range.

Example: Cor-
rection of the
access to an
array outside
the defined
array bounds

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 907

Add the following libraries in the library manager of the application:
● CmpApp.library and SysExcept.library as placeholder libraries
● SysTypes2_Itfs.library with “Newest version always”

Add a “CheckBounds” object below the application and modify the specified code as shown
below.
FUNCTION CheckBounds : DINT
VAR_INPUT
 index, lower, upper: DINT;
END_VAR
VAR
 _pApp : POINTER TO CmpApp.APPLICATION;
 _Result : ISystypes2.RTS_IEC_RESULT;
END_VAR
// This automatically generated code is a suggested implementation.
_pApp := AppGetCurrent(pResult := _Result);
IF index < lower THEN
 CheckBounds := lower;
 IF _pApp <> 0 THEN
 AppGenerateException(pApp := _pApp, ulException :=
RtsExceptions.RTSEXCPT_ARRAYBOUNDS);
 END_IF
ELSIF index > upper THEN
 CheckBounds := upper;
 IF _pApp <> 0 THEN
 AppGenerateException(pApp:=_pApp,
ulException:=RtsExceptions.RTSEXCPT_ARRAYBOUNDS);
 END_IF
ELSE
 CheckBounds := index;
END_IF

Program a “MAIN_PRG” object below the application with the contents shown below.
PROGRAM MAIN_PRG
VAR
 xInit : BOOL;
 arData : ARRAY[0..7] OF BYTE;
 i : INT;
 dwAdr : DWORD;
END_VAR

IF NOT xInit THEN
 // Required for CheckBounds
 xInit := TRUE;
END_IF

// Set i to a value > 7 or < 0
// Generates an exception in CheckBounds, user-defined
arData[i] := 11;

When you load and start this application, an exception will be thrown when array bounds are
violated. Processing stops in “CheckBounds” so that the type of error can be detected.

Example:
Output of an
exception
when array
limits are vio-
lated.

Declaration
part

Implementa-
tion part

See also
● Ä Chapter 1.4.1.8.21 “Using POUs for implicit checks” on page 309
● Ä Chapter 1.4.1.20.2.8.8 “Tab 'Log'” on page 848

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US908

POU 'CheckDivInt'

To prevent division by zero, you can use the functions CheckDivInt, CheckDivLint,
CheckDivReal, and CheckDivLReal. If you include these functions in the application, then
they are called before each division operation in the code.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

Declaration section:

// This is automatically generated code: DO NOT EDIT
FUNCTION CheckDivReal : REAL
VAR_INPUT
 divisor:REAL;
END_VAR

Implementation section:
// This automatically generated code is a suggested implementation.
IF divisor = 0 THEN
 CheckDivReal:=1;
ELSE
 CheckDivReal:=divisor;
END_IF;

The DIV operator uses the output of the CheckDivReal function as a divisor. In the sample
program below, CheckDivReal prevents division by 0 by changing the implicit value of the
divisor d from "0" to 1 before the division operation is executed. Therefore, the division result is
799.
PROGRAM PLC_PRG
VAR
 erg:REAL;
 v1:REAL:=799;
 d:REAL:=0;
END_VAR
erg:= v1 / d;

The default
implementation
of CheckDiv-
Real:

See also
● Ä Chapter 1.4.1.8.21 “Using POUs for implicit checks” on page 309

POU 'CheckDivLInt'

To prevent division by zero, you can use the functions CheckDivInt, CheckDivLint,
CheckDivReal, and CheckDivLReal. If you include these functions in the application, then
they are called before each division operation in the code.

Functions for
preventing divi-
sion by zero:
CheckDivInt,
CheckDivLint,
CheckDivReal,
and
CheckDivLReal

Functions for
preventing divi-
sion by zero:
CheckDivInt,
CheckDivLint,
CheckDivReal,
and
CheckDivLReal

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 909

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

Declaration section:

// This is automatically generated code: DO NOT EDIT
FUNCTION CheckDivReal : REAL
VAR_INPUT
 divisor:REAL;
END_VAR

Implementation section:
// This automatically generated code is a suggested implementation.
IF divisor = 0 THEN
 CheckDivReal:=1;
ELSE
 CheckDivReal:=divisor;
END_IF;

The DIV operator uses the output of the CheckDivReal function as a divisor. In the sample
program below, CheckDivReal prevents division by 0 by changing the implicit value of the
divisor d from "0" to 1 before the division operation is executed. Therefore, the division result is
799.
PROGRAM PLC_PRG
VAR
 erg:REAL;
 v1:REAL:=799;
 d:REAL:=0;
END_VAR
erg:= v1 / d;

The default
implementation
of CheckDiv-
Real:

See also
● Ä Chapter 1.4.1.8.21 “Using POUs for implicit checks” on page 309

POU 'CheckDivReal'

To prevent division by zero, you can use the functions CheckDivInt, CheckDivLint,
CheckDivReal, and CheckDivLReal. If you include these functions in the application, then
they are called before each division operation in the code.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

Functions for
preventing divi-
sion by zero:
CheckDivInt,
CheckDivLint,
CheckDivReal,
and
CheckDivLReal

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US910

Declaration section:

// This is automatically generated code: DO NOT EDIT
FUNCTION CheckDivReal : REAL
VAR_INPUT
 divisor:REAL;
END_VAR

Implementation section:
// This automatically generated code is a suggested implementation.
IF divisor = 0 THEN
 CheckDivReal:=1;
ELSE
 CheckDivReal:=divisor;
END_IF;

The DIV operator uses the output of the CheckDivReal function as a divisor. In the sample
program below, CheckDivReal prevents division by 0 by changing the implicit value of the
divisor d from "0" to 1 before the division operation is executed. Therefore, the division result is
799.
PROGRAM PLC_PRG
VAR
 erg:REAL;
 v1:REAL:=799;
 d:REAL:=0;
END_VAR
erg:= v1 / d;

The default
implementation
of CheckDiv-
Real:

See also
● Ä Chapter 1.4.1.8.21 “Using POUs for implicit checks” on page 309

POU 'CheckDivLReal'

To prevent division by zero, you can use the functions CheckDivInt, CheckDivLint,
CheckDivReal, and CheckDivLReal. If you include these functions in the application, then
they are called before each division operation in the code.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

Functions for
preventing divi-
sion by zero:
CheckDivInt,
CheckDivLint,
CheckDivReal,
and
CheckDivLReal

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 911

Declaration section:

// This is automatically generated code: DO NOT EDIT
FUNCTION CheckDivReal : REAL
VAR_INPUT
 divisor:REAL;
END_VAR

Implementation section:
// This automatically generated code is a suggested implementation.
IF divisor = 0 THEN
 CheckDivReal:=1;
ELSE
 CheckDivReal:=divisor;
END_IF;

The DIV operator uses the output of the CheckDivReal function as a divisor. In the sample
program below, CheckDivReal prevents division by 0 by changing the implicit value of the
divisor d from "0" to 1 before the division operation is executed. Therefore, the division result is
799.
PROGRAM PLC_PRG
VAR
 erg:REAL;
 v1:REAL:=799;
 d:REAL:=0;
END_VAR
erg:= v1 / d;

The default
implementation
of CheckDiv-
Real:

See also
● Ä Chapter 1.4.1.8.21 “Using POUs for implicit checks” on page 309

POU 'CheckRangeSigned'
Function for monitoring the range limits of a subrange type of type DINT.

This monitoring function is responsible for the appropriate handling violations to range limits.
Examples of reactions to violations include setting error flags and changing values. The func-
tions are called implicitly when a value is assigned to a subrange type variable.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

When the function is called, it receives the following input parameters:
● value: Value that should be assigned to the subrange type variables
● lower: Lower range limit
● upper: Upper range limit

The return value is the assignment value as long as it is within the valid range. If not, then either
the upper or lower limit is returned, depending on which threshold was violated.
For example, the assignment i := 10*y is replaced implicitly by i :=
CheckRangeSigned(10*y, -4095, 4095);

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US912

If y is "1000", then "10*1000=10000" is not assigned to i like in the original code. Instead, the
upper range limit of "4095" is assigned.
The same is true for CheckRangeUnsigned function.

NOTICE!
If functions are not available, then the subrange is not checked for the respec-
tive variables at runtime. In this case, you can assign any value between
-2147483648 and +2147483648 (or between 0 and 4294967295) to a var-
iable of subrange type DINT/UDINT. You can assign any value between
-9223372036854775808 and +9223372036854775807 (or between 0 and
18446744073709551615) to a variable of a subrange type LINT/ULINT.

CAUTION!
Linking area monitoring functions can lead to endless loops. For example, an
endless loop can occur if the counter variable of a FOR loop is a subrange type
and the counting range for the loop exits the defined subrange.

VAR
 ui : UINT (0..10000);
 ...
END_VAR

FOR ui:=0 TO 10000 DO
 ...
END_FOR

The program never exits the FOR loop because the CheckRangeSigned monitoring function
prevents ui from being set to a value greater than 10000.

Example of an
endless loop:

The assignment of a value to a DINT variable of a signed subrange type is a condition for
automatically calling the CheckRangeSigned. This function restricts the assignment value
to the subrange as defined in the variables declaration. The default implementation of the
function in ST is as follows:
Declaration section:

// This is automatically generated code: DO NOT EDIT
FUNCTION CheckRangeSigned : DINT
VAR_INPUT
 value, lower, upper: DINT;
END_VAR

Implementation:

// This automatically generated code is a suggested implementation.
IF (value < lower) THEN
 CheckRangeSigned := lower;
 ELSEIF(value > upper) THEN
 CheckRangeSigned := upper;
ELSE
 CheckRangeSigned := value;
END_VAR

Example for
CheckRangeSi
gned

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 913

See also
● Ä Chapter 1.4.1.8.21 “Using POUs for implicit checks” on page 309

POU 'CheckLRangeSigned'
Function for monitoring the range limits of a subrange type of type LINT.
For an implementation example of range monitoring, refer to the help page for the
CheckRangeSigned function.

This monitoring function is responsible for the appropriate handling violations to range limits.
Examples of reactions to violations include setting error flags and changing values. The func-
tions are called implicitly when a value is assigned to a subrange type variable.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

When the function is called, it receives the following input parameters:
● value: Value that should be assigned to the subrange type variables
● lower: Lower range limit
● upper: Upper range limit

The return value is the assignment value as long as it is within the valid range. If not, then either
the upper or lower limit is returned, depending on which threshold was violated.
For example, the assignment i := 10*y is replaced implicitly by i :=
CheckRangeSigned(10*y, -4095, 4095);
If y is "1000", then "10*1000=10000" is not assigned to i like in the original code. Instead, the
upper range limit of "4095" is assigned.
The same is true for CheckRangeUnsigned function.

NOTICE!
If functions are not available, then the subrange is not checked for the respec-
tive variables at runtime. In this case, you can assign any value between
-2147483648 and +2147483648 (or between 0 and 4294967295) to a var-
iable of subrange type DINT/UDINT. You can assign any value between
-9223372036854775808 and +9223372036854775807 (or between 0 and
18446744073709551615) to a variable of a subrange type LINT/ULINT.

CAUTION!
Linking area monitoring functions can lead to endless loops. For example, an
endless loop can occur if the counter variable of a FOR loop is a subrange type
and the counting range for the loop exits the defined subrange.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US914

VAR
 ui : UINT (0..10000);
 ...
END_VAR

FOR ui:=0 TO 10000 DO
 ...
END_FOR

The program never exits the FOR loop because the CheckRangeSigned monitoring function
prevents ui from being set to a value greater than 10000.

Example of an
endless loop:

See also
● Ä Chapter 1.4.1.8.21 “Using POUs for implicit checks” on page 309
● Ä Chapter 1.4.1.20.2.19.6 “POU 'CheckRangeSigned'” on page 912

POU 'CheckRangeUnsigned'
Function for monitoring the range limits of a subrange type of type UDINT.
For an implementation example of range monitoring, refer to the help page for the
CheckRangeSigned function.

This monitoring function is responsible for the appropriate handling violations to range limits.
Examples of reactions to violations include setting error flags and changing values. The func-
tions are called implicitly when a value is assigned to a subrange type variable.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

When the function is called, it receives the following input parameters:
● value: Value that should be assigned to the subrange type variables
● lower: Lower range limit
● upper: Upper range limit

The return value is the assignment value as long as it is within the valid range. If not, then either
the upper or lower limit is returned, depending on which threshold was violated.
For example, the assignment i := 10*y is replaced implicitly by i :=
CheckRangeSigned(10*y, -4095, 4095);
If y is "1000", then "10*1000=10000" is not assigned to i like in the original code. Instead, the
upper range limit of "4095" is assigned.
The same is true for CheckRangeUnsigned function.

NOTICE!
If functions are not available, then the subrange is not checked for the respec-
tive variables at runtime. In this case, you can assign any value between
-2147483648 and +2147483648 (or between 0 and 4294967295) to a var-
iable of subrange type DINT/UDINT. You can assign any value between
-9223372036854775808 and +9223372036854775807 (or between 0 and
18446744073709551615) to a variable of a subrange type LINT/ULINT.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 915

CAUTION!
Linking area monitoring functions can lead to endless loops. For example, an
endless loop can occur if the counter variable of a FOR loop is a subrange type
and the counting range for the loop exits the defined subrange.

VAR
 ui : UINT (0..10000);
 ...
END_VAR

FOR ui:=0 TO 10000 DO
 ...
END_FOR

The program never exits the FOR loop because the CheckRangeSigned monitoring function
prevents ui from being set to a value greater than 10000.

Example of an
endless loop:

See also
● Ä Chapter 1.4.1.8.21 “Using POUs for implicit checks” on page 309
● Ä Chapter 1.4.1.20.2.19.6 “POU 'CheckRangeSigned'” on page 912

POU 'CheckLRangeUnsigned'
Function for monitoring the range limits of a subrange type of type ULINT.
For an implementation example of range monitoring, refer to the help page for the
CheckRangeSigned function.

This monitoring function is responsible for the appropriate handling violations to range limits.
Examples of reactions to violations include setting error flags and changing values. The func-
tions are called implicitly when a value is assigned to a subrange type variable.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

When the function is called, it receives the following input parameters:
● value: Value that should be assigned to the subrange type variables
● lower: Lower range limit
● upper: Upper range limit

The return value is the assignment value as long as it is within the valid range. If not, then either
the upper or lower limit is returned, depending on which threshold was violated.
For example, the assignment i := 10*y is replaced implicitly by i :=
CheckRangeSigned(10*y, -4095, 4095);
If y is "1000", then "10*1000=10000" is not assigned to i like in the original code. Instead, the
upper range limit of "4095" is assigned.
The same is true for CheckRangeUnsigned function.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US916

NOTICE!
If functions are not available, then the subrange is not checked for the respec-
tive variables at runtime. In this case, you can assign any value between
-2147483648 and +2147483648 (or between 0 and 4294967295) to a var-
iable of subrange type DINT/UDINT. You can assign any value between
-9223372036854775808 and +9223372036854775807 (or between 0 and
18446744073709551615) to a variable of a subrange type LINT/ULINT.

CAUTION!
Linking area monitoring functions can lead to endless loops. For example, an
endless loop can occur if the counter variable of a FOR loop is a subrange type
and the counting range for the loop exits the defined subrange.

VAR
 ui : UINT (0..10000);
 ...
END_VAR

FOR ui:=0 TO 10000 DO
 ...
END_FOR

The program never exits the FOR loop because the CheckRangeSigned monitoring function
prevents ui from being set to a value greater than 10000.

Example of an
endless loop:

See also
● Ä Chapter 1.4.1.8.21 “Using POUs for implicit checks” on page 309
● Ä Chapter 1.4.1.20.2.19.6 “POU 'CheckRangeSigned'” on page 912

POU 'CheckPointer'
Monitoring function for pointers (Checkpointer)
Use this function to monitor the memory access of pointers in runtime mode. As opposed
to other monitoring functions, a standard suggestion does not exist for the implementation of
CheckPointer. You must define an implementation according to your own requirements.

The CheckPointer function should check whether the returned pointer references a valid
memory address; monitors whether the orientation of the referenced memory range matches
the variable type that the pointer refers to. If both conditions are fulfilled, then the pointer is
returned. If not, then the function should complete an appropriate error handling.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

NOTICE!
An implicit monitoring function call does not occur for THIS pointer and SUPER
pointer.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 917

NOTICE!
For complier version 3.5.7.40 and later, the implicit check function
“Checkpointer” also acts on REFERENCE variables in the same way as on
pointer variables.

// Automatically generated code: DO NOT EDIT
FUNCTION CheckPointer : POINTER TO BYTE
VAR_INPUT
 ptToTest : POINTER TO BYTE;
 iSize : DINT;
 iGran : DINT;
 bWrite: BOOL;
END_VAR

// Not a standard implementation. Please add your own code here.
CheckPointer := ptToTest;

When the function is called, CODESYS provides the following input parameters:
● ptToTest: Target address of the pointer
● iSize: Size of the referenced variable; the data type of iSize must be compatible with

INT and cover the dimensional scope of the variables.
● iGran: Granularity of the referenced size; this is the largest non-structured data type

contained in the referenced variables; the data type of iGran must be compatible with
INT

● bWrite: Access type (TRUE = write access, FALSE = read access); the data type of
bWrite must be BOOL

When the result of the check is positive, the unchanged pointer is returned (ptToTest).

Model
Declaration:

Implementa-
tion: (incom-
plete)

See also
● Ä Chapter 1.4.1.8.21 “Using POUs for implicit checks” on page 309

Object 'Project Settings'
Symbol:
Function: This object contains the configuration of the project.
Call:
● “Project è Project Settings”
● Double-click on the object in the device tree
CODESYS saves the project settings directly in the project. If, for example, you transfer a
project to another system, the “Project Settings” object is also transferred with it without a
project archive being required.
The project settings are valid project-wide and offer setting possibilities for various categories
such as “AS” or “Users and Groups”. The available categories vary, depending on which soft-
ware packages you have installed via the package manager.
See also
● Ä Chapter 1.4.1.2.3.2 “Making project settings” on page 193
● Ä Chapter 1.4.1.20.3.8.4 “Command 'Package Manager'” on page 1059
● Ä Chapter 1.4.1.20.4.11.1 “Dialog 'Project Settings' - 'SFC'” on page 1171
● Ä Chapter 1.4.1.20.4.11.2 “Dialog 'Project Settings' - 'Users and Groups'” on page 1172
● Ä Chapter 1.4.1.20.4.11.3 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 1173

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US918

● Ä Chapter 1.4.1.20.4.11.4 “Dialog Box 'Project Settings' - 'Compiler Warnings'”
on page 1173

● Ä Chapter 1.4.1.20.4.11.5 “Dialog 'Project Settings' – 'Source Download'” on page 1174
● Ä Chapter 1.4.1.20.4.11.6 “Dialog 'Project Settings' - 'Page Setup'” on page 1175
● Ä Chapter 1.4.1.20.4.11.7 “Dialog 'Project Settings' - 'Security'” on page 1176
● Ä Chapter 1.4.1.20.4.11.8 “Dialog 'Project Settings' - 'Static Analysis Light'” on page 1177
● Ä Chapter 1.4.1.20.4.11.9 “Dialog 'Project Settings' - 'Visualization'” on page 1180
● Ä Chapter 1.4.1.20.4.11.10 “Dialog 'Project Settings' - 'Visualization Profile'” on page 1181

Object 'Project Information'
Symbol:
Function: The object contains the properties, meta-information, and project information. With
this, you can check the authorship and integrity of the project.
Call
● Double-click the object in the device tree
● Menu bar: “Project è Project Information”

Requirement: CODESYS creates the object when you click “Project è Project Information”,
and the dialog opens.
CODESYS saves the project information directly in the project. For example, if you transfer a
project to another system, then the “Project Information” object is also transferred. You do not
need a project archive.

The tab displays the properties of the project file and their attributes. You cannot edit these
attributes. They correspond to the file properties of Windows Explorer.

The tab contains general information and meta-information of the project file. CODESYS uses
this information to create keys on the “Properties” tab. For example, if the name Company_A is
specified in “Company”, then the Company key with the value Company_A is provided on the
“Properties” tab.

NOTICE!
If you save your project as a library project, then you should pay attention to the
guidelines for library developers (Library Development Summary).

For a library project, a “Company”, a “Title”, and a “Version” must be specified to install the library.

“Company” Name of the company (example: Company_A).

“Title” Title of the project (example Automation_A).

“Version” Version of the project (example: 0.0.0.1).

“Released” : Activates protection from modification.
Result: If you edit the project now, then a dialog prompt opens to confirm
whether you really want to change the project. If you reply to this prompt
one time by clicking “Yes”, then no additional prompts appear for more editing
actions.

Tab 'File'

Tab 'Summary'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 919

“Categories” Categories of the library project, according to which you can sort in the “Library
Repository” dialog. If no category is specified, then the category “Other” is
assigned to the library.
The categories originate from one or more external description files in XML
format. However, they can also originate from a library project that has already
been created.
Requirement: The project is a library project.

: The “Library Categories” dialog opens where you can add library categories.

“Default namespace” If you do not define a standard namespace here, then the name of the library file
is applied automatically as the namespace.

“Author” Author of the project (example: Arnold Best).

“Description” Example: For internal use only

See also
● Ä Chapter 1.4.1.20.3.1.7 “Command 'Save Project as Compiled Library'” on page 960
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449

Table 84: Dialog “Library Categories”
List of categories List of the categories that are assigned to the library project. They can originate

from several sources. After you specify all desired categories, click “OK” to
confirm.

Button “Add” The “From Description File” and “From Other Library” commands appear.

Button “Remove” CODESYS removes the selected category.

Command “From Description
File”

The “Select Description File” dialog opens for you select a description file
(*.libcat.xml). The file contains command categories. When you click
“Open”, CODESYS accepts the categories.

Command “From Other
Library”

The “Select Library” dialog opens, where you select a library with command
categories to be accepted. When you click “Open”, CODESYS accepts the cate-
gories.

Button “OK” CODESYS provides the categories as project information and displays it in the
“Library Categories” field.

See also
● Ä Chapter 1.4.4.1 “Guidelines for creating libraries” on page 1249
● Ä Chapter 1.4.1.20.3.8.5 “Command 'Library Repository'” on page 1061

On this tab, you can define keys that you can control externally from user-specific programs.

NOTICE!
If you have opened a library project, then note the description of the relevant
keys in the guidelines for library developers (Library Development Summary).
If you have opened a symbol library as a project, then the key
VisuSymbolLibrary = TRUE must be defined. It identifies the library as a
symbol library.

“Key” Name of the key. Specify any string of text for the new key, or select an existing
key from the “Properties” table.

“Type” Data type of the key. Possible types: “Text”, “Date”, “Number”, “Boolean”,
“Version”.

Tab 'Properties'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US920

“Value” Value of the key in permitted format
● “Text”: Any character string
● “Date”: Example: Friday, January 1, 2016 00:00:00. Minimum entry

for the date: 1.1
● “Number”: Integer in Integer32 format with or without a sign (example:

-32500).
● “Boolean”: True or False, capitalization irrelevant.
● “Version”: Examples: 1.1, 1.0.1.0, maximum four figures.

“Add” Adds the new defined key to the “Properties” table.

“Modify” Saves the change made for the key selected in the “Properties” table.

“Remove” Removes the key selected in the “Properties” table.

“Properties” List of the properties that are defined as keys. CODESYS creates keys automati-
cally for the information in the “Summary” tab.
Click a key to edit it in the input fields above the list.

See also
● Ä Chapter 1.4.4.1 “Guidelines for creating libraries” on page 1249
● Using the Symbol Library in the Visualization
● Ä Chapter 1.4.1.20.4.10.17 “Dialog 'Properties' - 'Image Pool'” on page 1168

The dialog provides statistical information about the number of objects of the individual type or
use in the project.

The dialog is for the license protection of libraries.

CAUTION!
You can protect only compiled libraries in this way.

Table 85: “Variables”
“Activate dongle licensing” : The library requires a dongle with a license to use it.

“Firm code” License information that must be supplied from the dongle for using the library
later.“Product code”

“Activation URL”

“Activation mail”

See also
● Ä Chapter 1.4.4.1 “Guidelines for creating libraries” on page 1249

This tab is displayed only for existing libraries whose signing has been created with this tab.
This tab is no longer visible for newly generated libraries.
When a certificate-signed library is created (possible as of CODESYS V3 SP15) and library
compatibility with CODESYS < V3 SP15 is not set, the settings on this tab are disabled. In this
case, the signing is done by means of a certificate that has to be assigned to the user profile in
the security screen.

Tab 'Statistics'

Tab 'Licensing'

Tab 'Signing'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 921

ms-its:core_Visualization.chm::/_visu_using_symbol_library.htm

One method, which is not recommended but may be necessary in some case for compatibility
with versions < V3 SP15, is the less secure signing of a library by means of a vendor-specific,
one-time key in this dialog. Requirement: This key is available as a private key file (*.libpk)
with an associated token. The user of the library also has to obtain this key in order to be able to
check whether the last signing was actually performed by the library vendor.

“Activate signing” : CODESYS signs the library project with a single-use, manufacturer-specific
key.

“Private key file” Location of the private key file *.libpk (example: D:\for lib developers
only\mycomp_libkey.libpk).

“Public key token” Example: 427A5701DA3CF3CF
Requirement: A private key file is specified, and CODESYS has read and
entered the token.

“Create Private Key File” CODESYS creates a new private key file.

See also
● Ä Chapter 1.4.1.20.3.3.18 “Command 'Security Screen'” on page 995

“Automatically generate
'Project Information' POUs”

Note: The functions that are created with this option can be used only if the
runtime supports the WSTRING data type. If this is not the case, then you can
use the functions that were created automatically for the with the individual items
of the project information, at least in the application for accessing properties.
These functions are not registered in the runtime.

: CODESYS creates POUs of the FUNCTION type in the “POUs” view, allowing
programmatic access to the project properties in the application. The function
blocks GetCompany, GetTitle and GetVersion are created for the proper-
ties “Company”, “Title” and “Version”.
The following function blocks are available for user-defined properties:
● GetBooleanProperty: BOOL (TRUE/FALSE)
● GetNumberProperty: DINT (numeric value)
● GetTextProperty: WSTRING (character string)
● GetTextProperty2: POINTER TO WSTRING (unlimited length)
● GetVersionProperty: VERSION (version number as character string)

Note: Do not activate this option for standard libraries, because this can cause
problems on smaller systems due to the additional memory requirements.
Note: If a library also contains this project information POU, then you should use
the operator __POOL to make sure that this POU is accessed.

“Automatically generate
'Library Information' POUs”

: CODESYS creates POUs of the FUNCTION type in the “POUs” view, allowing
programmatic access to the project properties in the application.
For the “Version” and “Released” properties, the following functions
are created: GetLibVersion (version number as character string),
GetLibVersionNumber (version number as numeric value), and
IsLibReleased (TRUE/FALSE).

Note: These functions are not registered in the runtime. The option is avail-
able as an alternative solution is the runtime does not support the WSTRING
data type, therefore not permitting you to use the functions created with the
“Automatically generate 'Project Information' POUs” option.

Options for cre-
ating blocks for
accessing
project informa-
tion

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US922

See also
● Ä Chapter 1.4.1.2.3.1 “Retrieving and Editing Project Information” on page 191
● Ä Chapter 1.4.1.2.3.2 “Making project settings” on page 193
● Ä Chapter 1.4.1.19.3.73 “Operator '__POOL'” on page 630

Object 'Recipe Manager'
The recipe manager provides functions for maintaining user-defined variable lists, known as
recipe definitions. The recipe definitions can be stored in recipe files on the PLC.

“Storage Type” “Textual”: CODESYS saves the recipe in a readable Format with the configured
columns and delimiters.
“Binary”: CODESYS saves the recipe in a non-readable binary format. This
format requires less storage space.
Note: You can read binary recipes again only if you have not changed the
variable lists.

“File path” <directory name>\
Example: AllRecipes\
Path on the runtime system
Notes:
● The path has to end with a backslash ("\").
● The path is usually a relative path on the target system in the directory of the

runtime files (PlcLogic).
● Access to paths outside of the directory PlcLogic is not permitted on

every controller. An absolute path for Windows systems can be selected by
pressing the button.

Example of the file path in the runtime system: PlcLogic/AllRecipes
CODESYS saves a file in this directory for each recipe when downloading to the
PLC. The requirement is that you select the “Recipe management in the PLC”
option.
The files are loaded to the recipe manager each time the application is restarted.

“File extension” File extension for the recipe file in the format .<file extension>
The resulting default name for recipe files is in the form <recipe>.<recipe
definition>.<file extension>.

“Separator” Delimiters between the individual values in the saved file

“Available Columns”

“ Selected Columns”

Defines the information that is saved and in which order in the recipe file

“Save as Default” CODESYS uses the settings on the tab throughout the entire project for all other
recipe managers.

“Recipe management in the
PLC”

: Has to be selected for the user program or visualization elements to load rec-
ipes at runtime. If you transfer recipes to the PLC exclusively via the CODESYS
program interface, then you can clear this option.

Tab 'Storage'

Tab 'General'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 923

Table 86: “Save Recipe”
“Save recipe changes to recipe
files automatically”

When “Recipe management in the PLC” is selected, there is the following option
for saving the recipe:

: We recommend this option because it helps the recipe manager operate
"normally". The recipe files on the PLC are updated automatically at runtime
whenever a recipe is changed.

Table 87: “Load Recipe”
When “Recipe management in the PLC” is selected, there are the following two options for downloading from the
PLC:

“Download only for exact
match of the variable list”

: The recipe is only downloaded if the file on the PLC contains all variables
from the variable list of the recipe definition of the application and these are
sorted in the same order. Additional entries at the end are ignored. If the required
match does not exist, then the error status ERR_RECIPE_MISMATCH is set
(RecipeManCommands.GetLastError).

“Download variables with
matching names”

: The recipe values are downloaded only for those variables that have the
same name in the recipe definition of the application as in the recipe file on the
PLC. If the variable lists differ in composition and sorting, then no error status is
set.
In this way, recipe files can also be downloaded if variables in the file or in the
recipe definition have been deleted.

“Overwrite existing recipes on
download”

: If recipe files with the same name exist on the controller, then they are
overwritten with the configured values from the project when the application is
started. If the values from the existing recipe files should be loaded instead, then
this option has to be disabled.
Requirement: The “Storage Type” is “Textual” and the “Save recipe changes to
recipe files automatically” option is selected.

Table 88: “Write Recipe”
The following options are available for writing recipe values to the variables on the PLC:

“Limit the variable to min/max
when recipe value is out of the
range”

: If the recipe contains a value that is outside of the range of values specified
in the definition, then the defined minimum or maximum value is written to the
PLC variable instead of this value.

“Do not write to a variable
when the recipe value is out of
the min/max range”

: If the recipe contains a value that is outside of the range of values specified
in the definition, then no value is written to the PLC variable. It retains its current
value.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US924

Table 89: “Read Recipe”
The following option is available for reading recipe values from the PLC into the recipe in the project:

“Check recipe for changes” Always use the function block RecipeManCommands from
RecipeManagement.library to read recipes. Never call the method cycli-
cally. This is because each call can be written to the file system, which is
time-intensive and burdens the controller. For example, a Raspberry protocol
interpreter has a limited number of write cycles.

: With each method call, the current PLC variable values are first read into
the recipe. Then the system checks whether the values have changed. Only if
the values have changed is the recipe saved. This means that the recipe file is
overwritten with the current recipes.
The option can be used in order to update the recipe file in the local file system
only if recipe values have changed on the PLC. However, it affects performance
because it generates additional code for checking.

: With each method call, the current PLC variable values are first read into the
recipe. Then the recipe is written to the recipe file in the local file system.
Note: As the file system is written to each call, the controller can be very bur-
dened.

Table 90: Option “Save recipe changes to recipe files automatically” is selected.
Menu commands Behavior of the recipes

defined in the project
Behavior of the defined rec-
ipes at runtime

“Online è Reset Warm”

“Online è Reset Cold”

“Online è Download”

The recipes of all recipe def-
initions are downloaded with
the values from the current
projects.

Dynamically generated rec-
ipes remain unchanged.

“Online è Reset Origin” The application is removed from the PLC. If a download is
done again afterwards, then the recipes are restored as for an
online reset warm.

Shutdown and restart of the
PLC

After a restart, the recipes are downloaded again from the
automatically created files. This will restore the same state as
before shutdown.

“Online è Online Change” The recipe values remain unchanged. In runtime mode, a
recipe can be changed only via the function block command
RecipeManCommands.

“Debug è Stop”

“Debug è Start”

The recipes remain unchanged when the PLC is stopped or
started.

Table 91: Option “Save recipe changes to recipe files automatically” is not selected.
Actions Recipes defined in the

project
Recipes defined at runtime

“Online è Reset Warm”

“Online è Reset Cold”

“Online è Download”

The recipes of all recipe def-
initions are downloaded with
the values from the current
projects. However, these are
set in the memory only. To
save recipes to a file, you
have to run the “Save Recipe”
command explicitly.

Dynamically generated rec-
ipes are lost.

“Online è Reset Origin” The application is removed
from the PLC. When a down-
load is performed afterwards,
the recipes are restored.

Dynamically generated rec-
ipes are lost.

Recipes during
online mode

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 925

Actions Recipes defined in the
project

Recipes defined at runtime

Shutdown and restart of the
PLC

After the restart, the recipes are downloaded again from the
automatically created files. This will restore the same state as
before shutdown.

“Online è Online Change” The recipe values remain unchanged. In runtime mode, a
recipe can be changed only via the function block command
RecipeManCommands.

“Debug è Stop”

“Debug è Start”

The recipes remain unchanged when the PLC is stopped or
started.

See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3.19.9 “Command 'Read and Save Recipe'” on page 1130
● Ä Chapter 1.4.1.20.2.23 “Object 'Recipe Definition'” on page 926
● Method Calls of the 'Recipe Management' Library

Object 'Recipe Definition'
In the recipe definition (1), you define different data sets for the variables, which are termed
recipes (2).
You can toggle the display of the recipe definition between the flat list view (3) and the struc-
tured view (4). In the structured view, CODESYS groups variables according to structure.

“Type” Entered automatically

“Name” Optional

“Minimal Value”

“Maximal Value”

If the variable value is less than the “Minimal Value” or greater than the “Maximal
Value”, then CODESYS sets the value to the “Minimal Value” or “Maximal
Value”.

“Comment” Additional information, for example the unit of the value.

“Current Value” Current variable value; not shown in online mode

Table 92: “Additional commands in the context menu in the structured view”
“Add Sibling” Adds a sibling variable to the recipe definition.

“Add Child” Adds a child variable to the recipe definition.

See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US926

ms-its:Recipe Management.chm::/RecipeManCommands.html

Object 'Text List'
Symbol:
This object is used to create, manage, and translate texts. It contains a table with texts where
you can add new texts. You can select a text which you have composed here can be selected in
a visualization in the “Dynamic texts” property of an element. In runtime mode, the visualization
displays this text dynamically in the selected language.
When the object is assigned to an alarm group and is located below the “Alarm Configuration”
object, CODESYS adds the texts of the alarm group to the table. You can also add texts.

“ID” Unique identifier of the text

“Standard”: Source text as character string (example: Information A: %i options).
Use the keyboard shortcut [Ctrl]+[Enter] to add a line break.
Double-click in the field to edit the text.

The table contains as many language columns as you want to add. A language column is named with a language
code that you specified when you created the column by means of the “Insert Language” command.

“<language code>” Name of the language as a language code. Example: en-US. This column con-
tains the translation of the text which is composed under “Standard”. Under the
condition that the language code is selected as the language in the visualization
manager, a visualization displays the translated text in runtime mode. If a trans-
lation has not been composed, then CODESYS uses the text under “Standard”.
A visualization in runtime mode can also change the language if requested by a
user.

Blank line Edit the line to add your own text.

See also
● Ä Chapter 1.4.1.8.8 “Managing text in text lists” on page 266
● Ä Chapter 1.4.1.20.2.9 “Object 'GlobalTextList'” on page 871
● For descriptions about alarm management and alarm visualization, see the help for

CODESYS Visualization.

Object 'Symbol Configuration'
You can use the symbol configuration for creating symbol descriptions for project variables.
Click “Project è Add Object” to add a symbol configuration object to the device tree. Then
define specific presets. See dialog below: “Add Symbol Configuration”.
Double-click the “Symbol Configuration” object to open the symbol configuration editor.

Function: This dialog is used to define the defaults for a “Symbol Configuration” object.
Call: “Project è Add Object è Symbol Configuration” menu; context menu of the application
object.

“Include comments in XML” Exports the symbol file with the comments assigned to the variables.

“Support OPC UA features” Note: Availability and editability of this option depend on the device.

: When downloading the symbol configuration, additional information is also
downloaded to the controller. The information below is necessary for operating
the OPC UA server.
● Base types of inherited function blocks
● Contents of attributes that were assigned via compiler pragmas
● Scopes (example: VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT)

Dialog 'Add
Symbol Config-
uration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 927

Table 93: “Client-Side Data Layout”
For detailed information and examples of layout options, see the next section "Symbol Configuration Editor".

“Compatibility layout” This setting is used for the compatibility of old projects. The data layout created
for the client is matched as much as possible to the layout created internally by
the compiler.

“Optimized layout” Recommended for new projects. Calculates the output layout in optimized form
detached from the internal compiler layout. Does not generate any gaps for
unpublished elements and strictly fulfills the requirements for memory alignment
of the data types. Requires compiler version 3.5.7.0 or higher.

The editor includes a table with selected variables and a menu bar for editing.

Table 94: Menu bar
 “View” You can use this button for activating and deactivating the following categories of

variables used in the configuration editor:

● “Unconfigured from Project”: Variables that have not been added to the
symbol configuration, but are provided in the project.

● “Unconfigured from Libraries”: Variables that have not been added to the
symbol configuration, but are provided in the project.

● “Symbols Exported via Attribute”: This filter also lists the variables that
have already been marked for export in the symbol file by means of the
{attribute 'symbol' := 'read'} pragma. These symbols are dis-
played in gray. The “Attribute” column shows which access rights are set by
the pragma.

 “Build” Compiles the project. Requirement for current preparation of variables in the
configuration editor.

Symbol configu-
ration editor

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US928

 “Settings” ● “Support OPC UA features”:
Note: Availability and editability of this option depend on the device.

: When downloading the symbol configuration, additional information is
also downloaded to the controller. The information below is necessary for
operating the OPC UA server. This currently includes the following informa-
tion:
– Base types of inherited function blocks
– Contents of attributes that were assigned via compiler pragmas
– Scopes (example: VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT)

● <!> “Include comments in XML”
: Exports the symbol file with the comments assigned to the variables.

● “Include Node Flags in XML”
: The namespace node flags provide additional information about the

origin of a node in the namespace. The node flags always in the symbol
table when OPC UA is activated. However, its inclusion in the XML file can
be deactivated as some defective parsers have problems with it.

● “Configure Comments and Attributes”
Opens the “Comments and Attributes” dialog. Here you configure the details
of what should be included in the symbol configuration and XML file with
respect to comments and attributes.

● “Configure synchronization with IEC tasks”:
Opens the “Properties - <device name>” dialog, “Options” tab.
This setting allows for the symbolic clients (e.g. visualizations or database
links based on the PLCHandler) to have consistent read/write access
synchronized with the IEC tasks. For a detailed description of this setting,
see the "Setting: Configure synchronization with IEC tasks" section below.
Note: Variable access which is synchronous with the IEC tasks can increase
the jitter for all IEC applications on this device. Synchronized consistent
access can interrupt the real-time capability.

● List box for defining the data layout type for the client of the symbol configu-
ration:
Note: See the "Example of data layout types" section at the end of this help
page.
– “Optimized layout”: Recommend for new projects. Calculates the output

layout in optimized form detached from the internal compiler layout. Does
not generate any gaps for unpublished elements and strictly fulfills the
requirements for memory alignment of the data types. Requires compiler
version 3.5.7.0 or higher.

– “Compatibility layout”: This setting is used for the compatibility of old
projects. The data layout created for the client is matched as much as
possible to the layout created internally by the compiler.
Due to the configuration possibilities of the symbol configuration which
have grown over time, problematic offsets can still result.
Causes of offsets
Memory gaps due to internal pointers or references in function blocks
and structure components that are not released for symbol configuration.
Memory gaps that occur differently in 32-bit and 64-bit systems
depending on the data type, such as __XINT / __XWORD .
Fields that are at uneven addresses. Some clients are not set up for this.
Unintentional memory misalignment, which occurs when using the attrib-
utes 'pack_mode' or 'relative_offset'.

● “Use Empty Namespaces by Default (V2 Compatibility)”: Required when
using a CODESYS V2-compatible OPC server configuration.

: Behavior same as in CODESYS V2.3.
– Program variables are exported without an application name

(Application.PLC_PRG.MyVar --> PLC_PRG.MyVar
– Global variables are exported additionally without the GVL name

(Application.GVL.MyGlobVar --> .MyGlobVar

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 929

● “Enable Direct I/O Access”: This feature is potentially dangerous and not
intended for operation in production. Activate only for error checking
and tests, or when commissioning the machinery (for example, for checking
cables connections).

: In the symbol configuration, you can also use access to direct I/O
addresses that correspond to IEC syntax (for example, "%IX0.0"). Access
to input addresses (I) is read-only*. Access to output addresses (Q) and
memory addresses (M) can be read-write.
*Information: In simulation mode, write access to symbols is also possible for
input addresses.
Because external clients for protocols such as OPC or OPC UA do not
always support IEC syntax for direct addresses, access is also provided
using an array syntax in the namespace __MIO of the implicit code. For
example, you can also access __MIO.MIO_IX[2].x3 instead of %IX2.3.
However, the symbols for array access are hidden in browsers because
some clients cannot handle the large number of nodes (several thousand
depending on the size of the I/O ranges).

● “Support Calls of Functions, FBs, Methods, and Programs”:
Note: Availability and editability of this option depend on the device.

: The access rights “execute” can be set in the symbol table for symbols
of POUs of type function, function block, method, or program. The “Support
OPC UA features” option also has to be selected in the “Settings”.

● “Include Call information in XML”:
: The information about called functions, function blocks, methods, or pro-

grams is also listed in the XML file of the symbol configuration. The option is
enabled only if the “Support calls of functions, FBs, methods, and programs”
option is supported by the device.

● “Enable Symbol Sets”:
: A toolbar with buttons and a list box is displayed above the symbol table.

You can use this to configure symbol sets for client-specific assignment of
access rights to the controller. See "Toolbar for symbol set configuration"
below.

“Download” If you use a device that supports its own application file for the symbol con-
figuration, then this button is also available in the toolbar. If you change the
symbol configuration in online mode, then you can load the new <application
name>._symbols file immediately to the PLC.

“Tools” “Save XSD Scheme File”: This command opens the standard dialog for saving a
file in the file system. With this command, you can prepare the XSD format of the
symbol file, for example for use in external programs.

Table 95: Symbol table
“Access Rights” You can change the access rights for a symbol by clicking the symbol in the

“Access Rights” column.
Icons for access rights (in ascending order)
● : Read only
● : Write only
● : Read and write

● : Execute
This permission allow for execute access to functions, function blocks,
methods, and programs.
Requirements for the assignment: The device provides the “Support calls
of functions, FBs, methods, and programs” and “Support OPC UA features”
options. Both options are activated in the “Settings”.

Note: In case the controller has a user management, you can use symbol sets to
define client-specific access rights to the same symbols.

“Maximal” Maximum access rights for this symbol

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US930

“Attribute” If the access right was assigned by attribute, then a corresponding icon is dis-
played here.

“Type” Alias data types are also displayed In CODESYS V3.5 SP6 and higher.
Example: MY_INT : INT for a variable declared with the data type MY_INT
(type INT).

“Members” You can add variables of a structured data type also by selecting a check box
for symbol configuration in the “Symbols” column. This causes CODESYS to
export all member variable symbols. However, in the “Members” column, you
can click the ellipsis button () to select only specific structural components.
Note: This selection applies to all instances of this data type for which symbols
are exported. If a member of a structured type cannot be selected, then an
asterisk () is displayed in the check boxes of the members to indicate that all
exportable members of that type are exported.

Table 96: Toolbar for symbol set configuration
“List box” Already defined symbol sets

 “Add New Symbol Set” Opens the “Add New Symbol Set” dialog for specifying a name for this set

 “Add Duplicate from
Selected Symbol Set”

Opens the “Add Duplicate from Selected Symbol Set” dialog. A copy is created
for the set selected in the list box. You can change the default name (<group
name>_duplicate).

 “Rename Selected Symbol
Set”

Opens the “Rename Selected Symbol Set” dialog for specifying another name
for the set selected in list box.

 “Delete selected Symbol
Set”

Opens a dialog prompting whether or not the symbol set selected in the list box
should be deleted.

“Configure Symbol Rights” Opens the “Symbol Rights” tab of the device editor. When logged in there, you
can assign different access rights for each user group (client) to the symbol set
selected in the list box.

See also
● Ä Chapter 1.4.1.20.2.8.15 “Tab 'Symbol Rights'” on page 868

Table 97: “Symbol Table Contents”
“Enable extended OPC UA
information”

Note: Availability and editability of this option depend on the device.

: Additional information that can be evaluated by OPC UA servers is included
in the symbol table. This includes inheritance information of user-defined data
types and the namespace node flags. Additional information, such as comments
and attributes, can also be included if the OPC UA setting is active.
When the OPC UA setting is enabled, attributes are included in the symbol table
according to the following rule:
● In compiler versions V3.5.5.0 to V3.5.7.X, all attributes are included

according to the “Match simple identifiers” setting.
● In compiler version V3.5.8.X, all attributes are included according to the

setting “Include all attributes”.
● In compiler version V3.5.9.0 and higher, you can customize the attributes

that are included.

“Include comments” Requirement: “Enable extended OPC UA information” is activated.

: Comments and attributes are also saved in the symbol table.

Dialog 'Com-
ments and
Attributes'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 931

“Include attributes”

“Also include comments and
attributes for type nodes”

Requirement: “Include comments” is activated.

: The information for type nodes is also included (user-defined types, such as
STRUCT and ENUM elements).

: Only directly exported variables have comments and attributes.

Table 98: “XML symbol file contents”
“Include namespace node
flags”

: The namespace node flags provide additional information about the origin
of a node in the namespace. The node flags always in the symbol table when
OPC UA is activated. However, its inclusion in the XML file can be deactivated
as some defective parsers have problems with it.

“Include comments” : Comments can also be saved in the XML file.
In compiler versions V3.5.5.x to V3.5.8.0, this includes the setting “Prefer docu-
comments”.

“Include attributes” : Attributes can also be saved in the symbol file.

“Also include comments and
attributes for type nodes”

Requirement: “Include comments” is activated.

: The information for type nodes is also included (user-defined types, such as
STRUCT and ENUM elements).

: Only directly exported variables have comments and attributes.

Table 99: “Select Comments”
Requirement: “Include comments” is activated.

“Include docu comments”

“Include normal comments ”

“Always include both types of
comments”

“Prefer docu comments,
fallback to normal ones”

“Prefer normal comments,
fallback to docu comments”

The options determines the comments that are saved in the symbol configura-
tion.

Table 100: “Filter Attributes (Case-Insensitive)”
Requirement: “Include attributes” is activated.

“Include all attributes”

“Include attributes starting with”

“Filter attributes with regular
expression”

Defines the attributes that are saved in the symbol configuration.

“Match simple identifiers” Exists primarily due to the backward compatibility to older versions in order to
emulate the old behavior.

For synchronously consistent access, the symbolic client waits in the runtime when processing
a read or write request until a time is found when no IEC task is executed. When this gap is
detected, restarting the IEC tasks is prevented until all values of the variable list have been
copied. Then the IEC tasks are planned again as usual. Synchronized access can cause a
delayed starting of IEC tasks, which is shown as increased jitter. As all applications in the run-
time are managed by a common scheduler, this potential impairment of the real-time behavior

Setting: Con-
figure synchro-
nization with
IEC tasks

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US932

affects all applications on the device. All applications of the device are affected, regardless
of whether or not they include a symbol configuration or they have been downloaded to the
controller from one or more CODESYS projects. Therefore, the runtime permits synchronized
consist access only if this it allows all applications that are downloaded to the controller at the
time of access.

The setting is located in the editor of the symbol configuration of the “Settings”
menu. In addition, the setting is also located in the context menu of the con-
troller when you click the “Properties” command and then select the “Options”
tab in the opened dialog.

For applications without symbol configuration, the setting can only be found in
the properties dialog.

NOTICE!
After changing the setting, all applications downloaded to the device by means
of a download or online change have to be reloaded and all boot applications
updated.

In which cases is synchronized consistent access necessary?
As a rule, there is no need for consistent values for displayed values because it is mostly
irrelevant from which IEC task cycle the changed values originate. It is completely irrelevant
for seldom changed values. Even when writing there are almost no hard consistency demands
because typically the machine must be in a kind of standby mode (for example when writing
recipes) in which there is no direct access to the values written as recipes.
In contrast, consistent values are particularly necessary for database links to save production
data. For clocked machines, however, these values must be synchronous with the production
timing (one value set per produced product) and not consistent with reference to one or more
IEC tasks. With reference to the machine clocking, the consistency must be already ensured
by the IEC application. For this purpose, the values that arise during a production cycle are
typically collected in a global variable list. At the end of the cycle, the symbolic client is notified
by means of an additional variable (BOOL or counter) that the machine cycle has ended and
the values are valid. Now the client has the chance to archive the values from the production
cycle. Depending on necessity, the successful reading can also be displayed in the opposite
direction by means of a released variable, so that the production can also be halted in case
the production data cannot be archived. Synchronized consistent access is not necessary and
helpful for this use case because the synchronization takes place at the application level.
In contrast, synchronized consistent access by symbolic clients is typically applied in the
process industry with continuously running systems without production clocking when, for
example when process values are written consistently and cyclically in a fixed time frame of
60s. This can take place either by synchronization on the application level similar to clocked
machines (see above) or by synchronization of the synchronized consistent symbolic access.
The advantage of the latter is that no logic has to be implemented in the IEC program and
access is controlled entirely by the client.

CAUTION!
Due to the increased jitter, the synchronized consistent monitoring is not suit-
able for motion or real-time critical applications. For these reasons, synchron-
ized consistent access should be released and used only if it is absolutely
necessary.

If a client uses synchronous consistent access released by this setting, then it has and effect on
the client. Depending on the scheduler of the runtime, the response time can jitter more here for
read/write access because the system might still have to wait for an execution gap of the IEC
tasks. Read and/or write access can still fail when IEC tasks run for a long time (in the range of
several 100 ms) or the CPU load is close to 100% for an extended period of time with one or
more IEC tasks (in the range of several 100 ms). Therefore, the availability of the values also
depends on the load of the controller by the IEC application.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 933

Moreover, the client can minimize the effects on itself and on the runtime if it observes the
following in the definition of the variable lists to be read or written:
● Synchronized consistent access only to those variables that are absolutely and consistently

required.
● Separate variable lists for variables that have to be consistent and for variables that could

be inconsistent.
● Divide variable lists with several consistent variables into several smaller lists.
● Select read intervals for cyclic reading of values as large as possible.

Entries marked in red in the symbol table show variables that they are configured for export to
the symbol file but are currently invalid in the application. The cause for this can be that the
declaration has been removed from the block.
In version 3.5.8.0 and higher, a warning appears in the editor if variables that have configured
symbols are not used in the IEC code or are not mapped in the case of I/O variables. In
addition, the compiler indicates variables that are referenced from outdated library versions n
the symbol configuration.

NOTICE!
Object variables that are not used in the program code remain uncompiled by
default and are therefore not available in the symbol configuration.
However, CODESYS provides variables from uncompiled objects in the symbol
configuration when one of the following conditions is met:
– The “Link always” POU property is selected.
– The {attribute 'linkalways'} pragma is used.

See also
● Ä Chapter 1.4.1.9 “Working with Controller Networks” on page 352
● Ä Chapter 1.4.1.20.4.10.19 “Dialog 'Properties' - 'Options'” on page 1169
● Ä Chapter 1.4.1.20.4.10.4 “Dialog 'Properties' - 'Build'” on page 1159
● Ä Chapter 1.4.1.19.6.2.24 “Attribute 'linkalways'” on page 708
● Ä Chapter 1.4.1.19.6.2.44 “Effects of Pragmas on Symbols ” on page 729

Support for the
current configu-
ration and pos-
sible corrective
actions

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US934

The following examples from an IEC application will show how gaps can result in the client-
side memory layout caused by unpublished symbols, internal "invisible" pointers, or a "pack
mode" definition in the device description. With the “Optimized layout” setting, the gaps are
avoided. The symbol file contains different information about the size and offset of memory
locations, depending on the selected layout setting.
// Example of a big structure, where not all members get published :
STRUCT
 {attribute 'symbol':='readwrite'}
 PublicNumber : INT;

 {attribute 'symbol':='none'}
 InternalData : ARRAY[0..100] OF BYTE;

 {attribute 'symbol':='readwrite'}
 SecondNumber : INT;

 {attribute 'symbol':='none'}
 MoreData : ARRAY[0..100] OF BYTE;
END_STRUCT
END_TYPE

Resulting entries in the symbol file; pay attention to "size" and "byteoffset":
<TypeUserDef name="T_LargeStructure" size="208" nativesize="208"
typeclass="Userdef" pouclass="STRUCTURE" iecname="LargeStructure">

<UserDefElement iecname="PublicNumber" type="T_INT" byteoffset="0"
vartype="VAR" />

<UserDefElement iecname="SecondNumber" type="T_INT"
byteoffset="104" vartype="VAR" />

</TypeUserDef>
<TypeUserDef name="T_LargeStructure" size="4" nativesize="208"
typeclass="Userdef" pouclass="STRUCTURE" iecname="LargeStructure">

<UserDefElement iecname="PublicNumber" type="T_INT" byteoffset="0"
vartype="VAR" />

<UserDefElement iecname="SecondNumber" type="T_INT" byteoffset="2"
vartype="VAR" />

</TypeUserDef>

// The following mechanisms can cause memory misalignment:
// - {attribute 'relative_offset':='…'} at a member
// - {attribute 'pack_mode':='…'} at a structure declaration
// - target setting 'memory-layout\pack-mode' in the device
description

{attribute 'pack_mode':='1'}
TYPE UnevenAddresses:
STRUCT
 {attribute 'relative_offset':='3'}
 {attribute 'symbol':='readwrite'}
 PublicNumber : INT;

Examples for
the layout
types

Example:
Large structure

Symbol file,
large structure,
compatibility
layout option

Symbol file,
large structure,
optimized
layout option

Example:
Structure with
uneven
addresses

Example for the
data layout
types

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 935

 {attribute 'symbol':='readwrite'}
 PublicValue : LREAL;
END_STRUCT
END_TYPE
Resulting entries in the symbol file; pay attention to "size" and "byteoffset":
<TypeUserDef name="T_UnevenAddresses" size="13" nativesize="13"
typeclass="Userdef" pouclass="STRUCTURE" iecname="UnevenAddresses">

<UserDefElement iecname="PublicNumber" type="T_INT" byteoffset="3"
vartype="VAR" />

<UserDefElement iecname="PublicValue" type="T_LREAL" byteoffset="5"
vartype="VAR" />

</TypeUserDef>
<TypeUserDef name="T_UnevenAddresses" size="16" nativesize="13"
typeclass="Userdef" pouclass="STRUCTURE" iecname="UnevenAddresses">

<UserDefElement iecname="PublicNumber" type="T_INT" byteoffset="0"
vartype="VAR" />

<UserDefElement iecname="PublicValue" type="T_LREAL" byteoffset="8"
vartype="VAR" />

</TypeUserDef>
// Each POU contains some implicit variables, which do not get
published. Depending on the data type these might cause memory gaps
of different sizes.
FUNCTION_BLOCK POU IMPLEMENTS SomeInterface
VAR_INPUT
 in : INT;
END_VAR
VAR_OUTPUT
 out : INT;
END_VAR
VAR
END_VAR

Each POU contains some implicit variables, which do not get published. If it is a data type
such as __XWORD, then different sizes of memory gaps result in the client-side data layout,
depending on whether the system is 64-bit or 32-bit.
Resulting entries in the symbol file for 64-bit and 32-bit; pay attention to "size" and "byteoffset":
<TypeUserDef name="T_POU" size="24" nativesize="24"
typeclass="Userdef" pouclass="FUNCTION_BLOCK" iecname="POU">

<UserDefElement iecname="in" type="T_INT" byteoffset="16"
vartype="VAR_INPUT" />

<UserDefElement iecname="out" type="T_INT" byteoffset="18"
vartype="VAR_OUTPUT" />

</TypeUserDef>
<TypeUserDef name="T_POU" size="4" nativesize="24"
typeclass="Userdef" pouclass="FUNCTION_BLOCK" iecname="POU">

<UserDefElement iecname="in" type="T_INT" byteoffset="0"
vartype="VAR_INPUT" />

Symbol file,
structure with
uneven
addresses,
compatibility
layout option

Symbol file,
structure with
uneven
addresses,
optimized
layout option

Example:
Function block

Symbol file,
function block,
compatibility
layout option,
64-bit

Symbol file,
function block,
optimized
layout option,
64-bit

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US936

<UserDefElement iecname="out" type="T_INT" byteoffset="2"
vartype="VAR_OUTPUT" />

</TypeUserDef>
<TypeUserDef name="T_POU" size="12" nativesize="12"
typeclass="Userdef" pouclass="FUNCTION_BLOCK" iecname="POU">

<UserDefElement iecname="in" type="T_INT" byteoffset="8"
vartype="VAR_INPUT" />

<UserDefElement iecname="out" type="T_INT" byteoffset="10"
vartype="VAR_OUTPUT" />

</TypeUserDef>
<TypeUserDef name="T_POU" size="4" nativesize="12"
typeclass="Userdef" pouclass="FUNCTION_BLOCK" iecname="POU">

<UserDefElement iecname="in" type="T_INT" byteoffset="0"
vartype="VAR_INPUT" />

<UserDefElement iecname="out" type="T_INT" byteoffset="2"
vartype="VAR_OUTPUT" />

</TypeUserDef>

Symbol file,
function block,
compatibility
layout option,
32-bit

Symbol file,
function block,
optimized
layout option,
32-bit

See also
● Ä Chapter 1.4.1.9.2 “Symbol Configuration” on page 357

Object 'Task Configuration'
Symbol:
The object is used to define and display the basic settings for the task configuration.
The “Task Configuration” object must be included exactly one time in each application.
“Task Configuration” tabs and functions
● “Properties”: Display of the basic settings
● “System Events”: Linking of POU calls with system events
● “Monitor”: Display of the status and current statistics for the cycles times in online mode
● “Variable Usage”: Overview of the tasks that access the variables and how they do it
● “Task Groups”: Definitions of the tasks groups and their assignment to CPUs
● “CPU Load”: Graphical representation of the CPU load in online mode
See also
● Ä Chapter 1.4.1.8.16.1 “Creating a task configuration” on page 293
● Ä Chapter 1.4.1.20.2.26.1 “Tab 'Properties'” on page 938
● Ä Chapter 1.4.1.20.2.26.2 “Tab 'System Events'” on page 938
● Ä Chapter 1.4.1.20.2.26.3 “Tab 'Monitor'” on page 940
● Ä Chapter 1.4.1.20.2.26.4 “Tab 'Variable Usage'” on page 941
● Ä Chapter 1.4.1.20.2.26.5 “Tab 'Task Groups'” on page 941
● Ä Chapter 1.4.1.20.2.26.6 “Tab 'CPU Load'” on page 942
● Ä Chapter 1.4.1.20.2.27 “Object 'Task'” on page 942

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 937

Tab 'Properties'
Object: “Task Configuration”

In this tab, you define the basic settings of the task configuration as predefined by the target
system, such as the maximum values for tasks and watchdog parameters.

Tab 'System Events'
Object: “Task Configuration”

On the “System Events” tab, you define which event calls which function and whether or not the
configuration is currently activated. You use this tab when a system event (instead of a task)
should call a project function.

“Add Event Handler” Opens the “Add Event Handler” dialog

“Remove Event Handler” Deletes the selected list assignment

“Event Info” Shows information from the corresponding event library

“Open Event Function” Opens the editor of the new function for the selected assignment You have
selected the implementation language of the new function in the “Add Event
Handler” dialog.

Assignment of functions to call for events with: “Name”,“Description”, “Function to call”, and “Active” (acti-
vate/deactivate configuration).

Table 101: “Add Event Handler”
Adds a new assignment "Event – Function to call" to the list

“Event” The possible selection depends on the target device. CODESYS marks unavail-
able events with a red symbol in front of the name.
A list of all possible system events is located at the end of this section.

“Function to call” Function name (“POU”, type “FUNCTION”)
You have to specify the name of the new function. CODESYS inserts the func-
tion to the device tree after you confirm the dialog.

“Scope” ● “Application”: The function is available to the application.
● “POUs”: The function is available to the entire project.

“Implementation language” Implementation language for the new function

“Description” Short description of the selected event

The list of assignments from called functions to events also includes the following information:
“Event Status”, “Call Count”, and the “Online Reset” button.

“Event Status” 0: No error has occurred.

Does not equal 0: Error. You need to consult the respective runtime system
documentation.

“Call Count” Displays how often the event has occurred or the associated function has been
called.

“Online Reset” CODESYS reinitializes the event lists and resets the counter for the events/func-
tion calls. Incorrectly initialized events are displayed with a red status cell.

Features in
“Online Mode”

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US938

Event Description Task Debugging
PrepareStart Call before starting the

application
Communication task No

StartDone Call after starting the
application

Communication task No

PrepareStop Call before stopping
the application

Communication task No

StopDone Call after stopping the
application

Communication task No

PrepareReset Call before resetting
the application

Communication task No

ResetDone Call after resetting the
application

Communication task No

PrepareOnline-
Change

Call before online
change of the applica-
tion

Communication task No

OnlineChangeDone Call after online
change of the applica-
tion

Communication task No

PrepareDownload Call before down-
loading the application

Communication task No

DownloadDone Call after downloading
the application

Communication task No

PrepareDelete Call before deleting the
application

Communication task No

DeleteDone Call after deleting the
application

Communication task No

PrepareExit Call before exiting the
application

Communication task No

ExitDone Call after exiting the
application

Communication task No

CodeInitDone Event is sent after
Code Init. Called within
the task safe section
and only for an online
change change (for
example, the copy
code for online change
is executed here).

Communication task No

Exception The event is sent if an
exception has occurred
in the context of an
application.

Exception handling task of
the runtime, or the task
itself if the runtime does
not support exception han-
dling

Depends on the
task

Login Login of a client to this
application

Communication task No

Logout Logout of a client from
this application

Communication task No

BeforeReadingIn-
puts

Call before reading the
inputs

IEC task Yes

AfterReadingInputs Call after reading the
inputs

IEC task Yes

Possible system
events

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 939

Event Description Task Debugging
BeforeWritingOut-
puts

Call before writing the
outputs

IEC task Yes

AfterWritingOutputs Call after writing the
outputs

IEC task Yes

DebugLoop Event is sent in cycles
to the debug loop if
the IEC task stops at a
breakpoint.

Communication task No

PrepareShutdown Event is sent immedi-
ately before the run-
time system is down-
loaded.

Runtime main loop No

PrepareExitComm Event is sent during
download before
exiting the communica-
tion server.

Runtime main loop No

PrepareExitTasks Event is sent during
download before
exiting all tasks.

Runtime main loop No

Tab 'Monitor'
Object: “Task Configuration”

In online mode, the tab shows the status of the tasks of the task configuration, as well as
some current measurements of the cycles and cycle times. CODESYS updates the values in
the same time interval as for the monitoring of values from the PLC.
The displayed values can be reset to 0 by means of the “Reset” context menu command.

“Task” Task name (as defined in the task configuration)

“Status” ● “Not created”: The task has not been started since the last update (especially for
event tasks).

● “Generated”: The task is recognized in the runtime system, but not yet in opera-
tion.

● “Valid”: The task is operating normally.
● “Exception”: The task has produced an exception status.

“IEC-Cycle Count” Number of cycles executed since starting the application where the IEC code was
executed (0 if the target system does not support the counter function)

“Cycle Count” Number of executed cycles since logging in to the PLC
It depends on the target system whether cycles are also counted where the appli-
cation is not running. In these cases, the “Cycle Count” may be greater than the
“IEC-Cycle Count”.

“Last Cycle Time (µs)” Last measured cycle time [µs]

“Average Cycle Time (µs)” Average cycle time over all cycles [µs]

“Max. Cycle Time (µs)” Maximum measured cycle time over all cycles [µs]

“Min. Cycle Time (µs)” Minimum measured cycle time over all cycles [µs]

“Jitter (µs)” Current value of the periodic jitter [µs]
Note: From CODESYS 3.5 SP11 to SP15, the peak-peak value of the periodic jitter is
displayed. In earlier versions and in SP16 and later, the current value of the periodic
jitter is displayed.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US940

“Min. Jitter (µs)” Minimum measured periodic jitter [µs]

“Max. Jitter (µs)” Maximum measured periodic jitter [µs]

“Core” Number of the processor core where the task is currently running
Example: 2
Requirement: The controller is equipped with a multicore processor.
If the CPU is not a multicore CPU, then the value -1 is displayed here.

See also
● Ä Chapter 1.4.1.8.16.2 “Definitions of Jitter and Latency” on page 294
● Ä Chapter 1.4.1.8.16 “Task Configuration” on page 292

Tab 'Variable Usage'
Object: “Task Configuration”

The “Variable Usage” tab provides an overview of all variables and their usage. There you can
see the tasks where variables are accessed.
When using multicore, write access (w) to a variable should take place only in a task because
otherwise it can cause inconsistencies.
In the context menu, you can hide individual tasks and show the cross-reference list to varia-
bles.

“Variables” Name of the variable

“Type” Data type

“Number” Number of tasks that access these variables.

“<task name>” Access to the variable (r: read, w: write, rw: read/write)

See also
● Ä Chapter 1.4.1.8.16 “Task Configuration” on page 292

Tab 'Task Groups'
Object: “Task Configuration”

You define task groups on the “Task Groups” tab. Task groups can be distributed over the
individual processor cores in multicore systems. The tasks of a task group are bound to the
processor cores according to the strategy defined in the “Core” field.

“Add Group” The button adds a new task group named NewGroup_<no>.

“Remove Group” Deletes the selected task group.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 941

“Group Name” The name can be changed by double-clicking in the field.

“Core” Determines the processor core for process the tasks of this group.
● “Free floating”: All tasks are bound dynamically to different processor cores.

The user does not have any influence over this. The operating system is
responsible for the distribution.

● “Sequentially pinned”: All tasks are bound and fixed to different processor
cores. The user does not have any influence over this.

● “Fixed pinned”: All tasks are bound to one processor core. By default, the
runtime system determines the processor core.

● “<core number>”: Fixed defined processor core. If the processor core is not
available, then an error message is issued.

See also
● Ä Chapter 1.4.1.8.16 “Task Configuration” on page 292

Tab 'CPU Load'
Object: “Task Configuration”

The “CPU Load” tab is available in online mode for multicore devices only. The load of the
individual CPUs is presented in the trace editor.
You open the trace configuration by double-clicking the legend in the window on the right side.
Adding more variables is not possible here.
See also
● Ä “Displaying the CPU load with DeviceTrace objects in the CODESYS project (example)”

on page 429

Object 'Task'
Symbol:
In this object, you define the conditions for starting and calling the task.
You insert the object below “Task Configuration” in the device tree.

Tab 'Configuration'
Object: “Task”

“Priority” Possible values: 0..31, where 0 is the highest priority

“Task group” Assigned task group. This assignment is shown in parentheses in the device
tree. Task groups can be assigned to specific processor cores in multicore.
The task group is shown in parentheses after the task in the device tree.

Table 102: “Type”
“Cyclic” CODESYS processes the task in cycles. The cycle time of the task is defined in

the input field “Interval”.

“Event” CODESYS starts processing the task as soon as the global variable defined in
the input field “Event” contains a rising edge.

“Freewheeling” CODESYS starts processing the task again automatically in a continuous loop at
program start and at the end of a complete pass. The cycle time is not defined.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US942

“Status” CODESYS starts task processing as soon as the variable defined in the “Event”
input field yields the Boolean value TRUE.

“External” CODESYS starts processing the task as soon as the event defined in the “Event”
input field occurs. The target system determines which events are supported and
offered in the list box. (Not to be confused with system events).

“Interval” Task-cycle time
Required for the types “Cyclic” or “External Event” when the event requires a
given time. Time span after which the task should be restarted. If you enter a
number here, then you can select the desired unit in the list box after the input
field.
When you select “ms”, an entry is automatically displayed in TIME format, for
example t#200ms, as soon as the window is in focus again. You can also enter
the task cycle time directly in TIME format. Entries in [µs] format are always
displayed as a pure number.
Deviations of the task from this desired task cycle time are displayed at runtime
as periodic jitter on the “Watchdog” tab.

NOTICE!
For fieldbuses, a fixed cycle matrix is necessary to assure a determined
behavior. Therefore, you should not use “Type” “Freewheeling” for a bus cycle
task.

NOTICE!
Note the following difference between the processing types “Status ” and
“Event”. If the given event yields TRUE, then the start condition of a task of
type “Status” is fulfilled. In contrast, the start of a task of type “Event” requires
a switch of the event from FALSE to TRUE. If the sampling rate of the task
scheduler is too low, then the rising edge of the event can remain unnoticed.

NOTICE!
When setting the task cycle time, you have to identify which bus system is
currently being used. For example, the task cycle time in a CAN bus system
must match the currently set baud rate and the number of frames used in the
bus. In addition, the times set for heartbeat, node guarding, and sync should
always be a multiple of the task cycle time. If not, then CAN frames can be lost.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 943

Table 103: “Watchdog”
Defines the time monitoring for a task. If the target system supports an advanced watchdog configuration, then
the following settings may be predefined in the device description.
● Upper and lower limit
● Default watchdog time
● Time specified as percentage
The default watchdog settings depend on the device.

“Enable” The watchdog is active.
If the task exceeds the currently set “Time” of the watchdog, then the task is
halted with an error status (exception). The application in whose task the error
occurred and its child applications are also halted. In this way, all tasks of the
affected applications are also halted. Then the currently defined “Sensitivity” is
also taken into account. If you activate the option “Update I/Os” in the “PLC
Settings” of the PLC, then CODESYS resets the outputs to the defined default
values.
Possible cases:
● Multiple consecutive timeouts:

Sensitivity: 0, 1 - exception in cycle 1
Sensitivity: 2 - exception in cycle 2
Sensitivity: n - exception in cycle n

● Single timeout: Exception if the cycle time of the current cycle is longer than
(time * sensitivity). Example: Time=t#10ms, Sensitivity=5 (i.e., exception as
soon as the one-time task runs longer than 50 ms)

“Time (e.g. t#200ms)” Watchdog time
Defines (together with “Sensitivity”) the watchdog for a task; description as for
“Enable”.
Depending on the target system, the monitoring time span is given as a per-
centage of the task interval if possible. In this case, the list box for the unit is
disabled and displays “%”.

“Sensitivity” Number
Defines (together with the watchdog) the watchdog for a task; description as for
“Enable”.

Using the functions from the library CmpIecTask.library, you can deactivate
a watchdog for specific PLC cycles. This is useful for cycles that demand more
time due to initialization.

Deactivating/reactivating the watchdog:
hIecTask := RTS_IEC_HANDLE //Declaration of the variable hIecTask
hIecTask := IecTaskGetCurrent(0);
IecTaskDisableWatchdog(hIecTask); // Watchdog disabled
...
IecTaskEnableWatchdog(hIecTask); Watchdog enabled

Example

List of “POU”s that the task calls
The calling order corresponds to the POU order in the list (from top to bottom).

“Add Call” Defines a new program call

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US944

“ Open POU” Opens the selected POU

“Move Up”

“Move Down”

Changes the calling order

See also
● Ä Chapter 1.4.1.20.2.26 “Object 'Task Configuration'” on page 937
● Ä Chapter 1.4.1.20.2.26.3 “Tab 'Monitor'” on page 940
● Ä Chapter 1.4.1.20.2.26.5 “Tab 'Task Groups'” on page 941

Object 'Trace'
Symbol:
An object of type “Trace” is used for configuring and displaying application-specific trace data
in one or more charts. At application runtime, value curves of trace variables, which you can
monitor in the trace editor in CODESYS, are recorded on the controller. Requirements are that
a trace configuration has been configured transferred to the controller, and the trace recording
has been started. The recorded data is transferred to the development system and displayed in
diagrams according to the configuration. You can navigate through the data when tracing.

If the controller supports a Trace Manager, then you can use the 'DeviceTrace'
object type in the Trace Manager to access all traces that are running on the
controller.

Double clicking the trace object opens the trace editor. The corresponding toolbar contains the
most important trace commands. The trace variable list shows the variable whose value curve is
recorded.

● (1): Toolbar of the trace editor
● (2): Trace editor
● (3): Trace variable list
● (4): Links for trace configuration

“Configuration”
“Add Variable”

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 945

See also
● Ä Chapter 1.4.1.12.3 “Data Recording with Trace” on page 421
● Ä Chapter 1.4.1.20.2.29 “Object 'DeviceTrace'” on page 948

See also

● : Ä Chapter 1.4.1.20.3.21.6 “Command 'Download Trace'” on page 1138
● : Ä Chapter 1.4.1.20.3.21.16 “Command 'Start Trace'” on page 1145
● : Ä Chapter 1.4.1.20.3.21.17 “Command 'Stop Trace'” on page 1145
● : Ä Chapter 1.4.1.20.3.21.13 “Command 'Reset Trigger'” on page 1144
● : Ä Chapter 1.4.1.20.3.21.9 “Command 'Mouse Zooming'” on page 1141
● : Ä Chapter 1.4.1.20.3.21.2 “Command 'AutoFit'” on page 1137
● : Ä Chapter 1.4.1.20.3.21.5 “Command 'Cursor'” on page 1137
● : Ä Chapter 1.4.1.20.3.21.3 “Command 'Compress'” on page 1137
● : Ä Chapter 1.4.1.20.3.21.3 “Command 'Compress'” on page 1137
● : Ä Chapter 1.4.1.20.3.21.18 “Command 'Stretch'” on page 1146

At application runtime, the runtime system buffer of the trace component is filled with the
recorded samples. The data is transferred to the development system and stored in its trace
editor buffer. The trace editor accesses this data and displays it in diagrams as a graph over
time. When you close the trace editor, the trace editor buffer will be freed.
Use menu commands for controlling the trace. In addition, you can use menu commands,
keyboard shortcuts, and mouse input for navigating through the data.
See also
● Ä Chapter 1.4.1.12.3.3 “Operating the data recording” on page 427
● Ä Chapter 1.4.1.12.3.5 “Navigating into trace data” on page 429

The trace variable list provides an overview of the current trace configuration. In the list, all
charts with the respective trace variables are displayed in a table. When you double-click a
trace variable, the “Trace Configuration” dialog also opens with the variable settings.

A list box opens by means of the “Hide Instance Paths” command.

“Hide Instance Paths” Display of the variable name in the list

● : Variable name with full instance path
Example: PLC_PRG.iCounter

Table 104: Charts
Tabular display of the charts:

“Name” List of charts with the respective variables

● “Chart <n>” : The chart is displayed.
The chart name can be changed by clicking the selected name.

● “<variable>” : The variable is displayed.
The variable name can be changed by clicking the selected name in the line
editor.

When you select a “Chart <n>” in the table, the corresponding chart is also
selected in the editor. This also works the other way around.

“Cursor <n>” Y-value at the cursor position

“Delta” Delta of the Y-value from “Cursor 2” to “Cursor 1”

Toolbar of the
trace editor

Trace editor

Trace variable
list

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US946

You can drag the charts and variables to sort them or move them to other
diagrams. When the [Ctrl] key is pressed, the variable is copied. This is also
possible in online mode.

Table 105: Context menu in the trace variable list
“Add Variable” Adds a new trace variable and opens the “Trace Configuration” dialog with its

variable settings. Select a variable in the input field of the “Variable” setting to
trace its value curve.

“Visible” Toggles the visibility of the graph (value curve or trace variable) in the corre-
sponding diagrams:

● : Visible.
● : Invisible.

“Display Mode” Opens the “Trace Configuration” dialog. Select a configuration item in the “Trace
Record” tree view or “Presentation (Diagrams)”.

“Configuration” Opens the “Trace Configuration” dialog. The “Variable Settings” are displayed on
the right.

See also
● Ä Chapter 1.4.1.20.4.15.2 “Dialog 'Trace Configuration'” on page 1209

Table 106: With mouse input
User input with the mouse Mouse cursor

symbol during user
input

Effect

Drag the graph along the X-axis. Scrolls trace graphs of all diagrams at the
same time along the time axis (X-axis).

Hold down the [Ctrl] key and drag the
graphs along the Y-axis.

Scrolls the trace graphs of the selected dia-
grams along the Y-axis.

Roll the mouse wheel backwards. Compressed time axis (like the symbol).

Roll the mouse wheel forwards. Stretches time axis (like the symbol).

Press and hold down the [Ctrl] key and roll
the mouse wheel backwards.

 Compresses the Y-axis.

Press and hold down the [Ctrl] key and roll
the mouse wheel forwards.

 Stretches the Y-axis.

Requirement: One or two trace cursors are
activated.
Drag the triangle of a trace cursor to another
position along the time axis.

Refreshes the Y-values in the trace variable
list at the same time
● First value: Y-value at the position of the

left cursor.
● Second value: Y-value at the position of

the right cursor.
● Third value: Difference between both

values.

Requirement: “Mouse zooming” is activated
().
Stretch a rectangle.

Zooms the trace graphs of all diagrams to
the rectangle.

Navigating in
the diagram

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 947

Table 107: With keyboard shortcuts
Shortcut Effect
Requirement: No trace cursor is activated.
[Arrow Left]

[Arrow Right]

Scrolls trace graphs of all diagrams at the same time along
the time axis.

[Arrow Up]

[Arrow Down]

Scrolls the trace graphs of the selected diagrams along the
Y-axis.

Requirement: One or two trace cursors are acti-
vated.
[Alt]+[Arrow Left]

[Alt]+[Arrow Right]

Scrolls trace graphs of all diagrams at the same time along
the time axis.

[-] Compressed time axis (like the symbol).

[+] Stretches the X-axis (like the symbol).

[Ctrl]+[-] Compresses the Y-axis of the selected diagram.

[Ctrl]+[+] Stretches the Y-axis of the selected diagram.

[Tab] Selects the next lower diagram.

Requirement: One or two trace cursors are acti-
vated.
[Arrow Left]

[Arrow Right]

Moves the black trace cursor.

Requirement: Two trace cursors are activated.
[Shift]+[Arrow Left]

[Shift]+[Arrow Right]

Moves the gray trace cursor.

See also
● Ä Chapter 1.4.1.20.3.21.5 “Command 'Cursor'” on page 1137
● Ä Chapter 1.4.1.20.3.21.9 “Command 'Mouse Zooming'” on page 1141
● Ä Chapter 1.4.1.12 “Application at Runtime” on page 409

Object 'DeviceTrace'
Symbol:
A “DeviceTrace” object shows trace data in one or more diagrams, as does a “Trace” object.
The difference is that a “DeviceTrace” directly accesses traces that are running on the controller.
The object is inserted below the device in the device tree. Therefore there is no immediate
dependency on the applications in the CODESYS project.

You can use the DeviceTrace for visualizing the processor load of a multicore
controller.

For more information about the editor and its operation, refer to the help page for the “Trace”
object.
See also
● Ä Chapter 1.4.1.20.2.28 “Object 'Trace'” on page 945
● Ä “Runtime system component CmpTraceMgr, "Trace manager"” on page 421
● Ä Chapter 1.4.1.12.3.4 “Accessing All Traces on the Controller” on page 428

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US948

Object 'Trend Recording Manager'
Symbol
A “Trend Recording Manager” object makes it possible to save data at runtime in a database for
a long period of time. This data is recorded with the “CmpTraceMgr” runtime system component.
In the device tree, this object is used as a node for trend recordings that are created below an
application. It is available below an application only one time.
See also
● Ä Chapter 1.4.1.12.4 “Data Recording with Trend” on page 430
● Ä Chapter 1.4.1.20.3.4.1 “Command ‘Add Object’” on page 1001
● Ä Chapter 1.4.1.20.2.31 “Object 'Trend Recording'” on page 949

Object 'Trend Recording'
Symbol:
A “Trend Recording” object is always located below a “Trend Recording Manager” and enables
editing of the trace configuration. At runtime, CODESYS transfers the configuration that is
available to the runtime system component CmpTraceMgr. You can configure an application
with any number of trend recordings.

NOTICE!
Timeout for trend recording
During a trend recording, it can happen that the application task triggers a
timeout that is caught with an exception when transitioning from “Running” to
“Stop”. Causes can be that file operations with the SQLite database are taking
too long or that too many variables are being recorded. This usually happens on
a target device with weak performance.
You can avoid the occurrence of an exception:
– Configure the trend recording with less memory demand so that the amount

of data that is stored is adapted to the target system.
– Reduce the number of variables.

The editor includes the configuration for trend recording. The tree view shows the trend configu-
ration and enables navigation there.
The top entry contains the trend name. When this entry is selected, the “Record Settings”
are displayed next to it. An entry is located here for each variable whose data was recorded
continuously. When a variable is selected, the “Variable Settings” are displayed next to it.

“Add Variable” When you click the link, a new entry is displayed in the trend configuration with
its blank configuration below the “Variable Settings” group.

“Delete Variable” The selected variable is removed. Requirement: A variable is selected.

See also
● Command 'Edit Trend Recording'

The data is recorded in the runtime system component by means of the functionality which is
also used for the trace. The settings that appear here are the same. The options that are not
required here are deactivated.

'Recording Set-
tings'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 949

ms-its:core_Visualization.chm::/_visu_cmd_trend_edit_trend_recording.htm

The settings that affect the trigger are deactivated. Only a trace configuration for a trace editor can configure
triggering.

“Task” Task where data was recorded. Click to open a list box with all tasks available
in the project. In general, the trend recording runs in the same task as the main
program. For example: MainTask

“Recording condition” Condition under which the application records data:
● IEC variable of type INT. The condition is fulfilled for TRUE.
● Bit access to an integer variable. The condition is fulfilled for 1.

As read access to a property.
The contents of a pointer are not permitted.
Note: If no condition is defined, then the recording starts automatically.

“Comment” Comment (example: Data recording of sensor A)

“Resolution” Resolution that the application saves the time stamp
Note: If the task where the trend object is executed has a cycle time of 1 ms or
less, then you should set the resolution of the time stamp to “1 µs”.

“Trend Storage” The “Trend Storage” dialog opens.

“Advanced” The “Advanced Trend Settings” dialog opens.

See also
● Ä Chapter 1.4.1.20.4.16 “Dialog Box 'Trend storage'” on page 1214
● Ä Chapter 1.4.1.20.4.17 “Dialog Box 'Advanced Trend Settings'” on page 1214

“Variable” Variable for recorded value.
● IEC variable with valid data type
● Property
● Reference
● Contents of the pointer
● Array element of a valid data type
● Enumeration of a valid data type
Valid data types are all standard types, except STRING, WSTRING, and ARRAY.

“Parameter” Parameter for the recorded value
The “Input Assistant” dialog lists all valid system parameters in the “Parameters”
category of the “Categories” tab.

Click the symbol to toggle between “Variable” and “Parameter”.

“Recording condition” Condition under which the application records the data of these “Variables”:
● IEC variable of type INT. The condition is fulfilled for TRUE.
● Bit access to an integer variable. The condition is fulfilled for 1.

As read access to a property
The contents of a pointer are not permitted.
Note: If no condition is defined, then the recording starts automatically.

“Attached y axis” Y-axis of the trend diagram that displays the “Variable”. The list box provides the
standard Y-axis and the configured Y-axes.
Requirement: This option is visible only when the “Trend” visualization element
has configured additional Y-axes in the “Edit Display Settings” dialog.

'Variable Set-
tings'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US950

“Display variable name” : The visualization shows the name of the IEC variable in the trend diagram at
runtime. Either alone or in parentheses after the “Description”

: The name of the IEC variable is shown and does not appear in parentheses
after the “Description”.
Requirement: If any text is typed in “Description”, then you can disable the
option.

“Description” Text for the tooltip (example: Sensor A): When a visualization user focuses on
the variable in the trend diagram, the visualization shows the text as a tooltip.
The text is typed into the “GlobalTextList” object and can be localized there.
When the “Display Variable Name” property is activated, then the text is
supplemented with the variable name in parentheses. Example: Sensor A
(PLC_PRG.iSensor_A)
If “Description” does not contain any text, then “Display Variable Name”
is enabled. The name is then alone without parentheses (for example,
PLC_PRG.iSensor_A).

If a legend is assigned to the trend, then the trend variable is labeled in the
legend and shown like the trend is configured here.

“Curve type” ● “Line”
● “Area”:

“Graph color” Color of the curve in the trend diagram

“Line type” ● “Line”: Values are linked to form a line.
● “Step”: Values are linked in the form of steps.
● “None”: Values are not linked.
Requirement: The “Curve type” is “Line”.

“Filling type” ● “No filling”
● “Plain color”:
● “Gradient”

Requirement: The “Curve type” is “Area”.

“Filling color” : The area is filled with the selected color.
Requirement: The “Curve type” is “Area”.

“Transparency” Value (0 to 255) for defining the transparency of the selected color
Example 255: The color is opaque. 0: The color is completely transparent

Requirement: The “Curve type” is “Area”.

“Line width” Value (in pixels)
Example: 1

“Line style” The display of the line is solid, dash, dot, dash-dot, or dash-dot-dot.

“Point type” Display as scatter chart
● “Dot”: Value as a dot.
● “Cross”: Value as a cross.
● “None”: No dot display
Hint: Select “None” for larger size data.

“Activate minimum warning” : Warning when below the lower limit.

“Critical lower limit” If the variable value is below the limit, then the variables are displayed with the
alert color in the trend diagram.

“Color” Warning color on falling below the limit

“Activate maximum warning” : A warning is issued if the upper limit is exceeded.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 951

“Critical upper limit” If the variable value exceeds the limit, then the variables are displayed with the
alert color in the trend diagram.

“Color” Warning color on exceeding the limit

See also
● Ä Chapter 1.4.1.20.4.15.2 “Dialog 'Trace Configuration'” on page 1209
● Dialog 'Display Settings'
● Visualization Element 'Legend'

See also
● Ä Chapter 1.4.1.20.3.4.1 “Command ‘Add Object’” on page 1001
● Ä Chapter 1.4.1.12.4 “Data Recording with Trend” on page 430
● Visualization Element 'Trend'

Object 'Trend Recording Task'
Symbol
If you design a visualization with a “Trend” element, then CODESYS automatically extends the
“Task Configuration” with a “Trend Recording Task”. The task is below an application one time at
most and calls the
VisuTrendStorageAccess.GlobalInstances.g_TrendRecordingManager.CyclicC
all program to run the trend recording manager.

See also
● Ä Chapter 1.4.1.20.3.4.1 “Command ‘Add Object’” on page 1001
● Ä Chapter 1.4.1.12.4 “Data Recording with Trend” on page 430

Object 'Unit Conversion'
Symbol
A “Unit Conversion” object is used to define a conversion rule. The following table lists all
defined conversion rules. You can edit a conversion rule in the input fields listed below the table.

Table of conver-
sion rules

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US952

ms-its:core_visualization.chm::/_visu_cmd_trend_configure_appearance_settings.htm
ms-its:core_Visualization.chm::/_visu_elem_legend.htm
ms-its:core_Visualization.chm::/_visu_elem_trend.htm

“Name” <name> : <name>_Impl is the name of the conversion rule. CODESYS auto-
matically implements the entry as a function block <name>_Impl and instances
it as <name>.

“Type” Type of conversion rule
● “Single scaling (offset)”: adds an offset to the input variable. Result :=

Input + Offset
● “Single scaling (factor)”: multiplies the input variable by a factor. Result :=

Input * Factor
● “Linear scaling 1 (factor and offset)”: converts the input variable with a factor

and offset. Result := Input * Factor + Offset
● “Linear scaling 2 (Base and target range)”: converts the input variable for the

output value to be within a target range. CODESYS calculates the functional
linear equation internally.

● “User defined conversion”: configures a user-defined conversion rule with
IEC operators. The input variable is rValue.

● “Switchable conversion”: defines a conversion rule that CODESYS executes
independent of any specified language or variable.

“Setting” Displays the configured conversion rule.

“Condition” ● “TRUE”: CODESYS always executes the conversion.
● “Language” If the language in the visualization is the language defined here,

then CODESYS executes the conversion. The current visualization language
is located in the VisuElems.CurrentLanguage variable.

● “Variable”: If the comparison is TRUE, then CODESYS executes the conver-
sion rule. CODESYS can pass the comparison for a constant, variable, or
IEC expression.
You can edit the comparison below the table in the “Condition Setting”.

“Condition Setting” If you select “TRUE” as the “Condition”, then the field is hidden.
If you configure “Language” as the “Condition”, then the field shows the current
configuration, for example en,de.

If you select “Variable” as the “Condition”, then the field shows the current con-
figuration, for example PLC_PRG.bActual=PLC_PRG.bSet.

You can edit the current condition setting below the table in the input fields for
“Condition Setting”.

The input variable is added with an offset.

“Offset” ● as a number, including REAL
● as an IEC variable

The input variable is multiplied by the factor.

“Factor” ● as a number, including REAL
● as an IEC variable

The input variable is converted with the linear equation defined below.

Input field
'Single scaling
(offset)'

Input field
'Single scaling
(factor)'

Input field 'Li-
near scaling 1
(factor and
offset)'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 953

“Factor” ● as a number, including REAL
● as an IEC variable

“Offset” ● as a number, including REAL
● as an IEC variable

The input variable is converted to be within a target range. CODESYS internally creates a linear
equation from the following input values.

“Base start value” Lowest possible value for the input variable.
● as a number, including REAL
● as an IEC variable

“Base end value” Highest possible value for the input variable.
● as a number, including REAL
● as an IEC variable

“Target start value” Lowest possible value for the output variable.
● as a number, including REAL
● as an IEC variable

“Target end value” Highest possible value for the output variable.
● as a number, including REAL
● as an IEC variable

Conversion of electric current from a 10-bit input signal to an amperage range of 4-20 mA

“Base start value” 0
“Base end value” 1024
“Target start value” 4.0
“Target end value” 20.0

Example

“Convert :=” Conversion rule as mathematical function of rValue The input variable is
rValue.

“Reverse :=” Reverse function of the function defined in “Convert”

Use this conversion rule when you want to apply a conversion that is language-specific or
variable-dependent.

“Switchable conversion name” Selected from a list of predefined conversion rules. Double-click directly into the
field for editing.

“Condition setting”“” Configured condition. Click into the input fields in “Condition setting” to edit the
condition.

Input field 'Li-
near scaling 2
(Base and target
range)'

Input field 'User
defined conver-
sion'

Input field
'Switchable con-
version'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US954

The Conv_A_LanguageDependent conversion rule that defines which conversion rule is
executed for the English or German language.

“Name” “Type” “Setting” “Condition” “Condition
setting”

Conv_A_Langu
ageDependent

“Switchable
conversion”

Conv_AInInch
, Conv_AInMM

“Language”

“Switchable conversion name” “Condition setting”
Conv_AInInch en
Conv_AInMM de

Example

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

1.4.1.20.3 Menu Commands
By default the most important commands are already provided in the CODESYS user inter-
face. If you want to customize the menu configuration individually, choose command “Tools
è Customize è Menu”.
When you have installed any packages or add-ons, additional menus and commands might be
available.

Menu 'File'
1.4.1.20.3.1.1 Command ‘New Project’.. 955
1.4.1.20.3.1.2 Command 'Open Project'... 957
1.4.1.20.3.1.3 Command ‘Close Project’.. 957
1.4.1.20.3.1.4 Command 'Save project'.. 957
1.4.1.20.3.1.5 Command 'Save Project as'.. 958
1.4.1.20.3.1.6 Command 'Save Project and Install into Library Repository'..... 959
1.4.1.20.3.1.7 Command 'Save Project as Compiled Library'.......................... 960
1.4.1.20.3.1.8 Command 'Save/Send Archive'... 960
1.4.1.20.3.1.9 Command 'Extract Archive'... 961
1.4.1.20.3.1.10 Command 'Source Upload'.. 962
1.4.1.20.3.1.11 Command 'Source Download'... 963
1.4.1.20.3.1.12 Command 'Print'.. 963
1.4.1.20.3.1.13 Command 'Print Preview'.. 964
1.4.1.20.3.1.14 Command 'Page Setup'... 964
1.4.1.20.3.1.15 Command ‘Recent Projects’.. 964
1.4.1.20.3.1.16 Command 'Exit'.. 964

Command ‘New Project’
Symbol: , Shortcut: [Ctrl] + [N]

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 955

Function: This command opens the “New Project” dialog box for the creation of a new project
file.
Call: “File” menu

Function: Selection of a project category and a project template.
Call: “File è New Project”

Depending on the template, you obtain a project that is automatically equipped with a certain
range of objects.

Table 108: “Categories”
“Libraries”

“Projects”

Table 109: “Templates”
“Projects” category::

“Empty project” Contains only the “Project Settings” object

“Standard project” Contains a basic range of objects and libraries. A wizard assists with the creation
– see below.

“Standard project with
Application Composer”

Contains a basic range of objects and libraries for working with the Application
Composer. A wizard assists with the creation.

“Libraries” category:

“CODESYS container library ” Library that contains only further libraries, but no function blocks of its own.

“CODESYS interface library ” Library only for the definition of the interface of a software component. Thus
contains only objects that do not generate any code (constants, structures, inter-
faces, etc.).

“Empty library” Contains only the “Project Settings” object

“ External CODESYS library ” Target-system-specific library which is implemented as part of the runtime
system (in ANSI C or C++).

“Name” Name of the project to be created. Depending on the template, a standard name
appears. The numerical suffix ensures the uniqueness of the name in the file
system.
You can change the file name, taking into consideration the file path conventions
of the operating system. Periods are not permitted in names.
CODESYS automatically adds the appropriate file extension to the selected
template.

“Location” Location for the new project file.

 opens a dialog box for browsing the file system.

 displays the history of previously entered paths

“OK” CODESYS opens a new project. An error symbol next to the input field draws
attention to missing specifications. If you place the mouse pointer on it, a tooltip
appears, informing you what to do.

Function: Wizard for the creation of a standard project.
Call: Command “File è New Project”; in the “New Project” dialog box, select the “Projects”
category and the “Standard project” template and click on “OK”.

'New Project'
dialog box

“Standard
Project” dialog
box

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US956

“Device” Selection list with PLC devices. The selected device is inserted as an object in
the Devices view below the root node

“PLC_PRG in” Selection list with the programming languages. The automatically inserted pro-
gram PLC_PRG is created in the selected language.

Command 'Open Project'
Symbol: ; shortcut: [Ctrl]+[O]

Function: The command opens the default dialog for loading a project. You can search for a
CODESYS project in the file system and open it in the development system.
Call: Menu bar: “File”

“File type” Type of the CODESYS project to be loaded to the development system

“All supported files” Filters by all projects which CODESYS can load
Hint: For example, you can select PRO projects which have been created with
CoDeSys V2.3. These kinds of projects are also converted.

File extension project Filters by projects which have been created with CODESYS V3

File extension
projectarchive

Filters by project archives which have been created with CODESYS V3

File extension library Filters by library projects which have been created with CODESYS V3

“Open” Loads the project you selected to CODESYS
Note: Depending on the state of your CODESYS installation, it may be neces-
sary to update or supplement the installation. If this is the case, then first open
another “Open Project” dialog with options for installation management.

See also
● Ä Chapter 1.4.1.2.1 “Opening a V3 Project” on page 186
● Ä Chapter 1.4.1.2.2 “Opening a V2.3 project” on page 187

Command ‘Close Project’
Function: This command closes the currently opened project. CODESYS remains opened.
Call: “File” menu. In addition implicitly when opening a new/other project, while another project
is still open.
If the project contains unsaved changes, a query appears, asking whether the project should be
saved.
If you have not yet explicitly saved the project, a query appears asking whether you wish to
delete the project files.

Command 'Save project'
Symbol: , shortcut [Ctrl] + [S]

Dialog 'Open
Project'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 957

Function: this command saves the project file.
Call: “File” menu
This command saves the project file with the current project name, which appears in the title bar
of the main window. If the project has been changed since it was last saved, the project name is
given an asterisk.
The command is not available if the project is read-only.
Write protection exists if
● the project is identified in the project information (summary) as 'Released'
● the option “Open read-only” was selected in the dialog box “Open Project” when opening the

project
Write protection is indicated by a line in the top right corner of the main window. A mouse-click
on this line brings up a menu with commands for the possible actions:
● “Save project under a different file name on the disk”: a mouse-click on this option leads to

'Save file as…'
● “Exit read-only mode”: appears only if the option “Open read-only” was selected when

opening the project.
● “Remove read-only attribute from the project on the disk”: appears only if the project file had

been provided with the property 'Read-only' on the disk at the time of opening.
● “Remove identification 'Released' in the project information”: appears only if this attribute is

currently set.
Backup copy
Optionally a backup copy of the project file can be created. If the option “Create backup copy”
is activated in the option dialog box 'Load and Save', the project is additionally copied to a file
<projectname.backup> each time the project is saved.

See also
● Ä Chapter 1.4.1.20.3.1.5 “Command 'Save Project as'” on page 958
● Ä Chapter 1.4.1.5.8 “Saving the Project” on page 209
● Ä Chapter 1.4.1.20.4.13.16 “Dialog 'Options' – 'Load and Save'” on page 1196

Command 'Save Project as'
This command opens the standard Windows dialog box for saving a file. The project can be
stored with the desired location and file type.

“File type” For both normal projects and library projects, this drop-down list contains the
respective versions of the development system for which the project can be
saved. If the current project contains add-ons that are not available in the
selected memory format (profile), then the “Extend Profile” dialog box opens.
● “Project files (CODESYS v<version>) (*.project)”: The project is saved as

a CODESYS project file "<project name>.project " for the currently used or
selected version of the development system.

● “Library files (CODESYS v<version>) (*.library)”: The project is saved as
a CODESYS library file "<project name>.library" for the currently used or
selected version of the development system.

If the project should be opened later in an older version, then it makes sense to
save for precisely this version, as you will then be informed immediately about
possible data loss.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US958

Before saving a project as a library:
● Make sure that the rules for creating libraries have been followed.
● If it is to be possible to configure global constants provided by the library at a later time in an

application, then you must define them in a parameter list. A parameter list is a special type
of global variable list.

● When saving the project, no automatic check for errors is performed.
● Unlike CoDeSys V2.3, there is no distinction between 'external' and 'internal' libraries. Now

you can define in the properties of each individual project object whether or not it should be
treated as 'external'.

● Consider whether the library created is to be installed in the system library repository
immediately. If so, then use the command 'Save project and install in the library repository'.

● If you want to protect the library project from later changes, then set the “Released” attribute
in the “Project Information” dialog box. At the next attempt to save the project, a corre-
sponding message will be displayed and the user must respond to the write protection with
deliberate actions.

● If you save the project as a version of the development system other than the one currently
in use, then you will be informed first about possible data loss.

In this dialog box, the selected profile (memory format) can be extended by the add-ons that are
contained in the current project. The profile is saved temporarily and then deleted after being
saved or exported.

“Add to profile” : The current profile is extended by the add-on so that the add-on data of the
current project is also saved.

“Add-on” The add-on of the current project that is not contained in the selected memory
format.

“Version” Version of the “Add-on” included in the current profile.
If several versions are installed, then the version can be selected.

“Save profile” Opens the “Enter Profile Name” dialog box. In this dialog box, specify the name
for the new profile. The new profile is saved permanently at $ProgramData$/
$PRODUCT$/CustomInformationalProfiles.

“Use saved profile” The profile which was permanently saved in “Save profile” is used for saving or
exporting the current project.

● Ä Chapter 1.4.1.20.3.1.4 “Command 'Save project'” on page 957
● Ä Chapter 1.4.1.5.8 “Saving the Project” on page 209
● Ä Chapter 1.4.1.20.4.13.16 “Dialog 'Options' – 'Load and Save'” on page 1196
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449
● Ä Chapter 1.4.1.20.3.1.6 “Command 'Save Project and Install into Library Repository'”

on page 959

Command 'Save Project and Install into Library Repository'
Function: this command saves the project as a library in the 'system' library repository.
Call: Main menu “File”.
With this command CODESYS saves the project as a library in the 'system' library repository.
This is an extension to the saving of a project as a library file using the “Save Project as”
command. The library is installed on the local system and is immediately available for insertion
into a project.
See also
● Ä Chapter 1.4.1.20.3.1.5 “Command 'Save Project as'” on page 958

Dialog box 'Ex-
tend Profile'

See also

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 959

Command 'Save Project as Compiled Library'
Function: The command saves a library project in encrypted form.
Call: Menu bar: “File”

The command opens the default dialog for saving a file in the file system. The “Compiled
CODESYS Libraries” file type is already preset. The file extension is .compiled-library-v3
or .compiled-library (CODESYS < SP15). In this format, then source code of the library
POU is not visible when the library is used in a project.
If the “Enforce signing of compiled libraries” option is selected in the “Security Screen” view
on the “User” tab, then a library project has to be provided with a digital certificate-based signa-
ture when being saved. When a suitable certificate is available, it is provided in the “Security
Screen” on the “User” tab in the “Digital Signature” section. In the “Project Information”, on the
“Summary” tab, a “Library compatibility” with a CODESYS version >= V3 SP15 is set by default.
In this case, the project file is stored with the file extension .compiled-library-v3 when
being saved as a compiled and signed library. If you still have not specified a suitable valid
certificate for your user profile in the “Security Screen”, then a dialog prompt opens next for you
to do this. Afterwards, you can execute the save command again.
In all other respects, compiled library files behave just like *.library files, and therefore they
can be installed and referenced with the same steps.
We recommend the use of compiled libraries signed with certificates. Besides the protection of
the source code and the unauthorized use of a library, less memory is also used which therefore
results in shorter loading times.

If you have the corresponding help files with translations, then as of CODESYS
V3 SP15 you can extend the library documentation with the translation into
other languages. This is done as follows:

Place the files created for the new languages __lmd__<language>.aux in
a directory <library name>.lmd parallel to the library project <library
name>.compiled-library-v3. If the files are correct, then they are included
in the compiled library file when saving the library project by means of the “Save
Project as Compiled Library” command.

Example: The directory standard.lmd is exists parallel to the library file
standard.compiled-library-v3 and contains the file __lmd__fr.aux
with the French translation of the library documentation. After the compiled
library is saved, the French version of the documentation is also available in the
Library Manager.

See also
● Ä “Tab 'Summary'” on page 919
● Ä Chapter 1.4.1.20.3.3.18 “Command 'Security Screen'” on page 995
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449
● Ä Chapter 1.4.1.20.3.1.6 “Command 'Save Project and Install into Library Repository'”

on page 959

Command 'Save/Send Archive'
Function: This command opens the dialog “Project Archive” for the configuration of project
archives.
Call: Menu bar: “File è Project Archive”

An archive file (*.projectarchive) contains all files contained and referenced in the currently
opened project. It can either be saved or dispatched as an e-mail attachment. The dispatch by
email is very helpful for providing an employee with all project-relevant files. The file can be
simply unpacked again with the command “Extract Archive”.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US960

NOTICE!
The archiving function is not intended for the storage of a project, but rather for
the simple summarizing of all project-relevant files.

See also
● Ä Chapter 1.4.1.5.9 “Saving/Sending the project archive” on page 210
● Ä Chapter 1.4.1.20.3.1.9 “Command 'Extract Archive'” on page 961

The dialog displays all the categories that can be added to the project archive. In this dialog,
complete categories or individual objects from the categories can be added to the project
archive by setting a check mark ().

Entries that are display as red in the list require your attention. Move the mouse
pointer over this library for more information.

“Additional Files” Opens the dialog “Additional Files”. Here, further files can be added to the
archive with the “Add” button.

“Comment” Opens the "Comment" dialog. Here, comments can be added to the archive.

“Save” Creates the archive file and saves it. The storage location and the archive name
are specified in the subsequent dialog

“Send” Creates a temporary archive file that is attached to an empty e-mail. A cor-
rect installation of the MAPI (Messaging Application Programming Interface) is
required for the successful execution of this operation. Failure is documented
by the display of a corresponding error message. The temporary archive is
automatically deleted after sending the e-mail.

Command 'Extract Archive'
Function: The command extracts a project archive, that was created with the command “Save/
Send Archive”. You have to configure which objects of the archive CODESYS shall extract and
in which directory of the file system they will be copied.
Call: Main menu “File è Project Archive”

The file extension of an archive is .projectarchive.

After the archive is selected, the dialog “Extract Project Archive” opens to configure the extract
parameters.

This dialog box shows the contents of the project archive. You can exclude complete categories
or single objects from categories by clearing the check boxes () from the extraction.

Table 110: “Locations”
“Extract into the same folder
where the archive is located”

The archive is extracted to the same directory.

“Extract into the following
folder”

The contents of the archive are extracted to the given path.

“Advanced” Opens the “Advanced” dialog box for you to define where special and additional
files from the archive are extracted.

Dialog 'Project
Archive'

Dialog Box 'Ex-
tract Project
Archive'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 961

Table 111: “Contents”
“Items” Shows the contents of the archive structured in object categories.

: The object is extracted.

: The object is not extracted.

“Comment” Comment that was entered when creating the project archive

“Extract” If an extracted file has the same name as an existing file in the target directory,
then a dialog box opens, prompting whether the local file should be replaced.
The decision can be applied automatically to any additional conflicting names. In
this case, you have to select the “Apply to all objects and files” check box.

Table 112: “Repositories”
“Install devices into” Drop-down list with currently available repositories. Select the repositories, in

which CODESYS shall install the devices and the libraries of the archive.“Install libraries into”

Table 113: “Additional Files”
By default the "additional files" are set to “Do not extract”. Select the entries in the table and chose one of the
following options:

“Extract into project folder” Folder of the project file

“Extract into folder” User defined folder

“Do not extract” Default

See also
● Ä Chapter 1.4.1.20.3.1.8 “Command 'Save/Send Archive'” on page 960

Command 'Source Upload'
Function: This command loads the project source code (as project archive) from the controller.
Call: Main menu “File”.
Requirement: The network path for the controller must be configured.
After you execute the command, an overview opens with all devices in the network. Select a
controller from this overview. The dialog box “Extract Project Archive” then opens with export
settings.
See also
● Ä Chapter 1.4.1.10.7 “Downloading source code to and from the PLC” on page 393
● Ä Chapter 1.4.1.20.3.1.11 “Command 'Source Download'” on page 963

This dialog box shows the contents of the project archive. You can exclude complete categories
or single objects from categories by clearing the check boxes () from the extraction.

Dialog 'Advan-
ced'

Dialog Box 'Ex-
tract Project
Archive'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US962

Table 114: “Locations”
“Extract into the same folder
where the archive is located”

The archive is extracted to the same directory.

“Extract into the following
folder”

The contents of the archive are extracted to the given path.

“Advanced” Opens the “Advanced” dialog box for you to define where special and additional
files from the archive are extracted.

Table 115: “Contents”
“Items” Shows the contents of the archive structured in object categories.

: The object is extracted.

: The object is not extracted.

“Comment” Comment that was entered when creating the project archive

“Extract” If an extracted file has the same name as an existing file in the target directory,
then a dialog box opens, prompting whether the local file should be replaced.
The decision can be applied automatically to any additional conflicting names. In
this case, you have to select the “Apply to all objects and files” check box.

Command 'Source Download'
Function: This command loads the project source code (as project archive) to the controller.
Call: Main menu “File”.
Requirement: The network path for the controller must be configured.
After you execute the command, an overview opens with all devices in the network. Select
a controller from this overview. Then the Archiv.prj project archive is downloaded to this
controller. You can click “Source Upload” to upload the complete source code to the CODESYS
development system at a later time.
If you are already connected to a controller (in online mode), then the “Source Download to
Connected Device” command is also available for this process.
See also
● Ä Chapter 1.4.1.10.7 “Downloading source code to and from the PLC” on page 393
● Ä Chapter 1.4.1.20.3.1.10 “Command 'Source Upload'” on page 962
● Ä Chapter 1.4.1.20.3.6.7 “Command 'Source Download to Connected Device'”

on page 1035

Command 'Print'
Symbol:
Function: This command opens the default Windows dialog box for printing documents.
Call: Main menu “File”

See also
● Ä Chapter 1.4.1.20.4.11.6 “Dialog 'Project Settings' - 'Page Setup'” on page 1175

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 963

Command 'Print Preview'
Function: This command opens a print preview for the currently open element.
Call: Main menu “File”

Requirement: An object is open in the editor.
See also
● Ä Chapter 1.4.1.20.4.11.6 “Dialog 'Project Settings' - 'Page Setup'” on page 1175
● Ä Chapter 1.4.1.20.3.1.12 “Command 'Print'” on page 963

Command 'Page Setup'
Symbol:
Function: This command opens the “Page Setup” dialog box for configuring the layout of the
printed version of the project contents.
Call: Main menu “File è Page Setup”

See also
● Ä Chapter 1.4.1.20.4.11.6 “Dialog 'Project Settings' - 'Page Setup'” on page 1175
● Ä Chapter 1.4.1.20.3.1.12 “Command 'Print'” on page 963

Command ‘Recent Projects’
Function: Opens the list of the projects used recently, from which you can select a project to
open.
Call: “File” menu

Command 'Exit'
Shortcut: [<Alt>]+[<F4>]

Function: this command exits from the programming system. If a project is currently opened
that has been changed since it was last saved, a dialog box opens asking whether the project
should be saved.
Call: “File” menu

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US964

Menu 'Edit'
1.4.1.20.3.2.1 Standard Commands.. 965
1.4.1.20.3.2.2 Command 'Find', 'Find in Project'.. 966
1.4.1.20.3.2.3 Command 'Replace', 'Replace in Project'.................................. 967
1.4.1.20.3.2.4 Command 'Find Next'.. 968
1.4.1.20.3.2.5 Command 'Find Next (Selection)'.. 968
1.4.1.20.3.2.6 Command 'Find Previous'.. 968
1.4.1.20.3.2.7 Command 'Find Previous (Selection)'....................................... 969
1.4.1.20.3.2.8 Command 'Insert File as Text'... 969
1.4.1.20.3.2.9 Command 'Overwrite Mode'.. 969
1.4.1.20.3.2.10 Command 'View Whitespace'.. 969
1.4.1.20.3.2.11 Command 'View Indentation Guides'....................................... 970
1.4.1.20.3.2.12 Command 'Go to Line'... 970
1.4.1.20.3.2.13 Command 'Make Uppercase'.. 970
1.4.1.20.3.2.14 Command 'Make Lowercase'.. 970
1.4.1.20.3.2.15 Command 'Go to Matching Bracket'.. 971
1.4.1.20.3.2.16 Command 'Select to Matching Bracket'................................... 971
1.4.1.20.3.2.17 Command 'Expand All Folds'... 971
1.4.1.20.3.2.18 Command 'Collapse All Folds'... 971
1.4.1.20.3.2.19 Command 'Comment Out Selected Lines'............................... 972
1.4.1.20.3.2.20 Command 'Uncomment Selected Lines'.................................. 972
1.4.1.20.3.2.21 Command 'Enable Inline Monitoring'....................................... 972
1.4.1.20.3.2.22 Command 'Toggle Bookmark'.. 972
1.4.1.20.3.2.23 Command 'Next Bookmark (Active Editor)'............................. 973
1.4.1.20.3.2.24 Command 'Next Bookmark'... 973
1.4.1.20.3.2.25 Command 'Previous Bookmark (Active Editor)'....................... 973
1.4.1.20.3.2.26 Command 'Previous Bookmark'.. 973
1.4.1.20.3.2.27 Command 'Clear All Bookmarks (Active Editor)'..................... 974
1.4.1.20.3.2.28 Command 'Clear All Bookmarks'... 974
1.4.1.20.3.2.29 Command 'Browse Cross References'.................................... 974
1.4.1.20.3.2.30 Command 'Browse Global Cross References'........................ 975
1.4.1.20.3.2.31 Command 'Browse Call Tree'.. 975
1.4.1.20.3.2.32 Command 'Auto Declare'... 975
1.4.1.20.3.2.33 Command 'Input Assistant'.. 977
1.4.1.20.3.2.34 Command 'Go to Source Position'... 978
1.4.1.20.3.2.35 Command 'Next Message'... 979
1.4.1.20.3.2.36 Command 'Previous Message'.. 979
1.4.1.20.3.2.37 Command 'Go to Definition'... 979
1.4.1.20.3.2.38 Command 'Go To Reference'.. 979
1.4.1.20.3.2.39 Command 'Go to Instance'.. 980
1.4.1.20.3.2.40 Command 'Refactoring' - 'Rename <...>'................................. 980
1.4.1.20.3.2.41 Command 'Refactoring' - 'Update Referenced Pins'............... 981
1.4.1.20.3.2.42 Command 'Refactoring' - 'Add Variable'.................................. 981
1.4.1.20.3.2.43 Command 'Refactoring' - 'Remove <variable>'....................... 983
1.4.1.20.3.2.44 Command 'Refactoring' - 'Reorder Variables'.......................... 984
1.4.1.20.3.2.45 Command 'Advanced' - 'Format Document'............................ 984

Standard Commands
CODESYS provides the following standard commands:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 965

● Undo: , shortcut: [Ctrl] + [Z]
● Redo: , shortcut: [Ctrl] + [Y]
● Cut: , shortcut: [Ctrl] + [X]
● Copy: , shortcut: [Ctrl] + [C]
● Paste: , shortcut: [Ctrl] + [V]
● Delete: , shortcut: [Ctrl]
● Select all: shortcut: [Ctrl] + [Ctrl]

Not all editors support the “Insert” command. In some editors it can be used with limitations.
Graphical editors only support the command if the pasted elements will create a valid construct.
In object trees like POUs or device view the command refers to the currently selected object.
Multi selection is possible.

Command 'Find', 'Find in Project'
Symbol ; keyboard shortcut: [Ctrl]+[F]

Symbol , keyboard shortcut [Ctrl]+[Shift]+[F]

Function: These commands scan the project or parts of it for a specified character string.
Call: Menu bar: “Edit è Find Replace”

This command opens the “Find” dialog where the searched character string is specified and the
search options are defined.

“Search for” Character string to be searched.

“Match case”: : The search considers uppercase and lowercase.

“Match whole word”: : Only character strings are found that exact matches.

“Search up”: : The specified search range runs upwards.

: The specified search range runs downwards.

“Use regular expressions”: Use the button to receive support when specifying regular expressions.

“Search in” : Drop-down list with the areas of the project to be searched:
● “Active editor”
● “All open editors”
● “Selected objects & Subobjects”
● “Entire project”
● “Entire project & Uncompiled libraries”
● “Selection only”

: Opens a dialog where you set the areas of the project to be searched (see
below)

“Find next” Start the search

“Find all” All search results are listed in the message view with their object path, project
name, object name, and object position. Possible additional information for posi-
tion: “(Decl)” = Declaration part of the object; “(Impl)” = Implementation part of
the object
Double-clicking the entry in the list opens the match position in the respective
object editor.

“Replace” Switches to the “Replace” dialog

Dialog 'Find'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US966

The color of the search result markings can be customized in the options of the
text editor. This is done by means of the parameter “Selection color” - “Inactive”
in the “Text Area” tab.

See also
● Ä “Tab 'Text Area'” on page 1204

“Entire project” All editable positions in all objects of the project are searched.

“Entire project and all
uncompiled libraries”

All editable positions in all objects of the project, including integrated uncompiled
libraries, are searched.

“Within the following objects” Only the editable positions within the objects defined here are searched:

● “Scheme”: The “Save” command saves the current search configuration by
the specified name. All saved schemes are available in the drop-down list
().

● “Object types”: : The object is searched.
● “Name filter”: Name filter for the searched objects. The placeholder "*" can

be used.
Example: Filter "*CAN*": All objects are searched that have "CAN" in the
name.

“All open editors” All editors are searched that are currently open in a window.

“Active editor” Only the editor is searched where the cursor currently is.

“Selection only” Only the text is searched that is currently selected in an object.

See also
● Ä Chapter 1.4.1.20.3.2.3 “Command 'Replace', 'Replace in Project'” on page 967
● Ä Chapter 1.4.1.8.14 “Searching and replacing in the entire project” on page 289

Command 'Replace', 'Replace in Project'
Symbol ; keyboard shortcut: [Ctrl]+[H]

Symbol , keyboard shortcut [Ctrl]+[Shift]+[H]

Function: These commands scan the project or parts of it for a specified character string and
replaces it.
Call: Menu bar: “Edit è Find Replace”

Requirement: The application is in online mode.
This command opens the “Replace” dialog where the search and replace character strings are
specified and the search options are defined.

Table 116: In addition to the options of the “Search” dialog, the following settings are still possible:
“Replace with” Input field for the new character string.

“Replace” Each next found string is highlighted in the editor and replaced (step-by-step
replace).

Dialog for set-
ting the objects
to be searched

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 967

“Replace all” All found strings are replaced at one time without them being displayed in the
editors.

“Leave changed objects open
after "Replace all"”

The editors of the found objects remain open.

Replacement in referenced libraries is not possible.

See also
● Ä Chapter 1.4.1.20.3.2.2 “Command 'Find', 'Find in Project'” on page 966
● Ä Chapter 1.4.1.8.14 “Searching and replacing in the entire project” on page 289

Command 'Find Next'
Symbol ,keyboard shortcut [F3]

Function: During the search for a certain string within the project, this command selects the
next match at its position in the respective editor.
Call: Menu “Edit è Search Replace”

Requirement: You have already started searching the project for a certain string by using the
commands “Find” or “Replace”.
See also
● Ä Chapter 1.4.1.20.3.2.2 “Command 'Find', 'Find in Project'” on page 966
● Ä Chapter 1.4.1.20.3.2.3 “Command 'Replace', 'Replace in Project'” on page 967
● Ä Chapter 1.4.1.8.14 “Searching and replacing in the entire project” on page 289

Command 'Find Next (Selection)'
Keyboard shortcut [Ctrl] + [F3]

Function: The command searches the project for the next string matching the string which is
currently selected or in which you have currently placed the cursor.
Call: Menu “Edit è Find Replace”

Requirement: You have the cursor placed in an editable string in your project, or you have
selected an editable string.
See also
● Ä Chapter 1.4.1.20.3.2.2 “Command 'Find', 'Find in Project'” on page 966
● Ä Chapter 1.4.1.20.3.2.3 “Command 'Replace', 'Replace in Project'” on page 967
● Ä Chapter 1.4.1.8.14 “Searching and replacing in the entire project” on page 289

Command 'Find Previous'
Symbol , keyboard shortcut [Shift] + [F3]

Function: During the search for a certain string within the project, this command selects the
next match at its position in the respective editor.
Call: Menu “Edit è Search Replace”

Requirement: You have already started searching the project for a certain string by using the
commands “Find” or “Replace”.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US968

See also
● Ä Chapter 1.4.1.20.3.2.2 “Command 'Find', 'Find in Project'” on page 966
● Ä Chapter 1.4.1.20.3.2.3 “Command 'Replace', 'Replace in Project'” on page 967
● Ä Chapter 1.4.1.8.14 “Searching and replacing in the entire project” on page 289

Command 'Find Previous (Selection)'
Keyboard shortcut [Ctrl] + [Shift] + [F3]

Function:The command searches the project for the previous string matching the string which
is currently selected or in which you have currently placed the cursor.
Call: Menu “Edit è Find Replace”

Requirement: You have the cursor placed in an editable string in your project, or you have
selected an editable string.
See also
● Ä Chapter 1.4.1.20.3.2.2 “Command 'Find', 'Find in Project'” on page 966
● Ä Chapter 1.4.1.20.3.2.3 “Command 'Replace', 'Replace in Project'” on page 967
● Ä Chapter 1.4.1.8.14 “Searching and replacing in the entire project” on page 289

Command 'Insert File as Text'
Function: This command copies the contents of a text file to the active editor as the current
cursor position.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
box from “Tools è Customize” (command category “Text Editor”).
Requirement: The file must have the extension .txt. The command is available in a text editor
only.
Many development environments and text processing applications provide the option of
exporting code and text as a plain text file. This command can copy the contents of this file
to the editor.
See also
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203

Command 'Overwrite Mode'
Shortcut: [Insert]

Function: This command activates the overwrite mode.
Call: Menu “Edit è Advanced”

Requirement: A text editor is opened.
If the overwrite mode is activated, characters in front of the cursor are overwritten when entering
new characters. If the overwrite mode is deactivated, characters are inserted and existing
characters in front of the cursor are retained.
See also
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203

Command 'View Whitespace'
Symbol:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 969

Function: This command causes control characters for spaces and tabs to be shown.
Call: Menu “Edit è Advanced”

Requirement: A text editor is opened.
CODESYS visualizes spaces by a period and tabs by an arrow.
See also
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203

Command 'View Indentation Guides'
Function: This command activates the indentation help lines.
Call: Menu “Edit è Extended”

Requirement: A text editor is opened.
If the indentation help lines are activated, a broken line is inserted for each manual indentation
in the code. This facilitates the overview of the different levels in the code. You can insert
manual indentations with the [Tab] key.
See also
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203

Command 'Go to Line'
Function: With this command the cursor jumps to a defined line in the code.
Call: Menu “Edit è Extended”

Requirement: A text editor is opened.
This command opens a dialog box with an input field “Line number”.
See also
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203

Command 'Make Uppercase'
Shortcut: [Ctrl]+[Shift]+[U]

Function: This command converts all lowercase letters in the selected code into uppercase
letters.
Call: Menu “Edit è Advanced”

Requirement: A text editor is opened and code is selected, or the declaration editor is opened
and variable declarations are selected.
See also
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203

Command 'Make Lowercase'
Shortcut: [Ctrl]+[U]

Function: This command converts all uppercase letters in the selected code into lowercase
letters.
Call: Menu “Edit è Advanced”

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US970

Requirement: a text editor is opened and code is selected, or the declaration editor is opened
and variable declarations are selected.
See also
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203

Command 'Go to Matching Bracket'
Function: This command makes the cursor jump to the other part of the selected code paren-
thesis.
Call: Menu “Edit è Advanced”

Requirement: A text editor is opened and the cursor is positioned at an opening or closing code
parenthesis. If you position the cursor at a code parenthesis, CODESYS displays the corre-
sponding parenthesis in color, provided you have activated the option “Associated parentheses”
in the CODESYS options in the “Text Editor” category, “Text Area” tab.
See also
● Ä “Tab 'Text Area'” on page 1204

Command 'Select to Matching Bracket'
Function: This command selects the entire code section within the currently selected code
parentheses.
Call: Menu “Edit è Extended”

Requirement: A text editor is opened and the cursor is positioned at an opening or closing code
parenthesis. If you position the cursor at a code parenthesis, CODESYS displays the corre-
sponding parenthesis in color, provided you have activated the option “Associated parentheses”
in the project options in the “Text Editor” category, “Text Area” tab.
See also
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203

Command 'Expand All Folds'
Function: This command expands all collapsed code segments in the textual editor or result
locations in the cross-reference list so that the code and all search locations are displayed in full
again.
Requirement: A textual editor is active and indentation is activated in the “Options” (“Text
Editor” category); or the cross-reference list is active.
Call: Textual editors: main menu“Edit è Advanced”, or right-click. In the cross-reference list:
right-click.
See also
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203
● Ä Chapter 1.4.1.20.3.2.18 “Command 'Collapse All Folds'” on page 971
● Ä “Right-click commands in the cross-reference list” on page 992

Command 'Collapse All Folds'
Function: This command collapses all expanded code segments in the textual editor or result
locations in the cross-reference list. In this way, only the uppermost level of code and only the
root node of the result locations displayed.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 971

Requirement: A textual editor is active and indentation is activated in the “Options” (“Text
Editor” category); or the cross-reference list is active.
Call: In textual editors: main menu “Edit è Advanced”, or right-click. In the cross-reference list:
right-click.
See also
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203
● Ä Chapter 1.4.1.20.3.2.17 “Command 'Expand All Folds'” on page 971
● Ä “Right-click commands in the cross-reference list” on page 992

Command 'Comment Out Selected Lines'
Symbol ; keyboard shortcut: [Ctrl]+[O]

Function: The command inserts comment marks ('//') at the beginning of the selected lines.
Call: Menu bar: “Edit è Advanced”; context menu
Requirement: In the ST editor, either the cursor is located in a line of the implementation or
multiple lines are selected.
See also
● Ä Chapter 1.4.1.20.3.2.20 “Command 'Uncomment Selected Lines'” on page 972

Command 'Uncomment Selected Lines'
Symbol ; keyboard shortcut: [Ctrl]+[I]

Function: The command removes any comment marks ('//') at the beginning of the selected
lines.
Call: Menu bar: “Edit è Advanced”; context menu
Requirement: In the ST editor, either the cursor is located in a line of the implementation or
multiple lines are selected.
See also
● Ä Chapter 1.4.1.20.3.2.19 “Command 'Comment Out Selected Lines'” on page 972

Command 'Enable Inline Monitoring'
Function: This command enables or disables the inline monitoring function. This works the
same way as the check box with the same name in the CODESYS options (“Text Editor”
category).
Requirement: A text editor is active.
Call: Context menu of the text editor in the “Advanced” submenu.
See also
● Ä “Tab 'Monitoring'” on page 1205
● Ä Chapter 1.4.1.12.1 “Monitoring of Values” on page 409

Command 'Toggle Bookmark'
Symbol , keyboard shortcut [Ctrl]+[F12]

Function: The command sets or removes a bookmark at the current position.
Call: Menu bar: “Edit è Bookmarks”

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US972

Requirement: A POU is open in the editor and the cursor is at a program line.
See also
● Ä Chapter 1.4.1.8.13.3 “Setting and using bookmarks” on page 287

Command 'Next Bookmark (Active Editor)'
Symbol: ; keyboard shortcut: [F12]

Function: The command jumps to the next bookmark in the active editor.
Call: Menu bar: “Edit è Bookmarks”

Requirement: A POU is open in the editor and the cursor is positioned in the POU.
See also
● Ä Chapter 1.4.1.20.3.2.24 “Command 'Next Bookmark'” on page 973
● Ä Chapter 1.4.1.8.13.3 “Setting and using bookmarks” on page 287

Command 'Next Bookmark'
Symbol:
Function: The command jumps to the next bookmark in the “Bookmarks” view and in the
project, and opens the respective POU. The order of jumping to bookmarks corresponds to the
order of bookmarks in the table of the “Bookmarks” view.
Call:
● “Next Bookmark” button in the “Bookmarks” view
● The command is not in any menu by default. You can add it to a menu by using the dialog

from “Tools è Customize” (command category “Bookmarks”).
Requirement:
● A project is open.
● The “Bookmarks” view is open.
See also
● Ä Chapter 1.4.1.20.3.2.23 “Command 'Next Bookmark (Active Editor)'” on page 973

Command 'Previous Bookmark (Active Editor)'
Symbol: ; keyboard shortcut: [Shift]+[F12]

Function: The command jumps to the previous bookmark in the active editor.
Call: Menu bar: “Edit è Bookmarks”

A POU is open in the editor and the cursor is positioned in the POU.
See also
● Ä Chapter 1.4.1.20.3.2.26 “Command 'Previous Bookmark'” on page 973
● Ä Chapter 1.4.1.8.13.3 “Setting and using bookmarks” on page 287

Command 'Previous Bookmark'
Symbol:
Function: The command jumps to the previous bookmark in the “Bookmarks” view and in the
project, and opens the respective POU. The order of jumping to bookmarks corresponds to the
order of bookmarks in the table of the “Bookmarks” view.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 973

Call:
● “Next Bookmark” button in the “Bookmarks” view
● The command is not in any menu by default. You can add it to a menu by using the dialog

from “Tools è Customize” (command category “Bookmarks”).
Requirement:
● A project is open.
● The “Bookmarks” view is open.
See also
● Ä Chapter 1.4.1.20.3.2.25 “Command 'Previous Bookmark (Active Editor)'” on page 973
● Ä Chapter 1.4.1.8.13.3 “Setting and using bookmarks” on page 287

Command 'Clear All Bookmarks (Active Editor)'
Symbol:
Function: The command deletes all bookmarks in the active editor.
Call: Menu bar: “Bookmarks”

Requirement: A POU is open in the editor and the cursor is positioned in the POU.
See also
● Ä Chapter 1.4.1.20.3.2.28 “Command 'Clear All Bookmarks'” on page 974
● Ä Chapter 1.4.1.8.13.3 “Setting and using bookmarks” on page 287

Command 'Clear All Bookmarks'
Symbol:
Function: The command deletes all bookmarks in the open project.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
from “Tools è Customize” (command category “Bookmarks”).
Requirement: A POU is open in the editor and the cursor is positioned in the POU.
See also
● Ä Chapter 1.4.1.20.3.2.27 “Command 'Clear All Bookmarks (Active Editor)'” on page 974
● Ä Chapter 1.4.1.8.13.3 “Setting and using bookmarks” on page 287

Command 'Browse Cross References'
Symbol:
Function: The command shows all occurrences of a variable in the “Cross Reference List” view.
Call: Menu bar: “Edit è Browse”; cross reference view: toolbar
Requirement: A POU is open in the editor and the cursor is set at a variable. Or the “Cross
Reference List” view is open and a variable is specified in the “Name” field.
See also
● Ä Chapter 1.4.1.8.13.1 “Using the cross-reference list to find occurrences” on page 285
● Ä Chapter 1.4.1.20.3.2.30 “Command 'Browse Global Cross References'” on page 975

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US974

Command 'Browse Global Cross References'
Symbol:
Function: The command shows all occurrences of all variables with the same name in the
“Cross Reference List” view. In contrast to the “Browse Cross References” command, these can
be different variables.
Call: Menu bar: “Edit è Browse”; cross reference view: toolbar
Requirement: A POU is open in the editor and the cursor is set at a variable. Or the “Cross
Reference List” view is open and a variable is specified in the “Name” field.
See also
● Ä Chapter 1.4.1.8.13.1 “Using the cross-reference list to find occurrences” on page 285
● Ä Chapter 1.4.1.20.3.2.29 “Command 'Browse Cross References'” on page 974

Command 'Browse Call Tree'
Symbol:
Function: The command opens the view “Call Tree”, which displays the calls of a module and
also its callers.
Call:
● Menu “Edit è Browse”
● Context menu, see below: Requirement
Requirement: A module is opened in the editor and the cursor is placed in a variable, or a
module is selected in the “Devices” view or in the “POUs” view.
See also
● Ä Chapter 1.4.1.20.3.3.16 “Command 'Call tree'” on page 993

Command 'Auto Declare'
Keyboard shortcut: [Shift]+[F2]

Function: The command opens the “Auto Declare” dialog, which supports the declaration of a
variable.
Call: Menu bar: “Edit”

Requirement: An object or a device of the project is opened in the editor.
With the auto-declaration function, the “Auto Declare” dialog also appears when the cursor is
located in the implementation part of a POU in a line containing the name of an undeclared vari-
able. The requirement for this is that you must have clicked “Tools è Options” and enabled the
“Declare unknown variables automatically (AutoDeclare)” option in the “SmartCoding” category.
With the smart tag function, the “Auto Declare” command also appears when you place the
cursor over an undeclared variable in the implementation part of the ST editor and then click .

“Scope” Scope of the variable that is not declared yet.
Example: VAR (default setting for local variables)

“Name” Variable name not declared yet
Example: bIsValid

Dialog 'Auto
Declare'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 975

“Type” Example: BOOL
● : Lists the standard data types.
●

– “Input Assistant”: Opens the “Input Assistant” dialog
– “Array Assistant”: Opens the “Array” dialog

“Object” Object where the new variable is declared. By default, the object that you are
editing now.
Example: fbA

: Lists that objects where the variable can be declared.
If no objects are available for the selected “Scope”, the entry “<create object>”
appears. When you select the “<create object>” entry, the “Add Object” dialog
opens for generating a suitable object.

“Initialization” Example: FALSE
If you do not specify an initialization value, then the variable is initialized auto-
matically.

: Opens the “Initialization Value” dialog. This procedure is helpful for the
initialization of structured variables.

“Address” Memory address of the application for the variable that is not declared yet.
Example: %IX1.0
Note:
Possible only for the following scopes:
● Local variable (VAR)
● Global variable (VAR_GLOBAL)
● Or for a persistent variable (PERSISTENT).

“Flags” Attribute keywords
● CONSTANT: Keyword for a constant.
● RETAIN: Keyword for a remanent variable.
● PERSISTENT: Keyword for a persistent variable (stricter than RETAIN).

The selected attribute keyword is added to the variable declaration.

“Comment” Example: New input In1
In the tabular declaration editor, the comment entered is displayed in the
“Comment” column, while in the textual declaration editor it is displayed above
the variable declaration.

“Apply changes using
refactoring”

: When you exit the dialog, the variable is not declared yet, but then it opens
the “Refactoring” dialog. You can continue editing your changes here.
The option appears for the following scopes:
● Input variable (VAR_INPUT)
● Output variable (VAR_OUTPUT)
● VAR_IN_OUT variables (input variable and output variable)

“OK” The variable is declared and appears in the declaration.
Example:

VAR RETAIN
 // New input In1
 xIn1 AT %IX1.0: BOOL := FALSE;
END_VAR

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US976

“Ranks and base type
specification”

Definition of the field sizes (“Dimension”) by entering the lower and upper limits
and the “Base type” of the array. You can enter the basic type directly or with the
help of the “Input Assistant” or “Array” dialogs when you click the button.

“Result” Display of the defined array

NOTICE!
CODESYS reinitializes variables only if you have modified the initialization
values of the variables.

List of the variables with name (“Expression”), “Initialization Value” and “Data Type”.
Modified initialization values are displayed in bold fonts.

Input field below the list Input of an initialization value for the selected variable(s)

“Apply value to selected lines” Change of the initialization value of the selected line(s) according to the value of
the input field

“Reset selected lines to default
values”

Resets the default initialization values

“OK” CODESYS applies the initialization values in the “Auto Declare” dialog.

In the case that the variable to be initialized by means of this dialog is a function block instance
with an extended FB_Init method, an additional table is displayed above the “Initialization Value”
table. The additional FB_Init parameters are listed in this table. The meaning and operation
essentially correspond to the lower table with the following differences:
● All variables have to be assigned with initialization values. Otherwise “OK” remains disa-

bled.
● For complex data types (structures, arrays), no components contained within are displayed

(type cannot be expanded). In this case, the complex type has to be initialized with a
corresponding variable.

For FB_Init parameters configure this way, a corresponding symbol is displayed after the initiali-
zation value in the “Auto Declare” dialog.

See also
● Ä Chapter 1.4.1.19.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 748
● Ä Chapter 1.4.1.8.2.2 “Using the 'Declare variable' dialog box” on page 227
● Ä “Smart tag functions” on page 263
● Ä Chapter 1.4.1.8.11.2 “AT declaration” on page 281
● Ä Chapter 1.4.1.8.15 “Refactoring” on page 289
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301
● Ä “Dialog box 'Refactoring'” on page 982
● Ä Chapter 1.4.1.19.4.10 “Addresses” on page 643
● Ä Chapter 1.4.1.20.4.13.21 “Dialog 'Options' - 'Refactoring'” on page 1199
● Ä Chapter 1.4.1.19.1.3.1 “ST Editor” on page 463

Command 'Input Assistant'
Symbol: ; keyboard shortcut: [F2]

Dialog 'Array'

Dialog 'Initializa-
tion Value'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 977

Function: This command opens the “Input Assistant” dialog which helps you to select one of
the possible programming elements at the current cursor position.
Call: Menu bar: “Edit”; context menu.
Requirement: A POU is open in the editor and the cursor is at a program line.

The input assistant provides all program elements that you can insert at the current cursor
position in the editor.
The elements are sorted by “Categories”. In the category “Variables”, you can also set a “Filter”
for the scope, for example “Local variables”, “Global variables”, or “Constants”.

“Structured view” : The elements are displayed in a structure tree. You can show/hide the
columns “Type”, “Address”, and “Origin” by right-clicking the column title and
selecting/clearing the column name in the dropdown list.

: The elements are displayed in a flat structure.

“Show documentation” : The dialog is extended with the “Documentation” field.

“Insert with arguments” : Elements that include arguments (for example, functions) also insert with
these arguments at the cursor position.
Example: If you insert the function block fb1, which contains an input variable
fb1_in and an output variable fb1_out, "with arguments", then this appears in
the editor as follows: fb1(fb1_in:= , fb1_out=>).

“Insert with namespace prefix” : Inserts the selected element with the appended namespace. In the case
of library modules, the check box remains disabled if the requirement for a
namespace has been defined in the library properties.

If you create objects with the same name in the same category, whether glob-
ally (“POUs” view) or assigned to an application (“Devices” view), then only
one entry appears in the input assistant. The usage conforms to the usual call
priority (application assigned before global).

This tab allows you to search for specific objects. When you begin typing a search string into
the search field, the names of all objects are listed whose names include the search string.
Double-click an object to insert it at the current cursor position in the editor.

“Filters” Limits the search to a specific variable category

See also
● Ä Chapter 1.4.1.8.5 “Using input assistance” on page 260
● Ä “Dialog 'Properties'” on page 1118
● Ä Chapter 1.4.1.20.3.2.33 “Command 'Input Assistant'” on page 977

Command 'Go to Source Position'
Function: The command sets the cursor to the position in the source code that causes the
message.
Call: Main menu “Edit”, context menu of the message in the message view.
Requirements: A message is selected in the message view.

Dialog 'Input
Assistant' - Tab
'Categories'

Dialog 'Input
Assistant' - Tab
'Text Search'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US978

Use the command “Next Message” or “Previous Message” to display the source code position of
the next or previous message.
See also
● Ä Chapter 1.4.1.20.3.2.35 “Command 'Next Message'” on page 979
● Ä Chapter 1.4.1.20.3.2.36 “Command 'Previous Message'” on page 979
● Ä Chapter 1.4.1.20.3.3.5 “Command 'Messages'” on page 986

Command 'Next Message'
Keyboard shortcut: [F4]

Function: This command selects the next message in the messages view.
Call: Main menu “Edit”.
If the last message in the list has been reached, then the marking jumps to the beginning.
See also
● Ä Chapter 1.4.1.20.3.2.36 “Command 'Previous Message'” on page 979

Command 'Previous Message'
Keyboard shortcut: [Shift]+[F4]

Function: This command selects the previous message in the messages view.
Call: Main menu “Edit”

If the first message in the list has been reached, then the marking jumps to the end.
See also
● Ä Chapter 1.4.1.20.3.2.35 “Command 'Next Message'” on page 979

Command 'Go to Definition'
Symbol:
Function: This command shows the definition locations of a variable or function.
Call: Main menu “Edit è Browse”

Requirement: A POU is open in the editor and the cursor is at a variable or function.
See also
● Ä Chapter 1.4.1.8.13.2 “Finding declarations” on page 287

Command 'Go To Reference'
Symbol:
Function: The command opens the declaration location of the variable that is referenced by the
pointer currently in focus in online mode.
Call:
● Context menu in the declaration part or implementation code
● Menu bar: “Edit è Browse”

Requirement: Online mode. A POU is open in the editor and the cursor is at a pointer. The
referenced variable is stored in static memory.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 979

If the pointer does not point exactly to the beginning of the variable, then a cor-
responding message is displayed when you switch to the variable declaration.

See also
● Ä Chapter 1.4.1.19.5.12 “Pointers” on page 656

Command 'Go to Instance'
Symbol:
Function: This command opens the instance of a function block in a new window.
Call: Menu bar: “Edit è Browse for Symbol”

Requirement: The application is in online mode. A POU is open in the editor and the cursor is
at an instance of a function block.
The command is not available for temporary instances or instances from compiled libraries.
See also
● Ä Chapter 1.4.1.8.13.2 “Finding declarations” on page 287

Command 'Refactoring' - 'Rename <...>'
Function: This command opens a dialog box for renaming an object or variable across the
project.
Call: Main menu “Edit è Refactoring” or right-click.
Requirement: An object is selected in the device tree or in the “POUs” view, or the cursor is
placed before or on a variable identifier in the declaration section of a programming object.
You can rename the following:
● Variables
● POUs
● GVLs
● Methods
● Properties
● Devices
● Variables and unit conversions in the unit conversion edit

“Current name” Name of the object or variable

“New name” Input field for a new name.
If the name already exists, then CODESYS reports this directly below this input
field.

“OK” Can be activated if you have typed a valid name in “New name”.
Opens the “Refactoring” dialog box.

The affected objects and occurrences are highlighted in both views.
You can determine how to handle the occurrences in each view by right-clicking
the occurrences and clicking the available commands.

Dialog box 'Re-
name'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US980

This dialog box displays all occurrences in the project.
The affected objects and occurrences are highlighted in both views.

Right view Displays the occurrence within an object where “Current name” occurs.

Left view Device tree of the project with the object.

You can determine how to handle the occurrences in each view by right-clicking the occurrences and clicking the
available commands.

“Reject this change” Reject the single change in view on the right.

“Accept this object” Accept all changes in the affected object.

“Reject this object” Reject all changes in the affected object.

“Accept whole project” Accept all changes in the project.

“Reject whole project” Reject all changes in the project.

CODESYS highlights the accepted changes in yellow and the rejected changes in gray.

See also
● Ä Chapter 1.4.1.8.15 “Refactoring” on page 289

Command 'Refactoring' - 'Update Referenced Pins'

NOTICE!
Currently, this command applies only to the CFC, FBD, LD, and IL editors. It is a
combination of the “Reset Pins” and “Update Parameters” commands.

Function: This command modifies the pins according to the latest block declaration in all
affected occurrences of the block.
Call: Main menu “Edit è Refactoring” or right-click.
Requirement: The cursor is placed in the name of the block in the first line of the block
declaration or in the device tree.
See also
● Ä Chapter 1.4.1.8.15 “Refactoring” on page 289
● Ä Chapter 1.4.1.20.3.12.24 “Command 'Reset Pins'” on page 1098
● Ä Chapter 1.4.1.20.3.13.38 “Command 'Update Parameters'” on page 1114

Command 'Refactoring' - 'Add Variable'
Symbol:
Function: This command enables the declaration of variables in a POU, as well as the
automatic update to the occurrence of the POU.
Call: Main menu “Edit è Refactoring”, or right-click.
Requirements: The declaration part is in focus.
The command opens the default dialog box for declaring variables.
See also
● Ä “Dialog 'Auto Declare'” on page 975

Dialog box 'Re-
factoring'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 981

After clicking “OK” to close the declaration dialog, the “Refactoring” dialog box opens with two
frames.

“Right dialog frame ” Declaration part and implementation of the POU where the variable is added.
Colored highlighting of changed locations: New added declarations have a blue
font and are highlighted in yellow (1).

“Left dialog frame ” Device tree or POUs tree of the project.
Colored highlighting of blocks where the POU is used: red font and yellow
highlight (2).
After you double-click the POU object, the detail view opens.

Before you decide which changes to accept at which locations, select the required option from
the drop-down list (3) at the upper right part of the window:

“Add inputs with placeholder
text”

Default placeholder text: _REFACTOR_; editable

The placeholder text defined here is used at the occurrence locations of the new
added variables in the implementation code. This is used for searching for the
affected locations.

“Add inputs with the following
value”

Initialization value for the new variable.

You can accept or reject changes by right-clicking the changed locations or by executing com-
mands in the left or right area of the dialog box. Refer to the description of the “Refactoring
è Rename” command.

Dialog box 'Re-
factoring'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US982

1. By refactoring, the fun block receives a new input variable input3 with the initialization
value 1. The change has the following effect:

Before:
fun(a + b, 3, TRUE);
fun(input1:= a + b , input2 :=3 , inputx := TRUE);

After:
fun(a + b, 3, 1, TRUE);
fun(input1:= a + b , input2 :=3 , _REFACTOR_, inputx := TRUE);

2. By refactoring, the "fun" block receives a new input variable input3 with the placeholder
text "_REFACTOR_":
Before:
inst(input1 := a + b, input2 := 3, inputx := TRUE);
fun(a + b, 3, TRUE);

After:
inst(input1 := a + b, input2 := 3, input3 := _REFACTOR_, inputx
:= TRUE);
fun(a + b, 3, _REFACTOR_, TRUE);

Examples

See also
● Ä Chapter 1.4.1.8.15 “Refactoring” on page 289
● Ä Chapter 1.4.1.20.3.2.40 “Command 'Refactoring' - 'Rename <...>'” on page 980

Command 'Refactoring' - 'Remove <variable>'
Symbol:
Function: This command removes an input or output variable from the POU and all occur-
rences of the POU.
Call: Main menu “Edit è Refactoring”, or right-click.
Requirements: In the declaration part of the POU, the cursor is located in the identifier of the
variable to be removed.
Then, the command opens a dialog box with information about the removal. After you confirm
this, the “Refactoring” dialog box opens. For a description of the “Refactoring” dialog box, refer
to the “Edit è Refactoring è Rename” help page.
When you accept the changes in the “Refactoring” dialog box, the respective input and output
parameters are deleted at the occurrence locations of the affected POU.

In CFC, only the connection is removed between the removed input or output to
the block. The input or output itself remains in the chart.

In a POU, refactoring removes the input4 input variable. The occurrences are updated
automatically:
Before removal:
inst(input1 := a + b, input2 := 3, input4 := 1, input5 := TRUE);
fun(a + b, 3, 1, TRUE);

After removal:
inst(input1 := a + b, input2 := 3, input5 := TRUE);
fun(a + b, 3, TRUE);

Example in ST

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 983

See also
● Ä Chapter 1.4.1.8.15 “Refactoring” on page 289
● Ä Chapter 1.4.1.20.3.2.40 “Command 'Refactoring' - 'Rename <...>'” on page 980

Command 'Refactoring' - 'Reorder Variables'
Symbol:
Function: This command allows changing the order of variables in the declaration editor for the
selected scope: VAR_INPUT, VAR_OUTPUT, or VAR_IN_OUT.

Call: “Edit è Refactoring”; context menu of the focused scope in the declaration editor.
Requirement: One of the above scopes is selected in the declaration, and more than one
variable is declared in it.
The command opens the “Reorder” dialog box with a list of all declarations of the selected
scope. You can drag a selected declaration up or down to another position.
See also
● Ä Chapter 1.4.1.8.15 “Refactoring” on page 289

Command 'Advanced' - 'Format Document'
Symbol:
Function: The command starts an automatic formatting of the code in the open ST editor.
Call: Menu bar: “Edit è Advanced”; context menu of the window in focus in the ST editor
Requirement: The focus is in the ST editor. The syntax of the ST code does not contain any
errors.
The following formatting is performed automatically:
● Keywords are converted to uppercase letters.
● Spacing is standardized.
● Indentations are changed according to syntax.
● Long lines are wrapped in sensible places.
See also
● Ä Chapter 1.4.1.19.1.3.1 “ST Editor” on page 463

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US984

Menu 'View'
1.4.1.20.3.3.1 Standard Menu in View 'Devices', 'POUs', 'Modules'................ 985
1.4.1.20.3.3.2 Command 'Devices'... 985
1.4.1.20.3.3.3 Command ‘POUs’.. 986
1.4.1.20.3.3.4 Command 'Modules'.. 986
1.4.1.20.3.3.5 Command 'Messages'... 986
1.4.1.20.3.3.6 Command 'Element properties'... 987
1.4.1.20.3.3.7 Command 'ToolBox'... 987
1.4.1.20.3.3.8 Command 'Watch' - 'Watch <n>'.. 987
1.4.1.20.3.3.9 Command 'Watch' - 'Watch All Forces'...................................... 987
1.4.1.20.3.3.10 Command 'Add All Forces to Watchlist'................................... 988
1.4.1.20.3.3.11 Command 'Bookmarks'.. 988
1.4.1.20.3.3.12 Command 'Breakpoints'... 989
1.4.1.20.3.3.13 Command 'Cross Reference List'.. 990
1.4.1.20.3.3.14 Command 'Browse Cross References in Classic View'........... 992
1.4.1.20.3.3.15 Command 'Call Stack'... 993
1.4.1.20.3.3.16 Command 'Call tree'.. 993
1.4.1.20.3.3.17 Command 'Memory'... 995
1.4.1.20.3.3.18 Command 'Security Screen'.. 995
1.4.1.20.3.3.19 Command 'Settings of Memory Reserve for Online

Change' .. 998
1.4.1.20.3.3.20 Command 'Start Page'... 999
1.4.1.20.3.3.21 Command 'Full Screen'... 1000
1.4.1.20.3.3.22 Command 'Properties'... 1000

Standard Menu in View 'Devices', 'POUs', 'Modules'
The views “Devices”, “POUs” and “Modules” provide the button in the top right corner to open
a menu with the following commands:

● “Open in editor”: Opens the selected object in the corresponding editor.
● “Find object”: Opens the dialog “Find Object” for the object tree. Starting to enter a

search string all matching objects will be displayed with their path. Use the button “Open” to
open the selected search result in the editor.

● “Sort by type”: Sorts the objects in the view alphabetic by type.
● “Sort by name”: Sorts the objects in the view alphabetic by name.
● “Sort ascending”: Displays the chosen sorting in ascending order.
● “Sort descending”: Displays the chosen sorting in descending order.
● “Track active editor”: CODESYS selects the object, that is opened in the active editor, in the

device tree of the view.
See also
● Ä Chapter 1.4.1.20.3.3.2 “Command 'Devices'” on page 985
● Ä Chapter 1.4.1.20.3.3.3 “Command ‘POUs’” on page 986
● Ä Chapter 1.4.1.20.3.3.4 “Command 'Modules'” on page 986

Command 'Devices'
Symbol: , view: [Alt] + [0]

Function: The command opens the view “Devices” in the CODESYS main window. The view
contains the project's "device tree", where you configure your applications

Button opens the standard menu for navigating in the tree view.
Call: Menu “View”

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 985

See also
● Ä Chapter 1.4.1.20.3.3.3 “Command ‘POUs’” on page 986
● Ä Chapter 1.4.1.20.3.3.1 “Standard Menu in View 'Devices', 'POUs', 'Modules'” on page 985

Command ‘POUs’
Symbol: , Shortcut: [Alt] + [1]

Function: This command opens the “POUs” view in the CODESYS main window. POUs located
here are available in the entire project.
Call: Menu “View”

See also
● Ä Chapter 1.4.1.20.3.3.1 “Standard Menu in View 'Devices', 'POUs', 'Modules'” on page 985

Command 'Modules'
Symbol:
Function: This command opens the “Modules” view and shows the modules of the application
composer in a tree structure.
Call: Main menu “View”

See also
● Ä Chapter 1.4.1.20.3.3.1 “Standard Menu in View 'Devices', 'POUs', 'Modules'” on page 985

Command 'Messages'
Symbol:
Function: This command opens the “Messages” view.
Call: Menu bar: “View”.

Message category The messages are categorized by component or functionality for selection from a
drop-down list. Filter the message display by selecting a category.

Message type Click the symbol of the message type to show or hide messages. CODESYS
displays the number of messages next to each symbol.

● : Error
● : Warning
● : Message

Deletes all messages in the selected message category.

Deletes all messages in all message categories.

“Description”

Message text with the reported object and the location in the object.
Double-click a message in the table to jump to the source text location.

“Project”

“Object”

“Position”

View 'Messages'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US986

Table 117: “Commands in the context menu”
“Next Message” The source text position of the next message is displayed.

“Previous Message” The source text position of the previous message is displayed.

“Go to Source Position” The source position of the selected message is displayed.

Command 'Element properties'
Symbol:
Function: This command opens the “Element Properties” view.
Call: Main menu “View”

This command opens the properties view for the open object. This view is available only for a
few objects, for example visualization and POU (SFC).
The properties are displayed in a structured table. You change the property values by clicking
into the value fields. You can filter or sort the properties view.

Command 'ToolBox'
Symbol:
Function: This command opens the “ToolBox” view.
Call: Main menu “View”

This command opens the toolbox view for the open object. By default, this view is available for
graphical editors and visualizations. It includes the graphical programming elements that you
can drag into the editor.

Command 'Watch' - 'Watch <n>'
Symbol:
Function: This command opens the "Watch <n>" view. You can populate a watchlist with varia-
bles from your project in order to monitor, force, or write these variable values in an individual
view in online mode. The value "n" can be 1, 2, 3, or 4 for a total of up to four watchlists.
Call: Main menu “View”

See also
● Ä Chapter 1.4.1.12.1.2 “Using watch lists” on page 416

Command 'Watch' - 'Watch All Forces'
Symbol:
Function: The command opens the “Watch All Forces” view, which is a special kind of watch
list.
Call: Menu bar: “View è Watch è Watch All Forces”

Requirement: A project is in offline mode or online mode.
The view contains all variables currently prepared for forcing, and all forced variables of the
application in one list. Actions are possible in the list which are also possible in other watch lists.
Moreover, the following commands are available in the “Unforce” list box of the view:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 987

Table 118: “Watch All Forces”
Tabular view of all forced variables of the application, including variables prepared for forcing

“Expression” Variable name

“Data Type” Data type of the variable

“Value” Currently forced value of the variable

“Prepared Value” Value prepared for forcing

“Overwritten value at start of
cycle”

For inputs, the actual value is already overwritten by the force value before the
application code is executed. As a result, this is the forced value.
For outputs, this is the forced value.

“Overwritten value at end of
cycle”

For outputs, this is the value which is calculated in the cycle. However, this value
is overwritten by the force value at the end of the cycle.
For inputs, this is the forced value.

● “Unforce and Keep All Selected Values”: For all selected entries in the list, the variables will
be set to the forced value and the forcing will be lifted

● “Unforce and Restore All Selected Values”: For all selected entries in the list, the variables
will be reset to the values they had before they were forced, and the forcing will be lifted.

See also
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401
● Ä Chapter 1.4.1.12.1.2 “Using watch lists” on page 416

Command 'Add All Forces to Watchlist'
Function: The command adds all variables of the active application, which are currently pre-
pared for forcing, or which are already forced, to the watchlist. Please regard, that this works
only for docked watch list views.
Call: Context menu of view “Watch”

Requirement: Online mode, a watch list view is active.

There is a special watch list: “Watch All Forces”. This view shows automatically
all variables currently prepared for forcing or already being forced. It provides
additional commands for releasing any forces.

See also
● Ä Chapter 1.4.1.12.1.2 “Using watch lists” on page 416
● Ä Chapter 1.4.1.20.3.3.8 “Command 'Watch' - 'Watch <n>'” on page 987
● Ä Chapter 1.4.1.20.3.3.9 “Command 'Watch' - 'Watch All Forces'” on page 987
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401

Command 'Bookmarks'
Symbol:
Function: This command opens the “Bookmarks” view.
Call: Menu bar: “View”.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US988

“Previous Bookmark” Jumps to the bookmark that above the selected bookmark in the table and opens
the respective POU in the editor.

“Next Bookmark” Jumps to the bookmark that below the selected bookmark in the table and opens
the respective POU in the editor.

Deletes the selected bookmark from the table and in the respective POU.

List of bookmarks in the project with the following information: “Bookmark”, “Object”, and “Position”.
You can edit the bookmark order per drag&drop.
When you double-click a row, CODESYS opens the respective “Object” in the editor and jumps to this bookmark.

“Bookmark” Name of the bookmark as assigned by CODESYS in ascending numerical order:
“Bookmark_0”, “Bookmark_2” etc.
If the bookmark is selected and you click in the field, then it is editable and you
can modify the bookmark name.

“Object” Name and project path of the POU where the bookmark is set
Example: POU_Add [PLC_1: SPS-Logic: Application]

“Position” Position of the bookmark in the POU
Example: Row 3, Column 1 (Impl)
(Impl): in the implementation part of the POU

(Decl): in the declaration part of the POU

See also
● Ä Chapter 1.4.1.8.13.3 “Setting and using bookmarks” on page 287
● Ä Chapter 1.4.1.20.3.2.24 “Command 'Next Bookmark'” on page 973
● Ä Chapter 1.4.1.20.3.2.26 “Command 'Previous Bookmark'” on page 973

Command 'Breakpoints'
Symbol:
Function: This command opens the “Breakpoints” view.
Call: Menu bar: “View”.
This view shows an overview of all defined breakpoints for an application. You have access to
all breakpoint commands within this view.

Table 119: Table of current breakpoints
“Application” Select the required application from the list.

“POU” Name of the function block that will receive the breakpoint

“Location” Location of the breakpoint in the POU
● Text editor: Line number and column number
● Graphical editor: Network number or element number
For function blocks, "(Impl)" indicates that the breakpoint is located in the imple-
mentation of the function block, not in an instance.

“Instance Path” Complete object path of the breakpoint location.

“Tasks” Names of tasks that will be effective when the breakpoint is executed. If there
are no restrictions, then "(all)" is displayed here.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 989

“Condition” ● “Break always”: No additional enable condition defined; the breakpoint is
always enabled.

● Boolean expression. The expression must yield TRUE for the breakpoint to
be enabled.

“Hit Count Condition” When the breakpoint should be in effect (depending on the hit count)

“Current Hit Count” How often the breakpoint has already been reached up to now during the execu-
tion

Table 120: Toolbar
“New Breakpoint” This command opens the “Breakpoint Properties” dialog.

“New Data
Breakpoint”

This command opens the “New Breakpoint” dialog.

“Clear Breakpoint” Removes the breakpoint (not the same as disable)

“Enable/Disable
Breakpoint”

Toggles the status of the breakpoint or execution point between "enabled" and
"disabled"

● Breakpoint enabled
● Breakpoint disabled
● Execution point enabled
● Execution point disabled
● Data breakpoint enabled
● Data breakpoint disabled
● Data execution point enabled
● Data execution point disabled
As opposed to "Clear breakpoint", a disabled breakpoint remains in the list and can
be enabled again.

“Properties” The “Breakpoint Properties” dialog opens for editing the breakpoint parameters.
This dialog is the same as “New Breakpoint”. In online mode, you can change the
breakpoint into an execution point.

“Go to Source
Position”

Opens the online view of the affected block. The cursor is set at the breakpoint
location.

“Clear All
Breakpoints”

Deletes all breakpoints and execution points in the application. The list is cleared.
Not to be confused with "deactivate".

“Enable All
Breakpoints”

Enables all currently disabled breakpoints and execution points.

“Disable All
Breakpoints”

Disables all currently enabled breakpoints and execution points. The points remain
in the list and can be enabled again.

See also
● Ä Chapter 1.4.1.20.4.5 “Dialog 'Breakpoint Properties'” on page 1151
● Ä Chapter 1.4.1.20.3.7.4 “Command 'New Breakpoint'” on page 1049
● Ä Chapter 1.4.1.20.3.7.5 “Command 'New Data Breakpoint'” on page 1049
● Ä Chapter 1.4.1.20.3.7.7 “Command 'Enable Breakpoint'” on page 1050
● Ä Chapter 1.4.1.20.3.7.8 “Command 'Disable Breakpoint'” on page 1050
● Ä Chapter 1.4.1.20.3.7.9 “Command 'Toggle Breakpoint'” on page 1050

Command 'Cross Reference List'
Symbol:
Function: This command opens the “Cross Reference List” view.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US990

Call: Menu bar: “View”, or “Edit è Browse è Browse Cross References”.
This view shows a list of cross-references for a symbol in the project. The symbol can be a
variable, a POU (program, function block, function), or a user-specific data type (DUT). The
cross-reference list offer two basic types of searches:
● Text search: By specifying a symbol name, the cross-references of all symbols in the project

are displayed with their names. If multiple symbols with the same are found, then the display
can be limited to individual declarations by means of the context menu.

● Declaration search: The symbol can be selected by means of the input assistant or
by specifying a qualified path (for example, Device.Application.PLC_PRG.i or
__POOL.POU.a). Then only the occurrence locations of this symbol are displayed, even
if there exist other symbols with the same name.

Input field Symbol name (variable name, POU name, DUT name). Input options:

● Selection of a declared symbol by means of the input assistant (button).
● Manual input of the symbol name. Triggering of the search by pressing the

 button or the [Enter] key.
For the text search, you can use the placeholders "*" (any number of
characters) or "?" (exactly any one character) in combination with a partial
string of a variable identifier.
Use the percent sign "%" to search for IEC addresses. Examples: "%MW8",
"%M*".

More options outside of cross-reference list view:
● Use the command “Browse for Symbol è Browse Cross References” if

the name of a declared symbol is selected in an editor, or if the cursor is
in the name field. A search is also possible if the object is selected in the
device tree or POU pool.

● Automatic if the name of a declared symbol is selected in an editor, or if
the cursor is in the name field. A automatic search is also possible if the
object is selected in the device tree or POU pool.
Requirement: CODESYS option “Automatically list selection in cross
reference view” is activated (category “SmartCoding”.

The following input is valid:
● Variable name, simple or qualified. Examples: "iVar", "PLC_PRG.iVar".
● POU name: Examples: "PLC_PRG", "myFB".
● DUT name: Example: "mySTRUCT".
● Strings combined with placeholders: asterisk (*) for any character or ques-

tion mark (?) for exactly one characters).
Example: "iVar*" applies to iVar1, iVar_glob2, iVar45, etc.
"iVar?" refers to iVar1, iVar2, iVarX, and so on, but not
iVar_glob2, iVar45 and so on...

● "%<IEC address>": CODESYS searches for variables that are assigned
to this address and direct memory access. Example: "%QB0", %Q0 := 2.

Open input assistant for selecting a symbol

Perform a search

Define columns to search for the string.

Input field String that is searched for in the selected columns. The result locations are
marked in yellow. Cross references without this string are hidden.

Show source position of previous cross-reference, [Shift]+[F4]

Show source position of next cross-reference, [F4]

Limit results to current declaration: Available if multiple declarations are found
for a symbol. Limits the display to the declaration that you have selected in the
list.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 991

Show source position of selected cross-reference: The focus jumps to the
occurrence location of the symbol.

Print cross-reference list: The default dialog opens for setting up a print job.

The cross references are displayed with the following information:

“Symbol” The result locations for the symbols (variables, POUs, or DUTs) are grouped
by declaration. The declaration occurrence comprises the root node and the
occurrence locations in the project are indented below. The precise expression
is displayed that has the symbol at the occurrence location.
Example: If there is a global variable i in the project and a local declared
variable i in a POU, then two root node entries will be listed after a text
search for cross-references with the occurrences of the variable i below each.

“POU” Block name; also a task name if a block call in the task configuration.

“Variable” Only the variable name (for example, iVar)

“Access” Type of access to the variable at the occurrence location: “Declaration” /
“Read” / “Write” / “Call”.
Special case for pointers: An assignment type p := ADR(var1) is displayed
as write | address when searching for var1. The reason for this: Any
write access to p is not displayed when searching for var1. Write access is
also possible by means of pointer variables.

“Type” Data type of the variable

“Address” IEC address if variables are assigned Example: "AT %QB0".

“Position” Location of the occurrence in the POU editor, for example line number, net-
work number, declaration part, or implementation part. Example: "line 1,
column 1 (Impl)".

“Object” POU name plus complete path of the occurrence location in brackets (if
this is found in the “Devices” view). Example: "PLC_PRG [Device:Plc
Logic:Application]"

“Comment” Comments if available in the declaration of the variable

The search yields all result locations in the project and in included, uncompiled libraries.

“Show source position”: Opens the respective POU and marks the occurrence: for root entries,
the declaration, and for subordinate entries, the respective occurrence location. As an alterna-
tive, you can double-click a line.
“Limit Results to Selected Declaration”: Limits the display of results to the selected symbol
declaration if multiple declarations are found.
“Expand All”: In the list, every single result location is shown.
“Collapse All”: In the list, only the root nodes of the result locations are shown.

See also
● Ä Chapter 1.4.1.20.3.2.29 “Command 'Browse Cross References'” on page 974
● Ä Chapter 1.4.1.8.13.1 “Using the cross-reference list to find occurrences” on page 285
● Ä Chapter 1.4.1.20.3.22.3 “Command 'Limit Results to Current Declaration'” on page 1148
● Ä Chapter 1.4.1.20.3.2.18 “Command 'Collapse All Folds'” on page 971
● Ä Chapter 1.4.1.20.3.2.17 “Command 'Expand All Folds'” on page 971

Command 'Browse Cross References in Classic View'
Symbol

Right-click com-
mands in the
cross-reference
list

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US992

Function: This command opens the “Classic Cross Reference List” view.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
box from “Tools è Customize” (command category “Browse Project”).
The view corresponds to the “Cross Reference List” view before CODESYS V3.5 SP6.

Command 'Call Stack'
Symbol:
Function: This command opens the “Call Stack” view.
Call: Main menu “Debug”.
This view is very useful when you want to step into programs. It shows the current location with
the complete call path.

“Application” Name of the active application that controls the current POU

“Task” Name of the task that controls the current POU

“POU” Name of the POU where program execution has halted
The first line in the list describes the current execution location (marked with a
yellow arrow). If this location is in a block that is called by another block, then
the call location is described in the second line. In turn, if the caller is called by
yet another block, then that call location is described in the third line, and so
on.

“Location” Position within the POU where program execution has halted
● Line and column numbers for textual editors
● Network or element numbers for graphical editors

“Instance
path”

Instance where program execution has halted

The call stack is also available in offline mode and normal online mode when you are not
currently using any debugging functions). In this case, it receives the last displayed location
during a stepped execution, but it is displayed in gray.

The “Call Tree” view, in contrast to the “Call Stack”, at any time provides infor-
mation on the calls of a POU.

See also
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395
Ä Chapter 1.4.1.20.3.3.16 “Command 'Call tree'” on page 993

Command 'Call tree'
Symbol:
Function: This command opens the “Call Tree” view.
Call:
● “View” menu
● Context menu of a callable block in the “Devices” or “POUs” view.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 993

The call tree is available at all times, even before compiling the application. It is a static
representation of the caller and the calls of the block that you specify explicitly. Therefore, the
tree always contains two root nodes above the respective call order is displayed as successive
indented entries. Recursive calls are detected quickly in this tree representation.
Example of a call tree (1) for the (2) PLC_PRG block:

● (3) Node “<block name> is called by:”
● (4) Node “<block name> calls:”

“Block name” Name of the program block; specified manually, by dragging from another view,
or by means of the button .
The drop-down list includes the last specified block names.

Toolbar and keyboard usage

: Find block CODESYS searches for the block specified in “Block name” and displays its
caller and calls.

: Use block from the input
assistant

The “Input Assistant” dialog box opens for selecting a block call or instance call.
The call tree is refreshed automatically after the selection.

: Show source code position
of the selected block

CODESYS jumps to the occurrence location of the block in the source code of
the program.

[F4]: Show source code posi-
tion of the next block
[Shift]+[F4]: Show source code
position of the previous block

The selection in the call tree jumps to the next or previous block in the call
structure. At the same time, the associated source code position is opened in the
respective editor.
Note: Double-clicking an entry in the call tree also opens the associated source
code position.

Display of the call tree:

“Symbol” “<block name> is called by”: The call order is displayed for below this node. The
bottom entry in this tree structure shows the start of the calls.
“<block name> calls”: The calls from this block are displayed below this node.
The bottom entry in this tree structure shows the end of the call chain.

“Position” For the root node in the call tree: Line numbers of the declaration (“Decl”) of the
block.
For the caller or calls below the root node: Line number, column number, and
network number of the position, depending on the implementation language.

Context menu for the entry selected in the tree:

“Collapse All” The expanded entries in the call tree are collapsed, except for the two root
nodes.

View 'Call tree'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US994

“Show Source Position” CODESYS jumps to the occurrence location of the block in the source code of
the program.

“Set as New Root Node” The entry selected in the call tree is displayed in “Block name”. The tree is
refreshed automatically for the new root nodes.

The “Call list” view is provided for immediate information when stepping through
a program, as opposed to the static call tree that provides call information about
a block. The call list always shows the full call path of the current position that is
reached.

See also
● Ä Chapter 1.4.1.11.3 “Stepping Through a Program” on page 399
● Ä Chapter 1.4.1.20.3.3.15 “Command 'Call Stack'” on page 993
● Ä Chapter 1.4.1.20.3.2.31 “Command 'Browse Call Tree'” on page 975

Command 'Memory'
Symbol:
Function: In CODESYS V3.5 version earlier than SP11, the command opens the “Memory”
view.
Call: Menu bar: “View è Memory”.
As of SP11, the command provides the notice that you must install the CODESYS Memory
Tools package (available in the CODESYS Store) in order to use the memory view. After
installation, you can open the “Memory” view by clicking “View è Show Memory View”.

Command 'Security Screen'
Symbol:
Function: The command opens the “Security Screen” view.
Call:
● “View” menu
● icon or in the status bar

The icon is displayed in blue when a valid certificate is specified for the digital signature.
When only one client certificate is specified for the encrypted communication, the icon
remains gray, resulting in the client certificate providing no increased security for the user.

The following security features of CODESYS are configured and displayed in the view:
● Personal user certificate
● Encrypted communication
● Encryption and signatures of IEC projects
● Encryption and signature of download, online change, and boot application
● Security level

NOTICE!
When the “Security Screen” is opened and closed, the current settings are
applied in the user options, even when no active changes have been made.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 995

If the CODESYS Security Agent add-on product is installed, then the “Security
Screen” view provides an additional “Devices” tab. This allows for the configura-
tion of certificates for the encrypted communication with controllers.

On this tab, certificates are configured that are required for the encrypted communication and
the digital signature of the user. Only certificates with private keys can be specified here. The
user profile is saved as an XML file in the user options.

“User Profile and Certificate
Selection”

By default, the login name for Windows is specified as the user profile.

List box with existing user pro-
files

: Opens the “User Profiles” dialog. Here you specify the name for a new user
profile.

: Deletes the selected user profile. This user profile is no longer displayed in
the list box.

“Digital Signature” : Opens the “Certificate Selection” dialog for selecting the certificate for the
digital signature.
One certificate can be selected. The certificate has to have a private key.

: Deletes the displayed certificate.
One certificate can be selected. The certificate has to have a private key.

“Project File Decryption” : Opens the “Certificate Selection” dialog for selecting the certificate for
decrypting project files.
One certificate can be selected. The certificate has to have a private key.

: Deletes the displayed certificate.

See also
● Ä Chapter 1.4.1.20.4.18 “Dialog 'Certificate Selection'” on page 1215

Table 121: “Security Level”
“Activate the Use of Certificates for Enhanced Security”

“Enforce encrypted
communication”

: When the user communicates with the controller, the server certificate of
the controller is used for establishing an encrypted connection. Then the entire
communication is encrypted.

“Enforce encryption of project
files”

: All project files of the user are encrypted with a certificate. When the project
is saved, it is encrypted with the certificate specified in the project settings
(“Project Settings è Security” dialog). The selected certificate is displayed on
the “Project” tab in the “Project file encryption” group.
To open this project, the certificate to be encrypted has to be specified in “Project
file decryption” with a private key.

“Enforce signing of project
files”

: All project files of the user are signed with a certificate. In “Digital Signature”,
a certificate has to be specified with a private key.
When a project is saved, a signature file <project name>.project.p7s is
generated in the project directory containing the signature.

Tab 'User'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US996

“Enforce encryption of
downloads, online changes
and boot applications”

: The data that is downloaded to the controller has to be encrypted with a
controller certificate.
This certificate is defined directly either in the properties dialog of the application
on the “Encryption” tab, or in the security screen, on the “Project” tab, in the
“Encryption of Boot Application, Download and Online Change” group.
Controller certificates are located in the local Windows Certificate Store in the
“PLC Certificates” directory. If the certificates of your controller are not available
in the directory, then they first have to be loaded from the controller and installed
to the directory. For instructions, see the "“Controller Certificates”" chapter.

“Enforce signing of downloads,
online changes and boot
applications”

: The online code (downloads, online changes, and boot applications) have to
be signed with a certificate with a personal key. The certificate is selected from
the “Digital Signature” area.
Requirement: The “Encryption of boot application, download and online change”
option is selected.

“Enforce signing of compiled
libraries”

: The “File è Save Project as Compiled Library” command generates a signed
library <library name>.compiled-library-v3.

Requirements
● A certificate with a private key that supports code signing is available.
● A library compatibility >= CODESYS V3 SP15 is set in the project informa-

tion.

“Enforce timestamping of signed compiled libraries”: : The URL of the
time stamp server which created the time stamp has to be entered in the
“Timestamping server” field. Example: timestamp.comodoca.com/rfc3161.

See also
● Ä Chapter 1.4.1.15 “Using the Command-Line Interface” on page 442
● Ä Chapter 1.4.1.20.3.1.7 “Command 'Save Project as Compiled Library'” on page 960
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449

All project-specific settings are configured on this tab. These elements are active only when a
primary project is loaded.

“Project file encryption”

“Technology” : Opens the “Project Settings è Security” dialog
When you select the “Encryption” project setting and then “Certificates” in the
dialog, you can choose a corresponding certificate by clicking . For more
information, see the description of the "Project Settings: Security" dialog.

“Certificates of Users Sharing
this Project”

Area for listing the certificates that encrypt the project file.

Tab 'Project'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 997

“Encryption of Boot Application, Download and Online Change”

List of the applications of the
controller

Double-clicking an application in the list opens the “Properties è Encryption”
dialog. Depending on the settings of the “Security Level” on the “User” tab of the
“Security Screen”, the following fields are available in the open properties dialog:
● “Encryption” tab with active “Certificates” area
● “Encryption” tab with “Encryption Technology” list box.

In the “Properties è Encryption” dialog, click the button to select the
controller certificate for “Encryption of Boot Application, Download and Online
Change”. For more information, see the description of the "Properties: Encryp-
tion" dialog.
Controller certificates are located in the local Windows Certificate Store in the
“PLC Certificates” directory. If the certificates of your controller are not available
in the directory, then they first have to be loaded from the controller and installed
to the directory. For instructions, see the "Protecting and Saving a Project" - "
Encryption with Certificates" chapter.

See also
● Ä Chapter 1.4.1.20.4.11.7 “Dialog 'Project Settings' - 'Security'” on page 1176
● Ä Chapter 1.4.1.20.4.10.3 “Dialog 'Properties' - 'Encryption'” on page 1158
● Ä Chapter 1.4.1.5.7 “Encrypting Projects with Certificates” on page 207

This tab is available only after you have installed the CODESYS Security Agent
add-on. For a description of this tab, see the help for the CODESYS Security
Agent.

Command 'Settings of Memory Reserve for Online Change'
Function: This command opens the “ Online Change Memory Reserve” view.
Call: Menu bar: “View”.
In the view, memory reserves are configured for the function blocks during the online change.

“Scan Application” ● Searches the selected application for function blocks and displays them in
the “Function blocks” area

● Updates the “Function blocks” area after the application is built again.
● Updates the “Function blocks” area after an online change.

Drop-down list with the applica-
tions of the open project

Selection of the application whose function blocks should be displayed and/or
edited in this view.

Table 122: “Function Blocks”
“All” All function blocks of the selected application are displayed.

“Pool” All function blocks of the “POUs” view that are displayed which are referenced in
the application.

“No memory-reserve” All function blocks with a memory reserve of 0 bytes are displayed.

“<memory reserve> bytes” Display of all function blocks with the number of bytes is displayed that is defined
in “Memory reserve”.

Information about the function blocks
Multiple selection is also possible when selecting a POU for the configuration of the memory reserve.

Tab 'Devices'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US998

“Function block” Name of the function block

“Size” Size of the function block
Size of an instance of a function block
Specified in bytes

“Number of instances ” Number of instances of a function block in the project

“Memory reserve” Display of the memory reserve for each instance of the function block

“Additional memory for all
instances”

Product of “Number of instances” and “Memory reserve”

“Remaining memory reserve” Number of bytes that are available as reserve.

Table 123: “Settings”
“Memory reserve (in bytes)” Input field for the memory reserve for the selected function block.

Specified in bytes
Requirement: the application is not located on the controller yet or you have
allowed the memory reserve to be changed by clicking the “Edit” button in the
“Allow editing” area.

“Apply for Selection” The “Memory reserve (in bytes)” is assigned to the function block and the table
column “Memory Reserve” is updated.
In multiple selection, the specified value is assigned to each function block.
In order to update the columns “Size”, “Number of Instances”, “Additional
Memory for All Instances”, and “Remaining Size of the Memory Reserve”, click
“Build è Build”, and then click the “Scan Application” button.

Table 124: “Enable Editing”
“Enable” The input field “Memory reserve (in bytes)” is editable.

This button is modified in “Editable”.

Table 125: “Information”
“Number of FBs” Total number of function blocks in the application

“Additional memory for all
instances”

Sum of the memory reserves of all function block instances of the application.
Specified in bytes

See also
● Ä Chapter 1.4.1.20.3.6.6 “Command 'Online Change'” on page 1033

Command 'Start Page'
Symbol:
Function: This command opens the “Start Page” view.
Call: Main menu “View”

The view includes some basic commands and a list of recently opened projects. In addition, the
CODESYS homepage is displayed.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 999

If you access the Internet through a proxy, then you can save the authentication
data in the project options (“Proxy Settings”) so you do not have to provide this
data every time you use this command.

By moving the mouse pointer over the list of recently opened projects, you can remove or pin
individual projects in the list. Pinned projects remain in this list until you remove the pin.
In the project options (“Load and Save”), you can configure whether this start page should open
automatically when you start CODESYS.
See also
● Ä Chapter 1.4.1.20.4.13.16 “Dialog 'Options' – 'Load and Save'” on page 1196
● Ä Chapter 1.4.1.20.4.13.20 “Dialog 'Options' - 'Proxy Settings'” on page 1198

Command 'Full Screen'
Symbol: , keyboard shortcut [Ctrl]+[Shift]+[F12]

Function: This command switches the CODESYS display to full screen mode.
Call: Main menu “View”

Choosing this command displays the main window of the CODESYS user interface in full-
screen mode. You can return to the previous setting by choosing the command again or with the
keyboard shortcut [Ctrl]+[Shift]+[F12].

Command 'Properties'
Symbol:
Function: This command opens the properties of the currently selected object in the POUs tree
or device tree.
Call: Main menu “View”

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1000

Menu 'Project'
1.4.1.20.3.4.1 Command ‘Add Object’... 1001
1.4.1.20.3.4.2 Command ‘Add Folder’.. 1002
1.4.1.20.3.4.3 Command 'Insert Device'... 1002
1.4.1.20.3.4.4 Command 'Plug Device'.. 1003
1.4.1.20.3.4.5 Command 'Scan for Devices'.. 1003
1.4.1.20.3.4.6 Command 'Update Device'.. 1005
1.4.1.20.3.4.7 Command 'Acknowledge Diagnosis', 'Acknowledge Diagnosis

for Subtree'.. 1005
1.4.1.20.3.4.8 Command 'Edit Object'.. 1006
1.4.1.20.3.4.9 Command 'Edit Object with'... 1006
1.4.1.20.3.4.10 Command 'Check integrity'.. 1006
1.4.1.20.3.4.11 Command 'Edit Object (Offline)'.. 1006
1.4.1.20.3.4.12 Command 'Set Active Application'... 1006
1.4.1.20.3.4.13 Command 'Project information'.. 1007
1.4.1.20.3.4.14 Command 'Project Settings'.. 1007
1.4.1.20.3.4.15 Command 'Project Environment'... 1007
1.4.1.20.3.4.16 Command 'Project Localization' - 'Create Localization Tem-

plate'.. 1007
1.4.1.20.3.4.17 Command 'Project Localization' - 'Manage Localizations'..... 1008
1.4.1.20.3.4.18 Command 'Project Localization' - 'Toggle Localization'......... 1009
1.4.1.20.3.4.19 Command 'Document' .. 1009
1.4.1.20.3.4.20 Command 'Compare objects'.. 1010
1.4.1.20.3.4.21 Command 'Compare'... 1010
1.4.1.20.3.4.22 Command 'Commit Accepted Changes'................................ 1014
1.4.1.20.3.4.23 Command 'Map pool devices'.. 1014
1.4.1.20.3.4.24 Command 'Export'... 1014
1.4.1.20.3.4.25 Command 'Import'... 1015
1.4.1.20.3.4.26 Command 'Export PLCopenXML'.. 1015
1.4.1.20.3.4.27 Command 'Import PLCopenXML'.. 1015
1.4.1.20.3.4.28 Command 'User management' – 'Log in User'...................... 1016
1.4.1.20.3.4.29 Command 'User management' – 'Log out User'.................... 1016
1.4.1.20.3.4.30 Command 'User management' – 'Rights…'........................... 1016
1.4.1.20.3.4.31 Command 'Insert Device'... 1017
1.4.1.20.3.4.32 Command 'Generate EtherCAT XML'.................................... 1017
1.4.1.20.3.4.33 Command 'Generate Sercos SCI XML'................................. 1017
1.4.1.20.3.4.34 Command 'Disable Device' – 'Enable Device'....................... 1017
1.4.1.20.3.4.35 Command 'Edit I/O Mapping'... 1018
1.4.1.20.3.4.36 Command 'Import Mappings from CSV'................................ 1018
1.4.1.20.3.4.37 Command 'Export Mappings to CSV'.................................... 1019
1.4.1.20.3.4.38 Command 'Read PLC Parameter File to Configuration'........ 1019
1.4.1.20.3.4.39 Command 'Online Config Mode'.. 1019
1.4.1.20.3.4.40 Command 'Runtime licensing'... 1020

Command ‘Add Object’
Symbol:
Function: This command opens a submenu with objects that contain all objects that can be
inserted, depending on the current position in the “Devices” or “POUs” view.
Call: “Project” menu, context menu in the “Devices” or “POUs” view.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1001

Requirement: If CODESYS is to insert the object in the device tree, select an already existing
object under which the new one is can be inserted indented. If CODESYS is to insert the object
in the POUs tree, set the focus in any free place in the CODESYS window.

Command ‘Add Folder’
Symbol:
Function: This command opens a dialog box for defining a new folder in the Devices or POUs
view.
Call: “Project” menu, context menu in the Devices or POUs view

You cannot structure the arrangement of device nodes and device objects
through folders that you have created yourself.

This command inserts the folder below the object that has just been selected in the tree. If no
object is selected, CODESYS inserts the folder right at the top in the tree directly under the root
node.

Command 'Insert Device'
Function: this command opens the dialog box “Add Device” for the selection of a device object
that is to be inserted in the device tree below the currently selected object.
Call: Context menu of a device object in the device tree.
Requirement: An object is selected in the device tree below which a device object can be
inserted.
See also
● Ä Chapter 1.4.1.7 “Configuring I/O Links” on page 213

Function: Depending on the currently selected position in the device tree, the dialog box
offers a selection of the devices that can be inserted at this point. In addition, it contains the
commands also available in the context menu: “Insert Device”, “Add Device”, “Plug Device”,
“Update Device”.
Requirement: The devices are installed in the device repository on the local system.

If you have opened the dialog box, it always displays the selection to suit the
object currently selected in the device tree until you click “Close”.

“Name” Name with which the device is to appear in the device tree. Must be a valid IEC
identifier.

Table 126: “action”
“Add device” CODESYS inserts the selected device indented below the selected object in the

device tree.

“Insert device” CODESYS inserts the selected device at the same level as the selected object
below it in the device tree.

Dialog box 'Add
device'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1002

“Plug device” CODESYS inserts the selected device in the selected slot. If the slot is already
occupied, the existing module is replaced by the new one.

“Update device” CODESYS replaces the device selected in the device tree by the one selected.
Please note: Depending on the device, this may cause the configuration already
done in the device editor to be overwritten with the default values!

“String for the full text search” This field is editable after clicking in it. For any character string entered, only
those devices that include the character string are displayed in the lower view.
The matched string is highlighted in yellow for these devices.

“Vendor:” Drop-down list with manufacturers whose available devices are displayed.

“Group by category” : The available devices (newest version) are sorted by category. The category
is defined in the device description file.

: The available devices appear flat and alphabetically sorted.

“Display all versions (for
experts only)”

: In addition, all other available versions of the devices can also be selected.

: Only the newest version of each device is available for selection

“Display outdated versions” : In addition, outdated versions of the devices can also be selected. Outdated
versions result, for example, from the update of plug-ins.

: Outdated device versions are not displayed.

The information provided by the device description file is displayed:
device name, vendor, categories, version, order number and a short description, device-specific bitmap.

See also
● Ä Chapter 1.4.1.20.3.4.31 “Command 'Insert Device'” on page 1017
● Ä Chapter 1.4.1.20.3.4.4 “Command 'Plug Device'” on page 1003
● Ä Chapter 1.4.1.20.3.4.6 “Command 'Update Device'” on page 1005

Command 'Plug Device'
Function: Like the command “Add Device”, this command opens the dialog box “Add Device”
for the selection of a device object that is to be inserted in the device tree in the currently
selected slot.
Call: Context menu of the slot of a device object in the device tree.
Requirement: The slot of a device object is selected in the device tree.

An empty slot is identified by the symbol and the entry "<empty> (<empty>)". An occupied
slot is given the symbol and the name of the device.
In the case of an occupied slot, this command replaces the existing module with the new one.
See also
● Ä Chapter 1.4.1.20.3.4.3 “Command 'Insert Device'” on page 1002
● Ä Chapter 1.4.1.7 “Configuring I/O Links” on page 213

Command 'Scan for Devices'
Function: The command establishes a brief connection to the hardware and determines the
devices in the network. Then you can apply the devices found into the device tree of your
project.
Call: Menu bar: “Project”; context menu of a device object in the device tree

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1003

Requirement: The communication settings to the controller are correct. The gateway and the
PLC are started. The device supports the scan function.
The following devices provide the scan function: EtherCAT master, EtherNet/IP Scanner
(IEC), Sercos master, CANopen Manager, CANopen Manager SIL2, PROFINET controller und
PROFIBUS DP master.

You can perform the device scan immediately if the scan function is perma-
nently implemented in the PLC. When scan function is implemented in a library,
you have to log in only one time to download the library to the controller.

The command refers to the master controller selected in the device tree. For example, an
already inserted PROFINET IO controller can be selected and the command used to determine
the I/O devices and I/O modules assigned to it.
After performing the scan operation, the “Scan Devices” dialog opens and displays the found
devices.

Table 127: “Scanned Devices”
“Device name, Device type,
Address, Station name, etc.”

Data about the scanned device depending on network type.
When you change a value in the list of scanned devices, the value is shown
in italics. This indicates that the new value has been changed in the editor in
CODESYS, but not in the device. When you download the value to the device, it
is shown normally.
Value that indicate differences between the project and the scanned device are
shown in orange.
If multiple device descriptions are available for the scanned device, then the
name is displayed in bold. The selection of the matching device description is
resolved differently for different fieldbuses. For more detailed information, see
the corresponding fieldbus chapters.
If a device description cannot be found, then the following message is shown:
"Attention! The device was not found in the repository." Depending on the bus
system, additional information is displayed, such as manufacturer number and
product number. The device cannot be inserted into the project without the
installed device description.

“Show differences to project” : The table in the dialog also shows additional configured devices (in the
device tree of the project).

: The table shows all scanned devices. The configured devices are not shown.

“Scan for Devices” Starts a new search.

“Copy All Devices to Project” The device that is selected in the table is inserted into the device tree in the
project. If nothing is selected, then all scanned devices are shown.

NOTICE!
If you insert devices, which are available in the device tree, to the device tree
with “Copy All Devices to Project”, then the following should be noted. The data
of the “Process Data” and “<...> I/O Mapping” tabs of the existing devices can
be overwritten with the data of the recently inserted devices.

Dialog 'Scan
Devices'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1004

Table 128: “Configured Devices”
This part of the dialog is visible only when you select the “Show differences to project” option.
Differences between the scanned and configured devices are color-coded. Devices displayed in green are iden-
tical on both sides. Devices displayed in red are available only in the view of the scanned or configured devices.

If you have selected a device in both views, then the scanned devices are
inserted above the selected configured device.

If you have selected a device in both views, then the scanned devices are
inserted below the selected configured device.

If you have selected a device in both views, then the configured devices are
replaced by the selected scanned device.

All scanned devices are copied to the project.

Deletes the selected configure device.

The dialogs for the scan differ depending on the type of device. See the help pages for the
respective device editor.

Command 'Update Device'
Function: Like the command “Add Device”, this command opens the dialog box “Add Device”
for the selection of a device object. This object is inserted in the device tree in place of the
currently selected object.
Call: Context menu of a device object in the device tree.
Requirement: An object is selected in the device tree below which a device object can be
inserted.
With this command you can insert either a different version of a device or a different type of
device in place of the previous one.
The symbolic device name used in the device tree is retained, but the device type specified
in parentheses behind it changes if a different type has been selected. Thus if only the device
version is changed, the object entry appears unchanged.
If the device type does not change, the configuration tree indented below the device entry con-
cerned is retained. In this case the configuration settings also remain the same. Inconsistencies
in the configuration resulting from the device update are reported by CODESYS at the next
compilation of the application. This also concerns implicitly inserted libraries, which CODESYS
does not remove accordingly during a device update.
See also
● Ä Chapter 1.4.1.7 “Configuring I/O Links” on page 213
● Ä Chapter 1.4.1.20.3.4.3 “Command 'Insert Device'” on page 1002

Command 'Acknowledge Diagnosis', 'Acknowledge Diagnosis for Subtree'
Function: The command acknowledges a diagnosis message.
Call: Context menu of a device object in the device tree
Requirement: The project is in online mode.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1005

The “Acknowledge diagnosis” command acknowledges the diagnosis messages of an individual
device. The “Acknowledge Diagnosis for Subtree” command also acknowledges the diagnosis
messages of all subordinate devices. The diagnosis message of a pending malfunction is
indicated by a red exclamation mark at the device object. The diagnosis message of a corrected
malfunction is indicated by a gray exclamation mark.

Command 'Edit Object'
Function: This command opens the object in its editor.
Call: Main menu “Project”, context menu.
Requirement: An object is selected in the device tree or in the “POUs” view.

Command 'Edit Object with'
Function: When multiple objects are available for an object, this command opens a dialog box
for selecting an editor.
If only one editor is available for an object, then this command opens the object in that editor.
Call: Main menu “Project” or shortcut menu (right-click)
Requirement: An object is selected in the device tree or in the “POUs” view.
In the standard installation of CODESYS, there is no object that has multiple available editors.

Command 'Check integrity'
Function: Automation Builder checks the project integrity for the complete project ("Project
integrity" checks if all devices in the device tree are installed in the device repository).
Call: Main menu “Project”, Context menu.
Requirement: A project is open.

Command 'Edit Object (Offline)'
Function: The command opens the object offline in the editor.
Call: Main menu “Project”, Context menu
Requirement: The application is in online mode. An object is selected in the device tree or in
the “POUs” view.
The command allows you to edit objects in online mode. After editing you transfer the changes
to the controller by use of the command “Online è Online Change” or “Online è Load”.
See also
● Ä Chapter 1.4.1.20.3.6.6 “Command 'Online Change'” on page 1033
● Ä Chapter 1.4.1.20.3.6.5 “Command 'Load'” on page 1032

Command 'Set Active Application'
Function: This command sets the selected application as the active application.
Call: Main menu “Project”, or right-click the “Application” object.
Requirement: The project has at least two applications. The selected application is not active.
Online actions apply only to the active application. The name of an active application is dis-
played in bold typeface in the device tree.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1006

Command 'Project information'
Symbol:
Function: This command opens the dialog box “Project Information”.
Call: Main menu“Project”

When you execute the command in the project for the first time, CODESYS creates the “Project
Information” object.
See also
● Ä Chapter 1.4.1.2.3.1 “Retrieving and Editing Project Information” on page 191
● Ä Chapter 1.4.1.2.3.2 “Making project settings” on page 193
● Ä Chapter 1.4.1.20.2.21 “Object 'Project Information'” on page 919

Command 'Project Settings'
Symbol:
Function: This command opens the “Project Settings” dialog box.
Call: “Project” menu or double-click on the object “Project Settings” in the “POUs” view
Requirement: A project is open.
See also
● Ä Chapter 1.4.1.2.3.2 “Making project settings” on page 193
● Ä Chapter 1.4.1.20.4.11 “Dialog 'Project Settings'” on page 1170
● Ä Chapter 1.4.1.20.2.20 “Object 'Project Settings'” on page 918

Command 'Project Environment'
Function: This command opens the “Project Environment” dialog box.
Call: “Project” menu
Requirement: A project is open.
this command is for checking the currentness of software and files integrated in the project and
enables them to be updated.
See also
● Ä Chapter 1.4.1.20.4.12.1 “Dialog 'Project Environment' – 'Library Versions'” on page 1182
● Ä Chapter 1.4.1.20.4.12.6 “Dialog 'Project Environment' – 'C Code Modules'” on page 1184
● Ä Chapter 1.4.1.20.4.12.2 “Dialog 'Project Environment' - 'Compiler Version'” on page 1182
● Ä Chapter 1.4.1.20.4.12.3 “Dialog 'Project Environment' - 'Device Versions'” on page 1183
● Ä Chapter 1.4.1.20.4.12.4 “Dialog 'Project Environment' – 'Visualization Profile'”

on page 1183
● Ä Chapter 1.4.1.20.4.12.5 “Dialog 'Project Environment' – 'Visualization Styles'”

on page 1184
● Ä Chapter 1.4.1.20.4.12.7 “Dialog 'Project Environment' – 'Visualization Symbols'”

on page 1185

Command 'Project Localization' - 'Create Localization Template'
Function: This command opens the “Create Localization Template” dialog. Define here which
information should be exported from the project to a translation template (*.pot file).

Call: Menu bar: “Project è Project Localization”.
Requirement: A project is open.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1007

This dialog is used for selecting the textual information that should be used in the localization
template.

Table 129: “Include the Following Information”
“Names” Texts, such as dialog captions and object names in the device tree

“Identifier” Variable identifier (example: Counter)

“ Strings” Example: 'count' in the following declaration: strVar: STRING :=
'count';

“Comments” Comment texts in the POUs

“Position information” Selection of which positions of the selected text categories in the project should
be included in the translation file. The position information is located in the first
line(s) of a segment for a translation. Example:
#: D:\Proj1.project\Project_Settings:1
msgid "Project settings"
msgstr ""
● “All”: All detected positions of the text are listed.
● “First appearance”: In the translation file, the position is included in the

project where the text to be translated appears for the first time.
● “None”

“Generate” This button opens the dialog for saving a file. The translation template is created
in a text file of type *.pot (portable object template). Each further generation
creates a completely new template file.

See also
● Help about CODESYS Visualization: Multi-language capability

Command 'Project Localization' - 'Manage Localizations'
Function: This command opens the “Manage localizations” dialog. Select the desired locali-
zation language in the dialog or the original version of the project. You can still accept the
localization files *.<language>.po into the project or remove them.

Call: Menu bar: “Project è Project localization”.
Requirement: A project is open.

“Available Localizations” List of the localization files available in the project. Example:
proj1-de.po
proj1-en.po
<original version>
The original version is always available. The project can be edited only in the
original version.

“Add” This button opens the dialog for selecting an additional po file from the file
system.

“Remove” This button removes the po file, which is selected on the left side, from the
project.

“Default localization” : The selected localization is for the default localization. The entry is display in
bold.

Dialog 'Create
Localization
Template'

Dialog 'Manage
localizations'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1008

“Switch Localization” Use this button to switch to the selected localization.

“OK” The project is displayed in the language that is provided by the file selected
below the files. If you select “<original version>”, then the project appears in the
editable non-localized version.

See also
● Ä Chapter 1.4.5.6 “Setting Up Multiple Languages” on page 1286

Command 'Project Localization' - 'Toggle Localization'
Symbol:
Function: This command switches between the currently set project localization and the
<original version>.

Call: Menu bar: “Project è Project Localization”; button in the “Manage Localizations” dialog;
button on the toolbar.
Requirement: A project is open. A default localization for the project is defined in the “Manage
Localizations” dialog.
See also
● Help about CODESYS Visualization: Multi-language capability
● Ä Chapter 1.4.1.20.3.4.17 “Command 'Project Localization' - 'Manage Localizations'”

on page 1008

Command 'Document'
Symbol:
Function: This command opens the “Document Project” dialog box, where you can define the
project documentation. This includes the selection of objects in the open project that you want
to print.
Call: Main menu “Project”

Table 130: “Document Project” dialog box
“Please select the objects
which are to be printed”

Project tree view
In this view, you can select or clear objects for printing.
All objects are selected by default.

“Title page” CODESYS creates a title page named "Project Documentation" with the fol-
lowing information:
● File: project file name
● Date: Creation date of the project documentation
● Profile: CODESYS profile of the project

“Table of contents” CODESYS creates a table of contents for the project documentation.

“Preview” CODESYS creates and opens a print preview of the project documentation.

“Select” CODESYS opens a drop-down list of all or single object types for the project
documentation.

“Deselect” CODESYS opens a drop-down list of all or single object types that should be
excluded from the project documentation.

“OK” The “Print” dialog box opens.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1009

See also
● Ä Chapter 1.4.1.20.4.11.6 “Dialog 'Project Settings' - 'Page Setup'” on page 1175
● Ä Chapter 1.4.1.20.3.1.12 “Command 'Print'” on page 963

Command 'Compare objects'
Function: To compare similar objects within a project.
Call: Main menu “Project”, Context menu.
Requirement: Both projects have to be open.
Ä Chapter 1.2.13.4 “Comparing objects” on page 59

Command 'Compare'
Symbol:
Function: This command opens the “Project Comparison” dialog. In this dialog, you define the
reference project to compare with the current project. You configure the comparison process by
means of options. When the dialog is exited, the comparison starts and the result is shown in
the view “Project Compare - Differences”.
Call: Menu bar: “Project è Compare”.
Requirement: A project is open.
See also
● Ä Chapter 1.4.1.4 “Comparing projects” on page 195
● Ä Chapter 1.4.1.20.3.4.22 “Command 'Commit Accepted Changes'” on page 1014

Table 131: “Compare the currently open project with:”
“Project on disk” Path of the reference project on the file system.

“Project in a source control
database”

“Host”: Name of the host where the source code management is located.
“Port”: Number of the port for connecting to the source code management.
“Location”: Path of the reference project.
Requirement: The project is linked to source code management (for example,
Professional Version Control).

Table 132: “Compare Options”
“Ignore whitespace” : Whitespace differences between the current project and the reference project

are ignored.

“Ignore comments” : Comments in the programming code are excluded from the comparison.

“Ignore properties” : Object properties are excluded from the comparison.

“OK” Starts the project compare and displays the result in the view “Project compare -
Differences”.

Dialog 'Project
Comparison'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1010

The project compare view opens when you click “OK” to close the “Project Compare” dialog.

(1) Object tree of the current project
(2) Object tree of the reference project
(3) Command 'Accept Block', command 'Accept Single'
(4) Compare options, configured in 'Project Compare' dialog
 Compare statistics: added, deleted, and changed objects

Table 133: Toolbar
Switches to the detailed compare view “Project Comparison' - '<object name>
Differences” for the object selected in the tree. Alternative: Double-click the
object.

Selects the next bottom object in the device tree where differences were
detected.

Selects the next top object in the device tree where differences were detected.

“Accept Block” The block (selected object with all subordinate objects and units) is selected for
acceptance from the reference block to the current block.

Repeated clicking of “Accept Block” undoes the effects of its last change.

“Accept Single” The object is selected in the current object for acceptance from the reference
line.

Requirement: The properties, access rights, or contents of the objects selected
in the object tree are different.
Opens the “Accept” dialog.

View 'Project
Comparison' -
'Differences'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1011

Table 134: Display of differences with colors, and symbols
Black font Objects are identical.

Object name with Child objects of the object are different

Gray highlight Objects are different.

Gray highlight + bold blue font Object is only in the reference project.

Gray highlight + bold green
font

Object is only in the open project (not in reference project).

Gray highlight + red font + Object has different properties.

Gray highlight + red font + Access rights of object and reference object are different.

Gray highlight + bold red font + Implementation of objects is different.
Double-click the line to display the object-specific compare view.

Yellow highlight Object is activated for acceptance.

Yellow highlight + Adding the reference object to the open project is activated.

Yellow highlight + Deleting the object (in the open project) is activated.

Yellow highlight + Acceptance of the properties of the reference project is activated.

Yellow highlight + red font + Acceptance of the access rights of the reference project is activated.

Gray highlight + bold red font + Acceptance of the implementation of the reference project is activated.

“Compare options” Defined comparison options in the “Project Comparison” dialog.

“Compare statistics” Number of additions, deletions, and changes in the current project, as compared
to the reference project. “Change” means differences of an object available in
both projects.

The dialog prompt opens: “Do you want to commit the changes which you made
in the diff view?”

“Yes”: The contents, properties, or access rights of the objects highlighted in
yellow are modified in the project. Now they correspond to the reference project.
Then the project compare view is closed completely.

Function: Detail compare view
Call in the project compare view:
● Select an object that is identified as having different contents which you need to view in

detail. Click .
● Double-click the object.

Table 135: Toolbar
Switch back to the project compare view.

Selects the next line below in the code where differences were detected.

View 'Project
Comparison' -
'<object name>
Differences'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1012

Selects the next line above in the code where differences were detected.

“Accept Block”2 The block (with all subordinate lines) is selected for acceptance of the reference
blocks into the current project.
A block in the detailed compare view consists of the unit where the cursor is
located and all corresponding units that have the same difference markers. A
unit is a line, network, or element. Subsequent lines of a line are examples of
corresponding units.

Repeated clicking of “Accept Block” undoes the effects of its last change.

“Accept Single” The line is selected in the current object for acceptance of the reference line.

Switches between the default display where different units (lines, networks, ele-
ments) are displayed in red and another display: The units are displayed as
recently added in the open project. In the reference project, they are displayed
as deleted.
Available within the detailed compare view only.
Note: Depending on the display, detected differences in the statistics are
counted as changed, inserted, or deleted.

Table 136: Display of differences with colors, and symbols
Black font Objects are identical.

Gray highlight + bold blue font Code is only in the reference project.

Gray highlight + bold green
font

Code is only in the current project (not in reference project).

Yellow highlight The object is activated for acceptance.

The dialog prompt opens: “Do you want to commit the changes which you made
in the diff view?”

“Yes”: The code highlighted in yellow is accepted into the project. The code
corresponds to the reference project. Then the detailed view is closed and the
project view is displayed. You can continue working with project compare.

Table 137: “Which meta data should be accepted?”
“Access rights” : Access rights that are selected for acceptance.

“Accepted groups” Grouping with access rights accepted by the reference project. A group is
accepted if it is present in both projects with different access rights.
Example: Group_A

“Unaccepted groups (missing
in a project) ”

The group is not accepted if it is not present in one of the two projects.

“Properties” : Properties activated for accept
Requirement: The properties of the reference object and object are different.

Dialog 'Accept'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1013

“OK” Settings are accepted.

Command 'Commit Accepted Changes'
Symbol:
Function: This command commits the accepted differences from the project comparison to the
current project.
Call: “Project è Commit Accepted Changes”.
Requirement: Changes from the project comparison have been accepted.

The changes are only copied to the project. This command does not save them
to the hard disk.

See also
● Ä Chapter 1.4.1.4.2 “Opening the detailed compare view” on page 196

Command 'Map pool devices'
Symbol:
Function: Maps imported devices from the device pool to already configured devices below a
PLC.
Call: Main menu “Project”, Context menu.
Requirement: A project is open.
Ä Chapter 1.8.1.1.7 “Arrange or map devices imported to the device pool” on page 4115

Command 'Export'
Function: This command opens a dialog box for exporting objects from a project to an XML file.
Call: Menu bar: “Project”.

This dialog box lists all objects from the device tree, POU tree, and module tree that CODESYS
can export.

One file per subtree : CODESYS generates a separate export file for each subtree that is located
directly under the root node and includes selected files.

: CODESYS generates one export file for all selected objects.

“Saved version” This version should correspond to the target version where the export file will
later be imported.
If the current project contains plug-ins or add-ons that are not available in the
selected memory format (profile), then the “Extend Profile” dialog box opens. In
this dialog box, the selected profile can be extended with the add-ons.

See also
● Ä Chapter 1.4.1.20.3.1.5 “Command 'Save Project as'” on page 958
● Ä Chapter 1.4.1.20.3.4.25 “Command 'Import'” on page 1015
● Ä Chapter 1.4.1.3.1 “Exporting and importing projects” on page 193

Dialog 'Export'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1014

Command 'Import'
Function: This command opens a dialog box for importing objects from an XML file.
Call: Menu “Project”

Requirement: A project is open.

The dialog box lists all objects from the export file that CODESYS can import at this point.

“Currently selected target
objects”

Object that is selected in the Device tree

“Insertable items” Displays all objects of the export file that CODESYS can insert below the
selected object.

“Show contents” Displays the contents of the export file in a tree structure

Command 'Export PLCopenXML'
Function: This command opens a dialog box for exporting objects from a project into an XML
file in the PLCopen format.
Call: Menu “Project”

The dialog box lists all objects from the Device tree that CODESYS can export into an XML file
in accordance with the PLCopen format.

The PLCopenXML scheme does not permit VAR_GLOBAL and VAR_GLOBAL
CONSTANT POUs to be in the same variable list. Therefore, if you wish to
export both, you must first divide the variables into two separate variable lists.

See also
● Ä Chapter 1.4.1.20.3.4.27 “Command 'Import PLCopenXML'” on page 1015

Command 'Import PLCopenXML'
Function: This command opens a dialog box for importing objects from an XML file in PLCopen
format.
Call: Menu “Project”

Requirement: A project is open.

The dialog box lists all objects from the PLCopen export file that CODESYS can import at this
point.

“Currently selected target
object”

Object that is selected in the Device tree

“Insertable items” Displays all objects of the export file that CODESYS can insert below the
selected object.

Dialog box 'Im-
port'

Dialog box 'Ex-
port PLCo-
penXML'

Dialog box 'Im-
port PLCo-
penXML'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1015

The PLCopenXML scheme does not permit VAR_GLOBAL and VAR_GLOBAL
CONSTANT POUs to be in the same variable list. Therefore, if you wish to
export both, the variables must first be divided into two separate variable lists.

Command 'User management' – 'Log in User'
Symbol:
This command opens the dialog box “Login”. Here you specify the project that you wish to edit
and enter the login data for a user account with the corresponding rights. In addition, you can
open the password manager from this dialog box.
The command is available in the menu “Project è User Management”.
See also
● Ä Chapter 1.4.1.5.6 “Logging in via User Account and Password Manager” on page 205

Command 'User management' – 'Log out User'
Symbol:
The user currently logged in to the project is logged out again with this command. This takes
place without a dialog box or message, unless no user is currently logged in.
The command is available in the menu “Project è User Management”.
If the user is currently logged in to several projects or to libraries integrated in them (it does not
have to be the same user account), then the dialog box “Logout” opens, in which the specific
project or library project can be selected from which the current user is to be logged out.
The status bar always displays the user who is currently logged into the project.

A double-click on the field “Current user” in the status bar enables quick access to the “Login” or
“Logout” dialog box.
See also
● Ä Chapter 1.4.1.5.6 “Logging in via User Account and Password Manager” on page 205
● Ä Chapter 1.4.1.20.3.4.28 “Command 'User management' – 'Log in User'” on page 1016

Command 'User management' – 'Rights…'
This command opens the dialog box “Rights”, in which you define the actions that may be
carried out, the user groups that may carry them out and the project objects on which they may
be carried out.
The command is available in the menu “Project è User Management”.
See also
● Ä Chapter 1.4.1.5.5 “Protecting Objects in the Project by Access Rights” on page 204

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1016

Command 'Insert Device'
Function: Like the command “Add Device”, this command opens a dialog box “Insert Device”
for the selection of a device object. This object is inserted in the device tree at the same level as
the currently selected object.
Call: Context menu of a device object in the device tree.
Requirement: An object is selected in the device tree below which a device object can be
inserted at the same level.
See also
● Ä Chapter 1.4.1.7 “Configuring I/O Links” on page 213
● Ä Chapter 1.4.1.20.3.4.3 “Command 'Insert Device'” on page 1002

Command 'Generate EtherCAT XML'

The command is not integrated in the standard main menu. You can add it via
the dialog box “Tools è Customize” from the category “Devices”.

Function: This command opens the standard dialog box for saving a file in the local file system.
You can define a name and a storage location for an xml file, in which CODESYS is to store the
EtherCAT configuration of the EtherCAT master currently selected in the device tree. This may
be necessary in order to operate an external EtherCAT stack.
Call: Context menu of an EtherCAT master device object in the device tree.
See also
● Ä Chapter 1.4.1.7 “Configuring I/O Links” on page 213

Command 'Generate Sercos SCI XML'

The command is not integrated in the standard menu. You can add it via the
dialog box “Tools è Customize” from the category “Devices”.

Function: This command opens the standard dialog box for saving a file in the local file system.
You can define a name and a location for an xml file in which CODESYS then stores the
configuration data of the sercos master currently selected in the device tree. This may be
necessary in order to operate an external sercos stack.
Call: Context menu of a sercos master device object in the device tree.
See also
● Ä Chapter 1.4.1.7 “Configuring I/O Links” on page 213
● Ä Chapter 1.4.1.1.2.1 “Customizing menus” on page 180

Command 'Disable Device' – 'Enable Device'
Function: This command switches back and forth between the enabled (activated) and disabled
(deactivated) states of a device in the bus system.
Call: Context menu of a device object in the device tree.
Requirement: The project is in offline mode. The bus driver must support the function.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1017

A disabled device is not taken into account and is not addressed. Note that with some bus
systems the deactivation of a node can lead to the master stopping.
The entry of a disabled device in the tree appears in light-gray lettering. When logging in,
disabled devices are additionally marked with a red triangle .
See also
● Ä Chapter 1.4.1.7 “Configuring I/O Links” on page 213

Command 'Edit I/O Mapping'
Function: This command opens the “Edit I/O Mapping” dialog box. This displays all I/O map-
pings of the currently selected device object, including I/O mappings of all additional device
objects that are inserted in the device tree below this object.
Call: Context menu of a device object in the device tree.

You can edit the I/O mapping in this dialog box in exactly the same way as in the dialog box “I/O
mapping” of the individual device editors. The respective other dialog boxes are directly updated
accordingly.

“Search” Input field for a search string for the mapping table. The search results are
marked in yellow.

“Filter” Drop-down list for filtering I/O assignments displayed listed in the mapping table:
● “Show all”
● “Show outputs only”
● “Show inputs only”
● “Show unmapped variables only”
● “Show mapped variables only”
● “Show mappings to existing variables only”
● “ Show mappings to new variables only”

In the context menu you will find among other things the following commands:
“Export Mappings to CSV”: Stores the mappings of a device and its sub-devices in an external
file. To do this you select the device in the device tree or in the mapping list.
“Import Mappings from CSV”: Inserts mappings from a file created beforehand by export.
See also
● Ä Chapter 1.4.1.7 “Configuring I/O Links” on page 213
● Ä Chapter 1.4.1.20.3.4.35 “Command 'Edit I/O Mapping'” on page 1018
● Ä Chapter 1.4.1.20.3.4.37 “Command 'Export Mappings to CSV'” on page 1019
● Ä Chapter 1.4.1.20.3.4.36 “Command 'Import Mappings from CSV'” on page 1018

Command 'Import Mappings from CSV'
Function: The command opens the default dialog for opening a file in the local file system.
The filter is set to the file format CSV in order to import the I/O mapping configuration of a
device from the file which was exported previously by means of the “Export Mappings to CSV”
command. CODESYS writes the configuration to the selected device.
Call: Context menu of a device object in the “Devices” view.
Requirement: A project is open with a device and an I/O mapping configuration. The device
matches the exported CSV file.

Dialog box 'Edit
I/O mapping'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1018

NOTICE!
I/O mapping configurations are stored in CSV files with the semicolon separator.
These files can be edited manually. If the files are edited manually, then it
is imperative that this format is retained in order to import successfully. Note:
The entries of the file to the I/O mapping of the device are assigned by the
device name and the parameter name. Parameter names that are not unique
are numbered sequentially in this file (@<n>).
Fields without contents in the CSV file are ignored at import. To remove an
existing entry in the I/O mapping by importing, you have to add a space in the
respective field in the CSV file.

See also
● Ä Chapter 1.4.1.20.3.4.37 “Command 'Export Mappings to CSV'” on page 1019
● Ä Chapter 1.4.1.7.1 “Configuring Devices and I/O Mapping” on page 213

Command 'Export Mappings to CSV'
Function: The command opens the default dialog for saving a file to the local file system. The
filter is set to file format CSV. After specifying a name and a location, CODESYS stores the I/O
mapping configuration in a CSV file with the semicolon separator.

Call: Context menu of a device object in the “Devices” view.
Requirement: A device object with an I/O mapping configuration is selected in the device tree.

Parameter names that are not unique are numbered sequentially in this file
(@<n>).

See also
● Ä Chapter 1.4.1.20.3.4.36 “Command 'Import Mappings from CSV'” on page 1018
● Ä Chapter 1.4.1.7.1 “Configuring Devices and I/O Mapping” on page 213

Command 'Read PLC Parameter File to Configuration'
Function: This command reads the configuration file IoConfig.par of the PLC and stores the
values in the project. Such a file is created if the parameters of the PLC have been changed by
another device, for example via a visualization. Then these parameters are changed only in the
memory of the PLC, but not in the configuration of the project.
Call: Context menu of the PLC device object
Requirement: You have made the command available using the dialog in “Tools è Customize”.

Command 'Online Config Mode'
Function: This command is for switching the online configuration mode on and off. At
switch-on it establishes a connection to the PLC and loads an implicitly created application
“HiddenOnlineConfigModeApp” to the PLC. Depending on the device, CODESYS goes into
simple online configuration mode or a dialog box appears for selecting between simple and
advanced online configuration mode.
Call: Context menu of the PLC object in the device tree
Requirement: The communication settings for the PLC device are correctly set.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1019

Simple online configuration mode:
This command creates the implicit application HiddenOnlineConfigModeApp and loads it to
the controller. The application automatically initializes all inputs and outputs of the controller
once. After that you can access the I/Os as follows:
● Read I/Os
● Write outputs
● Diagnosis (in the device tree and on the “Status” tab of the device editor)
● Scan (of the current hardware)
● Interactive online functions, if supported (for example, writing asynchronous messages)
Advanced online configuration mode (parameter mode):
If there are already applications on the PLC and the controller supports it, the command first
opens the dialog box “Devices”, which displays the applications existing on the controller. From
this dialog you can connect via the button “Parameter mode” to the PLC and then access the
values of the device parameters without having to log in with a real application.

Writing and forcing in the I/O mapping
In online configuration mode the writing and forcing of values on the “I/O
Mapping” tab works differently to the way it works in real online mode. The out-
puts are written immediately after insertion into the table. There is no “Prepared
Value” column; instead, the initial values can be changed directly after a double-
click on the column “Current Value”.

This dialog box appears after the command “Online Config Mode” if the device supports the
advanced online configuration mode and there are already real applications on the controller.

“Parameter mode” The controller configuration in the project is compared with that on the device.
If they correspond, CODESYS establishes a connection to the PLC. Unlike the
simple online configuration mode it permits the reading and – if supported by the
driver – the writing of parameters in the generic device editor. The applications
already loaded to the device remain unchanged in this case!

“Config application mode” CODESYS switches to the 'simple online configuration mode'.

Command 'Runtime licensing'
Symbol:
Function: Management of runtime licenses on the PLC. The use of some libraries and devices
require the PLC to have a runtime license.
Call: Main menu “Project”, Context menu. Displayed only offline.
Requirement: A project is open. Log-in required for managing runtime licenses without need for
memory card.
The license status of a PLC can be displayed at any time Ä Chapter 1.6.6.2.2.2.5 “View license
information” on page 3672.

Dialog box
'Config applica-
tion mode'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1020

Menu 'Build'
1.4.1.20.3.5.1 Command 'Generate Code'... 1021
1.4.1.20.3.5.2 Command 'Clean'.. 1021
1.4.1.20.3.5.3 Command 'Clean All'... 1021
1.4.1.20.3.5.4 Command 'Build'.. 1022
1.4.1.20.3.5.5 Command 'Rebuild'... 1022
1.4.1.20.3.5.6 Command 'Generate Runtime System Files'........................... 1022
1.4.1.20.3.5.7 Command 'Check all Pool Objects'... 1024
1.4.1.20.3.5.8 Command 'Generate Code for Active Application'.................. 1024
1.4.1.20.3.5.9 Command 'Check All Application Objects'............................... 1024
1.4.1.20.3.5.10 Command 'Check Library Compatibility'................................ 1025
1.4.1.20.3.5.11 Command 'C Integration' - 'Update C Sources'..................... 1025
1.4.1.20.3.5.12 Command 'C Integration – Open in IDE'............................... 1025
1.4.1.20.3.5.13 Command 'C Integration' - 'Export C sSurces'...................... 1026
1.4.1.20.3.5.14 Command 'C Integration – Create Stub Implementation in

C'... 1026
1.4.1.20.3.5.15 Command 'Create IEC Interface'... 1026
1.4.1.20.3.5.16 Command 'Generate Disassembly File'................................ 1027

Command 'Generate Code'
Symbol ; shortcut: [F11]

Function: The command starts the code generation for the active application.
Call: Menu bar: “Build”

When generating code with this command, code is generated as when downloading the applica-
tion to the PLC, but the code is not transferred to the PLC. At this time, other source code
tests are performed As a result, you can check the code for bugs that were not detected by the
compiler and for fixing any bugs before the code is used in online mode.
See also
● Ä Chapter 1.4.1.10.4 “Generating Application Code” on page 389

Command 'Clean'
Function: This command deletes the build information for the active application.
Call: Main menu “Build”.
During the last download, the build information was created and saved to a file (*.compileinfo).
After a cleaning process, an online change is no longer possible for the affected application.
The application must be fully downloaded to the controller again.
See also
● Ä Chapter 1.4.1.20.3.5.3 “Command 'Clean All'” on page 1021

Command 'Clean All'
Function: This command deletes the build information for all applications in the project.
Call: Main menu “Build”.
During the last download, the build information was created in the local file system and saved to
a file (*.compileinfo).

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1021

This command requires a download before another login An online change is no longer pos-
sible. As compared to the “Clean” command (only the active application), CODESYS regener-
ates the language model for all objects, which is very time-consuming.

NOTICE!
Reconsider carefully whether or not executing this command is really neces-
sary. If you only want to rebuild and download the active application, then
execute the “Clean” command.

See also
● Ä Chapter 1.4.1.20.3.5.2 “Command 'Clean'” on page 1021

Command 'Build'
Function: The command starts the build operation for the active application.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
from “Tools è Customize” (command category “Build”).
During the build operation, CODESYS performs a syntactic validation of all objects in the
application. However, code is not generated like at log in to the target system or download of
the application. The build operation is always performed automatically when you log in with a
changed program.
When the check is complete, CODESYS displays any error messages or warnings in the
message view (“Build” category).
If the program has not been changed since it was compiled without errors the last time, then it is
not recompiled. The message "The application is current" appears. If the syntactic validation is
repeated, then you must execute the “Rebuild” command.
See also
● Ä Chapter 1.4.1.20.3.5.5 “Command 'Rebuild'” on page 1022

Command 'Rebuild'
Function: The command starts the build operation for the active application, even if the last
build contained errors.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
from “Tools è Customize” (command category “Build”).
See also
● Ä Chapter 1.4.1.20.3.5.4 “Command 'Build'” on page 1022

Command 'Generate Runtime System Files'
Function: The command generates a C stub file and an M4 interface file from the current library
project. These files are used as the basis for creating an external library file.
Call: Menu bar: “Build”

Requirement: A library project is open.
The command opens the “Generate Files for Runtime System” dialog.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1022

“Output directory” Directory where CODESYS creates the runtime system files. Click the button
to open the default dialog for browsing the file system.

“Component names” Name of the library project

“Which files do you want to create?”

“M4 interface file” : Interface file <project name>Itf.m4 with definitions. Example of m4 file:

“C stub file” : Stub file for reprogramming the library in C. Example of stub file:

“Options”

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1023

“Export referenced types
included in libraries”

: The referenced types are included in the export.

“Use original type names ” : The type names of the library project are used.

Command 'Check all Pool Objects'
Symbol ; shortcut: [F11]

Function: The command starts a build operation (a syntax check) for all pool objects that
are managed in the POU view and as a result are available throughout the project. First and
foremost, this is useful when creating libraries.
Call: Menu bar: “Build”

Requirement: A library project is open.

NOTICE!
The command does not result in code generation. In addition, no file is created
in the project directory with information about the build operation.

See also
● Ä Chapter 1.4.1.20.4.14.1 “Dialog 'Customize' - 'Menu'” on page 1206
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449

Command 'Generate Code for Active Application'
Function: The command generates the code for the application of a library project.
Call: Menu bar: “Build”

Requirement: The project contains an application.
● A library project is open.
● The library project contains an application.
When generating code with this command, code is generated as when downloading the applica-
tion to the PLC, but the code is not transferred to the PLC. At this time, other source code
tests are performed As a result, you can check the code for bugs that were not detected by the
compiler and for fixing any bugs before the code is used in online mode.
See also
● Ä Chapter 1.4.1.20.3.5.6 “Command 'Generate Runtime System Files'” on page 1022

Command 'Check All Application Objects'
Function: This command starts a build operation for all objects of the active application, even
for the POUs that are not used by the application. After the build operation, the errors that were
found in the unused objects are also displayed in the message window.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
from “Tools è Customize” (command category “Build”).
Requirement: An application of the open project is active.

NOTICE!
The command does not result in code generation. In addition, no file is created
in the project directory with information about the build operation.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1024

See also
● Ä Chapter 1.4.1.20.4.14.1 “Dialog 'Customize' - 'Menu'” on page 1206

Command 'Check Library Compatibility'
Function: The command triggers a check whether the currently opened library project is com-
patible with the last installed version of this library (next lower version number) .
Call: By default the command is not available in any menu. You can add it to a menu by using
the “Tools è Customize” dialog, command category “Build”.
Requirement: A library project is opened.
The check regards differences in the implemented interfaces of a method. So, after the check
you will get displayed error messages in the messages window in the following cases:
● Adding or removing inputs or outputs of function blocks, functions or methods
● Changing the data type of inputs or outputs
● Modifying the implemented interfaces of a method
See also
● Ä Chapter 1.4.1.20.4.14.1 “Dialog 'Customize' - 'Menu'” on page 1206
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449

Command 'C Integration' - 'Update C Sources'
Function: this command opens the dialog “Update C Sources” for updating the objects in the
project that have changed in the source directory on the disk.
Call: Menu bar: “Build”; context menu.
Requirement: An object “C Code Module” or “C Implemented Library” is selected. When adding
the C-code module in the dialog “Add C Code Module”, you have activated the option “Check
folder for source code changes”.

“File” File that has changed on the disk.

“Action” Action that is executed in CODESYS if you click “Update”.

“Update options” ● “Remove IEC interfaces due to changed header files”
● “Export source files to the monitored project folder”

“Refresh” CODESYS updates the listed files.

See also
● Ä Chapter 1.4.1.20.3.5.12 “Command 'C Integration – Open in IDE'” on page 1025
● Ä Chapter 1.4.1.8.10 “Integrating C Modules” on page 275

Command 'C Integration – Open in IDE'
Function: The command opens the “C Code Module” in the associated IDE (Integrated Devel-
opment Environment).
Call: Main menu “Create”, context menu
Requirement: You have opened an object “C Code Module” and the associated IDE is not
opened.
If the IDE is closed, CODESYS checks whether the files have been changed and, in such a
case, a dialog box appears for confirming the update of the C-code module in CODESYS.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1025

See also
● Ä Chapter 1.4.1.20.4.10.5 “Dialog 'Properties' – 'Build' (C-integration)” on page 1160
● Ä Chapter 1.4.1.20.3.5.11 “Command 'C Integration' - 'Update C Sources'” on page 1025
● Ä Chapter 1.4.1.8.10 “Integrating C Modules” on page 275

Command 'C Integration' - 'Export C sSurces'
Function: The command exports all C-code files of a C-code module and saves them in the
folder that you select in the dialog “Find Folder”.
Call: Menu bar: “Build”; context menu.

Requirement: A C code module is selected in the device tree.
See also
● Ä Chapter 1.4.1.8.10 “Integrating C Modules” on page 275

Command 'C Integration – Create Stub Implementation in C'
Function: This command creates C-stubs for the selected POU and stores them in the
“Extensions” folder in the objects “iec_external.c” and “iec_external.h”.
Call: Main menu “Build”, context menu
Requirement: A POU that is inserted under the object of the type “C Code Module” is selected
in the device tree. The application has been compiled without errors.
See also
● Ä Chapter 1.4.1.8.10 “Integrating C Modules” on page 275

Command 'Create IEC Interface'
Function: The command creates corresponding IEC objects from the selected file with the
format *.h or *.hhp and stores these IEC objects in the folder “IEC interface”.

Call: Main menu “Build”, context menu
Requirement: You have selected an imported C-code file of the format *.h or *.hpp in the
device tree below the object “C Code Module”.
If you select the command and the header file is free of errors, the dialog box “C Functions”
opens with a list of the functions of the file that is to be exported.

“Function” List of the functions
You select the functions for which a corresponding IEC object is to be created.

“Import” CODESYS generates corresponding IEC objects for the selected C-functions
and stores them in the folder “IEC interface” below the object “C Code Module”.

See also
● Ä Chapter 1.4.1.8.10 “Integrating C Modules” on page 275

Dialog box
'Create IEC
interface'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1026

Command 'Generate Disassembly File'
Function: This command generates a disassembly file <project name>.asm from the cur-
rent project and saves it in the file directory in the project folder.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
box from “Tools è Customize” (command category “Build”).
See also
● Ä Chapter 1.4.1.20.4.14.1 “Dialog 'Customize' - 'Menu'” on page 1206

Menu 'Online'
1.4.1.20.3.6.1 Command 'Choose Active Application'.................................... 1027
1.4.1.20.3.6.2 Command 'Login'... 1028
1.4.1.20.3.6.3 Command 'Logout'... 1031
1.4.1.20.3.6.4 Command 'Create Boot Application'.. 1032
1.4.1.20.3.6.5 Command 'Load'.. 1032
1.4.1.20.3.6.6 Command 'Online Change'.. 1033
1.4.1.20.3.6.7 Command 'Source Download to Connected Device'............... 1035
1.4.1.20.3.6.8 Command 'Download Manager'.. 1036
1.4.1.20.3.6.9 Command 'Multiple Download'.. 1036
1.4.1.20.3.6.10 Command 'Reset Cold'.. 1038
1.4.1.20.3.6.11 Command 'Reset Warm'.. 1038
1.4.1.20.3.6.12 Command 'Reset Origin'.. 1039
1.4.1.20.3.6.13 Command 'Reset Origin Device'.. 1040
1.4.1.20.3.6.14 Command 'Logoff Current Device User'................................ 1041
1.4.1.20.3.6.15 Command 'Download'.. 1041
1.4.1.20.3.6.16 Command 'Add Device User'... 1041
1.4.1.20.3.6.17 Command 'Remove Device User'.. 1042
1.4.1.20.3.6.18 Command 'Change Password Device User'.......................... 1043
1.4.1.20.3.6.19 Command 'Stop Execution on Handled Exceptions'............. 1043
1.4.1.20.3.6.20 Command 'Connect to Device'.. 1044
1.4.1.20.3.6.21 Command 'Disconnect from Device'...................................... 1044
1.4.1.20.3.6.22 Command 'Wink'.. 1044
1.4.1.20.3.6.23 Command 'Simulation... 1044
1.4.1.20.3.6.24 Command 'Operating Mode'.. 1046
1.4.1.20.3.6.25 Command 'Virtual mode'... 1047
1.4.1.20.3.6.26 Command 'Virtual system testing'... 1048

Command 'Choose Active Application'
Symbol:
The command is implemented as a list box from which you can set an application active. By
default, the list box is located on the toolbar.
Function: The list box displays the currently active application with its device path.
Call: The list box contains all applications that are organized in the “Devices” view. By clicking
an entry in the list box, you activate the selected application.
Requirement: The project has multiple applications.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1027

Example

When you call commands in the “Build” oder “Online” menus, these commands
are applied to the active application. This is displayed in the list box, and also
displayed in bold in the device tree. In particular, this applies to the “Build
è Build” and “Online è Login” commands.

You can also access these commands using the command icons on the toolbar
where the list box is located. When the command icons are called, they are also
applied to the active application.

However, if you call a command from the context menu of a device object in
the device tree, then the command is applied to the corresponding object. For
example, by calling , you can establish a connection to an application on the
device which is not active.

See also
● Ä Chapter 1.4.1.20.3.4.12 “Command 'Set Active Application'” on page 1006
● Ä Chapter 1.4.1.20.3.5.4 “Command 'Build'” on page 1022
● Ä Chapter 1.4.1.20.3.6.2 “Command 'Login'” on page 1028

Command 'Login'
Symbol: ; shortcut: [Alt]+[F8].
Function: The command connects the application to the target system (PLC to simulated
device) and starts the online mode.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1028

Call: Menu bar: “Online”; context menu of an “Application” object
Requirement: The application contains no errors and the communication settings are config-
ured.
A dialog prompt opens if the communication settings are incorrect. You can then switch directly
to the “Communication Settings” of the PLC.
If you click “Login” from the online menu, then the currently active application is connected to
the target system. If you choose this command from the context menu (right-click) while an
application is selected in the device tree, then that application is logged in, even if it is not set as
the active application.
If an online user management is configured on the target device, then you are prompted for
user data when you log in. The “Device User Login” dialog opens for this.

CAUTION!
Check controller accessibility
For security reasons, controllers should not be accessible from the Internet
or untrusted Networks under any circumstances! In particular, the TCP/IP pro-
gramming ports (usually UDP-Ports 1740..1743 and TCP-Ports 1217 + 11740 or
the controller specific ports) should not be accessible from the internet without
protection. In case Internet access to the controller is needed, using a a safe
mechanism is absolutely mandatory, such as VPN and password protection of
the controller.
see also: Ä Chapter 1.4.1.10.3 “Handling of Device User Management”
on page 385

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections temporarily.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

Possible situations when logging in:
● A later version of the device description (than in the project) is on the PLC. A warning

prompt is displayed with the option to cancel the process.
● The application does not exist on the PLC: You are prompted to confirm the download.
● The application is already on the PLC and has not been changed since the last download.

The login continues without any more prompts.
● The application exists on the PLC, but it has been changed since the last download.

You are prompted to select one of the following options:
– Login with online change (Note the information about online changes in the help page

"Command 'Online Change' ".)
– Login with download
– Login without any change
The position also provides the option of updating the boot application on the PLC.

● An unknown version of the application exists on the PLC. CODESYS prompts you to
replace it.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1029

● A version of the application exists on the PLC and is running. CODESYS prompts you to log
in anyway and overwrite the currently running application.

● The application on the PLC is currently halted at a breakpoint. You are logged out and the
program has been changed: CODESYS prompts you with a warning that the PLC will be
stopped completely if an online change or download occurs. This happens also if several
tasks exist and the breakpoint affects only one of them.

Click “Details” in the dialogs above to open the “Application Information” dialog.

In CODESYS V3.5 SP17 and higher, only exactly one CODESYS instance
can ever be logged in to an application of a controller. If a second CODESYS
instance wants to log in to the same application of the same controller, then an
error message is displayed.

See also
● Ä Chapter 1.4.1.20.3.6.6 “Command 'Online Change'” on page 1033
● Ä Chapter 1.4.1.9.5 “Subordinate safety controller” on page 378

The dialog provides two tabs with comparative information about the application changed in the
development system and its previous version currently located on the PLC. There are two tabs:
● “Application information”: The application properties of the “Application in the IDE” (Inte-

grated Development Environment) are compared with those of the “Application in the PLC”:
Project name, Last modification, IDE version, Author, Description. In addition, CODESYS
shows the objects that have changed since the last download.

● “Application contents”: When the “Download application info” is selected, the contents of
the applications on both the (1) development system and (2) PLC can be compared. The
“Download application info” option is located on the “Application Build Options” tab of the
application properties.
If the code in the development system is not current, then (3) “Application not up to date.
Generate code now?” appears at the bottom left of the dialog. Execute this command to
update the application source code.
This detailed information can help you to better assess the effects of login in the current
situation and to make a decision about downloading the new application.

Dialog 'Applica-
tion Information'
(Details)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1030

The comparison can also be displayed in the device editor (“Applications” tab)
by clicking “Content”.

See also
● Ä Chapter 1.4.1.20.2.8.4 “Tab 'Applications'” on page 845
● Ä Chapter 1.4.1.4 “Comparing projects” on page 195

If one or more applications are already on the PLC, but are not in the project, then CODESYS
opens a dialog with a list of these applications. You can then define whether an application
should be deleted before loading the current application from the PLC. This also applies to child
applications that are on the PLC, but have been deleted from the project in the meantime.

If an application program has not been compiled since the last change, then CODESYS com-
piles the project before login. This operation is the same as the “Generate Code” command
when logged out.
If compile errors occur, then a dialog prompt opens. The errors are displayed in the message
view in the “Build” category. You can then decide whether or not you log in without downloading
the program to the PLC.
See also
● Ä Chapter 1.4.1.20.3.5.4 “Command 'Build'” on page 1022

If an error occurs when logging in to the PLC, then CODESYS cancels the loading operation
with an error message. The error dialog gives you the options of showing the error details. If an
exception was thrown and the text *SOURCEPOSITION* is included in the log, then you can
display the affected function in the editor by clicking “Show in Editor”. The cursor jumps to the
line containing the error.

If CODESYS downloads the project to the PLC at login, then the following information is printed
to the message view:
● Generated code size
● Size of the global data
● Resulting memory requirement on the PLC
● List of the affected blocks (for online change)

In online mode, you cannot change the settings of the devices or modules. You
have to logout of the application for changing device parameters. Depending
on the bus system, there may be some special parameters that you can also
change in online mode.

CODESYS saves the view configuration separately in online and offline mode.
In addition, views are closed that cannot be used in any operating mode. For
this reason, the view can change automatically at login.

Command 'Logout'
Symbol: , keyboard shortcut: [Ctrl]+[F8].

Unknown appli-
cations on the
PLC

Compiling the
project before
login

Error at login

Messages
during the
download oper-
ation

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1031

Function: This command disconnects the application from the target system (controller or
simulated device) and returns to offline mode.
Call: Main menu “Online”, or context menu of the “Application” object.

Command 'Create Boot Application'
Function: This command generates a boot application.
Call: Main menu “Online”.
A boot application is the application that is started automatically when the controller is switched
on or started.
In offline mode, you can save the boot application in any directory. In online mode, CODESYS
save the boot application to the target device. The file name is <application name>.app.

See also
● Ä Chapter 1.4.1.10.6 “Generating boot applications” on page 391
● Ä Chapter 1.4.1.20.2.1 “Object 'Application'” on page 819

Command 'Load'
Function: This command causes a compilation of the active application with subsequent down-
load to the controller.
Call: Menu bar: “Online”.
Requirement: The application is in online mode.
When you execute this command, CODESYS performs a syntax check and generates the
application code. This code is downloaded to the PLC. Furthermore, CODESYS generates the
build log <project name>.<device name>.<application ID>.compile info in the
project directory.

NOTICE!
During loading all variables are re-initialized with the exception of persistent
variables.

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections temporarily.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

The description of the “Login” command describes the possible situations when logging in and
loading.
If you attempt to download an application when the same version of the application is already
on the PLC, then you get the message: "Program is unchanged. Application was not down-
loaded". CODESYS downloads the application to the PLC.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1032

During loading a record of the actions being executed (generation of code, execution of initiali-
zation, etc.) appears in the Message window in the message category “Compile”. Furthermore,
information is displayed regarding the memory ranges, the size of the code, the global data and
the allocated memory. For the purpose of clarity, as opposed to the online change, the modified
function blocks are no longer listed.
See also
● Ä Chapter 1.4.1.20.3.6.2 “Command 'Login'” on page 1028
● Ä Chapter 1.4.1.9.5 “Subordinate safety controller” on page 378

Command 'Online Change'
Function: The command is used for initiating an online change on the current application.
When this is done, CODESYS re-downloads only the changed parts of an application that is
already running on the PLC.
Call: Menu bar: “Online”; context menu of an “Application” object
Requirement: The application is in online mode.
The command is available in the context menu if an application is selected in the device tree.
In this way, you can perform an online change just for one application, even if that application is
not currently active.

CAUTION!
An online change modifies the running application program and does not cause
a restart.
Make sure that the new application code still has the required effect on the
controlled system.
Depending on the controlled plant, the plant and workpieces may be damaged
or the health and life of persons could be endangered.

NOTICE!
1. When an online change is performed, the application-specific initializations
(example: homing) are not executed because the machine retains its status. For
this reason, the new program code may not have the intended effect.
2. Pointer variables retain their value from the last cycle. When a pointer refers
to a variable whose value was changed in an online change, the variable no
longer yields the correct value. Make sure that the pointers are re-assigned in
each cycle.
3. After the parent application has been changed, a child application is removed
from the controller when an online change is performed.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1033

NOTICE!
For compiler version >= 3.5.0.0, a fast online change is performed for minor
changes. In this case, only the modified blocks are compiled and downloaded.
In particular, no initialization code is generated. This means that also no code
is generated when variables with the init_on_onlchange attribute are initial-
ized. As a rule, this has no effect because the attribute is used primarily for
initializing variables with addresses. However, it cannot happen that a variable
changes its address during an online change.
To secure the effect of the init_on_onlchange attribute in the entire appli-
cation code, you must deactivate the fast online change in general for the
application by using the compiler definition no_fast_online_change. To do
this, insert the definition in the application “Properties” (“Build” tab).

At the time of download, CODESYS also lists the changed interfaces, affected variables, and
all blocks with new generated code in the “Build” category of the message view. If memory
locations change, a dialog will inform you of possible problems in conjunction with pointers.

In the “Online Change Memory Reserve” view, memory reserves can be config-
ured for the online change so that instance variables do not have to be moved
in the memory when changing a function block in an online change.

There are actions in CODESYS after which an online change on a controller is no longer
possible. Afterwards, the application always has to be completely recompiled. A typical case
is the “Clean All” action which deletes the compile information stored at the last download.
However, these kind of actions typically generate a warning which you have to acknowledge.
But there are also "normal" editing actions that result in an online change not being possible at
the next login. Therefore, pay attention to the following symbol in the status bar when editing
in the program POUs: . When this symbol turns red in color (), only a full download to
the controller can be performed. Double-clicking the symbol opens the “Application Information”
dialog with a list of differences to the last download. In the dialog, you also find information
about which of the changes prevent an online change.
Actions and changes in different areas of an application that prevent an online change:

Check func-
tions

Activation or removal of a check function (CheckBounds, CheckRange,
CheckDiv, etc.)

Change in an interface of a check function (also the insertion and deletion of
local variables)

Task configu-
ration

Change in the configuration settings

Project set-
tings

Change of the “Compile Options” in the “Settings” section (Unicode, replace
constants, logging in, breakpoints)
Change in the “Compiler defines”

Application
properties

Change of the “Target system memory settings” (“Build” tab)

POU proper-
ties

Change of the “External implementation” option (“Build” tab)

Task-local
global vari-
able list

All changes

What prevents
an online
change?

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1034

Function
block

Change of the base POU of a function block (EXTENDS FBbase), also the
insertion or deletion of such a base POU
Change in the interface list (IMPLEMENTS ITF). Exception: Adding a new
interface at the end of a list

Data type Change of the data type of a variable from a user-defined data type to another
user-defined data type (for example, from TON to TOF)

Change of the data type from a user-defined data type to a base type (for
example, from TON to TIME)

Note: As a workaround, you should always change the name of the variable
together with the data type. Then the variable is initialized as a new variable
and the old one is removed. Then an online change is possible.

Alarm config-
uration

Change in the alarm database configuration
Change of the number of latch variables (also has an effect on the memory
format in the database)
Change to the configuration of the distributed alarms

Data source All changes in the configuration

Device config-
uration

Change in the device tree (also by the “Update Device” command)
Change in a device configuration: By default, changes to device parameters
are not capable of online change. However, exceptions can be configured in
the device description.
Note: I/O mapping to variables is possible by online change.

Visualization Toggling of the overlay function
Before V3.5 SP6: Change in the configuration of the trace element
Note: In V3.5 SP6 and higher, the following applies: For online changes
that affect visualizations or affect the data of the application (for example,
a new variable is inserted), the visualization is completely reinitialized. For
TargetVisu, for example, this means that the visualization closes and reopens
with the start page. For WebVisu, the visualization also restarts with the start
visualization after a short waiting period.

Unit conver-
sion

Insertion or removal of objects for unit conversion

Trend Change of the number of variables or maximum number of variables. Change
of the number of variables with a description or special line settings

See also
● Ä Chapter 1.4.1.20.3.5.3 “Command 'Clean All'” on page 1021
● Ä Chapter 1.4.1.10.4 “Generating Application Code” on page 389
● Ä Chapter 1.4.1.13.1 “Executing the online change” on page 439
● Ä “ Dialog 'Application Information' (Details)” on page 1030
● Ä Chapter 1.4.1.19.6.2.20 “Attribute 'init_on_onlchange'” on page 705
● Ä Chapter 1.4.1.20.2.27.1 “Tab 'Configuration'” on page 942
● Ä Chapter 1.4.1.20.4.11.3 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 1173
● Ä Chapter 1.4.1.20.4.10.4 “Dialog 'Properties' - 'Build'” on page 1159

Command 'Source Download to Connected Device'
Function: This command loads the project source code (as project archive) to the controller
currently connected.
Call: Main menu “Online”.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1035

Requirement: The application is in online mode.
See also
● Ä Chapter 1.4.1.20.3.1.10 “Command 'Source Upload'” on page 962
● Ä Chapter 1.4.1.20.3.1.11 “Command 'Source Download'” on page 963

Command 'Download Manager'
Symbol:
Function: Download or create a boot project from the project devices or update the firmware oft
he device.
Call: Main menu “Online”, Context menu.
Requirement: A project is open.

Command 'Multiple Download'
Function: The command causes the code generation of the applications contained in the
project as well as the loading of the applications to the corresponding controllers.
Call: Menu bar: “Online”

The command opens a dialog with a list of the applications. In this dialog, select the applica-
tions that are to be loaded. Then, CODESYS performs the syntax check of these applications
and generates the respective code. The code is then downloaded to the respective PLC.
For each selected application, CODESYS generates a build log with the name <project
name>.<device name>.<application ID>.compileinfo in the project directory.

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections temporarily.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

“Please select the items to be
downloaded”

: Selection of the applications. The applications are thereby also loaded to
different controllers.

“Move Up”, “Move Down” Change of the order of download of the applications.
The applications are downloaded to the PLCs in the order of this list. By default,
this list is alphabetically sorted. Parent-child relationships of applications are
thereby taken into account.

“OK” Checks the syntax of all selected applications. Afterwards, the communication
with the associated controller is verified for each application before the download
takes place.

Dialog 'Multiple
Download'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1036

Table 138: “Online Change Options”
If an earlier version already exists on the PLC and is different from the current version, then the following options
are provided:

“Try to perform an online
change. If this is not possible,
perform a full download.”

Activated by default. If an online change cannot be executed for one of the
applications, then a download is performed.

“ Force an online change. If
this is not possible, cancel the
operation.”

If an online change cannot be performed for (at least) one of the applica-
tions, then no download is performed and the online change is terminated (for
example, if you have executed the command “Clean All” beforehand).

“Always perform a full
download.”

Downloads all parts of the applications to the PLC, regardless of any existing
versions.

For selected applications that do not exist on the PLC yet, CODESYS performs a download
automatically to the PLC.

Table 139: “Other Options”
“Delete all applications on the
PLC which are not part of the
project. ”

: Corresponding applications are deleted

“Start all applications after
download or online change”

: The applications are started after the download or online change.

“Do not release forced
variables”

: If an application with forced variables exists on the controller, and if the
implementation of this application has been changed, then no download is per-
formed for this application.
The message “Error: Skipped because one or more variables have been forced”
appears for this application in the window “Multiple Download - Result”.

Note that variables with the key attribute PERSISTENT RETAIN are not gener-
ally initialized. If you change the data layout, however, the persistent variables
are automatically re-initialized.

After completion of the download a listing of all selected applications appears in the download
order that you configured. In addition, you are shown information on the success of the down-
load for each application in the “Multiple Download - Result” dialog:
● “Created”: A new application has been created and downloaded to the controller.
● “Not changed”: The application which exists on the controller has not been changed.
● “Online changed”: The application which exists on the controller has been modified by an

online change.
● “Downloaded”: The application which exists on the controller has been replaced by a new

created application.
● “Skipped due to impossible online change”: An online change could not be performed for the

application. The application was not changed.
● “Error”: An error has occurred for this application during download. More details may be

displayed.
● “Cancelled by user”: The operation has been aborted by the user.

See also
● Ä Chapter 1.4.1.9.5 “Subordinate safety controller” on page 378
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301
● Ä Chapter 1.4.1.10.4 “Generating Application Code” on page 389
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301
● Ä Chapter 1.4.1.20.3.6.5 “Command 'Load'” on page 1032

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1037

Command 'Reset Cold'
Function: The command results in a cold start of the active application on the controller.
Call: Menu bar: “Online”

Requirement: The application is in online mode.

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections temporarily.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

After restarting with “Reset Cold”, the following happens:
● Application code is retained on the controller.
● Variables are initialized (with the initialization value or the default initialization value 0), and

the previous values are lost.
● Retain variables are initialized, and the previous values are lost.
● Persistent variables are retained with values.
● Breakpoints that were set in the code are retained with their status (for example, activated

or deactivated).
● The application goes into the “STOP” state.
You can also select the command while debugging the application when it halts at a break-
point in the “HALT ON BP” state. Then either the warm start is executed immediately, or the
remaining statements of the current cycle are processed. Therefore, a message window opens
for you to select the next action. However, the message window opens only if the runtime
system is capable of restarting the cycle without terminating it first.
After the reset, you can run the application as usual and, for example, start the execution by
clicking “Debug è Start”.

See also
● Ä Chapter 1.4.1.11.5 “Resetting applications” on page 404
● Ä Chapter 1.4.1.8.19.1 “Preserving data with persistent variables” on page 304
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395
● Ä Chapter 1.4.1.19.2.12 “Persistent Variable - PERSISTENT” on page 535
● Ä Chapter 1.4.1.9.5 “Subordinate safety controller” on page 378
● Ä Chapter 1.4.1.20.3.6.11 “Command 'Reset Warm'” on page 1038
● Ä Chapter 1.4.1.20.3.6.12 “Command 'Reset Origin'” on page 1039

Command 'Reset Warm'
Function: The command results in a warm start of the active application on the controller.
Call: Menu bar: “Online”

Requirement: The application is in online mode.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1038

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections temporarily.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

After restarting with “Reset Warm”, the following happens:
● Application code remains loaded on the controller.
● Variables are initialized (with the initialization value or the default initialization value 0).
● Retain variables are retained with values.
● Persistent variables are retained with values.
● Breakpoints that were set in the code are retained with their status (for example, activated

or deactivated).
● The application goes into the “STOP” state.
You can also select the command while debugging the application when it halts at a break-
point in the “HALT ON BP” state. Then either the warm start is executed immediately, or the
remaining statements of the current cycle are processed. Therefore, a message window opens
for you to select the next action. However, the message window opens only if the runtime
system is capable of restarting the cycle without terminating it first.
After the reset, you can run the application as usual and, for example, start the execution by
clicking “Debug è Start”.

See also
● Ä Chapter 1.4.1.11.5 “Resetting applications” on page 404
● Ä Chapter 1.4.1.8.19.1 “Preserving data with persistent variables” on page 304
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395
● Ä Chapter 1.4.1.19.2.12 “Persistent Variable - PERSISTENT” on page 535
● Ä Chapter 1.4.1.9.5 “Subordinate safety controller” on page 378
● Ä Chapter 1.4.1.20.3.6.10 “Command 'Reset Cold'” on page 1038
● Ä Chapter 1.4.1.20.3.6.12 “Command 'Reset Origin'” on page 1039

Command 'Reset Origin'
Function: The command results in a reset origin of the active application on the controller.
Call: Menu bar: “Online”

Requirement: The application is in online mode.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1039

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections permanently.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

After restarting with “Reset Origin”, the following happens:
● The application code is deleted, and as a result the application has no state.
● Variables are deleted, and the values are lost.
● Retain variables are deleted, and the values are lost.
● Persistent variables are deleted, and the values are lost.
● Breakpoints that were set in the code are lost.

See also
● Ä Chapter 1.4.1.11.5 “Resetting applications” on page 404
● Ä Chapter 1.4.1.8.19.1 “Preserving data with persistent variables” on page 304
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395
● Ä Chapter 1.4.1.19.2.12 “Persistent Variable - PERSISTENT” on page 535
● Ä Chapter 1.4.1.9.5 “Subordinate safety controller” on page 378
● Ä Chapter 1.4.1.20.3.6.11 “Command 'Reset Warm'” on page 1038
● Ä Chapter 1.4.1.20.3.6.10 “Command 'Reset Cold'” on page 1038

Command 'Reset Origin Device'
Function: The command opens a dialog to reset the device to its factory settings. All applica-
tions, boot applications, and remanent variables will be deleted from the device. Depending
on the version of the device, a selection of the elements to be deleted can be made in this
dialog. When these elements are unselected in the dialog, they are not deleted during the reset
and remain on the controller. By default, all elements are selected and everything is deleted.
Elements that are not available for selection are generally also deleted.
Call: Right-click a programmable device in the device tree.

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections permanently.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

After restarting with “Reset Origin Device”, the following happens:
● All applications are reset as with the “Reset Origin” command.
● All files, which are not deleted by the “Reset Origin” command, are deleted (for example,

files from visualization, alarms, and recipes).

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1040

● The user management is deleted.
● All certificates which are currently managed by the runtime system are deleted.

Note: When resetting the device, the objects selected in this dialog are also deleted. If not all displayed objects
are selected in this dialog, then possibly other objects can no longer be used or they are also deleted. .

“Delete” : The object is deleted when the “Reset Origin Device” command is executed.

“Object” Objects that can be excluded from “Delete”.
The listed objects depend on the version of the controller. In version 3.5.16.20
and higher, the following objects can be excluded from the delete operation.
● “User Management”
● “PLC Logic”
● “Certificates”

See also
● Ä Chapter 1.4.1.20.3.6.12 “Command 'Reset Origin'” on page 1039
● Ä Chapter 1.4.1.20.3.6.11 “Command 'Reset Warm'” on page 1038
● Ä Chapter 1.4.1.20.3.6.10 “Command 'Reset Cold'” on page 1038
● Ä Chapter 1.4.1.9.5 “Subordinate safety controller” on page 378

Command 'Logoff Current Device User'
Symbol:
Function: This command logs out the user currently logged in to the controller (device). If
CODESYS still has a connection to the controller, then it will be disconnected.
Call: Main menu “Online”.
Requirement: The application is in online mode.

You can manage the device user management in the “Users and Groups”
tab and “Access control” of the device editor. The commands in the “Online
è Security” menu provide another simple option for protecting access to the
target device.

See also
● Ä Chapter 1.4.1.20.2.8.13 “Tab 'Users and Groups'” on page 860
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385

Command 'Download'
Function: This command loads the compiled project in the PLC.
Call: Main menu “Online”, Context menu.
Requirement: A project is open. Log-in required for download.

Command 'Add Device User'
Symbol:
Function: This command configures a new device user and adds this user to the administrator
group.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1041

Call: Menu bar: “Online è Security”

Requirement: The device supports a device user management. You are logged in to the device
as a user.

You can manage the device user management in the “Users and Groups”
tab and “Access control” of the device editor. The commands in the “Online
è Security” menu provide another simple option for protecting access to the
target device.

See also
● Ä Chapter 1.4.1.20.2.8.13 “Tab 'Users and Groups'” on page 860
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385

This command opens the “Add Device User” dialog. Here you define the access data of the new
user.
The dialog corresponds to the dialog in the “Users and Groups” tab of the device editor for
adding a new user.
Please use a strong password as follows:
● Password length >= 8 characters (best >= 12)
● Use uppercase and lowercase
● Include numbers
● Use special characters
● Do not use existing names or sequence of characters that are easy to guess (for example,

“123”, “abc”, “qwerty”)

CAUTION!
After performing this action, you can no longer use a blank username and
password to log in. You must remember your password.

See also
● Ä Chapter 1.4.1.20.3.6.17 “Command 'Remove Device User'” on page 1042
● Ä Chapter 1.4.1.20.3.6.18 “Command 'Change Password Device User'” on page 1043

Command 'Remove Device User'
Symbol:
Function: This command removes a user from the user management on the target system
(device).
Call: Menu bar: “Online è Security”

Requirement: You are logged in to the device as a user.

You can manage the device user management in the “Users and Groups”
tab and “Access control” of the device editor. The commands in the “Online
è Security” menu provide another simple option for protecting access to the
target device.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1042

See also
● Ä Chapter 1.4.1.20.2.8.13 “Tab 'Users and Groups'” on page 860
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385

This command opens the “Remove Device User” dialog. Specify the user name and password
of the user to be removed and click “OK” to confirm.

CAUTION!
After performing this action, you can no longer use this removed user account
to log in. If this user is the only one on the target system, then a dialog prompt
notifies you that this user cannot be removed.

See also
● Ä Chapter 1.4.1.20.3.6.16 “Command 'Add Device User'” on page 1041
● Ä Chapter 1.4.1.20.3.6.18 “Command 'Change Password Device User'” on page 1043

Command 'Change Password Device User'
Symbol:
Function: The command changes the password for the user who is currently logged on the
PLC.
Call: “Online è Security” menu
Requirement: You are logged in to the device as a user.
The command opens the “Change Password for Device User” dialog for defining a new pass-
word. You have to specify the old password again.

NOTICE!
After performing this action, you can no longer use the previous password to log
in.

Make sure that you use a strong password. Note the following:
● Password length >= 8 characters (best >= 12)
● Use uppercase and lowercase
● Include numbers
● Use special characters
● Do not use existing names or sequence of characters that are easy to guess (for example,

"123", "abc", "qwerty")
See also
● Ä Chapter 1.4.1.20.3.6.16 “Command 'Add Device User'” on page 1041
● Ä Chapter 1.4.1.20.3.6.17 “Command 'Remove Device User'” on page 1042
● Ä Chapter 1.4.1.10.3 “Handling of Device User Management” on page 385

Command 'Stop Execution on Handled Exceptions'
Function: This command halts the application where the error is located despite a programmed
exception handling.
Call: This command is not available by default, but it can be configured from the “Tools
è Customize”, “Add Command” dialog box (“Online” category).

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1043

Requirement: The application is in online mode and contains a programmed exception han-
dling with the __TRY and __CATCH operators.

If you have configured this command from the “Online” menu and you call it from there, then
the currently active application is affected. Furthermore, this command can help you to detect
errors.
See also
● Ä Chapter 1.4.1.19.3.61 “Operators '__TRY', '__CATCH', '__FINALLY', '__ENDTRY'”

on page 619
● Ä “Adding commands” on page 181
● Ä Chapter 1.4.1.20.3.8.16 “Command 'Customize'” on page 1071

Command 'Connect to Device'
Function: The command establishes a connection to the device currently selected in the device
tree.
Call: Context menu of the device.
Requirements: A device is selected in the device tree. The communication settings are config-
ured correctly.
See also
● Ä Chapter 1.4.1.20.3.6.21 “Command 'Disconnect from Device'” on page 1044

Command 'Disconnect from Device'
Function: The command disconnects the connection from a device.
Call: Context menu of the device.
Requirements: A device is selected in the device tree.
See also
● Ä Chapter 1.4.1.20.3.6.20 “Command 'Connect to Device'” on page 1044

Command 'Wink'
Symbol:
Function: The command causes an LED of a connected controller to blink. As a result, the
hardware can be identified clearly.
Call: The command is not in any menu by default. You can add it to a menu by means of the
“Tools è Customize” dialog, in the “Online” command category.
Requirement: The controller supports this function and the connection parameters are config-
ured correctly.

Command 'Simulation
Function: The command switches the development system to simulation mode.
Call: Menu bar: “Online”

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1044

In simulation mode, you can start and debug the active application an on a simulated target
device. A physical target device is not necessary for testing the online behavior of an applica-
tion. When logging in for the first time, you are prompted whether the application should be
created or loaded. For a simulated device, you do not have to configure the communication set-
tings. In CODESYS simulation mode, the entry of the controller in the device tree is displayed in
italics.

NOTICE!
No C code for simulation mode
In simulation mode, C code is not generated and loaded to the runtime system.
To simulate the code contained in the C modules anyway, you can implement it
for this purpose in the respective IEC objects of the C code module.

After successful login, the red triangle symbol () in the device tree indicates simulation mode.
You can use the corresponding online commands for testing the application.
To switch off simulation mode, log out of the controller and execute the “Simulation” command
again.
The command affects the active application only.

 Simulation Physical Controller
Real-time
behavior / multi-
core

● Runs in the CODESYS process
with normal priority

● Single-core
--> Worse real-time behavior

● Real-time operating system
● Single-core or multicore

Architecture
scope

● Simulation 64-bit (depends on
the CODESYS installation): -->
Possible compile error in the IEC
application if the application has
been previously run only as 32-
bit (for example, use of DWORD
as POINTER)

● Controller 32-bit

FPU (rounding
error)

● Uses FPU of the PC
● Different configuration of the

FPU exceptions

● Uses FPU of the controller or
FPU emulation

● Different configuration of the
FPU exceptions

Handling of
exceptions

● Exception handling of the Win-
dows Runtime System

● Exception handling of the con-
troller

Differences
between simula-
tion mode and
operation with a
physical con-
troller

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1045

 Simulation Physical Controller
External libraries
(Cmp/Sys/CAA/O
EM/…)

● Only a few external Cmp/
SysLibs are physically available.
As compared to embedded,
more SysLibs could also be
available.

● Other implementation/behavior
of the SysLibs (Windows in con-
trast to the OS of the controller)

● "Unresolved Reference error“ on
download is ignored. The appli-
cation can still be downloaded to
the controller and started. If the
missing functions are actually
called, they return nonsense
values.
Therefore, an IEC implementa-
tion can also be specified for
external POUs. This substitute
IEC code is then executed in the
simulation.

● "Unresolved Reference error" on
download when external libraries
do not exist in the controller

I/O drivers ● I/O configuration is generated
but not evaluated.

● Fieldbus stacks are not evalu-
ated.

● I/O channels are not updated
and no bus telegrams are sent.

● Mostly no restriction, but
depends on the capabilities of
the controller

SoftMotion
drivers

● All SoftMotion axes are set to vir-
tual and therefore simulated.

● Mostly no restriction, but
depends on the capabilities of
the controller

See also
● Ä Chapter 1.4.1.11.1 “Testing in simulation mode” on page 394

Command 'Operating Mode'
Function: The commands set the controller to a state which prevents accidental change to the
project.
Call: Menu bar: “Online è Operating Mode”

You can use these commands, for example, to lock the state of a controller in order to prevent
the controller from switching to another state while you program another controller.
When programming is complete, the controller should then be switched to a defined and exter-
nally visible state that is set exactly the same way after restarting.

The , , and symbols in the status bar indicate the current operating mode. Double-
clicking one of these symbols opens a help window.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1046

If it supports the controller, then you can switch the controller to the following operating modes:

● “Debug”: No restrictions
● “Locked”: The current state of debugging is locked on the application. No additional

breakpoints can be set and no additional variables can be forced. Writing variables is still
possible and breakpoints which are already set remain active.
Only the "RUN" state of an application is preserved in “Locked” operating mode even if
the controller is restarted.
With this operating mode, a developer can prevent himself or another developer from
changing the application on the controller, for example by setting or deleting a breakpoint,
by forcing, or by making changes to the file system. This operating mode is helpful to
prevent a download to an incorrect controller when, for example, multiple controllers of a
plant are programmed.

● “Operational”:
This operating mode makes sure that the controller reloads the same applications after a
restart and that no debug features are active anymore. The operating mode is set when a
controller is completely programmed and should be accepted or already is.
Conditions for activating the “Operational” mode
– A boot application for each application has to exist on the controller.
– There must not be any active breakpoints set.
– All applications have to be running.
– There must not exist any forced values.
– Furthermore, the device can define more of its own restrictions.

The “Locked” and “Operational” operating modes are different in the use cases and in the
requirements for activating the operating mode. However, for both operating modes the runtime
system prevents the following actions:
● Regarding the application

– Download of an application
– Online change
– Force variables
– Set breakpoints
– Stop application
– Reset application
– Start application
– Delete application

● Regarding the file transfer of the controller
– Download of a file to the controller
– Delete a file on the controller
– Rename a file on the controller
– Create a directory on the controller
– Delete a directory on the controller
– Rename a directory on the controller

You cannot switch the operating mode between “Locked” and “Operational”.

Command 'Virtual mode'
Function: “Virtual Mode” option enables virtual mode for Automation Builder.
Call: Main menu “Online”, Context menue
Requirement: A project is open. Command is only available, if a license for advanced simula-
tion support is acitvated.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1047

Command 'Virtual system testing'
Function: The “Virtual system testing” editor contains settings for the virtual devices and the
simulation set-up and control.
Call: Main menu “Online”, Context menu
Requirement: A project is open. Command is only available, if a license for advanced simula-
tion support is acitvated.

Menu 'Debug'
1.4.1.20.3.7.1 Command 'Start'.. 1048
1.4.1.20.3.7.2 Command 'Stop'.. 1049
1.4.1.20.3.7.3 Command 'Single Cycle'.. 1049
1.4.1.20.3.7.4 Command 'New Breakpoint'.. 1049
1.4.1.20.3.7.5 Command 'New Data Breakpoint'.. 1049
1.4.1.20.3.7.6 Command 'Edit Breakpoint'... 1049
1.4.1.20.3.7.7 Command 'Enable Breakpoint'.. 1050
1.4.1.20.3.7.8 Command 'Disable Breakpoint'... 1050
1.4.1.20.3.7.9 Command 'Toggle Breakpoint'... 1050
1.4.1.20.3.7.10 Command 'Step Over'... 1050
1.4.1.20.3.7.11 Command 'Step Into'... 1051
1.4.1.20.3.7.12 Command 'Step Out'... 1051
1.4.1.20.3.7.13 Command 'Run to Cursor'... 1052
1.4.1.20.3.7.14 Command 'Set Next Statement'.. 1052
1.4.1.20.3.7.15 Command 'Show Next Statement'... 1052
1.4.1.20.3.7.16 Command 'Force Values'... 1053
1.4.1.20.3.7.17 Command 'Write Values'... 1053
1.4.1.20.3.7.18 Command 'Unforce Values'... 1054
1.4.1.20.3.7.19 Command 'Force All Values from <Device.Application>'....... 1054
1.4.1.20.3.7.20 Command 'Write All Values from <Device.Application>'....... 1055
1.4.1.20.3.7.21 Command 'Unforce All Values from <Device.Application>'... 1056
1.4.1.20.3.7.22 Command 'Flow Control'... 1056
1.4.1.20.3.7.23 Menu 'Core Dump'... 1057
1.4.1.20.3.7.24 Command 'Display Mode' - 'Binary', 'Decimal', 'Hexadeci-

mal'.. 1058

Command 'Start'
Symbol: ; keyboard shortcut: [F5]

Function: This command starts the application (status: “RUN”).
Call: Menu bar: “Debug”; context menu of object: “Application”

Requirement: The application is in online mode and its status is “STOP”.
Executing this command from the “Debug” menu will affect the application that is currently in
focus.
See also
● Ä Chapter 1.4.1.10.5 “Downloading the application code, logging in, and starting the PLC”

on page 391

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1048

Command 'Stop'
Symbol: ; keyboard shortcut: [Shift]+[F8]

Function: This command stops the application (status: “STOP”).
Call: Menu bar: “Debug”; context menu of object: “Application”

Requirement: The application is in offline mode and its status is “RUN”.
Executing this command from the “Debug” menu will affect the application that is currently in
focus.

Command 'Single Cycle'
Keyboard shortcut [Ctrl]+[F5]

Function: This command executes the active application for one cycle.
Call: Main menu “Debug”.
Requirement: The application is in online mode and the program is halted at a program step.

Command 'New Breakpoint'
Symbol: , keyboard shortcut [Alt]+[F7].
Function: This command opens the “Breakpoint Properties” dialog box.
Call: Main menu “Debug”.
Requirement: The application must be in online mode.

With the “Toggle Breakpoint” command, you can set a new breakpoint directly at
the current cursor position in online mode.

See also
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395

Command 'New Data Breakpoint'
Symbol:
Function: The command opens the “New breakpoint” dialog.
Call: Menu bar: “Debug”

Requirement:
● The application is in online mode.
● The device description file of the target device contains the entries for the "data breakpoints"

functionality. Currently, data breakpoints are possible only with the CODESYS Control Win
V3.

See also
● Ä Chapter 1.4.1.20.4.8 “Dialog 'New Breakpoint'” on page 1154
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395

Command 'Edit Breakpoint'
Symbol:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1049

Function: This command opens the “Breakpoint Properties” dialog box.
Call: Main menu “Debug”.
Requirement: The application is in online mode and the cursor is halted at a breakpoint.
See also
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395

Command 'Enable Breakpoint'
Function: This command enables a disabled breakpoint.
Call: Main menu “Debug”.
Requirement: The application is in online mode and the cursor is halted at a disabled break-
point.
See also
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395

Command 'Disable Breakpoint'
Function: This command disables an enabled breakpoint.
Call: Main menu “Debug”.
Requirement: The application is in online mode and the cursor is halted at an enabled break-
point.
See also
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395

Command 'Toggle Breakpoint'
Keyboard shortcut [F9]

Function: This command sets a breakpoint or clears an existing breakpoint.
Call: Main menu “Debug”.
Requirement: The application is in online mode. The cursor is positioned at a breakpoint.
See also
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395

Command 'Step Over'
Symbol , shortcut [F10]

Function: The command executes the statement where the program is currently located and
halts before the next statement in the POU.
Call: Menu bar: “Debug”

Requirement: The application is in online mode and the program is halted at the current break
position (debug mode).

If the executed statement contains a call (from a program, function block instance, function,
method, or action), then the subordinate POU is processed completely in one step and returned
to the call. Then it halts before the next statement (in the next line of code).

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1050

Click “Step Into” to jump to a subordinate POU and process it in single steps.

See also
● Ä Chapter 1.4.1.11.3 “Stepping Through a Program” on page 399
● Ä Chapter 1.4.1.20.3.7.11 “Command 'Step Into'” on page 1051

Command 'Step Into'
Symbol , shortcut [F11]

Function: The command executes the statement where the program is currently located and
halts before the next statement.
Call: Menu bar: “Debug”

Requirement: The application is in online mode and the program is halted at the current break
position (debug mode).
If the executed statement contains a call (from a program, function block instance, function,
method, or action), then the program execution jumps to this subordinate POU. Its code opens
in a separate editor. The first statement there is executed and the program execution halts
before the next statement. The new current breakpoint position is then in the called POU.

Click “Step Over” to remain in the currently active POU and execute the call in
one step.

See also
● Ä Chapter 1.4.1.11.3 “Stepping Through a Program” on page 399
● Ä Chapter 1.4.1.20.3.7.10 “Command 'Step Over'” on page 1050

Command 'Step Out'
Symbol , shortcut [Ctrl]+[F11]

Function: The command executes the program until the next return and halts afterwards.
Call: Menu bar: “Debug”

Requirement: The application is in online mode and the program is halted at the current break
position (debug mode).
If the current breakpoint position is in a subordinate POU, then this is run through to the end.
Then the program execution jumps back to the calling point in the calling POU and halts there
(in the line with the call).
If the current breakpoint position is in the main program, then the POU is run through to the end.
Then the program execution jumps back to the beginning (to the program start at the first line of
code in the POU) and halts there.

See also
● Ä Chapter 1.4.1.11.3 “Stepping Through a Program” on page 399

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1051

Command 'Run to Cursor'
Symbol:
Function: The command executes a program until a specified position as marked by the cursor.
Call: Menu bar: “Debug”

Requirement: The application is in online mode and the program is halted at the current break
position (debug mode). Moreover, you have marked any line of code in any POU with the
cursor.

The statements between the current breakpoint position and the cursor position are executed
in one step. Then the execution halts at the cursor position, which then becomes the next
breakpoint position. Remember that the line of code where you placed the cursor is reached but
not executed.

See also
● Ä Chapter 1.4.1.11.3 “Stepping Through a Program” on page 399

Command 'Set Next Statement'
Symbol:
Function: The command determines which statement is executed next.
Call: Menu bar: “Debug”

Requirement: The application is in online mode and the program is halted at the current break
position (debug mode). Moreover, you have marked any line of code in any POU with the
cursor.
The line of code marked with the cursor becomes the current breakpoint position without
executing the statements in between or the statement that jumped to it.

See also
● Ä Chapter 1.4.1.11.3 “Stepping Through a Program” on page 399

Command 'Show Next Statement'
Symbol:
Function: The command displays the program statement that is processed in the next step.
Call: Menu bar: “Debug”

Requirement: The application is in online mode and the program is halted at the current break
position (debug mode). The break position is in a line of code that you cannot see.
The command makes the window with the current breakpoint position active (in the code high-
lighted in yellow and marked with the symbol) and makes the breakpoint position to become
visible. This is useful if you have multiple editors open and the breakpoint position is hidden in
an inactive editor.

See also
● Ä Chapter 1.4.1.11.3 “Stepping Through a Program” on page 399

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1052

Command 'Force Values'
Keyboard shortcut: [F7]

Function: The command sets a permanent predefined value to a variable on the controller.
Call: Menu bar: “Debug”

Requirement: The application is in online mode.

CAUTION!
Unusual changes to variable values in an application currently running on
the controller can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled machinery, the result may lead
to damage to machinery and equipment or injury to health and life of personnel.

With this command, CODESYS permanently sets one or more variables of the active application
to defined values on the PLC.

A forced value is marked with the forced symbol ().
For more information about the functionality of forcing and the p of values, see the "Forcing and
Writing of Variables" help page.

By default, the “Force Values [All Applications]” command, which applies to all
application in the project, and is not included in a menu.

See also
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401
● Ä Chapter 1.4.1.20.4.7 “Dialog Box 'Prepare Value'” on page 1153
● Ä Chapter 1.4.1.20.3.7.18 “Command 'Unforce Values'” on page 1054

Command 'Write Values'
Keyboard shortcut [Ctrl]-[F7]

Function: This command sets a predefined value to a variable on the controller one time.
Call: Main menu “Debug”.
Requirement: The application is in online mode.

CAUTION!
Unusual changes to variable values in an application currently running on
the controller can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled machinery, the result may lead
to damage to machinery and equipment or injury to health and life of personnel.

With this command, one or more variables of the active application are set to defined values
on the controller one time. Writing is done one time at the beginning of the next cycle.
Values are prepared by
● Clicking in the field “Prepared value” in the declaration section
● Clicking in the inline monitoring field in the implementation section
● Clicking in the field “Prepared value” in the watch window

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1053

The command “Write Values [All Applications]” affects all application in the
project and is not included in a menu by default.

See also
● Ä Chapter 1.4.1.20.3.7.16 “Command 'Force Values'” on page 1053
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401

Command 'Unforce Values'
Keyboard shortcut [Alt]+[F7]

Function: This command resets the forcing of all variables. The variables receive their current
values from the PLC.
Call: “Debug”.
Requirement: The application is in online mode.
The “Remove Force List” command has the same functionality as this command with one
difference. If the “Remove Force List” command cannot be executed for all forced values, then
no message is displayed.

CAUTION!
Unusual changes to variable values in an application currently running on
the PLC can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled system, the result may lead to
damage to machinery and equipment or injury to health and life of personnel.

The command “Force Values [All Applications]” affects all application in the
project and is not included in a menu by default.

See also
● Ä Chapter 1.4.1.20.3.7.16 “Command 'Force Values'” on page 1053
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401

Command 'Force All Values from <Device.Application>'
Function: This command resets all values of variables from the selection <Device.Application>
to predefined values permanently.
Call:
● Context menu of the application in the device tree
● Context menu in the editor of a POU from the selected application
Requirement: The application is in online mode.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1054

CAUTION!
Unusual changes to variable values in an application currently running on
the controller can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled machinery, the result may lead
to damage to machinery and equipment or injury to health and life of personnel.

With this command, CODESYS permanently sets one or more variables of the active application
to defined values on the PLC. This is done at the beginning and end of a processing cycle.
Order of processing: 1) read inputs, 2) force values, 3) process code, 4) force values, 5) write
outputs.
You can prepare values as follows:
● Click in the “Prepared value” field in the declaration part and type in the value. For Boolean

variables, you change the value by clicking the field.
● Click in the inline monitoring field in the implementation part of the FBD/LD/IL editor
● Click in the “Prepared value” field in the monitoring view and type in the value.

A forced value is marked with the forced symbol ().
CODESYS forces the value until you explicitly lift it by
● Clicking “Unforce Values”
● Clicking “Unforce All Values from <Device.Application>”
● Lifting the force in the “Prepare Value” dialog
● Logging out of the application

The command “Force Values [All Applications]” affects all application in the
project and is not included in a menu by default.

See also
● Ä Chapter 1.4.1.20.4.7 “Dialog Box 'Prepare Value'” on page 1153
● Ä Chapter 1.4.1.20.3.7.18 “Command 'Unforce Values'” on page 1054
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401
● Ä Chapter 1.4.1.20.3.7.21 “Command 'Unforce All Values from <Device.Application>'”

on page 1056

Command 'Write All Values from <Device.Application>'
Function: This command resets all values of variables from the selection <Device.Application>
to predefined values one time.
Call:
● Context menu of the application in the device tree
● Context menu in the editor of a POU from the selected application
Requirement: The application is in online mode.

CAUTION!
Unusual changes to variable values in an application currently running on
the controller can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled machinery, the result may lead
to damage to machinery and equipment or injury to health and life of personnel.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1055

With this command, one or more variables of the selected <Device.Application> are set to
defined values on the PLC one time. Writing is done one time at the beginning of the next cycle.
You can prepare values as follows:
● Click in the "Prepared value" field in the declaration part and type in the value. For Boolean

variables, you change the value by clicking the field.
● Click in the inline monitoring field in the implementation part of the FBD/LD/IL editor
● Click in the "Prepared value" field in the monitoring view and type in the value.
See also
● Ä Chapter 1.4.1.20.3.7.17 “Command 'Write Values'” on page 1053
● Ä Chapter 1.4.1.20.3.7.19 “Command 'Force All Values from <Device.Application>'”

on page 1054
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401

Command 'Unforce All Values from <Device.Application>'
Function: This command resets the forcing of all values of the variables from the selected
<Device.Application>. The variables receive their current values from the PLC.
Call:
● Context menu of the application in the device tree
● Context menu in the editor of a POU from the selected application
Requirement: The application is in online mode.

CAUTION!
Unusual changes to variable values in an application currently running on
the controller can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled machinery, the result may lead
to damage to machinery and equipment or injury to health and life of personnel.

See also
● Ä Chapter 1.4.1.20.3.7.19 “Command 'Force All Values from <Device.Application>'”

on page 1054
● Ä Chapter 1.4.1.20.3.7.18 “Command 'Unforce Values'” on page 1054

Command 'Flow Control'
Function: This command activates and deactivates the flow control.
Call: Menu“Debug”

Requirement: The application is in online mode.

NOTICE!
An active flow control extends application runtime.
When “Confirmed Online Mode” is activated in the communication settings, a
dialog prompt appears when switching on the flow control to cancel the process.
When flow control is activated, it is not possible to use breakpoints or step
through the program.

See also
● Ä Chapter 1.4.1.11.6 “Flow Control” on page 406

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1056

Menu 'Core Dump'
1.4.1.20.3.7.23.1 Command 'Load Core Dump'... 1057
1.4.1.20.3.7.23.2 Command 'Create Core Dump'.. 1057
1.4.1.20.3.7.23.3 Command 'Close Core Dump'.. 1058
1.4.1.20.3.7.23.4 Command 'Load Device Log from Core Dump'.................. 1058

Command 'Load Core Dump'
Function: CODESYS scans the project directory for core dump files. When a new core dump
is forced with the “Create Core Dump” command, the dump file is automatically loaded from
the controller to the project directory. If multiple core dump files are available, then CODESYS
prompts you to choose whether the latest file should be opened in the project. You can also
select one of the other files.
When a file is loaded into the project, an online view of the application appears with state of
the application at the time when the core dump was generated. You can then view the variable
values afterwards. Finally, the call tree is also available.
Call: Main menu “Debug è Core Dump”.
Requirement: The application is in offline mode.

NOTICE!
You can close the core dump view only by clicking “Close Core Dump”. The
“Logout” command has no effect in this view.

See also
● Ä Chapter 1.4.1.20.3.7.23.2 “Command 'Create Core Dump'” on page 1057
● Ä Chapter 1.4.1.20.3.7.23.3 “Command 'Close Core Dump'” on page 1058

Command 'Create Core Dump'
Function: This command causes CODESYS to check whether a core dump file is already
available on the controller.
If a core dump file is available, then CODESYS prompts you to load this file to the project
directory.
With the following requirements, CODESYS generates a new dump file with the current applica-
tion data:
● A core dump file is still not available or CODESYS has rejected a core dump file from being

loaded.
● The application is currently stopped at breakpoint or an exception has occurred.
The generated core dump file is saved directly to the project directory: <project
name>.<device name>.<application name>.<application Guid>.core. You can
cancel the file generation by clicking the button in the status bar.
The amount of detail in the dump depends on the support from the runtime system. Runtime
systems that are appropriate for this purpose generate just one dump in the case of an excep-
tion error. The core dump output from clicking “Load Core Dump” can therefore be used for error
analysis.
Call: Main menu “Debug è Core Dump”.
Requirement: The application is in online mode.
See also
● Ä Chapter 1.4.1.20.3.7.23.1 “Command 'Load Core Dump'” on page 1057

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1057

Command 'Close Core Dump'
Function: This command closes the core dump view of the application that is open in the
project.
Call: Main menu “Debug è Core Dump”.
Requirement: The application is in offline mode and you have loaded a core dump file to the
project from the controller.

Command 'Load Device Log from Core Dump'
Function: This command imports the controller log list that was saved with the last generated
core dump. The log list is displayed in the same view as in online mode in the “Log” tab of the
device editor.
Call: Main menu “Debug è Core Dump”.
Requirement: The application is in offline mode and a core dump is open in the project.
See also
● Ä Chapter 1.4.1.20.2.8.8 “Tab 'Log'” on page 848

Command 'Display Mode' - 'Binary', 'Decimal', 'Hexadecimal'
Function: These commands in the “Display Mode” submenu are used for setting the format of
values in the display mode when monitoring in online mode.
Call: Main menu “Debug”.
Requirement: The project is in either online or offline mode.

The "Binary" and "Hexadecimal" display modes are unsigned, and "Decimal" is
signed.

See also
● Ä Chapter 1.4.1.12.1.1 “Calling of monitoring in programming objects ” on page 410

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1058

Menu 'Tools'
1.4.1.20.3.8.1 Command 'IP-Configuration'.. 1059
1.4.1.20.3.8.2 Command 'Install additional licence'.. 1059
1.4.1.20.3.8.3 Command 'Migrate third party devices'................................... 1059
1.4.1.20.3.8.4 Command 'Package Manager'.. 1059
1.4.1.20.3.8.5 Command 'Library Repository'.. 1061
1.4.1.20.3.8.6 Command 'License Manager'.. 1063
1.4.1.20.3.8.7 Command ‘License Repository’... 1066
1.4.1.20.3.8.8 Command 'Device Repository'.. 1067
1.4.1.20.3.8.9 Command 'Create Device list CSV'... 1069
1.4.1.20.3.8.10 Command 'Multi Online Change'... 1069
1.4.1.20.3.8.11 Command 'Device ECAD data'.. 1069
1.4.1.20.3.8.12 Command 'OPC UA Information Model Repository'.............. 1069
1.4.1.20.3.8.13 Command 'Scripting' - 'Execute Script File'........................... 1070
1.4.1.20.3.8.14 Command 'Scripting' - 'Enable Script Tracing'....................... 1071
1.4.1.20.3.8.15 Command 'Scripting' - 'Scripts'.. 1071
1.4.1.20.3.8.16 Command 'Customize'... 1071
1.4.1.20.3.8.17 Command 'Options'... 1071
1.4.1.20.3.8.18 Command 'Import and Export Options'.................................. 1072
1.4.1.20.3.8.19 Command 'Device Reader'.. 1072

Command 'IP-Configuration'
Function: Scan the project for IP address, device ID and other Informations.
Call: Main menu “Tools”, Context menu
Requirement: -
Ä Chapter 1.6.6.2.2.4.2 “Configuration of the IP settings with the IP configuration tool”
on page 3675

Command 'Install additional licence'
Function: Installs additional engineering license.
Call: Main menu “Tools”, Context menu
Requirement: -

Command 'Migrate third party devices'
Function: After a selection of a previous version profile, all the third party devices which have
been installed inside this version profile are listed and can migrated.
Call: Main menu “Tools”, Context menu
Requirement: -
Ä Chapter 1.6.6.1.5 “Migration of third party devices” on page 3658

Command 'Package Manager'
Symbol:
Function: The command opens the “Package Manager” dialog where you install, uninstall, and
manage packages.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1059

Call: Menu bar: “Tools”

You can also call the Package Manager as a standalone application from the command line.

Table 140: “Currently Installed Packages”
List of installed packages with “Name”, “Version”,“Installation date”, “Update info”, “License info”

If a package originates from the CODESYS Store, then CODESYS identifies it with the red package symbol
instead of the yellow symbol.

When an update is available, CODESYS indicates this with an entry in the “Update info” column and with the
symbol.

“Refresh” Refreshes the list

“Install” Opens the standard dialog for finding a file in the file system. By default, the file
type is *.package.
You can also install two versions of a package.
After you select the package, the “Check package signatures” dialog opens.
● In the dialog, the package is displayed with the information about signing.

Detailed information about signing is displayed in the tooltip and also in a
dialog which opens when you double-click a package.

● “Allow unsigned and self-signed packages” : The package should be
installed although it is unsigned or self-signed.

After the package is selected, the installation wizard opens with the dialogs:
● “Installation - License Agreement”

In this dialog, CODESYS also displays the “Checksum” of the package.
Displayed only when the package has a license agreement.

● “Choose Setup Type”
The options are package-dependent.
– “Complete setup”: CODESYS installs all components
– “Typical setup”: CODESYS installs a standard set of components as

defined in the package
– “Custom setup”: CODESYS installs those components which are

selected in a dialog
● “Installation - Target Versions”: You select which of the existing target ver-

sions should be updated by the package installation. You have to select at
least one version profile.

When this dialog is successfully completed, the selected package is ready for
installation. You have to close all CODESYS instances in order for the package
installation to be automatically started and run.

“Uninstall ” Uninstalls the selected package
● When the “Display versions” option is not selected, CODESYS uninstalls all

versions of the selected package.
● When the “Display versions” option is selected and you have selected a

package node on the top level, CODESYS uninstalls all versions of the
selected package.

● When the “Display versions” option is selected and you have selected an
individual package version, CODESYS uninstalls exactly this version.

When this dialog is closed, all CODESYS instances have to be closed in order
for the package uninstallation to start.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1060

“Details” Opens the “Details” dialog for the selected package with the following tabs:
● “Package Details”

– “Name”: Package name
– “Version”
– “Checksum”: SHA-1 checksum of the package
– “Vendor”
– “Copyright”
– “Description”
– “Installation date”

● “License Agreement”
● “Installations Log”

“Search updates in
background”

: CODESYS automatically searches for updates every time the programming
system is started and then one time every hour.

“Display versions” : Displays all versions of the installed package.

You can compare the “Checksum” with the package checksum from the
package vendor. CODESYS displays this checksum in the “Details” dialog and
in the “Installation - License Agreement” dialog of the installation wizard. You do
this to make sure that you have installed an original package.

If you have installed a newer version of the programming system in the same
installation directory as the previous version, the license information about the
previously installed package remains unchanged and CODESYS displays the
information in the “Package Manager” dialog.

Table 141: “Updates”
“Search Updates” Searches for the selected package on your system and in the CODESYS Store

Updates.
CODESYS displays the found updates in the “Update Info” column of the
package list.

“Download” Installs the update package from the “Download Package” dialog. In the
“Download Package” dialog, click the “Download and Installation” button for this.

Table 142: “CODESYS Store”
“Rating” Give an rating of the package

“CODESYS Store” Link to the homepage of the Store

Command 'Library Repository'
Symbol:
Function: The command opens the “Library Repository” dialog. In this dialog you define which
libraries are installed on the local system and are thus available for your application.
Call: Menu bar: “Tools”

Dialog 'Library
Repository'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1061

Table 143: “Location”
Display of the directory on the local system in which the library files are located. The libraries in this “Location” are
listed in the “Installed libraries” area.

“Edit Locations” Opens the “Edit Repository Locations” dialog.

1. You can only use empty directories for new repositories.

2. You can also use existing repositories as locations.

3. The "System" repository is not editable; CODESYS indicates this by the italic
lettering of the entry.

Table 144: Dialog “Edit Repository Locations”
List of the repositories with “Location” and “Name”

“Add” Creates a new repository.
Opens the “Repository Location” dialog. The selected directory (“Location” input
field) has to be either empty or an existing valid repository. “Name” is the input
field for a symbolic repository name.

“Edit” Opens the “Repository Location” dialog (see “Add”)

“Remove ” A dialog box open, asking whether only the entry should be removed from the
list of repositories, or whether the directory with the library files should be deleted
from the file system. If you want to delete the directory, you have to confirm this.

Table 145: “Installed libraries”
List of the libraries in a tree structure. Display of each library with category, name, company and version. The icon
to the left of the name indicates whether the library is digitally signed or unsigned.

“Company ” List box for filtering the displayed libraries.

“Install” Opens the “Select Library” dialog. Possible filters:
● “Compiled CODESYS library files (* .compiled-library)”.
● “Compiled CODESYS library files (* .compiled-library-v3)” ab V3 SP15
● “Library files (*.library)” for still uncompiled library projects
● “All files (*.*)”

“Uninstall” Uninstalls the selected library.

“Export” Opens the default dialog for saving the library project to the local file system.
The file type is Library files (*.library), Compiled library files
(*.compiled-library), or Compiled library files (*.compiled-
library-v3).

“Find” Searches for libraries and function blocks.
Opens the “Find Library” dialog. When you enter a string in the input field,
CODESYS displays the libraries that it finds with a corresponding string.

“Details” Opens the “Details” dialog with details from the project information of the library
for the selected version of a library. You find the following information by clicking
“More” in the “Details” dialog:
● “Size”: Specified in bytes
● “Created”: Creation date
● “Changed”: Date of the last change
● “Last access”: Date
● “Attributes”
● “Properties”

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1062

“Dependencies” For the selected library, the “Dependencies” dialog opens, showing the depend-
encies on other libraries. “Title”, “Version” and “Company” are shown for
each library reference. References that function via placeholders are displayed
according to the syntax: #<placeholder name>.

“Group by category” ● : Grouping by library category
● : Alphabetical sorting
The categories are defined by external description files '*.libcat.xml'.

Table 146: “Library Profiles”
A library profile defines the library version with which CODESYS resolves a library placeholder if a certain
compiler version is set in the project.

“Import” Imports a *.libraryprofile file.

If the import already contains existing placeholder entries, a query appears
asking whether CODESYS should overwrite it.

“Export” Exports an xml file with the extension *.libraryprofile with the assign-
ments of the selected placeholder entries; you can only select a single entry of a
“Compiler version”.

Placeholder resolutions can also be defined in the target device currently in
use and even by a specific local specification in the Placeholders dialog in the
Library Manager.

See also
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449
● Ä Chapter 1.4.1.20.2.21 “Object 'Project Information'” on page 919
● Ä Chapter 1.4.1.20.2.14 “Object 'Library Manager'” on page 874
● Ä Chapter 1.4.1.20.4.2 “Dialog 'Library Reference Conversion'” on page 1150
● Ä Chapter 1.4.1.16.4 “Exporting library files” on page 451

Command 'License Manager'
Symbol:
Function: This command opens the wizard for configuring licenses for CODESYS add-on
products. The wizard starts with the “License Manager - Select target” dialog.
Call: Menu bar: “Tools”.
The License Manager can handle licenses for CODESYS add-on products on the local com-
puter, as well as licenses for RTS add-on products on devices. It supports both the installation in
a soft container and on a dongle.

This is the start dialog of the License Manager wizard. Here you decide where the license will
be installed.

“Workstation” Local computer

“Device” Controller. The connection to this device must be configured correctly in order to
license (“Communication Settings” tab of the device editor).

After clicking “Next”, you decide the container where you want to manage the licenses.

Dialog 'License
Manager -
Select Target'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1063

“Dongle” A corresponding dongle must be connected to the computer or device. Not all
devices support dongles.

“Soft container” "CODESYS Security Key. A corresponding soft container must be registered in
the CodeMeter Control Center. The CODESYS installation provides an existing
soft container.

If you are installing a product on your local computer (“Workstation”), then the “License
Manager” opens immediately for the specific selection of the dongle or soft container, and the
next actions. This happens after you choose the container type and click “Next >”.
If you are licensing the add-on product for a controller, then first the dialog opens for selecting
the device in the network after you click “Next >”. This dialog corresponds to the classic view of
the “Communication Settings” tab of the device editor.

“Container” Depending on whether “Dongle” or “Soft container” was selected: Drop-down list
of all CODESYS dongles or soft containers that were found on the computer or
device.

“Products” List of all installed products that are subject to licensing. A prepended symbol
indicates the existence and validity of the license.
On the right side of the window, the following information is displayed for the
selected product and corresponding licenses:
“Name”

“Company”

“Unit counter”

“License quantity”

“Usage period”

“Feature map”

“Activation time”

“Expiration time”

“Firm code”

“Product code”

“Description”

“Install Licenses” Opens the dialog “Install licenses on <computer> - Select Operation”:
● “Activate license”: Opens the dialog “Install licenses on <computer> -

Activate License” (see more below)
● “Request license”: Opens the dialog “Install licenses on <computer> -

Request License” (see more below)
● “Install license”: Opens the dialog “Install licenses on <computer> - Install

License” (see more below)

“Additional Functions” Opens the menu with the following actions:
● “Return license”: Opens the “Return Licenses” (see more below)
● “Restore license”: This function is available in the case of device licensing

only. Opens the “Restore Licenses” dialog (see more below)

Dialog 'License
Manager -
Select con-
tainer'

Dialog 'License
Manager'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1064

Table 147: “Install Licenses on <computer> - Activate License”
This is the recommended way to activate a license available via the License Server when you have an Internet
connection. Requirement: The computer has an Internet connection.

“Ticket ID” Input field for the ticket ID that you received from the software vendor. The
ticket ID consists of five sets of five alphanumerical characters (for example:
LYSQ3-ZU93K-24LWC-XGWJ8-5AY7H).

“License server” Drop-down list of the license server that provides the license for activating the
product. You receive the server URL from the software vendor.

“Select Ticket from Repository” Opens the “License Repository” dialog.

“Next” CODESYS connects to the license server.
● If the specified ticket contains only one license, then a dialog opens to

confirm the successful activation after completion of the server action.
● If the specified ticket contains multiple licenses, then the dialog “Install

licenses - Select Licenses” opens with a list of these licenses (see descrip-
tion below).

Table 148: “Install Licenses - Select Licenses”
Selection of the licenses to be activated for the ticket which you specified in the dialog “Install Licenses - Activate
License”.

“Name” Product name

“Available” Number of available licenses

“Used” Number of used licenses

Total Sum of all used and available licenses

Next CODESYS connects to the license server. After successful completion of the
server action, a dialog opens with the confirmation of the activation.

Table 149: “Install Licenses on <computer> - Request License”
If the computer does not have an Internet connection, then you can generate a context file from this dialog. The
file "WibuCmRaC" is then transmitted to the license server via an Internet-enabled computer. When activation is
complete, a license update file "WibuCmRaU" is provided for download.

“Software vendor” Input field for firm codes from the software vendor that provided the license for
activating the product. As an alternative, you can select the software vendor from
the drop-down list.

“Context file” Location and name

Table 150: “Install Licenses on <computer> - Install License”
If you downloaded a license update file from the Internet during software activation, then you can use this dialog
to install the license on your dongle. To do this, specify the path of the license update file in the input field.

Table 151: “Return License”
If the license permits, you can return it in order to reactivate it later on another computer.

“Ticket ID” Field for specifying the ticket ID that was used for licensing.

“License server” Drop-down list for selecting the license server that provides the license for acti-
vating the product. You receive the server URL from the software vendor.

“Load License(s)” Button for showing all current licenses installed for the given ticket ID on the
server in the “Licenses” window.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1065

“Licenses” List of licenses available on the server for the given ticket ID. The following
information for the selected license is displayed next to the window on the right:
● “Name”
● “Number of activations”
● “Return allowed”
● “Activation type”
● “Activation date”
● “Firm code”
● “Comment”

“Return License(s)” Button for returning the selected license(s). These can be reactivated later on
another system.

Table 152: “Install Licenses - Restore Licenses”
When activated, device licenses are saved to a file (*.WibuCmRau) on the local computer and in the "CODESYS
Central License Server". If lost, they can be restored from this file to the identical device.

“Ticket ID” Field for specifying the ticket ID that was used for licensing that has already
occurred.

“Restore” If a corresponding license backup file is found, then the license is reactivated in
the device.

See also
● Ä Chapter 1.4.1.20.2.8.2 “Tab 'Communication Settings'” on page 840
● Ä Chapter 1.4.1.20.3.8.7 “Command ‘License Repository’” on page 1066

Command ‘License Repository’
Symbol:
Function: This command opens the dialog box “License Repository” for viewing information
about the individual licenses.
Call: Main menu “Tools”

Requirements: CODESYS is in offline or online mode.
In the license repository, after entering the ticket number, you can obtain information about the
licenses concerned from the central license server.
To do this you can paste the ticket number(s) from the clipboard or import it/them from a text file.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1066

Table 153: “Tickets”
<List of the ticket IDs imported
into the repository for compo-
nents requiring licenses>

“Licenses” If you select an entry in the list of tickets, the name and the status of the licensed
component are displayed here.

: License available and valid

: License found, but invalid

: License not found
In the right-hand part of the dialog box you will then receive then the following
information about this license:

 “Name”: name of the product to be licensed
“Item number”: item number in the license server.
“Return allowed”: It is possible to have this license deactivated so that it can be
re-activated on another system.
“Can be activated”: you can have the license activated via the license manager.
“Activation quantitiy”: number of activations that have taken place so far.
“Activation date”: date of the current activation
“Container serial ”

“Firm codes”

“Comment”

“Import Tickets” The standard dialog box for browsing the local file system appears. If you open a
text file containing one or more “tickets”, i.e. license numbers, these are imported
into the repository. Alternatively you can also insert the numbers from the clip-
board into the list.

Command 'Device Repository'
Symbol:
Function: This command opens the “Device Repository” dialog. This dialog is used for man-
aging the devices that are installed on the local system and can be integrated into CODESYS
projects.
Call: Menu bar: “Tools”.

CAUTION!
Do not change the internal device repository manually. Do not copy any
files to or from the repository. Always use the device repository dialog to install
or uninstall devices.

Dialog 'Device
Repository'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1067

Table 154

“Location” Shows the device repository directory on the local system. The list box shows
the currently set save locations. By default, CODESYS creates the system repo-
sitory during installation. The devices of the selected location are listed in the
“Installed device descriptions” field.

“Edit Locations” Opens the “Edit Repository Locations” dialog.

Table 155: Dialog 'Edit Repository Locations'
List of the repositories with “Location” and “Name”.

“Add” Creates a new repository.
Opens the “Repository Location” dialog. The selected directory (“Location” input
field) must be empty or it must be a valid repository.

“Edit” Opens the “Repository Location” dialog (see “Add”).

“Remove ” A dialog prompt opens for you to decide whether the respective directory should
also be deleted from the hard disk.

Table 156: “Installed Device Descriptions”
List of device descriptions in multilevel tree structure. Shows all device descriptions with “Name”, “Vendor”, and
“Version”. The top nodes represent device categories, for example PLCs, fieldbuses, and logical devices.

“String for full-text search in all
devices”

This field is editable after clicking in it. For any character string entered, only
those devices that include the character string are displayed in the lower view.
The matched string is highlighted in yellow for these devices.

“Vendor” Drop-down list with manufacturers whose available devices are displayed.

“Install” Opens the “Install Device Description” dialog.
For the default devices with file type "*.devdesc.xml". You can also select
manufacturer-specific description files, such as "*.gsd" files for PROFIBUS DP
modules, "*.eds" and "*.dcf" files for CAN devices.
When you click “OK” to confirm the selection, CODESYS inserts the new device
into the device repository. If an error occurs during installation (for example,
missing files that are referenced by the device description), then CODESYS
reports the error to the lower part of the device repository dialog.

“Uninstall” Removes the selected device. If you delete the device from the device reposi-
tory, then it is no longer available for use in the programming system.

“Renew Device Repository” Updates all devices in the device repository.
When new versions of import plug-ins are available, some device descriptions
may be outdated. The affected devices are marked with a warning symbol ().
This command opens a dialog to confirm the update.

“Download Missing Device
Descriptions”

Opens when you use devices in your project that are not available in the device
repository. When you execute this command, a list of missing devices is dis-
played. There you can select the corresponding devices for download.

“Details” Opens the “Details” dialog for the selected device description. This dialog pro-
vides additional information from the device description file.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1068

NOTICE!
During installation, CODESYS copies the device description files and all addi-
tional reference files to an internal location. Therefore, any changes to the
original files no longer influence the installed devices. You must reinstall the
devices to make any changes effective. We recommended that you change the
internal version number of a device description after a modification.

See also
● Ä Chapter 1.4.1.17.1 “Installing devices” on page 452
● Ä Chapter 1.4.1.20.4.13.5 “Dialog 'Options' – 'Device Description Download'” on page 1190

Command 'Create Device list CSV'
Symbol:
Function: MS Excel template of device list for device import is opened.
Call: Main menu “Tools”, Context menu
Requirement: -
Ä Chapter 1.8.1.3.2 “Creating CSV device list” on page 4119

Command 'Multi Online Change'
Function: The MultiOnlineChange tool/plug-in for Automation Builder enables firmware update,
download and online change of the same project to several AC500 V2 PLCs.
Call: Main menu “Tools”, Context menu
Requirement: -

Command 'Device ECAD data'
Function: Automation Builder provides an ECAD interface for exchanging the PLC config-
uration data with EPLAN Electric P8 and Zuken E3. This feature removes double data
entry between electrical engineering in the ECAD tool and the control logic programming in
Automation Builder by synchronizing the PLC hardware including topology and I/O signals
between these tools.
Call: Main menu “Tools”, Context menu
Requirement: A project is open.
Ä Chapter 1.8.1.1 “Exporting and importing ECAD data (PBF)” on page 4112

Command 'OPC UA Information Model Repository'
Function: The command opens the “OPC UA Information Model” dialog. The OPC UA infor-
mation models, which are installed on the local system and can be integrated in CODESYS
projects, are managed in the dialog.
Call: Menu bar: “Tools”

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1069

Table 157: Dialog 'OPC UA Information Model'
“Location” Displays the OPC UA information model directories on the local system. The list

box shows the currently set locations. By default, CODESYS creates the system
repository during installation. The information models of the selected location are
listed in the “Installed OPC UA information models” area.

“Edit Locations” Opens the “Edit Repository Locations” dialog.

“Installed OPC UA information models”

List of installed information models. Double-click to open installed information model documentation.
Note: The information models of this repository can also be added to project archives.

“Install ” Opens the “Select Installed OPC UA Information Model(s)” dialog.
● File type: OPC UA Information Models *NodeSet2.xml (example:

“Informationmodel.NodeSet2.xml”. When you click “Open”, the selected
information model is inserted in the repository.

● File type: All files *.*: You can select an OPC UA documentation, for
example, in PDF or Word format. When you click “Open”, the “Assign
Documentation OPC UA Information Models” opens. For a description of
the dialog, see below.

“Uninstall” Uninstalls the selected OPC UA information model. When you delete the infor-
mation model from the repository, it is no longer available in the development
system for use in the CODESYS Development System.

“Details” Opens the “Details” dialog for the selected information model. The dialog
includes additional information about the information model. In “Alias”, you can
specify an alias name for the URI. Moreover, information is displayed as to
whether or not a documentation for the information model is available.
● “Model URI”
● “Publication date”
● “Publisher”
● “Repository”
● “Alias”
● “Documentation available”:

– “Yes”: The “Uninstall documentation” button is available.
– “No”: The “Install documentation” button is available.

● “Install documentation”: Opens the “Select OPC UA Information Model
Documentation” dialog. The data type OPC UA Information Model
Documentation (*.pdf) is set as default in the dialog.

“Documentation” Opens the installed documentation for the selected information model.
If no documentation is installed for the selected information model, then the
command is disabled.

“Display all versions” All installed versions of the information model are displayed in a tree structure.

● Ä Chapter 1.4.1.20.2.15 “Object 'OPC UA Information Model'” on page 877

Command 'Scripting' - 'Execute Script File'
Symbol:
Function: This command opens a dialog for selecting and then executing the script file (*.py).
Call: Menu bar: “Tools è Scripting”.

See also

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1070

Command 'Scripting' - 'Enable Script Tracing'
Symbol:
Function: This command makes CODESYS print all commands from the script file to the
message view. Use this command for monitoring and debugging scripts. A blue frame around
the symbol indicates that the option is active.
Call: Main menu “Tools è Scripting”.

Command 'Scripting' - 'Scripts'
Function: This command executes a script that is stored in the ScriptDir folder.

Call: Menu bar: “Tools è Scripting è Scripts”.
Requirement: The ScriptDir folder exists in the CODESYS installation directory. Python
scripts are stored in this folder with the file extension .py.

All scripts that are contained in the ScriptDir folder are executable as menu commands and
are sorted alphabetically by file name.

Command 'Customize'
Function: This command opens the “Customize” dialog box, where you can customize the
menus, toolbars, and keyboard shortcuts according to your individual requirements.
Call: Main menu “Tools”

Command 'Options'
Function: The command opens the dialog box “Options” for the configuration of the CODESYS
options. These options define the behavior and appearance of the CODESYS user interface.
CODESYS saves the settings in your current user profile on your local system. The current
profile specifies the standard settings.
Call: “Tools” menu
See also
● Ä Chapter 1.4.1.20.4.13.22 “ Dialog 'Options' - 'SFC Editor'” on page 1200
● Ä Chapter 1.4.1.20.4.13.3 “Dialog 'Options' - 'CFC Editor'” on page 1189
● Ä Chapter 1.4.1.20.4.13.4 “Dialog 'Options' – 'Declaration Editor'” on page 1190
● Ä Chapter 1.4.1.20.4.13.6 “Dialog 'Options' - 'Device Editor'” on page 1190
● Ä Chapter 1.4.1.20.4.13.5 “Dialog 'Options' – 'Device Description Download'” on page 1190
● Ä Chapter 1.4.1.20.4.13.9 “Dialog 'Options' - 'FBD, LD, and IL'” on page 1192
● Ä Chapter 1.4.1.20.4.13.13 “Dialog 'Options' – 'International Settings'” on page 1195
● Ä Chapter 1.4.1.20.4.13.14 “Dialog 'Options' – 'Libraries'” on page 1195
● Ä Chapter 1.4.1.20.4.13.15 “Dialog 'Options' – 'Library Download'” on page 1195
● Ä Chapter 1.4.1.20.4.13.16 “Dialog 'Options' – 'Load and Save'” on page 1196
● Ä Chapter 1.4.1.20.4.13.19 “Dialog 'Options' - 'PLCopenXML'” on page 1198
● Ä Chapter 1.4.1.20.4.13.20 “Dialog 'Options' - 'Proxy Settings'” on page 1198
● Ä Chapter 1.4.1.20.4.13.21 “Dialog 'Options' - 'Refactoring'” on page 1199
● Ä Chapter 1.4.1.20.4.13.23 “Dialog 'Options' - 'SmartCoding'” on page 1201
● Ä Chapter 1.4.1.20.4.13.25 “Dialog 'Options' - 'Text Editor'” on page 1203

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1071

Command 'Import and Export Options'
Function: This command opens the “Import and Export Options” dialog. Here you can configure
the export and import of selected settings of the CODESYS options. The settings are saved to
an XML file with the default extension (options.xml).

Call: Menu bar: “Tools”.

“Export selected options” “Select options”: In the table, you can select the categories of options, either
user-specific or machine-specific (computer), whose current settings are to be
exported to the XML file.
“File”: Path of the export file in the local file system. Example:
D:\system1.options.xml.

Button : Opens the default dialog to search for an existing file in the local file
system, or to create one. The “File type” option export (*.options.xml)
is preset.

“Import selected options” “File”: Path of the options export file whose contents are to be imported.

Button : Opens the default dialog to search for an existing file of type option
export (*.options.xml) in the local file system.

After you click “OK” to close the dialog, the settings described in the file are
applied to the project.

See also
● Ä Chapter 1.4.1.1.1 “Setting CODESYS options” on page 180

Command 'Device Reader'
Function: The command opens the standard “Select Device” dialog and reads the license and
product information of the selected controller. This license and product information is displayed
in the “Device Reader” dialog.
Call: Menu bar: “Tools”

Requirement: No applications exist on the controller.

If the command is selected although an application exists on the controller, then
a dialog prompts the user whether or not all applications should be removed
from the controller. When the user click “No” to this dialog, the “Device Reader”
command is aborted.

Table 158: Dialog “Device Reader”
“Status of Available Device Features”

“Product” CODESYS product (example: SoftMotion)

“Feature” Feature of “Product”

Example: CNC is a “Feature” of SoftMotion.

“License Active/Count ” Yes: A license exists for the feature.

No: A license does not exist for the feature.

“Count”: Number of licenses

Dialog 'Import
and Export
Options'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1072

Menu 'Window'
1.4.1.20.3.9.1 Command 'Next Editor'.. 1073
1.4.1.20.3.9.2 Command 'Previous Editor'... 1073
1.4.1.20.3.9.3 Command 'Close All Editors'... 1073
1.4.1.20.3.9.4 Command 'Close All Editors of Inactive Applications'............. 1074
1.4.1.20.3.9.5 Command 'Reset Window Layout'... 1074
1.4.1.20.3.9.6 Command 'New Horizontal Tab Group'................................... 1074
1.4.1.20.3.9.7 Command 'New Vertical Tab Group'.. 1074
1.4.1.20.3.9.8 Command 'Float'.. 1075
1.4.1.20.3.9.9 Command 'Dock'... 1075
1.4.1.20.3.9.10 Command 'Auto Hide'.. 1075
1.4.1.20.3.9.11 Command 'Next Pane'... 1075
1.4.1.20.3.9.12 Command 'Previous Pane'.. 1075
1.4.1.20.3.9.13 Command 'Toggle First Pane'.. 1076
1.4.1.20.3.9.14 Command 'Toggle Second Pane'.. 1076
1.4.1.20.3.9.15 Command 'Windows'... 1076
1.4.1.20.3.9.16 Command 'Close All Editors But This'................................... 1077
1.4.1.20.3.9.17 Command 'Select Object in Navigator'.................................. 1077
1.4.1.20.3.9.18 Command 'Select Parent Object in Navigator'...................... 1077
1.4.1.20.3.9.19 Commands of the Submenu 'Window' 1077

Command 'Next Editor'
Keyboard shortcut: [Ctrl]+[F6]

Function: This command switches focus from the currently active view to the next view. The
next view is identified by the tab to the right of the currently active tab.
Call: Main menu “Window”

Requirement: At least one object is open.
See also
● Ä Chapter 1.4.1.20.3.9.2 “Command 'Previous Editor'” on page 1073

Command 'Previous Editor'
Keyboard shortcut: [Shift]+[Ctrl]+[F6]

Function: This command switches focus from the currently active view to the previous view.
The previous view is identified by the tab to the left of the currently active tab.
Call: Main menu “Window”

Requirement: At least one object is open.
See also
● Ä Chapter 1.4.1.20.3.9.1 “Command 'Next Editor'” on page 1073

Command 'Close All Editors'
Symbol:
Function: This command closes all currently open editor views.
Call: Main menu “Window”

Requirement: At least one editor is open.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1073

See also
● Ä Chapter 1.4.1.20.3.9.4 “Command 'Close All Editors of Inactive Applications'”

on page 1074
● Ä Chapter 1.4.1.20.3.9.16 “Command 'Close All Editors But This'” on page 1077

Command 'Close All Editors of Inactive Applications'
Function: This command closes all editor views for objects that are located directly below a
currently inactive application. Object editors in the POU view remain open.
Call: Main menu “Window”

Requirement: At least one object of an inactive application is open.
See also
● Ä Chapter 1.4.1.20.3.9.3 “Command 'Close All Editors'” on page 1073
● Ä Chapter 1.4.1.20.3.9.16 “Command 'Close All Editors But This'” on page 1077

Command 'Reset Window Layout'
Function: This command resets all currently open windows and views to their default positions.
You are prompted for a confirmation before the command is executed.
Call: Main menu “Tools”

Command 'New Horizontal Tab Group'
Symbol:
Function: This command moves the currently active view to a new, separate tab group below
the existing one.
Call: Main menu “Window” or context menu of the tab
Requirement: Several editor views are open as tabs next to each other.
If you open another object in the editor, then this is automatically included in the tab group that
is currently in focus.
See also
● Ä Chapter 1.4.1.20.3.9.7 “Command 'New Vertical Tab Group'” on page 1074

Command 'New Vertical Tab Group'
Symbol:
Function: This command moves the currently active view to a new, separate tab group to the
right of the existing one.
Call: Main menu “Window” or context menu of the tab
Requirement: Several editor views are open as tabs next to each other.
If you open another object in the editor, then this is automatically included in the tab group that
is currently in focus.
See also
● Ä Chapter 1.4.1.20.3.9.6 “Command 'New Horizontal Tab Group'” on page 1074

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1074

Command 'Float'
Function: This command releases a docked view from its frame in the user interface and
repositions it on the screen as a floating window.
Call: Main menu “Window”

Requirement: The application is in online mode.
This window can then be positioned outside of the user interface. Use the “Dock” command to
return a floating window to the frame of the user interface.
See also
● Ä Chapter 1.4.1.20.3.9.9 “Command 'Dock'” on page 1075

Command 'Dock'
Function: This command returns a floating window, which was released by the “Float” com-
mand, to the frame of the user interface.
Call: Main menu “Window”

See also
● Ä Chapter 1.4.1.20.3.9.8 “Command 'Float'” on page 1075

Command 'Auto Hide'
Keyboard shortcut: [F7]

Function: This command shows or hides a view.
Call: Main menu “Window”

Hide simply means that CODESYS minimizes the view to a tab at the bottom of the user
interface which is visible only when you move the mouse over the tab. The command functions
like a check box. When a window is hidden, the check box is selected in the menu. When you
click the command again, the checkbox is cleared and the window is shown.

Command 'Next Pane'
Keyboard shortcut: [F6]

Function: This command sets the focus on the next pane.
Call: Main menu “Window”

Requirement: An object is open that contains two or more panes.
Example: If an object is open in the ST editor and the cursor is currently in the declaration
section, then command sets the focus to implementation section.
See also
● Ä Chapter 1.4.1.20.3.9.12 “Command 'Previous Pane'” on page 1075

Command 'Previous Pane'
Keyboard shortcut: [Shift]+[F6]

Function: This command sets the focus on the previous pane.
Call: Main menu “Window”

Requirement: An object is open that contains two or more panes.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1075

Example: If an object is open in the ST editor and the cursor is currently in the declaration
section, then command sets the focus to implementation section.
See also
● Ä Chapter 1.4.1.20.3.9.11 “Command 'Next Pane'” on page 1075

Command 'Toggle First Pane'
Keyboard shortcut [Alt]+[F6]

Function: This command shows and hides the declaration view.
Call: “Window”.
Requirement: The cursor is positioned in the editor of one of the following objects:
● POU
● Transition
● Method
● Get accessor method of a property
● Set accessor method of a property
● Visualization

You can also toggle the subviews by means of the buttons.

See also
● Ä Chapter 1.4.1.20.3.9.14 “Command 'Toggle Second Pane'” on page 1076

Command 'Toggle Second Pane'
Function: This command shows and hides the implementation view.
Call: “Window”.
Requirement: The cursor is positioned in the editor of one of the following objects:
● POU
● Transition
● Method
● Get accessor method of a property
● Set accessor method of a property
● visualization

You can also toggle the subviews by means of the buttons.

See also
● Ä Chapter 1.4.1.20.3.9.13 “Command 'Toggle First Pane'” on page 1076

Command 'Windows'
Function: This command opens the “Windows” dialog box, which lists all open objects. You can
then activate or close any of the listed views.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1076

Call: Main menu “Window”

Command 'Close All Editors But This'
Function: This command closes all editor views except the currently open one.
Call: Right-click the tab
Requirement: At least two objects are open.
See also
● Ä Chapter 1.4.1.20.3.9.3 “Command 'Close All Editors'” on page 1073
● Ä Chapter 1.4.1.20.3.9.4 “Command 'Close All Editors of Inactive Applications'”

on page 1074

Command 'Select Object in Navigator'
Function: This command selects the object of the active editor in the device tree.
Call: Right-click the tab
Requirement: At least one object is open.

This command is executed automatically when you select the “Track active
editor” option for the device tree.

See also
● Ä Chapter 1.4.1.20.3.9.18 “Command 'Select Parent Object in Navigator'” on page 1077

Command 'Select Parent Object in Navigator'
Function: This command selects the parent object in the device tree.
Call: Right-click the tab
Requirement: At least one object is open.
See also
● Ä Chapter 1.4.1.20.3.9.17 “Command 'Select Object in Navigator'” on page 1077

Commands of the Submenu 'Window'
Function: The command activates the selected window.
Call: Main menu “Window”

For each opened editor window the menu “Window” contains a command “<n><object name>”.
Choosing this command activates the corresponding window. In offline mode CODESYS adds
the extension “(Offline)”. To differentiate between the implementation or the instances of a
function block the extension “(Impl)” or “<instance path>” is added.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1077

Menu 'Help'
1.4.1.20.3.10.1 Command 'Contents'... 1078
1.4.1.20.3.10.2 Command 'Index'... 1078
1.4.1.20.3.10.3 Command 'Find'... 1078
1.4.1.20.3.10.4 Command 'About'.. 1079

Command 'Contents'
Symbol: ; keyboard shortcut: [Ctrl]+[Shift]+[F1]

Function: This command opens the CODESYS help.
Call: Menu bar: “Help”.

Command 'Index'
Symbol: ; keyboard shortcut: [Ctrl]+[Shift]+[F2]

Function: This command opens the CODESYS help.
Call: Menu bar: “Help”.
An index search is not possible in the online help. The “Index” tab opens in the offline help.
All index entries of the help are listed alphabetically in the index view.

“ Look for ” As you type letters into the input field, CODESYS searches automatically for
matches in the index list.

“Display” Opens the help page for the highlighted index entry in the list and displays the
title of the help page and location of the help file (*.chm) in the “Index results for
<index entry>” view. When several pages are found and then displayed in this
view, then you view a specific help page by clicking its entry in the list.
Clicking an entry in the index list achieves the same result.

Command 'Find'
Symbol:
Function: This command opens the CODESYS help.
Call: Menu bar: “Help”.
In the online help, you can run a full-text search from the input field on the top right of the help
page. The “Find” tab opens in the offline help.

Table 159: Tab 'Search'
“Search for” Combo box for defining the search term or for selecting the 25 most recent

search terms.

“ Search in titles only” The search is performed only in the titles of the help pages.

“Display partial matches” Displays terms also as search results that include the search term.

“Limit to matches ” Limits the number of search results.
Maximum value: 1000

“Find” Starts the full-text search.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1078

Command 'About'
Function: This command opens a splash screen with information about the CODESYS version
and copyright. In addition, buttons are available for detailed information about the version,
license, and acknowledgments.
Call: Main menu “Help”.

“Version Info” Opens the “Detailed Version Information” dialog box with a list of CODESYS
components and information about the operating system.
“Export”: Exports the detailed version information as a *.txt file or in any other
format.

“License Info” Opens the “License Information” dialog box.
● “Plug-in”: Drop-down list for the plug-in to display the license information
● “Software License”: License information about selected “Plug-in”

“Acknowledgments”

Menu 'SFC'
1.4.1.20.3.11.1 Command 'Init Step'... 1079
1.4.1.20.3.11.2 Command 'Insert Step'.. 1080
1.4.1.20.3.11.3 Command 'Insert Step After'.. 1080
1.4.1.20.3.11.4 Command 'Insert Transition After'.. 1080
1.4.1.20.3.11.5 Command 'Insert Transition'.. 1081
1.4.1.20.3.11.6 Command 'Insert Step-Transition'.. 1081
1.4.1.20.3.11.7 Command 'Insert Step-Transition After'................................. 1081
1.4.1.20.3.11.8 Command 'Add Entry Action'... 1082
1.4.1.20.3.11.9 Command 'Add Exit Action'... 1082
1.4.1.20.3.11.10 Command 'Parallel'.. 1082
1.4.1.20.3.11.11 Command 'Alternative'... 1083
1.4.1.20.3.11.12 Command 'Insert Branch'.. 1083
1.4.1.20.3.11.13 Command 'Insert Branch Right'... 1083
1.4.1.20.3.11.14 Command 'Insert Action Association'.................................. 1084
1.4.1.20.3.11.15 Command 'Insert Action Association After'.......................... 1085
1.4.1.20.3.11.16 Command 'Insert Jump'... 1085
1.4.1.20.3.11.17 Command 'Insert Jump After'.. 1085
1.4.1.20.3.11.18 Command 'Insert Macro'.. 1086
1.4.1.20.3.11.19 Command 'Insert Macro After'... 1086
1.4.1.20.3.11.20 Command 'Zoom Into Macro'... 1086
1.4.1.20.3.11.21 Command 'Zoom Out of Macro'... 1086
1.4.1.20.3.11.22 Command 'Paste After'.. 1087
1.4.1.20.3.11.23 Command 'Change Duplication' - 'Set'................................ 1087
1.4.1.20.3.11.24 Command 'Change Duplication' - 'Remove'........................ 1087
1.4.1.20.3.11.25 Command 'Do Not Display Embedded Objects'.................. 1088

Command 'Init Step'
Symbol:
Function: This command converts the selected step into an initial step.
Call: Main menu “SFC”

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1079

After you choose this command, the borders of the step element change to a double line. The
previous initial step is automatically displayed as a normal step with a single-line border.
You can also activate and deactivate the property “Init step” in the properties dialog of a step.
However, CODESYS does not automatically adjust the settings of other steps.
This command is useful if you want to convert a diagram. When you create a new SFC object,
it automatically includes an initial step followed by a transition (TRUE) and a jump back to the
initial step.

Please note: In online mode, it is possible to reset the diagram to the initial step
using the SFCInit and SFCReset flags.

See also
● Ä Chapter 1.4.1.19.1.4.6 “SFC Flags” on page 481
● Ä Chapter 1.4.1.19.1.4.8.6 “SFC element properties” on page 493

Command 'Insert Step'
Symbol:
Function: This command inserts a step before the selected point.
Call: Menu bar “SFC”; context menu in SFC editor
The new step is named Step<n> by default, where n is an incremental number starting at 0 for
the first step that is inserted in addition to the initial step. The name can be edited by clicking on
it.
See also
● Ä Chapter 1.4.1.20.3.11.7 “Command 'Insert Step-Transition After'” on page 1081
● Ä Chapter 1.4.1.20.3.11.1 “Command 'Init Step'” on page 1079
● Ä Chapter 1.4.1.19.1.4.8.1 “SFC elements 'Step' and 'Transition'” on page 486

Command 'Insert Step After'
Symbol:
Function: This command inserts a step after the selected point.
Call: Menu bar “SFC”; context menu in SFC editor
The new step is named Step<n> by default, where n is an incremental number starting at 0 for
the first step that is inserted in addition to the initial step. The name can be edited by clicking on
it.
See also
● Ä Chapter 1.4.1.20.3.11.7 “Command 'Insert Step-Transition After'” on page 1081
● Ä Chapter 1.4.1.20.3.11.1 “Command 'Init Step'” on page 1079
● Ä Chapter 1.4.1.19.1.4.8.1 “SFC elements 'Step' and 'Transition'” on page 486

Command 'Insert Transition After'
Symbol:
Function: This command inserts a transition after the selected point.
Call: Menu bar “SFC”; context menu in SFC editor

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1080

The new transition is named Trans<n> by default, where n is an incremental number beginning
at 0 for the first transition. The name can be edited by clicking on it.

See also
● Ä Chapter 1.4.1.20.3.11.7 “Command 'Insert Step-Transition After'” on page 1081
● Ä Chapter 1.4.1.19.1.4.8.1 “SFC elements 'Step' and 'Transition'” on page 486

Command 'Insert Transition'
Symbol:
Function: This command inserts a transition before the selected point.
Call: Menu bar “SFC”; context menu in SFC editor
The new transition is named Trans<n> by default, where n is an incremental number beginning
at 0 for the first transition. The name can be edited by clicking on it.

See also
● Ä Chapter 1.4.1.20.3.11.7 “Command 'Insert Step-Transition After'” on page 1081
● Ä Chapter 1.4.1.19.1.4.8.1 “SFC elements 'Step' and 'Transition'” on page 486

Command 'Insert Step-Transition'
Symbol:
Function: This command inserts a step and a transition before the selected point.
Call: Main menu “SFC”

If you have selected a step, then CODESYS inserts a new step-transition combination. If you
have selected a transition, then a new transition-step combination is inserted.
The new step is named Step<n> by default, where n is an incremental number beginning at
0 for the first step that was inserted in addition to the initial step. The new transition is named
Trans<n> by default. You can edit the default names directly by clicking the names.

See also
● Ä Chapter 1.4.1.20.3.11.7 “Command 'Insert Step-Transition After'” on page 1081
● Ä Chapter 1.4.1.20.3.11.1 “Command 'Init Step'” on page 1079
● Ä Chapter 1.4.1.19.1.4.8.1 “SFC elements 'Step' and 'Transition'” on page 486

Command 'Insert Step-Transition After'
Symbol:
Function: This command inserts a step and a transition after the selected point.
Call: Main menu “SFC”

If you have selected a step, then CODESYS inserts a new transition-step combination. If you
have selected a transition, then a new step-transition combination is inserted.
The new step is named Step<n> by default, where n is an incremental number beginning at
0 for the first step that was inserted in addition to the initial step. The new transition is named
Trans<n> by default. You can edit the default names directly by clicking the names.

See also
● Ä Chapter 1.4.1.20.3.11.6 “Command 'Insert Step-Transition'” on page 1081

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1081

Command 'Add Entry Action'
Symbol:
Function: This command opens the “Add Entry Action” dialog box where you define a new
entry action. Depending on the SFC options, a dialog prompt may open for selecting the
duplication mode for the new step action.
Call: Menu bar: “SFC”; context menu of the selected step element.
Requirement: A step element in SFC is selected.
The entry action is opened automatically in the ST editor. The step element contains an E in the
lower left corner.

Options:
● “Copy reference: A new step will call the same actions”: If the step is copied in SFC, the link

to the step action(s) is also copied. The steps copied by each other will therefore call the
same actions.

● “Copy implementation: New action objects are created for a new step.”: This means that
the step actions for a copied step are embedded. By default, the generated action objects
appear below an SFC box in the device tree or “POUs” view. These objects contains a copy
of the original implementation code of the respective action.
The display of the embedded objects can be activated and deactivated in the tree by means
of the “Show Embedded Objects” and “Hide Embedded Objects” commands in the context
menu of an SFC object.

See also
● Ä Chapter 1.4.1.20.4.13.22 “ Dialog 'Options' - 'SFC Editor'” on page 1200
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255
● Ä Chapter 1.4.1.19.1.4.8.2 “SFC Element 'Action'” on page 488
● Ä Chapter 1.4.1.20.3.11.25 “Command 'Do Not Display Embedded Objects'” on page 1088

Command 'Add Exit Action'
Symbol:
Function: This command opens the “Add Exit Action” dialog box where you define a new exit
action. Depending on the SFC options, a dialog prompt may open for selecting the duplication
mode for the new step action. For more information, refer to the help page for the “Add Exit
Action” command.
Call: Menu bar: “SFC”; context menu of the selected step element.
Requirement: A step element in SFC is selected.
See also
● Ä Chapter 1.4.1.20.3.11.8 “Command 'Add Entry Action'” on page 1082
● Ä Chapter 1.4.1.20.4.13.22 “ Dialog 'Options' - 'SFC Editor'” on page 1200
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255
● Ä Chapter 1.4.1.19.1.4.8.2 “SFC Element 'Action'” on page 488
● Ä Chapter 1.4.1.20.3.11.25 “Command 'Do Not Display Embedded Objects'” on page 1088

Command 'Parallel'
Symbol:
Function: This command converts the selected alternative branch into a parallel branch.
Call: Main menu “SFC”

Requirement: The horizontal connecting line of a branch is selected.

Confirmation
prompt for
selecting the
duplication
mode

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1082

Please note that after you convert a branch, you must check and modify the layout of the steps
and transitions before and after the branch.
See also
● Ä Chapter 1.4.1.20.3.11.11 “Command 'Alternative'” on page 1083

Command 'Alternative'
Symbol:
Function: This command converts the selected parallel branch into an alternative branch.
Call: Main menu “SFC”

Requirement: The horizontal connecting line of a branch is selected.
Please note that after you convert a branch, you must check and modify the layout of the steps
and transitions before and after the branch.
See also
● Ä Chapter 1.4.1.20.3.11.10 “Command 'Parallel'” on page 1082

Command 'Insert Branch'
Symbol:
Function: This command inserts a branch to the left of the selected point.
Call: Main menu “SFC”

This command functions similar to the “Insert Branch Right” command.
See also
● Ä Chapter 1.4.1.19.1.4.8.3 “SFC element 'Branch'” on page 491
● Ä Chapter 1.4.1.20.3.11.13 “Command 'Insert Branch Right'” on page 1083

Command 'Insert Branch Right'
Symbol:
Function: This command inserts a branch to the right of the selected point.
Call: Main menu “SFC”

The type of inserted branch depends on the selected element.
● If the uppermost element of the selected elements is a transition or an alternative branch,

then CODESYS inserts an alternative branch.
● If the uppermost element of the selected elements is a step, a macro, a jump, or a parallel

branch, then CODESYS inserts a parallel branch with the Branch<x> jump marker, where
x is an incremental number. You can edit the default name of the jump marker or define the
jump marker as a jump destination.

● If a common element of an existing branch (horizontal line) is selected, then CODESYS
inserts the new branch line as a branch line on the far right. If an entire branch line of an
existing branch is selected, then CODESYS inserts the new branch line directly to the right
as a new branch line.

Please note: You can convert a branch into another type with the “Alternative”
and “Parallel” commands.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1083

The following image shows a new inserted parallel branch generated by the “Insert Branch
Right” command while the Step11 step was selected. CODESYS automatically inserts a step
(Step2 in the example).

Processing in online mode: If t2 yields TRUE, then CODESYS executes Step2 immediately
after step11 and before t3 is passed.

Thus, CODESYS processes both branch lines as opposed to alternative branches.

Example of
parallel branch

The following image shows a new inserted alternative branch generated by the “Insert Branch
Right” command while the t4 transition was selected. CODESYS automatically inserts a step
(Step32 in the example), a preceding transition, and a subsequent transition (t41, t42).

Processing in online mode: If Step3 is active, then CODESYS passes the subsequent tran-
sitions (t4, t41) from left to right. The first branch line of the main branch with the first
transition yielding TRUE is passed. Therefore, only one branch line is processed as opposed to
with a parallel branch.

Example of
alternative
branch

See also
● Ä Chapter 1.4.1.19.1.4.8.3 “SFC element 'Branch'” on page 491
● Ä Chapter 1.4.1.20.3.11.12 “Command 'Insert Branch'” on page 1083
● Ä Chapter 1.4.1.20.3.11.10 “Command 'Parallel'” on page 1082
● Ä Chapter 1.4.1.20.3.11.11 “Command 'Alternative'” on page 1083

Command 'Insert Action Association'
Symbol:
Function: This command assigns an IEC action to a step.
Call: Main menu “SFC”

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1084

Requirement: A step is selected.
CODESYS inserts the action element to the right of the selected step element.
If you have already assigned one or more actions to the step, they are displayed in an action
list. The new action is then inserted as follows:
● If you selected the step element, the action is inserted as the first action of the step at first

position of the action list.
● If you selected one of the available actions in the action list, then the action is inserted

directly above the selected action.
The left section of the action element includes the qualifier (N by default). You enter the action
name in the right section. To set this value, click in the box to obtain an editing frame. You must
have already created this action as a POU in the project.
You can also edit the qualifier. Valid qualifiers are described in the chapter “Qualifiers for Actions
in SFC".
See also
● Ä Chapter 1.4.1.20.3.11.15 “Command 'Insert Action Association After'” on page 1085
● Ä Chapter 1.4.1.19.1.4.4 “Qualifiers for Actions in SFC” on page 479

Command 'Insert Action Association After'
Symbol:
Function: This command assigns an IEC action to a step.
Call: Main menu “SFC”

Requirement: A step is selected.
This command functions similar to the “Insert Action Association” command. The difference
between the two commands is that CODESYS inserts the new action in the last position of the
action list, not the first position. If you select an action in the action list, then CODESYS inserts
the new action at the bottom of the list, not at the top.
See also
● Ä Chapter 1.4.1.20.3.11.14 “Command 'Insert Action Association'” on page 1084
● Ä Chapter 1.4.1.19.1.4.4 “Qualifiers for Actions in SFC” on page 479

Command 'Insert Jump'
Symbol:
Function: This command inserts a jump element before the selected element.
Call: Main menu “SFC”

Requirement: A step is selected.
CODESYS automatically inserts the jump with the Step destination. Then, you still have to
replace this jump destination with an actual destination by using the input assistant.
See also
● Ä Chapter 1.4.1.19.1.4.8.4 “SFC element 'Jump'” on page 492
● Ä Chapter 1.4.1.20.3.11.17 “Command 'Insert Jump After'” on page 1085

Command 'Insert Jump After'
Symbol:
Function: This command inserts a jump element after the selected element.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1085

Call: Main menu “SFC”

CODESYS automatically inserts the jump with the Step destination. Then, you still have to
replace this jump destination with an actual destination by using the input assistant.
See also
● Ä Chapter 1.4.1.19.1.4.8.4 “SFC element 'Jump'” on page 492
● Ä Chapter 1.4.1.20.3.11.16 “Command 'Insert Jump'” on page 1085

Command 'Insert Macro'
Symbol:
Function: This command inserts a macro element before the selected element.
Call: Main menu “SFC”

The new macro is named Macro<x> by default, where x is an incremental number beginning at
0 for the first macro. You can edit the default name directly by clicking the name.

To edit the macro, click “Zoom Into Macro” in the macro editor.
See also
● Ä Chapter 1.4.1.20.3.11.20 “Command 'Zoom Into Macro'” on page 1086
● Ä Chapter 1.4.1.20.3.11.19 “Command 'Insert Macro After'” on page 1086

Command 'Insert Macro After'
Symbol:
Function: This command inserts a macro element after the selected element.
Call: Main menu “SFC”

This command functions similar to the “Insert Macro” command.
See also
● Ä Chapter 1.4.1.20.3.11.20 “Command 'Zoom Into Macro'” on page 1086
● Ä Chapter 1.4.1.20.3.11.18 “Command 'Insert Macro'” on page 1086

Command 'Zoom Into Macro'
Symbol:
Function: This command opens a macro for editing in the macro editor.
Call: Main menu “SFC”

Requirement: A macro is selected.
By choosing this command, CODESYS closes the main view of the SFC editor and opens the
macro editor. This is also an SFC editor for editing the section of the SFC diagram that is
displayed as a macro box in the main view.
Click “Zoom Out of Macro” to return to the main view.
See also
● Ä Chapter 1.4.1.20.3.11.21 “Command 'Zoom Out of Macro'” on page 1086

Command 'Zoom Out of Macro'
Symbol:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1086

Function: This command closes the macro editor and returns to the main view of the SFC
editor.
Call: Main menu “SFC”

Requirement: A macro is open in the macro editor.
See also
● Ä Chapter 1.4.1.20.3.11.20 “Command 'Zoom Into Macro'” on page 1086

Command 'Paste After'
Symbol:
Function: This command pastes the elements from the clipboard after the selected position.
Call: Main menu “SFC”.

Command 'Change Duplication' - 'Set'
Function: This command embeds every step action or transition, which is called by a step or
transition in the SFC box, with the caller. In this way, the action or transition object can be called
only from exactly this caller (pseudo-embedding). The result is that copying step and transition
elements that call cations or transitions automatically creates new action or transition objects.
the implementation code is also copied.
Call: Menu bar: “SFC”.
For more details about duplication mode, refer to the help page for the SFC element properties
and the instructions for adding step actions.

Pseudo-embedded objects can be hidden in the “Devices” or “POUs” view by
means of a command.

See also
● Ä Chapter 1.4.1.19.1.4.8.6 “SFC element properties” on page 493
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255

Command 'Change Duplication' - 'Remove'
Function: This command removes the embedding of action, transition, and property objects by
a step or transition that calls it for the entire SFC box. In this way, the pseudo-embedding of the
action, transition, or property objects is removed. If step or transition elements are copied, which
call actions, transitions, or properties, then the copying calls the same actions and transitions as
the source.
Call: Menu bar: “SFC”.
For more details about duplication mode, refer to the help page for the SFC element properties
and the instructions for adding step actions.

Pseudo-embedded objects can be hidden in the “Devices” or “POUs” view by
means of a command.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1087

See also
● Ä Chapter 1.4.1.19.1.4.8.6 “SFC element properties” on page 493
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255
● Ä Chapter 1.4.1.20.3.11.25 “Command 'Do Not Display Embedded Objects'” on page 1088

Command 'Do Not Display Embedded Objects'
Function: This command causes action and transition objects, which are embedded in an SFC
box by a step or transition, do not appear in the tree.
Call: Context menu of an SFC box in the “Devices” or “POUs” view.
See also
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1088

Menu 'CFC'
1.4.1.20.3.12.1 Command 'Edit Worksheet'... 1089
1.4.1.20.3.12.2 Command 'Edit Page Size’.. 1090
1.4.1.20.3.12.3 Command 'Negate'.. 1090
1.4.1.20.3.12.4 Command 'EN/ENO'.. 1090
1.4.1.20.3.12.5 Command 'None'... 1091
1.4.1.20.3.12.6 Command 'R (Reset)'.. 1091
1.4.1.20.3.12.7 Command 'S (Set)'.. 1091
1.4.1.20.3.12.8 Command 'REF= (Reference Assignment)'.......................... 1091
1.4.1.20.3.12.9 Command 'Display Execution Order'..................................... 1092
1.4.1.20.3.12.10 Command 'Set Start of Feedback'....................................... 1092
1.4.1.20.3.12.11 Command 'Send to Front'.. 1092
1.4.1.20.3.12.12 Command 'Send to Back'.. 1093
1.4.1.20.3.12.13 Command 'Move Up'... 1093
1.4.1.20.3.12.14 Command 'Move Down'... 1094
1.4.1.20.3.12.15 Command 'Set Execution Order'... 1094
1.4.1.20.3.12.16 Command 'Order by Data Flow'.. 1095
1.4.1.20.3.12.17 Command 'Order by Topology'.. 1095
1.4.1.20.3.12.18 Command 'Edit Parameters'.. 1096
1.4.1.20.3.12.19 Command 'Save Prepared Parameters to Project'.............. 1097
1.4.1.20.3.12.20 Command 'Connect Selected Pins'..................................... 1097
1.4.1.20.3.12.21 Command 'Unlock Connection'... 1097
1.4.1.20.3.12.22 Command 'Show Next Collision'.. 1098
1.4.1.20.3.12.23 Command 'Select Connected Pins'..................................... 1098
1.4.1.20.3.12.24 Command 'Reset Pins'.. 1098
1.4.1.20.3.12.25 Command 'Remove Unused Pins'....................................... 1098
1.4.1.20.3.12.26 Command 'Add Input Pin'.. 1099
1.4.1.20.3.12.27 Command 'Add Output Pin'... 1099
1.4.1.20.3.12.28 Command 'Route All Connections'...................................... 1099
1.4.1.20.3.12.29 Command 'Remove Control Point'...................................... 1099
1.4.1.20.3.12.30 Command 'Create Control Point'... 1100
1.4.1.20.3.12.31 Command 'Connection Mark'... 1100
1.4.1.20.3.12.32 Command 'Create group'... 1100
1.4.1.20.3.12.33 Command 'Ungroup'.. 1101
1.4.1.20.3.12.34 Command 'Prepare Box for Forcing'.................................... 1101
1.4.1.20.3.12.35 Command 'Force Function Block Input'............................... 1101
1.4.1.20.3.12.36 Command 'Use Attributed Member as Input'....................... 1102

Command 'Edit Worksheet'
Function: This command opens the “Edit Worksheet” dialog box in which you set the size of the
worksheet.
Call: Main menu “CFC”

Requirements: A CFC editor is active.

Dialog box 'Edit
worksheet'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1089

“Use following dimensions” Here is where you set the size of the worksheet. Your change is only accepted if
the size is sufficient for the existing program.

“Adapt the dimensions
automatically”

Automatically adapts the size of the worksheet to the size of your program.

“Move the working sheet origin
relatively”

Shifts the worksheet along the x or y axis. The input of negative numbers is
permitted.

Command 'Edit Page Size’
Function: This command opens the “Edit Page Size” dialog box, in which you change the size
of the page-oriented CFC editor.
Call: Main menu “CFC”

Requirements: A page-oriented CFC editor is active.

“Width” Width of the page (minimum 24, maximum 1024). Elements outside of the
working area are marked red.

“Height” Height of the page (minimum 24, maximum 1024). Elements outside of the
working area are marked red.

“Margin width” Width of the margin (minimum 6, maximum 25% or page width).

“Set as standard for new CFC
objects”

: The current settings are selected as standard for new CFC objects.

See also
● Ä Chapter 1.4.1.19.1.6.5.1 “CFC element 'Page'” on page 522

Command 'Negate'
Symbol:
Function: This command negates the selected function block input or function block output.
Call: Main menu “CFC”, context menu
Requirements: A CFC editor is active. A function block input or function block output is
selected.

Command 'EN/ENO'
Symbol:
Function: This command adds a boolean input “EN” (Enable) and a boolean output “ENO”
(Enable Out) to the selected function block.
Call: Main menu “CFC”, context menu
Requirements: A CFC editor is active. A function block is selected.
The added input “EN” activates the function block. The function block is executed only if the
input is TRUE. The value of this signal is output at the “ENO” output.

Dialog box 'Edit
page size'
dialog box

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1090

Command 'None'
Symbol: ; keyboard shortcut : [Ctrl]+[M] (to toggle between “S”, “R”, “REF”, and None)
Function: The command removes a Reset (R), Set (S), or REF from the input of the “Output”
element.
Call: Menu bar: “CFC è Set/Reset”; context menu: “Set/Reset”

Requirement: A CFC editor is active. The input of an “Output” element is selected.

Command 'R (Reset)'
Symbol: ; keyboard shortcut : [Ctrl]+[M] (to toggle between “S”, “R”, “REF”, and None)
Function: The command adds a Reset to the input of a Boolean “Output” element.
Call: Menu bar: “CFC è Set/Reset”; context menu: “Set/Reset”

Requirement: A CFC editor is active. The input of an “Output” element is selected.
If an “Output” element has a Reset input, then the Boolean output value is set to “FALSE” as
soon as the value of the input is “TRUE”. The “FALSE” value at the output is retained, even if
the input value changes.
See also
● Ä Chapter 1.4.1.20.3.12.7 “Command 'S (Set)'” on page 1091

Command 'S (Set)'
Symbol: ; keyboard shortcut : [Ctrl]+[M] (to toggle between “S”, “R”, “REF”, and none)
Function: The command adds a Set (S) to the input of a Boolean “Output” element.
Call: Menu bar: “CFC è Set/Reset”; context menu: “Set/Reset”

Requirement: A CFC editor is active. The input of an “Output” element is selected.
If an “Output” element has a Set input, then the Boolean output value is set to “TRUE” as soon
as the value of the input is “TRUE”. The “TRUE” value at the output is retained, even if the input
value changes.
See also
● Ä Chapter 1.4.1.20.3.12.6 “Command 'R (Reset)'” on page 1091

Command 'REF= (Reference Assignment)'
Symbol: ; keyboard shortcut : [Ctrl]+[M] (to toggle between “S”, “R”, “REF”, and None)
Function: The command assigns a reference to an “Output” element.
Call: Menu bar: “CFC è Set/Reset”; context menu: “Set/Reset”

Requirements: A CFC editor is active. The input of an “Output” element is selected.

Declaration:
ref_int : REFERENCE TO INT;
a : INT;

CFC:

This corresponds to the ST code: ref_int REF= a;

Example:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1091

For more information, see the description for the data type REFERENCE TO.

See also
● Ä Chapter 1.4.1.8.3.2.2 “ Programming in the CFC editor” on page 246
● Ä Chapter 1.4.1.19.5.13 “Reference” on page 658

Command 'Display Execution Order'
Function: The command temporarily shows a numbered tag for all CFC elements of the pro-
gramming object.
Call
● Menu bar: “CFC è Execution Order”
● Context menu in the CFC editor
Requirement: A CFC editor is active and the “Auto Data Flow Mode” property is selected.
The numbers represent the automatically determined execution order. The execution order is
determined by data flow. In the case of multiple networks, it is determined by their topological
position in the editor.
The tags are hidden as soon as you click in the CFC editor.

See also
● Ä Chapter 1.4.1.8.3.2.1 “Automatic Execution Order by Data Flow” on page 242
● Ä Chapter 1.4.1.20.3.12.10 “Command 'Set Start of Feedback'” on page 1092
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165

Command 'Set Start of Feedback'
Symbol:
Function: The command defines the selected element as the starting point within a feedback.
Call:
● Menu bar: “CFC è Execution Order”
● Context menu: “Execution Order”

Requirement: A CFC editor is active and the “Auto Data Flow Mode” property is selected.
Moreover, a network of the CFC POU contains a feedback, and an element within the feedback
is selected.

In the CFC editor, the starting point within the feedbacks is decorated with the symbol. Then
the element has the lowest number in the execution order within the feedbacks. At runtime, the
processing of the feedback begins with this element.

See also
● Ä Chapter 1.4.1.8.3.2.1 “Automatic Execution Order by Data Flow” on page 242
● Ä Chapter 1.4.1.20.3.12.9 “Command 'Display Execution Order'” on page 1092
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165

Command 'Send to Front'
Symbol:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1092

Function: The command numbers the elements so that the selected elements are located at
the front of the execution order.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and the “Explicit Execution Order Mode” property is
selected. At least one element is selected.

The selected elements get the lowest numbers beginning at 0 while keeping the previous order.
The remaining elements are numbered so that their execution order remains the same. The
topological positions of the elements are retained anyway.

See also
● Ä Chapter 1.4.1.8.3.2.1 “Automatic Execution Order by Data Flow” on page 242
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165
● Ä Chapter 1.4.1.20.3.12.12 “Command 'Send to Back'” on page 1093
● Ä Chapter 1.4.1.20.3.12.13 “Command 'Move Up'” on page 1093
● Ä Chapter 1.4.1.20.3.12.14 “Command 'Move Down'” on page 1094
● Ä Chapter 1.4.1.20.3.12.16 “Command 'Order by Data Flow'” on page 1095
● Ä Chapter 1.4.1.20.3.12.17 “Command 'Order by Topology'” on page 1095

Command 'Send to Back'
Symbol:
Function: The command numbers the elements so that the selected elements are located at
the end of the execution order.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and the “Explicit Execution Order Mode” property is
selected. At least one element is selected.

The selected elements get the highest numbers while keeping the previous order. The
remaining elements are numbered so that their execution order remains the same. The topolog-
ical positions of the elements are retained anyway.

See also
● Ä Chapter 1.4.1.8.3.2.1 “Automatic Execution Order by Data Flow” on page 242
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165
● Ä Chapter 1.4.1.20.3.12.11 “Command 'Send to Front'” on page 1092
● Ä Chapter 1.4.1.20.3.12.13 “Command 'Move Up'” on page 1093
● Ä Chapter 1.4.1.20.3.12.14 “Command 'Move Down'” on page 1094
● Ä Chapter 1.4.1.20.3.12.16 “Command 'Order by Data Flow'” on page 1095
● Ä Chapter 1.4.1.20.3.12.17 “Command 'Order by Topology'” on page 1095

Command 'Move Up'
Symbol:
Function: The command numbers the elements so that the selected elements are located one
position forward.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and at least one element is selected. The “Explicit
Execution Order Mode” property is selected.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1093

The selected elements get a numbering decreased by one while keeping the previous order.
The selected elements are processed one position earlier. The remaining elements are num-
bered so that their execution order remains the same. The topological positions of the elements
are retained anyway.

See also
● Ä Chapter 1.4.1.8.3.2.1 “Automatic Execution Order by Data Flow” on page 242
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165
● Ä Chapter 1.4.1.20.3.12.11 “Command 'Send to Front'” on page 1092
● Ä Chapter 1.4.1.20.3.12.12 “Command 'Send to Back'” on page 1093
● Ä Chapter 1.4.1.20.3.12.14 “Command 'Move Down'” on page 1094
● Ä Chapter 1.4.1.20.3.12.16 “Command 'Order by Data Flow'” on page 1095
● Ä Chapter 1.4.1.20.3.12.17 “Command 'Order by Topology'” on page 1095

Command 'Move Down'
Symbol:
Function: The command numbers the elements so that the selected elements are located one
position backward.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and at least one element is selected. The “Explicit
Execution Order Mode” property is selected.

The selected elements get a numbering increased by one while keeping the previous order.
The elements are processed one position later. The remaining elements are numbered so that
their execution order remains the same. The topological positions of the elements are retained
anyway.

See also
● Ä Chapter 1.4.1.8.3.2.1 “Automatic Execution Order by Data Flow” on page 242
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165
● Ä Chapter 1.4.1.20.3.12.11 “Command 'Send to Front'” on page 1092
● Ä Chapter 1.4.1.20.3.12.12 “Command 'Send to Back'” on page 1093
● Ä Chapter 1.4.1.20.3.12.13 “Command 'Move Up'” on page 1093
● Ä Chapter 1.4.1.20.3.12.16 “Command 'Order by Data Flow'” on page 1095
● Ä Chapter 1.4.1.20.3.12.17 “Command 'Order by Topology'” on page 1095

Command 'Set Execution Order'
Function: The command opens a dialog for setting the number of the selected element to any
value.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and the “Explicit Execution Order Mode” property is
selected. Exactly one element is selected.

The selected element gets the number specified in the dialog. The remaining elements are
numbered so that their execution order remains the same. The topological positions of the
elements are retained anyway.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1094

See also
● Ä Chapter 1.4.1.8.3.2.1 “Automatic Execution Order by Data Flow” on page 242
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165
● Ä Chapter 1.4.1.20.3.12.11 “Command 'Send to Front'” on page 1092
● Ä Chapter 1.4.1.20.3.12.12 “Command 'Send to Back'” on page 1093
● Ä Chapter 1.4.1.20.3.12.13 “Command 'Move Up'” on page 1093
● Ä Chapter 1.4.1.20.3.12.14 “Command 'Move Down'” on page 1094
● Ä Chapter 1.4.1.20.3.12.16 “Command 'Order by Data Flow'” on page 1095
● Ä Chapter 1.4.1.20.3.12.17 “Command 'Order by Topology'” on page 1095

Command 'Order by Data Flow'
Function: The command numbers the elements in the program by data flow, or in the case of
multiple networks by their topological position in the editor.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and the “Explicit Execution Order Mode” property is
selected.
The command is also available when no element is selected.

The execution order is determined by data flow. In the case of multiple networks, it is deter-
mined by their topological position of the networks. All numbered elements of the POU are set
accordingly. Afterwards, the execution order is identical to that in auto data flow mode. The
topological positions of the elements are retained anyway.

See also
● Ä Chapter 1.4.1.8.3.2.1 “Automatic Execution Order by Data Flow” on page 242
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165
● Ä Chapter 1.4.1.20.3.12.11 “Command 'Send to Front'” on page 1092
● Ä Chapter 1.4.1.20.3.12.12 “Command 'Send to Back'” on page 1093
● Ä Chapter 1.4.1.20.3.12.13 “Command 'Move Up'” on page 1093
● Ä Chapter 1.4.1.20.3.12.14 “Command 'Move Down'” on page 1094
● Ä Chapter 1.4.1.20.3.12.17 “Command 'Order by Topology'” on page 1095

Command 'Order by Topology'
Function: The command orders the execution order of the elements by their topological posi-
tion from right to left and from top to bottom.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and the “Explicit Execution Order Mode” property is
selected. At least one element is selected.

The command applies to all elements in the program, even if not all elements are selected when
the command is executed. The topological positions of the elements are retained anyway.

See also
● Ä Chapter 1.4.1.8.3.2.1 “Automatic Execution Order by Data Flow” on page 242
● Ä Chapter 1.4.1.20.4.10.13 “Dialog 'Properties' - 'CFC Execution Order'” on page 1165
● Ä Chapter 1.4.1.20.3.12.11 “Command 'Send to Front'” on page 1092
● Ä Chapter 1.4.1.20.3.12.12 “Command 'Send to Back'” on page 1093

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1095

● Ä Chapter 1.4.1.20.3.12.13 “Command 'Move Up'” on page 1093
● Ä Chapter 1.4.1.20.3.12.14 “Command 'Move Down'” on page 1094
● Ä Chapter 1.4.1.20.3.12.16 “Command 'Order by Data Flow'” on page 1095

Command 'Edit Parameters'
Function: This command opens the “Edit Parameters” dialog box, where you change the
constant input parameters of a function block.
Call: Main menu “CFC è Edit Parameters”, or “Right-Click è Edit Parameters”, click the
“Parameter” function block.
Requirements: A CFC editor is active. An instantiated function block has VAR_INPUT CON-
STANT variables in its declaration.

This functionality applies only to blocks that are inserted in a CFC with
CODESYS >= V3.5 SP4.

CODESYS displays blocks with VAR_INPUT CONSTANT variables by the word “Parameter” in
the lower left corner of the block.

“Parameters” Name of the variable

“Type” Data type of the variables

“Value” Click into the field to type a value.

“Initial Value” Initialization Value

“Category” Additional information about the parameters; these values are defined by attrib-
utes and cannot be changed in this dialog box.
● parameterCategory
● parameterUnit
● parameterMinValue
● parameterMaxValue

“Unit”

“Min”

“Max”

“Delete Prepared Parameters” This command is active when you write a prepared value (“Debug è Write
Value”).

When you exit the field and the dialog box by clicking “OK”, the value changes are applied to
the project.

FUNCTION_BLOCK FB1
VAR_INPUT CONSTANT
 {attribute 'parameterCategory':='General'}
 {attribute 'parameterUnit':= 'm/s'}
 {attribute 'parameterMinValue':= '0'}
 {attribute 'parameterMaxValue':= '100'}
 fbin1:INT;
 fbin2:DWORD:=24354333;
 fbin3:STRING:='abc';
END_VAR

Example of a
block with con-
stant inputs

Dialog Box 'Edit
Parameters'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1096

This functionality and the declaration of variables with keyword VAR_INPUT
CONSTANT applies only to the CFC editor. In the FBD editor, CODESYS always
shows all input parameters on the block, regardless of whether or not they are
declared as VAR_INPUT or VAR_INPUT CONSTANT. CODESYS also does not
make a distinction about this in text editors.

See also
● Ä Chapter 1.4.1.19.1.6.4 “CFC Editor in Online Mode” on page 516
● Ä Chapter 1.4.1.20.3.12.19 “Command 'Save Prepared Parameters to Project'”

on page 1097

Command 'Save Prepared Parameters to Project'
Function: This command saves the prepared parameter values to the project.
Call: Main menu “CFC”.
Requirements: A CFC editor is active. Parameter values of function block instances are
changed in online mode. You are in offline mode.
If the values of constants on the controller are different from the values in the application,
then this is indicated by a red asterisk next to the parameter field. Clicking “Incur Prepared
Parameters” saves the controller values to the application.
See also
● Ä “Changing of constant input parameters of function block instances” on page 518
● Ä Chapter 1.4.1.20.3.12.18 “Command 'Edit Parameters'” on page 1096

Command 'Connect Selected Pins'
Symbol:
Function: The command establishes a connection between the selected pins.
Call: Main menu “CFC”, context menu
Requirements: A CFC editor is active. Precisely one output and several inputs are selected.
In order to select the pins you must keep the [CTRL] key pressed while clicking on the pins.
Then you execute the command.
See also
● Ä Chapter 1.4.1.20.3.12.23 “Command 'Select Connected Pins'” on page 1098

Command 'Unlock Connection'
Symbol:
Function: This command unlocks a disabled connection.
Call: Main menu “CFC è Routing”, context menu “Routing”

Requirements: A CFC editor is active. A connection or a connection mark is selected.
You obtain a disabled connection if you change the connections of the automatic routing. If you
wish to carry out automatic routing again, you must first unlock a disabled connection.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1097

With a mouse-click on the icon of a disabled connection you can similarly
unlock this connection.

See also
● Ä Chapter 1.4.1.8.3.2.2 “ Programming in the CFC editor” on page 246
● Ä Chapter 1.4.1.19.1.6.5.12 “CFC element 'Connection Mark - Source/Sink'” on page 525

Command 'Show Next Collision'
Function: This command displays the next collision in the editor and marks the place con-
cerned.
Call: Menu menu “CFC è Routing”, context menu “Routing”

Requirements: A CFC editor is active and at least one connection with a collision is present.
This function is very useful if you operate with large networks and see only one sub-area. A
collision is additionally indicated to you by the red bordered symbol in the top right corner of the
editor.

Command 'Select Connected Pins'
Symbol: ; shortcut: [Ctrl]+[Left Arrow], or [Ctrl]+[Right Arrow]

Function: The command selects all pins that are connected to the currently selected line, or
connected to the currently selected connection mark in page-oriented CFC.
Call: “CFC” menu; context menu
Requirements: A CFC editor or a page-oriented CFC editor is active. One line and therefore
exactly one connection or exactly one connection mark is selected.

See also
● Ä Chapter 1.4.1.19.1.6.1 “CFC Editor” on page 511
● Ä Chapter 1.4.1.19.1.6.2 “CFC editor, page-oriented” on page 514
● Ä Chapter 1.4.1.19.1.6.5.12 “CFC element 'Connection Mark - Source/Sink'” on page 525

Command 'Reset Pins'
Symbol: , [Ctrl]+[U]

Function: The command restores the deleted pins of a box.
Call: “CFC è Pins” menu; “Pins” in the context menu
Requirements: A CFC editor is active and a box is selected.
The command restores all inputs and outputs of the box as they are defined in their implementa-
tion.
See also
● Ä Chapter 1.4.1.20.3.12.25 “Command 'Remove Unused Pins'” on page 1098

Command 'Remove Unused Pins'
Symbol:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1098

Function: The command removes all unused pins of the selected element.
Call: Menu “CFC è Pins”, context menu “Pins”

Requirements: A CFC editor is active. An element is selected.
See also
● Ä Chapter 1.4.1.20.3.12.24 “Command 'Reset Pins'” on page 1098

Command 'Add Input Pin'
Symbol:
Function: The command adds a further input to the selected function block.
Call: Main menu “CFC è Pins”, context menu “Pins”

Requirements: A CFC editor is active. A function block is selected.
See also
● Ä Chapter 1.4.1.20.3.12.27 “Command 'Add Output Pin'” on page 1099

Command 'Add Output Pin'
Symbol:
Function: The command adds a further output to the selected function block.
Call: Main menu “CFC è Pins”, context menu “Pins”

Requirements: A CFC editor is active. A suitable function block is selected.
See also
● Ä Chapter 1.4.1.20.3.12.26 “Command 'Add Input Pin'” on page 1099

Command 'Route All Connections'
Symbol:
Function: This command cancels all manual changes to the connections in the program and
re-establishes the original state.
Call: Main menu “CFC è Routing”, context menu “Routing”

Requirements: A CFC editor is active.
CODESYS cannot automatically route connections that are fixed by control points. You must
remove the control points before executing the command. Use the “Remove Control Point”
command to do this. Furthermore you must disconnect connections that have been changed
manually and are marked by the icon. Use the “Disconnect Connection” command to do this.
See also
● Ä Chapter 1.4.1.20.3.12.29 “Command 'Remove Control Point'” on page 1099
● Ä Chapter 1.4.1.20.3.12.21 “Command 'Unlock Connection'” on page 1097

Command 'Remove Control Point'
Function: This command removes a control point.
Call: Context menu “Routing”

Requirements: A CFC editor is active. You have selected a connecting line.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1099

If you move the mouse pointer over a selected connecting line, the existing control points are
displayed with yellow circle symbols. Set the cursor on the control point to be deleted and
execute the command from the context menu.
See also
● Ä Chapter 1.4.1.19.1.6.5.2 “CFC element 'Control Point'” on page 522
● Ä Chapter 1.4.1.20.3.12.30 “Command 'Create Control Point'” on page 1100

Command 'Create Control Point'
Symbol:
Function: The command creates a control point on a connecting line.
Call: Context menu “Routing”

Requirements: A CFC editor is active. The cursor is over a connection.
The control point is created in the position on the connection at which the cursor is located
when calling the command. The command corresponds to the “Control Point” element in the
“Tools” window.
See also
● Ä Chapter 1.4.1.19.1.6.5.2 “CFC element 'Control Point'” on page 522
● Ä Chapter 1.4.1.20.3.12.29 “Command 'Remove Control Point'” on page 1099

Command 'Connection Mark'
Symbol:
Function: This command switches the display of the connection between two elements back
and forth between a connecting line and the use of connection marks.
Call: Main menu “CFC”, context menu
Requirements: A CFC editor is active. A connection or a connection mark is selected.
If you have selected a connecting line, the command removes this line and adds a “Connection
Mark - Source” at the output of one element and a “Connection Mark - Sink” at the input of the
other. Both are given the same name by default, “C-<n>”, where n is a sequential number.
If you select a pair of connection marks, the command converts these marks into a connecting
line.
See also
● Ä Chapter 1.4.1.19.1.6.5.12 “CFC element 'Connection Mark - Source/Sink'” on page 525

Command 'Create group'
Symbol:
Function: This command groups the selected elements.
Call: Main menu “CFC è Group”, context menu “Group”

Requirements: A CFC editor is active. Several elements are selected.

Grouped elements can only be moved together. The position of the elements is not affected by
the grouping.
See also
● Ä Chapter 1.4.1.20.3.12.33 “Command 'Ungroup'” on page 1101

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1100

Command 'Ungroup'
Symbol:
Function: The command undoes a previous grouping.
Call: Main menu “CFC è Group”, context menu “Group”

Requirements: A CFC editor is active. A grouping is selected.
See also
● Ä Chapter 1.4.1.20.3.12.32 “Command 'Create group'” on page 1100

Command 'Prepare Box for Forcing'

This command is required when using compiler versions 3.5.11.x and 3.5.12.x.
The command is no longer required for compiler versions >= 3.5.13.0.

Function: The command activates and deactivates the forceability of the inputs for a function
block element.
Call:
● CFC
● Context menu
Requirements: The CFC editor is in offline mode and a function block element is selected.
After executing the command, the “Force Function Block Input” command is available in online
mode to open a dialog for forcing the box input values.
See also
● Ä Chapter 1.4.1.20.3.12.35 “Command 'Force Function Block Input'” on page 1101
● Ä Chapter 1.4.1.19.1.6.1 “CFC Editor” on page 511
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401

Command 'Force Function Block Input'

NOTICE!
This kind of forcing uses a data breakpoint internally and is therefore different
from forcing with the “Force Values” command or [F7].
Values that were forced by the command “Force FB Input” do not respond to the
commands “Show All Forces” or “Unforce Values”.

Function: The command opens the “Force Value” dialog to force the selected input of a func-
tion block. Forcing can be canceled with the same command and dialog.
Call:
● CFC
● Context menu
Requirements:
● The CFC editor is in online mode and the input of the function block is selected.
● For compiler versions 3.5.11.x and 3.5.12.x, the "forceability" of the function block is ena-

bled by the “Prepare Box for Forcing” command.
In the “Force Value” dialog, you can either specify a value that the input of the function block
should be forced, or remove the currently forced value.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1101

After forcing, the input is highlighted in green again. Boolean inputs get a small monitoring view
with the forced value. The forced value is displayed in the “Value” column of monitoring views
(in the declaration part of the POU or in a watch list).

“Expression” Name of the function block input. Example: TON_1.IN.

“Type” Data type of the input

Table 160: “What do you want to do?”
“Set a new value to force” : You can specify a new value in the input field. The format has to correspond

to the data type.

“Remove value” : Forcing at the input is canceled.

See also
● Ä Chapter 1.4.1.19.1.6.1 “CFC Editor” on page 511
● Ä Chapter 1.4.1.11.4 “Forcing and Writing of Variables” on page 401
● Ä Chapter 1.4.1.20.3.12.34 “Command 'Prepare Box for Forcing'” on page 1101

Command 'Use Attributed Member as Input'
Symbol:
Function: This command allows for connecting a structure member to a scalar type input.
Call: Menu bar: “CFC è Pins”; context menu: “Pins”

Requirements: A CFC editor is active and a function block input is selected.
The member of the structure that is connected to the input of the subsequent function block
must be provided with the pragma {attribute 'ProcessValue'}. The data type of the
structure member has to be compatible with the data type of the subsequent input. Inputs
connected in this way are flagged with the "V" symbol.

Dialog 'Force
Value'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1102

TYPE QINT :
STRUCT
 Status : STRING;
 {attribute 'ProcessValue'}
 Value1 : INT;
 Value2 : INT;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 input1: QINT;
 output1: QINT;
 intValue: INT;
END_VAR

If you do not execute the command “Use attributed member as input” for this link, then a
compiler error is issued.

Example

See also
● Ä Chapter 1.4.1.19.6.2.37 “Attribute 'ProcessValue'” on page 726

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1103

Menu 'FBD/LD/IL'
1.4.1.20.3.13.1 Command 'Insert Network'... 1104
1.4.1.20.3.13.2 Command 'Insert Network (Below)'....................................... 1105
1.4.1.20.3.13.3 Command 'Toggle Network Comment State'......................... 1105
1.4.1.20.3.13.4 Command 'Insert Assignment'... 1105
1.4.1.20.3.13.5 Command 'Insert Box'.. 1105
1.4.1.20.3.13.6 Command 'Insert Box with EN/ENO'..................................... 1106
1.4.1.20.3.13.7 Command 'Insert Empty Box'.. 1106
1.4.1.20.3.13.8 Command 'Insert Empty Box with EN/ENO'.......................... 1106
1.4.1.20.3.13.9 Command 'Insert Box Parallel (Below)'................................. 1106
1.4.1.20.3.13.10 Command 'Insert Jump'... 1107
1.4.1.20.3.13.11 Command 'Insert Label'... 1107
1.4.1.20.3.13.12 Command 'Insert Return'... 1107
1.4.1.20.3.13.13 Command 'Insert Input'.. 1107
1.4.1.20.3.13.14 Command 'Insert Coil'.. 1108
1.4.1.20.3.13.15 Command 'Insert Set Coil'... 1108
1.4.1.20.3.13.16 Command 'Insert Reset Coil'... 1108
1.4.1.20.3.13.17 Command 'Insert Contact'... 1108
1.4.1.20.3.13.18 Command 'Insert Contact (Right)'.. 1109
1.4.1.20.3.13.19 Command 'Insert Contact in Parallel (Below)'..................... 1109
1.4.1.20.3.13.20 Command 'Insert Contact in Parallel (Above)'..................... 1109
1.4.1.20.3.13.21 Command 'Toggle Parallel Mode'.. 1110
1.4.1.20.3.13.22 Command 'Insert Negated Contact'..................................... 1110
1.4.1.20.3.13.23 Command 'Insert Negated Contact Parallel (Below)'........... 1110
1.4.1.20.3.13.24 Command 'Paste Contacts: Paste Below'............................ 1111
1.4.1.20.3.13.25 Command 'Paste Contacts: Paste Above'............................ 1111
1.4.1.20.3.13.26 Command 'Paste Contacts: Paste Right (After)'.................. 1111
1.4.1.20.3.13.27 Command 'Insert IL Line Below'... 1111
1.4.1.20.3.13.28 Command 'Delete IL Line'.. 1111
1.4.1.20.3.13.29 Command 'Negation'.. 1112
1.4.1.20.3.13.30 Command 'Edge Detection'... 1112
1.4.1.20.3.13.31 Command 'Set/Reset'.. 1112
1.4.1.20.3.13.32 Command 'Set Output Connection'...................................... 1112
1.4.1.20.3.13.33 Command 'Insert Branch'... 1113
1.4.1.20.3.13.34 Command 'Insert Branch Above'... 1113
1.4.1.20.3.13.35 Command 'Insert Branch Below'.. 1113
1.4.1.20.3.13.36 Command 'Set Branch Start Point'...................................... 1113
1.4.1.20.3.13.37 Command 'Set Branch End Point'.. 1114
1.4.1.20.3.13.38 Command 'Update Parameters'... 1114
1.4.1.20.3.13.39 Command 'Remove Unused FB Call Parameters'............... 1114
1.4.1.20.3.13.40 Command 'Repair POU'... 1114
1.4.1.20.3.13.41 Command 'View as Function Block Diagram'...................... 1115
1.4.1.20.3.13.42 Command 'View as Ladder Logic'.. 1115
1.4.1.20.3.13.43 Command 'View as Instruction List'..................................... 1115
1.4.1.20.3.13.44 Command 'Go to'... 1116

Command 'Insert Network'
Symbol: , shortcut: [Ctrl] + [I]
Function: This command inserts a further network in the FBD/LD/IL editor.
Call: Main menu “FBD, LD, IL”, context menu

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1104

Requirements: The FBD, LD or IL editor is active. No box is selected.
See also
● Ä Chapter 1.4.1.19.1.5.4.1 “FBD/LD/IL element 'Network'” on page 504
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.20.3.13.2 “Command 'Insert Network (Below)'” on page 1105

Command 'Insert Network (Below)'
Symbol: , shortcut: [Ctrl]+ [T]

Function: This command inserts a further network in the FBD/LD/IL editor below the selected
network.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: The FBD, LD or IL editor is active. A network is selected. No box is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Toggle Network Comment State'
Symbol: , shortcut: [Ctrl] + [O]

Function: The command comments the selected network in or out.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: The FBD, LD or IL editor is active. A network is selected, but no box is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Insert Assignment'
Symbol , shortcut: [Ctrl] + [A]

Function: This command inserts an assignment in the FBD or LD editor.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD, LD or IL editor is active. A network is selected, but no box is selected.

In IL an assignment is programmed via the operators LD and ST.

See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Insert Box'
Symbol: , shortcut: [Ctrl] + [B]

Function: This command inserts a box that is available in the project at the end of the selected
network.
Call: Main menu “FBD, LD, IL”, context menu

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1105

Requirements: The FBD, LD or IL editor is active. A network is selected, but no box is selected.
If you select this command the input assistant opens, where you can select the desired box.
See also
● Ä Chapter 1.4.1.19.1.5.4.2 “FBD/LD/IL element 'Box'” on page 505
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.8.5 “Using input assistance” on page 260

Command 'Insert Box with EN/ENO'
Symbol: , shortcut: [Ctrl] + [Shift]+ [E]

Function: This command inserts a box with a boolean input “Enable” and a boolean output
“Enable Out” at the end of the selected network.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: the FBD, LD or IL editor is active. A network is selected, but no box is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.8.5 “Using input assistance” on page 260

Command 'Insert Empty Box'
Symbol: , shortcut: [Ctrl] + [Shift] + [B]

Function: This command inserts an empty function block at the end of the currently selected
network.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD, LD or IL editor is active. A network is selected, but no box is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Insert Empty Box with EN/ENO'
Symbol:
Function: The command inserts an empty box with a Boolean input “Enable” and a Boolean
output “Enable Out” at the end of the selected network.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD editor, the IL editor or the LD editor is active. A network must be
selected. No other box may be selected.
If “Enable” has the value FALSE at the time of the function block call, then the operations
defined in the FB are not executed. Otherwise, if “Enable” has the value TRUE, these operations
are executed. The ENO output acts as a repeater of the EN input.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Insert Box Parallel (Below)'
Function: This command inserts an empty box parallel below the selected function block.
Call: Menu bar: “FBD/LD/IL”; context menu.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1106

Requirements: A box is selected in the LD editor.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Insert Jump'
Symbol , shortcut: [Ctrl]+[L]

Function: This command inserts a jump element before the selected element.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD, LD or IL editor is active. A connecting line is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.7 “FBD/LD/IL element 'Jump'” on page 506

Command 'Insert Label'
Symbol:
Function: This command inserts a jump label into the currently selected network.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: The FBD, LD or IL editor is active. A network is selected. No jump label is
selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.6 “FBD/LD/IL element 'Label'” on page 506

Command 'Insert Return'
Symbol:
Function: This command inserts an element “Return” in the selected place.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD, LD or IL editor is active. A box output is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.8 “FBD/LD/IL element 'Return'” on page 506

Command 'Insert Input'
Symbol: , shortcut: [Ctrl]+[Q]

Function: This command adds a further input to an extendable box (ADD, OR, ADD, MUL,
SEL) above the selected input.
Call: “FBD/LD/IL” menu
Requirements: The FBD or LD editor is active. An input of a box is selected.
If a box is selected, the command “Append Input” is available in the context menu. The input is
inserted at the lower end of the box.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1107

See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Insert Coil'
Symbol: , shortcut: [Ctrl] + [A]

Function: This command inserts a coil into the network.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: The LD editor is active. A network, a coil or a connecting line is selected, but no
box is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.12 “LD element 'Coil'” on page 508

Command 'Insert Set Coil'
Symbol:
Function: This command inserts a set coil into the network.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: The LD editor is active. A network, a coil or a line is selected, but no box is
selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Insert Reset Coil'
Symbol:
Function: This command inserts a reset coil into the network.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: The LD editor is active. A network, a coil or a line is selected, but no box is
selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.12 “LD element 'Coil'” on page 508
● Ä “Ladder diagram (LD)” on page 235

Command 'Insert Contact'
Symbol , shortcut: [Ctrl] + [K]

Function: This command inserts a contact to the left of the selected element.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The LD editor is active. A line or a contact is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.11 “LD element 'Contact'” on page 507

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1108

Command 'Insert Contact (Right)'
Symbol: , shortcut: [Ctrl] + [D]

Function: This command inserts a contact to the right of the selected element.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The LD editor is active. A line, a contact or a box is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.11 “LD element 'Contact'” on page 507

Command 'Insert Contact in Parallel (Below)'
Symbol: ; keyboard shortcut: [Ctrl]+[R]

Function: This command inserts a contact with lines in parallel with and below the selected
element.
Call: Menu bar: “FBD/LD/IL”; context menu.
Requirements: The LD editor is active. A line or a contact or a box is selected.

You can program closed parallel branches in a LD network as short circuit
evaluation (SCE) or OR constructs. SCE branches are displayed with double
vertical lines, and OR branches with single lines. Refer to the help page for
"Closed branches".

See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.20.3.13.20 “Command 'Insert Contact in Parallel (Above)'” on page 1109
● Ä Chapter 1.4.1.19.1.5.4.14 “Closed branch” on page 509

Command 'Insert Contact in Parallel (Above)'
Symbol: ; keyboard shortcut: [Ctrl]+[P]

Function: This command inserts a contact with lines in parallel with and above the selected
element.
Call: Menu bar: “FBD/LD/IL”; context menu.
Requirements: The LD editor is active. A line, a contact or a box is selected.

You can program closed parallel branches in a LD network as short circuit
evaluation (SCE) or OR constructs. SCE branches are displayed with double
vertical lines, and OR branches with single lines. Refer to the help page for
"Closed branches".

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1109

See also
● Ä Chapter 1.4.1.19.1.5.4.11 “LD element 'Contact'” on page 507
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.14 “Closed branch” on page 509

Command 'Toggle Parallel Mode'
Function: This command toggles a parallel branch between an OR construct and the Short
Circuit Evaluation (SCE) .
Call: Menu bar: “FBD/LD/IL”; context menu.
Requirements: The LD editor is active. A vertical line of a parallel branch is selected.

You can program closed parallel branches in a LD network as short circuit
evaluation (SCE) or OR constructs. SCE branches are displayed with double
vertical lines, and OR branches with single lines. Refer to the help page for
"Closed branches".

See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.14 “Closed branch” on page 509

Command 'Insert Negated Contact'
Symbol: , shortcut: [Ctrl] + [K]

Function: This command inserts a negated contact to the left of the selected element.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The LD editor is active. A line or a contact is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.11 “LD element 'Contact'” on page 507

Command 'Insert Negated Contact Parallel (Below)'
Symbol:
Function: The command inserts a negated contact with lines in parallel with and below the
selected element.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The LD editor is active. A line, a contact or a box is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.8.3.1.2 “Programming ladder diagrams (LD)” on page 239

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1110

Command 'Paste Contacts: Paste Below'
Shortcut: [Ctrl] + [F]

Function: This command inserts a previously copied contact with lines below the selected
element.
Call: Main menu “FBD/LD/IL è Paste”, context menu
Requirements: the LD editor is active.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.11 “LD element 'Contact'” on page 507

Command 'Paste Contacts: Paste Above'
Shortcut: [Ctrl] + [F]

Function: This command inserts a previously copied contact with lines above the selected
element.
Call: Main menu “FBD/LD/IL è Paste Contacts”, context menu
Requirements: the LD editor is active. A line or a contact is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.11 “LD element 'Contact'” on page 507

Command 'Paste Contacts: Paste Right (After)'
Shortcut: [Ctrl] + [G]

Function: this command inserts a previously copied contact to the right of the selected element.
Call: Main menu “FBD/LD/IL è Paste Contacts”, context menu
Requirements: The LD editor is active. A line or a contact is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.11 “LD element 'Contact'” on page 507

Command 'Insert IL Line Below'
Symbol:
Function: The command inserts an instruction line below the selected line.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The IL editor is active. A line is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Delete IL Line'
Symbol: , shortcut: [Ctrl]+[Del]

Function: This command deletes the selected instruction line.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1111

Call: Main menu “FBD/LD/IL”, context menu
Requirements: The IL editor is active. A line is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Negation'
Symbol: , shortcut: [Ctrl] + [N]

Function: This command negates the following elements:
● Input/output of a box
● Jump
● Return
● Coil
Call: Main menu “FBD/LD/IL”, context menu
Requirements: the FBD or LD editor is active. The corresponding element is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Edge Detection'
Symbol FBD: , symbol LD: , shortcut: [Ctrl] + [N]

Function: This command inserts an edge detector before the selected box input or box output.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. A box input or box output is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Set/Reset'
Symbol: , shortcut [Ctrl] + [M]

Function: In the case of an element with a boolean output, this command switches between
reset, set and no mark.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. An element with a boolean output is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Set Output Connection'
Symbol: , shortcut [Ctrl]+ [W]

Function: This command turns the selected box output into the forwarding box output.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. One of several box outputs is selected.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1112

See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Insert Branch'
Symbol: , shortcut [Ctrl] + [Shift] + [V]

Function: This command creates an open line branch on the selected line.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. An input or an output of a box is selected.
See also
● Ä Chapter 1.4.1.19.1.5.4.9 “FBD/LD/IL element 'Branch'” on page 506
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Insert Branch Above'
Symbol:
Function: This command inserts a line branch above the selected open line branch.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. An open line branch is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.9 “FBD/LD/IL element 'Branch'” on page 506

Command 'Insert Branch Below'
Symbol:
Function: This command inserts a line branch below the selected open line branch.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. An open line branch is selected.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.9 “FBD/LD/IL element 'Branch'” on page 506

Command 'Set Branch Start Point'
Symbol
Function: This command sets the starting point of a line branch on the selected line.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The LD editor is active. A line is selected.
See also
● Ä Chapter 1.4.1.19.1.5.4.14 “Closed branch” on page 509
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1113

Command 'Set Branch End Point'
Symbol
Function: This command sets the end point of a line branch on the selected line.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The LD editor is active. A line is selected. A starting point of the line branch has
been set.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495
● Ä Chapter 1.4.1.19.1.5.4.14 “Closed branch” on page 509

Command 'Update Parameters'
Function: This command enters changes to the declaration of the selected element in the
diagram.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD, LD or CFC editor is active. A box is selected. An extending change
has been made to the declaration.
The command checks whether a box and its declaration in the declaration editor correspond.
The change is accepted for the box only if the declaration was extended. Deletions and over-
writes are not updated.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Remove Unused FB Call Parameters'
Symbol:
Function: This command deletes inputs and outputs of the selected box to which no variable
and no value were assigned. However, the default inputs and outputs are always retained.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. A box is selected. The box has interfaces to
which no value is assigned.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Repair POU'
Symbol:
Function: This command repairs internal inconsistencies in the selected box.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. The defective box is selected. The editor
has found internal inconsistencies in the programming module that can possibly be resolved
automatically. CODESYS reports the inconsistencies in the Message window.
This situation is conceivable when editing a project that was created with an older programming
system version that did not yet handle the inconsistency concerned as an error.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1114

Command 'View as Function Block Diagram'

CAUTION!
Loss of data! An error-free conversion requires syntactically correct code. Oth-
erwise parts of the implementation can be lost.

Shortcut: [Ctrl] + [1]

Function: This command converts the active instruction list or the active ladder diagram into the
function block diagram.
Call: Menu “FBD/LD/IL è View”

Requirements: The LD or IL editor is active.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'View as Ladder Logic'

CAUTION!
Loss of data! An error-free conversion requires syntactically correct code. Oth-
erwise parts of the implementation can be lost.

Shortcut: [Ctrl] + [2]

Function: This command converts the current function block code or the active instruction list
into a ladder diagram.
Call: Menu “FBD/LD/IL è View”

Requirements: The FBD or IL editor is active.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'View as Instruction List'

If necessary, IL can be activated in the CODESYS options.

CAUTION!
Loss of data! An error-free conversion requires syntactically correct code. Oth-
erwise parts of the implementation can be lost.

Shortcut: [Ctrl] + [3]

Function: This command converts the active function block code or the active ladder diagram
into an instruction list.
Call: Menu “FBD/LD/IL è View”

Requirements: The LD or FBD editor is active.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1115

See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Command 'Go to'
Symbol:
Function: This command allows you to jump to any network.
Call: Main menu “FBD/LD/IL”

Requirements: The LD, FBD or IL editor is active. A network is selected.
This command opens a dialog box with an input field. Enter the number of the desired network
in the input field.
See also
● Ä Chapter 1.4.1.19.1.5.1 “FBD/LD/IL Editor” on page 495

Menu 'Library'
1.4.1.20.3.14.1 Command 'Add Library'.. 1116
1.4.1.20.3.14.2 Command 'Try to Reload Library'... 1117
1.4.1.20.3.14.3 Command 'Properties'.. 1118
1.4.1.20.3.14.4 Command 'Placeholders'... 1120
1.4.1.20.3.14.5 Command 'Export Library'... 1120

Command 'Add Library'
Function: The command opens the “Add Library” dialog. In this dialog, you can add libraries to
the Library Manager and then integrate them in your application.
Call: Menu bar: “Libraries”

Requirement: The Library Manager is open in the editor.

In the line above the library list, you can search for library names or library modules by typing an appropriate
string.

“Library” Suitable libraries that are installed in the library repository. For example, the
selection of libraries is defined in the device description or by the system inte-
grator.
By default, the displayed libraries are grouped into categories.

“Company” Vendor of the library

“Advanced” Opens the advanced “Add Library” dialog

The displayed libraries are grouped into categories.

The displayed libraries are listed in alphabetical order.

All available libraries are displayed.

Specific libraries can be blacklisted in a device description. These libraries
cannot be added below this device in the Library Manager.

Dialog 'Add
Library'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1116

See also
● Ä Chapter 1.4.1.20.3.8.5 “Command 'Library Repository'” on page 1061

You should use this dialog only if you have expert knowledge of library referencing. Using this
dialog, you can link special versions or change placeholder definitions.

We recommend seriously that you follow the guidelines for the creation of
libraries when developing and referencing libraries.

Table 161: Tab 'Library'
“Company” Filtering the list according to vendor

“Group by category” : Display of the libraries in a tree structure grouped in categories.

: Display of the libraries in alphabetical order in a flat structure.

“Display all versions” : Display of all versions of the libraries. Version specification '*' means the
latest version available in the repository.

: Display of the latest versions of the libraries only. A multiple selection of
libraries is possible in this display. To do this, hold down the [Shift] key and select
the entries.

“Details” Opens a detailed view with the library modules.

“Library Repository” Opens the “Library Repository” dialog. There you can install more libraries to
your local system.

Table 162: Tab 'Placeholder'
“Placeholder name” The input field provides a combo box for entering the valid placeholder names

that are read from the currently accessible device descriptions. You can also
enter a new placeholder name in order to define a free placeholder, which is not
resolved by the device or by the library profile.

“Default library” CODESYS uses this library when for any reason no device is available that the
resolution defines. In this way it is possible to compile the current project without
errors.

Note about placeholder resolution
For compiler version V3.5.8.0 and later, the following statement applies in the
case of library placeholders with a resolution in the device description that are
located in the Library Manager of the POU pool. This placeholder is always
resolved automatically according to the description of the device that compiles
the application.

See also
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449
● Ä Chapter 1.4.1.20.3.14.4 “Command 'Placeholders'” on page 1120

Command 'Try to Reload Library'
Function: This command tries to reload the selected library.
Call: Main menu “Library”.
Requirement: A library is selected that failed to load.

Dialog 'Add
Library' – 'Ad-
vanced'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1117

If for any reason a library is not available in the defined repository location when a project is
opened, CODESYS displays a corresponding error message. Once you have rectified the error,
i.e. when the library is properly available again, you can reload the library with this command
without having to leave the project.
See also
● Ä Chapter 1.4.1.20.3.8.5 “Command 'Library Repository'” on page 1061

Command 'Properties'
Function: The command opens the “Properties” dialog for the library selected in the Library
Manager.
Call
● Menu bar: “Library”
● Context menu of the selected library
● Symbol in the toolbar of the Library Manager
Requirement: A library is selected.

NOTICE!
This dialog is intended for library developers. Use this only if you have profound
knowledge of library referencing. In addition, follow the guidelines for library
developers.

See also
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449

Table 163: “General”
“Namespace” Namespace of the selected library. By default, this is identical to the library

name, unless it was defined explicitly in the project information when the library
was created. You can change the namespace for the open project.
Example: LA

“Default”: Library that triggers the placeholder when no other trigger is defined or is pos-
sible.
Requirement: The selected library is a library placeholder, and therefore the
setting is available.
Note: For compiler version 3.5.8.0 and higher, the following statement applies
in the case of library placeholders with a resolution in the device description
that are located in the Library Manager of the “POUs” view. This placeholder
is always resolved automatically according to the description of the device that
compiles the application.

If the selected library is developed in compliance with the "Guidelines for Devel-
oping Libraries", then we do not recommend that you change the following
settings.

Dialog 'Proper-
ties'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1118

Table 164: “Version”
Selection of version constraint
Requirement: The settings are available only if the selected library is not a library placeholder.
Note: Container and interface libraries are created automatically with library references with version constraint.
As far as possible, do not create libraries that include library references with version constraint. Otherwise, you
reference the libraries by placeholders. Edit a placeholder resolution in the “Placeholders” dialog.

“Exact version” : (selected from list box) Version is integrated into the project.
Note: This option is strongly recommended for container libraries, and it is usu-
ally preset for this library type.

“Always newest version” : The library repository is scanned and the latest detected version is inte-
grated.
Note: If a newer library version is available, then the library POUs that are
actually used can change. This option is strongly recommended for interface
libraries, and it is usually preset for this library type.

Table 165: “Visibility”
“Allow only qualified access to
all identifiers”

: Library POUs (and variables) are called in the project only with prepended
namespace paths.

“When the current project is
referenced as a library in
another project ”

Note: Changing the following settings makes sense only if you created a library
with your project and therefore opened a library project. In this way, the selected
library is referenced in the new library.

“Make visible all IEC symbols
in the project if is this reference
were directly integrated here.”

: As a container library, the selected library makes the contents of the refer-
enced library visible at the top level (later in a project).
Requirement: A container project is created with a library project. A container
library does not implement its own POUs, but references other libraries exclu-
sively. It bundles libraries. A container library can be employed sensibly to
bundle multiple libraries (in a reference) in a project. This option must be acti-
vated for each library reference.
Symbolic access to library POUs: <namespace of container
library>.<POU name>

: The contents of the referenced library is accessed uniquely by means of the
namespace. The path name consists of the library name and the unique name
(library reference), and it is prepended to the POU name.
Requirement: No container project is created with a library project.

“Do not show this reference in
the dependency tree.”

: The selected library is not displayed in the Library Manager as a library
reference (later in a project). The library is a hidden reference.
Warning: If there are compile errors resulting from hidden library errors, then
detecting the errors may be difficult.

: The selected library is displayed as a library reference (later in a project).

“Optional (if the library is
missing, no error will be
reported).”

: The selected library is treated as optional. When downloading the project that
references the library, no error is reported, even if the library is not available in
the library repository.

See also
● Ä Chapter 1.4.1.20.3.14.4 “Command 'Placeholders'” on page 1120

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1119

Command 'Placeholders'
Function: This command opens the “Placeholders” dialog box. The dialog shows information on
the currently selected placeholder library and allows to assign a project-specific resolution.
Call:
● Menu “Libraries”
● Symbol in the symbol bar in the upper part of the Library Manager window.
Requirement: A placeholder library is selected in the Library Manager.
A placeholder library, which is included in the “Devices” view, will be resolved as follows:
● If you have assigned a specific resolution to the placeholder library via the dialog

“Placeholder”, this will be applied.
● If no specific resolution is defined, it will be checked, whether there is one specified in the

device description of the application..
● Afterwards the library profile will be checked for a resolution definition.
● The result is displayed in the Library Manager below the “Effective Version”.
A placeholder library, which is included in the “POUs” view, gets resolved as follows:
● A specific resolution defined in the dialog “Placeholder” will be ignored.
● For the application it will be checked whether there is a resolution defined in the device

description.
● Afterwards the library profile will be checked.
● The result is displayed in the tooltip of the symbol .
See also
● Ä Chapter 1.4.1.16 “Using Libraries” on page 448
● Ä Chapter 1.4.1.20.2.14 “Object 'Library Manager'” on page 874
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449

“Name” Name of the placeholder.

“Library” Current resolution, valid for the project
Double-click on the entry in order to edit the placeholder resolution. A selection
list with the available library versions appears. Additionally the command “Other
Library” is available.

Command “Other Library” The command opens the dialog box “Bibliothek durchsuchen” for searching
and installing libraries. Choose this command, if you do not want to redirect
to another version, but on a specific libray.

“Info” Type of placeholder resolution:
● Resolved by device description
● Resolved by library profile
● Resolved by <specific library>

Command 'Export Library'
Function: This command is used for saving the library file to the hard disk.
Call: Context menu of the Library Manager
Requirement: A library is selected in the Library Manager.
The command opens the standard dialog for saving a file in the local file system. The library
file can have the file type Library files (*.library), Compiled library files
(*.compiled-library), or Compiled library files (*.compiled-library-v3).

Dialog box 'Pla-
ceholders'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1120

See also
● Ä Chapter 1.4.1.20.2.14 “Object 'Library Manager'” on page 874
● Ä Chapter 1.4.1.16.4 “Exporting library files” on page 451

Menu 'Image Pool'
1.4.1.20.3.15.1 Command 'Insert Image'.. 1121

Command 'Insert Image'
Symbol:
Function: This command inserts a new line into an image pool.
Call: Main menu “Imagepool”, or right-click.
Requirements: An image pool is active and a line is selected in the image pool.
See also
● Ä Chapter 1.4.1.20.2.13 “Object 'Image Pool'” on page 873

Menu 'Declarations'
1.4.1.20.3.16.1 Command 'Insert'... 1121
1.4.1.20.3.16.2 Command 'Edit Declaration Header'...................................... 1121
1.4.1.20.3.16.3 Command 'Move Down'... 1122
1.4.1.20.3.16.4 Command 'Move Up'... 1122

Command 'Insert'
Symbol
Function: This command inserts a new line for a variable declaration in the declaration editor
and the input field for the variable name opens.
Call: Context menu in the tabular declaration editor; button in the declaration heading.
To edit the other fields of the declaration lines, double-click the fields and select the data from
the drop-down lists or by means of the respective dialogs.
See also
● Ä Chapter 1.4.1.8.2.1 “Using the declaration editor” on page 226

Command 'Edit Declaration Header'
Function: The command opens the dialog “Edit Declaration Header”, which serves in the
declaration editor for the configuration of a POU header.
Call: Context menu of the tabular declaration editor
Requirements: The tabular declaration editor is the active editor.
See also
● Ä “Declaring in the tabular declaration editor” on page 227

Function: The dialog is for configuring the declaration part of a POU.
Call: Click on the header bar of the tabular declaration editor, or context menu in the tabular
declaration editor.

Dialog 'Edit Dec-
laration Header'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1121

“Declaration” Selection list for changing the POU type
● “PROGRAM”
● “FUNCTION_BLOCK”

– “EXTENDS”:
Input field for a basic function block

– “IMPLEMENTS”: Input field for an interface
● “FUNCTION”

– “Return type”

Input field with current POU name: you can change the name of the POU

“Automatically adapt all
references on rename”

: Dialog box “Refactoring” opens.

: Renaming is only effective in the declaration header of the POU.

“Attributes” The dialog box “Attribute ” opens for the input of attributes and pragmas.

See also
● Ä Chapter 1.4.1.8.2.1 “Using the declaration editor” on page 226
● Ä Chapter 1.4.1.19.6 “Pragmas” on page 683
● Ä Chapter 1.4.1.8.15 “Refactoring” on page 289

Command 'Move Down'
Symbol:
Function: This command shifts a variable declaration downwards by one row.
Call: Context menu
Requirement: A row with a variable declaration is selected in the tabular declaration editor.
See also
● Ä Chapter 1.4.1.8.2.1 “Using the declaration editor” on page 226

Command 'Move Up'
Symbol:
Function: This command shifts a variable declaration upwards by one row.
Call: Context menu
Requirement: A row with a variable declaration is selected in the tabular declaration editor.
See also
● Ä Chapter 1.4.1.8.2.1 “Using the declaration editor” on page 226

Menu 'Declarations' (Persistence)
1.4.1.20.3.17.1 Command 'Reorder List and Clean Gaps'............................. 1123
1.4.1.20.3.17.2 Command 'Save Current Values to Recipe'........................... 1123
1.4.1.20.3.17.3 Command 'Restore Values from Recipe'............................... 1123
1.4.1.20.3.17.4 Command 'Add all instance paths'... 1124

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1122

Command 'Reorder List and Clean Gaps'
Function: This command cleans the gaps that can result when you make changes to the
declaration of persistent variables. The memory requirement is reduced by this cleaning. When
the command is executed, CODESYS displays a warning informing the user about the possible
loss of data.
Call: Main menu “Declarations”, context menu
Requirement: The persistence editor (persistent variable list) is active.
Before cleaning you should consider saving the current values of the persistent variables to
a recipe (command “Save Current Values to Recipe”). Then you can load the values to the
controller again after the next download.
See also
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301
● Ä Chapter 1.4.1.20.3.17.3 “Command 'Restore Values from Recipe'” on page 1123
● Ä Chapter 1.4.1.20.3.17.2 “Command 'Save Current Values to Recipe'” on page 1123

Command 'Save Current Values to Recipe'
Function: This command creates a new recipe definition in the recipe manager and stores the
current values of the persistent variables in it. You should execute this command before the
command “Reorder List and Clear Gaps” in order to avoid a possible loss of data. You can
subsequently restore the data with the command “Restore Values from Recipe”.
Call: Main menu “Deklarationen”

Requirement: The application is in online mode and the persistence editor (persistent variable
list) is active.

If a list already exists in the recipe manager with the corresponding names
when saving a persistent variable list, then the current persistent variables are
sorted into the list:

– New persistent variables are added to the list
– Variables, that are not in the list, will be deleted

Therefore, it is possible to add more recipes to the list in the recipe manager
and these will be retained . However, if new variables are added to the list, then
these are deleted the next time the command “Save Current Values to Recipe”
is executed.

See also
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301
● Ä Chapter 1.4.1.20.3.17.1 “Command 'Reorder List and Clean Gaps'” on page 1123
● Ä Chapter 1.4.1.20.3.17.3 “Command 'Restore Values from Recipe'” on page 1123
● Ä Chapter 1.4.1.20.2.12 “Object 'Persistent variable list'” on page 872

Command 'Restore Values from Recipe'
Function: This command restores the values of the persistent variables that you have stored in
a recipe using the command “Save Current Values to Recipe”. You would normally select this
command after executing the command “Reorder List and Clear Gaps”.
Call: Main menu “Declarations”

Requirement: The persistence editor (persistent variable list) is active, the application is in
online mode

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1123

See also
● Ä Chapter 1.4.1.8.19 “Data Persistence” on page 301
● Ä Chapter 1.4.1.20.3.17.2 “Command 'Save Current Values to Recipe'” on page 1123
● Ä Chapter 1.4.1.20.3.17.1 “Command 'Reorder List and Clean Gaps'” on page 1123
● Ä Chapter 1.4.1.20.2.12 “Object 'Persistent variable list'” on page 872
● Ä Chapter 1.4.1.20.3.17.2 “Command 'Save Current Values to Recipe'” on page 1123

Command 'Add all instance paths'
Function:
● When you execute the command in the persistence editor, the application is searched for

declarations of persistent variables with the PERSISTENT keyword which are outside of the
persistence editor. For each declaration found, an instance path of this variable is added in
the persistence editor.

● When you execute the command in a variable configuration, an instance path is added
for each variable with an incomplete address. All function blocks of the application are
considered in this case.

Call: Menu bar: “Declarations”, right-click.
Requirement
● the persistence editor (global persistent variable list) is active or a variable configuration

(global variable list with VAR_CONFIG declarations) is opened.
● The application was compiled successfully.

See also
● Ä Chapter 1.4.1.19.2.12 “Persistent Variable - PERSISTENT” on page 535
● Ä Chapter 1.4.1.19.2.13 “Retain Variable - RETAIN” on page 537

Menu 'Device Communication', Gateway
1.4.1.20.3.18.1 Command 'Add New Gateway'.. 1124
1.4.1.20.3.18.2 Command 'Configure the Local Gateway'............................. 1125

Command 'Add New Gateway'
Function: This command opens the “Gateway” dialog where you can define a gateway channel
and add it to the current device configuration.
Call: Menu bar: “Gateway” in the “Communication Settings” dialog of the device editor.

“Name” Name of the gateway.

“Driver” Driver type from a drop-down list.

Driver-specific settings, for
example:
IP address, port

Editable after double-clicking the predefined value. A short description for each
parameter is displayed in the lower part of the dialog.
Note: You can also specify the address of a DNS domain. This has to begin with
dns: (example: dns:MyDynDNSAdress).

The dialog is also used for later editing of the gateway entries of your project.
See also
● Ä Chapter 1.4.1.20.2.8.2 “Tab 'Communication Settings'” on page 840

Dialog 'Gateway'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1124

Command 'Configure the Local Gateway'
Function: The command opens the “Gateway Configuration” dialog where you can configure
the block drivers for the local gateway. This is an alternative to manually editing the configura-
tion file Gateway.cfg.

Call: Context menu when a gateway entry is selected in the device editor in the
“Communication Settings” dialog.

NOTICE!
A correct configuration of the gateway requires detailed knowledge. In case you
have any doubts, do not change the default configuration settings.

The configuration tree displayed in the dialog corresponds to the description currently valid
configuration file gateway.cfg. It displays the parameters with the current settings for the
interfaces involved. Changes to the configuration in the dialog, confirmed by clicking “OK” result
in the direct update of the configuration file.

After the gateway configuration file gateway.cfg has been changed, the
gateway has to be restarted in order for the changes to be applied.

“Add” Menu with commands for adding interfaces and settings. The commands are
also available in the context menu of the dialog. The selection depends on which
entry is selected and which settings have already been added:
“Add Interface”: Select an interface for communication via the gateway. It is
inserted at the top level of the tree. See the table below for the possible block
driver interfaces.
“Add Configuration Setting”: Select a setting for the selected interface. It is
inserted below the interface in the tree. To edit the value of the setting, double-
click in the “Setting” column to open an editing field. See the table below for the
possible settings per block driver interface.

“Delete” Deletes the selected configuration setting

“Up”, “Down” Moves the selected configuration entry one position up or down.

Dialog 'Gateway
Configuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1125

Table 166: Possible block driver interfaces
“COM Port” Serial port on the device, for example for data exchange

according to the RS-232 standard on a COM port intended for
this purpose.

 Possible configuration settings:
“Name”: Symbolic only
“Port”: Physical serial port which is used for this interface, for
example COM 5 on a Windows computer

“Baudrate”: 2400, 4800, 9600, 19200, 38400, 57600, 115200
“Activate auto addressing”: (default =) The setting Local
address is evaluated. Both devices, which communicate via
the serial port, will negotiate their addresses independently
before they begin exchanging messages. If the addresses of
both devices are the same, then they are negotiated again. This
setting is useful when the local addresses cannot be set explic-
itly, for example for physically separated devices.
“Local address”: Evaluated only when “Enable auto addressing”
is activated. Default = actual value for port

“Shared Memory”: Shared memory driver

 Possible settings:
“Name”: Symbolic only
“Forced address”: Default = -1 (= no forced address);
example: 42 means that the driver has to use the fixed address
defined here and that addresses are assigned freely in the range
0-255. This setting can be useful when more than one shared
memory driver is activated in the configuration.

“Ethernet UDP/IP”: Ethernet interface for data exchange according to the "user
datagram protocol".

 Possible settings:
“Name”: Symbolic only
“Port index”: Port number for the communication. Port indices
are in the range 0–3. They are mapped to the following Ethernet
port: 1740 to 1743.

“IP address”: Default = 127.0.0.1. This setting can be useful
to explicit set an interface when the device has several network
interfaces. Example: 127.0.0.1 stands for some local network
interface, also known as localhost. Every other address
(example: 10.27.7.72) represents a real IP address which has
to be available on the device.
“Network mask”: Default = 255.255.255.0; example:
255.255.252.0. This setting can be useful to explicitly set an
interface when there are multiple network interfaces on the
device.
“PPP remote address”: Default = 127.0.0.1; example:
10.13.42.240; establishes a logical point-to-point connection
between the UDP interface and the node named with the
address specified here; has the effect that the UDP interface
communicates exclusively with this node and that no broadcasts
are sent in the network

“Ethernet TCP/IP”: Ethernet interface for data exchange according to the "Transmis-
sion Control Protocol".

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1126

 Possible settings:
“Name”, “Port”, “IP address”: See Ethernet UDP/IP above.
“Inactivity timeout”: Default = 0. This setting defines the time
span (in seconds) after which the TCP connections are closed
when data is no longer exchanged.

“CAN Client” “Name”: Symbolic only
A description for the other settings can be found directly in the
dialog.

“USB Port” “Name”: Symbolic only
A description for the other settings can be found directly in the
dialog.

See also:
● Ä Chapter 1.4.1.20.2.8.2 “Tab 'Communication Settings'” on page 840

Menu 'Recipes'
1.4.1.20.3.19.1 Command 'Insert Variable'... 1127
1.4.1.20.3.19.2 Command 'Add a New Recipe'.. 1127
1.4.1.20.3.19.3 Command 'Remove Recipe'.. 1128
1.4.1.20.3.19.4 Command ‘Load Recipe'... 1128
1.4.1.20.3.19.5 Command 'Save Recipe'... 1128
1.4.1.20.3.19.6 Command 'Read Recipe'... 1129
1.4.1.20.3.19.7 Command 'Write Recipe'... 1129
1.4.1.20.3.19.8 Command 'Load and Write Recipe'....................................... 1129
1.4.1.20.3.19.9 Command 'Read and Save Recipe'....................................... 1130
1.4.1.20.3.19.10 Command 'Remove Variables'... 1130
1.4.1.20.3.19.11 Command 'Load Recipes from Device'................................ 1131
1.4.1.20.3.19.12 Command 'Update Structured Variables'............................. 1131

Command 'Insert Variable'
Symbol:
Function: This command inserts a variable into the currently opened recipe definition before the
selected position.
Call: Main menu “Recipes”.
Requirement: You have opened a recipe definition in the editor and selected the normal view.
CODESYS inserts the default text "NewVariable" in the column “Variable”. You must replace this
name with the respective variable name. To do this, open the input assistant by clicking or
enter the variable name directly into the table element.
See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3.19 “Menu 'Recipes'” on page 1127

Command 'Add a New Recipe'
Symbol:
Function: This command opens a dialog box for adding a new recipe (new column) to the
recipe definition.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1127

Call: Main menu “Recipes”.
Requirement: You have opened a recipe definition in the editor.
After choosing the command, a dialog box opens for you to define the name of the new recipe.
The dialog box also provides the capability of copying existing recipes into the new recipe.
See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3.19 “Menu 'Recipes'” on page 1127

Command 'Remove Recipe'
Symbol:
Function: This command removes a recipe from the currently opened recipe definition.
Call: Main menu “Recipes”.
Requirement: You have selected a field in the recipe column of a recipe definition.
See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3.19 “Menu 'Recipes'” on page 1127

Command ‘Load Recipe'
Symbol:
Function: The command loads a recipe from a file.
Call: Menu bar: “Recipes”.
Requirement: You have selected a field in the recipe column of a recipe definition.
This command overwrites the values of the selected recipe of the recipe definition.

If you have selected the option “Recipe Management in the PLC”, please note
the following.

If you change recipes in the project by choosing the command “Load Recipe” or
“Read Recipe”, then an online change is required when logging in again.

If you want to overwrite only individual recipe variables with new values, then
remove the values for the other variables before loading to the recipe file.
Entries without value definitions are not read, and therefore updating leaves
these variables unchanged on the PLC and in the project.

For values of the data type REAL/LREAL, the hexadecimal value is also written
to the recipe file in some cases. This is necessary so that the exact identical
value is restored when converting back. In this case, change the decimal value
and delete the hexadecimal value.

See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3.19 “Menu 'Recipes'” on page 1127

Command 'Save Recipe'
Symbol:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1128

Function: This command saves the variable values of a recipe to a file.
Call: Main menu “Recipes”.
Requirement: You have selected the value of a recipe in the recipe definition.
When you choose this command, CODESYS saves the values of the selected recipe to a file.
You can define the format in the settings for the recipe manager in the tab “Storage”.
See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3.19 “Menu 'Recipes'” on page 1127

Command 'Read Recipe'
Symbol:
Function: This command reads the variable values of a recipe from the controller.
Call: Main menu “Recipes”.
Requirement: The application is in online mode and you have selected the value of a recipe in
the recipe definition.
When you choose this command, CODESYS overwrites the values of the selected recipe with
the read values from the controller.

If you have selected the option “Recipe Management in the PLC”, please note
the following.

If you change recipes in the project by choosing the command “Load Recipe” or
“Read Recipe”, then an online change is required when logging in again.

See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3 “Menu Commands” on page 955

Command 'Write Recipe'
Symbol:
Function: This command writes the values of a recipe to the variables in the controller.
Call: Main menu “Recipes”.
Requirement: The application is in online mode and you have selected the value of a recipe in
the recipe definition.
When you choose this command, CODESYS overwrites the values in the controller with the
values of the selected recipe.
See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3.19 “Menu 'Recipes'” on page 1127

Command 'Load and Write Recipe'
Symbol:
Function: This command loads a recipe from a file and writes the values to the variables in the
PLC.
Call: Menu bar: “Recipes”.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1129

Requirement: The application is in online mode. You have selected the value of a recipe in the
recipe definition.
After choosing the command, you are prompted either to write the variable values also to the
recipe in the project or only to write them to the PLC. Updating the values in the recipe could
require an online change when logging in again.
When you choose this command, CODESYS overwrites the values of the selected recipe of the
recipe definition. In addition, these recipe values overwrite the variable values in the PLC.

If you want to overwrite only individual recipe variables with new values, then
remove the values for the other variables before loading to the recipe file.
Entries without value definitions are not read, and therefore updating leaves
these variables unchanged on the PLC and in the project.

For values of the data type REAL/LREAL, the hexadecimal value is also written
to the recipe file in some cases. This is necessary so that the exact identical
value is restored when converting back. In this case, change the decimal value
and delete the hexadecimal value.

See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3.19 “Menu 'Recipes'” on page 1127

Command 'Read and Save Recipe'
Symbol:
Function: This command reads the variable values of a recipe from the controller and saves
them to a file.
Call: Main menu “Recipes”.
Requirement: The application is in online mode and you have selected the value of a recipe in
the recipe definition.
After choosing the command, you are prompted either to read the variable values to the recipe
or only to save them. Updating the values in the recipe could require an online change when
logging in again.
The values are saved with the default name for recipe files according to the settings for the
recipe manager (tab “Storage”).
See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3.19 “Menu 'Recipes'” on page 1127

Command 'Remove Variables'
Symbol
Function: This command removes the selected variables from a “Recipe Definition”.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
box from “Tools è Customize” (command category “Recipe”).
See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3.19 “Menu 'Recipes'” on page 1127

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1130

Command 'Load Recipes from Device'
Symbol:
Function: This command initiates the synchronization of the recipes from the open recipe
definition in the project and the recipes located on the device in the form of recipe files.
Call: Menu bar: “Recipes”.
Requirement: The application is in online mode and a recipe definition is open in the editor.
In detail, the synchronization is described as follows:
● The current values for the recipe variables located in the project are overwritten by the

values from the recipes on the controller. As a result, there is likely an online change at the
next login.

● If recipe variables are defined in the recipe files on the controller, and the recipe variables
are missing in the recipe definition of the project, then these variables are ignored when
at the time of download. Before that, a message appears for each recipe file regarding the
variables in question.

● If recipe variables are missing in the recipe files on the controller, and these recipe variables
are included in the recipe definition of the project, then a message appears for each recipe
file with the variables in question.

● If more recipes for these variables have been created on the controller, then they are added
to the recipe definition in the project.

Command 'Update Structured Variables'
Symbol:
Function: This command opens the “Update Structured Variables” dialog box.
Call: Main menu “Recipes”.
In this dialog box, you can update recipe definitions if the declaration of a structured variable
or a block has changed. For example, if the dimension of an array is changed, then you can
automatically add or remove the entries in the recipe definition.

Table 167: Dialog Box 'Update Structured Variables'
“Remove not existing
variables”

: Variables are removed from the recipe definition when they no longer exist in
the project due to a change to a structured element.

“Update instances of structures
and function blocks”

: If the declaration of a structure or function block is extended and available in
the recipe definition with an instance, then the respective variables are added to
the recipe definition.

“Update array dimensions of
array instances”

: If the dimension of an array is extended and available in the recipe definition
with an instance, then the respective variables are added to the recipe definition.

“Update contained global
variable lists”

: If the declaration of a global variable list is extended and available in the
recipe definition with an instance, then the respective variables are added to the
recipe definition.

“Update contained programs” : If the declaration of a program is extended and instanced in the recipe
definition, then the respective variables are added to the recipe definition.

See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.1.20.3.19 “Menu 'Recipes'” on page 1127

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1131

Menu 'Text List'
1.4.1.20.3.20.1 Command 'Add Language'.. 1132
1.4.1.20.3.20.2 Command 'Create Global Text List'....................................... 1132
1.4.1.20.3.20.3 Command 'Export Everything as Text'................................... 1132
1.4.1.20.3.20.4 Command 'Export All Unicode .txt Text List Files'.................. 1133
1.4.1.20.3.20.5 Command 'Insert Text'... 1133
1.4.1.20.3.20.6 Command 'Import/Export Text Lists'...................................... 1133
1.4.1.20.3.20.7 Command 'Remove Language'... 1134
1.4.1.20.3.20.8 Command 'Rename Language'... 1134
1.4.1.20.3.20.9 Command 'Remove Unused Text List Entries'....................... 1135
1.4.1.20.3.20.10 Command 'Check Visualization Text IDs'............................ 1135
1.4.1.20.3.20.11 Command 'Update Visualization Text IDs'........................... 1135
1.4.1.20.3.20.12 Command 'Add Text List Support'.. 1136
1.4.1.20.3.20.13 Command 'Remove Text List Support'................................. 1136

Command 'Add Language'
Symbol:
Function: This command adds a further language column to the text list.
Call: Main menu “Textlist”, context menu
Requirement: A text list or a global text list is open and active.
In the dialog box “Enter Language”, enter a code for the new language, for example “en-US”.
CODESYS inserts the code as column header.

Command 'Create Global Text List'
Symbol:
Function: This command creates the global text list in the “POUs” view.
Call: “Visualization”, context menu.
Requirements: A visualization is open.
See also
● Ä Chapter 1.4.1.20.2.9 “Object 'GlobalTextList'” on page 871
● Ä Chapter 1.4.1.8.8.1 “Managing static text in global text lists” on page 269

Command 'Export Everything as Text'
Symbol:
Function: This command exports all the text lists of the project.
Call: Main menu “Textlist”, context menu
Requirement
● A text list or a global text list is open and active.
● The visualization does not code the characters of the texts in Unicode.
CODESYS creates a file as plain text in the format .txt for each text list. The name of the text
list becomes the name of the file. The directory into which the files are exported is set in “Project
è Project Settings è Visualization”, category “General” in “Text list files”.
A controller can read and use this format. For example, you can copy the file to a controller
and, by means of a configuration in the visualization manager, prevent the text lists from being
transmitted again when loading the application.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1132

Command 'Export All Unicode .txt Text List Files'
Symbol:
Function: This command exports all the text lists of the project.
Call: Main menu “Textlist”, context menu
Requirement
● A text list or a global text list is open and active.
● The visualization codes the characters of the texts in Unicode.

– The option “Use Unicode strings” in the visualization manager is activated.
– The compiler instruction VISU_USEWSTRING in the application is set. Check this by

selecting the command “Properties” in the context menu of the application. Then select
the “Compile” tab. VISU_USEWSTRING must be entered in the input field for “Compiler
defines”.

CODESYS creates a file as plain text in the format .txt for each text list. The name of the text
list becomes the name of the file. The directory into which the files are exported is set in “Project
è Project Settings è Visualization”, category “General” in “Text list files”.
A controller can read and use this format. For example, you can copy the file to a controller
and, by means of a configuration in the visualization manager, prevent the text lists from being
transmitted again when loading the application.
See also
● Ä Chapter 1.4.1.8.8 “Managing text in text lists” on page 266

Command 'Insert Text'
Symbol:
Function: This command inserts a new line into the text list above the selected line. An input
field under “Standard” opens, in which you input the source text.
Call: Main menu “Textlist è Insert Text”, context menu
Requirement: A text list, not a “GlobalTextList”, is open and active. A field in the table is
selected.
See also
● Ä Chapter 1.4.1.8.8 “Managing text in text lists” on page 266

Command 'Import/Export Text Lists'
Symbol:
Function: This command exports an active text list, imports a file, or matches a text list with a
file. The file has the CSV format. The “Import/Export” dialog provides options for this.
Call: Menu bar: “Text List è Import/Export Text Lists”; context menu
Requirement: A text list or global text list is active.

“Select File for Import” File that CODESYS reads.

 opens the dialog “Select Text List File” for you to select a file.

“Select export file” File that CODESYS writes to.

 opens the dialog “Select Text List File” for you to select a file and directory.

Dialog 'Import/
Export'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1133

Table 168: “Import/Export Type”
“Import” Requirement: A file is selected in “Select file for compare or import”.

The file can contain text list entries for both the global text list and text lists.
Global text list
● CODESYS reads the file, compares the text list entries for the same source

text, and accepts differences in the translations. CODESYS overwrites any
translations in the project.

Text lists
● CODESYS reads the file, compares the text list entries for the same ID,

and accepts differences in the source text and translations into the project.
CODESYS overwrites any text list entries in the project.

● If the file contains a new ID, then the text list entry is imported into the text
list of the project and the text list is added.

“Import replacement file” Requirement: A replacement file is selected in “Select file for compare or
import”.
The replacement file contains replacements for the global text list.
CODESYS processes the replacement file row by row and performs the speci-
fied replacements in the global text list.
The structure of the replacement file is described in the section "Managing static
text in a global text list".

“Export” Requirement: The file that CODESYS writes to is selected in “Select export file”.
CODESYS exports all texts from all text lists of the current project. All lan-
guages available in the project are inserted as columns in the export file. The
file can be used for the external translation of the language-dependent texts.

“Export text differences only” Requirement: An import file is selected for the comparison in “Select file for
compare or export”, and an export file that CODESYS writes to is selected in
“Select export file”.
CODESYS reads the import file and then uses that information to compare the
rows of the active text list. CODESYS ignores the rows that match. If rows differ,
then CODESYS writes the row to the export file and, if necessary, copies trans-
lations from the text list. CODESYS accepts the translations from the import file
and overwrites them if necessary.

See also
● Ä Chapter 1.4.1.8.8 “Managing text in text lists” on page 266
● Ä “Updating the global text list with a replacement file” on page 271

Command 'Remove Language'
Symbol:
Function: Removes the selected language column from the text list.
Call: Main menu “Textlist”, context menu
Requirement: A text list or a global text list is open and active. A field is selected in the column
of the language that you wish to remove.
See also
● Ä Chapter 1.4.1.8.8 “Managing text in text lists” on page 266

Command 'Rename Language'
Symbol:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1134

Function: Opens a dialog for specifying a new name for a language that is displayed in the text
list as a column heading.
Call: Menu bar: “Text List”; context menu.
Requirement: A text list or global text list is active. A field in the language column to be
renamed is selected.
See also
● Ä Chapter 1.4.1.8.8 “Managing text in text lists” on page 266

Command 'Remove Unused Text List Entries'
Symbol:
Function: This command checks whether a text list entry in the project is used as static text. If
not, CODESYS removes it from the text list.
Call: Main menu “Textlist”, context menu
Requirement: The “GlobalTextList” is open and active. A field in the table is selected.
See also
● Ä Chapter 1.4.1.8.8 “Managing text in text lists” on page 266

Command 'Check Visualization Text IDs'
Symbol:
Function: This command checks whether the ID of a text list entry in the project is correct and
reports the result.
Call: Main menu “Textlist”, context menu
Requirement: The “GlobalTextList” is open and active. A field in the table is selected.
If CODESYS finds during checking that the global text list and the static texts of the visualiza-
tions do not correspond, this could be because the global text list is or was write protected. The
requirement for this is that you have set up a user management system in the project.
See also
● Ä Chapter 1.4.1.8.8 “Managing text in text lists” on page 266

Command 'Update Visualization Text IDs'
Symbol
Function: This command updates all inconsistent IDs in a static text list.
Call: Main menu “Textlist è Paste Text”, context menu
Requirement: The “GlobalTextList” is open and active. A field in the table is selected. The
object is write protected.
If CODESYS finds during checking that the global text list and the static texts of the visualiza-
tions do not correspond, this could be because the global text list is or was write protected. The
requirement for this is that you have set up a user management system in the project.
See also
● Ä Chapter 1.4.1.8.8 “Managing text in text lists” on page 266
● Ä Chapter 1.4.1.5.5 “Protecting Objects in the Project by Access Rights” on page 204

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1135

Command 'Add Text List Support'
Symbol:
Function: This command adds text list support to the selected DUT object (type: enumeration).

Call: Context menu of a standard DUT object (type: enumeration).
Text list support allows the localization of the enumeration component identifier and the display
of the symbolic component value in a text output of a visualization.
See also
● Ä Chapter 1.4.1.20.2.6 “Object 'DUT'” on page 835
● Ä Chapter 1.4.1.20.3.20.13 “Command 'Remove Text List Support'” on page 1136

Command 'Remove Text List Support'
Symbol:
Function: This command removes text list support from the selected enumeration object.

Call: Context menu of an object of an enumeration with text list support ().
Text list support allows the localization of the enumeration component identifier and the display
of the symbolic component value in a text output of a visualization.
47293
See also
● Ä Chapter 1.4.1.20.2.6 “Object 'DUT'” on page 835
● Ä Chapter 1.4.1.20.3.20.12 “Command 'Add Text List Support'” on page 1136

Menu 'Trace'
1.4.1.20.3.21.1 Command 'Add Variable'... 1136
1.4.1.20.3.21.2 Command 'AutoFit'.. 1137
1.4.1.20.3.21.3 Command 'Compress'... 1137
1.4.1.20.3.21.4 Command 'Configuration'.. 1137
1.4.1.20.3.21.5 Command 'Cursor'... 1137
1.4.1.20.3.21.6 Command 'Download Trace'.. 1138
1.4.1.20.3.21.7 Command 'Export Symbolic Trace Config'............................ 1139
1.4.1.20.3.21.8 Command 'Load Trace'.. 1141
1.4.1.20.3.21.9 Command 'Mouse Zooming'.. 1141
1.4.1.20.3.21.10 Command 'Convert to Multi-Channel'.................................. 1141
1.4.1.20.3.21.11 Command 'Convert to Single-Channel'................................ 1142
1.4.1.20.3.21.12 Command 'Online List'... 1143
1.4.1.20.3.21.13 Command 'Reset Trigger'.. 1144
1.4.1.20.3.21.14 Command 'Reset View'.. 1144
1.4.1.20.3.21.15 Command 'Save Trace'.. 1145
1.4.1.20.3.21.16 Command 'Start Trace'.. 1145
1.4.1.20.3.21.17 Command 'Stop Trace'.. 1145
1.4.1.20.3.21.18 Command 'Stretch'.. 1146
1.4.1.20.3.21.19 Command 'Upload Trace'.. 1146
1.4.1.20.3.21.20 Command 'Statistics'... 1146

Command 'Add Variable'
Function: This command adds a trace variable to the configuration.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1136

Call: Main menu “Trace”.
A new variable is displayed in the tree view of the trace configuration. The associated variables
configuration appears to the right in “Variable Settings”.
See also
● Ä Chapter 1.4.1.20.4.15.2 “Dialog 'Trace Configuration'” on page 1209
● Ä Chapter 1.4.1.12.3.2 “Creating trace configuration” on page 424

Command 'AutoFit'
Symbol:
Function: This command scales the y-axis of the trace diagram for optimum display of all
graphs, making sure that the y-values fit in the visible region of the diagrams. The command
works with both single-channel and multi-channel displays.
Call: Menu bar: “Trace”; context menu.

When all trace variables are displayed in one diagram, the trace is in single-channel display.

When the trace variables are displayed in multiple diagrams, the trace is in multi-channel
display.

See also
● Ä Chapter 1.4.1.20.4.15.2 “Dialog 'Trace Configuration'” on page 1209
● Ä Chapter 1.4.1.12.3.5 “Navigating into trace data” on page 429

Command 'Compress'
Symbol:
Function: This command compresses the trace graph by zooming into the displayed time range
by a fixed percentage.
Call: Main menu “Trace”, or context menu.
See also
● Ä Chapter 1.4.1.20.3.21.18 “Command 'Stretch'” on page 1146
● Ä Chapter 1.4.1.12.3.5 “Navigating into trace data” on page 429

Command 'Configuration'
Function: This command opens the “Trace Configuration” dialog box for enabling the configura-
tion of the data recording.
Call: Main menu “Trace”, or context menu.
See also
● Ä Chapter 1.4.1.20.4.15.2 “Dialog 'Trace Configuration'” on page 1209
● Ä “Subdialog 'Variable Settings'” on page 1211

Command 'Cursor'
Symbol:

Trace in a
single-channel
display
Trace in a multi-
channel display

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1137

Function: This function
● inserts a trace cursor into the trace diagram when no trace cursor is available
● inserts a second trace cursor into the trace diagram when 1 trace cursor is available
● removes the trace cursors when 2 trace cursors are available
Call: Menu bar: “Trace”; context menu.
A trace cursor is a small black triangle with a vertical black line running parallel to the y-axis.

In this mode, you can process the trace diagram with the mouse pointer. The x-value that
focuses on with the cursor is displayed in the status bar with normal style. Example: “Time:
1m23s456ms; Value: 1 ”

In the status bar and y-value, CODESYS prints the time that was marked by the trace cursor.
Example: “Time: 1m23s456ms ”

In the status bar, CODESYS prints the two times and the time interval that are marked by the
two trace cursors. Example: “Time: 1m23s456ms - Time: 1m24s456ms (∆ 1s) ”.

If one or two trace cursors are available, then you can move them along the x-axis.

Mouse Input Symbol Effect
Drag the triangle of a trace
cursor to another position.

While the mouse button is pressed, the cursor can be moved without
restriction. The current y-value is always displayed in the status bar.
When the mouse button is released, the cursor jumps to the nearest
measuring point

Keyboard Shortcuts Effect
[Left arrow]

[Right arrow]

CODESYS moves the black trace cursor to the next measuring point.

[Shift]+[Left Arrow]

[Shift]+[Right Arrow]

CODESYS moves the gray trace cursor to the next measuring point.

See also
● Ä Chapter 1.4.1.12.3.5 “Navigating into trace data” on page 429

Command 'Download Trace'
Symbol:
Function: This command transfers the trace configuration on the controller to the associated
application, and starts the data recording. The recorded data is transferred back to the develop-
ment system. The trace diagram shows the current samples and continues.
Call: Menu bar: “Trace”; context menu.
Requirement: The command is available when the assigned application is in online mode.
See also
● Ä Chapter 1.4.1.12.3.3 “Operating the data recording” on page 427

Trace diagram
without trace
cursors

Trace diagram
with one trace
cursor

Trace diagram
with two trace
cursors

User input in the
trace diagram

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1138

Command 'Export Symbolic Trace Config'
Function: This command exports a trace configuration to a traceconfig file.

Call: Main menu “Trace”, or context menu.
Requirement: The origin application includes a symbol configuration that defines the configured
trace variables as symbols. Access to the IEC variables where data was recorded is therefore
symbolic. Then you can use the trace configuration for various similar applications.

You can transfer this file to any runtime system. At runtime, its CmpTraceMgr runtime system
component can access and perform data recording. The configuration file also includes informa-
tion about the application context in addition to the configuration data.
The configuration file defines the following context:
● Application name
● Trace name
● Task name
The application that is executed at runtime must fulfill the following conditions:
● The application has the same name as the origin application.
● The trace that is configured in the application has the same as the trace that is configured in

the origin application
● The task that is running in the data recording has the same name as the task that is

configured in the origin application.

NOTICE!
The configuration is not loaded automatically. You must execute the command
explicitly.
You can proceed as follows:
– Access the trace manager programmatically via IEC code by using library

interfaces.
– Register the configuration file with the trace manager. Then the trace man-

ager loads the configuration file when the application is started.

For more information about the functionality of the trace manager, refer to
"Trace Manager Runtime System Component Description".

Using the con-
figuration file

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1139

[key]; [value]
Version; 0x03050000
Name; Application.Trace_Trigger
ApplicationName; Application
ApplicationDataGuid; 00000000-0000-0000-0000-000000000000
IecTaskName; MainTask
Comment;
Trigger.Flags; 5
Trigger.Edge; 2
Trigger.Position; 0
Trigger.UpdatesAfterTrigger; 50
Trigger.Variable.Name; PLC_PRG.B.OUT
Trigger.Variable.AddrFlags; 0x00000101
Trigger.Variable.Class; 0
Trigger.Variable.Size; 1
Trigger.Level;
Condition.Name;
Condition.AddrFlags; 0x00000000
Condition.Class; 0
Condition.Size; 0
EveryNCycles; 1
BufferEntries; 100
Flags; 16
0.Variable; PLC_PRG.S5.OUT
0.Address.AddrFlags; 0x00000101
0.Class; 7
0.Size; 2
0.GraphColor; 4278190335
0.GraphType; 3
0.MinWarningColor; 4278190080
0.MaxWarningColor; 4294901760
0.CriticalLowerLimit; 0
0.CriticalUpperLimit; 0
0.ActivateMinWarning; 0
0.ActivateMaxWarning; 0
0.YAxis; 0
0.Data;
1.Variable; PLC_PRG.B.OUT
1.Address.AddrFlags; 0x00000101
1.Class; 0
1.Size; 1
1.GraphColor; 4278222848
1.GraphType; 1
1.MinWarningColor; 4278190080
1.MaxWarningColor; 4294901760
1.CriticalLowerLimit; 0
1.CriticalUpperLimit; 0
1.ActivateMinWarning; 0
1.ActivateMaxWarning; 0
1.YAxis; 0
1.Data;

Configuration
file
Trace_Trigge
r.traceconfi
g

Sample configu-
ration file

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1140

See also
● Ä Chapter 1.4.1.12.3.6 “Managing trace” on page 430

Command 'Load Trace'
Function: This command makes it possible to load a file, which contains the configuration and
data, and was saved to the file system of the development system. The “Load Trace” dialog box
opens.
Call: Main menu “Trace”, or context menu.

“File name” Name of the file that is loaded

“File type” File format
● *.trace: “Trace file” that includes the trace configuration
● *.csv: Text file in CSV format that includes a trace configuration

See also
● Ä Chapter 1.4.1.20.3.21.15 “Command 'Save Trace'” on page 1145
● Ä Chapter 1.4.1.12.3.6 “Managing trace” on page 430

Command 'Mouse Zooming'
Symbol: (command disabled), (command enabled)
Function: This command enables and disables mouse zooming in the trace diagram.
Call: Menu bar: “Trace”; context menu.

If the command is enabled, then you can stretch a box with the mouse. When you release the
mouse button, the display zooms in on the box and the data is enlarged.

See also
● Ä Chapter 1.4.1.12.3.5 “Navigating into trace data” on page 429

Command 'Convert to Multi-Channel'
Function: This command switches the display in the trace editor from single-channel to multi-
channel.
Call: Menu bar: “Trace”; context menu.

Multi-channel display means that the trace variables are displayed in multiple diagrams.

Dialog box
“Load Trace”

User input in the
trace diagram

Multi-channel
display

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1141

See also
● Ä Chapter 1.4.1.20.4.15.2 “Dialog 'Trace Configuration'” on page 1209
● Ä Chapter 1.4.1.12.3.5 “Navigating into trace data” on page 429

Command 'Convert to Single-Channel'
Function: This command switches the display in the trace editor from multi-channel to single-
channel.
Call: Menu bar: “Trace”; context menu.

If a trace is displayed as single-channel, then all trace variables are included in one diagram.Single-channel
display

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1142

See also
● Ä Chapter 1.4.1.20.4.15.2 “Dialog 'Trace Configuration'” on page 1209
● Ä Chapter 1.4.1.12.3.5 “Navigating into trace data” on page 429

Command 'Online List'
Function: This command opens the “Online List” dialog. If the trace editor of a DeviceTrace
object is active, then all traces that are running on the controller are displayed in a tree view. If
the trace editor of an application-specific trace object is active, then only this trace is displayed if
it is running on the controller.
Call: Menu bar: “Trace”; context menu of the trace editor.
Requirement: The runtime system uses the CmpTraceMgr components. An application
belonging to the device is in online mode.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1143

NOTICE!
Closing the DeviceTrace editor terminates the connection to the con-
troller.
Please note that the connections to the controller is also terminated when
the last open “DeviceTrace” editor is closed. In order for device traces to be
displayed again in the project, you have to reload them into the “DeviceTrace”
objects.
At this time, closing the editor is also the recommended procedure for deliber-
ately terminating the connection to the controller. Logging out is not enough for
this.

“Delete from runtime” Stops and removes the selected trace from the running application.

“Upload” This command is visible when a DeviceTrace is loaded in the trace editor. A
DeviceTrace is a trace that runs on the controller: In the device tree, it can be
represented with a DeviceTrace object directly below a device.
When you execute this command, the trace that is selected in the tree view is
loaded from the runtime system into the trace editor. Any existing configuration in
the project is overwritten. For example, the device can provide traces for data of
the processor load (cpuload, plcload), which then you can track in the trace
editor in CODESYS.
An individual “DeviceTrace” object is necessary in the device tree for each trace
of the device that should be displayed in the project.

See also
● Ä Chapter 1.4.1.12.3.4 “Accessing All Traces on the Controller” on page 428
● Ä Chapter 1.4.1.20.2.29 “Object 'DeviceTrace'” on page 948
● Ä Chapter 1.4.1.20.2.28 “Object 'Trace'” on page 945
● Ä Chapter 1.4.1.20.3.21.19 “ Command 'Upload Trace'” on page 1146

Command 'Reset Trigger'
Symbol:
Function: This command resets the trace configuration after a triggered data recording. Then
the application can record new data and react to a trigger again.
Call: Main menu “Trace”, or context menu.
Requirement: After triggering, the complete data is in the buffer of the development system.
See also
● Ä Chapter 1.4.1.12.3.3 “Operating the data recording” on page 427

Command 'Reset View'
Symbol:
Function: This command resets the trace diagram to the default view.
Call: Main menu “Trace”, or context menu.

Dialog 'Online
List'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1144

Requirement: The display in the trace diagram has been changed by zooming, scrolling, or
“AutoFit”.
See also
● Ä Chapter 1.4.1.20.3.21.2 “Command 'AutoFit'” on page 1137
● Ä Chapter 1.4.1.12.3.5 “Navigating into trace data” on page 429

Command 'Save Trace'
Function: This command saves the data to a file on the development system. Depending on
the file format, the configuration may also be saved. The “Save Trace” dialog box opens.
Call: Main menu “Trace”, or right-click.

“File name” Name and location of the trace file

“File type” File format
● *.trace:

“Trace file” contains the data and configuration.
You can run the “Load Trace” command to load the file to the trace editor
when offline.

● *.txt:
“Text file” contains the recorded data. You can load this file type and edit it
with tools that support CSV format.
It cannot be loaded to the trace editor when offline because the trace editor
cannot read this format.

● *.trace.csv
“Trace CSV file (data only)” contains the recorded data. Address information
is provided for each trace variable. The created file can be read in the run-
time system. The data is imported but the trace cannot be started because
the variable addresses are not saved.

See also
● Ä Chapter 1.4.1.20.3.21.8 “Command 'Load Trace'” on page 1141
● Ä Chapter 1.4.1.12.3.6 “Managing trace” on page 430

Command 'Start Trace'
Symbol:
Function: This command starts the data recording on the controller when it is stopped.
Call: Main menu “Trace”, or context menu.
Requirement: The assigned application on the runtime system is running and a trace configura-
tion is loaded.
See also
● Ä Chapter 1.4.1.12.3.3 “Operating the data recording” on page 427

Command 'Stop Trace'
Symbol:

Dialog Box
'Save Trace'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1145

Function: This command stops the data recording of a trace.
Call: Main menu “Trace”, or context menu.
Requirement: The assigned application on the runtime system is running and executes a trace.
See also
● Ä Chapter 1.4.1.12.3.3 “Operating the data recording” on page 427

Command 'Stretch'
Symbol:
Function: This command stretches the trace graph by zooming out of the displayed time range
by a fixed percentage.
Call: Main menu “Trace”, or context menu.
See also
● Ä Chapter 1.4.1.20.3.21.3 “Command 'Compress'” on page 1137
● Ä Chapter 1.4.1.12.3.5 “Navigating into trace data” on page 429

Command 'Upload Trace'
Function: This command establishes the connection to the PLC device, if not already con-
nected. Then it opens the “Online List” dialog listing the traces running on the controller. Then
the selected trace is loaded to the trace editor by means of the “Upload” command in the dialog.
Call: Menu bar: “Trace”; context menu of the trace editor.
Requirement: The editor of a “DeviceTrace” object is open. The runtime system uses the
CmpTraceMgr components (trace manager). At least one application in the runtime system in
running. The communication settings for the PLC are configured correctly in the CODESYS
project.

NOTICE!
Closing the DeviceTrace editor terminates the connection to the con-
troller.
Please note that the connections to the controller is also terminated when
the last open “DeviceTrace” editor is closed. In order for device traces to be
displayed again in the project, you have to reload them into the “DeviceTrace”
objects.
At this time, closing the editor is also the recommended procedure for deliber-
ately terminating the connection to the controller. Logging out is not enough for
this.

See also
● Ä “Dialog 'Online List'” on page 1144
● Ä Chapter 1.4.1.20.2.29 “Object 'DeviceTrace'” on page 948
● Ä Chapter 1.4.1.12.3.4 “Accessing All Traces on the Controller” on page 428

Command 'Statistics'
Function: This command opens the “Trace Statistics” dialog box, which shows statistics about
each trace variable.
Call: Main menu “Trace”, or right-click.
Requirement: The trace editor contains samples.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1146

The analyzed time range and duration are shown in the caption.
The table contains one line per signal.

“Signal” Name pf the trace variable (for example, PLC_PRG.S1)

“Index” 0-based index of the signal order

“N” Number of measurements for the calculations

“Min” Smallest value

“Avg” Average

“Median” Middle value when the values are ordered by size

“RMS” Root mean square

“StdDev” Standard deviation

“Max” Largest value

“Integral” Integral

“Min Δt [s]” Smallest change of time intervals for successive values

“Avg Δt [s]” Average change of time intervals for successive values

“Median Δt [s]” Median change of time intervals for successive values

“StdDev Δt [s]” Standard deviation of change of time intervals for successive values

“Max Δt [s]” Largest change of time intervals for successive values

Click a column head in the
table.

CODESYS sorts the table by that column, changing the order from ascending to
descending and back.
Default: The table is sorted ascending by the “Index” column. The signals are
then sorted in the same order as in the signal tree.

Click in the line. The line is selected. You can select or clear other lines by pressing [Shift]+
[arrow] up or down.

[Ctrl]+[C] CODESYS copies the selected lines as text to the clipboard. The values of the
individual columns are tab-separated, and the lines are delimited with the control
character [CR] or [LF].
Requirement: At least one line is selected.

See also
● Ä Chapter 1.4.1.12.3 “Data Recording with Trace” on page 421

Other
1.4.1.20.3.22.1 Command 'Add Watch'.. 1147
1.4.1.20.3.22.2 Command 'Implement Interfaces'.. 1148
1.4.1.20.3.22.3 Command 'Limit Results to Current Declaration'................... 1148

Command 'Add Watch'
Symbol:
Function: This command adds the variable of the current location of the cursor to a watchlist for
the purpose of online monitoring.

Dialog Box
'Trace Statistics'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1147

Call: Right-click a variable in an editor when the application is in online mode.
This command adds the variable to the currently opened watchlist. If a watchlist is not open,
then the variable is added to the “Watch 1” list and that view opens.
See also
● Ä Chapter 1.4.1.12.1.2 “Using watch lists” on page 416
● Ä Chapter 1.4.1.12.1 “Monitoring of Values” on page 409

Command 'Implement Interfaces'
Function: This command updates the implemented interfaces for a function block.
Call: Context menu of the selected function block (FB) in the device tree.
Requirement: The function block implements an interface that you have modified. For example,
an additional method was added to the interface.

In object-oriented programming, if you derive a function block (FB) from a base
function block, which implements one or more interfaces, for the purpose of
inheritance, then the following applies:

When you execute the “Implement Interfaces” command for the derived FB,
all interface methods and interface attributes of the base FB are accepted into
the derived FB in the form of stubs (without implementation). Then you are
responsible for making sure that an "empty" method/attribute in the derived
FB does not conflict with an implemented one in the base FB. The following
actions are taken to support you in this case: If there es a base implementation
for a method/attribute, then CODESYS adds a pragma attribute {error..} in the
first line of the affected derived interface method or interface attribute that will
generate the error message. If there is no base implementation for the method/
attribute, then there is a pragma attribute entry for a warning. After editing the
block, you must remove the error pragma attribute entry explicitly.

See also
● Ä Chapter 1.4.1.20.2.18.4 “Object 'Interface'” on page 888
● Ä Chapter 1.4.1.8.22.2 “Implementing interfaces” on page 312

Command 'Limit Results to Current Declaration'
Function: When multiple declarations have been found, this command collapses the display in
the cross-reference list. It shows only the results for the declaration that you selected explicitly
in the list.
Call: Right-click.
Requirement: The cross-reference list is active. Multiple declarations for the searched symbol
are listed as cross-references.
See also
● Ä Chapter 1.4.1.8.13.1 “Using the cross-reference list to find occurrences” on page 285

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1148

1.4.1.20.4 Dialogs
1.4.1.20.4.1 Dialog 'Import Assistant'... 1149
1.4.1.20.4.2 Dialog 'Library Reference Conversion'....................................... 1150
1.4.1.20.4.3 Dialog 'Select Function Block'... 1150
1.4.1.20.4.4 Dialog 'Device Conversion' .. 1151
1.4.1.20.4.5 Dialog 'Breakpoint Properties'... 1151
1.4.1.20.4.6 Dialog 'Permissions'.. 1152
1.4.1.20.4.7 Dialog Box 'Prepare Value'... 1153
1.4.1.20.4.8 Dialog 'New Breakpoint'.. 1154
1.4.1.20.4.9 Dialog 'Monitoring Range'... 1156
1.4.1.20.4.10 Dialog 'Properties'... 1157
1.4.1.20.4.11 Dialog 'Project Settings'.. 1170
1.4.1.20.4.12 Dialog 'Project Environment'... 1182
1.4.1.20.4.13 Dialog 'Options'... 1186
1.4.1.20.4.14 Dialog 'Customize'.. 1205
1.4.1.20.4.15 Dialog 'Trace Configuration'... 1208
1.4.1.20.4.16 Dialog Box 'Trend storage'... 1214
1.4.1.20.4.17 Dialog Box 'Advanced Trend Settings'..................................... 1214
1.4.1.20.4.18 Dialog 'Certificate Selection'... 1215

The dialogs of the CODESYS user interface bascally are described on the help pages for
the CODESYS menu commands or CODESYS objects. The help book “Dialogs” contains only
descriptions of dialogs, which
● appear only after multi-step calls after a certain menu command call or within an object

editor,
● or which are not placed on a help page for a command or for an object because of their

complexity (multiple subdialogs).

Dialog 'Import Assistant'
Function: The dialog allows for the transfer of CODESYS options and package installations
from an older CODESYS installation that was found in the local computer.
Call: The dialog opens when a recently installed CODESYS version is started for the first time
and an older version is installed on the computer.

“Program settings” : The user-specific CODESYS options are transferred from the older installa-
tion to the new installation.

“Packages” : The packages installed with the older CODESYS version are transferred to
the Package Manager of the new version. See the list of discovered package
installations with the “Name”, “Version”, and “Installation date”.

“Import” The program settings and/or options are transferred to the current CODESYS
version.

“Skip” The program settings and/or options are not transferred to the current
CODESYS version.

See also
● Ä Chapter 1.4.1.1.1 “Setting CODESYS options” on page 180

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1149

Dialog 'Library Reference Conversion'
Function: The dialog defines how references to libraries that are no longer available are to be
handled. Note: The undefined library references can be found in the Global Library Manager
located in the “POUs” view.
Call: When opening a CoDeSys V2.3 project in V3, the dialog opens when the converter
detects a library which cannot be used anymore in the current CODESYS version.

A CoDeSys V2.3 project can be converted into a CODESYS V3 project only
if the CODESYS V2.3 Converter package is installed in CODESYS V3. The
package is available in the CODESYS Store.

Table 169: “What do you want to do?”
“Convert and install the library
as well.”

The converter also converts the library file into the new format. It remains refer-
enced in the project. It is installed automatically in the library repository in the
"Other" category. If the library does not provide the necessary project information
for an installation, then the “Enter Project Information” dialog opens for the infor-
mation to be added.

“Use the following library that
has already been installed”

The previously used library is replaced by another library. The “Browse” button
opens a dialog for selecting from the local library repository.

“Ignore the library. The
reference will not appear in the
converted project”

The library reference is removed from the project.

“Remember this mapping for
all future occurrences of that
library reference”

The settings made here in the dialog are also used for future project conver-
sions.

See also
● Ä Chapter 1.4.1.2.2 “Opening a V2.3 project” on page 187
● Ä Chapter 1.4.1.20.3.8.5 “Command 'Library Repository'” on page 1061

Dialog 'Select Function Block'
Function: The dialog is used for selecting a function block for I/O mapping. The function block
should be mapped to the I/O channel selected in the “<device name> I/O Mapping” tab or to the
object selected in the “<device name> IEC Objects” tab.
Call:
● Tab “<device name> I/O Mapping”, command button “Add FB for I/O channel”
● Tab “<device name> IEC Objects”, command button “Add”

The dialog provides all function blocks from the active application and the libraries included in
the project which fulfill the following:
● The function block has the {attribute 'io_function_block'} attribute.
● The function block contains input or output parameters that match the channel type

(input, output, data type) and has the {attribute 'io_function_block_mapping'}
attribute.

When a function block is selected that provides multiple matching parameters, only the first
one is mapped automatically to the channel. The others can only be assigned manually in the
“<device name> I/O Mapping” tab.
After the function block is assigned, the parameter of the function block instance is entered in
the “Variable” column of the mapping table. Then the path is composed as follows:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1150

<application name>.<device channel name>_<FB name>_<continuous FB
instance number>. <FB parameter name>
Example: App1.Out_4_Int_myScale_Output_Int_1.iOutput for the parameter
iOutput of the first inserted instance of the function block myScale_Output.

“Find” Input field for searching for function block names

“Type” Function blocks in the tree structure that match the channel type. Nodes: appli-
cation, library name(s)

“Documentation” Shows the available documentation for the library selected in the tree or the
library block.

See also
● Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854
● Ä Chapter 1.4.1.19.6.2.22 “Attribute 'io_function_block', 'io_function_block_mapping'”

on page 707

Dialog 'Device Conversion'
Function: The dialog defines how references to devices that are no longer available are to be
handled.
Call: When opening a CoDeSys V2.3 project in V3, the dialog opens when the converter
detects a device reference which cannot be used anymore.

A CoDeSys V2.3 project can be converted into a CODESYS V3 project only
if the CODESYS V2.3 Converter package is installed in CODESYS V3. The
package is available in the CODESYS Store.

Table 170: “What do you want to do?”
“Use the following device that
has already been installed”

CODESYS replaces the previously used device in the device tree with another
device. The “Browse” button opens a dialog for selecting from the local device
repository.

“Ignore the device. All device
specific objects will not be
available in the new project”

The device entry with all objects inserted below it is removed from the device
tree.

“Remember this mapping for
all future occurrences of that
device”

The settings made here in the dialog are saved in the CODESYS Options, in the
“CODESYS V2.3 Converter” category. As a result, they are also valid for future
project conversions.

See also
● Ä Chapter 1.4.1.2.2 “Opening a V2.3 project” on page 187
● Ä Chapter 1.4.1.20.3.8.8 “Command 'Device Repository'” on page 1067

Dialog 'Breakpoint Properties'
Function: The dialog is used to display or change the properties of the selected breakpoint in
the “Breakpoints” view.
Call:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1151

● “Breakpoints” view, “Properties” button
● “Breakpoints” view, “New” button, “New Breakpoint” command or “New Data Breakpoint”

command
Requirement: An entry is selected in the list of breakpoints.
The dialog is identical to the “New Breakpoint” dialog which is opened in the “Debug” menu
by means of the respective commands. Therefore, see the description in the help for the “New
Breakpoint” dialog.
See also
● Ä Chapter 1.4.1.20.4.8 “Dialog 'New Breakpoint'” on page 1154

Dialog 'Permissions'
Function: The permissions of user groups are defined here with which they can execute
specific actions on specific objects in the project.
Call: Menu bar: “Project è User Management”.
Every change made in the dialog is applied immediately.

All possible actions on objects of the projects are listed in “Actions”. The actions are divided
into four categories and assignments to all current objects of the project are listed below each
action. For each "action->object" assignment, you can define the permission for each existing
user group.
Action categories:

 “Commands” Actions regarding the execution of commands

 “Users, groups and
permissions”

Actions regarding the configuration of user accounts, user groups, and their
permissions

 “Object types” Actions regarding the creation of object types

 “Project objects” Actions regarding the viewing, modification, removal, and child-object handling of
objects of the project

Actions in detail:

 “Execute” Execute a menu command

 “Create” Create a new object in the project

 “Add or remove children” Add or remove a child object below an existing object

 “Modify” Modify an object in the editor or modification of user, group, and permission
settings in the corresponding editor/dialog

 “Remove” Delete or remove an object

 “View” Open the view of an object in the editor

Possible target of an action. This can be specific objects of the project, or the
user, group, and permission configuration.

All defined user groups (except the "Owner" group) are listed in “Permissions” with a toolbar for
configuring the permissions of a group.

Actions

Permissions

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1152

 Granted The action, which is selected in the actions view, on the selected target(s) is granted for
the selected group.

 Denied The action, which is selected in the “Actions” view, on the selected target(s) is denied for
the selected group.

The permission that executes the actions, which are selected in the “Actions” view, on
the selected targets has not been defined explicitly. However, the actions are granted by
default; for example, because the corresponding permissions have been granted to the
parent object. Example: The group has the permission for the object "myplc". As a result,
it also has the permission by default for the object "myplc.pb_1".

The action, which is expanded in the actions view, on the selected targets has not been
denied explicitly. However, it is denied by default; for example, because it has been
denied to the parent object.

No symbol There are currently multiple actions selected in the Actions view for which the group
does not have the same permission.

Toolbar:

 “Grant” The selected action on the selected target object is granted explicitly for the selected
group.

 “Deny” The selected action on the selected target object is denied explicitly for the selected
group.

 “Clear” The permission for the selected action on the selected target object is reset to the default
value for the selected group.

“Export/Import” Opens a menu with the commands
● “Export all permissions”
● “Export selected permissions”
● “Import permissions”

“Export all permissions” Exports all actions and their configured access permissions of the current project
to a user-specific file of data type *.perms.

To do this, the “Export Permissions” dialog opens for you to specify a file name
and to select a location in the file directory. The default file type is Permissions
(*.perms).

“Export selected permissions” Exports all selected actions and their configured access permissions of the cur-
rent project to a user-specific file of data type *.perms.

To do this, the “Export Permissions” dialog opens for you to specify a file name
and to select a location in the file directory. The default file type is Permissions
(*.perms).

“Import permissions” The contents of a *.perms file is merged with the actions and permissions of
the current project. Groups that are part of the file but not part of the project are
ignored. The actions and permissions are aligned by name.
To do this, the “Import Permissions” opens for you to select the *.perms file
from the file system.

See also
● Ä Chapter 1.4.1.5.5 “Protecting Objects in the Project by Access Rights” on page 204

Dialog Box 'Prepare Value'
Function: This dialog box is used for preparing a value for a forced variable. CODESYS
executes the prepared action with the next forcing.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1153

CODESYS opens the dialog box in the following situations:
● When clicking in the field “Prepared value” of a forced variable in the declaration section
● When clicking in the inline monitoring field of a forced variable
● When clicking in the field “Prepared value” of a forced variable in the monitoring window

“Prepare a new value for the
next write or force operation”

Value that CODESYS writes to the variable with the next force operation

“Remove a preparation with a
value”

CODESYS deletes the prepared value.

“Release the force, without
modifying the value”

CODESYS retains the forced value and ends forcing. CODESYS marks the
variable <Unforce>.

“Release the force and restore
the variable to the value it had
before forcing it”

CODESYS resets the forced value and ends forcing. The variable is marked with
<Unforce and restore>.

See also
● Ä Chapter 1.4.1.20.3.7.16 “Command 'Force Values'” on page 1053

Dialog 'New Breakpoint'
Function: In the dialog, you define the settings for a new breakpoint or data breakpoint. It is
identical to the “Breakpoint Properties” dialog which is used in the “Breakpoints” view.
Call:
● “Debug è New Breakpoint”
● “Debug è New Data Breakpoint”

Requirement: The application is in online mode.

The dialog defines the requirements for which program processing should halt at a breakpoint.

NOTICE!
Using conditional breakpoints slows down code execution, even when the con-
dition does not yield TRUE.

Conditional breakpoints required a CODESYS runtime >= V3.5.4.0.

Table 171: “Tasks”
“Break only when the
breakpoint is hit in one of the
following tasks”

: CODESYS evaluates the breakpoint only if it is reached by specific tasks.
The required tasks must be activated.
For example, you can define a single debug task and also prevent other tasks
that use the same block from being affected when debugging.

Tab 'Condition'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1154

Table 172: “Hit Count”
“Hit Count” “Break always”: The program always halts at this breakpoint.

Alternative: The program halts at the breakpoint when the breakpoint has been
hit as often as defined in the following (type in the required hit count or select it
from the number list):
● “Break when the hit count is equal to”
● “Break when the hit count is a multiple of ”
● “Break when the hit count is greater than or equal to”

Table 173: “Condition”
“Break, when true” : CODESYS evaluates the specified condition and halts the program at the

breakpoint only when the result yields TRUE. You can define a condition as a
valid Boolean expression. Examples: x>100, x[y]=z, a AND b, boolVar.

Requirement: This is used for the properties of a data breakpoint.

The function of data breakpoints depends on the target system. Currently, data
breakpoints are possible only with the CODESYS Control Win V3.

On the tab, the variable or memory address is specified for which the data breakpoint is set or will be set.

“Break execution when the
value of the variable or
address changes”

● Input of a qualified variable name
● : Selection of a variable in the “Input Assistant” dialog, in the “Watch

Variables” category
Examples: variable: PLC_PRG.fb_DoSth.dwVariable; address: 16#12A,
0x12A, 129

“Size” Number of bytes of the specified variable or memory address above which
should be monitored for changes. When a new variable or memory address is
specified, a value that matches the data type or memory is set automatically at
first.
Note: The “Size” and quantity depend on the target system. For the CODESYS
Control Win V3, a maximum of four data breakpoints with a maximum size of 8
bytes can be defined.
Example: 4 for data type DWORD
Example: 2 for data type DWORD: Only the two first bytes of the variable are
monitored.

Here. an existing breakpoint or data breakpoint can be converted into an execution point.

Tab 'Data'

Tab 'Execution
Point Settings'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1155

“Execution point (execution
does not stop at breakpoint)”

: The breakpoint becomes an execution point. Processing does not halt at this
point and the given code is executed.

● Execution point of a breakpoint: activated: ; deactivated:
● Execution point of a data breakpoint: activated: ; deactivated:

“Execute the following code” Code that is executed when the execution point is reached.
Looping structures (For, While) and IF or CASE expressions are not possible.

“Print a message in the device
log”

This option is available only when you select the “Enable logging in breakpoints”
option in “Project Settings è Compile Options”.
CODESYS can print variables with the placeholder {variable name} in the mes-
sage text.

Requirement: The command “New breakpoint” was selected.

“POU” POU of the active application where the breakpoint is placed.

“Position” Position of the breakpoint in the POU. Entry as row and column numbers (text
editor) or as network or element numbers.

“Instances” In the case of function blocks, you have to define whether the breakpoint should
be set in the implementation or in an instance.

 CODESYS sets the breakpoint in the instance. For this option, select
“Instance Path”.

 CODESYS sets the breakpoint in the implementation.

“Enable breakpoint
immediately”

: The breakpoint is activated.

: The breakpoint is not activated. To activate later, click the button in the
“Breakpoints” view.

See also
● Ä Chapter 1.4.1.20.4.5 “Dialog 'Breakpoint Properties'” on page 1151
● Ä Chapter 1.4.1.11.2 “Using Breakpoints” on page 395

Dialog 'Monitoring Range'
Function: This dialog restricts the range of array elements whose values are displayed during
monitoring.
Call: Click in the column field “Data Type” that belongs to the array variable.
Requirement: A POU is in online mode and is being monitored. In addition, a variable of the
POU has the data type “ARRAY”.

“Valid range” The validity range of the array elements that are monitored.
Example of a three-dimensional array: [1..10][-3..3][-10..10]

“Maximum number of array
elements”

Number of elements of the array variables
Example: 1470

When you edit one of the settings “Start”, “End”, or “Scroll range of 1000 elements”, both of the other settings are
adapted automatically.

Tab 'Location'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1156

“Start” Index of the first array element whose value is displayed.

“End” Index of the last array element whose value is displayed.

“Scroll range of 1000
elements”

Scrollbar for selecting a range from the set of array elements.

See also
● Ä Chapter 1.4.1.12.1.1 “Calling of monitoring in programming objects ” on page 410

Dialog 'Properties'
1.4.1.20.4.10.1 Dialog Box 'Properties' - 'Common'....................................... 1157
1.4.1.20.4.10.2 Dialog 'Properties' - 'Boot Application'................................... 1158
1.4.1.20.4.10.3 Dialog 'Properties' - 'Encryption'.. 1158
1.4.1.20.4.10.4 Dialog 'Properties' - 'Build'... 1159
1.4.1.20.4.10.5 Dialog 'Properties' – 'Build' (C-integration)............................ 1160
1.4.1.20.4.10.6 Dialog 'Properties' - 'Access Control'..................................... 1161
1.4.1.20.4.10.7 Dialog 'Properties' - 'External file'.. 1161
1.4.1.20.4.10.8 Dialog Box 'Properties' - 'Bitmap'... 1162
1.4.1.20.4.10.9 Dialog 'Properties - Application Build Options'....................... 1162
1.4.1.20.4.10.10 Dialog 'Properties' - 'Target memory settings'...................... 1163
1.4.1.20.4.10.11 Dialog 'Properties' - 'Network Variables'............................... 1163
1.4.1.20.4.10.12 Dialog 'Properties' - 'Network Settings'................................ 1165
1.4.1.20.4.10.13 Dialog 'Properties' - 'CFC Execution Order'......................... 1165
1.4.1.20.4.10.14 Dialog 'Properties' - 'SFC Settings'...................................... 1166
1.4.1.20.4.10.15 Dialog 'Properties' – 'Link to File'... 1166
1.4.1.20.4.10.16 Dialog 'Properties' - 'Cam'.. 1167
1.4.1.20.4.10.17 Dialog 'Properties' - 'Image Pool'... 1168
1.4.1.20.4.10.18 Dialog 'Properties' - 'TextList'... 1169
1.4.1.20.4.10.19 Dialog 'Properties' - 'Options'... 1169
1.4.1.20.4.10.20 Dialog 'Properties' - 'Monitoring'.. 1170

This dialog box is for the configuration of the properties of an object in CODESYS. In addition,
depending on the object, it contains different tabs that each handle a category of properties.
Call: Menu “View”, context menu of the object in the “Devices”, “POUs” or “Modules” view.

Dialog Box 'Properties' - 'Common'
Function: This dialog box shows common information about the selected object.
Call: Main menu “View è Properties”, or context menu of the object (“Common”).
Requirement: An object is selected in the device tree or POUs view.

Table 174
“Name ” Object name as shown in the device tree or POUs view

“Object type ” Type of object (for example, POU, application, or interface)

“Open with ” Type of editor to display or edit the object

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1157

Dialog 'Properties' - 'Boot Application'
Function: The settings on this tab define when and how a boot application is created from the
application.
Requirement: The device supports the settings.
Call: Select the application object; context menu: “Properties”; menu bar: “View è Properties”,
“Boot Application” category

“Create implicit boot
application on download”

A boot application is created automatically when downloading the application.

“Create implicit boot
application on Online Change”

A boot application is created automatically when for an online change.

“Remind boot application on
project close”

Before closing the project, CODESYS prompts to create the boot application.

“Verify boot application after
creation”

After the boot application is created, an independent service checks whether or
not the boot application has been created correctly.

Regardless of the presets defined here, you are always able to create a boot
application explicitly when you login.

See also
● Ä Chapter 1.4.1.10.6 “Generating boot applications” on page 391
● Ä Chapter 1.4.1.20.3.6.6 “Command 'Online Change'” on page 1033

Dialog 'Properties' - 'Encryption'
Function: The dialog contains the properties of the application for encryption. If the CODESYS
Security Agent is installed, then you can start a wizard for the encryption of downloads, online
changes, and boot applications.
Call:
● Menu bar: “View è Properties”
● Context menu of an application object

Table 175: “Encryption Technology”
If the “Enforce encryption of downloads, online changes and boot applications” option is selected in the “Security
Screen” view in the “Security level” group, then the encryption technology is set to “Encryption with certificates”
and cannot be changed in this dialog.

“No Encryption”

“Simple Encryption” You can download the boot application to the controller only when the defined
dongle (license key) is connected to the computer.
The dongle is provided by ABB AG or by the respective hardware manufacturer.
The firmcode is displayed. Type in the delivered product code.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1158

“Encryption with license
management”

You can download the boot application to the controller only after you have
specified the product code and firmcode, and the respective dongle is connected
to both the development computer and the controller. You receive the codes from
the vendor that manages the licenses.

“Encryption with certificates” You can download the boot application to the controller only when a valid certifi-
cate exists for it. The “Certificates” group is enabled. See the description below.
The option is already selected if the “Enforce signing of downloads, online
changes and boot applications” option is selected on the “User” tab of the
“Security Screen” view.

Table 176: “Certificates”
Note: If the “Enforce encryption of downloads, online changes and boot applications” option is selected in the
“Security Screen” view in the “Security level” group, then the encryption technology is set to “Encryption with
certificates” and cannot be changed in the “Properties” dialog.

: The “Certificate Selection” dialog opens. Here you can select previously installed
certificates of devices for which the encryption of download, online change, and
boot application is enabled. The list can contain several entries if several devices
are authorized to run this application.

“Digitally sign application code” The application is signed with a digital signature. The certificate for the digital
signature is specified in the “Security Screen” view on the “User” tab.

Area for the display of the
selected certificates with corre-
sponding information

Information per certificate:
● “Issued for”
● “Issued by”
● “Valid from”
● “Valid until”
● “Thumbprint”

“Encryption Wizard” This button is available only if the CODESYS Security Agent is installed. It starts
the wizard with the same name. See the help for CODESYS Security Agent in
this case.

See also
● Ä Chapter 1.4.1.8.17 “Encrypting an application” on page 294
● Ä Chapter 1.4.1.20.3.3.18 “Command 'Security Screen'” on page 995
● Help about CODESYS Security Agent

Dialog 'Properties' - 'Build'
Symbol:
Function: The dialog contains options for building (build operation) the object.
Call: Menu bar: “View è Properties”; context menu of the object in the device tree

Name Description
“Exclude from build” : This object and recursively its child objects are not considered for the next

compile process.
The object entry is displayed in green fonts in the “Devices” or “POUs” view.

“External implementation”

“(Late link in the runtime
system) ”

: CODESYS does not generate any code for this object when compiling the
project. The object is linked as soon as the project is running on the target
system, provided it is available there (for example, in a library).
The object name is postfixed with (EXT) in “Devices” or “POUs” view.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1159

Name Description
“Enable system call” : A system call (runtime system) for functions is possible.

Background: As opposed to CoDeSys V2.3, the ADR operator in V3 can be used
with function names, program names, function block names, and method names.
It replaces the INSTANCE_OF operator.
BUT: It is not possible to call function pointers from within CODESYS.

“Link always” : The object is marked by the compiler and therefore always included in the
compile information. This means that it is always compiled and downloaded to
the PLC.
Note: The pragma {attribute 'linkalways'} can also be used to instruct
the compiler to always include an object.

“Compiler defines” Here you can specify defines or conditions for compiling the object (conditional
compile). You can also type in the expression expr, which is used in these
kinds of pragmas. Multiple entries are possible as a comma-separated list (see
{define} statements).

Example: hello, test:='1'

“Additional compiler definitions from the device description”

“Defined in device” List of compiler definitions that originate from the device description. These
compiler definitions are used in the build if they are not listed in the “Ignored
definitions” field.

“Ignored definitions” List of compiler definitions from the device description that are not used in the
build.

Copies the selected compiler definition from the “Defined in device” field to the
“Ignored definitions” field.

Moves the selected compiler definition from the “Ignored definitions” field to the
“Defined in device” field. The compiler definition is used in the build.

See also
● Ä Chapter 1.4.1.19.6.3 “Conditional Pragmas” on page 732
● Ä Chapter 1.4.1.19.6.2.24 “Attribute 'linkalways'” on page 708

Dialog 'Properties' – 'Build' (C-integration)
Function: In this dialog, you configure the build environment and the necessary data for the
integration of the C development environment.
Call: Main menu “View”, context menu of the object “C Code Module”

Requirement: The object “C Code Module” is selected in the device tree.

NOTICE!
The dialog in this form is valid only for CODESYS Control Win V3 and Visual
Studio. For other environments, the dialog can look different or may not even be
available at all.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1160

“Visual Studio location” Installation path of Visual Studio on the hard disk
You can also select the path with the input assistant or search for it with the
magnifying glass.

“Windows SDK location” Installation path of Windows SDK on the hard disk
You can also select the path with the input assistant or search for it with the
magnifying glass.

“Temporary build folder
Location”

Path on the hard disk for the temporary build files

See also
● Ä Chapter 1.4.1.8.10 “Integrating C Modules” on page 275

Dialog 'Properties' - 'Access Control'
Function: The dialog defines the access rights of user groups for objects.
Call: Main menu “View è Properties”, context menu of an object in the view “Device” or
“POUs”.
Requirement: An object is selected in the view “Device” or in the view “POUs”.

“Groups, actions and permissions” A table which displays the following user groups access rights on
objects:
● “View”
● “Modify”
● “Remove”
● “Add/remove children”

Perform a double click on the access right symbol to open the drop
down list with the available rights.

See also
● Ä Chapter 1.4.1.5.5 “Protecting Objects in the Project by Access Rights” on page 204
● Ä Chapter 1.4.1.20.4.6 “Dialog 'Permissions'” on page 1152

Dialog 'Properties' - 'External file'
Function: The dialog is used to view and edit the properties of the external file. The properties
were defined when the object was created. Changed properties are saved by pressing the “OK”
button.
Call: Menu bar: “View è Properties”; context menu of the object
Requirement: The object of the external file is selected in the “Devices” view or the “POUs”
view.

Table 177
“What do you want to do with the external file?”

“Remember the link” The file is available in the project only as long as it exists in the defined file path.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1161

“Remember the link and
embed into project”

CODESYS saves an internal copy of the file in the project, as well as the link to
the defined file path. The update option selected below applies as long as the
external file exists there. Otherwise CODESYS uses the version saved in the
project.

“Embed into project” CODESYS saves only one copy of the file in the project. There is no longer a link
to the external file.

Table 178: “When the external file changes, then”
“Reload the file automatically” If the external file changes, then CODESYS updates the file in the project.

“Prompt whether to reload the
file”

If the external file changes, then a dialog prompt opens whether CODESYS
should also update the file in the project.

“Do nothing” The file remains unchanged in the project, even if the external file changes.

Table 179: “Linked File”
Requirement: Either the “Remember the link” option or the “Remember the link and embed into project” option is
selected.

The following information about the linked file is displayed: “Name”, “Location”, “Size”, “Changed”.

“Display File Properties” Clicking this button opens the default “Properties of <file name>” dialog, which
you can also open in the Windows file system by right-clicking the file.

Table 180: “Embedded file”
Requirement: Either the “Remember the link and embed into project” option or the “Embed into project” option is
selected.

Display of the following information about the embedded file: “Size” and “Changed”

“Update the embedded file” : If the external file that was added to the project is changed in the specified
file path, then CODESYS updates the embedded file in the project.

See also
● Ä Chapter 1.4.1.20.2.7 “Object 'External File'” on page 838

Dialog Box 'Properties' - 'Bitmap'
Function: The dialog is for assigning a bitmap file to the object. The image will be used in the
graphic view of the Library Manager and in the Toolbox view of the FBD/LD/IL editor.
Call: Main menu “View è Properties”, context menu of the object
Requirement: The object is selected in the view “Devices” or in the view “POUs”

“Render pixels of this color
translparently: ”

The selected color will be displayed transparently.

Dialog 'Properties - Application Build Options'
Function: The dialog includes settings that CODESYS uses for creating a boot application for
the controller.
Call: Menu bar: “View è Properties”; context menu of an application object

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1162

“Download application info” This feature requires compiler version >=3.5.0.0, runtime version >=
3.5.0.0.
The information about the application contents is also downloaded to
the PLC. We recommend that you keep this option enabled because
it allows for a difference check between the current application and
the application on the PLC. This compares the number of blocks,
data, and memory locations.
To get the information about the differences, click “Details” in the
“Applications” tab of the device editor. This is also in the message
view that opens when you are downloading an application to the
PLC when it is different from the one already on the PLC.

“Stop parent application in case of
exception”

Available for applications with a parent application.

“Dynamic memory settings” Memory is allocated dynamically for the application, for example
when using the operator __NEW. In this case, define the “Maximum
size of memory (bytes)”.
Caution: The entire memory is not available for creating objects
dynamically. Instead, the system always uses part of it for manage-
ment information.

See also
● Ä Chapter 1.4.1.10.4 “Generating Application Code” on page 389
● Ä Chapter 1.4.1.10.6 “Generating boot applications” on page 391
● Ä Chapter 1.4.1.20.2.1 “Object 'Application'” on page 819

Dialog 'Properties' - 'Target memory settings'
Function: The dialog allows for changing the memory settings of the target device.
Call: Menu bar: “View è Properties”; context menu of the application
Requirement: The application is selected in the “Devices” view.

“Override target memory
settings”

: The memory settings stored in the device description are overridden by the
values specified in “Input size”, “Output size”, and “Memory size”.
Note: If the memory settings of the target device are changed, then it is no
longer possible to log in to an existing application on the target device, nor is it
possible to perform an online change.

“Input size”

“Output size”

“Memory size”

Input fields for the memory sizes used to override the values
"memory-layout\\input-size", "memory-layout\\output-size", and
"memory-layout\\memory-size" stored in the device description.

Requirement: The “Override target memory settings” option is selected.

See also
● Ä Chapter 1.4.1.20.2.1 “Object 'Application'” on page 819

Dialog 'Properties' - 'Network Variables'
Symbol:
Function: In this dialog, you define network properties for the variable list that is selected in
the device tree. Furthermore, any variables in it that are declared as network variables are also
available.
Call: “Context menu of variable list in device tree è Properties”, “Network Variables” tab

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1163

“Network type” UDP

“Task” Task of the current application that controls the variables to be sent.
CODESYS always sends the variables at the end of a task cycle.

“List identifier” Used to identify the network variable list. Must be unique

“Pack variables” The size of the packages (telegrams) that are transmitted depends
on the network type. In the case of “UDP”, a package is 256 bytes.

: CODESYS bundles the variables for sending in packages in
order to reduce as much as possible the number of packages to
send. In the case of variables of type array or structured data types,
this can lead to the splitting of the variables into multiple telegrams.
As a result, data inconsistencies are possible within these variables,
even if the variable size is smaller than the package size.

: CODESYS generates one package per variable.

“Transmit checksum” : A checksum is provided for each variable package. The receiver
checks the checksum to make sure that the variable definitions
match from the sender and receiver. A package with non-matching
checksums is not accepted.

“Acknowledgement” : CODESYS sends an acknowledgement message for each
received data package. If the sender does not receive a confirmation
before it sends again, then an error is written to the diagnostic struc-
ture.
Note: For the NetVarUdp library version 3.5.7.0 and later, a receiver
channel is no longer assigned when confirmed transfer is not
selected. In this way, network variable exchange is also possible
between two controllers on one hardware device .

“Cyclic transmission”, “Interval” CODESYS sends the variables within the defined interval. Example
for time definition: "T#70ms".

“Transmit on change”, “Minimum gap” : CODESYS sends the variables only if their values have changed.
You can use "minimum gap" to define the least amount of time
between two transmissions.

“Transmit on event”, “Variable” : CODESYS sends the variables as soon as the defined variable
yields TRUE.

“Settings” Protocol-specific settings; possible entries depend on the network
library.
“Port”: Number of the port that CODESYS uses for data exchange
with other network units. The “Default value” is "1202". You can
change the current value in the “Value” field at any time. Select the
field, press the [Space Bar], and type the value.
Caution: The other nodes in the network must define the same port.
If more than one UDP connection is defined in the project, then the
port numbers in all configurations are adapted to this value.
“Broadcast Adr.”: The “Default value” is 255.255.255.255, which
means that data exchange will take place with all network units.
You can change the current value in the “Value”: select the field,
press the [space bar], and type the address or address range of
a subnetwork (for example, 197.200.100.255 when communica-
tion should be with all nodes that have an IP address in the range
197.200.100.x.

See also
● Ä Chapter 1.4.1.9.3 “Network Variables” on page 360
● Ä Chapter 1.4.1.9.3.1 “Configuring a Network Variable Exchange” on page 361
● Ä Chapter 1.4.1.20.2.17 “Object 'Network Variable List (Receiver)'” on page 880
● Ä Chapter 1.4.1.20.2.16 “Object 'Network Variable List (Sender)'” on page 880

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1164

Dialog 'Properties' - 'Network Settings'
If the device supports the network functionality, then the current network settings for a GNVL
(global network variable list) can be displayed and changed in the “Properties” dialog of the
object. These are the settings that were used when adding the GNVL in the “Add Network
Variable List (Receiver)” dialog.
See also
● Ä “Dialog Box 'Add Network Variable List (Receiver)'” on page 880
● Ä Chapter 1.4.1.9.3.1 “Configuring a Network Variable Exchange” on page 361

Dialog 'Properties' - 'CFC Execution Order'
Function: The tab switches the mode of the execution order for CFC objects.
Call: Context menu: “Properties” of a CFC object in the “Devices” view or “POUs” view

“Execution order” In the CFC editor, you position the elements and therefore also the networks
freely. Two modes are available to prevent the execution order in the CFC POU
from being undefined.

“Auto Data Flow Mode” In this mode, the execution order is determined automatically by data flow, or
in case of ambiguity, by network topology. The POUs and the outputs are num-
bered internally. The networks are executed from top to bottom and left to right.
Advantage: The automatically defined execution order is optimized by time and
by cycle. You do not need any information about the internally managed execu-
tion order during the development process.
The following commands are provided afterwards in the “CFC è Execution
Order” menu:
● “Display Execution Order”
● “Set Start of Feedback”

The elements in the CFC editor are displayed without markers and without num-
bering. It is not possible to change the execution order manually. For networks
with feedback, you can also set a starting point.

“Explicit Execution Order
Mode”

In this mode, you can define the execution order explicitly. To do this, the ele-
ments are displayed in the CFC editor with markers and numbering, and menu
commands are provided for defining the order.
The following commands are provided in the “CFC è Execution Order” menu:
● “Send to Front”
● “Send to Back”
● “Move Up”
● “Move Down”
● “Set Execution Order”
● “Order by Data Flow”
● “Order by Topology”

Note: Up to CODESYS V3.5 SP1, this was the usual behavior of CFC POUs.
Pay attention that it is your responsibility to adapt the execution order and
assess the consequences and impacts. This is another reason why the execu-
tion order is always displayed.

“Apply to All CFCs” Changes the mode for all other CFC objects in the project to the mode selected
in the list

Tab 'CFC Execu-
tion Order'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1165

See also
● Ä Chapter 1.4.1.8.3.2.1 “Automatic Execution Order by Data Flow” on page 242
● Ä Chapter 1.4.1.20.3.12.10 “Command 'Set Start of Feedback'” on page 1092
● Ä Chapter 1.4.1.20.3.12.11 “Command 'Send to Front'” on page 1092
● Ä Chapter 1.4.1.20.3.12.12 “Command 'Send to Back'” on page 1093
● Ä Chapter 1.4.1.20.3.12.13 “Command 'Move Up'” on page 1093
● Ä Chapter 1.4.1.20.3.12.14 “Command 'Move Down'” on page 1094
● Ä Chapter 1.4.1.20.3.12.16 “Command 'Order by Data Flow'” on page 1095
● Ä Chapter 1.4.1.20.3.12.17 “Command 'Order by Topology'” on page 1095

Dialog 'Properties' - 'SFC Settings'
Function: The dialog defines the default settings for all POUs used in the project, which are
programmed in SFC.
Call: Main menu “View è Properties”, context menu of a SFC POU in the view “Device” or
“POUs”.

List of all possible SFC flags “Use” : The SFC flag is activated and will be considered in the program
execution.

“Declare” : The SFC flag is declared automatically.
If “Declare” is activated, but “Use” is not activated, the variable will be declared
but the flag has no effect in the program execution.
Hint: If you have manually declared a SFC variable you have to disable the dec-
laration of this flag in the “SFC Settings”. Otherwise the automatically generated
flag will overwrite the manually declared flag.
Hint: A automatically declared flag variable is only visible in the online mode in
the declaration part of the SFC editor.

“Use defaults” : The settings of this dialog overwrites the “SFC settings” of the single POUs.

See also
● Ä Chapter 1.4.1.19.1.4.6 “SFC Flags” on page 481

Table 181: “Code generation”
“Calculate active transitions
only”

: CODESYS generates code for the currently active transition only.

Dialog 'Properties' – 'Link to File'
Function: The dialog defines the link of an external file with the contents of the global variable
list (GVL). You can either export the GVL to an external file or import it from an external file.
Call: Menu bar: “View è Properties”; context menu of an object of type “Global Variable List”

Flag

Build

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1166

“File name” Input field of the file path

“Export before compile ” : Before each compile of the project (for example with [F11]), CODESYS saves
a file with the extension gvl in the path, which is specified in the “File name”
field.

“Import before compile ” : The export file which is specified in the “File name” field is read automati-
cally before each project compile. Therefore you can import a GVL which was
exported from another project, for example to set up a communication by means
of network variables.

See also
● Ä Chapter 1.4.1.20.2.10 “Object 'GVL' - Global Variable List” on page 871
● Ä Chapter 1.4.1.9.3.1 “Configuring a Network Variable Exchange” on page 361

Dialog 'Properties' - 'Cam'
Function: Use this dialog to define the global variables of the cam.

Table 182: “Dimensions”
“Master start/end position” The start and end positions of the master define the range of the master values

and therefore the scale of the horizontal axis of the cam. The default settings are
given in angular degrees with 0 and 360 as limiting values.

“Slave start/end position” The associated slave positions are determined by the graph type that is defined
for the cam. However, the segment depicted by the curves (this is also the scale
of the vertical axis) can be defined by the slave start and end positions given
here.

Table 183: “Period”
These settings affect the work in the cam editor and cam table. Depending on these parameters, the slave start
point is adjusted automatically when the end point is changed, as well as the other way around. This adjustment
optimizes the period transition to be as smooth and jerk-free as possible.

“Smooth transition” : The values for position, velocity, and acceleration are adjusted automatically.

“Slave period” Indicates when the slave period is repeated mechanically. The slave position at
the start and end of the master period may then be in an interval of a whole
number multiple of this value.
This value is effective only if the “Smooth transition” check box is selected.

Table 184: “Continuity Requirements”
Activation of these options for the continuity of the curve does not have any effect when editing the cam. It does,
however, prompt a continuity check, which reports any violations to the message view (CAM). It is not possible to
edit jumps in the position curve. The default setting also requires the continuity of velocity and acceleration. You
can clear these options, for example in the special case of a curve that consists of only linear segments. However,
this will lead to kinks in the position curve. By default, the jerk (3rd derivative) is not tested for jumps.

“Position”

: The entire curve is tested for jumps.
“Velocity”

“Acceleration”

“Jerk”

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1167

Table 185: “Compile Format”
When compiling, MC_CAM_REF structure variables are generated. A cam is described according to the following
options:

“polynomial (XYVA)” Polynomial description of the individual points consisting of the master position,
slave position, slave velocity, and slave acceleration.

“one dimensional point array” 1D table of slave positions

“two dimensional point array” 2D table of composite master/slave positions

“Elements” Number of elements in the arrays. This array has already been created in
SM3_Basic for the default cases “128” and “256”. If you type in another value,
you must create the structure in your application (see the following example).

TYPE SMC_CAMTable_LREAL_720_2 :
STRUCT
 Table: ARRAY[0..719] OF ARRAY[0..1] OF LREAL;
 fEditorMasterMin, fEditorMasterMax: REAL;
 fEditorSlaveMin, fEditorSlaveMax: REAL;
 fTableMasterMin, fTableMasterMax: REAL;
 fTableSlaveMin, fTableSlaveMax: REAL;
END_STRUCT
END_TYPE

Example of an
array with 720
elements

Dialog 'Properties' - 'Image Pool'
Function: The dialog allows for setting the basic properties of the selected image pool.
Call: “View è Properties” of an “Image Pool” object type; context menu of an “Image Pool”
object type.

“Download only used images” : Instead of loading all images from the image pool, CODESYS loads only the
images that are actually used in the application on the PLC.

“Download by visualization” : The image pool is downloaded with the visualization to the controller.

“Internal” : CODESYS does not provide the image pool in the “ToolBox” view. You
cannot drag these images to the visualization.

Table 186: “Symbol library settings”
“Mark library as symbol library” Marks the image pool as a symbol library for use in a visualization. The symbol

library receives the key VisuSymbolLibrary = TRUE as file property in the
project information. The VisuElements library is inserted automatically as a
placeholder library in the “POUs” pool of the Library Manager.
Requirement: A library project is open.
CODESYS displays symbol libraries that are installed in the repository in the
“Project Settings” (“Visualization” category, “Symbol Libraries” tab).

“Textlist for symbol translation” Select the text list from the drop-down list that contains the translated texts for
the image pool.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1168

See also
● Ä Chapter 1.4.1.20.2.13 “Object 'Image Pool'” on page 873
● Ä Chapter 1.4.1.8.9 “Using image pools” on page 274
● Ä Chapter 1.4.1.20.4.11.9 “Dialog 'Project Settings' - 'Visualization'” on page 1180

Dialog 'Properties' - 'TextList'
Function: The dialog allows for setting the basic properties of the selected text list.
Call: “View è Properties” of an “Text List” object type; context menu of an “Image List” object
type.

“Download by visualization” : The text list is downloaded with the visualization to the controller.

“Internal” : The text list can be used only in a library. It is not available in an ordinary
CODESYS project.

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

Dialog 'Properties' - 'Options'
Function: This dialog provides the settings for monitoring an login for objects of type device.
The availability of the options depends on the device description.
Call: Context menu of the device, or main menu “View è Properties”, if the device is selected.

“Monitoring interval (ms)” Interval of the monitoring (10 ms - 1000 ms)

Table 187: “Interactive Login Mode”
This mode is used to prevent an accidentally login to a different controller.

“None” No interaction with the user during login. Corresponds to the behavior of pre-
vious versions.

“Enter ID” During login CODESYS asks to enter an ID. The ID is stored in the controller.
Without a valid ID no login is possible.
When login a second time, CODESYS does not ask again for the ID if the
computer name, the user name, the device name and the device address have
not changed. The information is saved in the project options.

“Press key” During login a dialog prompts and requests the user to press a key on the
controller. The timeout for this action is saved in the device description.

“Wink (= blink an LED)” During login a led blinks on the connected controller.

Table 188: “Symbol Configuration”
“Access variables in sync with
IEC tasks”

: Default setting, consistent access is not permitted

: Consistent access is permitted
The setting only will take effect when all applications and boot applications are
re-downloaded to the controller.
Note: If the option is activated, then the jitter for all IEC applications may
increase on this device! The consistent access can disturb the real-time capa-
bility.

Options (Con-
troller)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1169

Siehe also
● Ä Chapter 1.4.1.20.2.8 “Object 'Device' and Generic Device Editor” on page 839
● Ä Chapter 1.4.1.20.2.25 “Object 'Symbol Configuration'” on page 927

Dialog 'Properties' - 'Monitoring'
Function: The tab contains options for the monitoring of transitions in SFC.
Call: Select transition object, click “Properties”; menu bar: “View è Properties”.

“Enable monitoring” : An implicit variable is created for the transition, which is then always given
the current property value when the application calls the Transition method. The
value stored last in this variable is displayed in the monitoring.

“Monitoring using call” : The transition to be monitored is read by directly calling the transition.
Note: When you activate this option, you have to consider possible side effects.
These kinds of side effects can occur if additional operations are implemented in
the transition.

See also
● Ä Chapter 1.4.1.20.2.18.10 “Object 'Transition'” on page 903
● Ä Chapter 1.4.1.19.6.2.25 “Attribute 'monitoring'” on page 709

Dialog 'Project Settings'
1.4.1.20.4.11.1 Dialog 'Project Settings' - 'SFC'... 1171
1.4.1.20.4.11.2 Dialog 'Project Settings' - 'Users and Groups'....................... 1172
1.4.1.20.4.11.3 Dialog Box 'Project Settings' - 'Compileoptions'..................... 1173
1.4.1.20.4.11.4 Dialog Box 'Project Settings' - 'Compiler Warnings'............... 1173
1.4.1.20.4.11.5 Dialog 'Project Settings' – 'Source Download'....................... 1174
1.4.1.20.4.11.6 Dialog 'Project Settings' - 'Page Setup'.................................. 1175
1.4.1.20.4.11.7 Dialog 'Project Settings' - 'Security'.. 1176
1.4.1.20.4.11.8 Dialog 'Project Settings' - 'Static Analysis Light'.................... 1177
1.4.1.20.4.11.9 Dialog 'Project Settings' - 'Visualization'................................. 1180
1.4.1.20.4.11.10 Dialog 'Project Settings' - 'Visualization Profile'................... 1181

Symbol:
Function: The object contains the basic configuration of the project. In the “Project Settings”
dialogs the configuration can be adjusted.
Call: Double click on the “Project Settings” object in the device tree, or main menu “Project
è Project Settings”.
CODESYS saves the project settings directly in the project. If a project is transferred to another
system for example the “Project Settings” object is transferred as well without the need of a
project archive.
The project settings are valid project wide. Dependent on the installed packages the dialogs
provide settings for several categories, as for example “SFC” or “User and Groups”.
See also
● Ä Chapter 1.4.1.20.3.8.4 “Command 'Package Manager'” on page 1059

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1170

Dialog 'Project Settings' - 'SFC'
Symbol:
Function: This dialog is used for configuring the settings of SFC objects. The properties of each
new SFC object automatically have the configured settings.
Call: Menu bar: “Project è Project Settings” (“SFC”).
Requirement: A project is open.

Implicitly generated variables for checking and monitoring the processing in an SFC diagram

“Active” : The corresponding variable is used.

“Declare” : The corresponding variable is created automatically. Otherwise, you have to
declare the variable explicitly if you intend to use it (“Use” is selected).

“Apply to all” In this dialog, CODESYS applies changes to existing SFC objects. CODESYS
selects the “Use defaults” check box in the properties of the SFC POUs.

NOTICE!
Automatically declared variables are visible in the declaration part of the SFC
editor only in online mode.

Table 189: “Code Generation”
“Calculate active transitions
only”

: CODESYS generates code only for currently active transitions.

Table 190: “SFC Library”
This part of the dialog is available only for compiler versions < 3.4.1.0.

“Company ”

“Title”

“Version”

Defines the SFC library that CODESYS uses by default.

“Namespace” Enables unique references to libraries. Required when various versions of the
library are available on the system. Please make sure that there are no discrep-
ancies between the namespace defined in the library manager and the name-
space defined for the individual object. The SfcIec.library data is used for
the default settings that CODESYS provides with the default profile.

Each SFC block stores the information via the library version that applied when
you added the block. This can cause you to use multiple library versions within
the same project. In order to prevent this, you are prevented from defining
specific versions of IecSfc.library (as of compiler version 3.4.1.0). The
library version, which you use for all SFC blocks in the project, is defined with
a placeholder. CODESYS resolves the placeholder depending on the compiler
version in use. The allocation of the library version to the compiler version is
defined in the library profile.

Tab 'Flags'

Tab 'Build'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1171

See also
● Ä Chapter 1.4.1.19.1.4.6 “SFC Flags” on page 481
● Ä Chapter 1.4.1.16.1 “Information for Library Developers” on page 449

Dialog 'Project Settings' - 'Users and Groups'
Symbol:
Function: This dialog is for the configuration of the user management for the current project.
Call: Menu “Project è Project Settings”, category “Users and Groups”

Displays the users and their memberships in groups

“Add” Opens the “Add User” dialog.

“Edit” Opens the “Edit User” dialog.

“Delete” An error message appears if you attempt to delete the last user of a group, since
a group must have at least one member.

Table 191: “Add User / Edit User”
Input fields for setting up a new user account or changing an existing one

“Active” : You may use the user account, default

: The user cannot log in. If he attempts to login again with incorrect login data,
this can result in automatic deactivation of the account; see below: Settings.

“Memberships” List of all user groups that you have defined in addition to the group “Everyone”
(to which each new user automatically belongs).

<group name> : the new user belongs to the group.

Table 192: “Export/Import”
“Export Users and Groups” The command opens the standard dialog for saving a file in the local file system.

You can store the users and groups definitions of the project in a file *.users in
xml format.

“Import Users and Groups” Export users and groups opens the standard dialog for browsing the local file
system for a file. Search for a file with extension *.users in order to import the
users and groups definiitions, stored in this file, into the project.

Display of the groups and their members. A group can also be a member of a group.

“Add” Opens the “Add Group” dialog.

“Edit” Opens the “Edit Group” dialog.

“Delete” If you delete a group, the user accounts of the members remain unchanged.
You cannot delete the groups “Everyone” and “Owner”.

On button “Export/Import” please see above the “User” paragraph.

Tab 'User'

Tab 'Groups'

Tab 'Settings'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1172

Display of the groups and their members in a tree structure. A group can also be a member of a group.

“Maximum number of
authentication trials”

 (standard) : If the user has attempted to login with an incorrect password the
number of times specified here, the user account is deactivated.

: The number of the unsuccessful attempts is unlimited

“Automatic logoff after time of
inactivity”

: The user is automatically logged out if CODESYS does not register any user
actions by mouse or keyboard during the time period (minutes) specified here.

See also
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197
● Ä Chapter 1.4.1.20.3.4.28 “Command 'User management' – 'Log in User'” on page 1016

Dialog Box 'Project Settings' - 'Compileoptions'
Symbol:
Function: This dialog box is for configuring the compiler options.
Call: Main menu “Project è Project Settings” (“Compileoptions” category).
Requirement: A project is open.

Table 193: “Compilerversion”
“Fix Version” Defines the compiler version that CODESYS uses when compiling and down-

loading for compile (for example, “3.5.6.0” for version 3.5 SP6).

Table 194: “Settings”
“Allow unicode characters for
identifiers”

Cleared by default because using Unicode characters in identifier names is not
permitted in the IEC standard. May be required for some foreign languages (for
example, Asian languages).

“Replace constants” (default): CODESYS loads the value directly for every scalar constant (not for
strings, arrays, and structures). In online mode, CODESYS marks the constants
with a symbol that is prepended to the value in the declaration editor or moni-
toring view. In this case, access is not possible, for example by means of an ADR
operator, forcing, and writing.

: Access to constants is possible, but it prolongs the computation time.

“Enable logging in breakpoints” For breakpoints that are defined as execution points, you can create a message
text in the “Execution point settings” dialog box. CODESYS prints this text to the
device log when the application halts at the execution point.

Table 195: “Compiler Warnings”
“Maximum number of
warnings”

Refers to the warnings that CODESYS prints to the messages view.
You define the selection of displayed compiler warnings in the “Project Settings”
dialog box in the “Compiler Warnings” category.

See also
● Ä Chapter 1.4.1.20.4.11.4 “Dialog Box 'Project Settings' - 'Compiler Warnings'”

on page 1173
● Ä Chapter 1.4.1.20.2.8.8 “Tab 'Log'” on page 848

Dialog Box 'Project Settings' - 'Compiler Warnings'
Symbol:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1173

Function: This dialog box is used for selecting the compiler warnings that CODESYS displays
in the messages view during a compile process.
Call: Call: Main menu “Project è Project Settings” (“Compiler Warnings” category).
Requirement: A project is open.

You define the maximum number of listed warnings in the “Compileoptions”
dialog box.

See also
● Ä Chapter 1.4.1.20.4.11.3 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 1173
● Ä Chapter 1.4.1.20.3.5.4 “Command 'Build'” on page 1022

Dialog 'Project Settings' – 'Source Download'
Symbol:
Function: This dialog defines the compilation and the storage of the source code as a source-
code download archive on one or more controllers.
Call: “Project è Project settings” menu, “Download source code” category

A source-code download archive is a project archive with the name Archiv.prj.

The settings affect the command “Online è Load source code to connected
controller”. These settings do not affect the command “File è Load source code
to controller”.

Table 196: “Destination device”
Defines the location of the project archive.

“<name of controller>” Selected controller. CODESYS loads the project archive to this controller.
Requirement: the project contains several controllers.

“<all devices in project>” CODESYS loads the project archive to all controllers in the project.

Table 197: “Content”
Defines the contents of the project archive.

“Use compact download” : The project archive contains only that device in the project that contains the
active application.

: The project archive contains all the devices in the project

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1174

“Additional Files” Opens the “Additional files” dialog where you can select additional files for down-
loading.

Not all types of additional files are available for each project.
“Download information files” - Project information files
“Library profile” - Includes the applied profile
“Project information” - Includes the project information
“Referenced devices” - Includes all device descriptions of third party devices into
the archive
“Referenced libraries” - Includes all referenced libraries into the archive
“Referenced visualisation styles” - Includes the used styles
“Visualisation profile” - Includes the used profile
The most important types “Referenced devices” and “Referenced libraries”
should always be included, if the archive shall be usable by Automation Builder
installations without availability of the required devices or libraries.

Table 198: “Timing”
Defines the time at which CODESYS creates a project archive.

“Implicitly at program download
and online change”

Each time an application is loaded or an online change is made, CODESYS
additionally loads the project archive to the target device(s) with no further
prompt.

“Implicitly at creating boot
project”

Each time a boot application is created, CODESYS additionally loads the project
archive to the target device(s) with no further prompt.

“Implicitly at creating boot
project, download and online
change”

Each time a boot application is created, an application is loaded or an online
change is made, CODESYS additionally loads the project archive to the target
device(s) with no further prompt.

“Prompt at program download
and online change”

Each time an application is loaded or an online change is made, CODESYS
opens a prompt, where you can select whether CODESYS should load the
project archive to the controller.

“Only on demand” A prompt opens only if the command “Online è Load source code to connected
controller” is called. There you can select whether CODESYS should load the
project archive to the controller.

See also
● Ä Chapter 1.4.1.10.7 “Downloading source code to and from the PLC” on page 393
● Ä Chapter 1.4.1.20.3.6.7 “Command 'Source Download to Connected Device'”

on page 1035
● Ä Chapter 1.4.1.20.3.1.11 “Command 'Source Download'” on page 963

Dialog 'Project Settings' - 'Page Setup'
Symbol:
Function: This dialog defines the layout for the print version of the project contents. This layout
is used for the printout of the project information by clicking “File è Print” and the printout of the
project documentation by clicking “Project è Document”.
Call: Main menu “Project è Project Settings” (“Page Setup”)
You can change settings the following:
● “Paper”
● “Margins”

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1175

● “Header and Footer”
● “Document”
● “Title Page”

Table 199: “Edit Header, Edit Footer”
The headers and footers are structured in table style. You can configure rows and columns, and add text and
images to the resulting cells.

“Row spanning” Number of rows that CODESYS should merge into a single column.

“Column spanning” Number of columns that CODESYS should merge into a single row.

Opens the list of available placeholders for the “Text” field. When printing the
page, CODESYS provides the placeholders with the current values.

See also
● Ä Chapter 1.4.1.20.3.1.14 “Command 'Page Setup'” on page 964
● Ä Chapter 1.4.1.20.3.4.19 “Command 'Document' ” on page 1009
● Ä Chapter 1.4.1.20.3.1.12 “Command 'Print'” on page 963

Dialog 'Project Settings' - 'Security'
Symbol:
Function: this dialog is for the configuration of the project protection by a password, a dongle,
or a certificate.
Call: Menu bar: “Project è Project Settings” (category “Security”).

NOTICE!
If the encryption password is lost you can no longer open the project. You can
also no longer restore it.

“No protection” : The project file is not protected from unauthorized access and data manipula-
tion.
Note: We strongly recommend that you use security functionality.

: The “Password”, “Dongle”, and “Certificates” options cannot be selected.

“Integrity check” When you create a new project, this option is enabled by default.

: The project file is stored in a proprietary format and its integrity is checked
each time the project is loaded. The file may be incompatible with older versions
of the development system.
Please note that the project file is not encrypted. To better protect your data,
activate one of the encryption functions.

“Encryption” : The “Password”, “Dongle”, and “Certificates” encryption functions can be
selected.

“Password” Entering, changing and confirming the encryption password.
If you save the project with these settings you must enter the password later in
order to open the project again, even if it is to be loaded as a library reference.

“Dongle” Requirement: you have connected the CODESYS security key (dongle) to the
computer.
“Add”: The dialog “Add Registered Dongle” opens.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1176

“Registered dongles” Drop-down list of the registered dongles.

“Certificates” Certificates are used for the encryption of contents of the open project file.
Requirement: The certificates for all users who share the project must be
installed in the local memory.

: The “Certificate selection” dialog opens.

Table 200: Adding a registered dongle
“Dongle” Drop-down list of all connected dongles.

“Update” CODESYS refreshes the drop-down list.

“Flash” The LEDs of the currently selected dongle flash for two seconds (if it supports
this function).

The dongle must be connected to the computer when CODESYS loads the
project, even if it is loaded as a library reference.

See also
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197
● Ä Chapter 1.4.1.5.2 “Assigning Passwords” on page 202
● Ä Chapter 1.4.1.5.3 “Protecting Projects Using a Dongle” on page 203
● Ä Chapter 1.4.1.5.7 “Encrypting Projects with Certificates” on page 207
● Ä Chapter 1.4.1.20.4.18 “Dialog 'Certificate Selection'” on page 1215

Dialog 'Project Settings' - 'Static Analysis Light'
Symbol:
Function: This dialog activates the tests that the light version of CODESYS Static Analysis
performs each time code is generated.
Call: Menu bar: “Project è Project Settings” (“Static Analysis Light” category).

You can exclude lines of code from the static code analysis by marking
the code with the pragma {analysis ...} or the pragma {attribute
'analysis' := '...'}.

“SA0033: Unused variables” Finds variables that are declared, but not used within the compiled program
code.
For GVL variables: If there are multiple applications in one project, then only the
objects under the currently active application are affected. If there is only one
application, then the objects in the POUs view are also affected.

“SA0028: Overlapping memory
areas”

Detects the locations where two or more variables reserve the same storage
space. For example, this occurs for the following declarations: var1 AT
%QB21: INT and var2 AT %QD5: DWORD. In this case, both variables use
byte 21, which means that the memory range of the variables overlap.

“SA0006: Write access from
multiple tasks”

Detects variables that are written by more than one task.

Additional com-
pile tests

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1177

SA0004 “Multiple write access
on output”

Detects outputs that are written to more than one location.
Note: No error is reported when an output variable (VAR_IN_OUT) is written in
different branches of IF and CASE statements.

Note: A pragma cannot deactivate this rule.

“SA0027: Multiple use of
identifiers”

Detects multiple uses of a name/identifier for a variable or an object (POU) within
the scope of a project.
The following cases are detected:
● The name of an enumeration constant is the same as in another enumera-

tion in the application or used in an included library.
● The name of a variable is the same as an object in the application or an

included library.
● The name of a variable is the same as for an enumeration constant in and

enumeration in the application or an included library.
● The name of an object is the same as another object in the application.
● The name of a variable is the same as the name of a method.
● The name of an object is the same as the name of a superordinate object

("parent object").

“SA0167: Temporary function
block instances”

The test detects function block instances that are declared as temporary varia-
bles. This concerns instances that are declared in a method or in a function or as
VAR_TEMP, and therefore are reinitialized in each processing cycle and for each
POU call.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1178

SA0003: Empty statements

;
(* Comment *);
iVar;

SA0006: Concurrent access
FUNCTION_BLOCK ADD_FB
g_iTemp1 := g_iTemp1 + INT#1;
PROGRAM PLC_PRG //controlled by MainTask
g_iTemp1 := g_iTemp1 + INT#2;
g_xTemp2 := g_iTemp1 > INT#10;
PROGRAM PLC_PRG_1 //controlled by SubTask
g_iTemp1 := g_iTemp1 - INT#3;
g_xTemp2 := g_iTemp1 < INT#-10;

SA0004 Multiple write access on output
VAR_GLOBAL
 g_xVar AT %QX0.0 : BOOL ;
 g_iTest AT %QW0 : INT ;
END_VAR
PROGRAM PLC_PRG
IF iCondition < INT#0 THEN
 g_xVar := TRUE;
 g_iTest := INT#12;
END_IF
CASE iCondition OF
 INT#1:
 g_xVar := FALSE;
 INT#2:
 g_iTest := INT#11;
 ELSE
 g_xVar := TRUE;
 g_iTest := INT#9;
END_CASE

SA0006: Write access from multiple tasks

FUNCTION_BLOCK ADD_FB
g_iTemp1 := g_iTemp1 + INT#1;

PROGRAM PLC_PRG // Controlled by MainTask
g_iTemp1 := g_iTemp1 + INT#2;
g_xTemp2 := g_iTemp1 > INT#10;

PROGRAM PLC_PRG_1 //Controlled by SubTask
g_iTemp1 := g_iTemp1 - INT#3;
g_xTemp2 := g_iTemp1 < INT#-10;

SA0027: Multiple use of name
PROGRAM PLC_PRG
VAR
ton : INT; // error SA0027
END_VAR

SA0029: Different notation in implementation and declaration
The PLC_PRG POU and a fnc function POU are in the device tree.

Examples

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1179

PROGRAM PLC_PRG
VAR
 iVar:INT;
 _123test_var_: INT;
END_VAR
 ivar := iVar + 1; // notation different to that in the
declaration part -> SA0029
 _123TEST_var_ := _123test_var_INT; // notation different to
that in the declaration part -> SA0029
 Fnc(); // notation different to that in the devices tree ->
SA0029
END_VAR

SA0167: Temporary function block instances
PROGRAM PLC_PRG
VAR
END_VAR
VAR_TEMP
 yafb: AFB;
END_VAR

FUNCTION Fun : INT
VAR_INPUT
END_VAR
VAR
 funafb: AFB;
END_VAR

METHOD METH: INT
VAR_INPUT
END_VAR
VAR
 methafb: AFB;
END_VAR

See also
● Ä Chapter 1.4.1.8.12.2 “Analyzing code statically” on page 283

Dialog 'Project Settings' - 'Visualization'
Symbol:
Function: The dialog is used to configure the project-wide settings for objects of type
“Visualization”.
Call: Menu bar: “Project è Project Settings”, “Visualization” category
Requirement: A project is open.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1180

Table 201: “Visualization Directories”
“Text list files” Directory which contains text lists that are available in the project to configure

texts for different languages. CODESYS uses the directory, for example to
import or export text lists.

After clicking , the “Select Directory” dialog opens which allows for the selec-
tion of a directory in the file system.

“Image files” Directory which contains image files that are available in the project. Multiple
folders are separated with a semicolon. CODESYS uses the directory, for
example to import or export image files.

After clicking , the “Select Directory” dialog opens which allows for the selec-
tion of a directory in the file system.

Table 202: “Advanced”
“Activate property handling in
all element properties”

: You can also configure a visualization element with a property in those
of its properties in which you select an IEC variable. Then CODESYS creates
additional code for the property handling when a visualization is compiled.
Requirement: Its IEC code contains at least an object of type “Interface property”
(a property).

Requirement: “Visible” is selected.

“Enable implicit checks for
visualization POUs”

: The implicit check is also performed for visualization POUs. As a result,
additional code is generated, which increases memory usage. When memory is
limited, this option should be disabled.

See also
● Object 'Property'

Table 203: “Visualization Symbol Libraries”
“Symbol libraries” List of all installed symbol libraries (example: VisuSymbols)

“Assigned” : Symbol library is selected in the project and CODESYS makes it available in
the “Visualization ToolBox” view of a visualization.

: Symbol library is installed in the library repository, but CODESYS does not
make it available in the “Visualization ToolBox” view of a visualization.

See also
● CODESYS Visualization
● Dialog 'Add Visualization'

Dialog 'Project Settings' - 'Visualization Profile'
Symbol:
Function: The dialog enables the setting of the visualization profile.

Tab 'General'

Tab 'Symbol
Libraries'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1181

ms-its:codesys.chm::/_cds_obj_property.htm
ms-its:core_Visualization.chm::/_visu_f_core_visualization.htm
ms-its:core_Visualization.chm::/_visu_dlg_add_visualization.htm

Call: Menu “Project è Project Settings”, category “Visualization Profile”

Requirement: A project is open.

Table 204: “Visualization Profile”
“Certain profile” Profile that CODESYS uses in the project and that determines the visualization

elements that are available in the project.
The selection list contains all the profiles installed so far.

Dialog 'Project Environment'
1.4.1.20.4.12.1 Dialog 'Project Environment' – 'Library Versions'................... 1182
1.4.1.20.4.12.2 Dialog 'Project Environment' - 'Compiler Version'.................. 1182
1.4.1.20.4.12.3 Dialog 'Project Environment' - 'Device Versions'................... 1183
1.4.1.20.4.12.4 Dialog 'Project Environment' – 'Visualization Profile'............. 1183
1.4.1.20.4.12.5 Dialog 'Project Environment' – 'Visualization Styles'............. 1184
1.4.1.20.4.12.6 Dialog 'Project Environment' – 'C Code Modules'.................. 1184
1.4.1.20.4.12.7 Dialog 'Project Environment' – 'Visualization Symbols'......... 1185

Function: You use this dialog for checking the actuality of the software and of the files, which
are included in the project. CODESYS checks for example the selected compiler and finds out if
there is a newer version. In such a case you can update the affected components.
Call: Main menu“Project”

Dialog 'Project Environment' – 'Library Versions'
Function: This dialog displays the libraries of the opened project for which newer versions are
available.
Call: Main menu “Project è Project Environment”, tab “Library Version ”

This dialog opens automatically when you open a project containing outdated libraries.

Table 205
The list shows the name of the outdated library with version, the currently available version and the planned
action.

“Action” Double-click inside the field to select the desired actions.

“Check for updates when
loading this project”

: Checking takes place each time the project is opened.

: Checking takes place once only.

“Set all to newest” CODESYS uses the newest available version of the library.

“OK” CODESYS performs the selected action(s).

Dialog 'Project Environment' - 'Compiler Version'
Function: This dialog shows the current compiler version of the project and provides the
capability of updating.
Call: Main menu “Project è Project Environment” (“Compiler Version” tab).

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1182

Table 206
“Current compiler version in
project”

Shows the set compiler version for the open project.

“Recommended, newest
version”

Shows the latest version.

“Action” ● “Do not update”: The compiler version of the project remains the same.
● “Update to x.x.x.x”: The selected compiler version is set for the project.

“Check for updates when
loading this project”

: CODESYS checks for new versions each time the project is opened. If there
is a new version, then the respective update dialog opens automatically.

: The compiler version is not checked. The update dialogs do not open auto-
matically.

“Set all to newest” The compiler version is set to the latest version.

Dialog 'Project Environment' - 'Device Versions'
Function: This dialog shows the devices of the open project in which there are new versions
available.
Call: Main menu “Project è Project Environment” (“Device Versions” tab)
This dialog opens automatically when you open a project that contains an outdated device.

Table 207
Names of the outdated devices and their versions, as well as the current version and the planned action.

“Action” Double-click in the field to select the required actions.

“Check for updates when
loading this project”

: The check is performed when the project is opened.

: The check is performed one time only.

“Set all to newest” CODESYS uses the latest library version.

“OK” CODESYS executes the selected actions.

Dialog 'Project Environment' – 'Visualization Profile'
Function: This dialog shows the current visualization profile of the project. The profile can be
updated here.
Call: Menu bar: “Project è Project Environment” (“Visualization Profile” tab).

“Current visualization profile in
the project”

The set visualization profile of the open project.

“Recommended, newest
profile”

The newest version.

“Action” ● “Do not update”: The visualization profile of the project remains unchanged.
● “Update to x.x.x.x”: CODESYS updates the project to the selected visualiza-

tion profile.

“Check for updates when
loading this project”

: CODESYS checks for new profiles each time the project is opened. If there is
a new version, then the respective update dialog opens automatically.

: Not test of the profile when opening the project. The update dialogs do not
open automatically.

“Set all to newest” CODESYS updates the .

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1183

See also
● Help about visualization

Dialog 'Project Environment' – 'Visualization Styles'
Function: This dialog shows the current visualization style of the project and provides the
capability of updating it.
Call: Menu bar: “Project è Project Environment” (“Visualization Styles” tab).

Table 208: “Newer versions are available for the following visualization styles currently in use”
“Visualization style” Version of the set visualization style in the open project

“Current” Current version of the visualization style (example: 3.5.6.0)

“Recommended” Recommended version of the visualization style (example: 3.5.7.0)

“Action” ● “Do not update”: The visualization style of the project remains unchanged.
● “Update to x.x.x.x”: CODESYS updates the project to the version of the

selected visualization style.

“Check for updates when
loading this project”

: CODESYS checks for new versions each time the project is opened. If there
is a new version, then the respective update dialog opens automatically.

: The version is not checked. The update dialogs do not open automatically.

“Set all to newest” CODESYS updates the version.

See also
● Help for visualization, section "Visualization style"

Dialog 'Project Environment' – 'C Code Modules'
Function: This dialog lists all C-code modules and their C-code files that have changed in the
source directory on the disk. You can update individual C-code modules here.
Call: Menu “Project è Project Environment”, tab “C Code modules”

Table 209: “The sources of the following projects changed”
“Project” Display of the C-code module with its changed C-code files in the project.

“Action” Selection option for the C-code module of the “Project” field
A double-click on the field displays all selection options:
● “Update”
● “Do not update”

For each C-code file this indicates what action is executed if you select the
action “Update” for the corresponding C-code module (“Project”).

“Delete IEC interfaces” Deletes the created IEC interface if the headers in the project have changed. In
this case you must create the IEC interface again.

“Check for updates when
loading this project”

: checking takes place each time the project is opened.

“Set all to 'newest'” CODESYS refreshes all C-code modules.

“OK” CODESYS executes the selected actions in the project.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1184

See also
● Ä Chapter 1.4.1.20.3.5.15 “Command 'Create IEC Interface'” on page 1026
● Ä Chapter 1.4.1.8.10 “Integrating C Modules” on page 275

Dialog 'Project Environment' – 'Visualization Symbols'
Function: The dialog lists installed symbol libraries and allows for you to assign symbol libraries
to a project.
Call: Menu bar: “Project è Project Environment”, “Visualization Symbols” tab
Requirement: The open project contains a visualization and has been saved with a compiler
version < 3.5.7.0. CODESYS recognizes symbol libraries in compiler version 3.5.7.0 and
higher.

“Symbol library” List of all installed symbol libraries

“Active” : Symbol library is selected for the project. CODESYS provides its symbols in
the “Visualization Toolbox” view.

: Symbol library has been previously installed only in the library repository.

See also
● Help for visualization, "Using the symbol library in the visualization" chapter

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1185

Dialog 'Options'
1.4.1.20.4.13.1 Dialog 'Options' - 'Automation Builder'................................... 1186
1.4.1.20.4.13.2 Dialog 'Options' - 'C Compiler'... 1187
1.4.1.20.4.13.3 Dialog 'Options' - 'CFC Editor'... 1189
1.4.1.20.4.13.4 Dialog 'Options' – 'Declaration Editor'.................................... 1190
1.4.1.20.4.13.5 Dialog 'Options' – 'Device Description Download'................. 1190
1.4.1.20.4.13.6 Dialog 'Options' - 'Device Editor'.. 1190
1.4.1.20.4.13.7 Dialog 'Options' - 'Diagnosis'... 1191
1.4.1.20.4.13.8 Dialog 'Options' - 'External tools'... 1191
1.4.1.20.4.13.9 Dialog 'Options' - 'FBD, LD, and IL'....................................... 1192
1.4.1.20.4.13.10 Dialog 'Options' - 'Help'.. 1194
1.4.1.20.4.13.11 Dialog 'Options' - 'Help'.. 1194
1.4.1.20.4.13.12 Dialog 'Options' - 'IEC 60870-5-104'.................................... 1194
1.4.1.20.4.13.13 Dialog 'Options' – 'International Settings'............................. 1195
1.4.1.20.4.13.14 Dialog 'Options' – 'Libraries'... 1195
1.4.1.20.4.13.15 Dialog 'Options' – 'Library Download'.................................. 1195
1.4.1.20.4.13.16 Dialog 'Options' – 'Load and Save'...................................... 1196
1.4.1.20.4.13.17 Dialog 'Options' - 'Message View'.. 1197
1.4.1.20.4.13.18 Dialog 'Options' - 'Monitoring'.. 1197
1.4.1.20.4.13.19 Dialog 'Options' - 'PLCopenXML'... 1198
1.4.1.20.4.13.20 Dialog 'Options' - 'Proxy Settings'.. 1198
1.4.1.20.4.13.21 Dialog 'Options' - 'Refactoring'... 1199
1.4.1.20.4.13.22 Dialog 'Options' - 'SFC Editor'... 1200
1.4.1.20.4.13.23 Dialog 'Options' - 'SmartCoding'.. 1201
1.4.1.20.4.13.24 Dialog 'Options' - 'Startup settings'...................................... 1202
1.4.1.20.4.13.25 Dialog 'Options' - 'Text Editor'.. 1203

Function: You use the dialog box for selecting the CODESYS options. With these options you
configure the appearance and the behavior of the user interface. CODESYS saves the current
configuration as standard settings in the local system.
Call: Main menu “Tools è Options”

Dialog 'Options' - 'Automation Builder'
Symbol:
Function: This dialog is for the configuration of the settings for the Automation Builder.
Call: menu “Tools è Options”, category “Automation Builder”

“Show warning message on
delete objects”

: A warning appears whether the selected object should really be deleted from
the project.

“Show device type” : In the project tree the device type is displayed in brackets

“Show device tag” : Show device tag

“Close Add / Update object
dialog after single transaction”

: The "Add/Update Object" dialog is closed after a single transaction.

“Display all versions” : Some devices are present in several versions. If the check mark is set, then
all devices in all versions are displayed. If the checkbox is not set (default), then
only the latest version is displayed.

Tab 'DeviceTree'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1186

“Check integrity on open
project”

: The integrity of an open project is automatically checked in the background.
Ä Chapter 1.4.1.20.3.4.10 “Command 'Check integrity'” on page 1006

“Check configuration on the fly
directly on modify”

: The configuration can be checked directly when changing.

“Incremental update of
configuration data”

: Performs an incremental update of configuration data.

“Activate legacy version of
CSV signal export / import”

: If this checkbox is set, the old version of the CSV signal export/import is
activated.

Max parallel opened editors allowed 25 (max. 99).

“I/O-mapping”

“Use tree based I/O mapping
dialog”

: The view of the I/O mapping dialog is defined, here use tree based I/O
mapping dialog.

“Use list based I/O mapping
dialog”

: The view of the I/O mapping dialog is defined, here use list based I/O
mapping dialog.

“Use both I/O mapping dialog” : The view of the I/O mapping dialog is defined, here use both based I/O
mapping dialog.

: “Participate in ABB usability improvement program” (Function not yet active.)

Dialog 'Options' - 'C Compiler'
Symbol:
Function: This dialog is for the configuration of the settings for the “C Compiler”.
Call: menu “Tools è Options”, category “C Compiler”

“Path to Compiler
executable”

Path to the file location.

“...”: Opens the file manager to search for the file location.

“Reset”: Resets the input.

“Environment
Variables”

“New..”: A new input
window opens.

“Variable name:” Enter new variables.

“Variable value:” Enter new variables.

“Edit...”: A new input
window opens.

“Variable name:” Edit new variables.

“Variable value:” Edit new variables.

“Delete”: Deletes the entries.

“Reset”: Deletes the entries.

“Include path” “New..”: A new input
window opens.

“Path:” Enter a new path.

“Edit...”: A new input
window opens.

“Path:” Edit include path.

C:\Program Files (x86)\ABB\AutomationBuilder\CCodeToolchain\FWAPI\2.11

Tab 'Project'

Tab 'Editors'

Tab 'General'

Tab 'GCC 4.7.3'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1187

“Delete”: Deletes the entries.

“Reset”: Deletes the entries.

“Path to Compiler
executable”

Path to the file location.

“...”: Opens the file manager to search for the file location.

“Reset”: Resets the input.

“Environment
Variables”

“New..”: A new input window opens. “Variable name:” Enter new variables.

“Variable value:” Enter new variables.

“Edit...”: A new input window opens. “Variable name:” Edit new variables.

“Variable value:” Edit new variables.

“Delete”: Deletes the entries.

“Reset”: Deletes the entries.

“Include path” “New..”: A new input window opens. “Path:” Enter a new path.

“Edit...”: A new input window opens. “Path:” Edit include path.

C:\Program Files (x86)\ABB\AutomationBuilder\CCodeToolchain\FWAPI\2.11

“Delete”: Deletes the entries.

“Reset”: Deletes the entries.

“Path to Compiler
executable”

Path to the file location.

“...”: Opens the file manager to search for the file location.

“Reset”: Resets the input.

“Environment
Variables”

“New..”: A new input
window opens.

“Variable name:” Enter new variables.

“Variable value:” Enter new variables.

“Edit...”: A new input
window opens.

“Variable name:” Edit new variables.

“Variable value:” Edit new variables.

“Delete”: Deletes the entries.

“Reset”: Deletes the entries.

“Include path” “New..”: A new input
window opens.

“Path:” Enter a new path.

“Edit...”: A new input
window opens.

“Path:” Edit include path.

C:\Program Files (x86)\ABB\AutomationBuilder\CCodeToolchain\FWAPI\2.11

“Delete”: Deletes the entries.

“Reset”: Deletes the entries.

Tab 'GCC 4.7.3
PM595-4ETH'

Tab 'GCC ++
4.7.3
PM595-4ETH'

Tab 'External
diff tool'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1188

“Path to external
diff tool”

“...”: Opens the file manager to search for the file location.

Dialog 'Options' - 'CFC Editor'
Symbol:
Function: This dialog is for the configuration of the settings for editing and printing in the CFC
editor.
Call: menu “Tools è Options”, category “CFC Editor”

“Enable AutoConnect” : If you drag a CFC element onto the work area of the editor and insert it,
CODESYS automatically connects together unconnected pins that 'touch' one
another. Make sure that you do not create unwanted connections when shifting
elements!

“Prepare values in
implementation part”

: In online mode you can also prepare variable values for writing and forcing
in the implementation part of the CFC module. In addition, CODESYS displays
the values you have just prepared in the inline monitoring box of the variable in
angle brackets.

“Display grid points” : Grid points at which you can position the elements are visible in the editor.

“Show box icon” : Existing function blocks that are linked with a bitmap are displayed by
CODESYS in the CFC editor as symbols.
Requirement: You have either created the link for a function block or a function in
the object properties or loaded it via a library.

“Edit Line Colors” Opens the “Edit Line Colors” dialog for the definition of the colors of the con-
necting lines, depending on the data type applied. The lines appear in offline and
online mode in these colors, unless CODESYS paints over them with the thick
black and blue lines used to display the boolean data flow.
● “Add Type:” Adds a data type to the list.
● “Delete Type”

“Font” Display of the font and button for changing the font.

See also
● Ä Chapter 1.4.1.20.4.10.8 “Dialog Box 'Properties' - 'Bitmap'” on page 1162

Setting the “Layout Options”

“Fit method” “Page” or “Poster”

“Scale” Possible values: 20 % - 200 %

See also
● Ä Chapter 1.4.1.8.3.2.2 “ Programming in the CFC editor” on page 246
● Ä Chapter 1.4.1.19.1 “Programming Languages and Editors” on page 460

Tab 'General'

Tab 'View'

Tab 'Print'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1189

Dialog 'Options' – 'Declaration Editor'
Symbol:
Function: This dialog is for the configuration of the display settings for the declaration editor.
Call: Main menu “Tools è Options”, category “Declaration Editor”

“Textual only” Textual view of the declaration editor

“Tabular only” Tabular view of the declaration editor

“Switchable between textual
and tabular”

The declaration editor offers two buttons for switching between the textual and
tabular views:

: textual view

: tabular view
The following option defines the view that appears by default when opening a
programming object:
● “Always textual”
● “Always tabular”
● “Remember recent setting (per object)”
● “'Remember recent setting (global)”

See also
● Ä Chapter 1.4.1.8.2.1 “Using the declaration editor” on page 226

Dialog 'Options' – 'Device Description Download'
Symbol:
Function: This dialog is for the configuration of addresses of download servers for device
descriptions.
Call: Menu “Tools è Options”, category “Download the Device Descriptions”.
See also
● Ä Chapter 1.4.1.17 “Managing devices” on page 452

Table 210: “Download server”
List of download servers containing device descriptions. By default 'https://store.codesys.com/
CODESYSDevs' is entered as the download server.

If you select the button “Download Missing Device Descriptions” in the “Device Repository” dialog, CODESYS
uses the servers entered here and uses the set login data for the proxy server.

Double-click on “(Enter new
download server here...)”

An input field opens in which you can enter the URL address of a server.

[Del] Deletes the selected download server.

See also
● Ä Chapter 1.4.1.20.3.8.8 “Command 'Device Repository'” on page 1067
● Ä Chapter 1.4.1.20.4.13.20 “Dialog 'Options' - 'Proxy Settings'” on page 1198

Dialog 'Options' - 'Device Editor'
Symbol:
Function: This dialog includes settings for displaying the device editor.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1190

Call: Menu bar: “Tools è Options”; category: “Device Editor”.

“Show generic device
configuration views”

: This tab with the list of device parameters is available in the device editors of
parameterizable devices.

“Create cross references
for IEC addresses (clean
necessary) ”

: CODESYS creates the cross-references for unmapped I/Os.

“Communication page” ● “Classic mode”: The “Communication” tab of the device editors appears as
a split window with the left side showing the current configured gateway
channels in a tree structure and the right side showing the associated data
and information.

● “Simple mode”: The “Communication” tab appears as described in the corre-
sponding section in the help.

Additional modes may also be available from customer-specific extensions.

“Show implicit files for
application download on the
editor of a PLC”

: The tab for synchronized files is available in the device editors. Synchronized
files are downloaded to the PLC at the time of application download. These can
be external files that were added to the application, or implicit files such as a
source code archive.

“Show access rights page” : The “Access Rights” tab is available in the device editors.
Note: Depending on the device, the device description may overwrite this setting.

See also
● Ä Chapter 1.4.1.20.2.8.2 “Tab 'Communication Settings'” on page 840
● Ä Chapter 1.4.1.20.2.8.6 “Tab 'Synchronized Files'” on page 847

Dialog 'Options' - 'Diagnosis'
Symbol:
Function: This dialog is for the “Diagnosis” setting and views.
Call: menu “Tools è Options”, category “Diagnosis”

Table 211: 'Diagnosis view'
“Enable subtree diagnosis” : The subtree diagnosis is switched on.

“Enable debug columns” : Debug columns are enabled.

Dialog 'Options' - 'External tools'
Symbol:
Function: This dialog is for setting of “External tools”.
Call: menu “Tools è Options”, category “External tools”

Tool Version

“Panel builder” “Default”

Tab 'View'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1191

“Custom”: Opens the file manager to search for the file location.
Sometimes it is required to used dedicated versions of these
tools (qualified versions, versions supporting more legacy types,
…)

“Drive composer pro” “Default”

“Custom”: Opens the file manager to search for the file location.
Sometimes it is required to used dedicated versions of these
tools (qualified versions, versions supporting more legacy types,
…)

“Restore defaults” Resets the custom settings to default.

The modified settings will be valid after restart of Automation Builder.

Dialog 'Options' - 'FBD, LD, and IL'
Symbol:
Function: This dialog is used for configuring the display options for the FBD/LD/IL editor.
Call: “Tools è Options” (category “FBD, LD, and IL”.

Table 212: “View”
“Show network title” The network title is displayed in the upper left corner of the network.

“Show network comment” The network comment is displayed in the upper left corner of the network. When
the network title is also shown in CODESYS, the comment is shown in the line
below.

“Show box icon” The block symbol is displayed in the block element in the FBD and LD editor.
The standard operators also have symbols.

“Show operand comment” CODESYS shows the comment that you indicated for a variable in the imple-
mentation part. The operand comment refers to the local occurrence of the
variable only, as opposed to the symbol comment.
This comment is truncated automatically depending on available space.
You can limit the comment to a defined width by activating the option “Fixed size
for operand fields”.

“Show symbol comment” The comment that you indicated for a variable or symbol in the declaration is
displayed in CODESYS above the variable name. You can also assign a local
operand comment in addition to or instead of the symbol comment.

“Show symbol address” If an address is assigned to a symbol (variable), then this address is displayed
above the variable name.

“Show network separators” A separator is displayed between the individual networks.

Tab 'General'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1192

Table 213: “Behavior”
“Placeholder for new
operands”

The operand field of pins for the new function block is left blank (instead of
"???").

“Empty operands for function
block pins”

Adds blank operands instead of ???.

Table 214: “Font”
Click the input field to open the “Font” dialog.

“Fixed size for operand fields” : “Edit operand sizes” can be enabled.

“Edit operand sizes” The “Operand Sizes” dialog opens for setting the number of characters and
lines.

Table 215: “View”
“Networks with line breaks” : Display of the network with line breaks so that so that CODESYS can show

as many blocks as possible in the current width of the window.

“Connect boxes with straight
line”

: The length of the lines between the elements are fixed and short.

Table 216: “Behavior”
“Default network content” Drop-down list: Contents of a new network

“After insertion select” Drop-down list: Element that CODESYS selects after inserting a new network

Table 217: “View”
“Networks with line breaks” : Display of the network with line breaks so that so that CODESYS can show

as many blocks as possible in the current width of the window.

Table 218: “Behavior”
“Default network content” Drop-down list: Contents of a new network

“After insertion select” Drop-down list: Element that CODESYS selects after inserting a new network

Table 219: “View”
“Enable IL” The IL implementation language is available in the development system.

Table 220: “Behavior”
“Default network content” Drop-down list: Contents of a new network

“After insertion select” Drop-down list: Element that CODESYS selects after inserting a new network

Tab 'FBD'

Tab 'LD'

Tab 'IL'

Tab 'Print'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1193

Table 221: “Layout Options”
“Fit method” Drop-down list for resizing.

“Avoid cutting of elements” Elements that do not fit on the page are printed on the next page.

“Mark connections on adjacent
pages”

Enabled for selection when “Avoid cutting of elements” is selected.

See also
● Ä Chapter 1.4.1.19.1 “Programming Languages and Editors” on page 460

Dialog 'Options' - 'Help'
Symbol:
Function: This dialog defines whether CODESYS Online Help or CODESYS Offline Help opens
when help is called.
Call: Menu bar: “Tools è Options”; category: “Help”.

“Use CODESYS Online Help, if
available”

● CODESYS Online Help opens when CODESYS Help is called. This is the
default setting.

● CODESYS Offline Help opens when CODESYS Help is called.

See also
● Ä “Using CODESYS help” on page 176

Dialog 'Options' - 'Help'
Symbol:
Function: This dialog activates the online help if available.
Call: menu “Tools è Options”, category “Help”

: “Use Online Help if available”.

Dialog 'Options' - 'IEC 60870-5-104'
Symbol:
Function: In this dialog you can set this notation of the “Address format”.
Call: menu “Tools è Options”, category “IEC 60870-5-104”

 1.2.3 (separated by dots)

 1-2-3 (separated by hyphens)

 66051 (decimal number, big endian --> 0x10203)

 197121 (decimal number, little endian --> 0x30201)

Tab 'Adress for-
mat'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1194

Dialog 'Options' – 'International Settings'
Symbol:
Function: This dialog is for the setting of the language in the user interface and in the help.
Call: Menu bar: “Tools è Options”, category “International Settings”.

Dialog 'Options' – 'Libraries'
Symbol:
Function: This dialog helps you to manage the mappings of library references that CODESYS
uses during the conversion of an old project. If you have not yet stored any mapping for a
certain library, you must redefine the mapping each time when opening an old project in which
this library is integrated.
Call: Menu bar: “Tools è Options”; category: “Libraries”.
A mapping defines what a library reference looks like following the conversion of the project to
the current format. There are three possibilities:
● You retain the reference. This means that CODESYS similarly converts the library into the

current format (*.library) and installs it in the local library repository.
● You replace a reference with another reference. This means that one of the installed libra-

ries replaces the library that was integrated until now.
● You delete the reference. This means that the converted project no longer integrates the

library.

CODESYS applies all the listed mappings to the library references of an old project the next time it is converted.
Hence, you must repeat the mapping definition if the same library is integrated again in a project that is to be
converted. You can enter a new mapping in the last line.

“Source Library” Path of the library that is integrated in the project before the conversion.
A double-click an entry makes the field editable and the button for the input
assistance appears.

“Target Library” Name and location of the library that is to be integrated in the project after the
conversion.
A double-click an entry opens the dialog “Set target system library”.

Table 222: “Set target system library”
“Scan” The “Select Library” dialog opens. You can select a library from the library repo-

sitory here. The dialog corresponds to the dialog in the library repository.

“Ignore” When CODESYS converts the project, CODESYS always removes the existing
source library from the project.

Dialog 'Options' – 'Library Download'
Symbol
Function: This dialog is for the setting of download servers.
Call: menu “Tools è Options”, “Library Download” category

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1195

If you click on the button “Download Missing Libraries” in the library manager, CODESYS browses these down-
load servers for libraries marked as missing in the library manager and uses the set login details for the proxy
server.

“Download servers” URL of a server containing library files

Double-click on “(Enter new
download server here)”

An input field opens in which you can enter the URL address of a server.

See also
● Ä Chapter 1.4.1.20.2.14 “Object 'Library Manager'” on page 874
● Ä Chapter 1.4.1.20.4.13.20 “Dialog 'Options' - 'Proxy Settings'” on page 1198

Dialog 'Options' – 'Load and Save'
Symbol:
Function: The dialog contains settings for the behavior of CODESYS when loading and saving
a project.
Call: Menu bar: “Tools è Options”, “Load and Save” category

“Create backup files” : Each time the project is saved, CODESYS also saves the project as the file
<project name>.project in addition to the file <project name>.backup.
You can rename the backup file and open it in the programming system.

“Automatically save every …
minutes”

: CODESYS automatically saves the project at the specified time intervals in a
file <project name>.autosave, which you can reload following non-regular
closing of the programming system.
CODESYS deletes the .autosave file whenever the project is closed or saved
regularly. CODESYS retains the .autosave file in the case of an irregular
termination. When you open a project for which there is an associated autosave
file, the “Auto Save Backup” dialog opens. In this dialog you select whether
the .autosave file or the version of the project last saved by the user should be
opened.

“Save before build” CODESYS saves the project automatically before each build operation.

“Create project recovery
information”

Requirement: The “No protection” option is selected in the project settings in
the “Security” category. This means that the project is not protected against
unauthorized access and data manipulation, and there is no integrity check
when the project is loaded.

: If a project crashes during editing, then the next time the project is opened,
a prompt is displayed asking whether or not you want to restore the unsaved
data and create a new project file. If you click “Yes”, then another dialog opens.
In this dialog, you can select whether you want to open the restored project or
open the project comparison. This project comparison displays the differences
between the last saved project and the restored project.
Note: The project restore records every change on the hard disk when the
change is made. If a power failure or hard disk error occurs on the hard disk
during this operation, then the last change may be lost.

“Advanced Settings” The “Advanced Settings” dialog opens.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1196

“At startup” List box for the startup screen of CODESYS:
● “Show start page”: The start page of CODESYS is shown.
● “Load last loaded project”
● “Show "Open Project" dialog”
● “Show "New Project" dialog”
● “Show empty environment”

“News page” URL that is opened by means of the command “Help è CODESYS CODESYS
Homepage”.
By default, this page is http://www.codesys.com/startpage.

Table 223: Dialog “Advanced Settings”
“Project compression”

“Level” Requirement: The “No protection” option is selected in the project settings in
the “Security” category. This means that the project is not protected against
unauthorized access and data manipulation, and there is no integrity check when
the project is loaded.
List box for the compression level that is used when saving the project.
● “Least compression - best speed (recommended)”
● “Medium compression - medium speed”
● “Most compression - worst speed”

“Load Behavior”

Libraries and compilation information are loaded in the background while you
edit the project.

See also
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197

Dialog 'Options' - 'Message View'
Symbol:
Function: In this dialog the number of messages can be determined.
Call: menu “Tools è Options”, category “Message View”

“Maximum numer of messages” xxx

Default, 500, max. 9999, min. 20

Dialog 'Options' - 'Monitoring'
Symbol:
Function: This dialog includes settings for displaying the variable values in monitoring.
Call: Menu bar: “Tools è Options”; category: “Monitoring”.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1197

Table 224: “Display Mode for Integer Variables”
“Binary” The value of the variable is displayed in the corresponding format in online

mode.
This option corresponds to the setting of the command “Debug è Display
Mode”.

“Decimal”

“Hexadecimal”

Table 225: “Floating Point Variables”
“Number of displayed digits” Decimal places that are represented in online mode when REAL values are

displayed.
Note: The settings apply to the watch list, the monitoring of the declaration editor
and the trace editor. The configuration for inline monitoring of the editor is set in
the text editor options.

See also
● Ä “Tab 'Monitoring'” on page 1205

Dialog 'Options' - 'PLCopenXML'
Symbol:
Function:This dialog contains settings for the behavior of CODESYS when exporting or
importing PLCopenXM.
Call: Main menu “Tools è Options”, category “PLCopenXML”

Table 226: “PLCopenXML Export Settings”
“Additionally export
declarations as plain text”

By default, CODESYS splits the declaration parts in accordance with the PLCo-
penXML scheme into individual variables and thus loses the formatting and
some comment information.

: Formatting and comments are retained. CODESYS additionally writes the
plain text of the exported declaration part into the PLCopenXML file and thus
extends the PLCopenXML scheme.

“Export Folder Structure” : CODESYS also exports the folders if they contain one of the selected
objects. That is a CODESYS-specific extension to the PLCopenXML scheme.

Table 227: “PLCopenXML Import Settings”
“Import folder structure” : If the import file contains information about the folder structure of the objects,

CODESYS also imports this structure.

: CODESYS imports objects without structure.

See also
● Ä Chapter 1.4.1.3.1 “Exporting and importing projects” on page 193
● Ä Chapter 1.4.1.20.3.4.26 “Command 'Export PLCopenXML'” on page 1015
● Ä Chapter 1.4.1.20.3.4.27 “Command 'Import PLCopenXML'” on page 1015

Dialog 'Options' - 'Proxy Settings'
Symbol:
Function: You use this dialog for storing the authentication data for the proxy server which is
currently used for accessing the internet from CODESYS.
Call: Main menu “Tools è Options”, category “Proxy Settings”

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1198

Requirement: Internet access of the network via proxy server

“Enter proxy credentials” A double click opens the input request for the user name and the password for
the proxy server.
CODESYS uses the access data for the establishment of the connection to the
download server for libraries and the device description, for the establishment
of the connection to the CODESYS Store and for the command “View è Start
Page”.
Requirement: If the internet access of your computer or of the network takes
place via a proxy server, then the button is available.

● Ä Chapter 1.4.1.20.2.14 “Object 'Library Manager'” on page 874
● Ä Chapter 1.4.1.20.3.3.20 “Command 'Start Page'” on page 999

Dialog 'Options' - 'Refactoring'
Symbol:
Function: The dialog is used for defining the operations in the project for which the
automatic refactoring is suggested. The refactoring functionality helps you in your improvement
endeavors.
Call: Menu bar: “Tools è Options”, “Refactoring” category

“Auto-declare” When you change the name of a variable in a declaration by calling AutoDe-
clare ([Shift]+[F2]), the activated option “Apply changes by means of refactoring”
appears. Then the “Refactoring” dialog opens and you can change the variable
throughout the project.
● “On adding or removing variables, or on changing the scope”

: You delete the names in the “Declare Variable” dialog and click “OK”
to close the dialog. Then the “Refactoring” dialog opens for removing the
variable throughout the project.

● “On renaming variables”
: You specify the names in the “Declare Variable” dialog and click “OK”

to close the dialog. Then the “Refactoring” dialog opens for renaming the
variable throughout the project.
See the chapter: "Refactoring", "Changing a variable declaration and
applying refactoring automatically".

“Unit conversion editor” “ On renaming of unit conversions”

● : When you change the name of a conversion in the unit conversion
editor, you are prompted whether CODESYS should perform "Automatic
Refactoring" when renaming.

“Mapping editor” “On renaming variables”

● : When you change a variable name in the device editor (“I/O Mapping”
tab), you are prompted whether CODESYS should perform "Automatic
Refactoring" when renaming.

'Suggest Refac-
toring for the
Following Oper-
ations'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1199

“Navigator” “On renaming objects”

● : When you change the name of an object in the device tree or in
the POUs view, you are prompted whether CODESYS should perform
"Automatic Refactoring" when renaming.

“Tabular declaration editor” “On renaming variables”

● : When you change the name of a variable in the tabular declaration
editor, you are prompted whether CODESYS should perform "Automatic
Refactoring" when renaming.

See also
● Ä Chapter 1.4.1.8.15 “Refactoring” on page 289
● Ä Chapter 1.4.1.8 “Programming of Applications” on page 222
● Ä Chapter 1.4.1.20.3.2.40 “Command 'Refactoring' - 'Rename <...>'” on page 980
● Ä Chapter 1.4.1.20.3.2.32 “Command 'Auto Declare'” on page 975
● Ä Chapter 1.4.1.20.2.33 “Object 'Unit Conversion'” on page 952

Dialog 'Options' - 'SFC Editor'
Symbol:
Function: This dialog is used for configuring the settings for the SFC editor.
Call: Menu bar: “Tools è Options” (“SFC Editor” category).
See also
● Ä Chapter 1.4.1.8.3.4.1 “Programming in SFC” on page 255
● Ä Chapter 1.4.1.20.3.11 “Menu 'SFC'” on page 1079
● Ä Chapter 1.4.1.19.1.4.1 “SFC editor” on page 476

Table 228: “Elements”
This defines the dimensions of the SFC elements: step, action, qualifier, property. The values are given in matrix
units, where one matrix unit equals the font size that you set in the text editor options (text area / font). The
settings are always active immediately in all open SFC editor views.

“Step height” Possible values: 1-100

“Step width” Possible values: 2-100

“Action width” Possible values: 2-100

“Qualifier width” Possible values: 2-100

“Property width” Possible values: 2-100

Table 229: “Font”
The example text shows the current font. Click it to change the font.

Tab 'Layout'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1200

Table 230: “Step Actions”
“Default insertion method” ● “Copy reference”: The reference to the action objects that call the step are

also copied when the step is copied. The copied step and new step call the
same action.

● “Duplicate implementation”: The reference to the action objects that call the
step are linked to this step. When copying the step element, new action
objects are created for the new step, and the implementation is duplicated.

● “Always ask”: When inserting a step action, you are always prompted
whether the actions of a step element should be duplicated when it is copied,
or whether the reference to the existing action should be applied.
Note: If a step already contains an embedded action, then new inserted
actions of this step are also embedded. Likewise, new inserted actions are
not embedded when the step already contains a non-embedded action. In
these cases, you are no longer prompted for a duplication mode.

Table 231: “Embedded Objects”
“Show action and transition
objects in the navigator”

: Action and transition objects that are embedded in the SFC box by a step are
displayed in the “Devices” or “POUs” tree view.

Table 232: “Property Visibility”
List of element properties for the categories “Common” and “Specific” with definitions of the display options.

“Property” Defines the element properties displayed next to the element in the SFC dia-
gram.

“Value” : Display of the property value.

“With Name” : Display of the property value including name.

Table 233: “Online”
“Show step time” : In online mode, CODESYS displays the step time to the right of the steps.

Dialog 'Options' - 'SmartCoding'
Symbol:
Function: This dialog is for configuring the settings for easier coding.
Call: Menu bar: “Tools è Options”, “SmartCoding” category

“Declare unknown variables
automatically (AutoDeclare)”

: The “Declare Variable” dialog opens when you type an undeclared identifier
into an implementation language editor and then click away from the input line.
In order for the AutoDeclare function to be available in the ST editor as well, the
“Enable for ST editor” option also has to be selected.

“Enable for ST editor” Requirement: The “Declare unknown variables automatically (AutoDeclare)”
option is selected.

: The AutoDeclare function is also available in the ST editor.

: The AutoDeclare function is not available in the ST editor.

Tab 'View'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1201

“Show all instance variables in
Input Assistant”

: The "List components" function also lets you select the local variables of a
function block instance.

: The "List components" function lets select only the input variables and output
variables of a function block instance.

“Show symbols from system
libraries in Input Assistant”

System libraries are inserted in the library manager automatically and displayed
in light gray.

: Symbols, such as global variables, data types, and function blocks, are
offered in the Input Assistant.

: The symbols of the system libraries are not available in the Input Assistant.

“List components after typing a
dot (.)”

: Activates the "List components" function. When you type a dot (.) at a
location where CODESYS expects an identifier, a list box appears with possible
code.

“List components immediately
when typing”

Requirement: The “List components after typing a dot (.)” check box is selected.

: While you type code, a list box appears with possible identifiers and opera-
tors.

“Insert with namespace” : CODESYS adds the namespace before the identifier.

“Convert keywords to
uppercase automatically
(AutoFormat)”

: CODESYS displays all keywords in uppercase.

“Automatically list selection in
cross-reference view”

: The cross-reference list automatically shows the references of variables,
POUs, and DUTs that are currently selected or where the cursor is waiting.

“Underline errors in the editor” : Incorrect or unknown program code is underlined.

“Highlight symbols” : All occurrences of a symbol where the cursor is positioned are highlighted in
color within the editor. In this way, cross-references within the editor are quickly
detected.

“Max. degree of parallelism” List box for the number of parallel threads that can be used for the precompile
processing.
CODESYS detects the displayed number of threads from the number of CPU
cores. This default number should be changed only in exceptional cases.

See also
● Ä Chapter 1.4.1.19.1 “Programming Languages and Editors” on page 460
● Ä “Smart tag functions” on page 263
● Ä Chapter 1.4.1.8.13.1 “Using the cross-reference list to find occurrences” on page 285
● Ä Chapter 1.4.1.19.1.3.1 “ST Editor” on page 463

Dialog 'Options' - 'Startup settings'
Symbol:
Function: In this dialog the “Version profile” and the “License” are set.
Call: menu “Tools è Options”, category “Startup settings”

“Version profil:” Automation Builder 2.5

 “Display selected dialog at each start”: Refers to the version
of the AB to be displayed

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1202

“License:” “Default: take any available license”

 “Use only local license”

 “Display license selection dialog if shared licenses are
available”

The modified settings will be valid after restart of the Automation Builder.

Dialog 'Options' - 'Text Editor'
Symbol:
Function: The dialog contains settings for displaying and working in a text editor.
Call: Menu bar: “Tools è Options”, “Text Editor” category

On this tab, you set the desired theme in the interface design of the ST editor.

“Theme” Color theme for the text editor. The selected theme is shown in the “Preview”
window. The available color schemes are stored in the installation directory in
the Themes folder.

Tab 'Theme'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1203

“Number of undos” Maximum number of editing steps that you can apply the “Edit è Undo” com-
mand to.

“Folding” Defines the structuring of the code by indentation.
When you select an indentation, you can expand or collapse the indentation
section by means of a plus and minus sign in front of the first line of each
section.
● “Indent”: CODESYS combines all lines that are indented in relation to the

preceding line into one indentation unit.
● “Explicit”: You mark the code segment explicitly with comments that should

be combined in one indentation unit: a comment with three opening braces
"{{{" has to be before the segment, and a comment with three closing braces
"}}}" has to be after the segment. The comments can contain additional text.
Example:

“Word wrap” ● “Soft”: The line break occurs at the edge of the editor window when 0 is
specified for “Wrap margin”.

● “Hard”: The line break occurs after the number of characters specified for
“Wrap margin”.

“ Tab width” Number of characters

“Keep tabs” : CODESYS does not break up the space you have inserted with the [Tab] key
into individual spaces afterwards.

“Indent width” If you have selected “Smart” or “Smart with code completion” for the “AutoIndent”
option, then CODESYS inserts the number of spaces at the beginning of the line.

“AutoIndent” ● “None”
● “Block”: A new line automatically applies the indentation of the previous line.
● “Smart”: Lines that follow a line which contains a keyword (for example, VAR)

indent automatically by the specified Indent width.
● “Smart with code completion”: Indentation as in the case of the “Intelligent ”

option, but CODESYS also inserts the closing keyword (for example,
END_VAR).

“Highlight current line” : The line where the cursor is located is highlighted.

“Matching brackets” : When the cursor is positioned before or after a bracket within a line of code,
the corresponding closing or opening bracket is marked by a frame.

Tab 'Editing'

Tab 'Text Area'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1204

“End of line markers” : The end of each editor line is marked by a small dash after the last character
(including spaces) of the line.

“Wrap guide” : When a soft or hard line break is activated, the defined line break position is
displayed with a vertical line.

“Font” Clicking the field opens the default dialog for configuring the font.

Settings for the left margin of the text editor window, which is separated from the input area by a vertical line:

“Line numbering” : The declaration and implementation parts of the editor are numbered on the
left, each beginning with 1.

“Highlight current line” : The line number of the line where the cursor is located is highlighted.

“Show bracket scope” : Brackets include the lines between the keywords that open and close a
construct (for example, IF and END_IF). When the option is enabled and the
cursor is positioned before, after, or in one of the keywords of a construct, the
bracket area is displayed with a square bracket in the margin.

“Mouse Actions” You can assign one of the following actions to each of the specified mouse
actions or mouse-keyboard combinations. CODESYS performs the selected
action when you move the mouse to the plus or minus sign in front of the header
of a bracketed area:
● “None”: The mouse action does not trigger an action.
● “Select fold”: CODESYS selects all lines of the bracketed area.
● “Toggle fold”: CODESYS opens or closes the bracketed area, or if there are

nested brackets, the first level of the bracketed area.
● “Toggle fold fully”: CODESYS opens or closes all levels of a nested brack-

eted area.

Settings for displaying the monitoring fields

“Enable inline monitoring” : Display of the monitoring fields behind the variables in online mode

“Number of displayed digits” Number of comma places in the monitoring field

“String length” Maximum length of string variable values in the monitoring field

See also
● Ä Chapter 1.4.1.8.3.3.1 “Programming structured text (ST)” on page 254

Dialog 'Customize'
1.4.1.20.4.14.1 Dialog 'Customize' - 'Menu'... 1206
1.4.1.20.4.14.2 Dialog 'Customize' - 'Command Icons' 1206
1.4.1.20.4.14.3 Dialog 'Customize' - 'Toolbars'... 1207
1.4.1.20.4.14.4 Dialog Box 'Customize' - 'Keyboard' 1207

The dialog contains the tabs to configure the user interface.
You can reset the CODESYS settings to default by use of the “Reset” button.

Tab 'Margin'

Tab 'Monitoring'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1205

Dialog 'Customize' - 'Menu'
Function: With this dialog, you define the structure and contents of the user interface.
Call: Main menu “Tools è Customize” (“Menu”).
When you click “OK” to close the dialog, the changes are visible in the menu bar of the
CODESYS user interface.

Table 234: “Menu”
Display of currently defined menus, submenus, and included commands. In CODESYS, a menu or submenu
caption is identified by the caption symbol (). The layout from top to bottom corresponds to the layout displayed
later in the CODESYS menu.

“Add Command” Enabled when a command is selected.
Adds a command above the selected command. Opens the “Add Command”
dialog.
Use the “Add Command” dialog for selecting one or more commands. Left part:
List of categories. Right part: List of commands in the selected category.

“Add Separator” Adds a separator above the selected command.

“Add Popup Menu” Adds a popup menu above the selected menu, submenu, or command. Opens
the “Add Popup Menu” dialog.

“Edit Popup Menu” Opens the “Edit Popup Menu” dialog.

“Reset” Resets the default settings of the entire menu.

“Load” Loads the settings from a stored file (<file name>.opt.menu).

Table 235: “Add Popup Menu”
In CODESYS, a new menu is shown in the menu bar only when the menu contains at least one command.

“Default text” Select this check box when localization is available.

“Localized Texts” List: Languages and localized texts.

“Add Language” Opens a drop-down list of available languages.
In CODESYS, the selected language is displayed in the area “Localized Texts”.
Use the “Text” column for typing the localized texts.

See also
● Ä Chapter 1.4.1.1.2.1 “Customizing menus” on page 180
● Ä Chapter 1.4.1.20.4.14.3 “Dialog 'Customize' - 'Toolbars'” on page 1207

Dialog 'Customize' - 'Command Icons'
Function: This dialog defines the icons of the menu commands.
Call: Menu bar: “Tools è Customize” (“Command Icons”).

Table 236: “Command icon”
“Assign” Opens a dialog for selecting the new icon (*.ico).

“Remove” Removes the user-defined icon. The default icon is active again.

“Reset” Resets all default settings of the command icons.

“Load” Loads the settings from a stored file (<file name>.opt.keyb).

“Save” Saves the current settings to a file (<file name>.opt.keyb).

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1206

See also
● Ä Chapter 1.4.1.1.2.3 “Customize command icon” on page 183

Dialog 'Customize' - 'Toolbars'
Function: Use this dialog for generating new toolbars or customizing existing toolbars.
Call: Main menu “Tools è Customize” (“Toolbars”).
When you click “OK” to close the dialog, the changes are visible in the menu bar of the
CODESYS user interface.

Table 237: “Toolbars”
Display of currently defined toolbars. In CODESYS, the associated commands are listed below each toolbar in the
order they will appear in the toolbar.
Double-clicking a toolbar in the list switches to editing mode.

“Add Toolbar” Enabled when a toolbar is selected.
In CODESYS, this adds a toolbar above the selected toolbar and places the
cursor in the name field of the new toolbar.

“Add Command” Enabled when you select a command or blank command entry below a toolbar.
Adds a command above the selected command. Opens the “Add Command”
dialog.
Use the “Add Command” dialog to select one or more commands. Left part: List
of categories. Right part: List of commands in the selected category.

“Add Separator” Adds a separator above the selected command.

“Hide” Hide the selected toolbar from the user interface.

“Show” Shows the selected hidden toolbar in the CODESYS user interface.

“Reset” Resets the default settings of the toolbars.

“Load” Loads the settings from a stored file (<file name>.opt.tbar).

See also
● Ä Chapter 1.4.1.1.2.2 “Customizing toolbars” on page 182
● Ä Chapter 1.4.1.20.4.14.1 “Dialog 'Customize' - 'Menu'” on page 1206

Dialog Box 'Customize' - 'Keyboard'
Function: This dialog box is used for defining keyboard shortcuts (quick access keys or key-
board combinations) for commands.
Call: Main menu “Tools è Customize” (“Keyboard”).

Table 238: “Keyboard”
“Shortcuts for selected
command”

Keyboard shortcuts for the selected command The drop-down list can include
more than one keyboard shortcut for the command.

“Press shortcut keys” Input field for the keyboard shortcut of the selected field. Permitted combinations
include [Ctrl], [Alt], [Shift], and other keys. You clicking “Assign” to assign a
recorded keyboard shortcut to a selected command.

“Shortcut keys currently used
by”

Command assigned to the currently defined keyboard shortcut

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1207

“Reset” Resets the default settings of the keyboard shortcuts.

“Load” Loads the settings from a stored file (<file name>.opt.keyb).

Dialog 'Trace Configuration'
1.4.1.20.4.15.1 Dialog 'Advanced Trace Settings'.. 1208
1.4.1.20.4.15.2 Dialog 'Trace Configuration'.. 1209

Dialog 'Advanced Trace Settings'
Function: This dialog provides extended settings for recording data.
Call: “Advanced” button in “Trace Configuration ” dialog, “Record Settings” subdialog
Requirement: The trace editor is open and active. The dialog “Trace configuration” is open
and the top node of the trace record tree is selected so that the subdialog “Record settings” is
available.

For the calculation of the values, you have to select a task in the “Trace
Configuration” dialog.

The buffer size is defined as "number of samples". CODESYS calculates the time intervals that corresponds to
this number and displays the result in normal fonts on the right outside the table (for example, “1h1m1s1ms”). The
calculation is possible only with the help of the task configuration settings and when the task cycle time is known.

“Measurement in every nth
cycle”

Data recording in every n task cycle
Preset: 1; then the application performs the data
recording in each task cycle.

Scanning interval of the
data recording
Example: 100ms

“Recommended runtime
buffer size (samples)”

Requirement: “Override runtime buffer size” is deacti-
vated.
The maximum number of samples that CODESYS cal-
culates and recommends, which the application stores
at runtime per trace variable. CODESYS calculates
the number in the task cycle time from the value in
“Measure in every n-th cycle” and the value in Measure
in every n-th cycle.

Maximum length of the
time interval during which
the application collects
data on the runtime
system.
Example: 2s

“Override runtime buffer
size”

Maximum number of samples per trace variable that
saves the application per trace variable in runtime
mode.
Example: 100
Value range: starting at 10

: The application uses this value, not the value calcu-
lated by CODESYS from “Recommended runtime buffer
size (samples)”.

Maximum length of the
time interval during which
the application collects
data on the runtime
system.
Example: 6s

“Trace editor buffer size
per variable (samples)”

Number of values that can be stored per variable in the
trace editor.
Example: 10000

The maximum time period
for the display in the trace
editor results from the
maximum number and the
scanning interval of the
data recording. You can
scroll back a maximum of
this time in the trace editor.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1208

See also
● Ä Chapter 1.4.1.20.2.28 “Object 'Trace'” on page 945
● Ä Chapter 1.4.1.12.3.2 “Creating trace configuration” on page 424

Dialog 'Trace Configuration'
Symbol:
Function: The dialog includes the trace configuration for the data recording.
Call
● “Trace è Configuration”; context menu
● Link “Configuration” in the trace editor
● Link “Add Variable” in the trace editor
Requirement: The editor of a trace object is open and active.
See also
● Ä Chapter 1.4.1.12.3.2 “Creating trace configuration” on page 424
● Ä Chapter 1.4.1.12.3 “Data Recording with Trace” on page 421
● Ä Chapter 1.4.1.19.6.2.25 “Attribute 'monitoring'” on page 709

The tree view lists the variables that are traced and allows for access to the variable settings.

Selected trace name The “Record Settings” subdialog is displayed on the right.

Selected trace variable The “Variable Settings” subdialog is displayed on the right.

Table 239: Context menu commands
 “Add Variable” Adds a new trace variable. The “Variable Settings” subdialog opens on the right

and it is partially configured. Select a variable in the input field of the “Variable”
setting to trace its value curve.

“Assign to Diagram” Lists the diagrams (in the submenu on the right) where the selected variable is
not currently displayed. Select a diagram to display the variable there.
The command is available when a variable is selected in the tree view.
Hint: When the command is deactivated, the variable is already displayed in all
diagrams.

“Enabled” Selected by default
Disabled variables are displayed as disabled. They are neither displayed nor
recorded.

The tree view lists the diagrams that are displayed in the trace editor and allows for access to
their display mode.

Selected node “Time axis” The “Display Mode” subdialog for the time axis is displayed on the right. You can
specify the time axis display. See below.

Selected diagram name The settings for the coordinate system of the diagram and a preview are dis-
played on the right. See below.

Selected node “Y-axis” The “Display Mode” subdialog is displayed on the right. You can specify the axis
display. See below.

Tree view 'Trace
Record'

Tree view 'Pre-
sentation (Dia-
grams)'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1209

“Show variables”

Selected trace variable The “Variable Settings” subdialog is displayed on the right. You can configure the
trace variable. See below.
Note: These are the same settings that can be accessed in the “Trace Record”
tree view.

Table 240: Context menu commands
 “Add Diagram” Adds a new diagram below and displays it in the tree view “Presentation

(Diagrams)”.

 “Add New Variable” Adds a new trace variable. The “Variable Settings” subdialog opens on the right
and it is partially configured. Select a variable in the input field of the “Variable”
setting to trace its value curve. Specify its display. In addition, the variable is
assigned to the selected diagram.

“Add Existing Variable” Lists all trace variables (in the submenu on the right) where the selected diagram
is not currently displayed. Select a variable in order to display it in the selected
diagram.
Hint: When the command is deactivated, all trace variables are already displayed
in the selected diagram.

Requirement: The top node is selected in the “Trace Record” tree view.

“Enable trigger” : Triggering is enabled. The trace data is buffered at runtime only when a
trigger signal has been sent. You determine how the trigger signal is sent in the
“Trigger variable”, “Trigger parameter”, “Trigger edge”, “Post-trigger (Samples)”,
and “Trigger level” settings.

: Continuous display of current records

“Trigger variable” Signal that is used as a trigger. A complete instance path is required.
A valid trigger signal is an IEC variable, a property, a reference, a pointer, an
array element of the application, or an expression. Allowed types are all IEC-
based types except STRING, WSTRING, and ARRAY. Enumerations are allowed
when the base type is not STRING, WSTRING, or ARRAY The contents of a
pointer are not a valid signal.
When the runtime system uses the CmpTraceMgr component, a property that is
linked to the 'monitoring' attribute can then be recorded as a variable.

“Trigger parameter” System parameter that is used as a trigger
The “Input Assistant” dialog lists all valid system parameters in the “Parameters”
category of the “Categories” tab.

Allows the selection of “Trigger variable” or “Trigger parameter”

Subdialog 'Re-
cord Settings'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1210

“Trigger edge” Defined the edge detection for triggering:

● “positive”
– For Boolean trigger variables, triggering occurs when the values changes

from FALSE to TRUE.
– For analog trigger variables, triggering occurs when the value as defined

in “Trigger level” is reached from below.
● “negative”

– For Boolean trigger variables, triggering occurs when the values changes
from TRUE to FALSE.

– For analog trigger variables, triggering occurs when the value as defined
in “Trigger level” is reached from above.

● “both”
– For Boolean trigger variables, triggering occurs when the values

changes.
– For analog trigger variables, triggering occurs when the value as defined

in “Trigger level” is reached.

“Post trigger (samples)” Number of records per trace variable that are buffered after triggering. Default:
50; value range: 0 to (232 - 1)

“Trigger level” Value that is reached to start the triggering

“Task” Task in which the data is recorded.

“Recording condition” At runtime, the application checks the recording condition. If it is fulfilled, then the
trace data is buffered.
Record condition for data recording with CmpTraceMgr runtime system compo-
nent:
● As an expression that includes only permitted operators and operands.

Allowed operators that can also be nested: (logical) AND, NOT,OR, compar-
ison operators <, <=, >, >=, =, <>.
Allowed operands: Variables that are valid for trace.

● As a variable.
Allowed type: BOOL, bit access, property. The condition is fulfilled for TRUE or
1. The contents of a pointer are not permitted.

Recording condition for a data recording with IEC code.
● As an expression that returns a Boolean value.

“Comment” Comment (for example, from the recording condition)

“Resolution” Unit of measure for the time stamp that is recorded per data set
● “ms”: Time stamp (in milliseconds).
● “µs”: Time stamp (in microseconds) for a task cycle time of 1 ms or less

“Automatic restart” : Persistently saves the trace configuration and the last contents of the RTS
buffer to the target device. After the device has been restarted, the trace is
started automatically if the trigger has not occurred yet.

“Advanced” Opens the “Advanced Trace Settings” dialog.

See also
● Ä Chapter 1.4.1.20.4.15.1 “Dialog 'Advanced Trace Settings'” on page 1208

Requirement: A trace variable is selected in the “Trace Record” or “Display (Diagrams)” tree
view.

Subdialog 'Vari-
able Settings'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1211

“Variable” Valid variable Variable; value recorded with full instance path.
Valid:
● IEC variable
● Property
● Reference
● Contents of the pointer
● Array element
Allowed data type
● IEC-based type except STRING, WSTRING, or ARRAY
● Enumeration when the base type is not STRING, WSTRING, or ARRAY
When the runtime system uses the CmpTraceMgr component, a property that is
linked to the 'monitoring' attribute can then be recorded as a variable.

“Parameter” Parameter whose data is recorded.
Requirement: Runtime system with CmpTraceMgr component

The “Input Assistant” dialog lists all valid system parameters in the “Parameters”
category of the “Categories” tab.

Allows toggling between “Variable” and “Parameter”

“Color” Color of the variable in the trace diagram

“Line type” Display as line chart

● “Line”: Values are linked to form a line.
● “Step”: Values are linked in the form of steps
● “None”: Values are not linked

“Point type” Display as scatter chart

● “Dot”: Value is displayed as a dot
● “Cross”: Value is displayed as a cross.
● “None”: value is not displayed

“Activate minimum warning” : Warning when less than the lower limit

“Critical lower limit” If the value of the trace variable falls below the limit, the variable is displayed in
the warning color.

“Color” Warning color on falling below the limit

“Activate maximum warning” : Warning when exceeding the upper limit

“Critical upper limit” If the value of the trace variable exceeds the upper limit, the variable is displayed
in the warning color.

“Color” Warning color on exceeding the limit

Requirement: An axis is selected in the tree view “Presentation (Diagrams)”Subdialog 'Dis-
play Mode'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1212

“Display Mode” Scaling
● “Auto”:

Automatically scaled time axis
● “Fixed length”:

Time axis segment with a constant “Length”
● “Fixed”

Time axis segment from “Minimum” to “Maximum”

“Minimum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the initial value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 20,PLC_PRG.iLimit_Min, GVL.c_iLimit_Min
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Min : INT := 20

“Maximum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the end value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 80,PLC_PRG.iLimit_Max, GVL.c_iLimit_Max
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Max : INT := 80

“Length” Constant segment length; the initial value is adapted automatically.

“Grid” : Diagram with grid line in the X-direction. Select the grid line color from the list
box of colors.

Table 241: “Tick marks”
“Fixed spacing” : Display of tick marks with “Distance” and “Subdivisions”.

“Distance” Distance between tick marks

“Subdivisions” Number of subdivisions between two tick marks

“Font” Font for the time axis.

Link “Preview” Displays the preview of the diagram.

Requirement: A diagram is selected in the tree view “Presentation (Diagrams)”Diagram pre-
view

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1213

“Background color” Background color of the diagram. opens the list box of colors.

“Background color on
selection”

Background color of the selected diagram.

Link “Add Variable” Adds a new trace variable (in the “Trace Record” tree view).

Link “Delete Variable” Deletes the selected trace variable (in the “Trace Record” tree view).

Link “Add Diagram” Adds a new diagram (in the “Display” tree view).

Link “Delete Diagram” Deletes the selected diagram (in the “Display” tree view).

Link “Reset Display Settings” Resets the display settings of either the selected diagram or Y-axis to the default
values.

“OK” Accepts the configuration changes and saves the trace configuration.

Dialog Box 'Trend storage'
Function: This dialog box includes the configuration for buffering the trend data of a trend
recording.
Call: “Trend Storage” button in the editor of a trend recording.

“Maximum number of
variables”

Maximum number of trend variables that can be managed in the database. If
you increase this value afterwards, then will CODESYS perform a download and
reconfigure the database.

“Store every N milliseconds” Time interval (in ms) when the CmpTraceMgr runtime system component buf-
fers the recorded data before storing it persistently in the database. The applica-
tion calculates internally the number of task cycles from the time interval. The
duration of a task cycle is defined in the task configuration.
A high value results in better runtime performance. The disadvantage is the
increased risk of losing data if the controller crashes or shuts down. A low
value reduces this risk. The disadvantage is the slower control over a trend
visualization with large amounts of data.

“Limit” : Limit the recording
● “No Limit”: Unlimited number of data records (not recommended)
● “Maximum number of records”: Maximum number of data records that are

stored in the database. A data record consists of time stamp and the values
of the trend variables at this time.

● “Maximum storage size”: Maximum size of the trend storage. The application
calculates internally the number of data records.
Clicking the "down" symbol () of the drop-down list will set the units to
kilobytes (KB), megabytes (MB), or gigabytes (GB).

See also
● Ä Chapter 1.4.1.20.2.31 “Object 'Trend Recording'” on page 949
● Ä Chapter 1.4.1.12.4.1 “Getting started with trend recording” on page 431

Dialog Box 'Advanced Trend Settings'
Function: This dialog box provides more settings for configuring trend recording.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Development System

2022/01/213ADR010583, 3, en_US1214

Call: Click “Advanced” in the editor of a “TrendRecording” object.

“Measure in every n-th cycle” Frequency that the runtime system records data, depending on the number of
processed task cycles. Select a value from the drop-down list or type a value into
the input field.
Using the settings from the task configuration, CODESYS calculates the time
interval according to the frequency. Therefore, the calculation is possible only if
at least the task cycle time is set. The result is shown on the right of the input
field in normal syntax (for example, “1h1m1s1ms”).
Default: 1 means that data is recorded in each task cycle.

“Additional Runtime Buffer for” Length of the time interval when the runtime system can record more data (for
example, 1000 ms).

If a delay occurs when writing data in the runtime system component, then there
is a risk of data loss due to overwriting. In this case, the runtime system uses the
addition buffer.

See also
● Ä Chapter 1.4.1.20.2.31 “Object 'Trend Recording'” on page 949
● Ä Chapter 1.4.1.12.4 “Data Recording with Trend” on page 430
● Ä Chapter 1.4.1.12.4.2 “Configuring trend recording” on page 432

Dialog 'Certificate Selection'
Symbol:
Function: This dialog is used for selecting the certificates for encryption, decryption, and digital
signatures.
Call:
● “Security Screen” view, “User” tab
● Main menu: “View è Properties”, “Encryption” tab when the “Application” is selected in the

device tree.
● Main menu: “Project è Project Settings”, category “Security”

Dialog 'Certifi-
cate selection'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Development System

2022/01/21 3ADR010583, 3, en_US 1215

The purpose of the certificate that is selected in the dialog depends on the call location:
● Call location: “Security screen” view, “User” tab

– Certificate for digital signatures
– Certificate for the decryption of project files
– Certificate for encrypted communication

● Call: “View è Properties” of the application
– “Certificates of devices that share the encrypted download and the boot application”

● Call location: “Project è Project settings”, category “Security”
– “Certificate for project encryption”

Listing of the selected certifi-
cates in a table

The following properties are displayed for each selected X.509 certificate:
● “Created for”
● “Created by ”
● “Valid as of”
● “Valid until”
● “Thumbprint”: SHA1 fingerprint
Double-clicking an entry opens the “Certificate” dialog with the “General” tab,
“Details” tab, and “Certification Path” tab. In that tab, you will find a reference to
Windows help with more information about the dialog.

Adds the selected available certificate to the list of selected certificates.

Deletes the certificate selected in the list.

“Available certificates in the
local Windows Certificate
Store”

Double-clicking an entry opens the “Certificate” dialog with the “General” tab,
“Details” tab, and “Certification Path” tab. In that tab, you will find a reference to
Windows help with more information about the dialog.

Certificate icons ●
● : Certificate with private key
● : Untrusted certificate

See also
● Ä Chapter 1.4.1.20.3.3.18 “Command 'Security Screen'” on page 995

1.4.2 Fieldbus Support
1.4.2.1 Device Diagnosis.. 1216
1.4.2.2 Fieldbus Devices and I/O Drivers... 1217
1.4.2.3 Bus Cycle Task... 1219
1.4.2.4 EtherNet/IP Configurator.. 1220

1.4.2.1 Device Diagnosis
CODESYS provides general and fieldbus-specific function blocks for performing a diagnosis on
the connected devices.

You can perform a diagnosis on devices regardless of the fieldbus. The function blocks from the
CAA Device Diagnosis library are provided for this purpose.

Before you can work with these function blocks, you have to select the “Enable diagnosis for
devices” option in the PLC settings. This causes CODESYS to create instances of the diagnosis
functions blocks automatically. These function blocks can be used for your diagnosis.

General diag-
nosis

PLC Automation with V3 CPUs
Programming with CODESYS > Fieldbus Support

2022/01/213ADR010583, 3, en_US1216

Work exclusively with the automatically generated instances of the diagnosis
function blocks. Do not create your own instances.

See also
● Ä Chapter 1.4.1.20.2.8.9 “Tab 'PLC Settings'” on page 850
● Library CAA DeviceDiagnosis

For bus-specific diagnosis options, see the diagnosis chapters of the individual fieldbuses.

1.4.2.2 Fieldbus Devices and I/O Drivers
The technical basis for each fieldbus device, which is configured in the device tree, is the
CODESYS I/O driver.
The I/O driver is the link between the fieldbus stack, the IEC application, and the CODESYS
IDE. The driver configures the fieldbus stack from the data of the device configuration. It shows
the diagnosis, provides an API for the IEC application, and is responsible for the I/O mapping
(see chapter "I/O Mapping").
This chapter provides a brief overview of the basic functionality of CODESYS I/O driver devices,
without discussing the details of specific bus systems. In addition, some recommendations for
the configuration are provided.

The bus cycle task is the IEC task in whose context the I/O driver is executed. Some I/O drivers
use multiple tasks: usually one real-time critical task (with high priority), which is used for the
transfer of I/O data, and another task with low priority for tasks such as evaluating diagnostics
and executing acyclic services of the bus system.
With real-time critical bus systems, it has to be ensured that no operations are executed in the
context of this bus task that would interrupt the bus clock due to the execution time.
The bus task can be configured in the I/O mapping dialog of the I/O driver device. Note that
the settings of the parent device are inherited by default. If this device is the PLC, then its PLC
setting applies in the bus cycle task.

NOTICE!
If this above setting is not set, then the task with the shortest cycle time is used.
In this way, a non-real-time I/O driver can be executed unintentionally in the
task context of a real-time critical driver, thus interrupting its communication. To
diagnose these communication problems, it is recommended to check the task
monitoring.

See also
● Ä Table 64 ““Bus Cycle Options”” on page 851

An essential function of an CODESYS I/O driver is to update the I/O mapping. This means the
mapping of the I/O data of the bus system to variables of the IEC application (and vice versa).
The input/output data is mapped cyclically by copy and conversion operations in both directions
from the internal memory image of the bus system to IEC variables assigned to %I and %Q
addresses.
For the I/O driver, there is no internal difference whether symbolic names or "direct" access
to the %I and %Q addresses are used for this I/O mapping. For the maintainability of the
application, it is recommended to always use descriptive variable names (example: variable
"TemperatureReactor" instead of "%IW117" access).

Bus-specific
diagnosis

Bus cycle task

I/O mapping

PLC Automation with V3 CPUs

Programming with CODESYS > Fieldbus Support

2022/01/21 3ADR010583, 3, en_US 1217

ms-its:CAA%20Device%20Diagnosis.chm::/index.html

The updating of the I/O mapping can be set with “Always update variables” (globally in the “PLC
Settings” or individually for each device in the I/O mapping dialog):
● Disabled:

Only I/O data used in the application is mapped.
This may improve performance by avoiding the copy operations, but may cause confusion if
the I/O data in the I/O mapping dialog is not updated (the values are then grayed out). This
setting is recommended for an application whose development has been completed.

● Enabled 1:
All data is updated.

● Enabled 2:
Caution: For productive use in special cases only.
As a result, inconsistent I/O data may occur, because the bus cycle task reads/writes this
data while the application code uses it in other tasks.
See „Consistency of I/O data“.

See also
● Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854

The CODESYS programming system allows the IEC application to use multiple tasks executed
in parallel (for visualization, field buses, or other POUs). The application code can access I/O
data from the context of these tasks via the mapped IEC variables. By accessing the same data
from different tasks, inconsistent or corrupt data could occur (for example, due to interrupted
write access).
The I/O driver ensures data consistency by providing each task executing a task cycle with a
consistent mapping – a snapshot, so to speak – of all I/O data used.
So a code like in the following example cannot cause problems: (Note "DIV by ZERO")

IF(inputData <> 0) THEN // inputData is mapped to %I
 x := y / inputData; // This will never result in
DIV_BY_ZERO Exception
END_IF // inputData is not updated by
bus cycle during execution of POU

NOTICE!
With the “Always update variables” option set to “Enabled 2 – always in bus
cycle task”, this mechanism is overridden. Accordingly, the application code has
to take this into account.

In addition to the basic functionality, some I/O drivers provide services that can be called from
the CODESYS IDE, such as the device scan function or the setting of device addresses.

Settings:

● “PLC Settings”: I/O updates in stop:
The bus cycle continues even when the application is stopped, for example when the
application is on a debug breakpoint. In this way, communication with the field devices is
maintained and can be continued immediately without interruption.

● “PLC Settings”: “Always update variables” is set to “Enabled 1 – use bus cycle task if not
used in any task”:
During the development of the application, it is useful to see the values of all I/O data.

Consistency of
I/O data

Services

General recom-
mendations

PLC Automation with V3 CPUs
Programming with CODESYS > Fieldbus Support

2022/01/213ADR010583, 3, en_US1218

Task configuration:
● Especially for real-time critical fieldbus systems such as Profinet, EtherCAT, or CAN, which

depend on maintaining an exact send/receive clock, it is recommended to use a separate
bus cycle task with high priority. For less real-time-critical tasks (for example, visualization) a
significantly lower priority should be selected than for the bus cycle task.

● In order to achieve maximum I/O throughput with as little offset as possible, separate POUs
can be executed in the bus task of the fieldbus system. However, these then have to meet
the real-time requirements: for example, no file access or blocking socket functions may be
executed, but for example only the calculation of the output data.

If consistent access to I/O data from multiple tasks and possibly across multiple I/O driver
instances has to be synchronized, then undesired reciprocal interference between the bus and
application task may occur under certain circumstances.
This is the case, for example, when the general system load is high or when the I/O data of the
real-time critical fieldbus system is used together with I/O data of a slow and blocking local bus
system in the same task.
In case of unexpected interference of the communication, with the particularly real-time-critical
fieldbuses (EtherCAT, Profinet, CAN), the task monitoring should therefore first be examined for
very large jitter or outliers in the cycle time (maximum value compared to average value). The
task list provides detailed information about the use of I/O data in different tasks.
It may be possible to avoid using I/O data from different bus systems in one and the same task
or to reduce the number of I/O tasks.
See also
● Ä Chapter 1.4.1.20.2.8.17 “Tab 'Task deployment'” on page 869

1.4.2.3 Bus Cycle Task
Generally, for each IEC task, the used input data is read at the start of each task (1) and the
written output data is transferred to the I/O driver at the end of the task (3). The implementation
in the I/O driver is decisive for additional transfer of the I/O data. It is responsible for the time
frame and time point that the actual transfer to the corresponding bus system occurs.
The bus cycle task of the PLC can be defined globally for all fieldbuses in the PLC settings. For
some fieldbuses, however, you can change this independent of the global setting. The task with
the shortest cycle time is used as the bus cycle task (setting: “unspecified” in the PLC settings).
The messages are normally sent on the bus in this task.
Other tasks copy only the I/O data from an internal buffer that is exchanged only with the
physical hardware in the bus cycle task.

Multiple I/O
drivers and
tasks (trouble-
shooting)

PLC Automation with V3 CPUs

Programming with CODESYS > Fieldbus Support

2022/01/21 3ADR010583, 3, en_US 1219

(1) Read inputs from input buffer (2) IEC task
(3) Write outputs to output buffer (4) Bus cycle
(5) Input buffer (6) Output buffer
(7) Copy data to/from bus
(9) Bus cycle task, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5
Task usage
The “Task Deployment” tab provides an overview of used I/O channels, the set bus cycle task,
and the usage of channels.

WARNING!
If an output is written in various tasks, then the status is undefined, as this can
be overwritten in each case.
If the same inputs are used in various tasks, then it is possible for the input
to change during the processing of a task. This happens when the task is
interrupted by a task with a higher priority and causes the process image to be
read again. Solution: At the beginning of the IEC task, copy the input variables
to variables and then work only with the local variables in the rest of the code.
Conclusion: Using the same inputs and outputs in several tasks does not make
any sense and can lead to unexpected reactions in some cases.

1.4.2.4 EtherNet/IP Configurator

Refer to the general description for information about the following tabs of the
device editor.

– Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854
– Ä Chapter 1.4.1.20.2.8.12 “Tab '<device name> IEC Objects'” on page 859
– Ä Chapter 1.4.1.20.2.8.3 “Tab 'Parameters'” on page 844
– Ä Chapter 1.4.1.20.2.8.18 “Tab 'Status'” on page 870
– Ä Chapter 1.4.1.20.2.8.19 “Tab 'Information'” on page 870

Only in the case of special features is there an additional help page for the
specific device editor.

If the "<device name> Parameters" tab is not shown, then select the “Show
generic device configuration editors” option in the CODESYS options (“Device
Editor” category).

An EtherNet/IP network consists of an EtherNet/IP scanner and one or more EtherNet/IP
adapters. In this case, the scanner is the master in the network and the adapters are the slaves.
The CODESYS runtime can act as either a scanner or an adapter.
CODESYS continues to differentiate between a remote adapter and a local adapter.
● EtherNet/IP Remote Adapter: In CODESYS, a remote adapter is a device that you insert in

the device tree of a project below an EtherNet/IP scanner.
● EtherNet/IP Local Adapter: In CODESYS, a local adapter is a device that you insert in the

device tree of a project directly below an Ethernet adapter (TCP) or Modbus port (COM). As
a result, you can use the CODESYS runtime as a EtherNet/IP adapter.

See also
● Device Editor Options

PLC Automation with V3 CPUs
Programming with CODESYS > Fieldbus Support

2022/01/213ADR010583, 3, en_US1220

ms-its:codesys.chm::/_cds_dlg_options_device_editor.htm

1.4.2.4.1 EtherNet/IP Bus Cycle Task
By "bus" it means all fieldbuses including I/O bus. There is no bus cycle task for Modbus
because it is controlled by POUs. Modbus does not provide IO mapping.
It's recommended to define a dedicated bus cycle task for each fieldbus configured in the
project. It's strongly recommended not to use "unspecified" in the "“PLC Settings”" to avoid
unexpected behavior. The task defined in “PLC Settings” determines the bus cycle task of I/O
bus and, depending on the configuration, of the additional fieldbuses (the setting is by default
inherited).
Especially in case of EtherCAT, a dedicated bus cycle task should be used which is not shared
with other fieldbuses. If [unspecified] is set in “PLC Settings”, the EtherCAT task might be
automatically used by other fieldbuses, potentially causing EtherCAT task processing to fail.
This should be avoided by specifying a task different to the EtherCAT task in “PLC Settings”.
As a rule, for each IEC task the used input data is read at the start of each task and the written
output data is transferred to the I/O driver at the end of the task . The implementation in the I/O
driver is decisive for further transfer of the I/O data. The implementation is therefore responsible
for the timeframe and the specific time when the actual transmission occurs on the respective
bus system.
Other tasks copy only the I/O data from an internal buffer that is exchanged only with the
physical hardware in the bus cycle task.

(1) Read inputs from input buffer (2) IEC task
(3) Write outputs to output buffer (4) Bus cycle
(5) Input buffer (6) Output buffer
(7) Copy data to/from bus
(9) Bus cycle task, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5
Using tasks
The “Task Deployment” provides an overview of used I/O channels, the set bus cycle task, and
the usage of channels.

General infor-
mation

PLC Automation with V3 CPUs

Programming with CODESYS > Fieldbus Support

2022/01/21 3ADR010583, 3, en_US 1221

WARNING!
If an output is written in various tasks, then the status is undefined, as this can
be overwritten in each case.
When the same inputs are used in various tasks, the input could change when
a task is processed. This happens if the task is interrupted by a task with a
higher priority and causes the process map to be read again. Solution: At the
beginning of the IEC task, copy the input variables to variables and then work
only with the local variables in the rest of the code.
Conclusion: Using the same inputs and outputs in several tasks does not make
any sense and can lead to unexpected reactions in some cases.

See also
● Ä Chapter 1.4.1.20.2.8.17 “Tab 'Task deployment'” on page 869
● Ä Chapter 1.4.1.20.2.8.9 “Tab 'PLC Settings'” on page 850

1.4.2.4.2 EtherNet/IP Scanner
CODESYS provides two different EtherNet/IP scanners:
● (1): A device that you insert directly below each network adapter A CODESYS Ethernet/IP

scanner (IEC) can also be an adapter at the same time – functionally an originator and an
adapter in one.

● (2): A device that needs a special cifX adapter
You insert one or more EtherNet/IP adapters below a scanner.

CODESYS run-
time as
EtherNet/IP
scanner

PLC Automation with V3 CPUs
Programming with CODESYS > Fieldbus Support

2022/01/213ADR010583, 3, en_US1222

See also
● Ä Chapter 1.4.2.4.2.1 “Tab 'EtherNet/IP Scanner - General'” on page 1223
● Ä Chapter 1.4.2.4.2.2 “Tab 'EtherNet/IP Scanner NetX - General'” on page 1224

Tab 'EtherNet/IP Scanner - General'
Object: EtherNet/IP Scanner
This tab in the configurator of the EtherNet/IP scanner includes the basic settings. The network
interface used by the scanner is configured in the settings of the Ethernet adapter.

Table 242: “Options”
“Automatic restoring of
connections ”

: The scanner always attempts to automatically re-establish an interrupted
connection.
For example, if a timeout is detected for UDP I/O messages or the TCP connec-
tion to the adapter is interrupted. If the option is activated, then the scanner
reconnects to the adapters with the lost connection.

PLC Automation with V3 CPUs

Programming with CODESYS > Fieldbus Support

2022/01/21 3ADR010583, 3, en_US 1223

Tab 'EtherNet/IP Scanner NetX - General'
Object: EtherNet/IP Scanner NetX
This tab in the configurator of the EtherNet/IP scanner contains the basic settings for communi-
cation in the network.

Table 243: “Address Settings”
“Use static IP address”

“IP address”

“Subnet mask”

“Gateway address”

These entries each occupy four bytes and serve to identify the scanner within
the network environment

“Optain IP address
automatically”

This option is available only for the NetX scanner

“BOOTP” Assignment of the IP address by a server by means of Bootstrap Protocol
(BOOTP)

“DHCP” Automatic configuration of the network settings by the host by means of Dynamic
Host Configuration Protocol (DHCP)

Table 244: “Ethernet Settings”
“Speed and duplex:” Bit rate of the transmission. In case of “Auto-negotiation”, the highest of the

available bit rates is selected automatically.

Table 245: “Options”
“Auto-reestablish connections” : The scanner always attempts to automatically re-establish an interrupted

connection.
For example, if a timeout is detected for UDP I/O messages or the TCP connec-
tion to the adapter is interrupted. If the option is activated, then the scanner
reconnects to the adapters with the lost connection.

Tab 'NetX Configuration'
Object: EtherNet/IP Scanner
As an alternative to the general EtherNet/IP node in case of a NetX field bus the EtherNet/IP
node (NetX) can be added to the device tree. This node provides the additional NetX configura-
tion dialog to select the NetX chip (slot for the card) and the communication channel of this chip.
The name of the setting used in the dialog and the possible settings provided by the selection
lists are defined by the device description.

Table 246: “NetX Settings”
“Slot” Slot to be used. In case of PCI cards with NetX chip, the slot numbers usually

correspond to the PCI card numbers.

“NetX Com channel” Channel on the card to be used for the communication. A NetX board may have
up to four communication channels for different fieldbusses.

“Auto-initialize bus” The user is asked to determine if the bus should be reinitialized when down-
loading or when resetting the application. A new initialization will interrupt the
bus and may lead to unwanted behavior of the machine.

PLC Automation with V3 CPUs
Programming with CODESYS > Fieldbus Support

2022/01/213ADR010583, 3, en_US1224

Tab 'EtherNet/IP Scanner - I/O Mapping'
Object: EtherNet/IP Scanner
Note: No project variables can be mapped to the outputs and inputs with the EtherNet/IP
scanner.
See also
● Tab '<device name> I/O Mapping'

EtherNet/IP Remote Adapter
1.4.2.4.2.5.1 Tab 'EtherNet/IP-Adapter - General'.. 1225
1.4.2.4.2.5.2 Tab 'EtherNet/IP Adapter - Connections'................................... 1226
1.4.2.4.2.5.3 Dialog 'New Connection'.. 1227
1.4.2.4.2.5.4 Tab 'EtherNet/IP Adapter - Assemblies'..................................... 1228
1.4.2.4.2.5.5 Tab 'EtherNet/IP Adapter - User Parameters'............................ 1229
1.4.2.4.2.5.6 Dialog 'Select Parameters'.. 1230

Tab 'EtherNet/IP-Adapter - General'
Object: EtherNet/IP Adapter
The tab in the device editor of the EtherNet/IP adapter contains the basic settings for network
communication.

Table 247: “Address settings”
“IP address ” Address for the identification of the EtherNet/IP adapter device.

Table 248: “BOOTP”
Bootstrap Protocol
This option is available only for adapters under the NetX scanner.

“MAC address” Device-specific MAC address of the slave

“Save IP address” : The address of the slave is saved. The requirement, however, is that the
slave supports this function. This option is only available for the CIFX scanner.

Table 249: “Electronic keying”
“Compatibility check” : The adapter uses its own keying values to perform a compatibility check of

the keying values from the EDS file. All keying values are sent to the device.
Then the device decides whether it is compatible with the received values.

: The adapter uses its own keying values to perform an exact check of the
keying values from the EDS file. The user decides which keying information
should be checked.
● Vendor ID
● Device type
● Product code
● Major revision
● Minor revision
If the check fails, then an I/O connection is not established to the device and an
error message is issued to the status page.

“Restore default values” For generic devices only.

PLC Automation with V3 CPUs

Programming with CODESYS > Fieldbus Support

2022/01/21 3ADR010583, 3, en_US 1225

ms-its:codesys.chm::/_cds_edt_device_io_mapping.htm

See also
● Ä Chapter 1.4.2.4 “EtherNet/IP Configurator” on page 1220

Tab 'EtherNet/IP Adapter - Connections'
Object: EtherNet/IP Adapter
The upper part of this tab displays a list of all configured connections. When there is an "Exclu-
sive owner" connection in the EDS file, it is inserted automatically when adding the adapter. The
configuration data for these connections can be changed in the lower part of the dialog.
The configuration data is defined in the EDS file. The data is transmitted when the connection to
the adapter is established.

“RPI (ms)” Requested Packet Interval: Exchange interval of the input/output data

“O -> T size (bytes)” Size of the producer data from the scanner to the adapter (Originator --> Target)

“T -> O size (bytes)” Size of the consumer data from the adapter to the scanner (T --> O)

“Proxy Config Size (Bytes)” Size of proxy configuration data

“Target Config Size (Bytes)” Size of adapter configuration data

“Connection Path” Address of the - configuration objects - input objects - output objects

“Add Connection” Opens the “New Connection” dialog. The parameters for the new connection are
determined here.

“Delete Connection” Deletes the selected connection from the list

“Edit Connection” Opens the “Edit Connection” dialog. The parameters for the existing connection
are modified here.

Table 250: “Configuration Data”
The table shows the connections with the configuration parameters from the EDS file. The connections are
divided into configuration groups.

“Raw data values” If the scaling parameters are defined in the EDS file for the data, then you can
show the values as raw data or converted data.

: The data is displayed without conversion. In the case of Enum data types,
the index of the enumeration value is shown.

: The data is displayed with conversion. In the case of Enum data types, the
enumeration value is shown.

“Display parameter groups” : If groups are defined in the EDS file, then the parameters that are defined in
these groups are displayed in a sorted list.

“Defaults” Resets to the default values

“Value” Double-click to change the value. Depending of the data type, you can specify
the value directly in the input field or select from a list box.
In the case of bit field data types and deactivated raw data values, a dialog
opens for you to choose the individual bits. Only those bits can be selected
which fall within defined minimum and maximum values. If bit field data types
contain enumerations in the associated EDS file, then only these enumerations
are shown with the associated bit positions.
If a connection contains a parameterizable connection path in the EDS file, then
here you can modify the different parameters of the respective connection.

PLC Automation with V3 CPUs
Programming with CODESYS > Fieldbus Support

2022/01/213ADR010583, 3, en_US1226

See also
● Ä Chapter 1.4.2.4.2.5.3 “Dialog 'New Connection'” on page 1227
● Ä Chapter 1.4.2.4 “EtherNet/IP Configurator” on page 1220

Dialog 'New Connection'
Object: EtherNet/IP Adapter

The dialog contains the parameters for the new connection.

Table 251: “Connection Path Settings”
“Automatically generated path” The “Connection Path” is generated automatically from the values for

“Configuration assembly”, “Consuming assembly”, and “Producing assembly”.

“User-defined path” The “Connection Path” is specified manually in the corresponding input field.

“Path defined by symbolic
name”

The path is specified by a symbolic name.
Requirement: The device must support symbolic connection paths.

Table 252: “General Parameters”
“Connection Path” The connection path is used to address one or more objects in the adapter that

provide the input data and receive the output and configuration data.
Requirement: The connection path is set to “User-defined path”.

“Symbolic name” An ANSI string is used instead of the normal connection path. See the manual of
the respective EtherNet/IP adapter for permitted ANSI strings.
Requirement: The connection path is set to “Path defined by symbolic name”.

“Trigger type” ● “Cyclic”: Data exchange takes place cyclically at intervals set by the RPI.
● “Change of State”: Data is exchanged automatically after a change to the

scanner outputs or adapter inputs.
● “Application”: Not implemented

“Transport Type” Details for this can be taken from the specifications CIP Volume 1 and Volume 2.

“RPI (ms)” (Requested Packet Interval) Length of the time interval (in milliseconds) in which
the transmitting application requests the transmission of data to the target appli-
cation. This value must be a multiple of the bus cycle task.

“Timeout multiplier” In case of device failure, there is a time delay (RPI * Timeout multiplier) before
the device state switches to "Error".

Use this option to employ existing connections from an EDS file. The data that can be changed
are defined in the EDS file.

Table 253: “Scanner to Adapter (Output)”
“O--> T size (bytes)” Amount of data from scanner to adapter

“Proxy Config Size (Bytes)” Size of proxy configuration data

“Adapter Config Size (Bytes)” Size of adapter configuration data

Generic connec-
tion (freely con-
figurable)

Predefined con-
nection (EDS
file)

PLC Automation with V3 CPUs

Programming with CODESYS > Fieldbus Support

2022/01/21 3ADR010583, 3, en_US 1227

“Connection type” ● “Null”: A network connection is not established.
● “Multicast”: A network connection is established. The connection data can be

received by multiple consumers.
● “Point to Point”: A network connection is established. The connection data

can be received by exactly one consumer.

“Connection Priority” Two scanners using different priorities to one adapter can cause conflicts.
Adapting the connection priority solves this problem.

“Fixed/Variable” See the specifications CIP Volume 1 and Volume 2 for details of the parameters.

“Transfer format”

“Inhibit time”

“Heartbeat multiplier” Requirement: The “Transfer format” is “Heartbeat”.
Extends the interval at which the scanner sends heartbeat messages to the
adapter. This value is multiplied by the “RPI” value.
Example: “RPI” = 10ms and “Heartbeat multiplier” = 10 causes a message to be
sent every 100ms.

Table 254: “Adapter to Scanner (Input)”
“T--> O size (bytes)” See description for “Scanner to Adapter”.

“Connection type”

“Connection Priority”

“Fixed/Variable”

“Transfer format”

“Inhibit time”

See also
● Ä Chapter 1.4.2.4.2.5.2 “Tab 'EtherNet/IP Adapter - Connections'” on page 1226

Tab 'EtherNet/IP Adapter - Assemblies'
Object: EtherNet/IP Adapter
The upper part of this tab displays a list of all configured connections. When a connection is
selected, the associated assemblies in the lower area of the tab are displayed.

Table 255: Connections
A description of the columns is found on the "Connections" tab.

Table 256: “Output Assembly”, “Input Assembly”
“Add” Opens the “Select Parameters” dialog.

“Delete” Deletes all selected parameters.

“Move Up”

“Move Down”

Moves the selected parameter within the list. The order in the list determines the
order in the I/O mapping.

PLC Automation with V3 CPUs
Programming with CODESYS > Fieldbus Support

2022/01/213ADR010583, 3, en_US1228

“Name”

“Bit length”

“Help string”

You can double-click in the text field to edit the values.

“Show filling bytes of
assemblies”

: The filling bytes of the assemblies are shown in the I/O mapping. This can be
helpful in case the parameter layout of the assemblies is not mapped correctly in
the EDS file.

See also
● Ä Chapter 1.4.2.4.2.5.2 “Tab 'EtherNet/IP Adapter - Connections'” on page 1226

“Display parameter groups” The dialog displays all parameters from the EDS file by group.

 The dialog displays all parameters from the EDS file in a flat structure.
Individual parameters from this list can be selected and added to the list of
assemblies by clicking “OK”.

“Generic parameters” You can add generic parameters. Individual values of the parameter can be
edited.

Tab 'EtherNet/IP Adapter - User Parameters'
Object: EtherNet/IP Adapter
The tab displays all additional parameters that are transmitted once only into the bus system
during the phase of the starting procedure allotted to this.

NOTICE!
The user parameters are also transmitted again when a connection is reestab-
lished, for example after the failure of a remote adapter.

“New” Opens the “Select Parameters” dialog for adding a new parameter. The new
parameter is inserted before the selected line.

“Modify” Opens the “Select Parameters” dialog for changing an existing parameter.

“Move Up”, “Move Down” Changes the order of the user parameters. The order of the parameters in the
list corresponds to the order at the initialization.

“Value” The value of the respective parameter can be changed directly by double-
clicking the value. If applicable, a list box opens containing possible values.

“Abort If Error” : In case of error, the entire transmission of the parameters is aborted.

“Jump to Line If Error” : In case of error, the program resumes with the line specified in the “Next
Line” column. In this way, an entire block can be skipped during the initialization,
or a return can be defined.
Note: A return can lead to an infinite loop if it is never possible to write a certain
parameter.

See also
● Ä Chapter 1.4.2.4.2.5.6 “Dialog 'Select Parameters'” on page 1230

Dialog 'Select
Parameters'

PLC Automation with V3 CPUs

Programming with CODESYS > Fieldbus Support

2022/01/21 3ADR010583, 3, en_US 1229

Dialog 'Select Parameters'
Object: EtherNet/IP Adapter
The dialog contains a list of the parameters that are defined in the EDS file. You can define your
own generic parameters in addition to the specified parameters.
The values of the selected parameter are displayed in the lower section of the dialog. They can
be changed there.

“Display parameter groups” : Display of the parameters sorted by parameter groups

“Generic parameters” : Enables the creation of generic parameters

“Name” Name of the generic parameter

“Class” Each object class that can be addressed by the network is identified by an
integer value.

A class can also be addressed from the class by specifying a special object
instance (see “Instance”).

“Instance” Integer value for the unique identification of an object instance within a class.
Example of an object instance:

If the value 0 is assigned to the instance, then the class itself is referenced by
this special instance.
Example – object instance 0:

PLC Automation with V3 CPUs
Programming with CODESYS > Fieldbus Support

2022/01/213ADR010583, 3, en_US1230

“Attribute” Integer value that can belong to a certain class or instance.
Example attribute:

The values for “Class”, “Instance”, and “Attribute” are defined in the "CIP Net-
works Library" (Vol. 1 and 2) or in the manual of the device manufacturer.

CAUTION!
When individual values are entered, a plausibility check is not performed. Any
errors are identified only when the bus is started and they are reported with a
message in the log file.

See also
● Ä Chapter 1.4.2.4.2.5.5 “Tab 'EtherNet/IP Adapter - User Parameters'” on page 1229

1.4.2.4.3 EtherNet/IP Local Adapter
First, you insert the EtherNet/IP adapter below an Ethernet adapter. Then, you insert the
modules below the EtherNet/IP adapter.
The sum of the input and output data of the modules determines the connection size of the
adapter.

CODESYS run-
time as
EtherNet/IP
adapter

PLC Automation with V3 CPUs

Programming with CODESYS > Fieldbus Support

2022/01/21 3ADR010583, 3, en_US 1231

See also
● Ä Chapter 1.4.2.4.3.1 “Tab 'EtherNet/IP-Adapter - General'” on page 1232
● Ä Chapter 1.4.2.4.3.3.1 “Tab 'EtherNet/IP Module - General'” on page 1233

Tab 'EtherNet/IP-Adapter - General'
Object: EtherNet/IP Adapter
The device editor tab shows general information from the device description file. You can modify
these values.

Table 257: “EDS File”
“Vendor name”

“Vendor ID” Provided by the ODVA (Open DeviceNet Vendors Association)

“Product name”

Values from the EDS file
“Product code”

“Major revision”

“Minor revision”

PLC Automation with V3 CPUs
Programming with CODESYS > Fieldbus Support

2022/01/213ADR010583, 3, en_US1232

“Enable ACD” Enables the ACD functionality (Address Conflict Detection) for the EtherNet/IP
adapter.
Note: The ACD functionality is normally applied by the operating system. There-
fore, the user should only use this function very conscientiously. By enabling
ACD, complications can result between the controller and the operating system.
ACD is a mechanism that EtherNet/IP devices can use to detect and respond to
IPv4 address conflicts. The ACD mechanism used in EtherNet/IP complies with
the IETF RFC 5227 standard.

“Install to Device Repository” If a device with the same device identification has already been installed, then
you are asked whether the device should be overwritten. If the device is inserted
as a remote adapter below an EtherNet/IP scanner, then you will be asked to
automatically update the device.

“Export EDS File” The EDS file is created and stored on the local computer. In this way, the EDS
file can be used in an external configuration file.

Tab 'EtherNet/IP Adapter - Tags'
Object: EtherNet/IP Adapter
The tab of the device configurator is used for communication between an EtherNet/IP scanner
and an EtherNet/IP adapter. The tab shows all device connections from the device description.
The user can define a connection tag for each of these device connections.
No additional connections can be added on this tab.
Requirement: This tab is displayed only if the device description contains the parameter
ShowTagsPage and the value of the parameter is set to TRUE.

Table with the device connections defined in the device description.

“Connection Name” Information originates from the device description
Not editable

“ Transport Type”: Information originates from the device description
Not editable

“Connection Path” Information originates from the device description
Not editable

“Symbolic Connection Tag” Connection tag for the connection predefined in the device description.
Specified by the user.

See also
● Ä Chapter 1.4.2.4.3.1 “Tab 'EtherNet/IP-Adapter - General'” on page 1232

EtherNet/IP Module
1.4.2.4.3.3.1 Tab 'EtherNet/IP Module - General'... 1233

Tab 'EtherNet/IP Module - General'
Object: EtherNet/IP Adapter
This device editor tab displays general information from the device description file: You can
adjust these values.

PLC Automation with V3 CPUs

Programming with CODESYS > Fieldbus Support

2022/01/21 3ADR010583, 3, en_US 1233

Table 258: “Module Information”
“Module” Provides a selection of all module EDS files stored in the device description. The

I/O data is then read from the selected module EDS to create corresponding I/O
channels.

“Vendor”

“Vendor ID” Provided by the ODVA (Open DeviceNet Vendors Association)

“Product name”

Values from the EDS file
“Product code”

“Major revision”

“Minor revision”

1.4.2.4.4 Command 'EtherNet/IP - Scan Devices'
Function: The command establishes a brief connection to the hardware and determines the
devices in the network. Then you can apply the devices found into the device tree of your
project.
Call: Menu bar: “Project”; context menu of a device object in the device tree
Requirement: The communication settings to the controller are correct. The gateway and the
PLC are started. The device supports the scan function.
The following devices provide the scan function: EtherCAT master, EtherNet/IP Scanner
(IEC), Sercos master, CANopen Manager, CANopen Manager SIL2, PROFINET controller und
PROFIBUS DP master.

You can perform the device scan immediately if the scan function is perma-
nently implemented in the PLC. When scan function is implemented in a library,
you have to log in only one time to download the library to the controller.

The command refers to the master controller selected in the device tree. For example, an
already inserted PROFINET IO controller can be selected and the command used to determine
the I/O devices and I/O modules assigned to it.
After performing the scan operation, the “Scan Devices” dialog opens and displays the found
devices.

Dialog 'Scan
Devices'

PLC Automation with V3 CPUs
Programming with CODESYS > Fieldbus Support

2022/01/213ADR010583, 3, en_US1234

Table 259: “Scanned Devices”
“Device name, Device type,
Address, Station name, etc.”

Data about the scanned device depending on network type.
When you change a value in the list of scanned devices, the value is shown
in italics. This indicates that the new value has been changed in the editor in
CODESYS, but not in the device. When you download the value to the device, it
is shown normally.
Value that indicate differences between the project and the scanned device are
shown in orange.
If multiple device descriptions are available for the scanned device, then the
name is displayed in bold. The selection of the matching device description is
resolved differently for different fieldbuses. For more detailed information, see
the corresponding fieldbus chapters.
If a device description cannot be found, then the following message is shown:
"Attention! The device was not found in the repository." Depending on the bus
system, additional information is displayed, such as manufacturer number and
product number. The device cannot be inserted into the project without the
installed device description.

“Show differences to project” : The table in the dialog also shows additional configured devices (in the
device tree of the project).

: The table shows all scanned devices. The configured devices are not shown.

“Scan for Devices” Starts a new search.

“Copy All Devices to Project” The device that is selected in the table is inserted into the device tree in the
project. If nothing is selected, then all scanned devices are shown.

NOTICE!
If you insert devices, which are available in the device tree, to the device tree
with “Copy All Devices to Project”, then the following should be noted. The data
of the “Process Data” and “<...> I/O Mapping” tabs of the existing devices can
be overwritten with the data of the recently inserted devices.

Table 260: “Configured Devices”
This part of the dialog is visible only when you select the “Show differences to project” option.
Differences between the scanned and configured devices are color-coded. Devices displayed in green are iden-
tical on both sides. Devices displayed in red are available only in the view of the scanned or configured devices.

If you have selected a device in both views, then the scanned devices are
inserted above the selected configured device.

If you have selected a device in both views, then the scanned devices are
inserted below the selected configured device.

If you have selected a device in both views, then the configured devices are
replaced by the selected scanned device.

All scanned devices are copied to the project.

Deletes the selected configure device.

PLC Automation with V3 CPUs

Programming with CODESYS > Fieldbus Support

2022/01/21 3ADR010583, 3, en_US 1235

Scanning an adapter can fail if the PLC is in RUN mode and a connection
already exists from the scanning controller to the adapter. Then the scanning
causes another connection to be established to the adapter, which interrupts the
existing connection in some adapters. Then the scanner restarts the connection
to the adapter, which causes the adapter to interrupt the connection to the
scanning controller.

For this reason, it makes sense to perform a network scan in STOP mode after
a "Reset". If RUN mode cannot be interrupted, then scanning is possible without
an projected remote adapter (EtherNet/IP scanners in the device tree only).

When accepting the remote adapter by means of the “Copy to Project” command, the
I/O dimensions with which the adapter responded are set for the first "exclusive owner"
connection. In order to log all of the detected assembly instances after scanning, the def-
inition IODRVETHERNETIP_PRINT_SCAN_RESULT must be set. By default, it is scanned
by the instance ID 100–199. This can be adapted by means of the library parameters
ParamScanStartOfInstanceAssem and ParamScanLastOfInstanceAssem from the
library IoDrvEtherNetIP Library. This might be necessary, for example to scan in another
manufacturer-specific range (assembly instance ID ranges).

1.4.3 OPC UA server for AC500 V3 products
1.4.3.1 General

OPC UA server can be added as an object below the Ethernet interfaces ETH1 or ETH2.
The user can access the variable interface of the PLC via a client. At the same time, communi-
cation can be protected by means of encryption.
The CODESYS OPC UA server supports the following features:
● Browsing of data types and variables
● Standard read/write services
● Notification for value changes: subscription and monitored item services
● Encrypted communication according to "OPC UA standard (profile: Basic256SHA256)"
● Imaging of the IEC application according to "OPC UA Information Model for IEC 61131-3"
● Supported profile: Micro Embedded Device server Profile
● By default, there is no restriction in the number of sessions, monitored items, and subscrip-

tions. The number depends on the performance of the respective platform.
● Sending of events according to the OPC UA standard.

Application example
The application example How to use OPC server V3 - for DA and UA is avail-
able to gain a deeper understanding of the OPC UA protocol and to configure
AC500 V3 accordingly.

1.4.3.2 Creating a project for OPC UA access
1. Click “File è New Project è AC500 project” in Automation Builder 2.1 or newer.
2. Choose a PLC - AC500 V3 and click [Add object].
3. Right-click on node ETH1 or ETH2 and “Add object”.
4. Choose OPC UA Server in the dialog and click [Add object].
5. Declare some variables of different types in the program.

For experts

PLC Automation with V3 CPUs
Programming with CODESYS > OPC UA server for AC500 V3 products

2022/01/213ADR010583, 3, en_US1236

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010407&LanguageCode=en&DocumentPartId=&Action=Launch

6. Right-click “Application è Add object”. Choose Symbol configuration and click [Add
object].

7. Enable checkbox Support OPC UA Features in the dialog Add symbol configuration.
8. Double-click “Symbol configuration” in the Devices tree to open the editor Symbol configu-

ration.
9. Click [Build].

ð The variables are displayed in a tree structure.

10. Activate the variables that you want to publish to an OPC UA client. Specify the access
rights.

11. Download the project to the PLC.

1.4.3.3 Use node name
1. Double-click node “OPC_UA_Server”.
2. Set parameter Use node name to TRUE.
3. Double-click node “PLC_AC500_V3 <...>”.
4. Click “Device” and “Rename active device...”

5. Enter new device name in the following dialog and click [OK].

1.4.3.4 Use UaExpert client
The OPC UA client UaExpert is available for download from the Unified Automation website and
can be used free of charge (freeware license).
Using this client, you can connect to the AC500 OPC UA server.
The following description refers to this program. Other OPC UA clients work in a similar way.

PLC Automation with V3 CPUs

Programming with CODESYS > OPC UA server for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 1237

1. Start the UaExpert program.

2. Click on the “blue cross symbol”.
3. Double-click on the “blue cross symbol” in the Add Server dialog.
4. Enter URL and click [OK].

ð The URL appears in the Add Server dialog.

5. Select “Advanced” tab and click [OK].
6. Click [Connect] button.

PLC Automation with V3 CPUs
Programming with CODESYS > OPC UA server for AC500 V3 products

2022/01/213ADR010583, 3, en_US1238

7. Expand the project tree in the Address Space window.

8. Drag and drop the needed symbols to Data Access View.

1.4.3.5 Working with encryption
1.4.3.5.1 Creating a certificate for the OPC UA server

Prerequisite: A battery is inserted and the clock is set to actual time.
1. Double-click the Security symbol in the lower right corner of Automation Builder.
2. Select the “Devices” tab.

ð The certificate information opens.

3. Select the PLC in the left Information view.

ð All services of the PLC that require a certificate are displayed in the right Information
view.

4. Select the service “OPC UA Server”.
5. Click the icon to create a new certificate for the device.

ð Certificate Settings dialog appears.

PLC Automation with V3 CPUs

Programming with CODESYS > OPC UA server for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 1239

6. Define the certificate parameters according the figure above and click “[OK].

ð The certificate is created on the PLC.

7. Upload the certificate to your PC.
8. Restart the runtime system.

For further information see Ä Chapter 1.6.6.3.7.3.4 “OPC UA secure” on page 3923.

1.4.3.5.2 Encrypted connection with UaExpert client
1. Start the UaExpert program.

2. Click on the “blue cross symbol”.
3. Double-click on the “blue cross symbol” in the Add Server dialog.
4. Enter URL and click [OK].

ð The URL appears in the Add Server dialog.

PLC Automation with V3 CPUs
Programming with CODESYS > OPC UA server for AC500 V3 products

2022/01/213ADR010583, 3, en_US1240

5. Select “Advanced” tab.

6. Choose option “Basic256ha256” of drop-down list Security Policy and “Sign & Encrypt” of
drop-down list Message Security Mode and click [OK].

PLC Automation with V3 CPUs

Programming with CODESYS > OPC UA server for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 1241

7. Click menu “Settings” and “Manage Certificates”

8. Click [Create new Application Certificate...].

ð Dialog New Application Instance Certificate opens.

PLC Automation with V3 CPUs
Programming with CODESYS > OPC UA server for AC500 V3 products

2022/01/213ADR010583, 3, en_US1242

9. Enter the required informations and click [OK].

ð Dialog “Manage Certificates” opens

10. Click [Copy Application Certificate To...] your PC.

11. Download the certificate to AC500 via the Security Screen view.
12. Click [Connect] button in the UaExpert client.

PLC Automation with V3 CPUs

Programming with CODESYS > OPC UA server for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 1243

ð Dialog Certificate Validation opens.

Working with a trusted certificate will avoid this error message.

14. Enable checkbox Accept the server certificate temporarily for this session and click [Con-
tinue].

ð Dialog Connect Error opens

PLC Automation with V3 CPUs
Programming with CODESYS > OPC UA server for AC500 V3 products

2022/01/213ADR010583, 3, en_US1244

15. Click [Ignore]

16. Check settings in dialog Manage Certificates.

1.4.3.6 Changing variables via UaExpert client
1. Expand in view Address Space “Objects è DeviceSet è PM5670 è Resources

è Application è PLC_PRG”.

ð The variables of the global variable list are visible.

PLC Automation with V3 CPUs

Programming with CODESYS > OPC UA server for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 1245

2. Drag and drop the variables to the Data Access View.
3. Change values in the column Value.

1.4.3.7 Configuring OPC UA client
1.4.3.7.1 Operating modes

● Objects will be continuously updated in a defined interval
● Create higher load then Subscription
● Is recommended only for a few Symbols

Not yet supported

● Updated objects depending on the publishing interval and filters
● Method to reduce load
● Different intervals
● Filter possible (coming in AC500)

Client defines a group of sym-
bols with

Description

Publishing interval Interval, in which server publish data to client

Sampling interval Interval for sampling and storing data at server and send in
each publishing interval

Queue size Array of data to save data if sampling Interval is faster than
publishing Interval (At AC500 in the moment only 1)

Data change filter Can be used to reduce traffic from server to client.
Criteria:
● Change of data,
● Change of status
● Change of time stamp
AC500 is fix configured for change of data and change of
status.

Polling

Pub/Sub

Subscription
(recommended
mode)

PLC Automation with V3 CPUs
Programming with CODESYS > OPC UA server for AC500 V3 products

2022/01/213ADR010583, 3, en_US1246

1.4.3.7.2 Using OPC UA with subscription mode

Recommendations:

– Define only variables you need as symbols
– Do not configure publishing Intervals to short (increase load)
– Use different subscriptions with different publishing intervals in order to

decrease load
– Do not use sampling intervals faster then publishing intervals as long as

AC500 OPC UA server don‘t support Queue Size different from 1
– Be careful: Setting „0“ at sampling Interval at client will be interpreted in

server as „as fast as possible“, which is 100ms at AC500 and create a high
load.

Publishing and
sampling inter-
vals in UaExpert

PLC Automation with V3 CPUs

Programming with CODESYS > OPC UA server for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 1247

1. Right-Click on an Item in Data Access View and click “Subscription Settings”.

2. Set the recommended values.
Life Time Count: Number of publishing intervals in which client has to send publish
requests to the server. After this period without request from client, subscription in server
will be deletet.
Max Keep Alive Count: If there are no new data to send, server can skip a publishing
interval. After the alive count, server has to send, even if there are no new data.
Click [OK].

3. Right-Click on an Item in Data Access View and click “Monitored Item Settings”.

4. Set the recommended values.

1.4.4 Libraries
Libraries are used for preparing POUs and functions for use in CODESYS applications. In
addition to the descriptions presented here in the help, always see the documentation included
in the library as well.
For using libraries in your CODESYS project, see the "Managing Libraries" chapter.
To create your own CODESYS libraries, follow the guidelines for library developers.

See also
● Ä Chapter 1.4.1.16 “Using Libraries” on page 448

PLC Automation with V3 CPUs
Programming with CODESYS > Libraries

2022/01/213ADR010583, 3, en_US1248

1.4.4.1 Guidelines for creating libraries
Libraries must be created according to specific rules to avoid compatibility issues.
The main items include the following:
● Select a meaningful library name (required)
● Use templates to ensure consistency (optional)
● Use a familiar and uniform project structure, when possible (optional)
● Register a unique library namespace (required)
● Enter all project information (required)
● Apply the correct method for referencing other libraries correctly (required)
● Design smart external and internal interfaces (required)
● Implement a user-friendly error handling (required)
● Apply the correct method (protection) for deployment (required)
● Apply a consistent naming convention to get clean code (optional)
● When revising an existing library, consider the interface compatibility with previous versions.
Please follow these guidelines when developing libraries in CODESYS: "Library Development
Summary". You will find this document as a CHM file (LibDevSummary.chm) in the installation
directory of CODESYS, or in the online help.
See also
● Ä Chapter 1.4.1.16 “Using Libraries” on page 448

1.4.5 CODESYS Visualization
Everything in one project
In the same CODESYS project, you use CODESYS Visualization to create the suitable user
interface for your application. You link the visualization to the application variables and in this
way they can animate and display data. When creating a visualization and an application, you
use common functions, for example, as library and source code management or find/replace
throughout the project.

● Display variant depending on the target platform
You can execute the same visualization on various target platforms. Possible display var-
iants are CODESYS WebVisu, CODESYS TargetVisu. In addition, there is a display inte-
grated in the development system.

● Visualization editor
In the graphic editor you design the desired user interface from visualization elements. The
visualization elements are provided via libraries in a "ToolBox". You drag them into the editor
area and adapt them with the help of a property configurator.

● Referenceable visualizations
A visualization can be referenced in other visualizations. This enables the creation of user
interfaces with a complex structure. For this purpose CODESYS Visualization also provides
predefined visualizations, e.g. for dialogs.

● Simple design change
The simple change of the look & feel of a visualization is possible in one place by creating a
different visualization style.

● Multilingualism
You can conveniently prepare visualization texts in several languages with the help of text
lists. You can configure a user input element for switching to a different language in online
mode.

Overview of
functionality

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1249

● User management
You can set up the visualization's own user management for access control up to individual
element level.

● Other useful features
Function block instances of visualizations, array accesses to the visualization, real-time data
logging, extendability of the pool of visualization elements, provision of graphic objects via
symbol libraries, calls of PLC functions from the visualization, reusability of visualizations by
depositing them in libraries.

Table 261: Overview of the objects, editors, repositories, etc. relevant for the visualization in the
CODESYS Development System

Visualization Object below an application in the device tree or in the POUs

pool that contains a visualization image. A visualization can
reference other visualizations.

Visualization editor and addi-
tional views

In this IEC 61131-3-compliant editor you can create the
desired graphical user interfaces, panels, dialogs, etc. from
visualization elements. The editor is made up of the following
components:
● Graphic editor area for arranging the elements
● “Interface Editor”: for the parameterization of the visualiza-

tion
● “Hotkey Configuration”: editor for defining keys for online

operation
● “Elementlist”: overview of all visualization elements used,

editor for the position of the elements on the z-axis
The following views are also available:
● “ToolBox”: view for the provision of visualization elements
● “Properties”: view with editor for the configuration of the

element that currently has the focus in the graphic editor

Visualization element Ready-to-use elements from the visualization libraries are
available in the Tools view of the visualization editor for inser-
tion.

Visualization profile The profile defines which visualization elements are available.
Each project that contains a visualization is based on such a
profile (project settings).

Visualization Styles The selected style determines the "look & feel" of the ele-
ments. It is set application-wide in the visualization manager.
Ready-to-use styles are provided and you can also create
your own.

Visualization Manager Each application has a visualization manager of its own
for its visualizations with various settings such as user man-
agement, style, language, input type, etc. The “Visualization
Manager” object is suspended in the device tree below the
application.

Display variant A visualization can be displayed in online mode in the fol-
lowing variants, which are created as objects under the visual-
ization manager:
● CODESYS TargetVisu (target visualization and remote

target visualization on PLC devices)
● CODESYS WebVisu (web visualization via a web

browser)
● Visualization integrated in the development system

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1250

Visualization library Collection of visualization elements that are provided in the

toolbox.

Symbol library Collection of images and graphics that you can use in visuali-
zations. When inserting a visualization object you can choose
whether the installed system libraries should be available in
the project.

Visualization Element Reposi-
tory

Repository for the management of the visualization profiles
and the visualization element libraries.

Visualization Styles Repository Repository for the management of visualization styles.

VISU_TASK This task is automatically present as an object in the task
configuration of an application as long as an object for a dis-
play variant of the type WebVisu or TargetVisu is also inserted
under the Visualization Manager.

The user interfaces created in CODESYS can be used in different display variants, depending
on which ones the controller employed supports.
The display variants
● Visualization ("diagnostic visualization") integrated in the CODESYS Development System:

The integrated visualization in the development system is ideal for application tests, for
service or diagnostic purposes and for the commissioning of a system. As soon as a
connection to the controller has been established, the visualization editor switches over and
animates the elements displayed. This variant is part of the free CODESYS Development
System and can always be used, irrespective of the controller employed.

● CODESYS WebVisu:
This variant means web-based display of the user interface in a standard browser (PCs, tab-
lets, smartphones), enabling remote access, remote monitoring and service and diagnosis
of a system via the Internet. A standard web browser communicates by Java Script (option-
ally with SSL encryption) with the web server in the controller and displays the visualization
by means of HTML5. This technology is supported by virtually all browsers and is thus also
available on terminal devices with iOS or Android.

● CODESYS TargetVisu:
This variant runs independent of the platform on control systems with an integrated dis-
play. Logic application and user interface run on the same device; the user interface is
displayed directly on the controller. This variant is suitable for the operation and monitoring
of machines and plants. An optional extension of the runtime system is required for the use
of CODESYS TargetVisu.

1.4.5.1 Preparing CODESYS and projects
The following provides details of the presets that exist for visualizations and the steps that are
necessary for creating a visualization in a project.

When you create a visualization in a project, you should know that the following presets apply:

System over-
view and mech-
anism, display
variants

Presets

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1251

Scope Location Setting
Throughout
CODESYS

“Tools è Options”

Categories
“Visualization”
and “Visualization
styles”

● Visualization editor: display, handling
● Paths of the basic text and image files
● Visualization styles

Throughout
the project

“Project è Project
settings”

Categories
“Visualization”
and “Visualization
profiles”

● "Properties handling" for the visualization elements
● Paths of the basic text and image files
● Symbol libraries with ready content
● Visualization profile

Throughout
the application

“Visualization
Manager”:

● Unicode, CurrentVisu variable, multitouch, semi-
transparency, memory size, data transmission,
number of clients

● Visualization styles
● Language setting, language-specific font
● Default keyboard configuration
● Visualizations and visualization references
● Font for each language
● User management

Single visuali-
zation

“Properties” of the
visualization object
Category
“Visualization”

● Purpose and scope of use
● Size definition

Display var-
iant of a single
visualization

Editor of the Web-
Visu or TargetVisu
object

● Start visualization, refresh rate, buffer size, html file
name

● Scaling options
● Display options
● Default text input

Project-specific updates of the visualization profile, the visualization styles, and the visualization
symbol libraries are possible in “Project è Project environment” of the respective tabs.
Customization of the visualization menu is performed in “Tools è Customize”.
See also
● Ä Chapter 1.4.5.19.3.9 “Dialog Box 'Options' - 'Visualization'” on page 1763
● Ä Chapter 1.4.5.19.3.7 “Dialog 'Options' - 'Visualization Styles'” on page 1761
● Ä Chapter 1.4.5.19.3.13 “Dialog 'Project Settings' - 'Visualization'” on page 1766
● Ä Chapter 1.4.5.19.3.14 “Dialog ‘Project Settings’ - ‘Visualization Profile’” on page 1767
● Ä Chapter 1.4.5.19.3.10 “Dialog 'Project Environment' - 'Visualization Profile'” on page 1764
● Ä Chapter 1.4.5.19.3.11 “Dialog 'Project Environment' - 'Visualization Styles'” on page 1765
● Ä Chapter 1.4.5.19.3.12 “Dialog 'Project Environment' – 'Visualization Symbols'”

on page 1765
● Ä Chapter 1.4.5.19.3.15 “Dialog 'Properties' of Visualization Objects” on page 1767

For each visualization, you insert a “Visualization” object into your project like any other object.
This also applies to visualizations that should be used later only within other visualizations. You
can insert the new visualization object directly below an application, or below the root node of
the “Devices” view (for availability throughout the entire project).
The required base libraries and other objects, such as the Visualization Manager, are inserted
automatically. When you insert the visualization object below an application, the subordinate
objects for the display variants supported by the device are also displayed.
Every visualization object can be edited separately in the visualization editor.

Creating visuali-
zation objects in
the project

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1252

The following steps describe a simply example for creating an object for an application-specific
visualization.
Requirement: A project is open. An application is created in the device tree.
1. Select the application in the device tree. Click “Add object è Visualization” in the context

menu.

ð The “Add visualization” dialog box opens. In the “Symbol libraries” table, there is at
least the standard entry “VisuSymbols Vx.x.x. (System)”, and possibly other installed
symbol libraries.

2. Accept the default name Visualization. Activate the “VisuSymbols” option. Then the
visualization symbols (graphical objects) are contained in the library in the visualization
project. Click “Add” to close the dialog box.

ð In the device tree, the “Visualization manager” and “Visualization” objects are inserted
below the application. Depending on the device in use, the “TargetVisu” and/or
“WebVisu” objects are also created below the visualization manager.
If a “TargetVisu” object or “WebVisu” object is created, then a “VISU_TASK” object is
also created below the task configuration with an implicit program call.
The required visualization libraries are added automatically in the “Library Manager” of
the application.
The visualization editor opens with the “Visualization” editor window and the “ToolBox”
and “Properties” views.
In the “ToolBox” view, there is a “Symbols” button for viewing the symbols from the
library VisuSymbols.library.

3. Now you can create the required visualization in the visualization editor.
4. Note: You can create structured visualizations by using a frame element to reference one

visualization in another visualization. Dialog visualizations are a special option for this. In
this case, the input configuration of a visualization element is used for referencing.

For creating an application-dependent visualization, insert the visualization
object directly below the root node of the device tree. This corresponds to
insertion in the “POUs” view. In this case, the visualization manager is not
created with objects for the display variants.

See also
● Ä Chapter 1.4.5.19.3.7 “Dialog 'Options' - 'Visualization Styles'” on page 1761
● Ä Chapter 1.4.5.19.3.13 “Dialog 'Project Settings' - 'Visualization'” on page 1766
● Ä Chapter 1.4.5.19.3.15 “Dialog 'Properties' of Visualization Objects” on page 1767

1.4.5.2 Limitation of the number of usable web pages on AC500 V3 PLCs
Automation Builder will get all the available visualizations in the project and count those reach-
able from the visualization client objects (WebVisu and RemoteTargetVisualization).
In case the predefined number of visualizations is exceeded an error is shown in the message
window, preventing the user from compiling the project.
The error will be shown under “Build” category when the user executes the build command.
The PLC program won’t download to the PLC until this error is solved (like with any other build
errors). In the image below, there are 5 visualizations being used (3 of them added directly into
the Automation Builder project and the other 2 referenced from a library that was added to the
project).

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1253

The error will look like this when build command is executed:

If the visualizations are in the project but not being referenced (e.g. not reachable from the
“Start Visualization” in the WebVisu) they are not taken into account for this limitation. If the
error condition is solved, the error will disappear when the user executes the build command
again.

1.4.5.3 Designing a visualization with elements
The visualization editor provides the visualization elements for designing a user interface in the
“Visualization Toolbox” view.
Drag the desired element into the editor view and adapt it in the “Properties” view: purely visual
design, labeling, display of data, reaction to user inputs, possibility to input values, etc.
Static or dynamic configuration of the properties is possible. This means the assignment of
fixed values or the assignment of application variables. A dynamic configuration allows for an
animation which is executed at runtime.
See also
● Ä Chapter 1.4.5.19.4.1.1 “Visualization Editor” on page 1772
● Ä Chapter 1.4.5.8 “Animating visualization elements” on page 1293

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1254

1.4.5.3.1 Select Element
The “Visualization Toolbox” view provides the following elements for selection:
● All visualization elements which the set visualization profile defines.
● Image elements for all images of the project from the integrated libraries or symbol libraries.
● Frame elements for all visualizations of the project or from the libraries.

See the “Project Settings” for the currently set visualization profile and the
currently used symbol libraries.

The elements are combined into specific categories, each of which has its own button in the
“Visualization Toolbox” view. You can create new categories and assign its elements.
The elements of the categories are displayed in the “Visualization Toolbox” view as preview
images. It is also possible to search for an element name.
Simply drag the preview image of the element to the desired position in the editor window. Then
the configurable properties of the element are displayed automatically in the “Properties” view of
the visualization editor.
See also
● Ä Chapter 1.4.5.19.4.1.1 “Visualization Editor” on page 1772
● Ä Chapter 1.4.5.19.4.1.2 “View 'Visualization Toolbox'” on page 1773
● Ä Chapter 1.4.5.18.1.5 “Visualization Element 'Image'” on page 1418
● Ä Chapter 1.4.5.18.1.6 “Visualization Element 'Frame'” on page 1432

Requirement: The visualization editor is open.

1. In the “Visualization Toolbox” view, click the button.

ð the “Configure Categories and Items” dialog opens.

2. In the dialog, click the symbol to open the “Add Category” dialog. Note: Click the
symbol or press the [Del] key to delete the definition of a category.

3. In the “Name” field, specify a name (example: tagA) and click “OK” to close the dialog.

ð In the “Configure Categories and Items” dialog, the new custom category tagA is
inserted below in the tree view. It is provided with the symbol.

4. Click the “Enable” option for the new category, and click “OK” to close the dialog.

ð CODESYS adds a “tagA” button in the “Visualization Toolbox” view. When you click
the button, all elements that are assigned to this category are displayed.

See also
● Ä Chapter 1.4.5.19.3.4 “Dialog 'Configure Categories and Items'” on page 1747

Requirement: The visualization editor is open. You have already created a custom category
tagA. A button labeled tagA is visible in the “Visualization Toolbox” view.

1. In the “Visualization Toolbox” view, right-click an element to open its context menu.

ð A context menu opens. It contains the “Add Item to Category 'tagA'” and “Add to
Categories” commands.

2. Click “Add to Category 'tagA'” and click “OK” to close the dialog.

Create or
remove new ele-
ment category

Assigning a vis-
ualization ele-
ment of an ele-
ment category

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1255

3. Click the “tagA” button.

ð All elements are displayed which are assigned to this category, below it also the
currently assigned element.

See also
● Ä Chapter 1.4.5.19.4.1.2 “View 'Visualization Toolbox'” on page 1773

1.4.5.3.2 Positioning the Element, Adapting Size and Layer
A visualization is a raster image in pixels. The pixel position is specified in X/Y-coordinates. The
origin (0,0) is located at the upper left corner of the window. The positive X-values run to the
right, and the positive Y-values run downwards. The position of an element on the Z-axis of the
visualization is controlled by the position in the element list (see below).

The size and position of an element are specified as pixel coordinates in the “Properties” view.
These settings are displayed graphically in the editor view at the same time.
When you drag a visualization element from the “Visualization Toolbox” view to the editor view, it
is shown as selected, as in the following example of a rectangle element:

The possible positions depend on the set grid. You can change its settings CODESYS options.
Commands in the context menu are available for alignment and grouping.
Now you can move or resize the element directly in the editor. As an alternative, you configure
the “Position” property in the properties editor, which opens automatically for the selected
element. See the description for this, for example in the help page for the “Button” element. The
changes are also updated in the other editor.
1. Focus the element so that the shape of the mouse pointer indicates movement (example:

).
2. Drag the element to any position.

ð The position of the element is also updated in the properties “Position è X” and
“Position è Y ”.

3. Focus on a blue box.

ð The shape of the mouse pointer is a double arrow that indicates the direction you can
drag the box in order to resize the box: .

4. Drag the blue box to resize the element.

ð The position of the element is also updated in the properties “Position è X” and
“Position è Y ”.

Moreover, you can rotate the “Rectangle”, “Line”, “Polygon”, and “Pie” elements.
1. Select the element for static rotation. Example: Rectangle

ð The rectangle is displayed with a handle next to the movable position boxes.

(1) Handle

Configuring the
size and posi-
tion in the editor

Changing the
element size
and position in
the editor

Static rotation
of rectangle,
line, polygon,
pie, or image

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1256

2. Drag the mouse pointer over the handle.

ð The cursor is displayed as a rotating arrow .

3. Rotate the element to any position.

ð In the property “Position è Angle”, the set angle is displayed in degrees.

See also
● Ä Chapter 1.4.5.8.1 “Configuring rotations and offsets” on page 1293

Each visualization element is in its own layer of the visualization (Z-axis). It can be hidden
by other elements in the foreground and hide other elements in the background. The order of
layers is visible on the “Element List” tab above the editor view. The order of elements from front
to back specifies the order of visualization layers from back to front.
Use the commands from the “Order” context menu to move a selected element.
Example of an element list (1):

Moving the visu-
alization ele-
ment forward
and back

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1257

See also
● Ä Chapter 1.4.5.19.4.1.1 “Visualization Editor” on page 1772
● Ä Chapter 1.4.5.18.1.11 “Visualization Element 'Button'” on page 1468
● Ä Chapter 1.4.5.19.2.3 “Command 'Visualization Element List'” on page 1721
● Ä Chapter 1.4.5.19.2.5 “Command 'Order'” on page 1723
● Ä Chapter 1.4.5.19.2.6 “Command 'Alignment'” on page 1723
● Ä Chapter 1.4.5.19.2.7 “Command 'Group'” on page 1726

1.4.5.3.3 Assigning a color
You configure the color of a visualization element either statically by means of the “Color”
property, or dynamically by assigning an application variable by means of the “Color variables”
property. Depending on the element, color assignments are also available in other properties.
For example, for the font color, this is provided in the “Text” property of a labeled element.
For the static assignment of a color value, you can always use the color dialog in the properties
editor, which provides color palettes to choose from.
You can specify the color as a style color. Style colors are color names for color definitions from
the actively applied style. When configuring an corresponding property, you are provided with
a list of available style colors. We recommend that you use style colors because then you
can change colors centrally by means of a style selection or a style customization. You can also
open the “Color” dialog to select a value from color palettes.
In addition, you can define the fill color of an element as a “Gradient”. Then the color changes
linearly, radially, or axially from the initial color to the final color. You configure the “Gradient
setting” in the “Gradient Editor” dialog.
See also
● Ä “Element property 'Colors'” on page 1369

NOTICE!
A color assignment with style color allows for easy global color changes.

Requirement: The visualization editor is open.
1. Insert some Rectangle elements.

2. Select an element.

ð The “Properties” view is active.

3. Click in the “Colors è Normal state è Fill color” property.

ð A list box and the button appear.

4. Assign a style color to the rectangle. For example, select “Elementfillcolor” from the list
box.

5. Define the degree of transparency in the “Colors è Normal state è Fill color
è Transparency” property. Use the slider to select the value “136”.

6. Select another rectangle. Click in the “Colors è Normal state è Fill color” property.

ð A list box and the button appear.

7. Assign a fixed color value to the rectangle. Click to do this.

ð The “Color” dialog opens.

Designing a vis-
ualization ele-
ment with a
style color or a
fixed color value

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1258

8. Select a standard color or “Define Custom Colors” to fine-tune your selection. Then click
“OK”.

ð The color is set as a fixed value. The color is displayed as a small rectangle. The RGB
values are also indicated next to it.

9. Click in the “Colors è Normal state è Fill color è Transparency” property.
10. Use the slider to select the value “136”.

ð The color is semitransparent.

See also
● Ä Chapter 1.4.5.17 “Applying Visualization Styles” on page 1360

Requirement: The visualization editor is open.
1. Drag a “Rectangle” element to the visualization.
2. Select the “Colors è Use gradient color” property.
3. Click in the “Colors è Gradient setting” property.

ð The “Gradient Editor” dialog opens.

4. Define the color gradient for the element:
● “Gradient type”: “Radial”
● “Standard radial”: “Center”

ð The fill color of the element changes radially from white to black.

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748

The “Color variables” property, which certain elements may have, is used for the color animation
of the element. If you assign a variable there, then you can program color changes in the
application code or configure a user input that results in a color change.
You can see an example in the "Animating Visualization Elements" chapter.
See also
● Ä Chapter 1.4.5.8 “Animating visualization elements” on page 1293
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777
● Ä Chapter 1.4.5.17 “Applying Visualization Styles” on page 1360
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

Designing a vis-
ualization ele-
ment with a
color gradient

Configuring a
visualization
element for
color animation

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1259

1.4.5.3.4 Using texts
You can get displayed text in an element by assigning a string in the element property “Texts
è Text”. For example all base elements have this property. Also, you can get displayed a text
as a tooltip (element property “Texts è Tooltip”). Texts assigned in this way are static. They
are managed in the object “GlobalTextList” in view “POUs” and they cannot be modified during
runtime, neither programmatically nor via an user input.
However, you can extend a static text by (exactly) 1 placeholder containing a formatting specifi-
cation, in order to output the content of a variable at this place. At runtime the current value of
the variable, which you have assigned to the element via property “Textvariable”, will be output.

On the possible formatting specifications please see: Ä Chapter 1.4.5.18.2
“Placeholders with Format Definition in the Output Text” on page 1708

By dynamic configuration you can animate the optical representation of the text.
You can localize the static texts, if you have set up multilingualism in your project.
See some examples for the text configuration of visualization elements in the following chapters.
See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä Chapter 1.4.5.6 “Setting Up Multiple Languages” on page 1286

Precondition: A project containing a visualization is opened. You have an image file
representing a stop symbol.
1. Below the Application object insert an object “Image Pool” named ImagePool_A.

2. In the image pool ImagePool_A add your stop symbol image file with ID Stop.

ð

3. Open the visualization and from the ToolBox draw an element “Image” into the editor.

ð The input assistant opens. In tab Category you see the image poolImagePool_A.

4. Select the image Stop and close the dialog with “OK”.

5. Configure the property “Text” of the image: ImagePool_A, Stop
6. Configure the property “Text properties è Horizontal alignment”: Left.

7. Configure the property “Text properties è Vertical alignment”: Bottom.

Labeling an
image element
with a static text

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1260

Precondition: A project containing a visualization is opened.
1. Open the visualization and insert a “Button” element.

ð The “Properties” view opens for the new element.

2. Configure property “Text”: Number of clicks: %I
ð The string contains the placeholder %I.

3. In POU PLC_PRG of the application declare a type-conform variable: iClicks : INT;
4. Configure the property “Text variable” of the button element with PLC_PRG.iClicks.

ð At runtime the variable value will be output instead of the placeholder.

5. Below property “Inputconfiguration”, in the cell containing the input event OnMouseClick,
click on “Configure”.

6. From the list of possible actions choose Execute ST-Code.

7. Enter the code for the action in the editor “Execute ST-Code”:
PLC_PRG.iClicks := PLC_PRG.iClicks + 1;

8. Close the dialog with “OK”.

ð The user input is configured.

9. Build, download and start the application.

ð The application is running. The visualization opens. The element is labeled and the
number of clicks will be output. If you as user click on the button, the number will be
increased.

Using the “Text field” element you can produce a dynamic text output. The text output can be
effected via an user input or via the application program.

Precondition: A project containing a visualization is opened.
1. Open the visualization and insert a “Text field” element.

ð The “Properties” view shows the configuration of the element.

Text output: Ele-
ment outputs
the result of ST
code which is
executed on a
mouse-click

Text output:
Dynamic output
using a textlist

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1261

2. Below the application add a Text List with the following entries: Textlist_A.

3. In POU PLC_PRG of the application declare the text variable:strTextID : STRING :=
'0';

4. Also declare the variable strTooltipID : STRING := '0';
5. Also declare the variable iText : INT;
6. Configure the property “Dynamic texts è Text List” with 'Textlist_A'.

7. Configure the property “Dynamic texts è Text index” with PLC_PRG.strTextID.
8. Configure the property “Dynamic texts è Tooltip index” with PLC_PRG.strTooltipID.
9. In POU PLC_PRG implement the CASE instruction as shown below.

ð The variables in property “Dynamic Texts” are programmed.

10. Configure the property “Inputconfiguration è OnMouseclick” for Execute ST-Code with
PLC_PRG.iText := (PLC_PRG.iText + 1) MOD 4;
ð For element “Text field” an user input is configured.

11. Build, download and start the application.

ð The application is running. The visualization opens. In the text field the text None
is output. When you as user click on the element, the text changes to Dynamic_
File_A. And the matching tooltip is available: Information A. With each click the
text changes according to the CASE instruction.

CASE iText OF
0: strTextID := '0';
 strToolTipID := '0';

1: strTextID := '1';
 strToolTipID := '4';

2: strTextID := '2';
 strToolTipID := '5';

3: strTextID := '3';

CASE instruc-
tion

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1262

 strToolTipID := '6';
ELSE
 strTextID := '0';
 strToolTipID := '0';
END_CASE;

In property “Texts è Text” you can define a text in order to get a static text output. A text
in “Texts è Tooltip” will be displayed as tooltip. You can configure the text in a way, that the
content of a variable is additionally output.
You can extend a static text by (exactly) 1 placeholder including a formatting definition, in order
to output the content of a variable at this place at runtime. The variable must be assigned in
property “Text variable”. When the variable value changes in the application code, then at the
same time the output in the visualization changes.

Precondition: A project containing a visualization is opened.
1. Open the visualization and insert an element “Text field”.

ð The “Properties” view shows the element configuration.

2. Configure the property “Texte è Text”: File name: %s
ð The text contains the placeholder %s.

3. In POU PLC_PRG of the application declare a type-conform variable strFileName :
STRING := 'File_A';

4. Configure the property “Text variable” of the text field with PLC_PRG.strFileName.

ð At runtime the variable value will be output instead of the placeholder.

5. Build, download and start the application.

ð The application is running. The visualization opens. The text field element displays the
text: File name: File_A

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

You can use the “Text field” element in order to output the text given by a variable, or to provide
a place, where the user can give input on the variable.
Additionally you can configure a text input. In this case on an user input an input field in the
element “Text field” will appear. As a precondition you must have configured an user input action
in the property “Inputconfiguration”.
See also
● Ä Chapter 1.4.5.6 “Setting Up Multiple Languages” on page 1286

Precondition: A project containing a visualization is opened.
1. Open the visualization and insert an element “Text field”.

ð The “Properties” view shows the element configuration.

2. Configure the property “Texts è Text”: File name: %s
ð The text contains the placeholder %s

3. Configure the property “Texts è Tooltip”: Storage location: %s
4. In POU PLC_PRG of the application declare a type-conform variable strFileName :

STRING := 'File_A';

Text output:
Configuring a
static + dynamic
text output

Configuring text
input in a text
field

Showing text as
a tooltip

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1263

5. In POU PLC_PRG of the application declare also the variable strFileDir :
STRING := 'D:/Data';

6. Configure the property “Text variable” of the text field with PLC_PRG.strFileName.

ð At runtime the variable value will be output instead of the placeholder.

7. Configure the property “Tooltip” of the text field with PLC_PRG.strFileDir.

8. Build, download and start the application.

ð The application is running. The visualization opens. The text field element shows the
text File name: File_A. When the mouse cursor is moved above the text field, the
tooltip will be displayed: Storage location : D/Data.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The user should be able to enter text in a text field. For this configure an input of type “Write
variable” on a text output variable. This text output variable will store the text input of the user
and will display this text instead of the placeholder (this is %s in the example below). You specify
the text output variable in the property “Text variables è Text variable”.

Precondition: A project containing a visualization is opened.
1. In POU PLC_PRG of the application declare a string variable: strInput : STRING;
2. Open the visualization and insert an element “Text field”.

ð The “Properties” view shows the configuration of the element.

3. In property “Texts è Text” enter Input: %s.

4. In property “Inputconfiguration” for mouse action “OnMouseClick” click on “Configure” to
open the “Input Configuration” dialog box. There choose action “Write a Variable” and
activate option “Use text output variable”. Close with “OK”.

5. In the element property “Text variables è Text variable” assign the text output variable
PLC_PRG.strInput.

6. Build, download and start the application.

ð The application is running. The visualization opens. The element outputs the text:
Input:. Click in the element to open an input field, where you can enter a string.
After having terminated the input by [Enter], the text will be adopted.

Configure the property “Font variables” in order to animate the display of a text. All base
elements have this property, additionally the table, scrollbar and text field element.
See also
● Ä Chapter 1.4.5.8.2 “Animating a text display” on page 1295

Configuring ele-
ment “Text
field” for text
input

Animating the
text display

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1264

Precondition: A project containing a visualization is opened.
1. Open a visualization and insert an element “Label”.

ð The “Properties” view with the pre-set property configuration opens.

2. Configure the property “Texts è Text”: Visualization A.

You can configure the property “State variables è Invisible” in order to hide an element in the
visualization.

Precondition: In the visualization you have configured a text field, which gets visible only,
if a certain application variable gets TRUE. For example in order to show certain instructions or
descriptions only in a certain state of the machine.
1. For the text field element configure the property “Texts è Text” with Error detected:

Do the following....

Configure the property “Text properties è Font color” with “dark red”.
2. In PLC_PRG declare the variable bIsInvisible : BOOL : TRUE; (this is the initial-

ization for the current example; normally the variable should be set to TRUE by the
application program under certain conditions.

3. Configure the property “State variables è Invisible” with PLC_PRG.bIsInvisible.

4. Build, download and start the application.

ð The application is running. The visualization opens and the text field is not visible.
When you set bIsInvisible to TRUE, the textfield will be displayed.

1.4.5.3.5 How to display variable values in the visualization
There are simple to very specialized visualization elements for displaying data from a running
application.
Examples:
● Simple output of variable values: For example, you can configure a purely formatting specifi-

cation for a “Rectangle” element in the “Text” property and the variable whose value is to be
displayed in the element in the “Text variable” property.

● Display of structured variable values (structure, array, function block): You use the “Table”
element and specify an array variable in its configuration in the “Data array” property whose
values are to be displayed in the table. One-dimensional arrays can also be displayed in a
“Histogram”.

● Display of values by image switching. Example: A specific screen is displayed depending
on the error message that occurs. You do this by configuring an “Image” element with a
variable for the “Bitmap ID variable” property.

● Display a variable value as a bar or with a pointer on a scale: You specify a variable in the
“Value” property of the “Bar Display” element or “Meter” element to display its value as a bar
on a horizontal or circular scale.

● Display of alarms: The alarms configured in the alarm management of the application can
be made visible by means of the “Alarm Table” and “Alarm Banner” elements in the user
interface.

● “Trace” and “Trend”: For graphical recording of variable values over a period of time.
For details, see the descriptions of the element properties.
See also
● Ä Chapter 1.4.5.18.1 “Visualization Elements” on page 1367
● Ä Chapter 1.4.5.3.4 “Using texts” on page 1260
● Ä Chapter 1.4.5.21.4 “Displaying Array Data in a Histogram” on page 2138

Configuring the
'Label' element

Making an ele-
ment invisible

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1265

1.4.5.3.6 How to Change Variable Values via the Visualization
In addition to displaying values from the controller, a user interface is also used to enter and
change values.
In general, you can configure user input for each element in its “Input configuration” properties.
Moreover, elements have been developed especially for specific input.
Examples:
● A “Button” element (or “Rectangle” element, and so on) that is clicked to open a predefined

dialog visualization for easily specifying a value.
● A “Slider” element for changing the value of a variable by moving visual element parts,

for example with the mouse. In the case of the slider: The element adjusts the value of a
variable, depending on the position of the slider within the slider. You define the value range
of the slider bar by means of the scale start and scale end.

● A switch element (example; “Power Switch”) for setting a Boolean value.
● A “Spin Box” element for incrementing or decrementing the value of a variable in defined

intervals.
● A “Button” element for writing a recipe, executing a specific ST code, writing a specific

variable, and so on (definition in the input configuration).
See also
● Ä Chapter 1.4.5.19.5 “Visualization Elements” on page 1791
● Ä Chapter 1.4.5.4 “Configuring user inputs” on page 1267

1.4.5.3.7 Designing a background
You can design the background of your visualization in color or with an image. To do this, use
the command “Visualization è Background”.
See also
● Ä Chapter 1.4.5.19.2.10 “Command 'Background'” on page 1728
● Ä Chapter 1.4.5.19.3.15 “Dialog 'Properties' of Visualization Objects” on page 1767

In addition, you can use the property “Integrate background” in the dialog
“Properties” of a visualization object to specify whether the background image
should always be displayed in its entirety or whether it should be truncated.

Requirement: A project with a visualization is open.
1. Open the visualization and select the command “Visualization è Background”.
2. Activate the option “Image” and open the input assistant.
3. Select an image in the dialog “Input Assistant”.

ð The image serves as a background image.

See also
● Ä Chapter 1.4.5.19.3.15 “Dialog 'Properties' of Visualization Objects” on page 1767

Configuring an
image as a
background

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1266

Requirement: A project with a visualization is open.
1. Open the visualization and select the command “Visualization è Background”.
2. Activate the option “Color”.
3. Select a style color such as “Element background color” from the selection list.

ð The background of the visualization is colored.

1.4.5.4 Configuring user inputs
User inputs for a visualization are configured in order to operate the visualization.
For this purpose, you configure input events on visualization elements where follow-up actions
are triggered. The combination of user inputs and follow-up actions are defined in the “Input
configuration” of an element. For example, you can select a mouse click on an element as the
input event and opening a dialog box as the input action.
Keyboard events can also be configured that trigger actions in a specific visualization window
when the events occur. You program this kind of input configuration for a visualization in its
“Keyboard configuration” editor.
In addition, keyboard events can be configured that occur in all visualizations programmed in
the application. You configure this kind of input configuration per application below the visualiza-
tion manager in the “Standard keyboard shortcuts” tab.
Input is usually performed with the mouse and keyboard as controlling device. You can also
configure a user operation by means of gestures.
If a visualization device is not equipped with a mouse, then you can activate default keyboard
usage. Then a user can operate the visualization with the keyboard only by navigating with the
arrow keys and triggering events by pressing the [Enter] key.
If a visualization device is not equipped with a keyboard, then you can call a virtual keyboard or
a virtual numeric keypad.

NOTICE!
Configure keyboard events only for keys that the visualization device supports.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749
● Ä Chapter 1.4.5.19.4.3 “Tab 'Visualization Manager' - 'Default Hotkeys'” on page 1781

1. Event handler of the application. Requirement: The event handler is activated.
2. Events of the default keyboard usage
3. Events of the keyboard usage are configured in the tab “Visualization manager” - “Default

hotkeys”.
4. Events of keyboard usage are configured in the tab “Keyboard configuration” for the

currently visible visualization.

Configuring a
colored back-
ground

Processing
order of key-
board events

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1267

See also
● Ä Chapter 1.4.5.4.5 “Capturing user input events” on page 1277 Ä Chapter 1.4.5.19.1

“Keyboard Shortcuts for Default Keyboard Action” on page 1717
● Ä “Tab 'Keyboard configuration'” on page 1720 Ä Chapter 1.4.5.19.2.2 “Command 'Key-

board Configuration'” on page 1720
● Ä Chapter 1.4.5.19.4.3 “Tab 'Visualization Manager' - 'Default Hotkeys'” on page 1781
● Ä Chapter 1.4.5.19.4.3 “Tab 'Visualization Manager' - 'Default Hotkeys'” on page 1781

1.4.5.4.1 Configuring user inputs for visualization elements
All base elements and some common control elements have the “Input configuration” property.
This is where you can configure a user input for an element. For this purpose, you select an
input event and an input action.

Requirement: A project is open with a visualization.
1. Open the visualization and added a “Button” element.

ð The “Properties” view opens for the new button.

2. Configure the property “Text” with Number of clicks: %i.

3. Declare a variable iClicks : INT; in the application in the PLC_PRG POU.

4. Configure the “Text variable” property of the button as PLC_PRG.iClicks.

ð At runtime, its variable value will replace the placeholder in the “Text” property.

5. In the “Input configuration” property, click the “Configure” button in the OnMouseClick
line.

6. Select the Execute ST code action from the list of possible actions and click the
symbol.

ð The action appears in the list of actions to be executed. The blank implementation of
the action appears in the window area to the right of the list.

7. Program the action in the editor at “Execute ST code”:
PLC_PRG.iClicks := PLC_PRG.iClicks + 1;

8. Click “OK” to close the dialog box.

ð The user input is configured.

Configuring
user inputs

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1268

9. Compile, download, and start the application.

ð The application runs. The visualization opens. If the user clicks the button, then the
action is executed, the variable PLC_PRG.iClicks is incremented, and the number
of clicks is printed.

See also
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

1.4.5.4.2 Configuring gesture recognition
You can execute a visualization on a device that is operated by means of gestures. The
visualization retains its user input configuration for mouse and keyboard operation and also
recognizes gestures and multi-touch events. Gesture events are recognized and interpreted as
mouse events.
For this purpose, activate the “Activate multi-touch” setting in the visualization manager.
Elements of the type “Frame” or “Tab control element” display contents that a user should be
able to move. Therefore, configure their “Scaling type” property with “Fixed and scrollable”.
Gesture recognition for:
● Tapping

A quick tap on the element is interpreted as a mouse click.
● Panning

Pressing, moving, and releasing with one finger in a frame or with a tab control element (in
the window area of the element) will move the contents.

● Multi-finger touch detection
Touching several elements at the same time will input for all elements. These touch events
are interpreted as the respective mouse events.
Example:
Two-hand operation in order to trigger an action with two simultaneous inputs on two dif-
ferent elements.
Virtual mixing console where multiple sliders can be operated at the same time.

In addition, the IGestureEventHandler interface is available in the
VisuElems.VisuElemBase library. You can use this to implement application code that rec-
ognizes gestures and executes follow-up actions.
The following display variants can execute a visualization on a multi-touch device
● CODESYS WebVisu
See also
● Ä “Implementing event handling with multi-touch” on page 1270

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1269

Requirement: A project is open with a visualization and a user input configuration. It
contains one button. The visualization device is a display with multi-touch support.
1. Double-click the “Visualization manager” object.

ð The editor opens.

2. Click the “Settings” tab.
3. In the “Additional settings” group, activate the “Activate multi-touch” option.
4. Compile, download, and start the application.

ð The application runs. The visualization opens. When a user touches the display of
the visualization device, the visualization responds. Elements that respond to mouse
events also respond to touch events Several buttons can be pressed at the same
time. Scrollable frames or tab control elements are displayed without scrollbars and
can be moved by panning.
Note: The “Scaling type” property of elements type “Frame” or “Tab control element”
must be set to “Fixed and scrollable”.

See also
● Ä Chapter 1.4.5.18.1.6 “Visualization Element 'Frame'” on page 1432
● Ä Chapter 1.4.5.18.1.10 “Visualization Element 'Tabs'” on page 1463

Requirement: The device is multi-touch capable
1. Implement and register a function block that receives the gesture events.

ð FUNCTION_BLOCK GesturesHandler IMPLEMENTS
VisuElems.VisuElemBase.IGestureEventHandler2
VisuElems.g_VisuEventManager.SetGestureEventHandler(THIS^);

2. Implement and register a function block that sets the touch areas.

ð FUNCTION_BLOCK RectProvider IMPLEMENTS
VisuElems.VisuElemBase.IApplicationRectangleProvider
VisuElems.g_VisuRectangleProvider := THIS^;

3. Implement actions as application code that are executed when a gesture event occurs

1.4.5.4.3 Configuring text input with the virtual keyboard
A visualization is usually configured so that it calls a virtual keyboard for a text input event when
an input device is not available. For this purpose, the follow-up action “Write variable” is preset
accordingly in the user input: The value “Standard” is selected for the “Input type” setting.

However, you can also configure especially how text is input. For this purpose, more input
types are available in the user input, such as Text input or the listed visualizations. These
visualizations have the visualization type “Numpad/Keypad” and display virtual keyboards or
numeric keypads.
In the “Settings for default text input” setting of the visualization manager you can preset a
keyboard visualization that is called from all visualizations in the application when required. This
is possible without having to customize the user inputs of the visualizations.

Using gestures
to control visu-
alizations

Implementing
event handling
with multi-touch

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1270

See also
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: A project is open with a visualization.
1. Declare an input variable in the PLC_PRG program.

ð VAR_INPUT stInput : STRING; VAR_END
2. Add a button to the visualization and select the element.
3. Configure the property “Texts è Text” with Text input: %s.

4. Configure the property “Text variables è Text variable” with PLC_PRG.stInput.

5. Click auf “Configure” in the property “Input configuration è OnMouseClick”.

ð The “Input Configuration” dialog box opens. The selected input event is printed below
the caption.

6. Select the “Write variable” action.
7. Select the visualization Visudialogs.Keypad in “Input type” of the implementation of

the action.

ð The virtual keyboard Visudialogs.Keypad is selected as the input device.

8. Compile, download, and start the application.

ð The visualization opens.

9. Click the button as a visualization user.

ð The virtual keyboard appears and allows text input by means of the mouse.

Configuring text
input especially
for virtual key-
boards

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1271

Requirement: A project is open with a visualization.
1. Declare an input variable in the PLC_PRG program.

ð VAR_INPUT iInput : INT; VAR_END
2. Open the visualization and added a “Rectangle” element.
3. Select the element in the editor.

ð The properties are visible in the “Properties” view.

4. Configure the property “Texts è Text” with Number input: %i.

5. Configure the property “Text variables è Text variable” with PLC_PRG.iInput.

6. In the “Input configuration” property, click the “Configure” button in the OnMouseClick
line.

ð The “Input Configuration” dialog box opens. The selected input event is printed below
the caption.

7. Select the Write variable action from the list of possible actions and click the
symbol.

ð The action appears in the list of actions to be executed. The blank implementation of
the action appears in the window area to the right of the list.

8. Select the following settings:
“Input type” set to VisuDialogs.Numpad.

“Choose variable to edit” set to “Use text output variable”.
“Dialog title” set to 'My virtual numpad'.

9. Click “OK” to close the dialog box.

ð The user input is configured.

Configuring
numeric input
especially for
virtual numeric
keypads

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1272

10. Compile, download, and start the application.

ð The application runs. The visualization opens. When a user clicks the rectangle, the
numeric keypad opens.

Requirement: A project is open with a visualization and a user input configuration. For all
“Write variable” follow-up actions, the value “Default” is selected for the “Input type” setting.
1. Double-click the visualization manager.
2. Click in the default text input in the “Settings” tab (“Default text input” group) and assign

visualizations.

ð These visualizations are defined as default text input. If a display variant does not
have a keyboard, then these visualizations are called without you having to adapt the
user input.

Defining
standard text
input

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1273

1.4.5.4.4 Configuring Keyboard Shortcuts
You can define keyboard shortcuts and assign specific actions to them. At runtime, a visualiza-
tion detects the keyboard input event and executes the action.
There are different locations where you can configure a keyboard input event.
The options include the following:
● Configure keyboard input for a specific element.
● Configure keyboard input for a specific visualization.
● Configure keyboard input that is valid for all visualizations.
● Select the default hotkeys.
If the visualization integrated in CODESYS is executed, then you can deactivate the keyboard
input of the visualization in order to use the keyboard shortcut from CODESYS in this state.

You can define a keyboard shortcut that triggers an action for an element. The element has
to be visible and operable. For this purpose, the property “Input configuration è Keyboard
shortcuts” is available in the “Properties” view of the visualization editor.

Requirement: A CODESYS project is open with the existing visualizations visEllipse
and visRectangle.

1. Select the application in the device tree and add a visualization named visMain.

ð The visualization editor opens.

2. In the “Visualization Toolbox” view, select and drag the “Frame” element to the editor.

ð The “Configuration of Frame Visualizations” dialog opens.

3. Double-click in succession the visEllipse and visRectangle visualizations in
“Available Visualizations”.

ð The visualizations appear in “Selected Visualizations”.

4. Click “OK” to exit the dialog.

ð The visualization contains a new element type “Frame”. The 2 selected visualizations
appear under its property “References”.
In the editor, the frame shows the visualization with the index 0.

5. Add a button and configure its properties:
Select Rectangle in the property “Texts è Text”.

In the “Input configuration è OnMouseDown” property, select “Toggle frame visualization”
for the visualization visRectangle.

Specify the value R in the property “Input configuration è Keyboard shortcuts è Key”.

ð The button has a user input and a keyboard shortcut.

6. Add a button and configure its properties:
Select Ellipse in the property “Texts è Text”.

In the “Input configuration è OnMouseDown” property, select “Toggle frame visualization”
for the visualization visEllipse.

Specify the value E in the property “Input configuration è Keyboard shortcuts è Key”.

ð The button has a user input and a keyboard shortcut.

Configuring
keyboard short-
cuts for ele-
ments

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1274

7. Click “Online è Login” for the device and start the application.

ð The visualization starts. It has a frame where one of the referenced visualizations
runs. Focus on the visEllipse visualization and press [E]. The visualization
switches the contents in the frame to the visEllipse visualization. When you press
[R], the visualization switches the contents in the frame to the visRectangle visuali-
zation.

See also
● Ä Chapter 1.4.5.18.1.6 “Visualization Element 'Frame'” on page 1432
● Ä “Input action 'Switch Frame Visualization'” on page 1756

You can define keyboard shortcuts that trigger an input action on a specific visualization. The
“Keyboard Configuration” tab in the editor of the visualization is used for this purpose.

Requirement: A CODESYS project is open with the visualizations visEllipse and
visRectangle.

1. Open the CODESYS TargetVisu object and select visEllipse as the start visualization.

2. Open the visEllipse visualization and click the “Keyboard Configuration” tab.

3. Click “Visualizations è Keyboard Configuration”.

ð The “Keyboard Configuration” tab opens.

4. Select the value C in the “Key” column.

5. Activate the “Press key” option.
6. Select the “Change shown visualization” value in the “Action Type” column.
7. Select visRectangle in the “Action” column.

ð The user input is configured for [C].

8. Open the visRectangle visualization and click the “Keyboard Configuration” tab.

9. Select the value C in the “Key” column.

10. Activate the “Press key” option.
11. Select the “Change shown visualization” value in the “Action Type” column.
12. Select visEllipse in the “Action” column.

ð The user input for [C] is also configured for this visualization.

Configuring
keyboard short-
cuts for a spe-
cific visualiza-
tion

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1275

13. Build the application.
14. Click “Online è Login” for the device and start the application.

ð The visualization starts and displays an ellipse. Focus on the visEllipse visu-
alization and press [C]. The visRectangle visualization is displayed. Focus on
the visualization and press [C] again. Now the visualization is switched again to
visRectangle.

See also
● Ä “Tab 'Keyboard configuration'” on page 1720
● Ä “Input action 'Change Shown Visualization'” on page 1752

You can define keyboard shortcuts that trigger the same input action for all visualizations of the
application. The “Default Hotkeys” tab in the Visualization Manager is available for this purpose.

Requirement: A project is open with a visualization.
1. Open the visualization.
2. Add a rectangle.
3. Configure the property “Texts è Text” with Keyboard shortcut.

4. Double-click the “GlobalTextList” object.
5. Click in the table, “Add Language”, and then specify de.

ð The language de is configured.

6. Click in the table, “Add Language”, and then specify en.

ð The language en is configured.

7. Configure translations for de and en for the text Keyboard shortcut.

ð Hotkey Keyboard Shortcut Hotkey
8. Open the Visualization Manager and select the “Default Hotkeys” tab.
9. Specify D in the “Key” column.

10. Activate the “Press key” option.
11. Select the “Change language” value in the “Action Type” column.
12. Select the language de in the “Action” column.

ð The keyboard event for [D] is configured.

13. Specify D in the “Key” column.

14. Activate the “Press key” option.
15. Select the “Alt” option.
16. Select the “Change language” value in the “Action Type” column.

Configuring
keyboard short-
cuts for all visu-
alizations in the
application

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1276

17. Select the language en in the “Action” column.

ð The keyboard event for [Alt]+[D] is configured.

18. Compile, download, and start the application.

ð The visualization opens.

19. As the visualization user, press [D].

ð The text is displayed in the language de.

See also
● Ä Chapter 1.4.5.19.4.3 “Tab 'Visualization Manager' - 'Default Hotkeys'” on page 1781
● Ä “Input action 'Change Language'” on page 1751

When you activate the universal keyboard shortcuts for standard keyboard handling, the user
can operate the visualization without a mouse. Elements that respond to user input can process
a keyboard event instead of a mouse event without adapting its input configuration.

Requirement: A project with a visualization is open.
1. Click the “Visualization Manager” object.
2. Activate the “Activate standard keyboard handling” option.

ð The universal keyboard shortcuts are activated.

3. Download the application to a device and start the application.

ð The visualization starts. Now operation can proceed without the mouse. You can
navigate in the window by means of the [Arrow] and [Tab] keys and press [Enter]
instead of the mouse button.

See also
● Ä Chapter 1.4.5.19.1 “Keyboard Shortcuts for Default Keyboard Action” on page 1717

If you execute the visualization as an integrated visualization, then the “Visualization è Activate
Keyboard Usage” command is available in order to deactivate the capturing of keyboard events.
It is actually possible for the same keyboard shortcuts to be defined in the visualization and in
CODESYS
When you activate the command, the visualization executes the configured keyboard events.
When you deactivate the command, CODESYS executes the keyboard events. Capturing key-
board events is then deactivated for the visualization.
See also
● Ä Chapter 1.4.5.19.2.4 “Command 'Activate Keyboard Usage'” on page 1722

1.4.5.4.5 Capturing user input events
You can capture user input events in the application. For this purpose, you can implement a
function block that is executed when user events occur.

When the user completes the input of a value (in an input field), an edit control event is closed.
You can capture this event in the application as follows.

Activating
standard key-
board handling

Activating and
deactivating
keyboard short-
cuts for inte-
grated visualiza-
tions

Capturing the
writing of varia-
bles

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1277

1. Create a function block that implements the VisuElems.IEditBoxInputHandler
interface from the VisuElemBase library.

2. Pass the instance to the global event manager
VisuElems.Visu_Globals.g_VisuEventManager by calling the
SetEditBoxEventHandler method.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1278

A visualization has two input fields for iInput_A and rInput_B and one text output element.

The input fields are rectangles that the user is prompted to click in order to input text.
The text output element is a rectangle where the contents of the text variable
PLC_PRG.stInfo are printed. The text variable contains the last input by a user in one of
the input fields and the additional information that was added.

Properties of the rectangle iInput_A
“Texts è Text” iInput_A: %i
“Text variables è Text variable” PLC_PRG.iInput_A

Properties of the rectangle rInput_B
“Texts è Text” iInput_B: %i
“Text variables è Text variable” PLC_PRG.rInput_B

Properties of the rectangle for the text output

“Texts è Text” %s
“Text variables è Text variable” PLC_PRG.stInfo

PROGRAM PLC_PRG
VAR_INPUT
 iInput_A:INT; (* Used in the visualization as user input
variable*)
 rInput_B:REAL; (* Used in the visualization as user input
variable*)
 stInfo : STRING; (* Informs about the user input via the edit

Example

PLC_PRG
implementa-
tion

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1279

control field;
 String gets composed by method 'VariableWritten;
 Result is displayed in the lower rectangle of the
visualization *)
END_VAR
VAR
 inst : POU;
 bFirst : BOOL := TRUE;
END_VAR

IF bFirst THEN
 bFirst := FALSE;

VisuElems.Visu_Globals.g_VisuEventManager.SetEditBoxEventHandler(ins
t);
 (* Call of method VariableWritten *)
END_IF
FUNCTION_BLOCK POU IMPLEMENTS VisuElems.IEditBoxInputHandler
(* no further declarations, no implementation code *)
METHOD VariableWritten : BOOL
(* provides some information always when an edit control field is
closed in the visualization, that is a variable gets written by
user input in one of the upper rectangles *)
VAR_INPUT
 pVar : POINTER TO BYTE;
 varType : VisuElems.Visu_Types;
 iMaxSize : INT;
 pClient : POINTER TO VisuElems.VisuStructClientData;
END_VAR

// String stInfo, which will be displayed in the lower rectangle,
is composed here
PLC_PRG.stInfo := 'Variable written; type: ';
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, INT_TO_STRING(varType));
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, ', adr: ');
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, DWORD_TO_STRING(pVar));
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, ', by: ');
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo,
SEL(pClient^.globaldata.clienttype =
VisuElems.Visu_ClientType.Targetvisualization,'other visu',
'targetvisu'));

POU implemen-
tation
Method
VariableWrit
ten assigned
to POU

When the user presses and releases the key, a keyboard event is triggered in the visualization.
You can capture this event in the application as follows.
1. Create a function block that implements VisuElems.IVisuUserEventManager from

the VisuElemBase library.

2. Pass the instance to the global event manager
VisuElems.Visu_Globals.g_VisuEventManager by calling the
SetKeyEventHandler method.

Capturing key-
board events

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1280

A visualization has one text output element. The text output element is a rectangle where
the contents of the text variable PLC_PRG.stInfo are printed. The text variable contains
information about the last key pressed by the user.

Properties of the rectangle for the text output

“Texts è Text” %s
“Text variables è Text variable” PLC_PRG.stInfo

PROGRAM PLC_PRG
VAR_INPUT
 stInfo : STRING;
END_VAR
VAR
 inst : POU;
 bFirst : BOOL := TRUE;
END_VAR

IF bFirst THEN
 bFirst := FALSE;

VisuElems.Visu_Globals.g_VisuEventManager.SetKeyEventHandler(inst);
END_IF
FUNCTION_BLOCK POU IMPLEMENTS VisuElems.IKeyEventHandler
(* no further declarations, no implementation code *)

/// This method will be called after a key event is released.
/// RETURN:
/// TRUE - When the handler has handled this event and it should
not be handled by someone else
/// FALSE - When the event is not handled by this handler
METHOD HandleKeyEvent : BOOL
VAR_INPUT
 /// Event type. The value is true if a key-up event was
released.
 bKeyUpEvent : BOOL;
 /// Key code
 dwKey : DWORD;
 /// Modifier. Possible values:
 /// VISU_KEYMOD_SHIFT : DWORD := 1;
 /// VISU_KEYMOD_ALT : DWORD := 2;
 /// VISU_KEYMOD_CTRL : DWORD := 4;
 dwModifiers : DWORD;
 /// Pointer to the client structure were the event was released
 pClient : POINTER TO VisuStructClientData;
END_VAR
VAR
END_VAR

PLC_PRG.stInfo := 'KeyEvent up: ';
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo,
BOOL_TO_STRING(bKeyUpEvent));
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, ', key: ');
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, DWORD_TO_STRING(dwKey));
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, ', modifier: ');
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo,
DWORD_TO_STRING(dwModifiers));
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, ', by: ');
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo,

Example

Implementa-
tion of the
PLC_PRG pro-
gram

Implementa-
tion of the POU
function block
Implementa-
tion of the
VariableWrit
ten method of
the POU func-
tion block

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1281

SEL(pClient^.globaldata.clienttype =

VisuElems.Visu_ClientType.Targetvisualization,

 'other visu',
'targetvisu'));

All visualization elements that change the value of a variable by user input call the
IValueChangedListener interface. With this interface, the value changes can be recorded
and then processed programmatically.

1. Implement a function block (example: POU) that implements the
IValueChangedListener interface.
FUNCTION_BLOCK POU IMPLEMENTS VisuElems.IValueChangedListener
ð In the device tree, the “ValueChanged” method is inserted below the function block.

2. In a program (example: “PLC_PRG”), implement the IEC code that registers the interface.
VisuElems.g_itfValueChangedListenerManager.AddValueChangedListene
r(itfValueChangedListener)
ð “PLC_PRG” receives all value changes by means of the “ValueChanged” method.

Now you can record and process the value changes.

1.4.5.5 Setting Up User Management
1.4.5.5.1 Setting up user management for visualizations............................... 1282
1.4.5.5.2 Configuring users and groups... 1283
1.4.5.5.3 Editing and Selecting User Management Dialogs........................... 1284
1.4.5.5.4 Configuring permissions for groups... 1285

In the visualization user management, you define users and user groups and assign access
rights to user groups for individual visualization elements. In the user management dialogs,
users can be registered and unregistered in runtime mode and passwords and user manage-
ment can be changed.
In a project with several applications, you can configure user management for each application.

NOTICE!
When a visualization user management exists, an unregistered user automati-
cally receives the access rights from the None group.

1.4.5.5.1 Setting up user management for visualizations
When you set up user management for your visualization, the following variants are possible:
● Empty user management

An empty user management contains the None user group. You configure all users and
groups yourself.

● User management with default users and groups
This user management contains the Admin, Service, Operator, and None groups. The
first three groups each contain one user with the same name as the group.

Recording vari-
able value
changes trig-
gered by input
events

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1282

Requirement: A user management does not exist yet for your visualization.
1. Click the “Visualization Manager” object in the device tree.
2. Select the “User Management” tab.
3. Click “Create Empty User Management” or “Create User Management with Default

Groups and Users” depending on which variant you need.

ð The “Groups”, “Users”, and “Settings” tabs are displayed.

The “Group” tab opens.
4. If you have created an empty user management, then you configure the new groups and

users.
If you have created a user management with default groups and users, then you can grant
permissions for elements in your visualization. You can also select the user management
dialogs and assign them to the buttons of the visualization.

See also
● Ä Chapter 1.4.5.19.4.5 “Tab 'Visualization manager' - 'User management'” on page 1782
● Ä Chapter 1.4.5.5.2 “Configuring users and groups” on page 1283
● Ä Chapter 1.4.5.5.4 “Configuring permissions for groups” on page 1285
● Ä Chapter 1.4.5.5.3 “Editing and Selecting User Management Dialogs” on page 1284

1.4.5.5.2 Configuring users and groups
Groups and their users for the basis for user management. A group has one or more users; a
user can belong to multiple groups. The permissions of the visualization elements are always
assigned to a group.

Requirement: You have already created a user management by clicking “Create Empty
User Management” or “Create User Management with Default Groups and Users” in the
“Visualization Manager” (“User Management” tab).
1. Click the “Visualization Manager” object in the device tree.
2. Select the “User Management” tab.
3. Click in the last line of the list.

In this line, the field of the “Group Name” column is still empty.
4. Click in the field of the “Group Game” column and specify the name for the new group.
5. If necessary, activate the options “Automatic Logout” and “Permission to Change User

Data”.

Requirement: A user management exists with at least on group. The “Visualization
Manager” is open.
1. Select the tab “User Management è User”.
2. Click in the last empty line of the list.

Create new user
management

Adding groups

Adding users
and assigning
groups

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1283

3. Specify the “Login Name”.

ð CODESYS applies the “Login Name” as “Password”.

4. If you want to change the password, click in the “Password” field of the user.

ð The “Change Password” dialog box opens.

5. Click the “User Group” field.

ð The “User Groups the User Belongs to” dialog box opens.

6. Activate the “Assigned” option for the groups that the user should be long to and click
“OK ” to confirm.

ð In the “User Group” field, all groups are listed that the new user belongs to.

See also
● Ä Chapter 1.4.5.5.1 “Setting up user management for visualizations” on page 1282
● Ä Chapter 1.4.5.19.4.5 “Tab 'Visualization manager' - 'User management'” on page 1782

1.4.5.5.3 Editing and Selecting User Management Dialogs
In the user management dialogs, you define the login, logout, changing of the user password,
and editing of the user management in the visualization at runtime.

NOTICE!
If you create your own dialog as a user management dialog, then
you should use the visualizations from the included library project
VisuUserMgmtDialogs.library as the basis, because it uses the required
interfaces. Your own user management dialog is listed then in “Visualization
Manager è Settings”, “Settings for User Management Dialogs”.

Requirement: The library project VisuUserMgmtDialogs.library exists in the installation
directory.

1. Click “File è Open Project”.
2. Select the project VisuUserMgmtDialogs.library from the Projects folder of the

installation directory.
3. Click “View è POUs”.

ð In the “POUs” view, the project is displayed with the visualizations
“UserMgmtChangePassword”, “UserMgmtConfig”, and “UserMgmtChangePassword”.

4. Double-click a visualization (example: “UserMgmtLogin”).
5. Change the visualization as you like and save the project.
6. Then, reinstall the library and add it to the “Library Manager” of your application.

A user management already exists in your application in the “Visualization Manager”
object (“User Management” tab).

Editing user
management
dialogs

Selecting user
management
dialogs

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1284

The “VisuUserManagement” library is in the Library Manager.
1. In the device tree, click the “Visualization Manager” object.
2. Select the “Dialog Settings” tab.
3. In “Settings for User Management Dialogs”, select the dialogs for “Login dialog”, “Change

password dialog”, and “Change configuration dialog”.

If no entries can be seen in “Settings for User Management Dialogs” in the
dialog lists, then close the “Visualization Manager” and reopen it.

Requirement: A visualization is open.
1. Drag a “Button” element from the “Visualization Toolbox” view (“Common Controls” cate-

gory) to the visualization.
2. In the “Properties” view, click the “Input configuration” node.
3. In the “Input configuration è OnMouseClick” property, click “Configure”.
4. In the “Input configuration” dialog, click “User Management” and .

ð The following “Dialogs and actions” are listed on the right: “Login”, “Logout”, “Change
User Password”, and “Open User Configuration”.

5. Select the dialog or action to assign to the button and click “OK”.

ð When the button is clicked at runtime, the selected dialog opens or the selected action
is executed.

If you want to open and edit the user management in the visualization at run-
time, you have to be a member of a group that has “Permission to Change User
Data”.

See also
● Ä Chapter 1.4.5.4.1 “Configuring user inputs for visualization elements” on page 1268
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

1.4.5.5.4 Configuring permissions for groups
Permissions for visualization-elements are not granted to individual users, but to groups with
assigned users.

Configuring vis-
ualization but-
tons for the
login, logout,
change pass-
word, and user
management
dialogs

Configuring per-
missions for an
element of the
visualization

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1285

Requirement: A “Visualization” object is open with at least one inserted visualization
element.
1. Click a visualization element in the editor.
2. Click the “Value” field of the “Permissions” element property in the “Properties” view.

ð The “Permissions” dialog box opens.

3. Select the permissions that the respective user group should have for the visualization
element.
Note: If the option “Group hierarchy is used” is activated, the groups lower in the hierarchy
cannot be granted more permissions than groups higher in the hierarchy.

In the “Element List” of the visualization, the “Permissions” column shows the
element permissions granted to groups.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745
● Ä Chapter 1.4.5.19.4.5 “Tab 'Visualization manager' - 'User management'” on page 1782
● Ä Chapter 1.4.5.19.4.1.1 “Visualization Editor” on page 1772

1.4.5.6 Setting Up Multiple Languages
Texts and tooltip texts for visualizations are managed in text lists and can be displayed in
different languages. To switch a visualization between the available languages, configure a
visualization element with the corresponding input configuration for changing the language.
There are static texts that are managed in “GlobalTextList” (generated automatically) and
dynamic texts from created text lists. A dynamic text can be changed at runtime with a variable
that defines the index of the text list entry. Static texts are fixed labels within a visualization;
dynamic texts are often used for displaying variable values or error messages.
For creating and using text lists, see: Ä Chapter 1.4.1.8.8 “Managing text in text lists”
on page 266.

You can modify the appearance and formatting of texts and tooltips with the
element properties “Text properties” and “Font variables”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: An empty visualization object is inserted into the project and it is open for editing
in the visualization editor. There is also a “Visualization Manager” object. User management is
not created for the visualization.
The following instructions provide a simplified example:

Configuring lan-
guage switching
for texts from
text lists

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1286

● By means of two buttons, the user should be able to toggle the visualization texts between
English and German.

● Static texts in the visualization include the labels "State, Machine 01", "State, Machine 02",
"English", and "German". These texts are located in the “GlobalTextList” in English and
German.
Dynamic texts will describe the state of both machines. The texts are provided in the text list
“Status_Texts” in English (en) and German (de).

1. Drag a “Text Field” from the “Visualization Toolbox” view (“Common Controls” category) to
the editor view. Specify the value State, Machine M01 in the properties editor for the
element property “Texts è Text”.

2. Copy the element and change the copy label to State, Machine M02.

3. See also the figure in step 14 for the following steps.
Insert two elements of type “Button” from the “Visualization Toolbox” view (“Common
Controls” category) in the visualization editor. With these elements, the user should be
able to toggle the language of the visualization. Specify the text German or English in
the properties editor for element property “Texts è Text” (4).

4. Double-click and open “GlobalTextList” in the “POUs” view.

ð The texts are entered in the “Standard” (1) column, and the “ID”s 0 and 1 are
assigned automatically as additional information.

5. Add the languages “de” and “en” with the texts shown in the following figure.

6. Close the “GlobalTextList”.
7. Add two elements of type “Rectangle” from the “Visualization Toolbox” view (“Basic” cate-

gory) in the visualization editor. The current state of each machine should be displayed.
8. For managing the texts for describing the states, add an object of type “Text List” below

the application. Name the list Status_Texts.

9. Specify the texts shown in the figure for the standard language (1) and the target lan-
guages “en” and “de” in the editor of “Status_Texts”.

10. Close the text list “Status_Texts”.
11. Select the rectangle element for displaying the state of machine M01. Select the

text list Status_Texts from the combo box in the properties editor (2) for the
“Dynamic texts” element property (5). Specify an application variable for “Text index”
that shows the appropriate text index for the state of the machine at runtime. Example:
PLC_PRG.ivar_status_m01.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1287

12. Now configure the user input for both buttons for toggling the language in the visualization.
Select the "German" button. Double-click “Configure” of the property “Input configuration”
(6), “OnMouseClick”.

ð The “Input configuration / OnMouseClick” dialog opens.

13. Select “Change the language” on the left. Click the arrows to accept the setting to the
right. Select “de” in “Language” to the right of the dialog in the input assistance. Click
“OK” to confirm.

14. In the same way, configure the entry for the second button: English: “Text list”:
Status_Texts, “Text index”: 3, “Change the language”: English).

ð The following figure shows the performed properties configurations for the four visuali-
zation elements.

15. When the application is compiled without errors, you can test the visualization in simula-
tion mode. Activate the option “Online è Simulation”. Click “Online è Login”.

ð The visualization appears in the visualization editor view in online mode:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1288

16. Click the “German” button.

ð The language changes to German:

See also
● Ä “Input action 'Change Language'” on page 1751

The font for a visualization element is defined in the properties editor. If a language switch is
provided, you can overwrite this basic font with another font for each language in the visualiza-
tion manager.
Requirement: A visualization is set up with at least one language in addition to the default
language. For an example, see Ä “Configuring language switching for texts from text lists”
on page 1286

1. Double-click and open the “Visualization Manager” object and select the “Font” tab.
2. Double-click the field in the “Font” line for a particular language. Select a font from the

combo box.
3. In the “Font size” line, replace the value 1 with a value greater than 1 (example: 2) in

order to increase the size of the font as defined by the visualization style; or replace it with
a value less than 1 in order to decrease is (example: 0.5).

ð In online mode, the font changes depending on the set language.

See also
● Ä Chapter 1.4.5.19.4.6 “Tab 'Visualization Manager' - 'Font'” on page 1786

1.4.5.7 Visualizing alarm management
In CODESYS, the alarm management is a powerful object for creating and managing alarms.
You can group alarms and set the acknowledgement behavior individually. The alarm display in
the visualization can also be customized.
The “Alarm Table” and “Alarm Banner” visualization elements are available for displaying and
processing alarms. The alarm table lists the alarm texts. The alarm banner is a simplified
version of the alarm table. It visualizes a single alarm only. However, by adding scroll elements
you can allow for switching the display from one active alarm to another active alarm.
See also
● Ä Chapter 1.4.1.8.20 “Alarm Management” on page 309

Requirement: In your project, alarms are defined in alarm groups and they are assigned to
an alarm class. The following instructions are based on the example that is described in the
"Configuring alarm management" chapter.

Setting up fonts
for a language

Creating an
alarm table

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1289

1. Open the visualization editor.
2. Drag the “Alarm Table” element from the “Alarm Manager” group to the visualization

editor.

ð The “Alarm Table” visualization element is visible in the editor.

3. In the “Alarm configuration” / “Alarm groups” property, define the alarm groups that you
want to visualize. Click into the value field.

ð The “Select Alarm Group” dialog opens.

4. Clear the “All” check box and select the “PartsDeficit” alarm group. Add the group to the
selected alarm groups by clicking the button.

5. In the “Alarm configuration” / “Alarm classes” property, define the alarm classes that you
want to visualize. Click into the value field.

ð The “Select Alarm Class” dialog opens.

6. Clear the “All” check box and select the “PartsDeficit” alarm class. Add the alarm class to
the selected alarm classes by clicking the button.

7. Add an additional column. Click the “Columns” / “Create New” button.

ð CODESYS adds the column “[2]” to the properties. The “Symbol” column is added to
the table.

8. Select data type “State” for column [2].

ð The default column heading “State” is shown in the table.

9. Name the “Column heading” column "Status".
10. Specify the appearance of the selected table cell. Set the “Selection” / “Selection color” to

“Green”.
11. In the “Control variables” / “Confirm selection” property, specify the variable bQuitAlarm

for confirming messages.
12. Adjust the other properties to your requirements. See the "Alarm table" visualization ele-

ment for a complete description of the properties.

See also
● Ä Chapter 1.4.5.18.1.22 “Visualization Element 'Alarm Table'” on page 1545

In CODESYS, predefined buttons are available for controlling the alarms in an alarm table.
Requirement: An “Alarm table” element exists in the visualization.

1. Select the visualization element in the editor.
2. Click “Visualization è Insert elements for acknowledging alarms”.

ð The “Alarm Table Wizard” dialog opens.

Inserting ele-
ments for
acknowledging
alarms

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1290

3. Click “OK” to accept all settings.

ð Four buttons are added for controlling the alarm table.

See also
● Ä Chapter 1.4.5.18.1.22 “Visualization Element 'Alarm Table'” on page 1545

Requirement: In your project, alarms are defined in alarm groups and they are assigned to
an alarm class. The following statement is based on the example that is described in the
"Configuring alarm management" chapter.
The alarm banner displays an active alarm in online mode. If there are multiple active alarms,
filtering takes place by means of the filter criteria set in the alarm banner (newest for filter
criterion "Priority" and most important for filter criterion "Newest"). See the instructions below for
adding scroll elements in order to switch the display between multiple alarms.
1. Open the visualization editor.
2. Drag the “Alarm banner” element from the “Alarm manager” group to the visualization

editor.

ð The “Alarm banner” visualization element is visible in the editor.

3. In the “Alarm configuration” / “Alarm groups” property, define the alarm groups that you
want to visualize. Click into the value field.

ð The “Select Alarm Group” dialog opens.

4. Clear the “All” check box and select the “PartsDeficit” alarm group. Add the group to the
selected alarm groups by clicking the button.

5. In the “Alarm configuration” / “Alarm classes” property, define the alarm classes that you
want to visualize. Click into the value field.

ð The “Select Alarm Class” dialog opens.

6. Clear the “All” check box and select the “PartsDeficit” alarm class. Add the alarm class to
the selected alarm classes by clicking the button.

7. Set the “Alarm configuration” / “Filter criterion” property to “Newest”.

ð In online mode, the newest alarm message is always shown.

8. Add an additional column. Click the “Columns” / “Create new” button.

ð CODESYS adds the column “[2]” to the properties. The “Symbol” column is added to
the table.

9. Select data type “State” for column [2].

ð The default column heading “State” is shown in the table.

10. In the “Confirmation variable” property, specify the variable bQuitAlarm for confirming
messages.

Creating an
alarm banner

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1291

See also
● Ä Chapter 1.4.5.18.1.23 “Visualization Element 'Alarm Banner'” on page 1554

Elements can be added to an alarm banner for switching the display between the individual
active alarms. You can control the scrolling with visu-local variables or application variables.

1. Select the added "Alarm banner" visualization element. Click “Insert Elements for Scrolling
Alarms” in the context menu.

ð The “Alarm Banner Wizard” opens.

2. Select the element type for the scroll elements: “Button” or “Rectangle”.
3. Activate the action(s) for which a control should be inserted: “Scroll to next alarm”, “Scroll

to previous alarm”.
4. Specify a Boolean variable that gets the value TRUE when multiple active alarms are

present. If you have already configured a project variable in the element properties, then
it is also specified here in the wizard. Otherwise CODESYS automatically creates the
visu-local variable “xMultipleAlarmsActive”.

5. In the next step, check the configuration of the element properties of the extended alarm
banner.

6. Select the alarm banner element and look at the section “Handling of multiple active
alarms” in the “Properties” view. You have two options:

7. Option 1: The display should switch automatically. Activate the “Switch automatically”
property.

ð Now, in “Every N seconds” you define the time interval after which the display in the
alarm banner in online mode should switch to the next alarm.

8. Option 2: The display should be controlled by means of the application. Deactivate the
“Switch automatically” property.

ð Switching between the active alarms can be controlled by two variables. By default,
xNext and xPrev are created for scrolling to the next or previous alarm. You can
replace these variables with custom your own defined application variables.

Filtering by the contents of a latch variable can be useful when there are a lot of alarm events
displayed. If the latch variable assigned to an alarm in the alarm group definition contains, for
example, the error number or the name of a device instance, then you can filter the alarms in
the visualization by it.
For this purpose, you configure an input option in the alarm visualization for the contents of the
latch variable to be filtered by. For example, insert an input field which writes to the variable
that is specified in the “Alarm configuration” - “Filter by latch 1” - “Filter variable” property of the
configuration of the “Alarm table” element or “Alarm banner” element.
In addition, you configure an input option for the type of filtering. The type determines whether
a numeric value (typed literal, LINT literal) or the string value of the latch variable is used for
filtering. Filtering can also be switched off by means of type setting 0. For example, in the
visualization, insert another input field which writes to the variable that is specified in the “Filter
type” property of the configuration of the alarm table or alarm banner.
For more information, see the "Alarm Filter Latch Example" sample project in the CODESYS
Store.

Adding ele-
ments for
scrolling the
active alarms

Filter alarm
events by the
contents of the
latch variable

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1292

https://store.codesys.com

1.4.5.8 Animating visualization elements
1.4.5.8.1 Configuring rotations and offsets... 1293
1.4.5.8.2 Animating a text display.. 1295
1.4.5.8.3 Animating a color display.. 1295

The animation of a visualization element at runtime can serve to visualize value curves in addi-
tion to serving purely visual purposes. Animation is possible through a dynamic configuration of
certain element properties, i.e. by controlling these properties with a variable. See the following
examples of possible animations.

1.4.5.8.1 Configuring rotations and offsets
You can animate a visualization element and have it shifted or rotated at runtime. To do this
you assign variables in its property “Absolute movement” and then program the animation in the
application code.

You can configure an offset of the element by programming the variables in “Absolute
movement è Movement”.

Requirement: A project with a visualization is open.
1. Open the visualization and add an element “Rectangle”.

ð The view “Properties” displays the configuration of the element.

2. In the application in the POU PLC_PRG, declare type-compliant variables: diOffsetX :
DINT; and diOffsetY : DINT;

3. Configure the property “Absolute movement è Movement è X” with
PLC_PRG.diOffsetX and “Y” with PLC_PRG.diOffsetY.

4. Implement a shift of the element, for example by means of a modulo division of the value:
diOffsetX := diOffsetX MOD 100;
diOffsetY := diOffsetY MOD 100;

5. Compile, load and start the application.

ð The application runs. The visualization opens. The rectangle moves.

When an element rotates, then the center point of the element rotates precisely around its
center. The center is defined in the property “Center”. The center point of an element is calcu-
lated internally. If the center point and center coincide, then there is no rotation.
You can configure a clockwise rotation of the element by increasing the value of the variable
“Absolute movement è Rotation”.

Requirement: A project with a visualization is open.
1. Open the visualization and add an element “Rectangle”.

ð The view “Properties” displays the configuration of the element.

2. In the application in the POU PLC_PRG, declare a type-compliant variable:rValue :
REAL;

3. Configure the property “Absolute movement è Rotation” with PLC_PRG.rValue.

4. Implement the clockwise rotation of the element by increasing the value of the variable:
rValue := rValue + 0.1;

Configuring an
offset

Configuring a
rotating element

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1293

5. Compile, load and start the application.

ð The application runs. The visualization opens. The rectangle rotates about the center.
The alignment of the element with respect to the coordinate system is fixed.

When an element performs an inner rotation and rotates, then the center point of the element
rotates precisely around its center. This is the point defined in the property “Center”. The
alignment of the element also rotates relative to the coordinate system. If the center point of the
element and the center coincide, this produces a rotation on the spot.
You can configure a clockwise rotation of the element by increasing the value of the variable
“Absolute movement è Inner rotation”.
If the visualization is In runtime, you can see that the element rotates (also relative to the
coordinate system of the visualization).

Requirement: A project with a visualization is open.
1. Open the visualization and add an element “Polygon”, which you form into a pointer.

ð The view “Properties” displays the configuration of the element.

2. Drag the center point of the element to the base of the pointer.
3. In the application in the POU PLC_PRG, declare a type-compliant variable:

rValue : REAL;
4. Configure the property “Absolute movement è Inner rotation” with PLC_PRG.rValue.

5. Implement the clockwise rotation of the element by increasing the value of the variable:
rValue := rValue + 0.1;

6. Compile, load and start the application.

ð The application runs. The visualization opens. The pointer rotates about its base.

Configuring a
rotating element

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1294

See also
● Ä Chapter 1.4.5.18.1.1 “Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'”

on page 1368

1.4.5.8.2 Animating a text display
An animation of the text display can be configured in the property “Font variables”. All basic
elements have this property as well as tables, scrollbars and text fields.

Requirement: A project with a visualization is open.
1. Open the visualization and add an element “Rectangle”.

ð The view “Properties” displays the configuration of the element.

2. Configure the property “Texts è Text” with Important:

3. In the application in the POU PLC_PRG, declare a type-compliant variable:

ð iFontHeight : INT;
4. Configure the property “Font variables è Size” with PLC_PRG.iFontHeight.

5. Implement a change of the font size.

ð iFontHeight := iFontHeight + 1) MOD 20;

6. Compile, load and start the application.

ð The application runs. The visualization opens. The rectangle is labelled with
Important. The font size grows from 1 to 20.

See also
● Ä Chapter 1.4.5.18.1.1 “Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'”

on page 1368

1.4.5.8.3 Animating a color display
The colors of an element are specified in the “Colors” properties of the element properties.
There you can select either a predefined style color from the selection list or a color in the color
dialog.
The “Color variables” element property is used for the color animation of the element. If you
pass variables to the properties, then you can program color changes in the application code
or configure a user input that results in a color change. A color constant or color variable in
the code has the data type DWORD and is encoded according to the RGB color space or RGBA
extension.

NOTICE!
The “Activate semi-transparent drawing” option is provided in the Visualization
Manager. This option is enabled by default so that the “Transparency” property
is available for all color definitions. With programmatic color definition, the
leading byte is interpreted as an alpha channel and therefore used as the
transparency value of the color. When the option is cleared, the “Transparency”
property is not available and the leading byte is ignored in color literals.

Color information in the code is specified as DWORD literals. The value is in the RGBA color
space and is usually shown as a hexadecimal number. The value is coded with additive portions
of red, green, and blue. It is appended with the alpha channel which determines the transpar-
ency of the color.

Example: ani-
mating the font
size

Color definition
in RGBA color
space

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1295

16#<TT><RR><GG><BB>

<TT> : 00 - FF // Transparency in 256 levels
<RR> : 00 - FF // Red in 256 levels
<GG> : 00 - FF // Green in 256 levels
<BB> : 00 - FF // Blue in 256 levels
The graduation value for transparency is 16#FF for opaque and 16#00 for transparent. For
each color portion, one byte is reserved for 256 color graduations 16#FF to 16#00. 16#FF
means 100% color portion and 16#00 means 0% color portion.

<TT> Byte for the transparent graduation of 00-FF
<RR> Byte for the red portion of 00-FF
<GG> Byte for the green portion of 00-FF
<BB> Byte for the blue portion of 00-FF

Table 262: Color literal
16#FF0000FF Blue, opaque
16#FF00FF00 Green, opaque
16#FFFFFF00 Yellow. opaque
16#88888888 Gray, semitransparent
16#88000000 Black, semitransparent
16#FFFF0000 Red, opaque

Example

VAR_GLOBAL CONSTANT
 c_dwBLUE : DWORD := 16#FF0000FF; // Highly opaque
 c_dwGREEN : DWORD := 16#FF00FF00; // Highly opaque
 c_dwYELLOW : DWORD := 16#FFFFFF00; // Highly opaque
 c_dwGREY : DWORD :=16#88888888; // Semitransparent
 c_dwBLACK : DWORD := 16#88000000; // Semitransparent
 c_dwRED: DWORD := 16#FFFF0000; // Highly opaque
END_VAR

Example
Global declara-
tion of color
constants

1. Create a standard project in CODESYS.
2. Declare global color constants in the POU tree.

ð
{attribute 'qualified_only'}
VAR_GLOBAL CONSTANT
 gc_dwRed : DWORD := 16#FFFF0000;
 gc_dwGreen: DWORD := 16#FF00FF00;
 gc_dwYellow: DWORD := 16#FFFFFF00;
 gc_dwBlue: DWORD := 16#FF0000FF; // Highly opaque
 gc_dwBlack : DWORD := 16#88000000; // Semitransparent
END_VAR

Byte order of a
color literal

Animating a vis-
ualization ele-
ment in color

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1296

3. In the device tree, declare local color variables in PLC_PRG.

ð
VAR
 dwFillColor: DWORD := GVL.gc_dwGreen;
 dwFrameColor : DWORD := GVL.gc_dwBlack;
 dwAlarmColor : DWORD := GVL.gc_dwRed;
END_VAR

4. Declare a control variable.

ð bChangeColor : BOOL;
5. Declare an input variable in PLC_PRG.

ð bInput : BOOL;
6. Enable the visualization editor.
7. Drag a “Rectangle” element to the visualization editor.

ð The “Properties” view of the element opens.

8. Configure the properties of the rectangle as follows:
● Property “Color variables”, “Normal state”, “Filling color”: PLC_PRG.dwFillColor
● Property “Color variables”, “Normal state”, “Frame color”: PLC_PRG.dwFrameColor
● Property “Color variables”, “Alarm state”, “Filling color”: PLC_PRG.dwAlarmColor
● Property “Color variables”, “Toggle color”: <toggle/tap variable>
● Property “Input configuration”, “Toggle”, “Variable”: PLC_PRG.bInput

9. Program the variables as follows:

PROGRAM PLC_PRG
VAR
 dwFillColor: DWORD := GVL.gc_dwGreen;
 dwFrameColor : DWORD := GVL.gc_dwBlack;
 dwAlarmColor : DWORD := GVL.gc_dwRed;

 bChangeColor : BOOL;
 bInput : BOOL;
END_VAR

IF bChangeColor = TRUE THEN
 dwFillColor := GVL.gc_dwYellow;
 dwFrameColor := GVL.gc_dwBlue;
ELSE
 dwFillColor:= GVL.gc_dwGreen;
 dwFrameColor := GVL.gc_dwBlack;
END_IF
ð The colors are initialized at runtime. If the variable bChangeColor is then forced to

TRUE, the color display of the rectangle changes. When the rectangle is clicked in the
visualization, the rectangle is displayed in alarm colors.

See also
● Ä Chapter 1.4.5.8 “Animating visualization elements” on page 1293
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777
● Ä Chapter 1.4.5.17 “Applying Visualization Styles” on page 1360
● Ä Chapter 1.4.5.8.2 “Animating a text display” on page 1295

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1297

1.4.5.9 Displaying data arrays in tables
1.4.5.9.1 Displaying Array Variables in Tables... 1298
1.4.5.9.2 Configuring and Multiplying Visualization Elements as Templates.. 1299

A frequently required function of a user interface is the display of data arrays. CODESYS
Visualization provides the element “Table” for this.
In the configuration of the element “Table”, enter an array variable in the property “Data array”.
The array components are displayed in the rows and columns of the table.
A table for displaying data arrays can also be created in the following way. You duplicate a
single element having at least one property that is described by a structured variable. The single
element is configured as a "template" for this and duplicated with a command.

1.4.5.9.1 Displaying Array Variables in Tables
A frequently required function of a user interface is the display of data arrays. CODESYS
Visualization provides the element “Table” for this.
In the configuration of the element “Table”, enter an array variable in the property “Data array”.
The array components are displayed in the rows and columns of the table.

Subsequent instructions describe an example of how an array of a structure is displayed in
a table. As a preparation, create the MYSTRUCT DUT and the declarations in the PLC_PRG
program.

TYPE MYSTRUCT :
 STRUCT
 iNo : INT;
 bOnStock : BOOL;
 strPartNumber : STRING;
 END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 arrStruct : ARRAY[0..6] OF MYSTRUCT;
 iSelectedColumn : INT;
END_VAR

1. Drag the “Table” visualization element to the visualization editor.
2. Assign the array variable arrStruct to the “Data array” property.

ð The structure members are displayed as column headings and the array index as row
headings.

3. Change the “Columns è Column è [0] è Column header” property to an informative
heading (example: Number).

4. Change the heading of column [1] to in stock and column [2] to Part number. Adjust
the column width.

5. Assign a color to the “Selection è Selection color” property.
6. Define the “Selection è Selection type” property as Row selection.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1298

7. In the “Selection è Variable for selected row” property, define the
PLC_PRG.iSelectedColumn variable.

ð The following display results in online mode:

See also
● Ä Chapter 1.4.5.18.1.13 “Visualization Element 'Table'” on page 1485

1.4.5.9.2 Configuring and Multiplying Visualization Elements as Templates
A table can also be created to display data arrays in the following way. You multiply a single
element that has at least one property which is described by a structured variable. To do this,
the single element is configured as a "template" and multiplied by means of a command.

You can use the “Visualization è Multiply Visu Element” command to display array data
in a visualization. The command multiplies a template element to create an element of the
same type for each array component. The layout of the new elements in the visualization is
one-dimensional as a row or column, or two-dimensional as a table.
To do this, drag an applicable element into the visualization editor. Then configure the properties
of the element with array variables and specify the index access placeholder $FIRSTDIM$ as
component access. If you have declared a multidimensional array, then you can use the second
index access placeholder $SECONDDDIM$ for the additional dimension. Configure the remaining
properties as usual with the typical values. The purpose is to create a valid template element.
Then execute the “Multiply Visu Element” command on the template element. Now the dialog
with the same name opens. There you define in detail how many elements should be created
and where they should be located.
After multiplying, the visualization contains as many of the same elements as are indexed
using placeholders. In doing so, the settings in the “Multiply Visu Element” dialog are taken into
consideration. All new elements in the properties that were preset with placeholders have these
replaced with precise indexes. The remaining properties have been applied and copied without
changes.
For example, you can have a layout of nine buttons as 3x3 tables, which are all the same
size or the same color, but vary in the labeling. The labels are declared as a string array (nine
components) and are passed as a value to the “Texts”->“Text” property.
Valid template element:
● Declaration of array variables

Example: asText: ARRAY[1..3, 1..3] OF STRING;
● Element with applicable element type

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1299

● Configuration of at least one property of the applicable element with array variables with
index access placeholders
Example: Property “Texts”, “Text” = PLC_PRG.asText[$FIRSTDIM$, $SECONDDIM$]
This is possible for all properties that permit a variable as a value (for example, also
properties from the "Animation" or "Input" categories. To configure multiple properties for an
element with arrays and index access placeholders, all arrays must have the same structure
with the same dimension. The declarations have to be compatible.

● Configuration of properties that do not vary (and are therefore the same for all generated
elements) with the usual values without index access placeholders
Example:
sButtonTip : STRING := 'This element is created by multiplication'
Property “Texts”, “Tooltip” = %s
Property “Text variables”, “Tooltip variable” = sButtonTip

You can still use the placeholder % as usual for the text display of variable
values in the properties in “Texts”.

Visualization elements that can be multiplied:
● “Rectangle”
● “Rounded Rectangle”
● “Ellipse”
● “Line”
● “Polygon”
● “Polyline”
● “Bézier Curve”
● “Image”
● “Frame”
● “Button”
● “Pie”
● “Spin Box”
● “Text Field”
● “Check Box”
● “Image Switcher”
● “Lamp”
● “Dip Switch”
● “Power Switch”
● “Push Switch”
● “Push Switch LED”
● “Rocker Switch”
● “Rotary Switch”

1. Create a new standard project.

ð A CODESYS Control Win V3 is configured as the device. The MainTask calls
PLC_PRG. The implementation language is ST.

Applicable visu-
alization ele-
ments

Configuring and
multiplying
lamps and but-
tons as tem-
plates

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1300

2. In PLC_PRG in the program code, declare array variables with basic data type STRING.

ð
PROGRAM PLC_PRG
VAR
 axLampIsOn: ARRAY[1..2,1..3] OF BOOL; // For lamp,
property 'variable' and button, user input
 asButtonText: ARRAY[1..2,1..3] OF STRING := // Output text
for button, property 'text variables''text variable'
 [
 '1A Lamp', '2A Lamp',
 '1B Lamp', '2B Lamp',
 '1C Lamp', '2C Lamp'
];
END_VAR

3. Select the application in the device tree and click “Add Object è Visualization”.
4. In the “Add Visualization” dialog, specify the name VisuMain and click “Add” to close the

dialog.
5. Drag a “Lamp” element from the “Visualization Toolbox” view to the visualization.
6. Configure the fixed property values.

7. Double-click the value field of the “Variable” property.

ð The line editor opens.

8. Click .

ð The Input Assistant opens.

9. Select the array variable PLC_PRG.axLampIsOn from the variable tree.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1301

10. Extend the string at the end, for example with "[f".

ð If you have activated SmartCoding (“Options” dialog, “SmartCoding” category, “List
components immediately when typing” option), then the current variable list appears
with the placeholders:

11. Select the placeholder $FIRSTDIM$ for the first dimension and confirm the selection.

12. Extend the string at the end, for example with ",s".

ð The variable list appears again.

13. Select the placeholder $SECONDDIM$ for the second dimension and confirm the selection.

14. Complete the string with a closing bracket.

ð PLC_PRG.axLampIsOn[$FIRSTDIM$, $SECONDDIM$]
The lamp is configured as a template.

15. Click “Visualization è Multiply Visu Element”.

ð The “Multiply Visu Element” dialog opens. The default values are derived from the
array declarations.
“Total number of elements”, “Horizontal” = 2
“Total number of elements”, “Vertical” = 3

16. Declare the distance between the new elements.

ð “Offset between elements”, “Horizontal” = 3
“Offset between elements”, “Vertical” = 3

17. Check the advanced settings.
18. Click “OK” to confirm the selection.

ð The new elements appear in the visualization editor. All properties are configured with
a precise index and the array variables are indexed.

19. In the “Visualization Toolbox”, in the “Common Controls” category, drag the “Button” ele-
ment to the visualization editor.

ð The “Properties” view of the element opens.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1302

20. Configure the fixed property values.

21. Configure the value for the “Text variables”->“Text variable” property.

ð PLC_PRG.asButtonText[$FIRSTDIM$, $SECONDDIM$]
22. Configure the value for the “Input configuration”->“Toggle”->“Variable” property.

ð PLC_PRG.axLampIsOn[$FIRSTDIM$, $SECONDDIM$]
The button is configured as a template.

23. Click “Visualization è Multiply Visu Element”.

ð The “Multiply Visu Element” dialog opens. The default values are derived from the
array declarations.
“Total number of elements”, “Horizontal” = 2
“Total number of elements”, “Vertical” = 3

24. Declare the distance between the new elements.

ð “Offset between elements”, “Horizontal” = 3
“Offset between elements”, “Vertical” = 3

25. Check the advanced settings.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1303

26. Click “OK” to confirm the selection.

ð The new elements appear in the visualization editor. All properties are configured with
a precise index and the array variables are indexed.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1304

27. Build, start, and download the application.

ð Visualization at runtime:

You can also configure the template element with array variables that have more than two
dimensions, but you can only assign placeholders to a maximum of two of the dimensions. In
the additional dimensions, the indexes are fixed.

Declaration

PROGRAM PLC_PRG
VAR
 asText: ARRAY[1..2, 1..3, 1..6, 1..2] OF STRING;
END_VAR

Configure the “Text variables”, “Tooltip variable” property for the template element:
PLC_PRG.asText[2, $FIRSTDIM$, $SECONDDIM$, 2]

Example

Array variable
with more than
two dimensions

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1305

You can configure the template element with a one-dimensional array by means of the index
access placeholder $FIRSTDIM$. If the number of new elements to be created is greater than
five, then a tabular layout is preset in the “Multiply Visu Element” dialog. The layout of the new
elements is as quadratic as possible.

PROGRAM PLC_PRG
VAR
 asText: ARRAY[1..100] OF STRING;
END_VAR

The default setting in the “Multiply Visu Element” dialog allows for a layout of 100 new ele-
ments in a 10x10 field.

Example

See also
● Ä Chapter 1.4.5.19.2.11 “Command 'Multiply Visu Element'” on page 1729
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Options for SmartCoding

1.4.5.10 Displaying data curve with trace
With this element, you can integrate a trace graph in the visualization that monitors and displays
variable values permanently. You configure the displayed trace graph in the element properties.
In addition, you can add control elements that control the trace functionality. This is done
manually or by using the “Insert Elements for Controlling Trace” command.

Configurations for the 'Trace' visualization element can be taken from the 'Trace'
object.

Layout of a one-
dimensional
array in a table

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1306

ms-its:codesys.chm::/_cds_dlg_options_smart_code.html

See also
● Ä Chapter 1.4.5.10.1 “Getting started with trace” on page 1307
● Ä Chapter 1.4.5.19.2.15 “Command 'Insert Elements for Controlling Trace'” on page 1737
● Ä Chapter 1.4.1.12.3 “Data Recording with Trace” on page 421

1.4.5.10.1 Getting started with trace

PROGRAM PLC_PRG
VAR
 iVar : INT;
 rSin : REAL;
 rVar : REAL;
END_VAR

iVar := iVar + 1;
iVar := iVar MOD 33;

rVar := rVar + 0.1;
rSin := 30 * SIN(rVar);
1. In the device tree, select the application and add a new visualization by clicking “Project

è Add Object è Visualization”.

ð The respective visualization editor opens.

2. Add the “Visualization” object to the device tree below “Application”.

ð An empty visualization appears.

3. Open “Toolbox è Special Controls”.
4. Drag the “Trace” element to the visualization editor.

ð The element properties are displayed on the right side.

Create a project
with the fol-
lowing program
PLC_PRG:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1307

5. Click the symbol in the “Trace” property.

ð The “Trace Configuration” dialog opens.

6. Click “Add Variable” to add an entry to the tree view of the trace configuration and select a
project variable (for example, PLC_PRG.rSin).

7. Click the top node of the trace configuration.

ð The group “Record Settings” is shown on the right.

8. Select the MainTask option for the “Task” setting.

Tip: The trace recording and the corresponding program should be executed in the same
task.

9. Click “OK”.

ð The task configuration is applied.

10. Select the trace element and click “Visualization è Add Elements for Trace Control”

ð The “Trace Wizard” dialog opens. By default, all control elements are activated there.

11. Click “OK” to close the dialog.

ð The control elements are added to the visualization and the control variables are
declared. Then the control elements and the trace element are configured with the
control variables.

12. Download the application to the controller and start it.

The PLC_PRG program is running on the PLC. When you follow the "Getting Started"
instructions, the following interface is displayed:

You can control the trace recording by clicking the buttons.

Record the
sine-shaped
data of the IEC
variable
PLC_PRG.rSin

Example

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1308

See also
● Ä Chapter 1.4.5.19.2.13 “Command 'Configure Trace'” on page 1734
● Ä Chapter 1.4.5.19.3.19 “Dialog 'Display Settings'” on page 1770
● Ä Chapter 1.4.5.18.1.34 “Visualization Element 'Trace'” on page 1619

1.4.5.11 Displaying data curve with trend
A trend visualizes data that is used in the database of a trend recording. In contrast to the trace
element, the trend element is particularly appropriate for long-term data recording.

The visualization of a trend encompasses the Trend element and the control elements. The
three possible control elements can be seen in the illustration.
● Legend ①: Outputs the trend variables with values.
● Time range picker ②: Provides buttons for selecting predefined time ranges.
● Date range picker ③: encompasses control elements for navigation and zooming in the

historical and current data on basis of the set date range.
A cursor is optionally available that enables the reading of a value at a certain time.
You can execute a trend visualization in the following clients:
● Target visualization
● Integrated visualization
See also
● Ä Chapter 1.4.5.11.1 “Getting Started with Trend Visualization” on page 1309
● Ä Chapter 1.4.5.18.1.35 “Visualization Element 'Trend'” on page 1625
● Ä Chapter 1.4.5.18.1.45 “Visualization Element 'Date Range Picker'” on page 1680
● Ä Chapter 1.4.5.18.1.46 “Visualization Element 'Time Range Picker'” on page 1685

1.4.5.11.1 Getting Started with Trend Visualization
When you execute a Trend, it is best to proceed with user guidance and the help of the trend
wizard.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1309

1. Create an empty standard project and program at least one variable into PLC_PRG.

ð PLC_PRG is declared and implemented

2. Add the “Visualization” object to the device tree below “Application”.

ð An empty visualization appears.

3. Open “Toolbox è Special Control”.
4. Drag the “Trend” element to the visualization

ð The “Trend Recording” dialog opens with the “Recording Settings”.

5. Select the task in which the trend recording will be executed.

In general the trend recording runs in the same task as the main program,
i.e. PLC_PRG.

Therefore, select MainTask.

6. Add a trend variable with “Add Variable” and assign an IEC variable from PLC_PRG to the
trend variable.

7. Click “OK” to close “Trend Configuration”.

ð There is a newly created object of the type Trend recording under “Trend Recording
Manager”. The active visualization contains a “Trend” element that is selected.

8. Click “Visualization è Insert Elements for Controlling Trend Elements”.

ð The “Trend Wizard” dialog box opens.

9. By default, all three control elements are activated in the dialog. Click “OK” to close the
dialog box.

ð The active visualization contains a “Trend” with control elements.

10. Set the application containing the trend objects to active.
11. Compile the application with [F11].
12. Click “Online è Login”.
13. Start the application with [F5].

ð The target visualization appears. The visualization contains the trend diagram with the
value curve of the variable. The control elements enable user inputs.

See also
● Trend recording
● Ä Chapter 1.4.5.11.2 “Programming a Trend Visualization” on page 1312
● Ä Chapter 1.4.5.19.2.18 “Command 'Insert Elements for Controlling the Trend'”

on page 1739

The following objects are implemented in the project:
● PLC_PRG
● Visualization_Trend1
● VisuWithTrend

Development of
a visualization
with trend

Example: Visu-
alization of the
sinusoidal trend
of an IEC vari-
able.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1310

ms-its:codesys.chm::/_cds_obj_trend_recording_task.htm

PLC_PRG runs as part of the application on the controller.

PROGRAM PLC_PRG
VAR
 iVar : INT;
 rSin : REAL;
 rVar : REAL;
END_VAR

iVar := iVar + 1;
iVar := iVar MOD 33;

rVar := rVar + 0.1;
rSin := 30 * SIN(rVar);

PLC_PRG

Visualization_Trend1 is the object that contains the configuration of the trend recording.Visualizatio
n_Trend1

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1311

VisuWithTrend is the object that visualizes the trend.

The visualization contains four elements: one “Trend” and three control elements. The proper-
ties of the trend are defined as follows.

Properties Value
“Trend recording” Visualization_Trend1

“Display cursor”

“Display tool tip”

“Show frame”

“Date Range Picker” Trend1DateRangeSelector

“Time Picker” Trend1TimeSelector

“Legend” Trend1Legend

VisuWithTrend at runtime

VisuWithTren
d

1.4.5.11.2 Programming a Trend Visualization
To display a trend recording in the visualization, you define which application provides which
trend recording. You define the display by means of the “Properties” of the trend element and
the controls used.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1312

The visualization task and the trend recording task generally run under the same application. If
this is not the case, then the application containing the visualization task requires a data source
manager.
1. Select a trend element in the active visualization editor.

ð The properties of the trend element are displayed on the right side.

2. Double-click the value field “Properties è Application”.
3. Use the Input Assistant () to select the application. You can also specify the name of

the application directly.

See also
● Trend Recording
● Data Source Manager

1. Select a trend element in the active visualization editor.
2. Click “Visualization è Insert Elements for Trend Controlling”.

ð The “Trend Wizard” dialog opens.

3. Select the desired control. Examples: “Date Range Picker”, “Time range Range Picker”,
“Legend”. Click “OK” to confirm.

ð The selected controls are inserted for the trend element. You can move them to any
position you like. In the “Properties” of the trend element, the controls are shown
below “Assigned controls”.

See also
● Ä Chapter 1.4.5.19.2.18 “Command 'Insert Elements for Controlling the Trend'”

on page 1739

1. Select a trend element in the active visualization editor.

ð The properties of the trend element are displayed on the right side.

2. Click the value field of “Properties è Trend recording”

ð “Select trend recording” is displayed. The trend recordings available application-wide
are listed under “Available trend recordings”.

3. Select a trend record below “Available trend recordings”.
4. Click .

ð The trend recording is located under “Selected trend recording”.

5. Click “OK” to confirm the entry.

ð The selected trend recording is listed in “Values” in “Properties è Trend recording”.

See also
● Trend Recording

Defining the
application and
data source

Adding a con-
trol

Defining the
trend recording
to visualize

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1313

ms-its:codesys.chm::/_cds_obj_trend_recording.htm
ms-its:codesys.chm::/_cds_obj_data_sources_manager.htm
ms-its:codesys.chm::/_cds_obj_trend_recording_task.htm

A control that was added with the help of the “Trend Wizard” cannot be deleted
via the Trend wizard dialog.

1. Select a control of a trend in the active visualization editor.
2. Press [Del] or “Delete” to delete the element.
3. Select the trend in the active visualization editor.
4. Delete the assigned value in “Properties è Assigned controls è <control>”.

NOTICE!
It is absolutely necessary to delete this reference manually. The property
is not deleted automatically by deleting the control.

1. Select a trend in the active visualization editor.
2. Use the “Visualization è Configure Trend Display Settings” command.

ð The “Display Settings” dialog opens.

3. Adapt the settings as needed.

See also
● Ä Chapter 1.4.5.19.2.18 “Command 'Insert Elements for Controlling the Trend'”

on page 1739

1. Open “View è Element Properties”.
2. Select a trend element in your visualization.

ð The properties of the trend element are displayed on the right side.

3. Select the “Properties è Show cursor” option and “Show tooltip”.

ð A cursor is drawn in the coordinate system.

4. Select the “Properties è Show tooltip” option.
5. Download the application to the controller and start the application.
6.

If the diagram "runs”, then the date range has been placed in such a way
that its end time is the current time.

Select the date range so that the diagram does not run. If necessary, drag the scroll bar to
an earlier date range.

ð A cursor is available. The tooltip of the cursor informs you of the trend values. For
each trend variable, the legend displays the value at the point in time at which the
cursor is positioned.

Removing a
control

Configuring the
coordinate
system of the
trend diagram

Reading a trend
value at runtime

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1314

You can insert an input element in the visualization which the operator can use to delete the
previous value recording in the trend visualization at runtime. The curve displayed until then is
removed and the display starts over.
1. In the application (example: in the program PLC_PRG), implement the following code:

itfTrendRecording : ITrendRecording;
itfTrendStorageWriter : ITrendStorageWriter;
itfTrendStorageWriter3 : ITrendStorageWriter3;
sTrendRecordingName : STRING := 'TrendRecording';
itfTrendRecording :=
GlobalInstances.g_TrendRecordingManager.FindTrendRecording(ADR(sTr
endRecordingName));
xClearHistoryTrend: BOOL;

IF xClearHistoryTrend THEN
itfTrendRecording :=
GlobalInstances.g_TrendRecordingManager.FindTrendRecording(ADR(sTr
endRecordingName));
IF itfTrendRecording <> 0 THEN
 itfTrendStorageWriter :=
itfTrendRecording.GetTrendStorageWriter();
 IF __QUERYINTERFACE(itfTrendStorageWriter,
itfTrendStorageWriter3) THEN
itfTrendStorageWriter3.ClearHistory();
 END_IF
END_IF

2. In the visualization of the trend recording, add a button for deleting the previous curve.
Configure its “Toggle” property with the variable PLC_PRG.xClearHistoryTrend.

ð When xClearHistoryTrend is set to TRUE, the previously recorded curve is
deleted. The recording immediately starts again.

1.4.5.12 Displaying and Editing Text Files
1.4.5.12.1 Configuring the Display of a Text File.. 1315
1.4.5.12.2 Configuring the Editing of a Text File... 1318

With the help of the element “Text Editor” you can display a text file in the user interface and
optionally also enable the user to edit the file.

1.4.5.12.1 Configuring the Display of a Text File
In order to display a text file that is located on the controller, you need not only the element “Text
Editor”, but also control elements for selecting, opening and closing the file. Optionally a text
search function can be set up in the file with further control elements.
Example:

Deleting the
trend recording
history

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1315

1. Drag an element “Text Editor” into the visualization editor.
2. Declare the control variables for the element, for example as global variables in the GVL

object.

ð Refer to the declaration of the control variables for this.

3. For the “Text Editor”, configure the property “Editing mode” with “Read only”.
4. Also configure the property “Control variables”.

Assign the following variables there:
● “Control variables è File è Variable” with g_sFileName
● “Control variables è File è Open” with g_bFileOpen
● “Control variables è File è Close” with g_bFileClose
● “Control variables è File è New è Variable” with g_bFileNew
● “Control variables è File è Save è Variable” with g_bFileSave
● “Control variables è Edit è Variable” with g_sEditSearchFor
● “Control variables è Edit è Find” with g_bEditFind
● “Control variables è Edit è Find next occurrence” with g_bEditFindNext

Configuring the
element “Text
Editor”,
example

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1316

 VAR_GLOBAL
 g_sFileName: STRING := 'Readme.txt';
 g_bFileOpen : BOOL;
 g_bFileClose: BOOL;
 g_bFileNew: BOOL;
 g_bFileSave: BOOL;
 g_sEditSearchFor : STRING;
 g_bEditFind : BOOL;
 g_bEditFindNext : BOOL;

 g_usiErrorHandlingVarForErrorCode: USINT;
 g_bVarForContentChanged : BOOL;
 g_bVarForReadWriteMode: BOOL;
 END_VAR

1. Add an element “Label”.
2. Configure the property “Texts è Text” with File:.

3. Add an element “Rectangle” next to it, in which the user can then enter the file name:
4. Configure the property “Texts è Text” with %s:

5. Configure the property “Texts è Text variable” with g_sFileName.

6. Configure the property “Input configuration è OnMouseclick” with “Write a variable”.
In the dialog “Input Configuration”, select “Text input” as the “Input type”.
Activate the option “Use text output variable”.

ð The rectangle for the input of the file name is configured.

7. Add an element “Button” for opening the file.
8. Configure the property “Texts è Text” with Open:

9. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bFileOpen as a variable.

ð The button Open is configured.

10. Add a further element “Button” for closing the file.
11. Configure the property “Texts è Text” with Close:

12. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bEditFile as a variable.

ð The button Close is configured.

1. Add an element “Label”.
2. Configure the property “Texts è Text” with Text:.

3. Alongside it, add an element “Rectangle” for the input of the text to be found.
4. Configure the property “Texts è Text” with %s:

5. Configure the property “Texts è Text variable” with g_sEditSearchFor.

6. Configure the property “Input configuration è OnMouseclick” with “Write a variable”.
In the dialog “Input Configuration”, select “Text input” as the “Input type”.
Activate the option “Use text output variable”.

ð The rectangle is configured.

7. Add an element “Button” for starting the search.
8. Configure its property “Texts è Text” with Find.

Declaring the
control varia-
bles

Configuring
control ele-
ments for the
file selection

Control ele-
ments for
searching for a
text.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1317

9. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bEditFind as a variable.

10. Also add the action “Execute ST-Code”.
Program the action with: g_bEditFindNext := FALSE;
ð The button is configured.

11. Add a further element “Button”.
12. Configure the property “Texts è Text” with Find next.

13. Configure the property “Input Configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bEditFind as a variable.

14. Also add the action “Execute ST code”.
Program: g_bEditFindNext := TRUE;
ð The button is configured.

See also
● Ä Chapter 1.4.5.18.1.41 “Visualization Element 'Text Editor'” on page 1653

1.4.5.12.2 Configuring the Editing of a Text File
In order to be able to create a new text file or edit an existing one on the controller with the
“Text Editor” in the user interface, you need not only the element “Text Editor”, but also control
elements for selecting, opening, closing, saving and creating a file.
Example:

1. Drag an element “Text Editor” into the visualization editor.
2. Declare the control variables for the element, for example as global variables in the GVL

object.

ð Refer below to the declaration of the control variables for this.

3. For the “Text Editor”, configure the property “Editing mode” with “Read/Write”.

Configuring the
element “Text
Editor”,
example:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1318

4. Also configure the property “Control variables”.
Assign the following variables there:
● “Control variables è File è Variable” with g_sFileName
● “Control variables è File è Open” with g_bFileOpen
● “Control variables è File è Close” with g_bFileClose
● “Control variables è File è Save” with g_bFileSave
● “Control variables è File è New” with g_FileNew

 VAR_GLOBAL
 g_sFileName: STRING := 'Readme.txt';
 g_bFileOpen : BOOL;
 g_bFileClose: BOOL;
 g_bFileSave: BOOL;
 g_FileNew: BOOL;
 g_usiErrorHandlingVarForErrorCode: USINT;
 g_bVarForContentChanged : BOOL;
 g_bVarForReadWriteMode: BOOL;
 END_VAR

1. Add an element “Label”.
2. Configure it in the property “Texts è Text” with File:.

3. Add an element “Rectangle” next to it.
4. Configure its property “Texts è Text” with %s.

5. Configure its property “Texts è Text variable” with g_sFileName.

6. Configure the property “Input configuration è OnMouseclick” with “Write a variable”.
In the dialog “Input Configuration”, select “Text input” as the “Input type”.
Activate the option “Use text output variable”.

ð The rectangle for the input of the file name is configured.

7. Add an element “Button”.
8. Configure its property “Texts è Text” with New.

9. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bFileNew as a variable.

ð The button New is configured.

10. Add a further element “Button”.
11. Configure the property “Texts è Text” with Open:

12. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bFileOpen as a variable.

ð The button Open is configured.

13. Add a further element “Button”.
14. Configure its property “Texts è Text” with Save.

15. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bFileSave as a variable.

ð The button Save is configured.

16. Add a further element “Button”.
17. Configure its property “Texts è Text” with Close.

Declaring the
control varia-
bles

Configuring
control ele-
ments for file
selection

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1319

18. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bEditFile as a variable.

ð The button Close is configured.

See also
● Ä Chapter 1.4.5.18.1.41 “Visualization Element 'Text Editor'” on page 1653

1.4.5.13 Configuring a variable assignment with unit conversion
A variable that was assigned in a visualization can be linked with a unit conversion. This causes
the variable value to be converted according to a predefined rule and the result is edited in the
visualization.
You have already configured the conversion rules in the editor of an object of the type “Unit
Conversion”.
See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

Requirement: A project with a visualization is open. In addition, the application contains
the object UnitConversion with the rule convert_A.

1. Select an element.

ð The view “Properties” opens.

2. When assigning a variable, link the variable iVar_A with a rule of the unit conversion:
convert_A.convert(iVar_A)

3. Compile, load and start the application.

ð The application runs. The visualization opens. The unit conversion is applied.

1.4.5.14 Using recipes in visualization elements
You can manage and use the recipes created in CODESYS by means of a visualization. For this
purpose, the input configuration of a visualization element provides the following commands:
● “Read Recipe”
● “Write Recipe”
● “Load Recipe from File”
● “Save Recipe to File”
● “Create Recipe”
● “Delete Recipe”

See also
● Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Linking a vari-
able with unit
conversion

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1320

Requirement: The “Visualization” object is added to the project.

1. Create a recipe according to the instructions in the section "Changing Values with Recipes
- Creating Recipes".
Assign the following names:
● Recipe definition: "Recipes"
● Recipes: "Recipe1" and "Recipe2"
● Variables: iValue1 and iValue2
Type in different variable values of both recipes.

2. Open the “Visualization” object in the editor.
3. Drag a “Button” element to the visualization. Label it "Load Recipe 1". You can specify the

text by double-clicking the element or in the “Texts è Text” property.
4. Click the value field of the “Input configuration”: “OnMouseDown” property.

ð The “Input Configuration” dialog box opens.

5. Select “Execute command” in the left of the left side and click the button

ð The configuration of the “Internal command” opens on the right side of the dialog.

6. Select the “Write Recipe” command from the drop-down list.
7. Click the button.

ð The “WriteRecipe” command is added to the list.

8. Specify the first parameter as Recipes and the second parameter as Recipe1.

9. Click “OK” to close the dialog box.
10. Drag a second button to the visualization, name it "Load Recipe 2", and repeat steps 4 to

8. For step 7, specify Recipe2 as the second parameter.

11. Load the program to the controller and start it Click the “Load Recipe 1” and “Load Recipe
2”, and monitor the variables iValue1 and iValue2.

The other recipe commands are assigned to visualization elements as described in this
example. Refer to the help page of the input configuration for a description of the internal
commands.

1.4.5.15 Creating a structured user interface
You can reference visualizations that are available or exist in the project in another visualization
and thus reuse them. You obtain a structured user interface that consists of several visualiza-
tions. In principle you have the following possibilities to reference visualizations.
On the one hand you can display visualizations within a main visualization and toggle between
them. The element “Frame” or “Tabs” serves here as a window area element that defines the
display area for the referenced visualizations.
On the other hand you can configure a user input for a visualization that causes another
visualization to open as a dialog. The requirements for this is that it has the visualization type
“Dialog”. A dialog is used to collect inputs from the user.
In addition, you can declare an interface for a visualization that is to be referenced in order to
vary the display of the visualization at runtime. A visualization is thereby instanced with different
data and executed.

Example:
Loading recipes
by means of vis-
ualization ele-
ments

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1321

See also
● Ä Chapter 1.4.5.18.1.6 “Visualization Element 'Frame'” on page 1432
● Ä Chapter 1.4.5.18.1.10 “Visualization Element 'Tabs'” on page 1463

1.4.5.15.1 Displaying Multiple Visualizations in One Visualization
You can reference other visualizations within a main visualization either in a “Frame” or a “Tabs”
element, and then display them in the window pane of the element.
In the case of the “Frame” element, you can freely program which of the visualizations is
displayed at which time. One option is to use the switch frame variable of the “Frame” element,
which automatically triggers a switch according to its value. You can also program additional
controls which, after user input, trigger input actions that result in switching a visualization.

NOTICE!
Visualizations can be nested at any depth by means of “Frame” elements. In
order to use the “Switch to any visualization” frame selection type without any
problems, a “Frame” must not contain more than 21 referenced visualizations.
For more information, see also the description for the “Input configuration” of an
element: Action “Switch frame visualization”.

Moreover, you can use the “Tabs” to reference visualizations. It is easy and advantageous that
the “Tabs” element provides preconfigured control of the visualization switch.

In CODESYS Forge, you will find the sample project "Visualization Switching".
There you will see a visualization that displays other visualizations in a frame
area one after another at runtime. The visualization switch is controlled either by
the user, programmatically, or via the FrameManager.

See also
● Sample project in CODESYS Forge

In the main visualization, the “Frame” element displays one of the referenced frame visualiza-
tions at runtime. The user can select the “Radio Buttons” element which is displayed in the
frame.

1. Create a new standard project in CODESYS.
2. Select the application in the device tree and click “Add Object è Visualization”.
3. In the “Add Visualization” dialog, specify the name VisuMain and click “Add” to close the

dialog.
4. Select the application in the device tree and click “Add Object è Visualization”.
5. In the “Add Visualization” dialog, specify the name Visu1 and click “Add” to close the

dialog.
6. Select the application in the device tree and click “Add Object è Visualization”.
7. In the “Add Visualization” dialog, specify the name Visu2 and click “Add” to close the

dialog.
8. Select the application in the device tree and click “Add Object è Visualization”.
9. In the “Add Visualization” dialog, specify the name Visu3 and click “Add” to close the

dialog.

ð In addition to the main visualization, there are three more visualization objects.

10. Open the Visu1 object.

Switching frame
visualizations
by means of a
variable
Connecting
frame visualiza-
tions with a
radio buttons
element

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1322

https://forge.codesys.com/prj/codesys-example/home/Home/

11. In the “Visualization Toolbox”, in the “Basic” category, select and drag the “Radio Buttons”
element to the visualization editor.

ð The “Properties” view of the element opens.

12. Configure the properties of the rectangle as follows:
● Property “Texts”, “Text” = Visu1
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Light gray”

13. Program the object Visu2 accordingly.

Properties of the rectangle:
● Property “Texts”, “Text” = Visu2
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Gray”

14. Program the object Visu3 accordingly.

Properties of the rectangle:
● Property “Texts”, “Text” = Visu3
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Dark gray”

15. Open the VisuMain object.

16. In the “Visualization Toolbox”, in the “Basic” category, select and drag the “Frame” element
to the visualization editor.

ð The “Frame Configuration” dialog opens.

17. In the “Available Visualizations” window area, on the “By Visualization Name” tab, select
the object Visu1. In “Selected Visualizations”, click “Add”.

18. Then select the object Visu2 and click “Add” in “Selected Visualizations”.

19. Then select the object Visu3 and click “Add” in “Selected Visualizations”.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1323

20. Click “OK” to exit the dialog.

ð Now the “Frame” element references the three selected visualizations. The references
(1) are listed in the “References” property in the element properties of the “Frame”
element. In addition to the visualization name, the corresponding index value (2) is
also displayed.

Note: You can open the dialog when you click the “Configure” button in the value field
of the “References” property. See (3). You can influence the index by means of the
visualization order in the “Selected Visualizations” list.

21. In the “Visualization Toolbox”, in the “Common Controls” category, drag the “Radio
Buttons” element to the visualization editor.

ð The “Properties” view of the element opens.

22. In the “Radio button settings”, “Radio button”, click the “Create new” button.

ð This element has three switches to select from.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1324

23. Configure the properties of the radio button as follows:
● Property “Radio button settings”, “Areas”, “[0]”, “Text” = Visu1
● Property “Radio button settings”, “Areas”, “[1]”, “Text” = Visu2
● Property “Radio button settings”, “Areas”, “[2]”, “Text” = Visu3

24. In the PLC_PRG program, declare a local variable for the number of the visualization that
is active.

ð
VAR
 iActiveVisu : INT; // Index of visu activated by the user
END_VAR

25. Select the “Radio Buttons” element. In the value field of the “Variable” property, click .
26. In the “Input Assistant” dialog, select the recently declared variable. Then exit the dialog.

ð Property of the “Radio Buttons” element:
● Property “Variable” = PLC_PRG.iActiveVisu

27. Select the “Frame” element. Click in the value field of the “Switch frame variable”,
“Variable” property. Specify the recently declared variable here as well.

ð Property of the “Frame” element:
● Property “Switch frame variable ”, “Variable” = PLC_PRG.iActiveVisu
The control variable of the “Radio Buttons” element is also the switch frame variable
of the “Frame” element. User input for the “Radio Buttons”element switches the frame
visualization.

28. Click “Build è Generate Code”.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1325

29. Click “Online è Login” and start the application.

ð The visualization starts. One of the referenced visualizations is running in the frame.
When you click an unselected option of the “Radio Buttons” element, the visualization
switches the contents in the frame to the desired visualization.

In the example, the switch frame variable is connected to an input variable. Instead, you can
also set the switch frame variable programmatically in the IEC code.

In the main visualization, the “Frame” element displays one of the frame visualizations at
runtime. The user can use buttons to control the display in the frame. The user input triggers the
“Switch frame visualization” input action.

1. Create a new standard project in CODESYS.
2. Select the application in the device tree and click “Add Object è Visualization”.
3. In the “Add Visualization” dialog, specify the name VisuMain and click “Add” to close the

dialog.
4. Select the application in the device tree and click “Add Object è Visualization”.
5. In the “Add Visualization” dialog, specify the name Visu1 and click “Add” to close the

dialog.
6. Select the application in the device tree and click “Add Object è Visualization”.

Switching frame
visualizations
by means of a
follow-up action
Programming a
visualization

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1326

7. In the “Add Visualization” dialog, specify the name Visu2 and click “Add” to close the
dialog.

8. Select the application in the device tree and click “Add Object è Visualization”.
9. In the “Add Visualization” dialog, specify the name Visu3 and click “Add” to close the

dialog.

ð In addition to the main visualization, there are three more visualization objects.

10. Open the Visu1 object.

11. In the “Visualization Toolbox”, in the “Basic” category, select and drag the “Rectangle”
element to the visualization editor.

ð The “Properties” view of the element opens.

12. Configure the properties of the rectangle as follows:
● Property “Texts”, “Text” = Visu1
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Light gray”

13. Program the object Visu2 accordingly.

ð Properties of the rectangle:
● Property “Texts”, “Text” = Visu2
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Gray”

14. Program the object Visu3 accordingly.

ð Properties of the rectangle:
● Property “Texts”, “Text” = Visu3
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Dark gray”

15. Open the VisuMain object.

16. In the “Visualization Toolbox”, in the “Basic” category, select and drag the “Frame” element
to the visualization editor.

ð The “Frame Configuration” dialog opens.

17. In the “Available Visualizations” window area, on the “By Visualization Name” tab, select
the object Visu1. In “Selected Visualizations”, click “Add”.

18. Then select the object Visu2 and click “Add” in “Selected Visualizations”.

19. Then select the object Visu3 and click “Add” in “Selected Visualizations”.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1327

20. Click “OK” to exit the dialog.

ð Now the “Frame” element references the three selected visualizations. The references
(1) are listed in the “References” property in the element properties of the “Frame”
element. In addition to the visualization name, the corresponding index value (2) is
also displayed.

Note: You can open the dialog independently when you click the “Configure” button in
the value field of the “References” property. See (3). You can influence the index by
means of the visualization order in the “Selected Visualizations” list.

21. In the “Visualization Toolbox”, in the “Common Controls” category, drag the “Button” ele-
ment to the visualization editor.

ð The element is selected and its properties are visible in the “Properties” view.

22. Configure the “Texts”, “Text” property with Visu1.

23. In the “Input configuration”“OnMouseDown” property, click “Configure”.

ð The “Input Configuration” dialog opens.

24. Select the “Switch frame visualization” action and click .

ð The action is displayed in the window on the right.

25. Configure the action:
● Select the “Switch local visualization” option.
● Set the “Visualization selection” to Visu1.
● Click “OK” to exit the dialog.

ð The follow-up action is configured in the “Input configuration” property.

Property “Input configuration”, “OnMouseDown”, “Switch frame visualization” = 0

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1328

26. Drag another “Button” element to the visualization editor. Configure the button accordingly.

ð Properties of the button:
● Property “Texts”, “Text” = Visu2
● Property “Input configuration”, “OnMouseDown”, “Switch frame visualization” = 1

27. Drag another “Button” element to the visualization editor. Configure the button accordingly.

ð Properties of the button:
● Property “Texts”, “Text” = Visu3
● Property “Input configuration”, “OnMouseDown”, “Switch frame visualization” = 2

28. Click “Build è Generate Code”.
29. Click “Online è Login” for the device and start the application.

ð The visualization starts. One of the referenced visualizations is running in the frame.
When you click one of the buttons, the visualization switches the contents in the frame
to the respective visualization.

For the “Tabs”, the navigation of the referenced visualizations is provided automatically. The first
of the referenced visualizations is in the foreground, while the others are hidden behind it. The
user can navigate between them by means of the tabs which are provided automatically.
1. Create a new standard project in CODESYS.
2. Select the application in the device tree and click “Add Object è Visualization”.

Displaying visu-
alizations on a
tabs element
Configuring a
tabs element

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1329

3. In the “Add Visualization” dialog, specify the name VisuMain and click “Add” to close the
dialog.

4. Select the application in the device tree and click “Add Object è Visualization”.
5. In the “Add Visualization” dialog, specify the name Visu1 and click “Add” to close the

dialog.
6. Select the application in the device tree and click “Add Object è Visualization”.
7. In the “Add Visualization” dialog, specify the name Visu2 and click “Add” to close the

dialog.
8. Select the application in the device tree and click “Add Object è Visualization”.
9. In the “Add Visualization” dialog, specify the name Visu3 and click “Add” to close the

dialog.

ð In addition to the main visualization, there are three more visualization objects.

10. Open the Visu1 object.

11. Drag a “Rectangle” element to the visualization editor.

ð The “Properties” view of the element opens.

12. Configure the properties of the rectangle as follows:
● Property “Texts”, “Text” = Visu1
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Light gray”

13. Program the object Visu2 accordingly.

ð Properties of the rectangle:
● Property “Texts”, “Text” = Visu2
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Gray”

14. Program the object Visu3 accordingly.

ð Properties of the rectangle:
● Property “Texts”, “Text” = Visu3
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Dark gray”

15. Open the VisuMain object.

16. In the “Visualization Toolbox”, in the “Basic” category, select and drag the “Frame” element
to the visualization editor.

ð The “Frame Configuration” dialog opens.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1330

17. In the “Available Visualizations” window area, on the “By Visualization Name” tab, select
the object Visu1. In “Selected Visualizations”, click “Add”.

18. Then select the object Visu2 and click “Add” in “Selected Visualizations”.

19. Then select the object Visu3 and click “Add” in “Selected Visualizations”.

20. Click “OK” to exit the dialog.

ð Now the “Tabs” element references the three selected visualizations. The references
(1) are listed in the “References” property in the element properties of the “Frame”
element. In addition to the visualization name, the corresponding index value (2) is
also displayed.

Note: You can open the dialog “Frame Configuration” dialog independently when you
click the “Configure” button in the value field of the “References” property. See (3).
You can influence the index by means of the visualization order in the “Selected
Visualizations” list.

21. In the “Visualization Toolbox”, in the “Common Controls” category, drag the “Tabs” element
to the visualization editor.

ð The “Properties” view of the element opens.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1331

22. Configure the properties of the tab as follows:
● Property “Tab width”: 40
● Property “References”, Visu1, “Header” = Visu1
● Property “References”, Visu2, “Header” = Visu2
● Property “References”, Visu3, “Header” = Visu3

23. Click “Build è Generate Code”.
24. Click “Online è Login” for the device and start the application.

ð The visualization starts. One of the referenced visualizations is running in the “Tabs”
element. Click the tab to switch to the respective visualization.

See also
● Ä “Dialog 'Frame Configuration'” on page 1727
● Ä Chapter 1.4.5.18.1.6 “Visualization Element 'Frame'” on page 1432
● Ä Chapter 1.4.5.18.1.10 “Visualization Element 'Tabs'” on page 1463

1.4.5.15.2 Calling a Visualization with an Interface
You can declare an interface for parameters for a visualization that is to be referenced. The
actual parameters are passed to the interface (similar as in the case of a function block) when
the visualization is called at runtime.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1332

First of all, declare the interface variables in the visualization interface editor. Then configure the
parameters that are transferred to the interface by assigning a data-type-compliant application
variable to each interface variable. The assignment is configured in the “References” property in
the case of a “Frame” or a “Tabs”.
Depending on the display variant, the parameter transfer of local variables (with the VAR
scope) is limited. If you execute the visualization as an integrated visualization, you can only
transfer local variables having a basic data type as parameters. If the visualization is called as
CODESYS TargetVisu or CODESYS WebVisu, then you can also transfer parameters with a
user-defined data type.

If you have configured visualization references and then save a change to the variable dec-
laration for one of these visualizations in an interface editor, then the “Updating the Frame
Parameters” dialog appears automatically. The dialog prompts you to edit the references. A
list of all the visualizations affected is displayed there, so that the parameter transfers can be
reassigned at the changed interface.
When the dialog is closed, the changes are accepted and the elements affected are displayed in
the “References” property.

Requirement: The project contains a visualization and a main visualization. The main
visualization contains an element that the visualization references.
1. Open the visualization.
2. Click “Visualization è Interface Editor”.
3. Declare a variable in the interface editor.

ð The visualization has an interface and the “Updating the Frame Parameters” dialog
appears.

4. Assign a type-compliant transfer parameter to the interface variables in all calls by
entering an application variable in “Value”. Close the dialog.

ð A transfer parameter is assigned at the points where the visualization is to be refer-
enced. These now appear in the main visualization in the “References” property.

User-controlled
update of the
transfer parame-
ters

Calling visuali-
zation with
interface
(VAR_IN_OUT)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1333

The visPie visualization contains an animated, colored pie. The visMain main visualization
calls the visPie visualization multiple times in a “Tabs” control. Color information, angle
information, and label are transferred via the pieToDisplay interface variable. The pies vary
at runtime.
Visualization visPie:

Table 263: Properties of the “Pie” element:
“Variable for begin” pieToDisplay.iStart
“Variable for end” pieToDisplay.iEnd
“Texts è Text” %s

“Text variables è Text variable” pieToDisplay.sLabel
“Color variable è Normal state” pieToDisplay.dwColor

VAR_IN_OUT
 pieToDisplay : DATAPIE;
END_VAR

Main visualization visMain:

Table 264: Properties of the “Tabs” element:
“References”

“visPie”

“Heading” A
pieToDisplay PLC_PRG.pieA
“visPie”

“Heading” B
pieToDisplay PLC_PRG.pieB
“visPie”

“Heading” C
pieToDisplay PLC_PRG.pieC

Example

Interface of the
visualization
visPie:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1334

TYPE DATAPIE : // Parameter type used in visPie
STRUCT
 dwColor : DWORD; // Color data
 iStart : INT; // Angle data
 iEnd : INT;
 sLabel : STRING;
END_STRUCT
END_TYPE

{attribute 'qualified_only'}
VAR_GLOBAL CONSTANT
 c_dwBLUE : DWORD := 16#FF0000FF; // Highly opaque
 c_dwGREEN : DWORD := 16#FF00FF00; // Highly opaque
 c_dwYELLOW : DWORD := 16#FFFFFF00; // Highly opaque
 c_dwGREY : DWORD :=16#88888888; // Semitransparent
 c_dwBLACK : DWORD := 16#88000000; // Semitransparent
 c_dwRED: DWORD := 16#FFFF0000; // Highly opaque
END_VAR

PROGRAM PLC_PRG
VAR
 iInit: BOOL := TRUE;

 pieA : DATAPIE; // Used as argument when visPie is called
 pieB : DATAPIE;
 pieC : DATAPIE;

 iDegree : INT; // Variable center angle for the pie element
used for animation
END_VAR

IF iInit = TRUE THEN
 pieA.dwColor := GVL.c_dwBLUE;
 pieA.iStart := 0;
 pieA.sLabel := 'Blue';

 pieB.dwColor := GVL.c_dwGREEN;
 pieB.iStart := 22;
 pieB.sLabel := 'Green';

 pieC.dwColor := GVL.c_dwYELLOW;
 pieC.iStart := 45;
 pieC.sLabel := 'Yellow';

 iInit := FALSE;
END_IF

iDegree := (iDegree + 1) MOD 360;

pieA.iEnd := iDegree;
pieB.iEnd := iDegree;
pieC.iEnd := iDegree;

Main visualization visMain at runtime:

DATAPIE
(STRUCT)

GVL

PLC_PRG

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1335

In order to obtain and output the instance name of a transfer parameter, you can
implement an interface variable (data type STRING) with the pragma {attribute
'parameterstringof'} in the VAR_INPUT scope.

The project contains a visualization and a main visualization. The main visualization
contains elements that the visualization references.
1. Open the visualization.
2. Click “Visualization è Interface Editor”.
3. Declare an interface variable (VAR_IN_OUT).

ð pieToDisplay : DATAPIE;
4. In the interface editor, declare a variable (VAR_INPUT) with attribute {attribute

'parameterstringof'}.

ð {attribute 'parameterstringof' := 'pieToDisplay'}
sNameToDisplay : STRING;

5. Save the changes.

ð The “Updating the Frame Parameters” dialog does not open.

6. Insert a “Text Field” element.
7. In the “Texts”, “Text” property, assign an output text to the text field.

ð Visualization of %s
8. In the “Text variables”“Text variable” property, assign the interface variable to the text field.

ð sNameToDisplay
visPie has a heading.

Printing the
instance name
of a transfer
parameter

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1336

The visPie visualization consists of one pie until now. The visMain main visualization calls
visPie in a “Tabs” control three times with different transfer parameters.

The visPie is extended with a text field that outputs the name of the parameters actually
passed to the visualization. For this, the interface of visPie is extended with a string variable
that contains the instance name of the specified transfer parameter. At runtime, each pie is
overwritten.

Table 265: Properties of the “Text field” element:
“Texts”, “Text” Visualization of %s
“Text variables”, “Text variable” sNameToDisplay

VAR_INPUT
 {attribute 'parameterstringof' := 'pieToDisplay'}
 sNameToDisplay : STRING;
END_VAR
VAR_IN_OUT
 pieToDisplay : DATAPIE;
END_VAR

Main visualization visMain at runtime:

Example

Interface of the
'visPie' visuali-
zation:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1337

See also
● Ä Chapter 1.4.5.19.2.1 “Command 'Interface Editor'” on page 1719
● Ä Chapter 1.4.5.18.1.6 “Visualization Element 'Frame'” on page 1432
● Ä Chapter 1.4.5.18.1.10 “Visualization Element 'Tabs'” on page 1463
● Ä Chapter 1.4.5.19.3.3 “Dialog 'Update Frame Parameters'” on page 1746

1.4.5.15.3 Calling a dialog in a visualization
You can configure a user input for a visualization that causes a referenced visualization to open
as a dialog. For example, a user clicks on a button, whereupon a dialog opens requesting the
input of values. A dialog is used to collect user inputs and, if it is modal, it can lead to inputs
outside the dialog being blocked.
Only visualizations with the visualization type “Dialog” can be opened as dialog. The visualiza-
tion type is configured in the dialog “Properties” of a visualization object.

Requirement: The project contains a main visualization and a dialog.
1. Configure a user input for the main visualization with the action “OpenDialog” for the

dialog.

ð The opening of the dialog is configured.

2. Configure a user input for an element of the dialog with the action “CloseDialog”.
Hint: in the case of non-modal dialogs you can also configure the user input for closing
outside the dialog.

ð The closing of the dialog is configured.

You can also use dialogs from the library instead of self-made dialogs. For
example, if the library VisuDialogs is integrated in the project, you can
use the dialogs VisuDialogs.Login or VisuDialogs.FileOpenSave con-
tained in it.

See also
● Ä Chapter 1.4.5.4 “Configuring user inputs” on page 1267
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749
● Ä Chapter 1.4.5.19.3.15 “Dialog 'Properties' of Visualization Objects” on page 1767

1. Select the object in the view “Devices”, open the context menu and select the command
“Properties”.

2. Select the tab “Visualization”.
3. Activate the option “Dialog” and close the dialog with “OK”.

ð The visualization has the visualization type “Dialog” and can be called as such.

When calling a dialog, a user normally clicks on a button, whereupon a dialog opens requesting
an input.
In the following example, a dialog representing a calendar enables a date to be entered.

Basic proce-
dure:

Configuring a
visualization
object as a
dialog

Configuring a
dialog call

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1338

Requirement: The project contains the visualizations visMain and dlgCalender.

1. Set the visualization type of dlgCalender to Dialog.

2. Drag a rectangle into the visualization visMain.

3. Configure the property “Texts è Text” with the text Due Date: %t[yyyy-MM-dd].

Configure the property “Text variables è Text variable” with PLC_PRG.dateDue.

4. Drag a button into the visualization.
5. Configure the property “Texts è Text” with the text Open dialog.

Configure the property “Input configuration è OnMouseClick” for the action “Open Dialog”
with dlgCalender.

ð The user input for the opening of the dialog is configured.

6. Double-click on the dialog dlgCalender.

7. Drag the element “Date picker” into the visualization editor.
8. Configure the property “Texts è Text” with Due Date: %t[yyyy-MM-dd].

Configure the property “Variable” with PLC_PRG.dateCalender.

ð The element is configured.

9. Drag a button into the visualization editor.
10. Configure the property “Texts è Text” with OK:

11. Configure the property “Input configuration è OnMouseClick”for the action “Close
Dialog ”with dlgCalender, Result: OK.

12. Configure a further property “Input configuration è OnMouseClick” for the action “Execute
ST-Code” with PLC_PRG.dateDue := PLC_PRG.dateCalendar;.

ð The user input for the closing of the dialog is configured.

13. Drag a further button into the visualization editor.
14. Configure the property “Texts è Text” with Cancel:

15. Configure the property “Input configuration è OnMouseClick” for the action “Close
Dialog ”with dlgCalender, Result: Cancel.

ð The user input for the cancellation of the dialog is configured.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1339

17. Compile, load and start the application.

 PROGRAM PLC_PRG
 VAR
 dateDue : DATE := DATE#2000-01-01;
 dateCalendar : DATE;
 END_VAR

Normally a dialog appears only on the display variant on which the user has executed the
triggering event.
However, you can configure the opening of the dialog in such a way that the dialog appears
simultaneously on all active display variants configured under the visualization manager. This
way, for example, an input request can appear simultaneously on all display variants although a
user only entered something on the CODESYS TargetVisu.
If a user closes the dialog on a CODESYS TargetVisu display variant, it will be closed on all
display variants.

Variable decla-
ration:

Opening a
dialog globally

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1340

You can open and close a global dialog with the functions OpenDialog3 and CloseDialog2
from the library VisuElems.

In the application code you can implement the access to a dialog that is managed in the dialog
manager. The dialog manager automatically instances and manages all visualizations of the
type “Dialog”. The access takes place via the internal visualization manager.
First of all, implement the access to the dialog manager by calling the GetDialogManager()
method of the internal visualization manager. You can then use the methods of the dialog
manager to program the program sequence of a dialog.
In the following example a button is configured so that it opens the preconfigured dialog Login
when clicked on. The user can enter a name and a password in the dialog. The dialog Login is
contained in the library VisuDialogs. You can also call a self-made dialog in the same way.

Requirement: The library VisuDialogs is integrated in the project.

1. Insert a new visualization visMain under the application.

ð The visualization editor opens.

2. Drag a button into the visualization editor.
3. Enter in its property “Text”Login.

ð The button is labelled.

4. Click on “Configure ”in the property “Input configuration è OnMouseDown”.
5. Select the input action “Execute ST-Code” and click on .
6. Enter the following function call in the ST editor: OpenLoginDialog(pClientData);

ð The main visualization contains a button. If a user clicks on the button, the dialog
Login opens and the function OpenLoginDialog() is called.

7. Click on “Configure ”in the property “Input configuration è OnDialogClosed”.
8. Select the input action “Execute ST-Code” and click on .
9. Enter the following function call in the ST editor:

OnLoginDialogClosed(pClientData);
ð If a user closes the dialog, the function OnLoginDialogClosed() is called.

 FUNCTION OpenLoginDialog : BOOL
 VAR_INPUT
 pClientData : POINTER TO VisuStructClientData;
 END_VAR

 VAR
 dialogMan : IDialogManager;

Implementing
an application
access to a
dialog

Implementing
an application
access to the
dialog Login
from the library
VisuDialogs:

Implementation
of the function
OpenLogin-
Dialog():

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1341

 loginDialog : IVisualisationDialog;
 pLoginInfo : POINTER TO Login_VISU_STRUCT; //
Login_VISU_STRUCT contains the parameters defined in the interface of
visualization "Login".
 result : Visu_DialogResult;
 stTitle : STRING := 'Login ...';
 stPasswordLabelText: STRING;
 stUserLabelText: STRING;
 stUsername: STRING;
 END_VAR

 dialogMan := g_VisuManager.GetDialogManager(); // The
DialogManager is provided via the implicitly available VisuManager
 IF dialogMan <> 0 AND pClientData <> 0 THEN
 loginDialog :=
dialogMan.GetDialog('VisuDialogs.Login'); // Dialog to be opened is
specified
 IF loginDialog <> 0 THEN
 pLoginInfo :=
dialogMan.GetClientInterface(loginDialog, pClientData);
 IF pLoginInfo <> 0 THEN // In the following the
parameters of the login dialog in the Login_VISU_STRUCT will be read
 pLoginInfo^.stTitle := stTitle;
 pLoginInfo^.stPasswordLabelTxt := stPasswordLabelText;
 pLoginInfo^.stUserLabelTxt := stUserLabelText;
 dialogMan.OpenDialog(loginDialog, pClientData, TRUE,
0);
 END_IF
 END_IF
 END_IF

OnLoginDialogClosed() defines the reaction to the closing of a dialog.
 FUNCTION OnLoginDialogClosed : BOOL
 VAR_INPUT
 pClientData : POINTER TO VisuStructClientData;
 END_VAR

 VAR
 dialogMan : IDialogManager;
 loginDialog : IVisualisationDialog;
 pLoginInfo : POINTER TO Login_VISU_STRUCT;
 result : Visu_DialogResult;
 stPassword: STRING;
 stUsername: STRING;
 END_VAR

 dialogMan := g_VisuManager.GetDialogManager(); // The
DialogManager is provided via the implicitly available VisuManager
 IF dialogMan <> 0 AND pVisuClient <> 0 THEN
 loginDialog :=
dialogMan.GetDialog('VisuDialogs.Login'); // Gets the login dialog
 IF loginDialog <> 0 THEN
 result := loginDialog.GetResult(); // Gets the result
(OK, Cancel) of the dialog
 IF result = Visu_DialogResult.OK THEN
 loginDialog.SetResult(Visu_DialogResult.None); //
Reset to default (none)
 pLoginInfo :=
dialogMan.GetClientInterface(loginDialog, pVisuClient); // Structure
Login_VISU_STRUCT gets read;
 // In the following the structure parameters can be
set
 IF pLoginInfo <> 0 THEN
 stPassword :=

Implementation
of the function
OnLoginDialog
Closed():

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1342

pLoginInfo^.stPasswordpLoginInfo^.stPassword := ''; // Reset the
passwword
 stUsername := pLoginInfo^.stUsername;
 END_IF
 ELSIF result = Visu_DialogResult.Cancel THEN
 loginDialog.SetResult(Visu_DialogResult.None); //
React on 'Cancel'
 ELSE
 // nothing to do
 END_IF
 END_IF
 END_IF

See also
● Ä Chapter 1.4.5.18.3 “Methods of the Dialog Manager” on page 1714

1.4.5.15.4 Calling a Dialog with an Interface
You can define an interface for a visualization that is called as a dialog.
Create a visualization for this with visualization type “Dialog” and declare an interface for the
dialog. The reference the visualization in a primary visualization by means of a user input and
transfer the parameters to the interface.
If you call the visualization as an integrated visualization, then the parameter that are trans-
ferred must be variables of a basic data type. If the visualization is called as CODESYS
TargetVisu or CODESYS WebVisu, then the parameters can have user-defined data types as
well.
See also
● Ä “Scopes” on page 1719
● Ä Chapter 1.4.5.19.3.15 “Dialog 'Properties' of Visualization Objects” on page 1767

1. Set the visualization types of the visualization to dialog.
2. Declare variables in the interface editor of the dialog.

ð The dialog has an interface. You can transfer parameters when calling the dialog.

3. Configure the elements of the dialog and use the interface variables.
4. Select an element in another visualization (usually the main visualization) for configuring

how the dialog opens.
5. Click “Configure” in the property “Input configuration è OnMouseDown”.

ð The “Input Configuration” dialog box opens.

6. Select “Open dialog” in the list of selected input actions.
7. Select one from the “Dialog” drop-down list.

ð If the selected dialog has an interface, then the interface variables are listed below.

8. Assign a transfer parameter to the interface variables in the “Value” column.
9. Select the result for which the parameters were updated in the list “Update” “and”

“Parameter in case of results”.
10. Activate the option “Open dialog modal”. Click “OK” to close the dialog box.

ð The dialog opening is configured.

Main procedure

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1343

Executing a dialog several times at the same time requires multiple instances
of the dialog. These must have already been downloaded to the visualization
device when downloading the application. For this purpose, set the number of
instances to download in the visualization manager (“Visualizations” tab).

See also
● Ä Chapter 1.4.5.19.3.15 “Dialog 'Properties' of Visualization Objects” on page 1767
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749
● Ä Chapter 1.4.5.15.4 “Calling a Dialog with an Interface” on page 1343

the following application calls the “Change User Level” dialog and prompts the user to select a
level and specify a password. If the password agrees, then the “OK” button is enabled. Then the
user can close the dialog. The input of the level is also applied.

Example

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1344

VAR_INPUT
 sTitle: STRING; // titel of the dialog box
 sItfLevel0: STRING; //password level 0
 sItfLevel1: STRING; //password level 1
 sItfLevel2: STRING; //password level 2
 sItfLevel3: STRING; //password level 3
 sItfLevel4: STRING; //password level 4
 sItfLevel5: STRING; //password level 5
 sItfLevel6: STRING; //password level 6
 sItfLevel7: STRING; //password level 7
END_VAR
VAR_IN_OUT
 iItfLevel: INT; // user input: level
 sItfPwd: STRING; //user input: password
END_VAR

Table 266: Element list of the visChangeUserLevel dialog box:
Type Name Element properties Description
#0
Image

Backg
round

“Static ID”:
VisuDialogs.ImagePoolDial
ogs.Login

The property assigns the image of
a blank dialog with a gray back-
ground and a blank blue caption
bar to the element. The image
is included in the “VisuDialogs”
library.

#1
Box

Title “Texts è Text”: %s Output with placeholder for text
variable

“Text variables è Text variable”:
sItfTitle

Assignment of interface variable
sItfTitle for which a parameter
is transferred at call time.

#2
Radio
Butto
ns

Input
level

“Variable”: iItfLevel Assignment of interface variable
iItfLevel for which a parameter
is transferred at call time. Includes
the user input at runtime.

“Number of columns”: 4

Dialog
visChangeUse
rLevel:

Declaration of
the interface of
dialog
visChangeUse
rLevel:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1345

Type Name Element properties Description
“Radio button order”: “Left to right” Display

“Radio button settings è Radio
button è Areas”: [0] bis [7]“”
“[<n>] è Text”: <n>

Label of eight radio buttons with
numbers from 0 to 7

#3
Text
Field

Input
passw
ord

“Texts è Text”: %s Output with placeholder for text
variable

“Text variables è Text variable”:
sItfPwd

Assignment of interface variable
sItfPwd for which a parameter
is transferred at call time. Includes
the user input at runtime.

“Input configuration
è OnMouseDown
è Write variable”:
Variable:,InputType:Edit,
Use text output
variable : TRUE

In the “Input configuration” dialog,
“Text input” is selected for the
“Input type” drop-down list and the
option “Use text output variable” is
activated.

#4
Text
Field

Label
for
level

“Texts è Text”: Level: Label

#5
Text
Field

Label
for
passw
ord

“Texts è Text”: Password Label

#6
Butto
n

OK “Texts è Text”: OK Label

“Colors è Color”: Element base
color
“Colors è Alarm color”: Alarm
fill color

Configuration of the display in
state-dependent colors. You can
switch between colors.

“Color variables è Toggle color”:
sItfPwd <> MUX(iItfLevel,
sItfLevel0, sItfLevel1,
sItfLevel2, sItfLevel3,
sItfLevel4, sItfLevel5,
sItfLevel6, sItfLevel7);

If the password and the user input
do not agree, then the expression
is TRUE. Then the button is dis-
played in the alarm color.

“State variables
è Deactivate inputs”:
sItfPwd <> MUX(iItfLevel,
sItfLevel0, sItfLevel1,
sItfLevel2, sItfLevel3,
sItfLevel4, sItfLevel5,
sItfLevel6, sItfLevel7);

If the password and the user input
do not agree, then the expression
is TRUE. The button is deactivated.

If the password agrees, then the
button is enabled.

“Input configuration
è OnMouseDown è Close
dialog”: Close Dialog:
visChangeUserLevel,
Result : OK

If a user clicks the “OK” button,
then the visChangeUserLevel
dialog is closed and the parame-
ters are updated.

#7
Butto
n

Cance
l

“Texts è Text”: Cancel Label

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1346

Type Name Element properties Description
“Colors è Color”: Element base
color

Display

“Input configuration
è OnMouseDown è Close
dialog”: Close Dialog:
visChangeUserLevel,
Result : Cancel

If a user clicks the “Cancel” button,
then the visChangeUserLevel
dialog is closed.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1347

Table 267: Element list of the visMain visualization:
Type Name Element properties Description
#5 Text Field Button for

change user
level

“Texts è Text”: %s Output with place-
holder

“Text variables
è Text variable”:
PLC_PRG.iLevel

Assignment of the
PLC_PRG.iLevel
variables to the pla-
ceholder. Includes
the level number.

#6 Button Title “Texts è Text”:
Change user
level

“Input configuration
è OnMouseDown
è Open dialog”:
Open Dialog:
visChangeUserLe
vel

If a user clicks the
Change user
level button, then
the
visChangeUserLe
vel dialog opens
with the parameter
list stored here.
Tip: Click “Configure”
to view the stored
configuration in the
“Input Configuration”
dialog (input action
“Open dialog”).

Table 268: Configuration of the call of dialog visChangeUserLevel:
Parameter Type Value Description
The parameter list is stored in the “Input Configuration” dialog (input action “Open
dialog”).
sItfTitle STRING 'ChangeUse user

level'
Transfer of a string
for the title.

sItfLevel0 STRING 'pwd0' Transfer of a string
as password for
Level0.

sItfLevel1 STRING 'pwd1' Transfer of a string
as password for
Level1.

sItfLevel2 STRING 'pwd2' Transfer of a string
as password for
Level2.

Main visualiza-
tion visMain:

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1348

Parameter Type Value Description
sItfLevel3 STRING 'pwd3' Transfer of a string

as password for
Level3.

sItfLevel4 STRING 'pwd4' Transfer of a string
as password for
Level4.

sItfLevel5 STRING 'pwd5' Transfer of a string
as password for
Level5.

sItfLevel6 STRING 'pwd6' Transfer of a string
as password for
Level6.

sItfLevel7 STRING 'pwd7' Transfer of a string
as password for
Level7.

iItfLevel INT PLC_PRG.iLevel Transfer of a vari-
able for the level
specified by the user.

sItfPwd STRING PLC_PRG.sPwd Transfer of a vari-
able for the pass-
word specified by the
user.

Table 269: List “Update” and “Parameter in case of result”
“Value” Description
“OK” activated

“Open in dialog mode” activated Input outside of the dialog is not possible.

PROGRAM PLC_PRG
VAR
 iLevel: INT;
 sPwd : STRING;
END_VAR

Application
code PLC_PRG:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1349

After clicking the button, the dialog opens and permits input. If the specified text agrees with
the stored text, then “OK” is enabled:

After clicking “OK”, the selection is applied.

Visualization at
runtime

The example shows the procedure for multiple return values. However, the
password can be returned more easily with a local variable in the dialog.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1350

The variables declared in the interface of a visualization are available automatically as structure
variables. They are identified by <Name of visualization>_VISU_STRUCT. Therefore, you
can access the interface variables of visualizations that appear as a dialog. Normally you use
the structure in the application code of a function that is called by a user input.

To pass a complex data structure, you can flag an interface variable of type VAR_IN_OUT with
the pragma attribute VAR_IN_OUT_AS_POINTER and pass a pointer or reference to it as a
parameter.
1. Declare the user data object (DUT).

2. In the interface editor of a dialog, declare an interface variable (VAR_IN_OUT) as a
reference to the data object by assigning the attribute 'VAR_IN_OUT_AS_POINTER' to
the variable.

3. Program the user interface: use the dialog in a visualization or assign the dialog in the
input configuration of a visualization element. Then access to the referenced data is
possible.

Accessing
parameters pro-
grammatically

Passing
pointers as
parameters

Procedure for
using refer-
ences

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1351

FUNCTION_BLOCK ControlFB
VAR
 bOk : BOOL := TRUE;
 nCounter : INT;
 nValue : INT;
END_VAR
nCounter := nCounter + 1;

Declaration of an interface variable with VAR_IN_OUT_AS_POINTER

Example:
Using an inter-
face with the
pragma
'VAR_IN_OUT_
AS_POINTER'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1352

User interface: dialog opens:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1353

See also
● Ä Chapter 1.4.5.18.4 “Attribute 'VAR_IN_OUT_AS_POINTER'” on page 1716

1.4.5.16 Configuring and executing display variants
You can select from different variants for displaying your visualization created in CODESYS. An
advantage is that you can have not only one, but multiple display variants running at the same
time. During this time, the contents of the visualization are the same for all variants. This also
applies to the integrated visualization: when the visualization editor is open in CODESYS, the
visualization is also displayed there with the same active contents.
The following object types are available:
● “TargetVisu”

The display as a variant of CODESYS TargetVisu is possible one time. You can insert an
object of this type below the Visualization Manager.

● “WebVisu”
The display as a variant of CODESYS WebVisu is possible any number of times. You can
insert any number of objects.

● “Remote TargetVisu”
The display as a variant of [ERROR: Missing definition for variable "tvVisuDeviceRemo-
teTarget"!] is possible any number of times. You can insert any number of objects.

When you insert a variant below the Visualization Manager, the task configuration is extended
by the visualization task VISU_TASK (the flow unit of the visualizations). The task is automati-
cally deleted when no more objects exist below the Visualization Manager or the objects below
are excluded from compiling. You can set this in the “Properties” dialog of an object, on the
“Compile” tab.

If no object is inserted below the Visualization Manager, then the visualization
created there is displayed automatically as an integrated visualization when the
application starts.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1354

If an error or an exception occurs in a visualization at runtime, the execution of the visualization
is stopped without stopping the execution of the application. An error screen appears informing
you of this. In addition, the error screen (usually) enables you to restart the visualization. This
exception handling takes place from visualization profile CODESYS V3.5 SP7, compiler version
3.5.7.0 and a runtime system from version 3.5.7.0.

Select the command “Stop Execution at Handled Exceptions” in order to investigate the cause
of the occurrence of exceptions and the error position.
See also
● Ä Chapter 1.4.1.20.3.6.19 “Command 'Stop Execution on Handled Exceptions'”

on page 1043

In order to programmatically identify a display variant, the VisuFbClientTagDataHelper
library module from the VisuElemBase library is available to you. The library
itself is referenced in VisuElems. The library module is typically called with
VisuElems.VisuFbClientTagDataHelper.

Further information on this library module can be found in its documentation in the library
manager.
See also
● Ä Chapter 1.4.1.8.7 “Using Library POUs” on page 265

1.4.5.16.1 Executing as CODESYS WebVisu

NOTICE!
Recommendations for data security
In order to minimize the risk of breaches of data security, we recommend the
following organizational and technical measures for the system on which your
applications run:
As far as possible, avoid exposing the PLC and control networks to open
networks and the Internet. For protection, use additional data-link layers such
as a VPN for remote access and install firewall mechanisms. Limit access to
authorized persons, change any existing standard passwords during the initial
commissioning and continue to change them regularly.
If you nevertheless wish to publish your web visualization, it is urgently recom-
mended that you provide it at least with simple password protection in order
to prevent anyone accessing your control functionality over the Internet. (See
an example in the project SimpleWebvisuLogin.project, which is provided
with the standard installation of the development system).
Use the latest versions of the gateway server and the web server.

You can execute a visualization as CODESYS WebVisu.
The requirement for this is that the runtime system contains a web server with WebVisu support.
This enables communication between target system and web browser. The web server on the
target system is started as soon as an application with WebVisu configuration is started and
runs until all applications with WebVisu are ended. The device can then display visualizations in
connected HTML5-capable web browsers.
The web-based display variant of the CODESYS Visualization enables remote access to a plant
as well as its remote monitoring, service and diagnosis over the Internet. A web browser com-
municates by Java Script (optionally with SSL encryption) with the web server in the controller
and displays the visualization by means of HTML5. This technology is supported by virtually all
browsers and is thus also available on terminal devices with iOS or Android.

Exception han-
dling at runtime

Identifying dis-
play variants

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1355

An executable visualization visMain exists in the project.

1. Select the object “Visualization manager” and select the command “Add object”.
2. Select the object “WebVisu” and enter the name WebVisu_A.

ð There is a new object in the device tree underneath the object “Visualization
Manager”. The associated editor opens.
The visualization task VISU_TASK is automatically added under the task configura-
tion.

3. Select the visualization visMain in the “Start Visualization”.

4. In “Name of .htm file”, enter the name webvisuA.

5. Click on “Show used visualizations” and check whether the selected visualization is acti-
vated for a download to the associated device.

ð The visualization is configured. The settings under “Scaling options” determine the
window size and the scaling.

6. Start a suitable runtime system with web server and WebVisu support.
Configure the communication settings for your system.

ð The runtime system runs.

7. Compile, load and start the application.

ð The application and the web server run.

8. Start a web browser with the following address: http://localhost:8080/
webvisuA.htm
ð The page is displayed and you can see the data of the application and operate the

application.

See also
● Ä Chapter 1.4.5.19.4.7 “Object 'TargetVisu'” on page 1787

Requirement: A visualization with WebVisu is started.
1. Start a current browser with JavaScript and support of HTML5-Canvas, e.g. Firefox,

Chrome, IE>=9.
2. Enter the following address in the web browser:

http://localhost:8080/webvisu.htm
Formal: http://<IP address of webserver>:<port of webserver>/<name
of HTM-file>
<name of HTM-file> is the HTML start page of the visualization defined in the object
“WebVisu”.

ð The page is displayed and you can see the data of the application and operate the
application.

Configuring and
starting display
variants

Calling a page
in the web
server

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1356

In order to be able to identify a WebVisu with the help of the library block
VisuFbClientTagDataHelper, the WebVisu needs a name. In order to be able
to specifically address it in the application, expand the URL call by the parameter
ClientName=<Name>.

Example: http://localhost:8080/webvisu.htm?ClientName=VisClientxy.

See also
● Ä Chapter 1.4.5.19.4.8 “Object 'WebVisu'” on page 1788

1.4.5.16.2 Executing as an Integrated Visualization
You can execute the visualization as an integrated visualization. In this case a display variant of
the visualization runs on the development system without the visualization code being loaded
to the controller.
Use the integrated visualization for the testing and diagnosis of your application, or for the
service and commissioning of a plant.
The requirement for this is that there are no objects under the visualization manager. Alter-
natively, any objects located there can be excluded from compilation. You can configure an
individual object accordingly in its dialog “Properties” on the tab “Compile”.
See also
● Ä Chapter 1.4.5.19.3.15 “Dialog 'Properties' of Visualization Objects” on page 1767

A visualization project is open.
1. Remove all objects from underneath the visualization manager or exclude the objects from

compilation.

ð The VISU_TASK has been removed from under the task configuration.

2. Load the application to the controller.

ð Now no visualization code will be transferred on loading the application.

3. Start the application.

ð The visualization in the visualization editor is being executed. You can operate your
application.

Use the command “Activate keyboard usage” in order to toggle between the
keyboard usage of the integrated visualization and the keyboard usage of
CODESYS.

See also
● Ä Chapter 1.4.5.19.2.4 “Command 'Activate Keyboard Usage'” on page 1722
● Ä Chapter 1.4.5.19.1 “Keyboard Shortcuts for Default Keyboard Action” on page 1717

Numerical variable values, which are output within a text in an integrated visualization, are
displayed according to the current display format. You can select the display format with the
command “Debug è Display”.

Identifying Web-
Visu

Configuring and
starting display
variants

Restrictions in
the variable
output

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1357

See also
● Ä Chapter 1.4.1.20.3.7.24 “Command 'Display Mode' - 'Binary', 'Decimal', 'Hexadecimal'”

on page 1058

A variable value that is transferred via the data server is not output. The integrated visualization
only outputs the initialization or the last transferred value.
The integrated visualization thus only enables a passive observation of the application.

VAR_INPUT variables behave like integrated visualizations such as VAR_IN_OUT variables
during execution.

Only the following expressions, which are also used in the monitoring mechanism of the devel-
opment system, are supported in an integrated visualization.
Variable access:
● Example: PLC_PRG.myPou.nCounter
Array access:
● Access to an array of scalar data types, where a variable is used as an index

Example: a[i]
● Access to an array of complex data types (structure, function block, array), where a variable

is used as an index
Example: a[i].x

● Access to a multidimensional array of all kinds of data types with one or more variable
indices
Example: a[i, 1, j].x

● Access to an array with constant index
Example: a[3]

● Accesses like those described above in which simple operators are used for the calculations
inside the index brackets.
Example: a[i+3]

● Nested combinations of the complex expressions listed above
Example: a[i + 4 * j].aInner[j * 3].x

Operators in index calculations:
● +, -, *, /, MOD
Pointer monitoring:
● Example: p^.x
Methods and function calls are not supported with the exception of the following:
● Standard string functions
● Type conversion functions

Example: INT_TO_DWORD
● Operators such as SEL, MIN, etc.

When the input action “Execute ST-Code” is called, only a list of assignments is supported.
If a list of assignments is used, the value of the left-hand side is not assigned until the next
cycle. Processing in the next row immediately afterwards is not possible.

Data server
restrictions

Restrictions in
variable types

Restrictions in
expressions and
monitoring

Restrictions in
the input action
“Execute ST-
Code”

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1358

 PLC_PRG.n := 20 * PLC_PRG.m; // Don't use this!
 IF PLC_PRG.n < MAX_COUNT THEN
 PLC_PRG.n := PLC_PRG.n + 1;
 END_IF
 //Use the following!
 PLC_PRG.n := MIN(MAX_COUNT, PLC_PRG.n + 1);

Example

No interface (INTERFACE) may be declared in the interface editor of a visualization.

1.4.5.16.3 Configure File Transfer Mode
When downloading, usually files required by the visualization for displaying, are transmitted to
the respective display unit. These are especially image files or text list files.
Alternatively, you can configure,that the visualization accesses local files. So no files are trans-
ferred with a download
The following configuration is required to allow the visualization access to local files:
● The file paths for image files or text files lists are relative.
● The link type for image files is “Link to file”.

Requirement: You have opened a visualization project with a image pool.
1. Open the image pool.
2. Select for each image under “Link Type” the setting “Link to file”.

ð The image is linked.

3. Select the command “Project è Project Setting” and select the category “Visualization”.
4. Insert in tab “General” in “Image files” the local paths of the image files with relative path

names.

ð Example: .\;.\images\
Note: When no path is specifiet, the setting in dialog box “Options”, category
“Visualization”, tab “File Options” setting “Image files” is usesd.

5. Open the visualization manager.
6. Activate under “Extended settings” the option “Visible”.
7. Activate under “File Transfer Mode” the option “Use local visualization files”.

ð When downloading, no files are transferred. When displaying the visualization, the
local files are used.

See also
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777
● Ä Chapter 1.4.1.20.2.13 “Object 'Image Pool'” on page 873
● Ä Chapter 1.4.5.19.3.13 “Dialog 'Project Settings' - 'Visualization'” on page 1766
● Ä Chapter 1.4.5.19.3.9 “Dialog Box 'Options' - 'Visualization'” on page 1763

Restrictions in
the interface of
a visualization

Using local vis-
ualization files

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1359

1.4.5.17 Applying Visualization Styles
A visualization style is a collection of colors, fonts, images, and any values that are defined as
style properties. When designing a visualization element, you can use these style properties
only. The you have a uniform, style-dependent appearance.
An element that applies style colors and style fonts behaves according to the selected style
design in each selected style. In this way, a style property, such as Element basic color,
can be blue In one style and gray in another style. In contrast, if the color of an element has a
fixed value, this color is fixed even when the style is switched.
All applicable styles are consistent because they define a fixed set of style properties. There-
fore, you can switch smoothly between styles in order to customize your visualization. You can
preview a style to get an impression of how it behaves.
CODESYS provides different styles, for example the styles Flat style and White Style.

These provided styles are installed in the visualization style repository.
The selected style that applies to all visualizations in the application is set in the “Visualization
Manager” object (“Settings” tab, “Style Settings” group, “Selected style”). In addition, the
“Properties” view provides its style properties when designing an element. For each element,
you can assign these styles instead of fixed values.
The style is applied to all visualizations that are below an application. The settings of the
“Options - Visualization Styles” dialog are also considered for a library visualization or a visuali-
zation in the POUs view.
See also
● l Ä Chapter 1.4.5.19.3.11 “Dialog 'Project Environment' - 'Visualization Styles'”

on page 1765
● Ä Chapter 1.4.5.19.3.7 “Dialog 'Options' - 'Visualization Styles'” on page 1761
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777

The set style includes style properties. These are provided in the “Properties” view of an
element in the drop-down list of the “Value” column. It is checked which style properties are
appropriate for which property. For example, only style properties with color definitions are
available for a color assignment.

A style can have directly defined visualization element properties. If this style is
used in the project, then these properties are not configurable anymore.

Requirement: A project is open with a visualization.
1. Double-click the visualization.
2. Select an element.
3. Choose “View è Element Properties”.
4. Click in the input field of a color in the window “Properties” (category “Colors”).

ð The list box opens with style properties. The style colors are based on the currently
selected style.

5. Select a style property.

ð The visualization shows the element according to the style.

A visualization uses the style CompanyStyle8, which defines the colors CompanyRed,
CompanyBlue, and CompanyGreen. An element is selected in the visualization. You can
configure the element in the “Properties” view. By clicking into the value field of the “Color”
property, you receive a drop-down list with the entries CompanyRed, CompanyBlue, and
CompanyGreen.

Example

Designing visu-
alization ele-
ments with style
properties

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1360

When setting a style in the visualization manager, all complete styles in the repository are
available for selection. It does not matter and it is not evident if a style have been derived from
another style.
You can preview a style to get an impression of how it behaves.
How a visualization implements a style at runtime also depends on the display variant. For
example, if a font that is defined in the style is not available, the display variant shows the
visualization with a preset font.

Requirement: A project is open with a visualization.
1. Double-click the “Visualization Manager” object in the device tree.

ð The editor opens.

2. Click in the input field of “Selected style” (“Settings” tab, “Style Settings” group).

ð All styles that are installed in the repository are listed.

3. Mouse over a style.

ð A preview of how the style is displayed appears in a new window.

4. Select a style.

ð The style is applied. The preview in “Style Settings” shows the new setting.

5. Double-click a visualization.

ð The visualization appears in the new style.

Requirement: A project is open with a visualization.
1. Click “Project è Project Environment”, “Visualization Styles” tab.

ð CODESYS lists all new versions of the currently used styles.

2. Click “Set All to Newest”.

ð The style is updated. Visualizations and their elements apply the new style.

1.4.5.17.1 Editing visualization styles in the visualization style editor
A style is an XML file with the file extension *.visustyle.xml. It contains a specific set of
style properties. CODESYS checks the style properties in the consistency check.
You can create a new style or customize an existing style. The visualization style editor is
available for this.
If you customize a style, then a new style is created as a hierarchy of styles. A hierarchy con-
sists of at least two styles based on each other. The nesting depth is unrestricted. A hierarchy
is identified simply with its top derived style. You can derive multiple different styles from one
base style by extending the styles by differing style properties. This save memory and therefore
should be your preferred method.
A base style does not have to be consistent for itself. Instead, you must identify it as an
incomplete style. Only the top derived style must be consistent.

Switching visu-
alization styles

Updating ver-
sions

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1361

In a partial style, you can combine any style properties to form efficient hierarchies without
having to worry about consistency. For example, you can collect all image references into one
partial style. Then you derive the style and define more style properties for colors. This style is
also incomplete. You derive the style again and define more style properties for its fonts. The
top style is now completely.

● (1): CompanyImg is a partial style defining image references.
● (2): CompanyColor is a partial, derived style based on CompanyImg and also defines

colors.
● (3): PetrolStyle is a complete, derived style based on CompanyColor and also

defines a special color.
● (4): The hierarchy of styles comprises PetrolStyle, CompanyColor, and

CompanyImg.

Style
Petrostyle

Example of a
style hierarchy

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1362

In the visualization style editor, you can open a style, define its style properties, and localize its
name. If the style is consistent, then you can install it in the visualization style repository. The
editor is not integrated in CODESYS. However, you can start the editor in CODESYS.

A style property is an entry for a specific color, a specific font, or a specific image reference.
If this name contains a dash, then the Visualization Style Editor can sort the style properties by
the prefixed terms before the dash and display them in a hierarchy. Otherwise the names can
be sorted in alphabetical order or sequential order or in sequential order (as saved in the XML
file). CODESYS displays the style properties in the order of names actually saved in the XML
file for the style.
Example: Element-Alarm-Fill-Color

See also
● Ä Chapter 1.4.5.20.3 “Editor 'Visualization Style Editor'” on page 2128

1. Double-click the “Visualization Manager” object.

ð The editor opens.

2. Click the symbol (“Settings” tab, “Style Settings” group).
3. Click “Open Style Editor” from the drop-down list.

ð The “Visualization Style Editor” opens.

Choose “Visualization Styles Editor” from the CODESYS install folder in the Start menu. If
you have a standard installation, then this link is located in CODESYS (the program folder
for CODESYS).

ð The visualization style editor opens.

This is the recommended way to create a style that combines existing style
properties with new ones.

Requirement: CODESYS is open with a project containing a visualization.
1. Double-click the “Visualization Manager” object in the device tree.

ð The editor opens.

2. Click the symbol (“Settings” tab, “Style Settings” group).

ð A list of commands opens.

3. Choose “Create and Edit Derived Style”.

ð The visualization style editor starts and the “Create a New Visualization Style” dialog
box opens.

4. Type a name.

Names for style
properties

Starting the
editor in
CODESYS

Starting the
editor inde-
pendent of
CODESYS

Deriving visuali-
zation styles

Starting the
editor in
CODESYS and
deriving styles

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1363

5. Select a directory.
6. Select a base style. The default style is set in CODESYS. You can also select a style from

the repository.

ð The new style appears in the visualization style editor. The style properties from the
base style are displayed yellow.

7. Add a new style property or modify an existing value.
8. Provide a version for the style and click “File è Save and Install”.

ð The style is installed in the repository. The memory requirement is low because only
the style property added in step 7 is saved.

Requirement: CODESYS is open with a project containing a visualization.
1. Double-click the “Visualization Manager” object in the device tree.

ð The editor opens.

2. Click the symbol (“Settings” tab, “Style Settings” group).

ð A list of commands opens.

3. Choose “Copy and Edit Style”.

ð The visualization style editor starts and the “Open Existing Style as a Copy” dialog box
opens.

4. Select which style should be copied (“Style”).
5. Type a directory in "Destination" and click “OK”.

ð The new style appears in the visualization style editor. All style properties are identical
to those in the copied style.

6. Type a name.
7. Add a new style property or modify the value of an existing style property.
8. Provide a version for the style and click “File è Save and Install”.

ð The style is installed in the repository and the style properties are identical to the
added style property, except for the style property added in step 8. The memory
requirement is high because the common style properties are defined in both styles.

Requirement: CODESYS is open with a project containing a visualization.
1. Double-click the “Visualization Manager” object in the device tree.

ð The editor opens.

2. Click the symbol (“Settings” tab, “Style Settings” group).

ð A list of commands opens.

3. Click “Open Style Editor”.

ð The visualization style editor opens.

4. Click “File è New Style”.

ð The “Create a New Visualization Style” dialog box opens.

5. Type a name. Specify a base style.

Copying visuali-
zation styles

Creating new
visualization
styles

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1364

6. Specify a directory and click “OK” to close the dialog box.

ð The new style appears in the visualization style editor.

7. Add a new style property.
8. Provide a version for the style and click “File è Save and Install”.

ð The style is installed in the Visualization Styles Repository with the version number.

Using the visualization style editor, you can edit a style to save and install as a new version.

Requirement: The visualization style editor is open with a style.
1. Select a style property and click “Styles è New Style (Afterwards)” in the “Style

Properties” tab.

ð A new style property is added.

2. In the “General” tab, type a new version number in the “Version” setting.
3. Choose “File è Save and Install”.

ð The changes are saved and the style is installed in the repository as the new version.

You can assign a language-dependent name to a style property. CODESYS displays a style
property by its localized name, depending on the language settings in category “International
Settings” (menu “Tools è Options”).

Requirement: The visualization style editor is open with a style.
1. Translate the name of the style property into the localized language in the “Localization”

tab.
2. Provide a version for the file in the “General” tab.
3. Choose “Save and Install”.

ð The edited style is installed in the repository currently selected in CODESYS.

4. Update the style.
5. Set the language settings in CODESYS to the localized language.
6. Open a visualization and select an element. The style settings in its properties are dis-

played in the localized language.

1.4.5.17.2 Managing visualization styles in repositories
The styles that are listed in CODESYS in the drop-down lists of different dialogs and editors are
all checked for consistency and installed in the visualization style repository. For derived styles,
the hierarchy is checked completely and all styles of the hierarchy are installed. The repository
is a version control system within the development system.
You can open a style as write-protected from the visualization style repository in the visuali-
zation style editor. The “Save” and “Save and Install” commands are not available there for
read-only files. However, you can derive it as the basis for a new style or as a copy.
See also
● Ä Chapter 1.4.5.19.2.20 “Command 'Visualization Style Repository'” on page 1742
● Ä Chapter 1.4.5.20.3 “Editor 'Visualization Style Editor'” on page 2128

Adding a style
property

Localizing style
properties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1365

1. Click “Tools è Visualization Style Repository”.

ð The “Visualization Styles” dialog box opens.

2. Select the “System” repository in the drop-down list of “Storage location”.

ð All versions of the installed styles are listed in “Installed Visualization Styles”.

3. Click on the “Install” button.

ð The “Select Visualization style(s)” dialog box opens.

4. Select a style file and click “Open” to close the dialog box.

ð The style is installed in the “System” repository. It appears now in the tree view below
“Installed Visualization Styles”.

1. Click “Tools è Visualization Style Repository”.

ð The “Visualization Styles” dialog box opens.

2. Select a repository in the drop-down list of “Storage location”.

ð All versions of the installed styles are listed in “Installed Visualization Styles”.

3. Select a style there.
4. Click the “Uninstall” button.

ð The “Select Visualization Style(s)” dialog box opens.

1. Click “Tools è Visualization Style Repository”.

ð The “Visualization Styles” dialog box opens.

2. Click on the “Edit Locations” button.

ð The dialog makes it possible to manage other repositories.

1.4.5.18 Reference, Programming
1.4.5.18.1 Visualization Elements.. 1367
1.4.5.18.2 Placeholders with Format Definition in the Output Text................. 1708
1.4.5.18.3 Methods of the Dialog Manager.. 1714
1.4.5.18.4 Attribute 'VAR_IN_OUT_AS_POINTER'.. 1716
1.4.5.18.5 Attribute 'parameterstringof'... 1717

Installing styles
to repositories

Uninstalling
styles

Managing repo-
sitories

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1366

1.4.5.18.1 Visualization Elements
1.4.5.18.1.1 Visualization Element 'Rectangle', 'Rounded Rectangle', 'El-

lipse'... 1368
1.4.5.18.1.2 Visualization Element 'Line'.. 1380
1.4.5.18.1.3 Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'.......... 1392
1.4.5.18.1.4 Visualization Element 'Pie'.. 1405
1.4.5.18.1.5 Visualization Element 'Image'... 1418
1.4.5.18.1.6 Visualization Element 'Frame'.. 1432
1.4.5.18.1.7 Visualization Element 'Label'.. 1447
1.4.5.18.1.8 Visualization Element 'Combo Box, Integer'............................... 1451
1.4.5.18.1.9 Visualization Element 'Combo Box, Array'................................. 1458
1.4.5.18.1.10 Visualization Element 'Tabs'... 1463
1.4.5.18.1.11 Visualization Element 'Button'... 1468
1.4.5.18.1.12 Visualization Element 'Group Box'.. 1480
1.4.5.18.1.13 Visualization Element 'Table'.. 1485
1.4.5.18.1.14 Visualization Element 'Text Field'... 1492
1.4.5.18.1.15 Visualization Element 'Scroll Bar'... 1504
1.4.5.18.1.16 Visualization Element 'Slider'.. 1513
1.4.5.18.1.17 Visualization Element 'Spin Box'.. 1519
1.4.5.18.1.18 Visualization Element 'Invisible Input'....................................... 1526
1.4.5.18.1.19 Visualization Element 'Progress Bar'.. 1531
1.4.5.18.1.20 Visualization Element 'Check Box'... 1535
1.4.5.18.1.21 Visualization Element 'Radio Buttons'...................................... 1540
1.4.5.18.1.22 Visualization Element 'Alarm Table'.. 1545
1.4.5.18.1.23 Visualization Element 'Alarm Banner'....................................... 1554
1.4.5.18.1.24 Visualization Element 'Bar Display'.. 1560
1.4.5.18.1.25 Visualization Element 'Meter 90°'... 1566
1.4.5.18.1.26 Visualization Element 'Meter 180°'... 1573
1.4.5.18.1.27 Visualization Element 'Meter'.. 1580
1.4.5.18.1.28 Visualization Element 'Potentiometer'...................................... 1587
1.4.5.18.1.29 Visualization Element 'Histogram'.. 1595
1.4.5.18.1.30 Visualization Element 'Image Switcher'.................................... 1600
1.4.5.18.1.31 Visualization Element 'Lamp'.. 1605
1.4.5.18.1.32 Visualization Element 'Dip Switch', 'Power Switch', 'Push

Switch', 'Push Switch LED', 'Rocker Switch'............................. 1610
1.4.5.18.1.33 Visualization Element 'Rotary Switch'....................................... 1614
1.4.5.18.1.34 Visualization Element 'Trace'.. 1619
1.4.5.18.1.35 Visualization Element 'Trend'.. 1625
1.4.5.18.1.36 Visualization Element 'Legend'... 1633
1.4.5.18.1.37 Visualization Element 'ActiveX'... 1637
1.4.5.18.1.38 Visualization Element 'Web Browser'....................................... 1641
1.4.5.18.1.39 Visualization Element 'Busy Symbol, Cube'............................. 1645
1.4.5.18.1.40 Visualization Element 'Busy Symbol, Flower'........................... 1649
1.4.5.18.1.41 Visualization Element 'Text Editor'.. 1653
1.4.5.18.1.42 Visualization Element 'Path3D'... 1658
1.4.5.18.1.43 Visualization Element 'Control Panel'....................................... 1661
1.4.5.18.1.44 Visualization Element 'Cartesian XY Chart'.............................. 1675
1.4.5.18.1.45 Visualization Element 'Date Range Picker'............................... 1680
1.4.5.18.1.46 Visualization Element 'Time Range Picker'.............................. 1685

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1367

1.4.5.18.1.47 Visualization Element 'Date Picker'.. 1690
1.4.5.18.1.48 Visualization Element 'Analog Clock'.. 1696
1.4.5.18.1.49 Visualization Element 'Date/Time Picker'................................. 1703

Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'
Symbol:

Category: “Basic”

The “Rectangle”, “Rounded Rectangle”, and “Ellipse” are the same type of element. They can
be converted into another element type by changing the “Element type” property.

“Element name” Optional
Example: Werkstueck_3
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Rectangle”, “Rounded Rectangle”, “Ellipse”

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1368

“Angle” Static angle of rotation (in degrees)
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

Visible only when “Rounded Rectangle” is selected in the “Type of element” property.

“Radius” Rounding of the corners.
“From style”

“Relative to the element size”

“Explicit”: Allows for specifying a custom value in the “Value” setting.

“Value” Radius of the rounded corners (in pixels)
Example: 5
Requirement: “Explicit” is selected in the “Radius” setting.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Radius setting

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1369

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

“Use gradient color” : The element is displayed with a gradient of two colors.

“Gradient setting” The “Gradient editor” dialog box opens.

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 1430

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1370

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1373
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1371

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

You can link the variables to a unit conversion.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1372

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 1371

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1373

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1370
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1374

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1375

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1371

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1376

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

The properties contain IEC variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).

“Fill attributes” Variable (DWORD). Controls whether the fill color of the element is visible.
● Variable value = 0: Filled
● Variable value > 0: Invisible; no fill color

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible; no line

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 1382

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1377

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1378

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1379

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Line'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1380

Category: “Basic”

The element draws a simple line.

“Element name” Optional.
Example: Separator_Header
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Line”

The following properties define the position and length of the element in the visualization
window. These are based on the Cartesian coordinate system. The origin is located at the upper
left corner of the window. The positive horizontal x-axis runs to the right. The positive vertical
y-axis runs downwards.

“Dots” “[0]”: Coordinates of the starting point
“[1]”: Coordinate of the end point

You can also change the values by dragging the box symbols () to other
positions in the editor.

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.
Example:

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1381

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color of the line in normal state.
Please note that the normal state is in effect if the expression in the “Color
variables è Toggle color” property is not defined or it has the value FALSE.

“Alarm color” Color of the line in alarm state.
Please note that the alarm state is in effect if the expression in the “Color
variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 1430

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1382

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1385
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1383

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1384

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement point[0]”

● “X”
● “Y”

Variable (numeric data type). It contains the number (in pixels) that the starting
point of the line is moved.
Incrementing the X value moves the element to the right.
Incrementing the Y value moves the element to the down.

“Movement point[1]”

● “X”
● “Y”

Variable (numeric data type). It contains the number (in pixels) that the end point
of the line is moved.
Incrementing the X value moves the element to the right.
Incrementing the Y value moves the element to the down.

See also
● Ä “Element property 'Absolute movement'” on page 1383

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1383
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1385

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1386

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1383

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1387

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” ● Variable (DWORD) for the color
Example: PLC_PRG.dwColor

● Color literal
Example of gray and opaque: 16#FF888888

Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable in the alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1388

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

Dynamic definition of the weight of a line element using a variable.

“Integer value ” Variable (integer data type). Defines the line weight of the element (in pixels).
This overwrites the fixed value that is defined in “Appearance è Line weight”.
Note: The value 0 codes the same as 1 and sets the line weight to one pixel.

“Integer value ” Variable (integer data type). Defines the appearance of the line at runtime.
● 1: Solid
● 2: Dashes
● 3: Dots
● 4: Dash Dot
● 5: Dash Dot Dot
● 6: Invisible: The line is not drawn.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Line width
variable'

Element prop-
erty 'Line style
variable'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1389

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1390

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1391

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1392

Category: “Basic”

The “Polygon”, “Polyline”, and “Bézier Curve” are the same element type. They can be con-
verted into another type by changing the “Element type” property.
Elements can be dragged to the editor. The element is then drawn with five points: [0] to [4].
Other positions are added as follows: Move the mouse pointer over a corner point; the mouse
pointer changes shape. Now if you press and hold [Ctrl] and click the left mouse button, another
point is created. You can delete a point by pressing and holding [Shift]+[Ctrl] and click the
selected point.
As an alternative, you can select the element in the toolbox area and in the editor click multiple
times. At the same time, a connecting line is drawn from one point to the other. End by
double-clicking the element or right-clicking it one time.

“Element name” Optional.
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Werkstueck_1

“Type of element” ● “Polygon”
● “Polyline”
● “Bézier Curve”

The following properties define the position of the corner points in the visualization window.
These are based on the Cartesian coordinate system. The origin is located at the upper left
corner of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis
runs downwards.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1393

“Dots” [0]..[n]: Coordinates of the corner points
Specified in pixels

You can also change the values by dragging the box symbols () to other
positions in the editor.

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

“Use gradient color” : The element is displayed with a gradient of two colors.

“Gradient setting” The “Gradient editor” dialog box opens.

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1394

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 1430

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1395

See also
● Ä “Element property 'Text variables'” on page 1398
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1396

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

You can link the variables to a unit conversion.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1397

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

“Array of points” Variable (POINTER TO). Points to an array of the structure
VisuElems.VisuStructPoint. The elements iX and iY of
VisuStructPoint contain the xy-coordinates of a point The current number of
array elements implicitly contains the variable in the property “Number of points”.
The variable that is assigned to the property “Number of points” contains the
number of array elements and therefore the number of corner points.
Example: pPoints : POINTER TO ARRAY[0..100] OF
VisuElems.VisuStructPoint;

“Number of points” Variable (integer data type): Contains the number of array elements and there-
fore the number of corner points for displaying the element.
Example: PLC_PRG.iNumberOfPoints := 24;
In the example, the element has 24 points. This definition is necessary because
the individual points are defined by a pointer and this does not allow control over
the number of points.
Note: In this way, it is possible to adapt the display of the element dynamically by
updating the number of corner points.

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1395
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Element prop-
erty 'Dynamic
points'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1398

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1399

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1396

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1400

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1401

The properties contain IEC variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).

“Fill attributes” Variable (DWORD). Controls whether the fill color of the element is visible.
● Variable value = 0: Filled
● Variable value > 0: Invisible; no fill color

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible; no line

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 1423

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1402

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1403

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1404

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Pie'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1405

Category: “Basic”

The element draws a pie of any angle.

“Element name” Example: Error_rate_part_1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Pie”

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1406

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Begin” Start angle of the pie. If you also define a variable
for the start, then the start angle is calculated from
the sum of the values for “Begin” and “Variable for
begin”.

Example:
● “Begin”: 330
● “End”: 90

“End” End angle of the pie. If you also define a variable
for the end, then the end angle is calculated from
the sum of the values for “End” and “Variable for
end”.
The pie is drawn clockwise from the start angle to
the end angle.

“Variable for begin” The start of the sector is defined dynamically by a variable.

“Variable for end” The end of the sector is defined dynamically by a variable.

“Only show circle
line”

: The pie is drawn without the radius line or filling color.

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1407

“X” Display of the center coordinates. You cannot modify these values here in the
properties.
If the Pie is selected in the editor, then the center of the Pie (as well as the
center of the enveloping box) is visualized with the symbol . Moreover, the
element is decorated with a position, begin, and end boxes that you can move.

The center coordinates change when you move the center symbol in the
editor. This also changes the size of the Pie so that the position box retains its
position and the center remains in the middle of the element.

“Y”

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

“Use gradient color” : The element is displayed with a gradient of two colors.

“Gradient setting” The “Gradient editor” dialog box opens.

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748

The properties contain fixed values for setting the look of the element.

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1408

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 1430

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1411
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1409

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (integer data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (integer data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1410

“Interior rotation” Variable (integer data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
If a static angle of rotation is specified in “Position
è Angle”, then the static angle of rotation and the
angle of rotation are added.

You can link the variables to a unit conversion.

The “X”, “Y”, and “Interior rotation” properties are supported by the "Client
Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1409
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1411

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1412

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1409

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1413

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1414

The properties contain IEC variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).

“Fill attributes” Variable (DWORD). Controls whether the fill color of the element is visible.
● Variable value = 0: Filled
● Variable value > 0: Invisible; no fill color

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible; no line

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 1423

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1415

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1416

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1417

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Image'
Symbol:

Category: “Basic”

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1418

The element adds an image to the visualization. The displayed image is managed in the image
pool and referenced in the visualization element by means of a static ID. You can also change
the displayed image dynamically by using a variable instead of the static ID.

With the “Background” command, you can define a background for the entire
visualization.

Directories that contain the images for use in visualizations can be defined in
the project settings (category “Visualization”).

“Element name” Example: Status bar
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Image”

“Static ID” Identifier of the image file for a static assignment
ID of the image file on, as it is defined in the corresponding image pool. If
the image is not included in the global image pool in the POU view, then the
instance path must be specified. Then the name of the image pool is preceded
to make the entry unique. Example: imagepool2.button_image.

When a new ID is specified, a file selection dialog opens. The selected file is
saved to the “GlobalImagePool”.
See also: Help for the “Image Pool” object.

“Show frame” : The image file is displayed with a frame.

“Clipping” Requirement: The “Scaling type” property is “Fixed”.

: Only part of the visualization is displayed that fits in the element frame.

“Transparent” : The image pixels that have the “Transparent color” are displayed as trans-
parent.

“Transparent color” Effective only if the “Transparent” option is activated.

The button opens the color selection dialog. This is where you select the
transparent color.

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1419

“Scaling type” Definition of how an image fits in the element frame.
● “Isotropic”: The entire image is displayed in the element frame, either larger

or smaller. As a result, the proportion of height and width are retained.
If the alignment of the elements to each other should also be retained
within a scaled frame element, then note the following. Unwanted horizontal
or vertical offsets can be prevented by setting the properties “Horizontal
alignment” and “Vertical alignment” to “Centered”. The alignment of the ele-
ments is retained and there are no resulting horizontal or vertical offsets.
Example: A lamp is centered above a switch. The lamp should remain in the
horizontally centered position, even if the frame is resized.

● “Anisotropic”: The image resizes automatically to the dimensions of the ele-
ment frame, filling the entire element frame. As a result, the proportions are
not retained.

● “Fixed”: The image retains its original size, even if the element frame is
resized. Note also that the “Clipping” option is selected.
For each reassignment of an image ID, the element size is adapted automat-
ically to the image size.

“Horizontal alignment” Horizontal alignment of the element within the element frame:
● “Left”
● “Centered”
● “Right”

Requirement: The scaling type of the image is “Isotropic” or “Fixed”.
Note: If the visualization is referenced, then the horizontal alignment takes effect
within the frame position.

: The “Variable” property is shown below this.

“Variable” Enumeration variable (ENUM
VisuElemBase.VisuEnumVerticalAlignment). Contains the horizontal
alignment.
Example: PLC_PRG.eHorizontalAlignment

“Vertical alignment” Vertical alignment of the element within the element frame:
● “Top”
● “Centered”
● “Bottom”

Requirement: The scaling type of the image is “Isotropic” or “Fixed”.
Note: If the visualization is referenced, then the horizontal alignment takes effect
within the frame position.

: The “Variable” property is shown below this.

“Variable” Enumeration variable (ENUM
VisuElemBase.VisuEnumVerticalAlignment). Contains the vertical align-
ment.
Example: PLC_PRG.eVerticalAlignment

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1420

A valid declaration is required for the variables used as an example in the table above.

TYPE VisuElemBase.VisuEnumHorizontalAlignment
 LEFT
 HCENTER
 RIGHT
END_TYPE

TYPE VisuElemBase.VisuEnumVerticalAlignment
 DOWN
 VCENTER
 BOTTOM
END_TYPE

PROGRAM PLC_PRG
VAR
 eHorizontalAlignment :
VisuElemBase.VisuEnumHorizontalAlignment :=
VisuElemBase.VisuEnumHorizontalAlignment.HCENTER;
 eVerticalAlignment : VisuElemBase.VisuEnumVerticalAlignment :=
VisuElemBase.VisuEnumVerticalAlignment.VCENTER;
END_VAR

Example
Enumeration

Declaration

See also
● Object 'Image Pool'

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1421

ms-its:codesys.chm::/_cds_obj_image_pool.htm

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color for the frame
Requirement: “Show frame” property is activated.
Please note that the normal state is in effect if the expression in the “Color
variables è Toggle color” property is not defined or it has the value FALSE.

“Alarm color” Color for the frame in alarm state
Requirement: “Show frame” property is activated.
Please note that the alarm state is in effect if the expression in the “Color
variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1422

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 1430

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1426
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1423

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

“Image ID” Variable (STRING). Contains the image ID. The contents of the string corre-
sponds to the description of the “Static ID” property.
Example: PLC_PRG.stImageID := 'ImagePool_A.Image3';

See also
● Ä Chapter 1.4.5.19.5.5 “Visualization Element 'Image'” on page 1842
● Ä Chapter 1.4.1.20.2.13 “Object 'Image Pool'” on page 873

You can use this element property for animating a series of image files.

“Bitmap version” Variable (integer data type). Contains the version of the image.
If the variable changes, then the visualization re-reads the image referenced in
the “Image ID” property and displays it.
The visualization displays animations when the image file on the controller is
updated continuously, thus incrementing the version variable. The application
must be programmed for this.
Possible applications
● Displaying graphics that are generated by the application
● Displaying images that are refreshed by a camera

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Image ID
variable'

Element prop-
erty 'Dynamic
image'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1424

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1425

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 1396

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1423
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1426

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1427

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1423

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1428

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” Color variable for the frame
● Variable (DWORD) for the color

Example: PLC_PRG.dwColor
● Color literal

Example of gray and opaque: 16#FF888888
Requirement: “Show frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable for the frame in alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1429

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777

The properties contain variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible: The line is not drawn.

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 1423

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1430

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
User input is a user event from the perspective of the element.

The “Configure” button opens the “Input configuration” dialog box for creating or modifying a user input configura-
tion.
A configuration contains one or more input actions for the respective input event. Existing input actions are
displayed below it.

Example: “Execute ST code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog box.

“OnMouseClick” Input event: A user clicks the element completely. The mouse button is clicked
and released.

“OnMouseDown” Input event: A user clicks down on the element only.

“OnMouseEnter” Input event: A user drags the mouse pointer to the element.

“OnMouseLeave” Input event: A user drags the mouse pointer away from the element.

“OnMouseMove” Input event: A user moves the mouse pointer over the element area.

“OnMouseUp” Input event: The user releases the mouse button over the element area.

See also
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1431

“Hotkeys” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Event(s)”
property are triggered.

“Key” Key pressed for input action.
Example: [T]

“Event(s)” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed in the “Keyboard configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Project Settings - Visualization
● Ä Chapter 1.4.5.19.2.10 “Command 'Background'” on page 1728
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Frame'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1432

ms-its:codesys.chm::/_cds_dlg_project_settings_visualization.htm

Category: “Basic”

The element serves as a frame in which to display one or more already existing visualizations.
You get a structured user interface. The size of the frame can be fixed or scaled. The display
area of the referenced visualization then adapts itself to the frame size.

“Element name” Example: refVisUserInfo
“Type of element” “Frame”

“Clipping” : Fixed size. Only that part of the referenced visualization that fits inside the
frame is displayed.
Requirement: The “Scaling type” property is “Fixed”.

“Show frame” Displays the frame
● “No frame”: The displayed area of the frame does not have borders.
● “Frame”: The displayed area of the frame has borders.
● “No frame with offset”: The displayed area of the frame does not have a

border and the displayed area of the referenced visualization is reduced
inwards by one pixel as compared to the frame area. The gap prevents the
referenced visualization from touching any adjacent elements.

“Scaling type” The method with which the height and width of the referenced visualization are
scaled.
● “Isotropic”: The visualization is scaled to the size of the element. The visuali-

zation retains its proportions with a fixed height/width ratio.
● “Anisotropic”: The visualization is scaled to the size of the element. The

height and width are adapted to the element independently of each other.
● “Fixed”: the visualization is displayed in its original size without taking into

account the size of the element.
● “Fixed and scrollable”: The visualization is displayed fixed in the element. If it

is larger than the element, the element will be provided with scrollbars.
Please note: assign variables to the properties “Scroll position variable
horizontal” or “Scroll position variable vertical”. You can then edit the data
of the scrollbar position in the application.

The properties contain variables for the position of the scrollboxes in the scrollbars. You can
then edit the data of the scrollbox position in the application.

Element proper-
ties

Element proper-
ties 'Scrollbar
settings'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1433

Requirement: the property “Scaling type” is “fixed and scrollable”.

“Scroll position variable
horizontal”

Variable (integer data type, also as array). Contains the position of the horizontal
or vertical scrollbox. The array contains the position for every display variant. If
the visualization runs on several display variants, then the position changes are
decoupled from each other.
Example:
PLC_PRG.iScrollHor[CURRENTCLIENTID]
PLC_PRG.iScrollVer[CURRENTCLIENTID]
The variable is declared as an array in the example.
iScrollHor: ARRAY[0..20] OF INT;
iScrollVer: ARRAY[0..20] OF INT;
CURRENTCLIENTID indexes the current display variant.

“Scroll position variable
vertical”

You can combine the variables with a unit conversion.

See also
● Unit conversion

“Deactivation of the
background character”

: The background is drawn. The non-animated element of the referenced visu-
alization is drawn as a background bitmap in order to optimize the performance
of the visualization.
Consequence: Elements can be displayed in an unexpected order at runtime.
For example, an animated element can push itself behind the Frame at runtime.

: Background character is deactivated in order to avoid the behavior described
above.

Contains the currently configured visualization references as a subnode

“References” Clicking “Configure” opens the “Frame Configuration” dialog. This is used to
manage the referenced visualizations.
Caution: Visualizations can be nested at any depth by means of Frame ele-
ments. In order to use the “Switch to any visualization” Frame selection type
without any problems, a Frame must not contain more than 21 referenced
visualizations. For more information, see also the description for the “Input
configuration” of an element: Action “Switch Frame visualization”.

List of the currently referenced
visualizations

Visualizations that have a button also have this displayed as a subnode. Each
interface variable is listed with the currently assigned transfer parameters.
Example:
vis_FormA
● iDataToDisplay_1 : PLC_PRG.iVar1
● iDataToDisplay_2 : PLC_PRG.iVar2
Hint: You can change the assignment of the variables to an interface variable
here and edit the value field. Or click the “Configure” button instead.

Element prop-
erty 'Referen-
ces'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1434

ms-its:codesys.chm::/_cds_unit_conversion.htm

See also
● Ä Chapter 1.4.5.19.2.1 “Command 'Interface Editor'” on page 1719
● Ä Chapter 1.4.5.15 “Creating a structured user interface” on page 1321
● Ä “Input action 'Switch Frame Visualization'” on page 1756

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the colors.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1435

“Color” Color of the frame

: Selection list with style colors appears

: Standard dialog “Color” opens for selecting a color.
Please note: the normal state is when the boolean variable in the property “Color
variables è Toggle color” is not defined or its value is FALSE.

“Alarm color” Color with which the element is filled during the alarm state.
Please note: Alarm state is when the value of the boolean variable in the prop-
erty “Color variables è Toggle color” is FALSE.

“Transparency” Integer number (value range from 255 to 0). Specifies the transparency of the
associated color.
255: The color is opaque.

0: The color is fully transparent.

Please note: If the color is a style color and already contains a transparency
value, then this property is write-protected.

See also
● Ä Chapter 1.4.5.3.3 “Assigning a color” on page 1258

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 1443

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1436

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1439
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1437

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

Element prop-
erty 'Relative
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1438

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 1396

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1436
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

Element prop-
erty 'Text varia-
bles'

Element prop-
erty 'Dynamic
texts'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1439

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1440

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1437

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1441

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” Color variable for the Frame
● Variable (DWORD) for the color

Example: PLC_PRG.dwColor
● Color literal

Example of gray and opaque: 16#FF888888
Requirement: “Show Frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable for the Frame in alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1442

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777

The properties contain variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible: The line is not drawn.

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 1436

The variable controls the switching of the referenced visualizations. This variable indexes one
of the referenced frame visualizations and this is displayed in the frame. When the value of the
variable changes, it switches to the recently indexed visualization.

“Variable” ● Variable (integer data type) that contains the index of the active visualization
Example: PLC_PRG.uiIndexVisu
Hint: The “Frame Configuration” dialog includes a list of referenced visualiza-
tions. The visualizations are automatically numerically indexed via the order
in the list.
Note: This variant of switching usually affects all connected display variants.

● Array element (integer data type) for index access via CURRENTCLIENTID
Example: PLC_PRG.aIndexVisu[CURRENTCLIENTID]
Note: This variant of switching applies to the current client only, and there-
fore only on one display variant. That is the display variant where the value
change was triggered (for example, by means of user input).

See also
● Ä Chapter 1.4.5.19.2.9 “Command 'Frame Selection'” on page 1727

The variables control the element behavior dynamically.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'Switch
frame variable'

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1443

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1444

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1445

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1446

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.15 “Creating a structured user interface” on page 1321
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Visualization Element 'Label'
Symbol:

Category: “Common Controls”

The element is used to label visualizations.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Header_Parameter

“Type of element” “Label”

The property requires a character string.
This text is entered automatically into the GlobalTextList text list and can be localized there.

“Text” Character string (without single straight quotation marks)
Example: Main page

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Texts'

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1447

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1448

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1449

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1450

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Combo Box, Integer'
Symbol:

Category: “Common Controls”

The element shows values as a list box. When the user clicks an entry, the ID of the entry is
written to an integer variable. The entries in the list box can be from a list and contain images
from an image pool.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1451

“Element name” Example: List of product numbers
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Combo Box, Integer”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1452

“Variable” At runtime, the text list ID of the list entry that the user clicks is saved at runtime.
If only one image pool is displayed, then the image ID is saved.
Property value
● Variable (integer data type)

Example: PLC_PRG.iIDComboboxEntry
● Enumeration variable with text list support

Example: PLC_PRG.eMyCombobox<COMBO>
“Text List” Displayed as a combo box. Every text list entry becomes a combo box entry.

Note: A maximum of 32766 entries can be displayed.
Transfer value
● Text list identifier as string

Example: 'TextList_A'
Note: The IDs of the text list have to be within the range of values of DWORD
or DINT.

● Blank
– When an enumeration variable with text list support is specified in the

“Variable” property
– When only one image pool is displayed

“Image Pool” Displayed as a combo box. Every image in the image pool becomes a combo
box entry.
Example: 'ImagePool_A'

See also
● Enumerations
● Ä Chapter 1.4.5.6 “Setting Up Multiple Languages” on page 1286

Displayed list that expands when a visualization user clicks into the element.

“Number of rows setting” ● “From style”:
● “Explicit”: Then the “Number of visible rows” property appears below it.

“Number of visible rows” Number of visible lines of the combo box drop-down list defined here
● Integer literal

Example: 5
● Variable (integer data type)

Example: PLC_PRG.iNumberOfVisibleRows
Note: The property is available when the “Number of rows setting” property is set
to “Explicit”.

“Row height” ● “From style”:
● Literal

Example: 20
“Height of image” Image height (in pixels) of the image displayed in the drop-down list entry

● “From style”:
● Integer literal

Example: 30
Note: Images are displayed only when a value is specified in the “Image pool”
property.

Element prop-
erty 'Settings of
the list'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1453

ms-its:codesys.chm::/_cds_datatype_enum.htm

“Width of image” Image width (in pixels) of the image displayed in the drop-down list entry
● “From style”:
● Literal

Example: 30
Note: Images are displayed only when a value is specified in the “Image pool”
property.

“Offset of image” Makes the images in the selection list appear offset (in pixels) from the left
margin. An offset of 0 means that the images are displayed directly on the
margin.
● “From style”:
● Literal

Example: 4
Note: Images are displayed only when a value is specified in the “Image pool”
property.

“Scrollbar size” Size of the scrollbar (in pixels). The scrollbar is displayed when more entries are
specified in the drop-down list than in “Number of visible rows”.
Default: 20

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element in runtime mode
Example: Products of customer A
Hint: The text is accepted automatically into the “GlobalTextList” text list and can
be localized there.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

“Limit valuerange” Limits the text list to one subrange. This subrange is displayed by the combo
box.
Requirement: A value is specified in the “Text list” property.

: Only the subrange that is defined by the “Minimum value” “Maximum value”
properties is displayed as a drop-down list.

“Minimum value” ID of the text list entry from which a combo box entry is displayed
● Literal (ANY_NUM)

Example: 5
● Variable (integer data type)

Example: PLC_PRG.iFirstEntry

Element prop-
erty 'Texts'

Element prop-
erty 'Value
range'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1454

“Maximum value” ID of the text list entry up to which combo box entries are displayed
● Literal (ANY_NUM)

Example: 10
● Variable (integer data type)

Example: PLC_PRG.iLastEntry
“Filter missing textentries” : Text list is refreshed and any unused texts (IDs) are removed.

Requirement: A value is specified in the “Text list” property.

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1455

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1456

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1457

Visualization Element 'Combo Box, Array'
Symbol:

Category: “Common Controls”

The element shows values of an array as a list box. When the visualization user clicks an entry,
the array index of the entry is written to an integer variable.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: List_Product_Number

“Type of element” “Combo Box, Array”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1458

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” The array index of the list entry that the user clicks is saved at runtime.
Property value
● Variable (integer data type)

Example: PLC_PRG.iIndexComboboxEntry
● Enumeration variable with text list support

Example: PLC_PRG.eMyCombobox<COMBO>
Note: Value range of the enumeration value that lies within the DWORD or
DINT value range

“Data array” Displayed as a combo box. Every array component becomes a combo box entry.
Property value
● Array variable (ARRAY[...] OF)

Example: PLC_PRG.astrCombobox
Declaration: astrCombobox : ARRAY[0..4] OF STRING :=
['First', 'Second', 'Third', 'Fourth'];

See also
● Enumerations
● Ä Chapter 1.4.5.6 “Setting Up Multiple Languages” on page 1286

The "Combo box – Array" element visualizes an array variable or structure variable in a tabular
view. The index of array elements or structure members is shown in a column or row. Two-
dimensional arrays or structure arrays are shown in several columns. You specify the visualized
variable in the “Data array” property. If a variable is assigned there, then you can specify the
display of the table columns where the array elements are shown. You can customize each
column that is assigned to an index [<n>].

“Columns”

● [<n>]
Due to the structure of the variable that is defined in “Data array”, CODESYS
determines the number of columns and defines them with the index <n>.
Example: StringTable : ARRAY [0..2, 0..4] OF STRING :=
['BMW','Audi','Mercedes','VW','Fiat',
'150','150','150','150','100','blue','gray','silver','blue'
,'red'];: three columns are formed [0], [1] and [2].

“Max. array index” Optional. Variable (integer data type) or value. Defines up to which array index
the data is displayed.

“Row height” Height of the rows (in pixels).

“Number visible rows” Optional. If the array is larger than the number of visible rows, then a scrollbar is
included.

“Scrollbar size” Width of the vertical scrollbar (in pixels).

Element prop-
erty 'Columns'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1459

ms-its:codesys.chm::/_cds_datatype_enum.htm

Table 270: “Element property 'Columns: Column [<n>]'”
“Width” Column width (in pixels).

“Image column” : Images can be displayed in the column. Images are used from the global
image pool or user-defined image pools. The image IDs are shown in the cells of
the table as defined in the image pool.

“Image configuration”

“Fill mode” ● “Fill cell”
The image resizes to the dimensions of the cell without fixing the height/
width ratio.

● “Centered”
The image is centered in the cell and retains its proportions (height-width
ratio).

“Transparency” : The color that is specified in “Transparent color” is displayed as transparent.

“Transparent color” When the “Transparent” property is enabled, the color specified here is not
displayed. Pixels with this color are transparent.

“Text alignment in column” ● “Left”
● “Centered”
● “Right”

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element in runtime mode
Example: Products of customer A
Hint: The text is accepted automatically into the “GlobalTextList” text list and can
be localized there.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Font” Example: “Default”

: The “Font” dialog opens.

: List box with style fonts

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1460

“Font color” Example: “Black”

: The “Color” dialog opens.

: List box with style colors

“Transparency” Integer (value range from 0 to 255). This determines the transparency of the
respective color.
255: The color is opaque.

0: The color is completely transparent.

Note: If the color is a style color and already has a transparency value, then this
property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1461

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1462

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Tabs'
Symbol:

Category: “Common Controls”

The element displays selected visualizations in tabs. The tabs can be used by means of the tab
header without having to configure an input configuration. A visualization user switches between
visualizations by clicking the tab header.

“Element name” Example: Assembly A
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Tabs”

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1463

“Tab width” Width of the tab (in pixels). If there is not space for all tab headers, then a scroll
bar is added.
Example: 30

“Tab height” Height of the tab (in pixels)
● Integer literal

Example: 15
● “From style”

“Scaling type” The method with which the height and width of the referenced visualization are
scaled.
● “Isotropic”: The visualization is scaled to the size of the element. The visuali-

zation retains its proportions with a fixed height/width ratio.
● “Anisotropic”: The visualization is scaled to the size of the element. The

height and width are adapted to the element independently of each other.
● “Fixed”: the visualization is displayed in its original size without taking into

account the size of the element.
● “Fixed and scrollable”: The visualization is displayed fixed in the element. If it

is larger than the element, the element will be provided with scrollbars.
Please note: assign variables to the properties “Scroll position variable
horizontal” or “Scroll position variable vertical”. You can then edit the data
of the scrollbar position in the application.

“Deactivate background
drawing”

: The non-animated elements of the referenced visualization are displayed as
background images in order to optimize the performance of the visualization.
Result: At runtime, the elements can be displayed in any order, for example
when an element moves behind the frame at runtime.

: Deactivates the background display in order to prevent the behavior
described above
The property is not available for the following settings:
● The “Scaling type” property is set to “Fixed and scrollable”
● The client animation functionality is enabled.

The properties include variables for the position of the scroll boxes in the scroll bars. You can
process the data for the scroll box position in the application.

Requirement: The “Scaling type” property is “Fixed and scrollable”.

“Scroll position variable
horizontal”

Variable (integer data type, also array). Includes the position of the horizontal or
vertical scroll box. The array contains the position for each display variant. If the
visualization is running on multiple display variants, then the position changes
are disconnected from each other.
Example:
PLC_PRG.iScrollHor[CURRENTCLIENTID]
PLC_PRG.iScrollVer[CURRENTCLIENTID]
In this example, the variable is declared as an array:
iScrollHor: ARRAY[0..20] OF INT;
iScrollVer: ARRAY[0..20] OF INT;
CURRENTCLIENTID indicates the current display variant.

“Scroll position variable,
vertical”

Element prop-
erty 'Scroll bar
settings'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1464

See also
● Unit conversion

“References” Clicking “Configure” opens the “Frame Configuration” dialog. You can select an
existing visualization there.
Selected visualization references are shown in the properties.
Selected visualization references are listed here as subordinate properties.

Name pf the visualization refer-
ence (example: PLC_PRG.S1)

“Heading” Tab caption (example: Panel)

“Image ID” Image ID in the theme <image pool name>.<ID>
Example: Imagepool_A.1 for the image with ID 1 in Imagepool_A

Interface parameter of the visu-
alization reference
Example: iX

If the visualization has an interface, then their parameters are displayed here as
subordinate properties.
Variable (data type conforms to data type of the interface parameter). Includes
the initialization value for the instantiation of the visualization.

See also
● Ä Chapter 1.4.5.15 “Creating a structured user interface” on page 1321
● Ä Chapter 1.4.5.19.2.1 “Command 'Interface Editor'” on page 1719
● Ä Chapter 1.4.5.19.2.9 “Command 'Frame Selection'” on page 1727

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

Element prop-
erty 'Referen-
ces'

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1465

ms-its:codesys.chm::/_cds_unit_conversion.htm

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable (integer data type). Specifies the index of the active visualization.
Example: PLC_PRG.uiActiveVisuID.

Tip: The “Frame Configuration” dialog box includes a list of selected visualiza-
tions. The visualizations are ordered automatically in numeric order in the list.

See also
● Ä Chapter 1.4.5.19.2.9 “Command 'Frame Selection'” on page 1727

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Center'

Element prop-
erty 'Switch
frame variable'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1466

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1467

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Button'
Symbol:

Category: “Common Controls”

The element triggers an action, such as setting a variable.

Element proper-
ties

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1468

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Voltage_on

“Type of element” “Button”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1469

“Color” Color for the element in its normal state.
Please note that the normal state is in effect if the expression in the “Color
variables è Toggle color” property is not defined or it has the value FALSE.

“Alarm color” Color for the element in alarm state.
Please note that the alarm state is in effect if the expression in the “Color
variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

“Use gradient color” : The element is displayed with a color gradient.

“Gradient setting” The “Color gradient editor” dialog box opens.

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

“Static ID” Reference to an image in an image pool of the format <name of image
pool>.<image ID> (example: image_pool.GreenButton).

If the image is from the “GlobalImagePool”, then you can omit the name of the
image pool because CODESYS always searches this pool first.

: The “Input Assistant” dialog box opens and lists all available image pools
and images in the entire project.

“Scale type” Behavior of the image when resizing the button.
● “Isotropic”: The image retains its proportions. The ratio of height to width is

retained, even if you change the height or width of the button separately.
● “Anisotropic”: The image resizes to the dimensions of the button.
● “Fixed”: The image retains its original size, even if you change the size of the

button.

“Transparency” The visualization displays the image with the transparency color that is selected
in “Transparency color”.

“Transparency color” Color that is transparent in the image (example: “White”). if the image back-
ground that is reference by “Static ID” is white, then this background is displayed
transparent. Clicking opens a color selection dialog.
Requirement: The “Transparency” option is activated.

“Horizontal alignment” Horizontal alignment of the image
● “Left”
● “Centered”
● “Right”

“Vertical alignment” Vertical alignment of the image
● “Top”
● “Centered”
● “Bottom”

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.

Element prop-
erty 'Image'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1470

CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1473
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1471

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

Element prop-
erty 'Relative
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1472

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 1396

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1470
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

Element prop-
erty 'Text varia-
bles'

Element prop-
erty 'Dynamic
texts'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1473

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1474

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1471

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1475

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” Color variable for the Frame
● Variable (DWORD) for the color

Example: PLC_PRG.dwColor
● Color literal

Example of gray and opaque: 16#FF888888
Requirement: “Show Frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable for the Frame in alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1476

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

“Digital variable” At runtime, the property controls whether the Button is displayed as pressed or
not.
Values:
● FALSE: The Button is displayed as not pressed.
● TRUE: The Button is displayed as pressed.

Argument passed to the property:
● Placeholder for the user input variable to couple the representation of the

Button with the input variable.
– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

Note: Specify a variable for the mouse events “Tap” or “Toggle” in the input
configuration of the Button. Only then is the placeholder set. If you configure
a variable in both “Toggle” and “Tap”, then the variable specified in “Tap” is
used.
Hint: Click the symbol to insert the placeholder “<toggle/tap variable>”.
When you activate the “Inputconfiguration”, “Tap FALSE” property, then the
“<NOT toggle/tap variable>” placeholder is displayed.

● Instance path of a project variable (BOOL)
Example: prgA.xButtonState
Note: Implement a value assignment in the code for the variable specified
here.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Button
state variable'

Element prop-
erty 'Image ID
variable'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1477

“Image ID” Variable (STRING). Contains the image ID. The contents of the string corre-
sponds to the description of the “Static ID” property.
Example: PLC_PRG.stImageID := 'ImagePool_A.Image3';

See also
● Ä Chapter 1.4.5.18.1.5 “Visualization Element 'Image'” on page 1418
● Ä Chapter 1.4.1.20.2.13 “Object 'Image Pool'” on page 873

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1478

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1479

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Group Box'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1480

Category: “Common Controls”

The element provides a visual grouping of visualization elements. The group box can have
multiple levels of nesting.

You can also use drag&drop to add elements to a “Group Box”. To do this, drag
the element to the window area of the “Group Box”. The appearance of the
cursor changes (a small plus sign is displayed). When you click the [Shift] key at
the same time, the element is not added.

You can remove elements from the “Group Box” by dragging them out of the
window area.

“Element name” Example: Parameter axis 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Group Box”

“Clipping” : Elements that protrude beyond the size of the group box are clipped.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1481

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contains character strings for labeling the element.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element.
Example: Axis 1.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Parameters of Axis 1.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for the text properties.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1482

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1483

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1484

Visualization Element 'Table'
Symbol:

Category: “Common Controls”

The element displays data that can be represented as an array in a table. Therefore, the data
type of the visualizing variable can be 1) a one-dimensional array, 2) a maximum two-dimen-
sional array, 3) an array of an array, 4) an array of structures, or 5) an array of a function block.

“Element name” Example: Data set component 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” Table

“Data array” Array whose data is visualized as a table
Variable (ARRAY) whose data type determines the number of columns and rows
in the table
Array types
● One-dimensional array: The table has one column.
● Two-dimensional array: The second dimension determines the number of

columns.
● Array of an array: The number of array elements of the back array deter-

mines the number of columns.
● Array of a structure: The number of structure members determines the

number of columns.
● Array of a function block: The number of local variables determines the

number of columns.
Example: PLC_PRG.aiTable
Declaration: aiTable : ARRAY[0..3, 0..4] OF INT := [4(1, 2, 3,
4, 5)];
Hint: If the declaration of the array changes, then the table can be refreshed by
placing the cursor in the data array value field and pressing the [Enter] key.

“Max. array index” Top index limit for the displayed table. Limits the number of displayed rows. The
index begins at 0.
● Variable (integer data type)

Example: PLC_PRG.iUpperIndexBoundToDisplay
● Integer literal

Example: 4 is displayed as 5 in the row of the table.

See also
● Data Type 'ARRAY'

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1485

ms-its:codesys.chm::/_cds_datatype_array.htm

The “Table” element shows the values of a variable in a tabular view. The array elements of
structure members are shown in a column or in a row. Two-dimensional arrays or arrays of a
structure are shown in multiple columns. The visualized variable is defined in the “Data array”
property. When a variable is assigned there, you can specify the display of the Table columns
where the array elements are shown. An individual configuration is possible for each column
that is assigned to an index [<n>].

“Show row header” : The row header is visible.
Example: For an array, the index of the array element is displayed in the header.

“Show column header” : The column label is visible.

“Row height” Height of the rows (in pixels)

“Row header width” Width of the row label

“Scroll bar size ” Size of the scroll bar (in pixels)

Table 271: “Element property 'Columns: Column [<n>]'”
“Column header” By default, the name of the array or structure is applied as the heading with

the index or structure member for the column. If an array of a function block
has been selected for “Data array”, then the name of the array is applied to the
column header with the local variables of the function block that belong to the
column.
The column label can be changed here by specifying a new title.

“Width” Column width (in pixels)

“Image column” : Images can be displayed in the column. Images are used from the global
image pool or custom image pools. The image IDs are shown in the cells of the
Table as they are defined in the image pool.

“Image configuration”

“Fill mode” ● Fill cell: The image resizes to the dimensions of the cell without fixing
the height/width ratio.

● Centered: The image is centered in the cell and retains its proportions
(height/width ratio).

“Transparency” : The color which is specified in “Transparent color” is displayed as trans-
parent.

“Transparent color” This color is displayed as transparent.
Requirement: The “Transparency” property is activated.

“Text alignment of header” Alignment of the column header:
● Left
● Centered
● Right

“Use template” : Another visualization element (type “Rectangle”, “Rounded Rectangle”, or
“Ellipse”) is inserted into each line of this Table column. The properties list is
extended automatically with the properties of this element in “Template”.

“Text alignment of the headline
from the template”

Requirement: The “Use template” property is activated.

: When activated, the settings for font (size) and alignment in the inserted
template are also applied to the column header.

“Template” Requirement: The “Use template” property is activated.
The properties of all elements assigned to the column are listed in “Template”.
They can be modified there as described in “Rectangle”, “Rounded Rectangle”,
and “Ellipse”.

Element prop-
erty 'Columns'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1486

See also
● Ä Chapter 1.4.5.18.1.1 “Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'”

on page 1368

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1487

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables enable dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog box.

“Size” Variable (integer data type). Contains the font size (in pixels).
Example: PLC_PRG.iFontHeight := 16;.

The selection of font sizes corresponds to the default “Font” dialog box.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1488

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Charset” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog box.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1495

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1489

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1490

The “Invisible” property is supported by the "Client Animation" functionality.

“Background color on
selection”

Fill color of the selected row.

“Selection font color” Font color of the selected row.

“Selection type” Selection when clicking the table row.
● No selection: No selection
● Cell selection: The clicked cell only.
● Row selection: Row of the clicked cell.
● Column selection: Column of the clicked cell.
● Row and column selection: Row and column of the clicked cell.

“Frame around selected cells” : A frame is drawn around the selected cells.

“Variable for selected column” Variable (INT). Contains the array index of the “Column” of the selected cell. If
the data array points to a structure, then the structure components are indexed,
starting at 0.
Warning: This index represents the correct position in the array only if no col-
umns have been removed from the table in the display.

“Variable for selected row” Variable (INT). Contains the array index of the “Row” of the selected cell.

“Variable for valid column
selection”

Variable (BOOL).
TRUE: The “Variable for selected column” variable contains a valid value.

“Variable for valid row
selection”

Variable (BOOL).
TRUE: The “Variable for selected row” variable contains a valid value.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Selection'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1491

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.9.1 “Displaying Array Variables in Tables” on page 1298
● Data Type 'ARRAY'

Visualization Element 'Text Field'
Symbol:

Category: “Common Controls”

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1492

ms-its:codesys.chm::/_cds_datatype_array.htm

The element is used for the following purposes:
● Static output of text. The contents of a variable can be part of the text.
● Showing a tooltip. The text is managed as static text and can also be defined so that the

contents of a variable are also displayed.
● Dynamic output of text. Texts of a text list are displayed dynamically.
● Input of text. For example, a user can input a number or a text literal.
See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

“Element name” Optional
Example: FileName_A
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Text Field”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1493

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 1443

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1494

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1495
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

These properties are variables with contents that replace a format definition.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1495

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1494
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1496

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1497

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1495

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1498

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1499

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

The variables allow for controlling the caret position and the selection of the text.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Selection
and caret con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1500

“Caret position” Variable (integer data type). Contains the position of the cursor.

“Selection start” Variable (integer data type). Contains the position of the first selected character.
Example: PLC_PRG.iSelStart

“Selection end” Variable (integer data type). Contains the position of the last selected character.
Example: PLC_PRG.iSelEnd

“All selected” Variable (BOOL). Toggles the selection of the entered text.
TRUE: The text in the text field is selected.

FALSE: The selection starts with the value in “Selection start” and ends with
“Selection end”.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1501

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1502

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1503

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Scroll Bar'
Symbol:

Category: “Common Controls”

The element sets the value of a variable, depending on the position of the scroll bar.

“Element name” Example: Speed Conveyor Belt 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Scroll Bar”

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Value” Variable as type integer that includes the position of the scroll bar.

“Minimum value” Smallest value of the scroll bar (fixed value or variable).

“Maximum value” Largest value of the scroll bar (fixed value or variable).

Element proper-
ties

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1504

“Page size” Page size
● As a fixed value, for example 10
● As a variable of data type integer
Requirement: Visible when the “Move to click” property is not selected.

“Move to click” Behavior of the scroll bar at visualization runtime when it is clicked:

: The scrollbar moves to the clicked position.

: The scrollbar moves to one “Page size” in the direction of the click.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The property defines the representation of scaling and direction of travel.

Element prop-
erty 'Position'

Element prop-
erty 'Bar'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1505

“Orientation” Alignment of the slider; defined by the ratio of width to height.
● “Horizontal”
● “Vertical”

You can modify the alignment in the visualization editor by using the pointing
device to adjust the width and height of the Scroll Bar.

“Running direction” The drop-down list varies depending on the alignment of the slider.
Horizontal
● “Left to right”: Scale starts at the left.
● “Right to left”: Scale starts at the right.
Vertical
● “Bottom to top”: Scale starts at the bottom.
● “Top to bottom”: Scale starts at the top.

The properties contain fixed values for setting colors.

“Color” Color for the element in its normal state.
Please note that the normal state is in effect if the expression in the “Color
variables è Toggle color” property is not defined or it has the value FALSE.

“Alarm color” Color for the element in alarm state.
Please note that the alarm state is in effect if the expression in the “Color
variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

Element prop-
erty 'Colors'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1506

See also
● Ä “Element property 'Text variables'” on page 1507
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1506
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1507

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1508

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1495

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1509

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1510

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1511

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1512

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Slider'
Symbol:

Category: “Common Controls”

The element changes the value of a variable, depending on the position of the slider within the
slider bar. You define the value range of the slider bar by means of the scale start and scale
end.

“Element name” Example: Speed controller conveyor belt 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Slider”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1513

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable (numeric data type)
Example: PLC_PRG.rSlider
When executed, the variable assigns a value that corresponds to the position of
the slider in the bar.

“Page size” Page size
● As a fixed value, for example 10
● As an IEC variable of data type integer
Requirement: The “Move to click” element property is not selected.

“Move to click” Behavior of the slider at visualization runtime when it is clicked:

: The slider moves to the clicked position.

: The slider moves to the value (defined in the “Page size” element property) in
the direction of the click.

“Show scale” : The element has a visible scale.
Note: This option is available for the “Slider” only.

“Scale start” Least value of the scale and the lower limit of the value range for the element.
Example: 0

: The property “Variable” is shown below.

Element prop-
erty 'Center'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1514

“Variable” Variable (integer data type). Contains the scale start.
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the ele-
ment.
Example: 100

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale end.
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two tick marks on the rough scale.
Example: 10

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Subscale” Distance between two dashes on the fine scale. You can hide the fine scale by
setting the value to 0.

Example: 2
: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 5;
END_VAR

“Scale format (C Syntax)” Formatting of the scale label (example: %d %s)

Note: This property is available for the Slider only.

“Scale proportion” Size of the scale (in %) of the total size

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1515

The property defines the representation of scaling and direction of travel.

“Diagram type” The drop-down list varies depending on the alignment of the diagram.
Horizontal
● “Top”: Scale is above the slider.
● “Bottom”: Scale is below the slider.
● “Top and bottom”: Two scales frame the slider above and below.
Vertical
● Left: Scale is left of the slider.
● Right: Scale is right of the slider.
● Left and right: Two scales frame the slider on the left and the right.

“Orientation” Alignment of the slider; defined by the ratio of width to height.
● “Horizontal”
● “Vertical”

You can modify the alignment in the visualization editor by using the pointing
device to adjust the width and height of the scrollbar.

“Running direction” The drop-down list varies depending on the alignment of the slider.
Horizontal
● “Left to right”: Scale starts at the left.
● “Right to left”: Scale starts at the right.
Vertical
● “Bottom to top”: Scale starts at the bottom.
● “Top to bottom”: Scale starts at the top.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Bar'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1516

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1517

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1518

Visualization Element 'Spin Box'
Symbol:

Category: “Common Controls”

The element increments or decrements the value of a variable in defined intervals.

“Element name” Example: Speed controller conveyor belt
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Spin Box”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1519

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable (numeric data type)
Example: PLC_PRG.iTemp

“Number format” Format of the value in printf syntax
Example: %d, %5.2f

“Interval” Interval used for modification of the value

“Minimum value” Lower limit of the output value
● fixed value
● Variable (INT)

“Maximum value” Upper limit of the output value
● fixed value
● Variable (INT)

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Element prop-
erty 'Value
range'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1520

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Color varia-
bles'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1521

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1522

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
User input is a user event from the perspective of the element.

The input configuration refers to the text area of the element only, not the two
buttons.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1523

The “Configure” button opens the “Input configuration” dialog box for creating or modifying a user input configura-
tion.
A configuration contains one or more input actions for the respective input event. Existing input actions are
displayed below it.

Example: “Execute ST code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog box.

“OnMouseClick” Input event: The user clicks the element completely. The mouse button is clicked
and released.

“OnMouseDown” Input event: The user clicks down on the element only.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input event: The user releases the mouse button over the element area.

See also
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the options “Tap FALSE” and “Tap on
enter if captured”.

“Variable” Variable (BOOL). Contains the information whether a mouse click event exists.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts while the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1524

“Shift” When a mouse click event occurs, the variable here is described in the applica-
tion. When the mouse click event ends, its value is toggled with the “Toggle on
up if captured” option.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Tip: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

“Hotkeys” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Event(s)”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Event(s)” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed in the “Keyboard configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1525

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Invisible Input'
Symbol:

Category: “Common Controls”

This element is displayed in the editor with a dashed line which is not visible in online mode.
You define the behavior of the el in the input configuration.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Unsichtbare_Eingabe_1

“Type of element” “Invisible Input”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1526

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1527

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1528

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1529

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1530

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Progress Bar'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1531

Category: “Common Controls”

The element displays the value of a variable as a progress bar.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Progress_Data_Transfer

“Type of element” “Progress Bar”

“Text ID” ID of the global text list
Requirement: Text is configured in the property “Texts è Text”.

“Variable” Variable (numeric data type). Represents the length of the progress bar.

“Minimum value”
Value range of the variable

“Maximum value”

“Style” ● “Blocks”
● “Bar”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1532

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Text” String label for the element.
Example: Zoom

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1533

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1534

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Check Box'
Symbol:

Category: “Common Controls”

The element is used for setting and resetting a Boolean variable. The set state is identified by a
check mark.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1535

“Element name” Example: signal_tone_for_parts_deficit
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Check Box”

“Text ID” ID for the text in the “GlobalTextList”

Example: 22
The text ID cannot be changed. As soon as you specify and save a text in
“Texts” - “Text”, CODESYS automatically creates an entry in the “GlobalTextList”
and displays the ID here.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1536

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable of type BOOL
Example: “PLC_PRG.xIsTrue”

“Frame size” Distance of the element to the edge
Example: “From style”

The properties contains character strings for labeling the element.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element.
Example: Axis 1.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Parameters of Axis 1.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1537

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1538

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1539

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Radio Buttons'
Symbol:

Category: “Common Controls”

The element provides a series of radios buttons with an unlimited number of options.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1540

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Morning Shift

“Type of element” “Radio Buttons”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Variable” Variable (integer data type) that gives the index of the radio button that the
visualization user has activated
Example: PLC_PRG.iNrOfActivatedRadioButton

“Number of columns” Definition of the number of list boxes displayed in a row
Example: 2

“Radio button order” “Left to right”: The radio buttons are aligned by rows until the number of columns
is reached.
“Top to bottom”: The radio buttons are aligned row by columns until the number
of columns is reached.

“Frame size” Defines the distance from the list boxes to the edge (in pixels).

“Row height” Height of the row (in pixels) Modifying the height of the row also changes the
size of the list box.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1541

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1542

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1543

The “Invisible” property is supported by the "Client Animation" functionality.

“Radio button”

● “Areas”
– “[<n>]”

“Create new”: Clicking this button creates a new selection button in
the editor and lists an additional area in the properties editor.
For each radio button, an area is visible that records the settings.
● [<n>]

– “[<n>]”: This number indicates the area. Clicking “Delete”
will delete the associated radio button with its settings
“Text”, “Tooltip”, and “Line spacing (in pixels)”.

Areas: [<n>]

“Text” The button name is specified here. Default value: “Radio_button”

“Tooltip” Text is specified here that is displayed in a tooltip.

“Line spacing (in pixels)” The distance (in pixels) to the upper button can be specified here.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'Radio
button settings'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1544

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Alarm Table'
Symbol:

Category: “Alarm Manager”

The element displays alarms in a list. In the element properties, you specify which information
is shown. You define the appearance of the element and the variables that control the element
behavior.

In online mode, you can sort an alarm table by a specific column – even in the
classic view. Click into the column header. A small triangle indicates the current
sort order (ascending, descending). Clicking the symbol reverses the order.

Sorting inside the column depends on the type of the contained information.
The "Priority" column is sorted numerically, and the "Message" and "Class"
columns alphabetically. The "Value" and "Latch" columns may contain different
value types. In this case, sorting is first by type (blank, Boolean, numeric value,
character string) and then either numerically or alphabetically depending on the
type.

If an alarm history has been created, then you can programmatically delete it at
runtime. The recording starts again from the time of deletion. See the help page
for "Visualizing Alarm Management".

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1545

“Element name” Example: GenElemInst_1
“Type of element” “Alarm Table”

“Data source” Selection of the device and the application where the data to be visualized and
the alarms are generated
● Remote data source which accesses a remote device, accesses a remote

application, and then transfers the data to the alarm configuration
Example: DataSource_A
Below the (now visible) “Application” property, the remote application is dis-
played as configured in the data source.
Example: App_A
Note: If the data source is accessed symbolically by means of a symbol file
(CODESYS symbolic), then the required symbol file and the corresponding
project have to be saved in the same folder.

● Local application below which the alarm configuration is located
Example: “<local application>”

See also
● Object 'Data Source'

“Alarm groups” Opens the “Select Alarm Group” dialog where you define the alarm groups that
you want to display.

“Priority from” Least priority for alarm display. (0 to 255).

“Priority to” Greatest priority for alarm display. (0 to 255).

“Alarm classes” Opens the “Select Class Group” dialog where you define the alarm classes that
you want to display.

“Filter criterion” For the “Alarm Banner” element only
● “Most important”: The alarm with the highest priority (lowest value) is dis-

played.
● “Newest”: The most recent alarm is displayed.

Element prop-
erty 'Alarm con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1546

ms-its:codesys.chm::/_cds_obj_data_source_communication.htm

“Filter by latch 1” The generated alarms (previous and current) can be filtered by the contents of
“Latch variable 1”, which is specified in the configuration of the alarm group. In
“Filter type”, you define whether or not the filtering is performed by a string value
or a numerical value.
● “Filter variable”: Indicates what the alarms are filtered by. Possible entries:

Application variable of data type STRING or WSTRING, or a literal value
directly. Examples:PLC_PRG.strFilterVariable, 'STRING'.

● “Filter type”: Integer value that determines by which criteria the latch variable
value is used for filtering. Possible entries: Numerical variable from the appli-
cation (example: PLC_PRG.diFilterType, or a value directly (example:
2).
Possible values:
– 0: No filtering
– 1: Filter by alarms whose latch variable 1 contains the string specified in

“Filter variable”. Example: The filter variable contains 'Error 1' which
is the latch variable 1 of different alarms of type STRING and has the
value 'Error 1' ->. Only these alarms are displayed.

– 2: Filter by alarms whose latch variable 1 contains the typed literal speci-
fied in “Filter variable” according to IEC 61131-3. Examples: T#1h2s,
DINT#15, REAL#1.5, FALSE

– 3: Filter by alarms whose latch variable 1 contains the LINT literal
value specified in “Filter variable”. Therefore, the value of the latch
variables has to be in the range of 9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

– All other values: The behavior is not defined and can change in the
future.

“Filter by time range” The generated alarms (remote, historical, local) can be displayed for a specified
time range. You use the “Filter type” to define whether filtering by time range is
enabled or disabled.
● “Filter variable, from”: Variable of data type DT or DATE_AND_TIME

(example: PLC_PRG.filterTimeFrom) for the start time that the alarms
are displayed.

● “Filter variable, to”: Variable of data type DT or DATE_AND_TIME (example:
PLC_PRG.filterTimeTo) for the end time that the alarms are displayed.

● “Filter type”: Variable of integer data type that determines whether “Filter by
time range” is enabled or disabled.
Possible values:
– 1: Filtering is enabled
– 0: Filtering is disabled

See also
● Ä Chapter 1.4.5.19.3.17 “Dialog 'Selected Alarm Group'” on page 1769
● Ä Chapter 1.4.5.19.3.16 “Dialog 'Selected Alarm Class'” on page 1768

“Show row header” : Display of the row number at the beginning of the row.

“Show column header” : Display of the column heading as defined in “Column heading”.

“Row height” Height of the table rows (in pixels).

“Row header width” Width of the line header (in pixels).

Element prop-
erty 'General
table configura-
tion'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1547

“Scrollbar size” Width of the scrollbar when it runs vertically. Width of the scrollbar when it runs
horizontally. Specified in pixels

“Automatic line break for alarm
message”

: The message text is truncated at the end of the line.

: The message text is truncated at the end of the column, if the text is too long.

By default, columns [0] and [1] are configured: “Time stamp” and “Message text”. You can
create more columns by clicking the “Create new”, and remove columns by clicking “Delete”.
Animations (dynamic text, font variables), text, and tooltip are not supported.

“Column header” The standard header is set and changed here by specifying a new text.

“Use text alignment in title” : The text in the column header is aligned according to the current definition in
“Text alignment”.

: The text in the column header is centered.

“Width” Width of the column (in pixels).

“Data type” Notice about time stamps: For use in a TargetVisu or WebVisu, you can
control the date and time format with the help of the global string variables
from the library Alarmmanager.library: AlarmGlobals.g_sDateFormat
(example: AlarmGlobals.g_sDateFormat := 'MM.yyyy')
and AlarmGlobals.g_sTimeFormat (example:
AlarmGlobals.g_sTimeFormat := 'HH:mm').

Define the information to be displayed in the column.
● “Symbol”
● “Time stamp”: Date and time of the last status change of the alarm.
● “Time stamp active”: Date and time of the last activation of the alarm.
● “Time stamp inactive”: Date and time of the last deactivation of the alarm.
● “Time stamp acknowledge”: Date and time of the last acknowledgment.
● “Value”: Current value of the printout
● “Message text”: Output of the message text
● “Priority”: Alarm priority
● “Class”: Alarm class
● “State”: Alarm state
● “Latch Variable <n>”: Value of the selected latch variables

“Text alignment” Alignment of the text in this column
● “Left”
● “Centered”
● “Right”

“Color settings” ● “Activate color settings”: Boolean variable for activating and deactivating the
color settings defined here. Example: PLC_PRG.bColorSettings

● “Cell fill color”:
– “Color variable”: Variable for the cell fill color, example: dwCellColor

(hexadecimal color definition: 16#TTRRGGBB)
– “Use color also for column header”: : The color defined via “Color

variable” is used in the column header as well.
● “Text color”:

– “Color variable”: Variable for the definition of the text color in the column,
example: dwTextColor (hexadecimal color definition: 16#TTRRGGBB)

– “Use color also for column header”: : The color defined via “Color
variable” is used in the column header as well.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

Element prop-
erty 'Columns:
Column [<n>]'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1548

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1549

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

“Selection color” Fill color of the selected row

“Selection font color” Font color of the selected row

“Frame around selected cells” : A frame is drawn around the selected cells at runtime.

“Variable for selected alarm
group”

Name of the affected alarm group; type: STRING, WSTRING

“Variable for selected alarm ID” Alarm ID of the affected alarm group; type: STRING, WSTRING
“Variable for selected line” Index of the selected alarm line (0-based). The index can be read and written;

integer data type

“Variable for valid selection” TRUE: An alarm line is selected.
FALSE: The selection is invalid. For example, for an empty alarm table or when
an alarm is not selected yet.

“Variable for selected alarm
information”

Information about the selected alarm. Type AlarmSelectionInfo
For easy usage, the function block AlarmSelectionInfoDefault is pro-
vided. This FB fills the structure with the memory for 10 messages and 10 latch
variables.
Example: myAlarmSelectionInfoDefault.AlarmSelectionInfo
The following information is available:
● sAlarmgroup
● uialarmID
● timeStampActive
● timeStampInactive
● timeStampAcknowledge
● timeStampLast
● paLatchVariables
● iLatchVariablesCount
● papwsAlarmMessages
● dwAlarmMessageTextBufferSize
● iAlarmMessagesCount
● iSelectionChangedCounter

Element prop-
erty 'Selection'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1550

Boolean variables are defined here for executing specific actions in the table can be executed at
runtime.

“Acknowledge selected” Variable (BOOL)

Example: PLC_PRG.bAckSelectedAlarms
If the assigned variable is TRUE, then the selected alarm is acknowledged.

“Acknowledge all visible” Variable (BOOL)

Example: PLC_PRG.bAckVisibleAlarms
If the assigned variable is TRUE, then all alarms are acknowledged that are
visible in the alarm table.

“History” Variable (BOOL)

Example: PLC_PRG.bShowHistory
If the assigned variable is TRUE, then the history alarms are displayed in addition
to the active alarms. In the classic view, the same sort options apply as in normal
mode.
Note: Acknowledgment is not possible in this view.

“Freeze scroll position” Variable (BOOL)

Example: PLC_PRG.bFreezeScrollPosition
If the assigned variable is TRUE, then the scroll position set in the “History” view
is retained, even if a new alarm is active. If not, then the scroll position jumps to
the first table row (the newest alarm).

“Count alarms” Variable (integer data type)
Example: PLC_PRG.iNumberOfAlarms.

Number of alarms that are currently displayed in the alarm table. Defined by the
alarm table.

“Count visible rows” Variable (integer data type)
Example: PLC_PRG.iNumberVisibleLines
Number of alarms that can be displayed on one page of the alarm table. Defined
by the alarm table.

“Current scroll index” Variable (integer data type)
Example: PLC_PRG.iScrollIndex
The index of the first visible row if the alarm table (0-based). The variable can be
read and written.

“Current column sorting” Variable (integer data type)
Example: PLC_PRG.iColSort
The variable contains a value of the enumeration "VisuElemsAlarm.VisuEnumA-
larmDataType". This value determines the column that sorts the alarm table.

“Variable for sorting direction” Variable (BOOL)
Example: PLC_PRG.xSortAscending
The variable determines the sort order for the entries in the alarm table (TRUE:
ascending; FALSE: descending).

You can also use the “Insert Elements for Acknowledging Alarms” command to
define buttons with predefined control variables.

Element prop-
erty 'Control
variables'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1551

See also
● Ä Chapter 1.4.5.19.2.23 “Command 'Add Elements for Alarm Acknowledgement'”

on page 1744

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1552

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1553

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Alarm Banner'
Symbol:

Category: “Alarm Manager”

The element is a simplified version of the alarm table. It visualizes a single alarm only. In the
element properties, you specify which information is shown. You define the appearance of the
element and the variables that control the element behavior.

The alarm banner displays active alarms only. If the alarm is acknowledged,
then it disappears from the alarm banner.

“Element name” Example: GenElemInst_1
“Type of element” “Alarm Banner”

“Data source” If you intend to use a remote alarm configuration, then you have to specify the
name of the remote application here. If you do not specify anything, the alarm
configuration will be located locally.

“Alarm groups” Opens the “Select Alarm Group” dialog where you define the alarm groups that
you want to display.

“Priority from” Least priority for alarm display. (0 to 255).

“Priority to” Greatest priority for alarm display. (0 to 255).

“Alarm classes” Opens the “Select Class Group” dialog where you define the alarm classes that
you want to display.

“Filter criterion” For the “Alarm Banner” element only
● “Most important”: The alarm with the highest priority (lowest value) is dis-

played.
● “Newest”: The most recent alarm is displayed.

Element proper-
ties

Element prop-
erty 'Alarm con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1554

“Filter by latch 1” The generated alarms (previous and current) can be filtered by the contents of
“Latch variable 1”, which is specified in the configuration of the alarm group. In
“Filter type”, you define whether or not the filtering is performed by a string value
or a numerical value.
● “Filter variable”: Indicates what the alarms are filtered by. Possible entries:

Application variable of data type STRING or WSTRING, or a literal value
directly. Examples:PLC_PRG.strFilterVariable, 'STRING'.

● “Filter type”: Integer value that determines by which criteria the latch variable
value is used for filtering. Possible entries: Numerical variable from the appli-
cation (example: PLC_PRG.diFilterType, or a value directly (example:
2).
Possible values:
– 0: No filtering
– 1: Filter by alarms whose latch variable 1 contains the string specified in

“Filter variable”. Example: The filter variable contains 'Error 1' which
is the latch variable 1 of different alarms of type STRING and has the
value 'Error 1' ->. Only these alarms are displayed.

– 2: Filter by alarms whose latch variable 1 contains the typed literal speci-
fied in “Filter variable” according to IEC 61131-3. Examples: T#1h2s,
DINT#15, REAL#1.5, FALSE

– 3: Filter by alarms whose latch variable 1 contains the LINT literal
value specified in “Filter variable”. Therefore, the value of the latch
variables has to be in the range of 9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

– All other values: The behavior is not defined and can change in the
future.

“Filter by time range” The generated alarms (remote, historical, local) can be displayed for a specified
time range. You use the “Filter type” to define whether filtering by time range is
enabled or disabled.
● “Filter variable, from”: Variable of data type DT or DATE_AND_TIME

(example: PLC_PRG.filterTimeFrom) for the start time that the alarms
are displayed.

● “Filter variable, to”: Variable of data type DT or DATE_AND_TIME (example:
PLC_PRG.filterTimeTo) for the end time that the alarms are displayed.

● “Filter type”: Variable of integer data type that determines whether “Filter by
time range” is enabled or disabled.
Possible values:
– 1: Filtering is enabled
– 0: Filtering is disabled

See also
● Ä Chapter 1.4.5.19.3.17 “Dialog 'Selected Alarm Group'” on page 1769
● Ä Chapter 1.4.5.19.3.16 “Dialog 'Selected Alarm Class'” on page 1768

By default, columns [0] and [1] are preconfigured: “Time stamp” and “Message text”. You create
more columns by clicking “Create new”. You remove columns by clicking “Delete”.
Animations (dynamic text, font variables), texts, and tooltips are not supported.

Element prop-
erty 'Columns:
Column [<n>]'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1555

“Width” Width of the column (in pixels)

“Type of data” About time stamps: When used in a TargetVisu or WebVisu, you can con-
trol the date and time format by means of the global string variables
from the library Alarmmanager.library: AlarmGlobals.g_sDateFormat
(example: AlarmGlobals.g_sDateFormat := 'MM.yyyy')
and AlarmGlobals.g_sTimeFormat (example:
AlarmGlobals.g_sTimeFormat := 'HH:mm').

Here you define the information to be displayed in the column.
● “Bitmap”
● “Time stamp”: Date and time of the last status change of the alarm
● “Time stamp active”: Date and time of the last activation of the alarm
● “Time stamp inactive”: Date and time of the last deactivation of the alarm
● “Time stamp acknowledge”: Date and time of the last acknowledgement
● “Value”: Actual value of the expression
● “Message”: Output of the message text
● “Priority”: Alarm priority
● “Class”: Alarm class
● “State”: Alarm state
● “Latch Variable <n>”: Value of the selected latch variables

“Text alignment” Alignment of the contents in the column
● “Left”
● “Centered”
● “Right”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1556

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

“Acknowledge variable” A rising edge of this variable acknowledges the alarm.

“Automatic switch” : The display in the alarm banner is
switched automatically according to the time
to the next alarm as configured in “Every N
second”.

“Every N second” Time period until the next switching. Available
only if “Automatic switch” is selected.

“Next alarm” Variable for switching to the next alarm. Avail-
able only if “Automatic switch” is not selected.

“Previous alarm” Variable for switching to the previous alarm.
Available only if “Automatic switch” is not
selected.

“Multiple alarms active” Variable that has the value TRUE if multiple
alarms are active.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

Handling of mul-
tiple active
alarms

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1557

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1558

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1559

Visualization Element 'Bar Display'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable.
See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

“Element name” Example: GenElemInst_2
“Type of element” “Bar Display”

“Value” Variable (numeric data type)
The value of the variable is displayed as a bar length.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element proper-
ties

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1560

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1561

“Background color” Drop-down list with background colors
Note: This property depends on the style. For example, there are no heterochro-
matic background images for “FlatStyle” and “Whitestyle”.

“Own image” ● “image”: Image ID of the background image. You select the background
image from an image pool by clicking the symbol.
Info: If you specify the “<default>” value or select the image from the
“Default” category in the input assistant, then the original element back-
ground image is used.

● “Transparent color”: Color of pixels that are displayed as transparent.
Selection from drop-down list or input assistant.

“Optimized drawing” : The background image is drawn one time. If there is a change in the fore-
ground, then only the affected part of the image is redrawn.

: The background image is redrawn in cycles.
Note: Deactivating this option is sensible only in certain exceptional cases.

“Diagram type” Position of the scale
● “Scale besides bar”
● “Scale in bar”
● “Bar in scale”
● “No scale”

“Orientation” Orientation depending on the ratio of width to height of the Bar Display:
● “Horizontal”
● “Vertical”

“Running direction” Direction the values are increased.
Drop-down list for “Orientation Horizontal”:
● “Left to right”
● “Right to left”

Drop-down list for “Orientation Vertical”:
● “Bottom to top”
● “Top to bottom”

“Optimum size for bar” : The bar width requires the majority of the element surface.
Note: This property depends on the style. It is not provided for “FlatStyle” or
“WhiteStyle”.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Bar'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1562

“Scale start” Least value of the scale and the lower limit of the value range for the element.
Example: 0

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale start.
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the ele-
ment.
Example: 100

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale end.
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between 2 values on the rough scale.
Example: 10

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Subscale” Distance between 2 values on the fine scale.
You can hide the fine scale by setting the value to 0.

Example: 2
: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the spacing.
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1563

“Scale line width” Specified in pixels.
Example: 3

“Scale color” Color of scale lines

● :
The “Color” dialog box opens.

● : A drop-down list with color names opens.

“Scale in 3D” : Tick marks are displayed with slight 3D shadowing.
Note: This property depends on the style. Not available for “FlatStyle”.

“Element frame” : A frame is drawn around the element.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

“Horizontal offset” Distance from the scale (bar) to the horizontal element frame
Specified in pixels.
Used for achieving the exact position relative to the background image.

“Vertical offset” Distance from the scale (bar) to the vertical element frame
Specified in pixels.
Used for achieving the exact position relative to the background image.

“ Horizontal scaling” Horizontal division of the scale
Specified in pixels.
Used for achieving the exact positioning relative to the background image.

“Vertical scaling” Vertical division of the scale
Specified in pixels.
Used for achieving the exact positioning relative to the background image.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1564

“Graph color” Color of the bar

“Bar background” : The background of the bar is black.

: The background of the bar is white.

“Frame color” Color that the frames are drawn.

“Switch whole color” : The total color of the bar is switched to the color of the color area of the
current value.

“Use gradient color for bar” : Bar is displayed with a gradient.

“Color range markers” The color areas can be separated from each other inside the bar with a vertical
mark.
● “No markers”: No display.
● “Marker forwards”: The color of the vertical mark corresponds to the color of

the previous color area.
● “Marker backwards”: The color of the vertical mark corresponds to the color

of the next color area.

“Color areas”

“Create new” A new color area is added.

“ Delete” The color area is removed from the list.

“Begin of area” Start value of the color area

“End of area” End value of the color area

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1565

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Meter 90°'
Symbol:

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1566

Category: “Measurement Controls”

The element displays the value of a variable. The needle is positioned according to the value of
the assigned variable. A meter is used to represent a tachometer, for example.

“Element name” Example: GenElemInst_1
“Type of element” “Meter 90°”

“Value” Variable (numeric data type)
The variable value determines the pointer direction of the element.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1567

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Angle range” Drop-down list for the alignment of the element

“Additional arrow” : An additional arrow is shown inside the scale.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1568

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1569

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1570

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1571

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1572

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254“”

Visualization Element 'Meter 180°'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable. The needle is positioned according to the value of
the assigned variable on a scale. A meter is used to represent a tachometer, for example.

“Element name” Example: GenElemInst_1
“Type of element” “Meter 180°”

“Value” Variable (numeric data type)
The variable value determines the pointer direction of the element.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element prop-
erty 'Access
rights'

Element proper-
ties

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1573

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1574

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Angle range” Drop-down list for the alignment of the element

“Additional arrow” : An additional arrow is shown inside the scale.

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1575

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1576

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1577

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1578

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1579

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Meter'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable. The needle is positioned according to the value of
the assigned variable. A meter is used to represent a tachometer, for example.

“Element name” Example: GenElemInst_1
“Type of element” “Meter”

“Value” Variable (numeric data type).
The variable value determines the pointer direction of the element.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element prop-
erty 'Access
rights'

Element proper-
ties

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1580

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1581

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Arrow start” Angle (in degrees) between the scale start and the horizontal axis

“Arrow end” Angle (in degrees) between the right edge of the pointer instrument and the
horizontal axis

“Additional arrow” : An additional arrow is shown inside the scale.

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1582

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1583

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1584

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1585

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1586

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Potentiometer'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable as a setting on the potentiometer. A visualization
user can modify the value by dragging the pointer to another position.
See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

“Element name” Example: GenElemInst_1
“Type of element” “Potentiometer”

“Variable” Variable (numeric data type). Contains the position of the pointer for the potenti-
ometer.
A visualization user can modify the value by dragging the pointer to another
position.

Element prop-
erty 'Access
rights'

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1587

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element prop-
erty 'Center'

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1588

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Arrow start” Angle (in degrees) between the left edge of the element and the horizontal axis

“Arrow end” Angle (in degrees) between the right edge of the element and the horizontal axis

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1589

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1590

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1591

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1592

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1593

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1594

Visualization Element 'Histogram'
Symbol:

Category: “Measurement Controls”

The element displays the data of a one-dimensional array as a histogram. You can define
specific colors for certain value ranges.
See also
● Ä Chapter 1.4.5.21.4 “Displaying Array Data in a Histogram” on page 2138

“Element name” Example: GenElemInst_35
“Type of element” “Histogram”

“Data array” One-dimensional array with data displayed in this histogram.
Example: PLC_PRG.arr1

“Use subrange” : Only part of the array is displayed in the histogram.

“Start index” First array index with a displayed value.
Requirement: “Use subrange” is activated.

“End index” Last array index with a displayed value.
Requirement: “Use subrange” is activated.

“Display type” ● “Bars”: Data is displayed as bars.
● “Lines”: Data is displayed as lines.
● “Curve”: Interpolation of data into a curve.

“Line width” Specified in pixels
Requirement: “Curve” is selected as the “Display type”.

“Show horizontal lines” : Horizontal lines are drawn on the main scale.
Note: Not all visualization styles have this property. This element property is not
available for visualization styles that have striped backgrounds (example: “Flat
style”).

“Relative bar width” Integer value between 1 and 100
● 1: The bars are drawn as lines.
● 100: The entire width of the histogram is filled with the bars.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Subrange
of array'

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1595

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Scale start” Least value of the scale and the lower limit of the value range for the element.
Example: 0

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale start.
Example: PLC_PRG.iScaleStart

“Scale end” Greatest value of the scale and the upper limit of the value range for the ele-
ment.
Example: 100

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale end.
Example: PLC_PRG.iScaleEnd

Element prop-
erty 'Center'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1596

“Main scale” Distance between 2 values on the rough scale.
Example: 10

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iMainScale

“Subscale” Distance between 2 values on the fine scale.
You can hide the fine scale by setting the value to 0.

Example: 2
: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the spacing.
Example: PLC_PRG.iSubScale

“Scale color” Color of scale lines

● :
The “Color” dialog box opens.

● : A drop-down list with color names opens.

“Base line” Value of the main scale where the horizontal base line of the Histogram is
located.
The drawing of the bar starts at the base line.

A valid declaration is required for the variables used as an example in the table above.

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
 iScaleEnd : INT := 120;
 iMainScale : INT := 20;
 iSubScale : INT := 5;
END_VAR

Example

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” Optional value that defines the maximum width of the scale label.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” Optional value that defines the maximum height of the scale label.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

Element prop-
erty 'Label'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1597

“Graph color” Color of the bar in normal state.
Note: The normal state is in effect when the current value of the array compo-
nent does not fulfill the alarm condition.

“Alarm value” Threshold for the alarm

“Alarm condition” If the current value of the array component fulfills the alarm condition, then the
alarm condition is set.
● “Less”: The current value is less than the “Alarm value”
● “More”: The current value is greater than the “Alarm value”

“Alarm color” Color of the bar in alarm state.

“Use color areas” : The color areas defined in this element are used.

“Color areas”

“Create new” A new color area is added.

“ Delete” The color area is removed from the list.

“Begin of area” The start value on the “Scale” of the Histogram where the color area begins.

“End of area” The end value on the “Scale” of the Histogram where the color area ends.

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1598

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1599

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Image Switcher'
Symbol:

Category: “Lamps/Switches/Bitmaps”

The element displays one of three referenced images. Mouse actions change the displayed
image. The images are defined in the “Image settings” element properties. The effects of mouse
clicks are defined in the “Element behavior” property.

Element prop-
erty 'Access
rights'

Element proper-
ties

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1600

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: ImageSwitcher_1

“Type of element” “Image Switcher”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Variable” Variable (BOOL).

The value of the variable changes according to user input and it is independent
of the “Element behavior” element property.

“Image "on"” Image ID from an image pool. The image can be selected using the input assis-
tant.
The image is used if the variable of the “Variable” property has the value TRUE.

“Image "off"” Image ID from an image pool. The image can be selected using the input assis-
tant.
The image is used if the variable of the “Variable” property has the value FALSE.

“Image "clicked"” Image ID from an image pool. The image is selected using the input assistant.
In runtime mode, the visualization displays the referenced image when the ele-
ment is clicked (and the mouse button is held down).
Requirement: The “Element behavior” is “Image toggler”.

Element prop-
erty 'Position'

Image settings

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1601

“Transparency” : The “Transparent color” is selected.

“Transparent color” The image pixels that have the transparent color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with color names opens.

“Scaling type” Defines how an image fits in the element frame.
● “Fixed”: The original size of the image is retained, regardless of the dimen-

sions of the element.
● “Isotropic”: The entire image is shown in the element frame, either larger or

smaller. As a result, the proportion of height and width are retained.
● “Anisotropic”: The image resizes automatically to the dimensions of the ele-

ment frame, filling the entire element frame. As a result, the proportions are
not retained.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

“Element behavior” ● “Image toggler”: Every mouse click switches the image.
● “Image tapper”: While a visualization user holds down the mouse button, the

image of the “Image on” property is displayed. At the same time, the value
TRUE is assigned to the “Variable” property.

“Tap FALSE” : While the mouse button is pressed, the image of the “Image” property is
displayed and the “Variable” property gets the value FALSE instead of the value
TRUE, and back.

Requirement: “Image tapper” is selected in the “Element behavior” property.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1602

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1603

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1604

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Lamp'
Symbol:

Category: “Lamps/Switches/Bitmaps”

The element shows the value of a variable, and the element is displayed as illuminated or not.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1605

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Lamp_green

“Type of element” “Lamp”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Variable” Variable (BOOL).

The variable value is displayed as a lamp that goes on (TRUE) or off (FALSE).

“Transparency” : The “Transparent color” property is selected.

“Transparent color” Pixels in this color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with style colors opens.

Element proper-
ties

Element prop-
erty 'Position'

Image settings

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1606

“Scaling type” Reaction of the element when the dimension of the “Frame” element is changed:
● “Isotropic”: The height and width of the image are resized proportionally to

the “Frame”.
Please note: To retain the alignment of elements also within a scaled
“Frame” element, define the “Horizontal alignment” or “Vertical alignment”
explicitly with “Centered”.

● “Anisotropic”: The image fills the entire “Frame” regardless of its proportions.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1607

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1608

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

“Image” Drop-down list with background colors
Depends on the visualization style

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1609

Visualization Element 'Dip Switch', 'Power Switch', 'Push Switch', 'Push Switch LED', 'Rocker Switch'
Symbols:

Category: “Lamps/Switches/Bitmaps”

The element assigns a value to a Boolean variable. The switch position "on" the value TRUE to
the variable, and the switch position "off" assigns the value FALSE. Use the mouse to change
the switch position.

“Element name” Example: Operating_Switch
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” Depending on the element: “Dip Switch”, “Power Switch”, “Push Switch”, “Push
Switch LED”, or “Rocker Switch”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Variable” Variable (BOOL)

The value of the variables TRUE and FALSE indicates the switch position on/off.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1610

“Transparency” : The “Transparent color” property is selected.

“Transparent color” Pixels in this color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with style colors opens.

“Scaling type” Reaction of the element when the dimension of the “Frame” element is changed:
● “Isotropic”: The height and width of the image are resized proportionally to

the “Frame”.
Please note: To retain the alignment of elements also within a scaled
“Frame” element, define the “Horizontal alignment” or “Vertical alignment”
explicitly with “Centered”.

● “Anisotropic”: The image fills the entire “Frame” regardless of its proportions.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

“Element behavior” ● “Image toggler”: Every mouse click changes the switch and the “ Variable”
value.

● “Image tapper”: The switch is "on" and the “Variable” value is TRUE while the
mouse button is pressed.

“Tap FALSE” : The value TRUE is assigned to the “Variable” property instead of the value
FALSE, and back.

Requirement: “Image tapper” is selected in the “Element behavior” property.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Image settings

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1611

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1612

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1613

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

“Image” Drop-down list with background colors
Depends on the visualization style

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Rotary Switch'
Symbol:

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1614

Category: “Lamps/Switches/Bitmaps”

The element assigns a value to a Boolean variable. The switch position "on" the value TRUE to
the variable, and the switch position "off" assigns the value FALSE. Use the mouse to change
the switch position.

“Element name” Example: Operating_Switch
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Rotary Switch”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Variable” Variable (BOOL).

The value of the variables TRUE and FALSE indicates the switch position on/off.

Element proper-
ties

Element prop-
erty 'Position'

Image settings

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1615

“Transparency” : The “Transparent color” property is selected.

“Transparent color” Pixels in this color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with style colors opens.

“Scaling type” Reaction of the element when the dimension of the “Frame” element is changed:
● “Isotropic”: The height and width of the image are resized proportionally to

the “Frame”.
Please note: To retain the alignment of elements also within a scaled
“Frame” element, define the “Horizontal alignment” or “Vertical alignment”
explicitly with “Centered”.

● “Anisotropic”: The image fills the entire “Frame” regardless of its proportions.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

“Element behavior” ● “Image toggler”: Every mouse click changes the switch and the “ Variable”
value.

● “Image tapper”: The switch is "on" and the “Variable” value is TRUE while the
mouse button is pressed.

“Orientation” ● “At top”: The rotary switch turns from the top right to the top left.
● “At side”: The rotary switch turns from the top right to the bottom right.

“Color change” : The element changes in color when “ Variable” is TRUE.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1616

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1617

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1618

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

“Image” Drop-down list with background colors
Depends on the visualization style

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Trace'
Symbol:

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1619

Category: “Special Controls”

The element displays the graphical curve of variable values. In addition, variables can be
configured to control the view.
See also
● Ä Chapter 1.4.5.10 “Displaying data curve with trace” on page 1306
● Ä “Dialog box 'Trace Configuration'” on page 1734

“Element name” Example: Velocity
“Data Source” Location where the trace data is buffered.

:
● “<local application>”: The trace record is listed below the local application.

The visualization that contains the trace is located below this application.
When the application is downloaded, the trace configuration is downloaded
to the local device. During execution, the data is stored locally in the trace
buffer.

● “ <data source name>”: Data source that identifies the remote device where
the trace record is created.
When the local application is downloaded with the visualization, the trace
configuration is downloaded to the remote device. During execution, the
trace buffer is filled, and the trace data is transferred and then displayed in
the local visualization as HMI.
Example: DataSoure_PLC_A
Note: The trace buffer is filled only if the remote application is being exe-
cuted. The data recording is started when the local visualization is started.

“Application” Application where data was recorded.

: Lists all applications that are present below the data source.
Requirement: A remote data source (not “<local application>”) is referenced in
the “Data source” property.

“Type of element” “Trace”

“Trace” “ <name of trace configuration>”: Opens the “Trace Configuration” dialog
where you can modify the trace configuration.

See also
● Ä “Dialog box 'Trace Configuration'” on page 1734
● Data Source Manager

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1620

ms-its:codesys.chm::/_cds_obj_data_sources_manager.htm

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

“Angle” Static angle of rotation (in degrees)
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Show cursor” : A cursor (vertical line) is displayed at the mouse position. The trigger and
variable values where the cursor points are displayed as a tooltip.

“Overwrite existing trace on
PLC”

: If a trace with the same name is on the PLC, then it is overwritten at down-
load with the configuration that is defined here.

“Number format” Number format of values in the tooltip in printf syntax (example: %d, %5.2f).

The control variables are assigned automatically when you click “Insert elements for controlling
Trace”.

Element prop-
erty 'Control
variables'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1621

“Reset Trigger” Variable (BOOL).

Standard control variable: bResetTrigger
TRUE: Resets the triggering. After the action is executed, the variable is set
automatically to FALSE.

“Start Trace” Variable (BOOL).

Standard control variable: bStart
TRUE: Starts the Trace. After the action is executed, the variable is set automati-
cally to FALSE.

“Stop Trace” Variable (BOOL).

Standard control variable: bStop
TRUE: Stops the Trace. After the action is executed, the variable is set automati-
cally to FALSE.

“Save Trace to a file”

“Save Trace” Variable (BOOL).

Standard control variable: bStore
TRUE: Saves the current trace configuration and the data that is stored in the
development system to a file. When the action is ended, the variable is set
automatically to FALSE.

“File name” Variable (STRING) that contains the file name of the file to be saved.

Standard control variable: sStoreFilename
“Load trace from file”

“Load Trace” Variable (BOOL).

Standard control variable: bRestore
TRUE: Reads the file specified below and loads its contents into the trace editor.
The file contains a trace configuration and possibly also trace data. To do this,
the stored trace configuration must match the application where the trace config-
uration is located. When the action is ended, the variable is set automatically to
FALSE.

Note: A trace configuration can be loaded from a file only under special cir-
cumstances. The file must have been created with exactly the same (running)
application with which it will then be loaded. The consequence of changing the
running application (for example by downloading again) is that a file which was
previously created from the application cannot no longer be read into the appli-
cation. Even external manual changes to the file can cause this. You should edit
only those configuration settings that have an effect on displaying the variables.
If you change variable definitions directly in the file (for example by replacing
variable x with v y), then the file cannot be loaded.

“File name” Variable (STRING) that contains the file name of the file to be read.

Standard variable: sRestoreFilename

See also
● Ä Chapter 1.4.5.19.2.15 “Command 'Insert Elements for Controlling Trace'” on page 1737

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1622

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1623

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1624

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Trend'
Symbol:

Category: “Special Controls”

The element displays the curve of variable values as a trend diagram. The trend diagram is
suitable for representing a long-term data curve because the data is read from a trend recording
and hence from a database. Moreover, you can run the “Trend” element together with the “Date
Range Picker”, “Legend”, and “Time Range Picker” operating elements so that the user can
navigate conveniently in the diagram.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1625

You can programmatically delete the recorded trend curve at runtime. The
recording starts again from the time of deletion. See the help page for "Pro-
gramming a Trend Visualization".

“Element name” Example: Velocity
“Data source” Data source for the connection via the device and the application to the “Trend

Recording” object where the trend data that you want to show was saved.
If the “Trend Recording” object is on the local device, then it is sufficient when
you specify the respective application. If the trend recording is on a remote
device, then you need to specify the data source connection to this device.

● “ <local application>”
The “Trend Recording” object is located on the local device in the local
application.

● <device name> . <application name>
Example: Device_A.App_A
The “Trend Recording” object is located on the local device Device_A below
the application App_A.

● <data source name>
Example: DataSource_B
The “Trend Recording” object is located on a remote device that is
connected via the data source DataSource_B. Below the (now visible)
“Application” property, the remote application is displayed as configured in
the data source.
Example: App_B
Note: If the data source is accessed symbolically by means of a symbol file
(CODESYS symbolic), then the required symbol file and the corresponding
project have to be saved in the same folder.

“Type of element” “Trend”

“Trend recording” : Trend recording whose data is displayed as a diagram
The trend recording is located on the device specified in the “Data source”
property.

“Display Mode” : Opens the “Display Settings” dialog.

See also
● Ä Chapter 1.4.5.11 “Displaying data curve with trend” on page 1309
● Ä Chapter 1.4.5.19.2.12 “Command 'Configure Display Settings of Trend'” on page 1732
● Object 'Data Source'

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1626

ms-its:codesys.chm::/_cds_obj_data_source_communication.htm

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

“Angle” Static angle of rotation (in degrees)
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1627

“Show cursor” : A cursor (black triangle with vertical line) is shown in the trend diagram.
Behavior at runtime: As soon as the graph is drawn, the user can move the
cursor along the time axis in order to mark a specific time. Then the variable
value belonging to the cursor position is displayed in the legend above the
graph.

“Show tooltip” Requirement: “Show cursor” is activated.

: A tooltip opens at the cursor.
Behavior at runtime: The variable value belonging to the cursor position is dis-
played as a tooltip.

“Show frame” : The trend diagram is drawn with a frame.

“Number format” Format specification in printf syntax, which determines how the values are dis-
played in the tooltip and in the legend
Example: %d (integer variable) or %5.2f (floating-point number)

The time stored in the trend recording are in the UTC time zone. If the time
is displayed in the trend of the visualization element, then the time stamps are
converted to the local time zone of the operating system of the PLC.

Change the time zone in the operating system if the times in the trend diagram
are not in the zone that you need.

Element prop-
erty 'Tick mark
labels'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1628

“Time stamps” X-value of the trend diagram
● “Absolute time stamps”

The absolute time with date and time is displayed at each tick mark on the
time axis.
Example: 03/18/2016 12h30m50s

● “Relative time stamps”
The time period from the start of the recording (=0) is displayed at each tick
mark.
Example: 5m30s

“Draw labels on two lines” : The time stamps are displayed on two lines (for example, the date is dis-
played on the first line and the time on the second line).

: The time stamp is displayed on one line. Example: 2019-11-01-12:30:50.

“ Omit irrelevant information in
timestamps”

: The time stamps are displayed in a truncated form (without insignificant
information). For example, the date is displayed at the first tick mark, and only
the time is displayed at the following tick marks. The “Internationalization (format
strings)” property is not visible and is ignored.

: The time stamps are displayed with all information. This takes into considera-
tion the “Internationalization (format strings)” property which contains the format
specification for the date and time display.

“Internationalization (format
strings)”

Format specification for the date and time display of the time stamp (when it is
displayed in full)
Note: The property is visible only if the “Omit irrelevant information in
timestamps” option is not selected.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1629

“Date” Format string that returns the date display according to the defined format. The
operating system locale is used as the default setting.
Defined format strings for the date:
● Year: yyyy, yy, y
● Month: MM, M
● Day: dd, d
● Recommended separator: - . /
Example:
yyyy-MM-d displays 2019-10-25
yyyy-MM-dd displays 2019-10-25
dd.MM.yyyy displays 25.10.2019
dd/MM/yyyy displays 25/10/2019

“Time” Format string that returns the time (or time of day) display according to the
defined format. The operating system locale is used as the default setting.
Defined format strings for the time:
● 24-hour time definition: HH, H
● 12-hour time definition: hh, h
● AM/PM for 12-hour time definition: tt
● Minutes: mm, m
● Seconds: ss, s
● Milliseconds: ms
● Microseconds: us
● Recommended separator: : or space character

Example:
HH:mm:ss:ms displays 15:30:59:123
h:mm:ss tt displays 3:30:59 PM

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

These elements are created automatically when the control elements are added with the com-
mand “Insert elements for controlling Trend”.

“Date Range Picker” Control element for changing the date and time of the displayed data sets.
With , all elements are provided that have implemented the interface
IDateRangeSelector. By default, instances of the “Date Range Picker” visu-
alization element are available.

“Time Range Picker” Control element for changing the time of the displayed data sets. With , all
elements are provided that have implemented the interface ITimeSelector.
By default, instances of the “Time Range Picker” visualization element are avail-
able.

“Legend” Control element for displaying a legend for the graphs. With , all elements are
provided that have implemented the interface ILegendDisplayer.

See also
● Ä Chapter 1.4.5.19.2.18 “Command 'Insert Elements for Controlling the Trend'”

on page 1739

Element prop-
erty 'Assigned
control ele-
ments'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1630

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1631

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1632

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.11 “Displaying data curve with trend” on page 1309
● Ä Chapter 1.4.5.11.1 “Getting Started with Trend Visualization” on page 1309
● Ä Chapter 1.4.5.11.2 “Programming a Trend Visualization” on page 1312
● Object 'Trend Recording'

Visualization Element 'Legend'
Symbol:

Category: “Special Controls”

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1633

ms-its:codesys.chm::/_cds_obj_trend_recording.htm

The element is used as a legend for another element (for example, a trend). The legend is
assigned in the properties of the other element.
See also
● Ä Chapter 1.4.5.11 “Displaying data curve with trend” on page 1309

“Element name” Example: LegendOfTrendA
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Legend”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1634

You can also change the values by dragging the symbols () to other positions
in the editor.

“Orientation” Orientation of the element. The value is configured in the assigned element.
● “Horizontal”
● “Vertical”

“Attached element instance” Example: Element_A
“Show frame” : The element is displayed with frames.

“Number format” The format of the value in printf syntax (example: %d, %5.2f)

Defines how many variables can be displayed at a maximum and is calculated from the row and column number.

“Max. number of rows” Example: 3
“Max. number of columns” Example: 2

The property affects the text configured in the associated element.

“Text format” “Default”: The text will be cut and displayed in only the part that fits into the
visualization element.
“Linebreak”: The text will be wrapped in rows.
“Ellipsis”: The text is cut and ellipsis ... are added to indicate that something is
missing.

“Font” Font of the text. The entries of the selection list are defined in the visualization
style.

“Font color” Text color, for example Grey. The entries of the selection list are defined in the
visualization style.

“Transparency” Transparency value (255 to 0), which defines the transparency of the corre-
sponding color.
Example: 255: The color is opaque. 0: The color is fully transparent.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element Prop-
erty 'Layout'

Element Prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1635

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1636

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'ActiveX'
Symbol:

Category: “Special Controls”

The element is used to link an existing ActiveX control in the visualization. You can configure
the method calls and their parameters in the element properties of the “ActiveX” element.

Element prop-
erty 'Access
rights'

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1637

“Element name” Example: GenElemInst_1
“Type of element” “ActiveX”

“Element” Installed ActiveX component that is linked to the visualization.
Hint: To avoid typing errors, select the required ActiveX component by means of
the Input Assistant.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1638

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1639

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These method calls are executed during initialization. They are executed in the first cycle only.

“Method calls ” Button '“Create new”'
Creates a subnode below “Methods” with parameters for the method call.

“Methods” “[<number>]”

● “Method”: Name of the method
● “Parameter”: Parameter passed at the method call
● “Result parameter”: Optional variable for the return value of the method

These method calls are executed in every cycle. They are executed in the refresh rate of the
visualization.

“Method calls ” Button '“Create new”'
Creates a subnode below “Methods” for a method call and its parameters.

“Methods” “[<number>]”

● “Method”: Name of the method
● “Parameter”: Parameter passed at the method call
● “Result parameter”: Optional variable for the return value of the method

These method calls are executed in the refresh rate of the visualization. You define the call
condition in the property “Methods è [<number>] è Call condition”.

“Method calls ” Button '“Create new”'
Creates a subnode below “Methods” with a call condition and parameters for the
method call.

“Methods” “[<number>]”

● “Method”: Name of the method
● “Call condition”: Variable (BOOL). A rising edge of this variable triggers the

call of this method.
● “Parameter”: Parameter passed at the method call
● “Result parameter”: Optional variable for the return value of the method

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Initial calls'

Element prop-
erty 'Cyclic
calls'

Element prop-
erty 'Conditional
calls'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1640

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Web Browser'
Symbol:

Category: “Special Controls”

The element shows a website, PDF file, or video that has a URL.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1641

NOTICE!
The display options of the “Web Browser” element depend on the operating
system and the display variant of the visualization.

Requirement: The software components of the web browser are available in the runtime and
configured accordingly (example: videos to be shown on Linux).
See also
● Ä Chapter 1.4.5.21.6 “Displaying Web Contents” on page 2141

“Element name” Example: GenElemInst_59
“Type of element” “Web Browser”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1642

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1643

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

“URL” URL of the web page that is displayed in the visualization.
● Variable (STRING or WSTRING)

Example: PLC_PRG.stURL
● Literal in single straight quotation marks

Example: 'http://de.wikipedia.org'
“Show” Variable (BOOL).

Example: PLC_PRG.bSetURL
Controls the display of the “Web browser” element.
If the variable contains a rising edge, then the visualization calls the web page
given in “URL” and displays its contents in the 'Web browser' visualization ele-
ment.

“Back” Variable (BOOL).

Example: PLC_PRG.bGoBack
Controls the back navigation in the “Web browser”. If the variable has a rising
edge, then the visualization displays the contents of the previously displayed
page.

“Forward” Variable (BOOL).

Example: PLC_PRG.bGoForward
Controls the forward navigation in the “Web browser”. If the variable has a rising
edge, then the visualization displays the contents of the previously displayed
page.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Control
variables'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1644

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Busy Symbol, Cube'
Symbol:

Category: “Special Controls”

At runtime, this element indicates automatically that the runtime is busy or waiting for data.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1645

“Element name” Example: Data_Transfer
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Busy Symbol, Cube”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1646

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1647

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1648

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Busy Symbol, Flower'
Symbol:

Category: “Special Controls”

The element indicates that the system is busy or waiting for data.

“Element name” Example: Data_Transfer
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Busy Symbol, Flower”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1649

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Frame color”

“Fill color”

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 1671

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1650

“Symbol color” Selection of a color for the flower symbol.

“Line” Stroke width of the lines (in pixels).

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1651

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1652

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Text Editor'
Symbol:

Category: “Special Controls”

The element shows the contents of text files that are saved on the controller. Files can be
encoded in ASCII or Unicode formats.
A visualization user can also edit the text.

“Element name” Example: GenElemInst_1
“Type of element” “Text Editor”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1653

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Font name” Non-proportional font used by the visualization to display the contents of the file
Example: “Courier New”

“Size” Font size
Example: 12

Table 272: Element property “Control variables --> File”
“Variable” Variable (STRING). Contains the file names and optionally the location of the file.

It is located in the file system of the controller.
Example: PLC_PRG.strFile: STRING := '/Documentation/
Info.txt';

“Open” Variable (BOOL). Controls opening the file which is defined in the “Variable”
property
Example: bOpen: BOOL;
TRUE: The file is opened.

“Close” Variable (BOOL). Controls closing the file which is defined in the “Variable” prop-
erty
Example: bClose: BOOL;
TRUE: The file is closed.

“Save” Variable (BOOL). Controls saving the file which is defined in the “Variable” prop-
erty
Example: bStore: BOOL;
TRUE: The file is saved.

“New” Variable (BOOL). Controls creating a new file. The name is defined in the
“Variable” property.
Example: bCreate: BOOL;
TRUE: A file is created and opened.

Element prop-
erty 'Font'

Element prop-
erty 'Control
variables'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1654

Table 273: Element property “Control variables --> Edit ”
“Variable” Variable (STRING). Contains the string to search for in the file

Example: strFind: STRING := 'abc';
“Find” Variable (BOOL). Controls executing the search for the string in the “Variable”

property
Example: bFind: BOOL;
TRUE: The search is performed. The variable is automatically reset to FALSE.

“Find next” Variable (BOOL). Controls the location to begin the search in the file

Example: bFindNext: BOOL;
TRUE: The search begins at the last search result location.

FALSE: The search begins at the beginning of the file.

Table 274: Element property “Control variables --> Cursor position”
“Line” Variable (integer data type). Contains the line of the cursor

Example: iRowCursor: INT;
“Column” Variable (integer data type). Contains the column of the cursor

Example: iColumnCursor: INT;
“Position” Output variable (integer data type). Shows the absolute cursor position in the

text.
Example: iPosCursor: INT;

“Set cursor” Variable (BOOL). Controls the setting of the cursor at a specific location

Example: iSetCursor: INT;
TRUE: The cursor is moved. The new position is defined in the “Line” and
“Column” properties.
FALSE: The “Line”, “Column”, and “Position” properties contain the actual
values.
Note: The variable is used as the control variable for an input event triggered
by a visualization user.

Table 275: Element property “Control variables --> Selection”
“Start position” Output variable (integer data type). Shows the absolute position for starting the

text selection
Example: iPosSelection: INT;

“End position” Output variable (integer data type). Shows the absolute position for ending the
text selection.
Example: iPosEndSelection: INT;

“Start line number” Output variable (integer data type). Shows the line where the text selection
begins
Example: iRowSelection: INT;

“Start column index” Output variable (integer data type). Shows the column where the text selection
begins
Example: iColumnSelection: INT;

“End line number” Output variable (integer data type). Shows the line where the text selection ends
Example: iRowEndSelection: INT;

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1655

“End column index” Output variable (integer data type). Shows the column where the text selection
ends
Example: iColumnEndSelection: INT;

“Line to select” Variable (integer data type). Contains the line number that is selected
Note: The selection is controlled by the variables in the “Trigger selection” prop-
erty.

“Set selection” Variable (BOOL). Controls the selection of a line.

Example: bSetSelection: BOOL;
TRUE: The line from the “Line to select” property is selected and highlighted in
the Text Editor.
if the line is not in the current text segment of the Text Editor, then the text
segment is moved to this line.
Note: The variable is used as the control variable for an input event triggered
by a visualization user. The control variable is not reset automatically. You are
responsible for this to occur in the visualization.

Table 276: Element property “Control variables --> Error handling”
“Variable for error code” Variable (integer data type). Contains the error code when an error occurs

Example: iError: INT;
The error codes are declared in GVL_ErrorCodes in the
VisuElemTextEditor library. To display the error text, the
VisuFctTextEditorGetErrorText() function of the library must be called.

“Variable for content changed” Variable (BOOL). Shows whether the contents have changed

Example: bIsContentEdited: BOOL;
TRUE: The contents of the Text Editor have changed.

“Variable for access mode” Variable (BOOL). Controls the access privileges to the file

Example: bIsReadOnly: BOOL;
TRUE: A visualization user has read-only permission. At runtime, the file contents
are highlighted in gray in the Text Editor.
FALSE: A visualization user has read/write permission.

Note: The variable overwrites the setting in the “Editor mode” property.

“Maximum line length” Maximum number of characters per line

“Editor mode” ● “Read-only”: A visualization user has read-only permissions to the file. At
runtime, the file contents are highlighted in gray in the text editor.

● “Read/write”: A visualization user has read-write permissions.

Element prop-
erty 'New files'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1656

“Encoding” Character encoding of the new file:
● “ASCII”
● “Unicode (Little endian)”
● “Unicode (Big endian)”

“New line character sequence” End of line character of the new file:
● “CR/LF”: Normal for Windows systems
● “LF”: Normal for UNIX systems
Please note: When a visualization user opens an existing file, the end-of-line
character of the file is detected and used automatically.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1657

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Path3D'
Symbol:

Category: “Special Controls”

The “Path3D” visualization element graphically displays the curves of two independent records
as a 3D path. It is specially designed for use with Motion Solution CNC in order to display
the trajectory of a machine tool or a robot. The programmed path (path) and the path actually
traveled (track) is displayed.
Although the visualization element is designed for use with Motion Solution CNC, it can also be
used to display any other record. In this case the application has to provide the path data. The
sample application 3D Path Generator, which is available in CODESYS Forge, shows how
these data can be generated.
If the element is used together with SoftMotion CNC, then function blocks from the library
SM3_CNC_Visu help to generate the data from the path and track. These function blocks are
used by the sample project CNC_File_3DPath, which is stored in the installation directory of
CODESYS.
● SMC_PathCopier
● SMC_PathCopierCompleteQueue
● SMC_PathCopierFile
● SMC_PositionTracker
A description of the function blocks can be found in the Library Manager in the library
SM3_CNC_Visu.

The element does not work with the CODESYS HMI display variant.

See also
● CNC Example 6: Using Path3D with SoftMotion CNC
● Sample project in CODESYS Forge

“Element name” Example: GenElemInst_1
“Type of element” “Path3D”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1658

ms-its:codesys_softmotion.chm::/_sm_example_cnc_6.htm
https://forge.codesys.com/prj/codesys-example/home/Home/

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Path data
(VisuStruct3DTrack)”

Variable of the type VisuStruct3DTrack, which is declared in the IEC code.
Example: PLC_PRG.pc.vs3dt. A description of the structure can be found in
the library manager in the library VisuElem3DPath.library.

The data structure describes a path or track through a certain number of points.
The points are determined and buffered by the application. The track typically
displays the last n positions, so that only a certain part of them is ever displayed
at any one time. VisuStruct3DTrack.pProjection is a variable that is
set by the visualization element and contains information about the path/track
projection. It can be read (only) by the application. In addition, the methods
Projection.Apply or .ApplyV can be used in order to see whether the
transformed position lies inside or outside the visualization display area, which is
defined by Projection.ElementRect.

“Path color” Color of the path drawn

“Path line width” Path line width in pixels, e.g.: "2"

“Style of boundary points” Display of the points between two successive objects in the path
● End points are not displayed
● End points are marked with a circle
● End points are marked with a cross
● End points are marked with a plus

The track data are structured in exactly the same way as the path data: VisuStruct3DTrack

“Track data
(VisuStruct3DTrack)”

Variable of the type VisuStruct3DTrack, which is declared in the IEC code.
Example: PLC_PRG.pc.vs3dt. A description of the structure can be found in
the library manager in the library VisuElem3DPath.library.

“Track color” Color of the track drawn

“Track line width” Track line width in pixels, e.g.: "2"

Path description

Track descrip-
tion

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1659

The camera position for the 3D mode is controlled with a reference to the external data struc-
ture. This structure allows the following operations:
● Shifting to the left/to the right/upwards/downwards
● Rotation around the X/Y/Z axis
● Resetting of the view at X/Y, Y/Z or Z/X level, so that the path and the track are completely

visible.

“Control data
(VisuStruct3DControl)”

Variable of the type VisuStruct3DControl, which is declared in the IEC
code. Example: PLC_PRG.pc.vs3dc.

A description of the structure can be found in the library manager in the library
VisuElem3DPath.

The values can be set via the application itself or via the visualization element
“ControlPanel”. The library VisuElem3DPath contains ready-to-use visualiza-
tion frames that provide a possible user interface for these data.

“Coordinate system” : The coordinate system is displayed

“Grid” : Grid lines are displayed

“Grid color” Color of the grid lines

Individual parts of the path can be visually highlighted. This is typically used to mark the already
processed part of a track with a different color. Each point in the path is given a unique ID,
which in the case of a CNC editor is linked with the object ID on which the point lies. This ID
("highlight ID") can be specified via the application so that dynamic elements/parts of the track
can be highlighted.

Highlight mode Select one of the following highlight modes:
● Only the element whose ID corresponds to the value of the variable is high-

lighted.
● All elements whose ID (linked with the object ID in the case of a CNC editor)

is smaller than or equal to the value in Variable are highlighted.

Variable Project variable that specifies the ID of an element. Example:
PLC_PRG.iVarElementID. This "highlight ID" is taken into account for the
setting of the highlight mode. The variable must be set in the IEC application.

Highlight color

“Frame line width” Width of the frame around the element, in pixels, for example: "1"

“Frame line style” Select one of these style types for the frame line:
● Solid
● Dashes
● Dots
● Dash Dot
● Dash Dot Dot
● Hollow

Camera control

Additional
aspects

Highlighting

Element look

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1660

“Transparent background” : The background of the element is displayed transparently.

: The background of the element is displayed in the defined background color.

“Background color”

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Control Panel'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1661

Category: “Special Controls”

This visualization element is used in connection with the “Path3D” visualization element. It is
used for changing the position and orientation to the CNC path shown with “Path3D”.
See also
● Ä Chapter 1.4.5.18.1.42 “Visualization Element 'Path3D'” on page 1658

“Element name” Optional.
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Camera_Path_1

“Type of element” “Frame”

“Clipping” : If you have set the “Scaling type” to “Fixed”, then only that part of the
visualization is displayed that fits in the frame.

“Show frame” Displays the frame
● “No frame”: The displayed area of the frame does not have borders.
● “Frame”: The displayed area of the frame has borders.
● “No frame with offset”: The displayed area of the frame does not have a

border and the displayed area of the referenced visualization is reduced
inwards by one pixel as compared to the frame area.
The resulting gap prevents the referenced visualization from touching any
adjacent elements.

“Scaling type” Describes how the frame reacts when the visualization is resized:
● “Isotropic”: The frame retains its proportions. This allows the ratio of height to

width to be preserved, even if the height and width of the visualization have
been changed separately.

● “Anisotropic”: The frame depends on the size of the visualization, so that
height and width of the referenced visualization can be changed separately.

● “Fixed”: The original size of the frame is retained, regardless of the visualiza-
tion size. If you have also selected the “Clipping” option, then only the fitting
part is displayed.

● “Fixed and scrollable”: The referenced visualization is displayed without
scaling. If the value is greater than the window area of the frame, then
scrollbars are added to the frame. To set the position of the scroll bar with
a variable, use the “Scroll position variable horizontal” or “Scroll position
variable vertical” property.

“Deactivation of the
background drawing”

: To optimize the performance of the visualization, the non-animated elements
of the frame element are drawn as a background bitmap. This could result in the
elements not being displayed in the expected order.

: Deactivation of the background drawing. This can prevent the behavior
described above.

Contains the currently configured visualization references as a subnode

Element proper-
ties

Element prop-
erty 'Referen-
ces'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1662

“References” Clicking “Configure” opens the “Frame Configuration” dialog. This is used to
manage the referenced visualizations.
Caution: Visualizations can be nested at any depth by means of Frame ele-
ments. In order to use the “Switch to any visualization” Frame selection type
without any problems, a Frame must not contain more than 21 referenced
visualizations. For more information, see also the description for the “Input
configuration” of an element: Action “Switch Frame visualization”.

List of the currently referenced
visualizations

Visualizations that have a button also have this displayed as a subnode. Each
interface variable is listed with the currently assigned transfer parameters.
Example:
vis_FormA
● iDataToDisplay_1 : PLC_PRG.iVar1
● iDataToDisplay_2 : PLC_PRG.iVar2
Hint: You can change the assignment of the variables to an interface variable
here and edit the value field. Or click the “Configure” button instead.

See also
● Ä Chapter 1.4.5.19.2.1 “Command 'Interface Editor'” on page 1719
● Ä Chapter 1.4.5.15 “Creating a structured user interface” on page 1321
● Ä “Input action 'Switch Frame Visualization'” on page 1756

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1663

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color for the element in its normal state.
Please note that the normal state is in effect if the expression in the “Color
variables è Toggle color” property is not defined or it has the value FALSE.

“Alarm color” Color for the element in alarm state.
Please note that the alarm state is in effect if the expression in the “Color
variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

“Use gradient color” : The element is displayed with a color gradient.

“Gradient setting” The “Color gradient editor” dialog box opens.

“Frame color” Example: “Black”

“Fill color” Example: “Light gray”

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748
●

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1664

See also
● Ä “ Element property 'Appearance variables'” on page 1671

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1667
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1665

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1666

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 1698

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1667

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1665
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1668

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1669

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1665

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1670

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

The properties contain variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible: The line is not drawn.

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 1664

The variable controls the switching of the referenced visualizations. This variable indexes one
of the referenced frame visualizations and this is displayed in the frame. When the value of the
variable changes, it switches to the recently indexed visualization.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'Switch
frame variable'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1671

“Variable” ● Variable (integer data type) that contains the index of the active visualization
Example: PLC_PRG.uiIndexVisu
Hint: The “Frame Configuration” dialog includes a list of referenced visualiza-
tions. The visualizations are automatically numerically indexed via the order
in the list.
Note: This variant of switching usually affects all connected display variants.

● Array element (integer data type) for index access via CURRENTCLIENTID
Example: PLC_PRG.aIndexVisu[CURRENTCLIENTID]
Note: This variant of switching applies to the current client only, and there-
fore only on one display variant. That is the display variant where the value
change was triggered (for example, by means of user input).

See also
● Ä Chapter 1.4.5.19.2.9 “Command 'Frame Selection'” on page 1727

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1672

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1673

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1674

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Cartesian XY Chart'
Symbol:

Category: “Special Controls”

The element displays the curve of array values graphically as a line or bar chart in the Cartesian
coordinate system. The chart can display multiple curves at one time.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1675

NOTICE!
Constraint
The element can be used with controller with V3.5 SP11 and higher.

in CODESYS Forge, you will find a sample project for using “Cartesian XY
Chart” elements in visualizations.

See also
● Sample project in CODESYS Forge

“Element name” Example: Velocity chart
“Type of element” “Cartesian XY Chart”

“Cartesian XY Chart” XYChart: Opens the “XY Chart Configuration” dialog. This is where the chart
is configured.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for defining the look of the element.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Element
look'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1676

https://forge.codesys.com/prj/codesys-example/home/Home/

“Border line width” Value (in pixels)
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Border line style” property must be set to the
option “Invisible”.

“Border line style” ● “Solid”
● “Dash”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “Invisible”

“Frame line color” ● Style color from the list box. Example: Black
● Fixed value that is selected in the color dialog. Example: 0; 0; 0

“Font” Example: “Default”

: Opens the “Font” dialog.

: List box with style fonts

Table 277: “Zoom”
 Zooming the displayed curve is done by means of the mouse, or the pinch

gesture on a multitouch device. It also applies to all axes.
At runtime when “Enable” is TRUE, you can draw a box with the mouse by
holding down the left mouse button. When you release the mouse button, the
display zooms in on the box and the curve is magnified. To zoom in and out
on a multitouch device, move two fingers together or away from each other,
respectively.
Zooming and panning can work together.

“Enable” Variable (BOOL) that enables or disables zooming.

TRUE: Enables zooming

Example: PLC_PRG.xZoomEnable
“Home” Variable (BOOL)

Rising edge: Reset the displayed curve to the initial state after the display has
changed due to zooming.
Example: PLC_PRG.xZoomHome

Element prop-
erty 'Axis font'

Element prop-
erty 'Control
variables'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1677

“Undo” Variable (BOOL)

Rising edge: Reset the displayed curve to the previous position after the display
has changed due to zooming.
Example: PLC_PRG.xZoomUndo

“Is zoomed” Variable (BOOL) that indicates whether or not the displayed curve was modified
due to zooming.
TRUE: Curve setting was zoomed.

Example: PLC_PRG.xIsZoomed

Table 278: “Pan”
 Panning the displayed curve is done by means of the mouse or the pinch ges-

ture on a multitouch device. It also applies to all axes.
At runtime if “Enable” is TRUE, then you can drag the displayed curve to another
position by holding down the left mouse button. To pan the displayed curve on a
multitouch device, drag it with one finger to another position.

“Enable” Variable (BOOL) to enable or disable panning.

TRUE: Enables panning

Example: PLC_PRG.xPanEnable
“Home” Variable (BOOL)

Rising edge: Reset the displayed curve to the initial position after the display has
changed due to panning.
Example: PLC_PRG.xPanHome

“Is panned” Variable (BOOL) whose state indicates whether or not the displayed curve was
modified due to zooming.
TRUE: Curve setting was panned.

Example: PLC_PRG.xIsPanned

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1678

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1679

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Date Range Picker'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1680

Category: “Date/Time Controls”

The element provides the capability of selecting the date and time range of a saved data set.
The element is used with the “Trend” visualization element.

“Element name” Example: DateTrend1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Date Range Picker”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1681

You can also change the values by dragging the symbols () to other positions
in the editor.

“Show frame” : The visualization element is drawn with a frame.

“Resolution” Resolution saved for the time stamp: “Millisecond” or “Microsecond”

“Attached element instance” The element can be assigned to a “Trend” visualization element. As a result, the
time range of the trend element can be changed. The available visual elements
are selected with the help of the Input Assistant ().

“Two-line labelling” : The time stamps are displayed in two lines. The date is displayed in the first
line and the time is displayed in the second line.

: Time stamp is displayed in one line. The date and time can also be displayed
in one line depending on the formatting.

“ Omit irrelevant information in
time stamp”

: The time stamp has a shorter form. For example, the date is displayed only
for the first tick mark, and only the time for the following tick marks. The settings
in “Internationalization (format strings)” are ignored for this setting.

: All information is displayed for all time stamps.

“Internationalization (format
strings)”

Only active when the parameter “Omit irrelevant information in timestamps” is
deactivated.

“Date” Definition of the date format. The default setting is taken from the Windows
control panel.

“Time” Definition of the time format. The default setting is taken from the Windows
control panel.

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Element prop-
erty 'Tick mark
labels'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1682

“Jump to the largest possible
time stamp”

: An additional button () is displayed for jumping to the last time stamp.

“Jump to the smallest possible
time stamp”

: An additional button () is displayed for jumping to the first time stamp.

“Zoom out” : An additional button () is displayed for setting the current min./max. range
to the maximum range. The selected range is left.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Additional
buttons'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1683

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1684

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Time Range Picker'
Symbol:

Category: “Date/Time Controls”

The element provides configurable buttons for setting the time range of a trend display to a
defined time. In the process the end time of the previous display is left unchanged and the start
time is adapted.

Element prop-
erty 'Access
rights'

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1685

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: TimeRangeTemperature

“Type of element” “Time range picker”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Orientation” Specifies whether the time picker element is aligned horizontally or vertically in
the editor.
Hint: Change the width to height ratio of the element in the editor.

“Show frame” : The visualization element is drawn with a frame.

“Resolution” Resolution saved for the time stamp: “Millisecond” or “Microsecond”

“Attached element instance” Assignment to the element that processes the time picker
The element can be assigned for example to a “Trend” visualization element.
Then the time range of the trend element can be changed. The available visual
elements are selected with the help of the input assistance ().
Example: GenElemInst_1

“Text” String label for the element.
Example: Zoom

Element prop-
erty 'Position'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1686

The properties contain fixed values for the text properties.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

In “Times”, the buttons that the element provides at runtime are defined and configured in an
array.

“Provide "All" selection” :Time Range Picker bar extended by "All" button. The diagram represents a
time interval that covers all time stamps.

“Times” : Adds another button to the Time Range Picker bar and increases the array
by one entry. An additional index is present in the property “Times è Times
è Times è [<new>]”. “Time” is located under this index. The configuration of
the button is to be entered there.

“Times”

● “ [Index]”

with index Î {0, 1, 2,...}

Array of all buttons in the time selection bar. Index corresponds to the number of
buttons.

: The associated button is removed from the Time Range Picker bar. The
configuration entry is deleted from the “Times” property list.

“ [Index]”

● “Time”

: Time interval in standardized notation. Example: 3M for 3 months; 30m for 30
minutes. If a time interval is indicated in the field, then the button is labelled with
it. If a user clicks on the button at runtime, the command is executed to switch
the diagram to this time interval. The default is empty.

“Time” Displays which time is currently selected.
Variable (STRING)

Example: PLC_PRG.strSelcetedTime
“"All" selected” Displays the state of the "All" button

Variable (BOOL)
Example: PLC_PRG.AllTimesAreSelected

Element prop-
erty 'Text prop-
erties'

Property 'Times'

Element prop-
erty 'Control
variables'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1687

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1688

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1689

Visualization Element 'Date Picker'
Symbol:

Category: “Date/Time Controls”

The element is a calendar that displays the current date. A user can click a day to select a date,
which is saved to a variable. In addition, it can customize the time interval that the calendar
displays. Clicking the calendar header changes the year. Clicking the arrows in the calendar
header changes the month.

The element contains language-dependent texts that are managed in the System text list.
This deals with the names of the month and the days of the week written out completely or
abbreviated. When the date picker is added to a visualization, CODESYS generates the text
list automatically below the POU view. The IDs correspond to the standard text and therefore
English terms. The text list makes it possible to translate these texts.

System text list

ID Default
Apr Apr
April April

Example

See also
● Ä Chapter 1.4.5.6 “Setting Up Multiple Languages” on page 1286

“Element name” Example: DueDateCalendar
“Type of element” “Date Picker”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

Language-
dependent texts
of the element

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1690

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Input variable (DATE). Contains the date that a user selects in the calendar.

Example: PLC_PRG.dtDueDate
“Design” ● “From style”: All settings are preconfigured according to the style.

● “Explicit”: The “Design settings” property is available. You can customize the
calendar here.

Requirement: This property is visible only if the “Design” property is set to “Explicit”.
The values of the property can be predefined in the style. Then they are available in the
drop-down list.

Table 279: “Header of Date Picker”
Design of the header

“Font” Style font or user-defined font

Style color or user-defined color“Font color”

“Arrows”

“Arrow color” Style color or user-defined color

“Color of printed arrow”

“Background”

Element prop-
erty 'Center'

Design settings

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1691

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Fill color” Style color or user-defined color

Table 280: Design of the main display area
Design of the main display
area

“Today” Design of today

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The style defines whether and which background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color” Style color or user-defined color. Used if “Yes” is selected in “Draw background”.

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Selected day” Design of the selected day

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color” Style color or user-defined color

“Show frame” “From style”: The style defines whether and how a background is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Current month” Design of the current month

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1692

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color”

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Other months” Design of the previous and subsequent months

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Display other month” Design of the previous and subsequent months

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color”

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Day of week heading” Design of the heading with the days of the week

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The background is filled with the style color “From style”. The style
defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color”

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1693

“Display separator line” “From style”: The style defines whether and how a separator line is drawn.
“Yes”: Display with the following properties.
“No”: A separator line is not displayed.

“Color of the separator line” Used if “Yes” is selected in “Display separator line”.

“Width of separator line”

“Background” Design of the calendar days

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Fill color” property and
framed in the “Frame color”.
“No”: The background is not filled with a color.

“Fill color” Style color or user-defined color

“Frame color”

“Rows” Number of month calendars per row (preset: 1)

“Columns” Number of month calendars per column (preset: 1)

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Display
type'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1694

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1695

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Analog Clock'
Symbol:

Category: “Date/Time Controls”

The element is a clock that displays the current time of day. The clock can also display a
random time.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1696

“Element name” Example: GenElemInst_1
“Type of element” “Analog Clock”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Time Dis-
play'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1697

“Use system time” : The system time of the PLC is displayed.

“Variable” Variable (time data type TOD, TIME_OF_DAY). This receives the time of day that
is not the system time.
Example: PLC_PRG.todTimeTokio
Requirement: The “Use system time” property is not activated.

See also
● Ä Chapter 1.4.1.19.5.5 “Data Type 'TIME'” on page 649

“Design” ● “From style”: All settings are preconfigured according to the style.
● “Explicit”: The “Settings” property is available. Here you can customize the

analog clock.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1698

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

Requirement: The “Property” is “Explicit”. Only then is the “Clock Settings” category visible.

Table 281: “Background”
“Background color” Color variants of the default background image

● “Yellow”
● “Red”
● “Blue”
● “Green”
● “Black”

“Own background” Background display with the specific “Image”. Replaces the default background
image.

Element prop-
erty 'Settings'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1699

“Image” Image from an image pool or library
Example: myImagepool.myImage

“Transparency color” The transparent color in the image representation.
Example: “White”. The white parts of the image are transparent.

“Use background color” : The image background is displayed using the color defined in the
“Background color” property.
Requirement: No image reference is given in the “Image” property.

“Background color” Style color or color
Requirement: “Use background color” is activated.

Table 282: “Hands”
“Hand style” Example: “Thin arrow”

“Color hour hand” Style color or color for the hands

“Color minute hand”

“Color second hand”

Table 283: “Lines”
“Lines style” Clock face graduation

● “None”
● “Line”: Graduation lines by hour
● “Hours and minutes”: Graduation lines by hours and minutes
● “Dots”: Graduation dots by hour

“Color” Color of the clock face graduation

“Line width” Line weight of the clock face graduation

“Scale in 3D” : Representation of the clock face with 3D effect

Table 284: “Numerics”
“Style of numerics” Digits on the clock face

● “None”
● “Quarter”
● “All”

“Font” Font for displaying the digits

“Font color” Font for displaying the digits

Table 285: “Center point”
“Color” Color of the center of the clock

Table 286: “Positioning”
“Usage of” ● “Default style values”: Presetting of the style values

● “Individual settings”: User-defined settings in the subordinate “Positioning”
property.

“Positioning” Requirement: Visible when the “Usage or” property is set to “Individual settings”.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1700

“Numerics movement” Value (in pixels) for shifting the digits.
Example: 80

“Line movement” Value (in pixels) for shifting the hour lines.
Example: 100

“Hands scaling” Factor for scaling the length of the hour hand. You can customize the exact
position of the hour hand relative to the background image.
Example: 100

“Scaling type” Defines the scaling of the height and width of the element.
● “Anisotropic”: The background image is scaled to the size of the element The

height and width are scaled independently of each other.
● “Isotropic”: The background image is scaled to the size of the element,

retaining its proportion. The proportion of height and width is fixed.

“Optimized drawing” : The background image is drawn one time. When the hour hand moves, only
the affected part of the image is redrawn.

: The background image is redrawn in cycles.
Hint: Disable this option only for extreme exceptions.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1701

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1702

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Date/Time Picker'
Symbol:

Category: “Date/Time Controls”

The element provides the capability of selecting the date and time. The value can be changed
by means of the arrow keys on the keyboard. The date can be selected from a calendar.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: StartDateAndTime

“Type of element” “Date/Time Picker”

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1703

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1704

“Variable” Variable (DATE, DT, TIME, LTIME, TOD)

The value of the value of the variable is displayed and modified by means of the
element.
The data type automatically determines the displayed value units:
● TIME: Day, hour, minute, and second (by default, milliseconds are not dis-

played)
● DATE: Year, month, and day
● DT: Year, month, day, hour, minute, and second
● TOD: Hour, minute, and second (by default, milliseconds are not displayed)
● LTIME: Day, hour, minute, and second (by default, milliseconds, microsec-

onds, and nanoseconds are not displayed)

“Format string” The format can restrict the output to individual values.
Example for LTIME: Format: HH:mm:ss.ms.us.ns --> displayed:
08:15:12.780.150.360 LTIME restricted: format: HH:mm --> displayed: 08:15

Example for DATE: Format: yyyy/MM/dd --> displayed: 2015/12/17 .

Basically, all usual formats available for %t are also supported.

“Design date time picker” ● “From style”: All settings are preconfigured according to the style.
● “Explicit”: The “Design settings” property is available. You can customize the

calendar here.

“Design date picker” ● “From style”: All settings are preconfigured according to the style.
● “Explicit”: The “Design settings” property is available. You can customize the

calendar here.

“Positioning date picker” ● “Dynamic”: The calendar is adapted and positioned automatically.
● “Manual”: The “Position settings” property is available. You can customize

the calendar here.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1705

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1706

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1707

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

1.4.5.18.2 Placeholders with Format Definition in the Output Text
A character string which is output in the visualization can include the placeholder % for a
variable. At runtime, the placeholder is replaced by the actual value of the variable in the
defined format. The data type in the format definition and of the variable have to be identical. A
character string can contain a maximum of one placeholder.
Character strings for output are listed in the “Text” property. The assigned variable is listed in the
“Text variable” property.
See also
● Integer Data Types
● REAL/LREAL Data Type
● Time Data Types

%d
%i

Output of variable (integer
data type) as decimal
number

Code: iCounter : INT := 12;
Property “Text”: Value: %i
Property “Text variable”: PLC_PRG.iCounter
Output: Value: 12

%b Output of variable (integer
data type) as binary
number

Code: byCode : BYTE := 255;
Property “Text”: Coding: %b
Property “Text variable”: PLC_PRG.byCode
Output: Coding: 11111111

%o Output of variable (integer
data type) as unsigned
octal number without a pre-
ceding zero

Code: byCode : BYTE := 8#377;
Property “Text”: Coding: %o
Property “Text variable”: PLC_PRG.byCode
Output: Coding: 377

%x Output of variable (integer
data type with max. 32
bits) as unsigned hexadec-
imal number without a pre-
ceding "0x"

Code: dwCode : INT := 16#FFFFFFFF;
Property “Text”: Coding: %x
Property “Text variable”: PLC_PRG.dwCode
Output: Coding: ffffffff

%llX
%012llX

Output of 64-bit variable
(LWORD, LINT, ULINT) as
hexadecimal number.
Note: llx means "long
long hexadecimal"

Code: lwCode : LWORD :=
16#4FFF_3FFF_2FFF_1FFF;
Property “Text”: Coding: %llx
Property “Text variable”: PLC_PRG.lwCode
Output: Coding: 4fff3fff2fff1fff

%u Output of variable (integer
data type) as unsigned
decimal number

Code: uiNumber : UINT := 1234;
Property “Text”: Number: %u
Property “Text variable”: PLC_PRG.uiNumber
Output: Number: 1234

For the output
of integers

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1708

ms-its:codesys.chm::/_cds_datatype_integer.htm
ms-its:codesys.chm::/_cds_datatype_real.htm
ms-its:codesys.chm::/_cds_datatype_time.htm

Floating-point numbers have the data type REAL or LREAL.

%f In decimal form with dec-
imal point in format 1.6

Code: rWeight : REAL :=
1.123456789;
Property “Text”: Weight: %f
Property “Text variable”: PLC_PRG.rWeight
Output: Weight: 1.123456

%<alignment><
minimum
width>.<accur
acy>f

As decimal number in
user-defined format
● <alignment>: - or +,

optional
-: Left-aligned
+: Right-aligned

● <minimum width>:
Number of places to
the left of the decimal
point

● <accuracy>: Number
of places to the right of
the decimal point

Code: rWeight : REAL := 12.1
Property “Text”: Weight: %2.3f
Property “Text variable”: PLC_PRG.rWeight
Output: Weight: 12.100

%e Output of floating-point
number (REAL or LREAL)
in exponential notation of
base 10

Code: rValue : REAL :=
1.234567%e-003;
Property “Text”: Value: %E
Property “Text variable”: PLC_PRG.rValue
Output: Value: 1.23E-6

%E Code: rValue : REAL :=
1.234567%e-003;
Property “Text”: Value: %e
Property “Text variable”: PLC_PRG.rValue
Output: Value: 1.23e-6

%c Output of single character
in ASCII character set

Code: bChar := 16#41;
Property “Text”: Key: %c
Property “Text variable”: PLC_PRG.bChar
Output: Key: A

%s Output of character string Code: strName := 'Paul Smith';
Property “Text”: Name: %s
Property “Text variable”: PLC_PRG.strName
Output: Name: Paul Smith

For the output
of floating-point
numbers

For the output
of text

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1709

%% Output of percent sign in
character string

Property “Text”: Valid until 90%%
Output: Valid until 90%
Code: iPercentage : INT := 80;
Property “Text”: Valid until %d%%.
Property “Text variable”:
PLC_PRG.iPercentage := 80;
Output: Valid until 80%

If the output text in the element “Text” property contains the placeholder "%t", then a date and/or
time is output. If a variable is not specified in the “Text variable” property, then the system time
is output; otherwise it is the value of the variable.
By default, the names of the days and months are displayed in English. If localized texts are
used, then the text list System has to be supplemented. This text list is created automatically in
the “POUs” view when the placeholder %t is used. The English terms have to be used as the ID
here. The localization can be done for both the abbreviated names and full names.
Time data types include LTIME, TIME, TIME_OF_DAY, TOD, DATE, DATE_AND_TIME, and DT.

Compatibility Notice
In order to get the usual display, in V3.5 SP17 and higher, as a rule three
digits are used for the output of fractions of a second (ms/µs/ns). Example:
In %t[dd-HH:mm:ss:ms], ms is specified with three digits for the millisec-
onds. For this purpose, the two-digit ms number is prepended with a zero.
If a two-digit output is desired (like before V3.5 SP17), then a special com-
piler define has to be set in the compiler properties of the application:
VISU_MILLISEC_NOLEADING_ZERO.

Date and time formats
%t[yyyy] Year with century Code: dateBy : DATE :=

DATE#2020-1-1;
Property “Text”: By the year %t[yyyy]
Property “Text variable”: PLC_PRG.dateBy
Output: By the year 2020

%t[yy] Year without century (00–
99)

Code: dateSince : DATE :=
DATE#2000-1-1;
Property “Text”: Since: %t[yy]
Property “Text variable”:
PLC_PRG.dateSince
Output: Since: 00

%t[y] Year without century (0–
99)

Code: dateSince : DATE :=
DATE#2000-1-1;
Property “Text”: Since: %t[y]
Property “Text variable”:
PLC_PRG.dateSince
Output: Since: 0

For the output
of the percent
sign

For the output
of the date and
time

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1710

%t[MMMM] Month as full name Code: dateMonth : DATE :=
DATE#2016-1-1;
Property “Text”: Month: %t[MMMM]
Property “Text variable”:
PLC_PRG.dateMonth
Output: Month: January

%t[MMM] Month as abbreviated
name

Code: dateMonth : DATE :=
DATE#2016-1-1;
Property “Text”:: Month: %t[MMM]
Property “Text variable”:
PLC_PRG.dateMonth
Output: Month: Jan

%t[MM] Month as number (01–12) Code: dateMonth : DATE :=
DATE#2016-1-1;
Property “Text”:: Month: %t[MM]
Property “Text variable”:
PLC_PRG.dateMonth
Output: Month: 01

%t[M] Month as number (1–12) Code: dateMonth : DATE :=
DATE#2016-1-1;
Property “Text”:: Month: %t[M]
Property “Text variable”:
PLC_PRG.dateMonth
Output: Month: 1

%t[ddddd] Day of week as number

(1=Monday – 7=Sunday)
Code: iDay : INT := 7;
Property “Text”:: Day: %t[ddddd]
Property “Text variable”: PLC_PRG.iDay
Output: Day: 7

%t[dddd] Day of week as full name Code: iDay : INT := 7;
Property “Text”:: Day: %t[dddd]
Property “Text variable”: PLC_PRG.iDay
Output: Day: Sunday

%t[ddd] Day of week as abbrevi-
ated name

Code: iDay : INT := 7;
Property “Text”:: Day: %t[ddd]
Property “Text variable”: PLC_PRG.iDay
Output: Day: Sun

%t[dd] Day of month as number
(01–31)

Code: iDay : INT := 1;
Property “Text”:: Day: %t[dd]
Property “Text variable”: PLC_PRG.iDay
Output: Day: 01

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1711

%t[d] Day of month as number
(1–31)

Code: iDay : INT := 1;
Property “Text”:: Day: %t[d]
Property “Text variable”: PLC_PRG.iDay
Output: Day: 1

%t[jjj] Day of year as number
(001–366)

Code: dateOfNoReturn : DATE :=
DATE#2016-09-01;
Property “Text”:: Day of no return:
%t[jjj]
Property “Text variable”:
PLC_PRG.dateOfNoReturn
Output: Day of no return: 245

%t[HH] Hour in 24-hour format

(00–23)
Code: todEnd : TOD :=
TIME_OF_DAY#17:0:0;
Property “Text”: Ends at: %t[HH]:00
Property “Text variable”: PLC_PRG.todEnd
Output: Ends at 17:00

%t[hh] Hour in 12-hour format
(01–12)

Code: todEnd : TOD :=
TIME_OF_DAY#17:0:0;
Property “Text”: Ends at: %t[hh]
o'clock
Property “Text variable”: PLC_PRG.todEnd
Output: Ends at: 05 o'clock

%t[mm] Minutes with leading zero

(00–59)
Code: tPeriod : TIME := T#5M;
Property “Text”: Period: %t[mm]m
Property “Text variable”: PLC_PRG.tPeriod
Output: Period: 05m

%t[m] Minutes without leading
zero (0–59)

Code: tPeriod : TIME := T#5m;
Property “Text”: Period: %t[m 'm']
Property “Text variable”: PLC_PRG.tPeriod
Output: Period: 5 m

%t[ss] Seconds with leading zero
(00–59)

Code: tPeriod : TIME := T#5m3s;
Property “Text”: Period: %t[mm'm'ss's']
Property “Text variable”: PLC_PRG.tPeriod
Output: Period: 05m03s

%t[s] Seconds without leading
zero (0–59)

Code: tPeriod : TIME := T#5m3s;
Property “Text”: Period: %t[m'm' s's']
Property “Text variable”: PLC_PRG.tPeriod
Output: Period: 5m 3s

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1712

%t[ms] Milliseconds without
leading zero (0–999)

Code: tPeriod : TIME := T#500ms;
Property “Text”: Period: %t[ms 'ms']
Property “Text variable”: PLC_PRG.tPeriod
Output: Period: 500 ms

%t[us] Only for LTIME variables:
microsecond definition (0–
999)

Code: ltPeriod :LTIME :=
LTIME#1000D23H44M12S34MS2US44NS;
Property “Text”: 'Period':
%t[dd.HH.m.s.ms.us.ns]
Property “Text variable”: PLC_PRG.ltPeriod
Output: Period:
1000.23.44.12.34.2.44
Hint: Overflow is permitted in the greatest time
unit of a definition.

%t[ns] Only for LTIME variables:
nanosecond definition (0–
999)

%t[t] If the value is a time < 12h,

then A is output; otherwise
P is output.

Code: tClosed : TOD :=
TOD#17:17:17.17;
Property “Text”: Closed at %t[hh:mm t]
Property “Text variable”: PLC_PRG.tClosed
Output: Closed at 05:17 P

%t[tt] If the value is a time < 12h,
then AM is output; other-
wise PM is output.

Code: tClosed : TOD :=
TOD#17:17:17.17;
Property “Text”: Closed at %t[hh:mm tt]
Property “Text variable”: PLC_PRG.tClosed
Output: Closed at 05:17 PM

%t[' '] If character strings should

be output which corre-
spond to a format defini-
tion, then these have to
be represented in single
straight quotation marks.

TIME and LTIME values can be specified with integer values or with decimal places:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1713

%t[<f><n>] A number (<n>) which
defines the number of dec-
imal places of the time
value follows the letters
which define the time unit
(<f>).
As a result, the hours,
minutes, and seconds (for
TIME values) and also
the microseconds and
nanoseconds (for LTIME
values) can be specified or
displayed as values with
decimal places.
Note: Even if a decimal
number is not desired for
the input or display, at least
the number "0" has to be
specified to allow for frac-
tional input.

Examples of the formating
%t[hh4] or %t[HH4]: The time can be speci-
fied/displayed with a hour definition of four
decimal places.
%t[mm2] or %t[m2]: The time can be
specified/displayed with a minute definition
of four decimal places. Then for a value
of t#1h20m15s, this leads to the following
output: 80.25.

%t[ss0]: The time can be specified/dis-
played with a second definition without dec-
imal places.

The format definitions can be represented in a series.
%t[HH:mm:ss:m
s]

Output of the time Code: dwTime : DWORD := 4294967295;
Property “Text”: Time: %t[HH:mm:ss:ms]
Property “Text variable”: PLC_PRG.dwTime
Output: Time: 23:59:59:999

%t[yyyy-MM-dd
dddd]

Output of the date and day
of the week

Code: dateSet : DATE :=
DATE#2016-02-12;
Property “Text”: Date: %t[yyyy-MM-dd
dddd]
Property “Text variable”: PLC_PRG.dateSet
Output: Date: 2016-02-12 Friday

See also
● Time Data Types

1.4.5.18.3 Methods of the Dialog Manager
Visualizations that are a “Dialog” visualization type and are used to prompt an input are instanti-
ated automatically and managed by the internal dialog manager.
In the application, the dialog manager can be accessed via the also internal Visualization
Manager by calling the method GetDialogManager.

The dialog manager is provided with the following methods for handling a dialog.

NOTICE!
You can program the method calls in function blocks or functions which are
themselves called from the visualization by the action Execute ST Code.

Moreover, you can program the method calls in the application code. Make sure
that the call runs in VISU_TASK. If this is not the case, then the behavior is
undefined.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1714

ms-its:codesys.chm::/_cds_datatype_time.htm

Returns the instance (IVisualisationDialog) of the dialog whose name is passed.

Table 287: Inputs (VAR_INPUT)
Name Data Type Description
stName STRING Name of the dialog

Table 288: Outputs (VAR_OUTPUT)
Name Data Type Description
GetDialog VisuElems.IVisual

isationDialog
Instance (IVisualisationDialog) of the dialog

Returns a pointer to the dialog structure.

Respective dialog data held for each display variant.

Table 289: Inputs (VAR_INPUT)
Name Data Type Description
dialog VisuElems.IVisual

isationDialog
Name of the visualization

pClient POINTER TO
VisuElems.IVisual
isationDialogVisu
StructClientData

Pointer to the display variant

Table 290: Outputs (VAR_OUTPUT)
Name Data Type Description
GetClientInterfac
e

Example: POINTER TO
Login_VISU_STRUCT

Pointer to the dialog structure

Opens the dialog of the client.

Next to it, there is the extended method 'OpenDialog(number)'.

Table 291: Inputs (VAR_INPUT)
Name Data Type Description
dialog VisuElems.IVisual

isationDialog
Name of the visualization

pClient POINTER TO
VisuElems.VisuStr
uctClientData

Method 'GetDia-
log'

Method 'Get-
ClientInterface'

Method 'Open-
Dialog'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1715

Name Data Type Description
bModal BOOL
pRect POINTER TO

Table 292: Outputs (VAR_OUTPUT)
Name Data Type Description
OpenDialog

Closes the dialog of the client.

Table 293: Inputs (VAR_INPUT)
Name Data Type Description
dialog VisuElems.IVisual

isationDialog
Dialog object as received by GetDialog

pClient POINTER TO
VisuElems.VisuStr
uctClientData

Table 294: Outputs (VAR_OUTPUT)
Name Data Type Description
CloseDialog

Closes the dialog of the client. Extension of the method CloseDialog.

Table 295: Inputs (VAR_INPUT)
Name Data Type Description
dialog VisuElems.IVisual

isationDialog
Dialog object as received by GetDialog

pClient POINTER TO
VisuElems.VisuStr
uctClientData

DialogFlags DWORD Specification of possible options for closing the dialogs. Only
the values 0 (behavior as for CloseDialog) and 16#40 are
relevant in the case that a dialog should be closed on all
connected clients.

Table 296: Outputs (VAR_OUTPUT)
Name Data Type Description
CloseDialog2

1.4.5.18.4 Attribute 'VAR_IN_OUT_AS_POINTER'
Function: The pragma {attribute 'VAR_IN_OUT_AS_POINTER'} allows for the passing of
a reference to a data object to the interface variable of a visualization.

Method 'Close-
Dialog'

Method 'Close-
Dialog2'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1716

Requirement: The referenced visualization must be used as a dialog.
Syntax:
{attribute 'VAR_IN_OUT_AS_POINTER'}

NOTICE!
Uppercase and lowercase characters must be maintained.

VAR_IN_OUT
 {attribute 'VAR_IN_OUT_AS_POINTER'}
 itfController : ControlFB;
END_VAR
See also
● Ä Chapter 1.4.5.15.4 “Calling a Dialog with an Interface” on page 1343
● Ä Chapter 1.4.5.19.2.1 “Command 'Interface Editor'” on page 1719

1.4.5.18.5 Attribute 'parameterstringof'
The pragma {attribute 'parameterstringof'} allows that the instance name of the
specified parameter is made accessible for the referenced visualization. An interface variable
(STRING) will contain the instance name of the specified parameter. The interface variable is
visible within the referenced visualization and can for example be used in a text output.
Syntax:
{attribute 'parameterstringof' := '<variable>'}

VAR_INPUT
 {attribute 'parameterstringof' := 'iftDut_A'}
 sItfNameDut_A: STRING;
END_VAR
VAR_IN_OUT
 iftDut_A : DUT_A;
END_VAR
See also
● Ä Chapter 1.4.5.15.2 “Calling a Visualization with an Interface” on page 1332
● Ä Chapter 1.4.5.19.2.1 “Command 'Interface Editor'” on page 1719

1.4.5.19 Reference, user interface
1.4.5.19.1 Keyboard Shortcuts for Default Keyboard Action.......................... 1717
1.4.5.19.2 Commands.. 1718
1.4.5.19.3 Dialog Boxes... 1745
1.4.5.19.4 Objects.. 1772
1.4.5.19.5 Visualization Elements.. 1791

1.4.5.19.1 Keyboard Shortcuts for Default Keyboard Action
Requirement: The “Activate default keyboard handling” option is activated in the “Visualization
Manager” object.

Example: Decla-
ration of an
interface

Example: decla-
ration of a inter-
face

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1717

The keyboard shortcuts for default keyboard action make it possible for users to operate the vis-
ualization with the keyboard only. Elements that respond to user input can process a keyboard
event instead of a mouse event. You do not have to change their input configuration for this
purpose. The universal keyboard shortcuts are supported by all devices and are available on all
display variants when needed.

Keyboard shortcuts
[Tab] Focus jumps to the next element.

The next element that responds to a configured or preconfigured user input receives the
focus. The order of elements corresponds to the order that the elements were added to the
editor.
If the focused element is a table, then the upper left cell in the table is the next focus. After
that, each next cell until all cells have been focused. It also applies here that only cells that
require input are focused.
If the focused element is a frame, then an element of the referenced visualization is set
next in focus in the frame. After that, each next element until all elements have been
focused. It also applies here that only elements that require input are focused.

[Shift]+[Tab] Focus jumps to the previous element.
The element is focused that is before the currently focused element in the added order.
Therefore, the order is the opposite as for “Tab”.

[Arrow] The focus jumps to the element that is in the direction as indicated by the arrow.

[Input] The visualization detects the input at the focused element and triggers the input action.

1.4.5.19.2 Commands
1.4.5.19.2.1 Command 'Interface Editor'.. 1719
1.4.5.19.2.2 Command 'Keyboard Configuration'... 1720
1.4.5.19.2.3 Command 'Visualization Element List'.. 1721
1.4.5.19.2.4 Command 'Activate Keyboard Usage'.. 1722
1.4.5.19.2.5 Command 'Order'... 1723
1.4.5.19.2.6 Command 'Alignment'... 1723
1.4.5.19.2.7 Command 'Group'... 1726
1.4.5.19.2.8 Command 'Ungroup'... 1727
1.4.5.19.2.9 Command 'Frame Selection'.. 1727
1.4.5.19.2.10 Command 'Background'... 1728
1.4.5.19.2.11 Command 'Multiply Visu Element'.. 1729
1.4.5.19.2.12 Command 'Configure Display Settings of Trend'...................... 1732
1.4.5.19.2.13 Command 'Configure Trace'... 1734
1.4.5.19.2.14 Command 'Export Trace Configuration'.................................... 1736
1.4.5.19.2.15 Command 'Insert Elements for Controlling Trace'.................... 1737
1.4.5.19.2.16 Command 'Configure Display Settings of Trend'...................... 1738
1.4.5.19.2.17 Command 'Edit Trend Recording'... 1739
1.4.5.19.2.18 Command 'Insert Elements for Controlling the Trend'.............. 1739
1.4.5.19.2.19 Command 'Visualization Element Repository'.......................... 1740
1.4.5.19.2.20 Command 'Visualization Style Repository'............................... 1742
1.4.5.19.2.21 Command 'Add Visual Element'... 1743
1.4.5.19.2.22 Command 'Select None'... 1744
1.4.5.19.2.23 Command 'Add Elements for Alarm Acknowledgement'.......... 1744

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1718

Command 'Interface Editor'
Symbol: ; keyboard shortcut: [Alt]+[F6].
Function: The command opens and closes the “Interface Editor” tab above the visualization
editor.
Call: Menu bar: “Visualization è Interface Editor” Also by clicking on the small down arrow at
the top of the visualization editor

Symbol:
The tab contains an editor for the declaration of interface variables. The editor behaves in a
similar way to the declaration editor of a function block, however interface variables are not
initialized.

<scope>
 ({attribute '<attribute name>' (:= '<expression>')? })?
 <identifier> : <data type>;
END_VAR

<scope> : VAR_INPUT | VAR_OUTPUT | VAR_IN_OUT
// (...)? : Optional

VAR_INPUT
 {attribute 'parameterstringof'}
 sIdentifier : STRING; // String for instance name
 iCounter : INT;
END_VAR
VAR_IN_OUT
 {attribute 'VAR_IN_OUT_AS_POINTER'}
 fbController: FB_Controller;
END_VAR

Example
Declaration in
the interface
editor

Possible scopes for interfaces of visualizations or dialogs

 VAR_IN_OUT ● When transferring a structure
When the visualization is instanced, it gets a reference to the current applica-
tion data.

● When transferring a control variable, if the variable is written to when a user
input is made. Only then can the visualization write to it.

Note: In the case of dialogs, the data is written back only when the dialog is
closed.
Hint: We strongly recommend that you use this scope so that the return of values
is possible. Moreover, no data needs to be copied.

VAR_IN_OUT
Pragma {attribute
'VAR_IN_OUT_AS_POINTER'
}

When transferring a pointer to a data object
In contrast to the VAR_IN_OUT scope (without an attribute), the variable
changes are effective immediately and not just when the dialog is closed.
Note: Use this scope only if the visualization implements a Dialog.

Tab 'Interface
Editor'

Syntax

Scopes

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1719

 VAR_INPUT When transferring data that will only be read
Note:
● If the visualization is executed as an integrated visualization, then only input

variables of a basic data type (scalar type) are permitted to be transferred.
● If the visualization is executed as a CODESYS TargetVisu or a CODESYS

WebVisu, then input variables of any data type (including POUs) can also be
transferred.

 VAR_INPUT
Pragma {attribute
'parameterstringof'}

When transferring a variable (data type STRING) for the instance name of the
transfer parameter specified in the attribute

See also
● Ä Chapter 1.4.1.8.2 “Declaration of Variables ” on page 222
● Ä Chapter 1.4.1.19.1.1 “Declaration Editor” on page 461
● Ä Chapter 1.4.5.15.2 “Calling a Visualization with an Interface” on page 1332
● Ä Chapter 1.4.5.15.4 “Calling a Dialog with an Interface” on page 1343
● Ä Chapter 1.4.5.18.5 “Attribute 'parameterstringof'” on page 1717
● Ä Chapter 1.4.5.18.4 “Attribute 'VAR_IN_OUT_AS_POINTER'” on page 1716

Command 'Keyboard Configuration'
Symbol: ; keyboard shortcut: [Alt]+[F6].
Function: This command opens and closes the “Keyboard Configuration” tab above the visuali-
zation editor.
Call: Menu bar: “Visualization”.
Requirement: A visualization is open and active in the visualization editor.
See also
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777

Symbol:
This tab contains a list of keyboard shortcuts with an editing option.
A keyboard shortcut can refer specifically to an element. Then the configuration appears here
and in the “Input configuration” property of the associated element.
A keyboard shortcut can also have several configurations. If a keyboard shortcut has multiple
keyboard configurations, then its input actions are executed in the order listed here.
Keyboard shortcuts of the default keyboard action are not listed here.

“Key” Key that a keyboard configuration is defined. Example: [M]

Note: You can combine the key with [Ctrl], [Alt], and/or [Shift].

“Key down” : The input action is executed when the user presses the key.

: The input action is executed when the user releases the key.
Double-click: Drop-down list of all keys.
Note: If the input action should be executed for both pressing the key (KeyDown)
and releasing the key (KeyUp), then you must define a keyboard configuration
for both input actions.

“Shift” : The input event is triggered for [Shift]+[key].

Tab 'Keyboard
configuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1720

“Ctrl” : The input event is triggered for [Ctrl]+[key].

“Alt” : The input event is triggered for [Alt]+[key].

“Action type” input action
Double-click: Drop-down list of input actions.
Tip: For a description of input actions, refer to the “Input configuration” dialog
box.

“Action” Configuration of the input action that was selected next.
Double-click: A dialog box opens that varies according to the input action. It
allows the user-prompted customization of the settings.
Tip: For a description of dialog boxes, refer to the “Input configuration” dialog
box. The input action is configured in the same way here.

“Element ID” ID of the visualization element where the user can execute the key event. The ID
is relevant only if the event is also assigned to an element.
Tip: The assignment of ID to element name is listed in the “Element list”.

“Access rights” Access privileges of the action per user group
Requirement: The visualization has a user management.

Clicking the symbol on the right of the list moves the selected row one line down.

Clicking the symbol on the right of the list moves the selected row one line up.

Blank line Allows adding a new keyboard configuration.

See also
● Ä Chapter 1.4.5.19.2.3 “Command 'Visualization Element List'” on page 1721
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Command 'Visualization Element List'
Symbol:
Function: The command opens the “Visualization Element List” tab for the current visualization.
It is displayed in the upper part of the visualization editor.
Call: Menu bar: “Visualization”

Requirement: A visualization is open in the editor.

This view contains a list of the visualization elements in the open visualization. Grouped
elements are displayed in a tree structure and have their own order within the group (other
hierarchy level).
The current selection in the list is always synchronized with the selection in the main window of
the editor.
The order in the element list from top to bottom describes the order of the elements on the
display layers of the visualization from back to front. When you insert elements consecutively,
they are arranged starting from the back (position 0) on one layer forward. When you use the
commands in the menu “Visualization è Order” to move an element from front to back in the
editor window, the element list refreshes accordingly.

Tab 'Visualiza-
tion Element
List'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1721

“Type” Element type and symbol, as used in the “Visualization Toolbox” view, as well as
the element number that specifies the display layer. #0 = layer furthest back.

“X”, Position of the upper left corner of the element (0,0 = upper left corner of the
visualization area).“Y”

“Width” Dimensions of the element (in pixels).

“Height”

“ID” Internally assigned element identifier

“Name” Element name as defined in “Properties è Element name”.

“Access Rights” The lock symbol indicates the restricted behavior of an element for some user
groups.

“Tab Order” Position within the order in which you can jump from element to element in the
editor by means of the tab key when the default keyboard usage is activated.
The activation is done in the visualization manager, on the settings tab. Note that
elements within a group or group box have their own order (different hierarchy
level).
The tab order initially corresponds to the order in which the elements are
arranged on the layers from back to front (“Type” above). To change the position
in the order for an element, you can specify a different number directly in the
table field. You can also use the “Move to Position” context menu command to
open a dialog for specifying a new position.
Bold fonts indicate changed position specifications.
By removing the displayed value, you exclude the element from the selection
using tab or arrow keys.
You can use the “Reset to Default” context menu command to reset a changed
position to the original position. This can be done simultaneously for a multise-
lection of elements when they do not belong to different hierarchy levels (group-
ings).

See also
● Ä Chapter 1.4.5.19.4.1.1 “Visualization Editor” on page 1772
● Ä Chapter 1.4.5.19.2.5 “Command 'Order'” on page 1723
● Ä “Moving the visualization element forward and back” on page 1257

Command 'Activate Keyboard Usage'
Symbol:
Function: This command activates and deactivates the keyboard usage when a visualization is
executed in online mode (integrated in CODESYS).
Call: Menu bar: “Visualization”; context menu.
Requirement: A visualization is open.
When this command is active, the visualization executes the keyboard events that you specified
as a visualization user.
When the command is inactive, CODESYS executes the keyboard events that you specify.
See also
● Ä Chapter 1.4.5.4.4 “Configuring Keyboard Shortcuts” on page 1274

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1722

Command 'Order'
Function: The command makes further commands available. They are for specifying the order
of the elements in levels, since elements in the rear levels are concealed by those in the front
levels.
Call: Menu “Visualization”, context menu
Requirement: The visualization elements are positioned behind one another.
See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

Symbol:
Function: The command positions the selected visualization element in the front level. The
element becomes completely visible.
Call: Menu “Visualization è Order”, context menu

Symbol:
Function: The command positions the selected visualization element one level further forwards.
Call: Menu “Visualization è Order”, context menu

Symbol:
Function: The command positions the selected visualization element in the back level.
Call: Menu “Visualization è Order”, context menu

Symbol:
Function: The command positions the selected visualization element one level further back-
wards.
Call: Menu “Visualization è Order”, context menu

Command 'Alignment'
Function: the command makes further commands available. It is used for the alignment of
visualization elements in the window area of the visualization.
Call: Menu “Visualization”, context menu
See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

Symbol:
Function: the command aligns the selected visualization elements along a line through the
left-hand edge of the element that is positioned furthest left.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: the command aligns the selected visualization elements along a line through the
upper edge of the element that is positioned highest.

Command
'Bring to Front'

Command
'Bring One to
Front'

Command 'Send
to Back'

Command 'Send
One to Back'

Command 'Align
Left'

Command 'Align
Top'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1723

Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: the command aligns the selected visualization elements along a line through the
right-hand edge of the element that is positioned furthest right.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: the command aligns the selected visualization elements along a line through the
lower edge of the element that is positioned lowest.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: the command aligns the selected visualization elements to their common vertical
center.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command aligns the selected visualization elements to their common horizontal
center.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command aligns the selected visualization elements so that the elements posi-
tioned furthest left and furthest right retain their position and the elements between them are
positioned with the same horizontal spacing.
Call: Menu “Visualization è Alignment”, context menu
Requirement: 3 or more elements are selected. The first element is blue, while the other
elements are displayed in grey.

Symbol:
Function: The command aligns the selected visualization elements so that the blue element
retains its position and the other elements are positioned with a larger horizontal spacing. The
spacing increases by 1 pixel each time.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:

Command 'Align
Right'

Command 'Align
Bottom'

Command 'Align
Vertical Center'

Command 'Align
Horizontal Cen-
ter'

Command 'Make
Horizontal
Spacing Equal'

Command 'In-
crease Hori-
zontal Spacing'

Command 'De-
crease Hori-
zontal Spacing'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1724

Function: The command aligns the selected visualization elements so that the blue element
retains its position and the other elements are positioned with a smaller horizontal spacing. The
spacing decreases by 1 pixel each time.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command aligns the selected visualization elements so that the blue element
retains its position and the other elements are positioned with no horizontal spacing between
them.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command aligns the selected visualization elements so that the uppermost and
lowermost elements retain their position and the elements between them are positioned with the
same vertical spacing.
Call: Menu “Visualization”, context menu
Requirement: 3 or more elements are selected. The first element is blue, while the other
elements are displayed in grey.

Symbol:
Function: The command aligns the selected visualization elements so that the blue element
retains its position and the other elements are positioned with a larger vertical spacing. The
spacing increases by 1 pixel each time.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command aligns the selected visualization elements so that the blue element
retains its position and the other elements are positioned with a smaller vertical spacing. The
spacing decreases by 1 pixel each time.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command aligns the selected visualization elements so that the blue element
retains its position and the other elements are positioned with no horizontal spacing between
them.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command makes the width of the selected visualization elements the same as
the width of the blue selected element.
Call: Menu “Visualization è Alignment”, context menu

Command 'Re-
move Horizontal
Spacing'

Command 'Make
Vertical Spacing
Equal'

Command 'In-
crease Vertical
Spacing'

Command 'De-
crease Vertical
Spacing'

Command 'Re-
move Vertical
Spacing'

Command 'Make
Same Width'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1725

Requirement: Several elements are selected. The first element is blue, while the other ele-
ments are displayed in grey.

The command does not work with lines or polygons.

Symbol:
Function: The command makes the height of the selected visualization elements the same as
the height of the blue selected element.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected. The first element is blue, while the other ele-
ments are displayed in grey.

The command does not work with lines or polygons.

Symbol:
Function: The command makes the size of the selected visualization elements the same as the
size of the blue selected element.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected. The first element is blue, while the other ele-
ments are displayed in grey.

The command does not work with lines or polygons.

Symbol:
Function: The command aligns the size and position of the selected visualization elements to
the grid.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

The command does not work with lines or polygons.

Command 'Group'
Symbol:
Function: The command groups the selected visualization elements and displays them as one.
Call: Menu “Visualization”, context menu

Command 'Make
Same Height'

Command 'Make
Same Size'

Command 'Size
to Grid'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1726

Requirement: At least 2 elements are selected.
To select more elements you can drag a window around the desired elements with the mouse.
Alternatively you can click on the desired elements while keeping the [Shift] key pressed.
To select all elements you can open the context menu of the visualization editor and choose the
“Select All” command.

You can also drag and drop elements to a group. For that, press the [Shift]
key while dragging the element to the group. Meanwhile the cursor changes its
appearance (display a small plus sign).

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256
● Ä Chapter 1.4.5.19.2.8 “Command 'Ungroup'” on page 1727
● Ä Chapter 1.4.5.19.2.22 “Command 'Select None'” on page 1744

Command 'Ungroup'
Symbol:
Function: The command ungroups elements again.
Call: Menu “Visualization”, context menu
Requirement: A grouping is selected.
See also
● Ä Chapter 1.4.5.19.2.7 “Command 'Group'” on page 1726

Command 'Frame Selection'
Function: The command opens the “Frame Configuration” dialog.
Call:
● Menu bar: “Visualization”
● Click the “Configure” button in the “References” property.
Requirement: A “Frame” element or “Tabs” element is selected in the editor. The “Element
Properties” view is open.

The dialog allows you to select one or more of all available visualizations. The selected visuali-
zations are displayed at runtime in the window area of the “Frame” element or “Tabs” element.

NOTICE!
Visualizations can be nested at any depth by means of “Frame” elements. In
order to use the “Switch to any visualization” frame selection type without any
problems, a “Frame” must not contain more than 21 referenced visualizations.
For more information, see also the description for the “Input configuration” of an
element: Action “Switch frame visualization”.

Dialog 'Frame
Configuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1727

Table 297: “Available Visualizations”
“By Visualization Name” The list of available visualizations of the project and libraries is sorted alphabeti-

cally.

“By Type or Instance” The list of available visualizations of the project and libraries is sorted by type or
instance.

Input field for a filter If a filter text is specified, then only those visualizations whose names contain
the filter text are listed.

Project with project visualizations below it

Library with project visualizations below it

Table 298: “Selected Visualizations”
 “Add” Click the symbol to add a visualization to the list of selected visualizations.

Requirement: This is selected in “Available Visualizations”.
Hint: To add a visualization, double-click a visualization in “Available
Visualizations”.

“Delete” Click the symbol to delete a visualization from the list.
Requirement: This is selected in “Selected Visualizations”.

The visualizations are automatically numerically indexed via the order in the list. The top visualization has the
index 0. The next visualization has the index 1 and so on.

Note: A “Frame” and a “Tabs” element use the variables specified in the index of the “Switch frame variable”
property.

 “Move Up” Click the symbol to move a visualization up in the list.
Requirement: This is selected in “Selected Visualizations”.

 “Move Down” Click the symbol to move a visualization down in the list.
Requirement: This is selected in “Selected Visualizations”.

See also
● Ä Chapter 1.4.5.19.5.6 “Visualization Element 'Frame'” on page 1856
● Ä Chapter 1.4.5.19.5.10 “Visualization Element 'Tabs'” on page 1887
● Ä “Element property 'Switch frame variable'” on page 1671

Command 'Background'
Symbol:
Function: The dialog “Background” opens. You can define here whether the background of the
visualization is colored or displayed with an image.
Call: Menu “Visualization”, context menu
See also
● Ä Chapter 1.4.5.3.7 “Designing a background” on page 1266

Table 299: “Color Settings”
“Use Color” : Background in color

Color defined as a style color or as a fixed value.

Dialog 'Back-
ground'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1728

Table 300: “Image Setting”
“Use Image” : Display of a background image

Reference to an image from an image pool in the project, formally specified as
an instance path: <Name of the image pool>.<ID>
Example:
● ImagePool_A.Factory
● ImagePool_B.ID_B

Command 'Multiply Visu Element'
Symbol:
Function: The command opens the “Multiply Visu Element” dialog, which contains a configu-
ration derived from the template element and the array declaration. You can rearrange the
elements here, as well as their quantity and the index access to the array data. When you exit
the dialog, a field of similar elements is created from the template element. In the properties
of the new elements, array variables are now configured with precise array indexes. These
new elements are those in which you have configured an array variable with index access
placeholders in the template.
Call: Menu bar: “Visualization”; context menu
Requirement: The visualization is active and a configured template element is selected.

Table 301: Tab “Basic Settings”
“Total number of elements” The total number is determined by the index range of the placeholders, including

the setting on the “Advanced Settings” tab. The layout of the elements can be
one-dimensional (as a column or row) or two-dimensional (as a table field).

“Horizontal” Number of elements per row
Default: Number of array components (index range) of the placeholder
$FIRSTDIM$
Example for array: axLampIsOn: ARRAY[0..4] OF BOOL; = 5

“Vertical” Number of rows required for the layout of all elements
Default
● When using index access placeholder $FIRSTDIM$:

If the index range of the placeholder is less than five, then the layout of
elements is horizontal. If the index range is greater than five, then the layout
the elements is quadratic whenever possible.

● When using index access placeholders $FIRSTDIM$ and $SECONDDIM$:
The number of horizontal elements is equal to the number of index ranges
specified by the placeholder $FIRSTDIM$. The number of vertical elements
is equal to the number of index ranges specified by the placeholder
$SECONDDIM$.

“Offset between elements” Distance between the new elements; affects the positions of the new elements
● “ 0 ”: The frames of the elements overlap by one pixel.
● “1 ”: The elements touch.
● “<n> ”: A distance of n-1 pixel is visible between the elements.

“Horizontal” Distance between the elements within a row (in pixels)
Example: 2 for a distance of one pixel

Dialog 'Multiply
Visu Element'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1729

“Vertical” Distance between the elements within the columns (in pixels)
Example for a distance of three pixels: 4

“Arrangement of elements” Origin from which the new elements are positioned and arranged
If “Vertical” or “Horizontal” <> 1
● “From top left”
● “From top right”
● “From bottom left”
● “From bottom right”

If “Horizontal” or “Vertical” = 1
● “From top”
● “From bottom”

“Orientation” Determines the layout of the elements in the field (row by row, or column by
column)
● “Line by line”
● “Column by column”

“Preview” Displays the set layout and orientation of the elements as an arrow

Table 302: Tab “Advanced Settings”
“Array access” Based on the template element, the precise index for accessing the array vari-

able is calculated for each new element. The calculation is based on the array
index limits as specified in the array declaration. The settings are also taken into
account here.

“1st dimension” Calculation guideline for the index of the first dimension that replaces
$FIRSTDIM$
The first new element gets the value specified below in “Start index” in the first
dimension. The other elements each get an index incremented by “Increment”
until an index is calculated for all elements.
Example
● “Start index”: 1
● “Increment”: 1

“2nd dimension” Calculation guideline for the index of the second dimension that replaces
$SECONDDIM$
The first new element gets the value specified below in “Start index” in the
second dimension. The other elements each get an index incremented by
“Increment”.
Example
● “Start index”: 1
● “Increment”: 1

“OK” First, it is validated whether the calculated indices are in the index range of the
array variable. If so, then the elements that match the template element are
created and arranged as a field (row, column, or table). The placeholder indexes
are replaced by the calculated indexes.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1730

VAR
asTexts_Example: ARRAY[1..2,1..2] OF STRING :=
 [
 '1A Text', '2A Text',
 '1B Text', '2B Text'
];
 asToolTips_Example: ARRAY[1..2,1..2] OF STRING :=
 [
 '1A Tooltip', '2A Tooltip',
 '1B Tooltip', '2B Tooltip'
];

 axUserInput_Example: ARRAY[1..2,1..2] OF BOOL;
END_VAR

Visualization with template element and its property configuration

Table 303: Dialog 'Multiply Visu Element'
Tab “Basic Settings”

“Total number of elements”

“Horizontal” 2
“Vertical” 2

Example
Declaration of
array variables

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1731

“Offset between elements”

“Horizontal” 2
“Vertical” 2

“Arrangement of elements” “From top left”

“Orientation” “Line by line”

Tab “Advanced Settings”

“Array access”

“1st dimension”

“Start index” 1
“Increment” 1
“2nd dimension”

“Start index” 1
“Increment” 1

Visualization at runtime:

See also
● Ä Chapter 1.4.5.9.2 “Configuring and Multiplying Visualization Elements as Templates”

on page 1299

Command 'Configure Display Settings of Trend'
Symbol:
Function: When you execute this command in “Visualization” or in the context menu, the “Edit
Display Settings” dialog opens.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1732

Call:
● Menu bar: “Visualization”
● Context menu of a “Trend” element in the visualization editor
● Property “Diagram”

Requirement: A trend is selected in the active visualization editor.

“Grid” : Trend diagram with grid lines in the X-direction in the selected color

“Font” Font for the axis label

Table 304: “Display mode”
● “Auto”: : The visualization scales automatically.

● “ Fixed” : Fixed range from “Minimum” to “Maximum”

“Minimum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the initial value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 20,PLC_PRG.iLimit_Min, GVL.c_iLimit_Min
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Min : INT := 20

“Maximum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the end value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 80,PLC_PRG.iLimit_Max, GVL.c_iLimit_Max
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Max : INT := 80

“Grid” : Trend diagram with grid lines in the Y-direction in the selected color

“Description” : Text for labeling the Y-axis (for example, DC/mA)

Table 305: “Tick marks”
“Fixed spacing” : Axis scale with tick marks for “Distance” and “Subdivisions”

“Distance” Distance between the tick marks (example: 2)

“Subdivisions” Number of subdivisions between tick marks (example: 4)

“Font” Font for the axis label

Table 306: “Background”
“From visualization style” Background color as defined in the visualization style

“Draw background” Background color which is selected in the lower input field

“No background” Trend diagram with transparent background

Background color of the trend
diagram

Requirement: “Draw background” is activated.

Tab “X Axis”

Tab “Y axis”

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1733

“Reset” Resets the settings to the default settings

“Use as default” Saves the settings as default

“Add Y-axis” Extends the trend diagram by one Y-axis
Result: The “Trend Recording” editor contains an extended selection of Y-axes in
the “Additional axes” option of the “Variable Settings”.

“Delete Y-axis” Deletes the Y-axis of the visible tab.

See also
● Ä Chapter 1.4.5.19.2.16 “Command 'Configure Display Settings of Trend'” on page 1738
● Editor 'Trend Recording'

Command 'Configure Trace'
Symbol:
Function: This command opens the “Trace Configuration” dialog box.
Call: Context menu of the visualization element; “Trace” property of the visualization element.
Requirement: An element of type “Trace” is open in the editor.

The tree view shows the trace configuration and allows navigation.
The top entry contains the trace name. When this entry is selected, the “Record Settings” group
appears in the adjacent view.
An entry is located here for each variable that data was recorded continuously. When a variable
is selected, the “Variable Settings” group appears in the adjacent view.

“Add variable” Adds a new entry to the trace configuration.
Result: A blank configuration appears next to the new variable under “Variable
Settings”. You configure the variable there.

“Delete variable” Removes the selected variable.

A trigger can be configured in the trace only.

“Task” Task where data was recorded.

“Record condition” Recording condition for which the application records data in runtime mode:
Variable (BOOL)

“Comment” Example: Acquiring data only when all conditions are true.
“Resolution” Measure for the time stamp that is recorded per data set.

● “ms”: Time stamp (in milliseconds).
● “µs”: Time stamp (in microseconds) for a task cycle time of 1 ms or less

“Automatic restart” : Recording starts automatically as soon as the trace has been started one
time and then the controller was restarted. The trace configuration and the con-
tents of the trace buffer are saved persistently to a file on the target system.
Format: .trace.csv

“Display” The “Edit Appearance” dialog box opens.

Dialog box
'Trace Configu-
ration'

'Recording Set-
tings'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1734

ms-its:codesys.chm::/_cds_obj_trend_recording.htm

“Advanced” The “Advanced Trace Settings” dialog box opens.

“Copy from Trace” The “Copy Settings from Trace Instance” dialog box opens. If you have already
created an existing trace configuration from a trace object, then you can copy the
configuration data to the visualization element. To do this, select the respective
object.

See also
● Ä Chapter 1.4.5.19.3.19 “Dialog 'Display Settings'” on page 1770
● Ä Chapter 1.4.5.19.3.18 “Dialog 'Advanced Trace Settings'” on page 1770
● Ä Chapter 1.4.5.18.1.34 “Visualization Element 'Trace'” on page 1619

“Variable” Variable for recorded value.
● Variable (valid data type)
● property
● Reference
● Contents of the pointer
● Array element (base type with valid data type)
● Enumeration (base type with valid data type)
Valid data types are all standard types, except STRING, WSTRING, and ARRAY.

“Parameters” Parameter whose value is acquired.

: Input assistance lists ale valid parameters of the PLC.

Enables toggling between “Variable” and “Parameter”

“Attached axis” Y-axis of the trace diagram for the “Variable”.

: Selection of the standard y-axis and the additional configured y-axes
Note: The additional configured y-axes are configured in the “Edit Display
Settings” dialog box.

“Display variable name” : The trace graphs are displayed in tooltip with their variable names.
If a text is also specified in “Description”, then the text is displayed first with the
variable names in parentheses.
Example: Sensor A (PLC_PRG.iSensor_A)
If “Description” does not contain any text, then the “Display Variable Name”
property is activated automatically. Then only the name is displayed (example:
PLC_PRG.iSensor_A).

: The trace graphs are displayed in tooltip without their variable names. Only
the text in “Description” is displayed.

“Description” Text for the tooltip. It is displayed when a visualization user moves the cursor in
the trace diagram.
Example: Sensor A
The text is also entered into the “GlobalTextList” object and can be translated
there.

“Color” Color of the graph in the diagram.

“Line type” Representation of the graph as a line chart
● “Line”: Values are linked to form a line.
● “Step”: Values are linked in the form of steps.
● “None”: Values are not linked.

'Variable Set-
tings'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1735

“Line width” In pixels
Example: 1

“Line style” The display of the line is solid, dash, dot, dash-dot, or dash-dot-dot.

“Dot type” Representation of the graph as a scatter chart. This configuration entry with the
“Line type” determines the appearance of the graph.
● “Dot”: Each value as a dot.
● “Cross”: Each value as a cross.
● “None”

Note: For “Dot” or “Cross”, a paint buffer overflow can result from many recorded
variables.

“Warning at minimum” : When below the lower limit, the visualization shows the trace graphs in the
alert color.

“Critical lower limit” Minimum Value
Example: 10.

“Color” Warning color on falling below the limit

“Warning at maximum” : When above the upper limit, the visualization shows the trace graphs in the
alert color.

“Critical upper limit” Maximum value
Example: 90

“Color” Warning color on exceeding the limit

“Dynamic appearance options”

“Variable for visibility” Variable (BOOL) or as bit access. This controls the visibility of the variables in the
trace diagram.
● TRUE: Visible
● FALSE: Invisible

See also
● Ä Chapter 1.4.5.19.2.13 “Command 'Configure Trace'” on page 1734

Command 'Export Trace Configuration'
Function: This command opens the “Export Trace Configuration” dialog box.
Call: context menu (right-click) the upper node in the tree view of the trace configuration.
Requirement: The dialog box “Trace Configuration” is active and the name of the trace configu-
ration is selected in the tree view (example: Visu_Trace1).

This dialog is used for saving the trace configuration to a text file that can be read by the
runtime system.

“File name” Name of text file to be created.

“File type” “Trace file (*.trace)”: Format that the runtime system component CmpTraceMgr
expects for reading.

Dialog box 'Ex-
port Trace Con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1736

See also
● Ä Chapter 1.4.5.19.2.13 “Command 'Configure Trace'” on page 1734

Command 'Insert Elements for Controlling Trace'
Symbol:
Function: The command opens the “Trace Wizard” dialog. In this dialog, you select predefined
visualization elements for controlling the trace recording. These elements are then inserted as
configured into the visualization editor.
Call: Menu bar: “Visualization”; context menu of the trace element.
Requirement: The view is active and a trace element is selected.

“Control variable” Corresponds to the “Control variables” property that is available in the element
properties of the trace element.

: The control element for this trace control variable is created in the visualiza-
tion editor.

“Variable” Project variables that are assigned to the control element below the “Input
configuration” property. In addition, the project variables are declared as local
variables in the visualization when needed (in the interface editor).
This list corresponds to the assignments that are defined in the element proper-
ties of the trace element. If nothing is configured in the properties of the trace
element (no project variables assigned as control variables), then a pre-alloca-
tion is offered with default variable names.

“Type of element to insert” For a Boolean variable, this element can be inserted as a button or rectangle.
For a string variable, a rectangle or a text field is provided.

“OK” At the closing of the dialog, the selected control elements are inserted into
the visualization editor and (when needed) its control variables are created as
local variables of the visualization. They are declared in the interface editor and
they are used by the control element (property “Input configuration è Toggle
è Variable”) and by the trace element (“Control variables” property). The control
element writes to the variable and the trace element reads the variable.

VAR
 bResetTrigger : BOOL;
 bStart : BOOL;
 bStop : BOOL;
 bStore : BOOL;
 sStoreFilename : STRING;
 bRestore : BOOL;
 sRestoreFilename : STRING;
END_VAR

Example
Standard con-
trol variables:

See also
● Ä Chapter 1.4.5.10.1 “Getting started with trace” on page 1307

Dialog 'Trace
wizard'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1737

Command 'Configure Display Settings of Trend'
Symbol:
Function: When you execute this command in “Visualization” or in the context menu, the “Edit
Display Settings” dialog opens.
Call:
● Menu bar: “Visualization”
● Context menu of a “Trend” element in the visualization editor
● Property “Diagram”

Requirement: A trend is selected in the active visualization editor.

“Grid” : Trend diagram with grid lines in the X-direction in the selected color

“Font” Font for the axis label

Table 307: “Display mode”
● “Auto”: : The visualization scales automatically.

● “ Fixed” : Fixed range from “Minimum” to “Maximum”

“Minimum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the initial value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 20,PLC_PRG.iLimit_Min, GVL.c_iLimit_Min
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Min : INT := 20

“Maximum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the end value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 80,PLC_PRG.iLimit_Max, GVL.c_iLimit_Max
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Max : INT := 80

“Grid” : Trend diagram with grid lines in the Y-direction in the selected color

“Description” : Text for labeling the Y-axis (for example, DC/mA)

Table 308: “Tick marks”
“Fixed spacing” : Axis scale with tick marks for “Distance” and “Subdivisions”

“Distance” Distance between the tick marks (example: 2)

“Subdivisions” Number of subdivisions between tick marks (example: 4)

“Font” Font for the axis label

Table 309: “Background”
“From visualization style” Background color as defined in the visualization style

“Draw background” Background color which is selected in the lower input field

Tab “X Axis”

Tab “Y axis”

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1738

“No background” Trend diagram with transparent background

Background color of the trend
diagram

Requirement: “Draw background” is activated.

“Reset” Resets the settings to the default settings

“Use as default” Saves the settings as default

“Add Y-axis” Extends the trend diagram by one Y-axis
Result: The “Trend Recording” editor contains an extended selection of Y-axes in
the “Additional axes” option of the “Variable Settings”.

“Delete Y-axis” Deletes the Y-axis of the visible tab.

See also
● Ä Chapter 1.4.5.19.2.12 “Command 'Configure Display Settings of Trend'” on page 1732
● Editor 'Trend Recording'

Command 'Edit Trend Recording'
Symbol:
Function: This command opens the “Trend Recording” object.
Call:
● Menu bar: “Visualization”
● Context menu of a “Trend” element in the visualization editor
● Property “Trend recording”

Requirement: An element of type “Trend recording” is selected in the visualization editor.
See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.1.20.2.31 “Object 'Trend Recording'” on page 949

Command 'Insert Elements for Controlling the Trend'
Symbol:
Function: When you execute this command in “Visualization”, the “Trend Wizard” dialog box
opens.
Call: Menu bar: “Visualization”; context menu of a “Trend” element in the visualization editor.
Requirement: A trend is selected in the active visualization editor.

Each row of the table contains a control element that can assigned to the trend. The ele-
ments are placed in the visualization next to the trend. The control elements are saved in the
“Assigned control elements” property and can be modified there.

Dialog 'Trend
wizard'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1739

ms-its:codesys.chm::/_cds_obj_trend_recording.htm

“Attached control element” : The associated element is available in the visualization and connected with
the trend via the property “Assigned Visu element”. The element is inserted into
the visualization.

: Deactivating the option does not cause the element to be deleted from the
visualization.

“Position” Position of the control element in relation to the trend.

“Type of element to insert” Drop-down list with the installed types of the control element

“Instance name” Instance name of the control element

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Command 'Visualization Element Repository'
Symbol:
Function: This command opens the “Visualization Element Repository” dialog box opens for
editing the storage location and visualization profile.
Call: Menu bar: “Tools”.
Requirement: No project is open.

The visualization element repository is used for creating a visualization profile or
visualization extension. This is necessary when developing you own visualiza-
tion elements with the CODESYS VisuElement Toolkit. The CODESYS VisuEle-
ment Toolkit is required for this with a valid license. Users who do not wish to
create their own visualization elements can use this dialog to find out which
elements are included in which visualization profile. A reconfiguration of the
storage location for a repository is also important only for element developers.

NOTICE!
1. Only an empty directory can be selected as a new storage location for a
repository.
2. The "System" repository cannot be modified. This is indicated by the entry in
italics in the repository list.

Currently only a single version of an element can be installed.

Table 310: Editing the repository
“Location” Storage location for the repository in the file system. The drop-down list contains

the configured repositories for visualization elements.

“Edit locations” Opens the “Edit Repositories” dialog box for modifying the repository currently
selected in “Location” or for creating a new repository.

Dialog box 'Vi-
sualization Ele-
ment Reposi-
tory'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1740

Table 311: “Profile or extension selection”
A profile is a collection of visualization elements in a specific version. These elements originate from one or more
libraries. They are available in the toolbox of the visualization editor when the profile is used in the project. You
can use an extension to add a specific selection of elements to an existing profile.
Creating and editing a profile is possible only if the CODESYS VisuElement Toolkit is installed. In this case, the
buttons on the right side of the dialog box can be used.

“Create or update profile” You can configure a new profile in the dialog or modify an existing one. Then,
the “New”, “Copy”, and “Delete” buttons are operable, as well as the “Installed
Elements” and “Available Elements” views.

“Create or update extension” In the dialog, you can configure an extension for the selected profile. Another
drop-down list “Extension” appears with all currently available extensions.
To configure a new extension, use the “New” or “Copy” buttons (see below).
In both cases, the “Specify Visualization Extension” dialog box opens for you
to define a new extension. In this dialog box, the “Name”, “Company”, and
“Version” of the extension are displayed. Version syntax: Sequence of numbers
and points with a number at the end.

“Profile” Currently selected profile. The drop-down list provides all profiles available in the
repository set above.

“Extension” The extension that is currently selected for the specified profile. The drop-down
list provides all extensions available for the profile.

“New” Pressing the button opens the “Specify Name of Visualization Profile” dialog or
the “Specify Visualization Extension” dialog. Specify a unique name for the new
profile, or for an extension also the company name and the version. CODESYS
automatically enters the previously used name, appended with "_0".

The “Installed elements” list is empty.

“Copy” Pressing the button opens the “Specify Name of Visualization Profile” dialog or
the “Specify Visualization Extension” dialog (see above: “New”).
The elements of the selected profile are accepted and they appear in the
“Installed elements” view.

“Delete” The currently set profile or the extension is deleted, and then the drop-down list
is removed.

Table 312: “Installed Elements”
“Name, Vendor, Library” Elements that are assigned to the selected profile.

“Uninstall” All elements currently selected in the list are uninstalled and removed from the
“Available Elements” list.

“Update code” The list is refreshed with any changes in the implementation code of the library
POUs.

“Update all” The list is refreshed with any changes in the implementation code and in the
interfaces (declaration part) of the library POUs.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1741

Table 313: “Available Elements”
“Name”

“Library”

“Vendor”

“Version”

“Repositories”

“Profiles”

Elements that are available in the system and can be installed into the current
profile or extension. The selection depends on the installed element libraries and
element packages.
The tree structure displays the libraries with the contained elements below them.
Elements display in green are already installed for the specified profile or exten-
sion. “Profiles” shows the elements installed for the profiles.

“Install element” The elements selected in the list are added to the “Installed Elements” view.
Existing elements are overwritten.

“Install library” The “Library Repository” dialog box opens where another library can be installed
in order to accept its elements in the “Available Elements” view.

“Note current library versions
only”

: When refreshing the list, only the most current version of the library is
searched, not all libraries.

“Overwrite profiles without
prompting”

: For actions that change the profile, the usual prompt does not appear for
confirming the change.

“Storage location, Name” For managing the visualization elements, one or more repositories can be used.
All currently defined storage locations are listed here with file path and name.
The order from top to bottom is also the search order for the visualization ele-
ments.
File path and name of the storage location selected previously in the “Repository
for Visualization Elements” dialog.
Note: A storage location "System" is always defined automatically, which cannot
be modified or deleted.

“Add”

“Edit”

Opens the “Storage Location for Repository” dialog for creating a new storage
location or for editing the current storage location.
Specify: “Storage location” (file path of an empty directory) and “Name”. The
name is symbolic (example: "Elements category 1").

“Remove” Deletes the repository currently selected in the repository list.

“Move Up, Move Down” Moves the entries within the list. Note: The repositories are searched from top to
bottom.

Command 'Visualization Style Repository'
Symbol:
Function: This command opens the “Visualization Styles” dialog box. It makes it possible to edit
visualization style repositories.
Call: Menu bar: “Tools”.
See also
● Ä Chapter 1.4.5.17.2 “Managing visualization styles in repositories” on page 1365

Dialog box 'Edit
Repositories'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1742

“Storage location” Name of the currently selected repository Preset: “System”

: Lists the repositories installed in the development system.

“(...)” Storage location of the repository
Example: (C:\ProgramData\CODESYS\Visualization Styles)

“Edit locations” The “Edit Repository Locations” dialog box opens.

Table 314: “Installed Visualization Styles”
“Company” When a company name is specified here, the tree view is filtered and only the

styles of the selected company are listed.
Preset: “(All companies)”. It is not filtered.

: Lists all companies that are specified in the styles.

Windows with styles Tree view of all versions of the installed visualization styles in the selected
repository

“Display localized names” : The style name is localized and displayed in the language that is set in
CODESYS.

: The style is display as the source name.

“Install” The “Select Visualization Style(s)” dialog box opens.

“Uninstall” The selected style version is removed from the repository.

“Preview” The windows closes. A preview is displayed of the selected style in the selected
version. Specific elements are displayed in the style.

Table 315: “Repositories (elements are searched in that order)”
“Location” Storage location of the configured repository on the development system

Example: C:\ProgramData\CODESYS\Visualization Styles
“Name” Preset: System
“Add” The “Repository Locations” dialog box opens. It makes it possible to manage

other repositories.“Edit”

“Remove”

“Move Up” The order in the list of repositories is adapted. It defines the processing order
when searching for elements.“Move Down”

Command 'Add Visual Element'
Function: The command opens a menu containing all available visualization elements as menu
items.
Requirement: You have configured the command in the dialog box “Customize” in a way that
you have a call in a (any) menu.

Dialog Box 'Vi-
sualization
Styles'

Dialog box 'Edit
Repository
Locations'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1743

When you select an element in the menu, the element is added in the visualization editor in the
upper left corner.
See also
● Ä Chapter 1.4.5.3.1 “Select Element” on page 1255
● Ä Chapter 1.4.1.20.3.8.16 “Command 'Customize'” on page 1071

Command 'Select None'
Function: The command cancels at once any selection in the current visualization editor.
Requirement: You have configured the command in the dialog box “Customize” in a way that
you have a call in a (any) menu.
See also
● Ä Chapter 1.4.5.3.1 “Select Element” on page 1255
● Ä Chapter 1.4.5.19.2.7 “Command 'Group'” on page 1726
● Ä Chapter 1.4.1.20.3.8.16 “Command 'Customize'” on page 1071

Command 'Add Elements for Alarm Acknowledgement'
Symbol:
Function: This command adds buttons automatically to the visualization for acknowledging
alarms. It opens an assistant for inserting controls below the table.
Call: Menu bar: “Visualization”; context menu of visualization element "Alarm table"
Requirement: An "Alarm table" visualization element is selected.

“Type of element(s) to insert” ● “Button”
● “Rectangle”

“ Action” : A button or a rectangle with the selected function is added to the visualiza-
tion.

“Variable” If you have already specified a variable for an action, then this is displayed here
in the “Variable” column. If you have not defined a variable yet, then a local
visualization variable is created automatically.

See also
● Ä Chapter 1.4.5.19.5.22 “Visualization Element 'Alarm Table'” on page 1969

Dialog box
'Alarm Table
Wizard'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1744

1.4.5.19.3 Dialog Boxes
1.4.5.19.3.1 Dialog 'Access Rights'.. 1745
1.4.5.19.3.2 Dialog 'Add Visualization'... 1746
1.4.5.19.3.3 Dialog 'Update Frame Parameters'.. 1746
1.4.5.19.3.4 Dialog 'Configure Categories and Items'.................................... 1747
1.4.5.19.3.5 Dialog 'Gradient Editor'... 1748
1.4.5.19.3.6 Dialog 'Input Configuration'... 1749
1.4.5.19.3.7 Dialog 'Options' - 'Visualization Styles'....................................... 1761
1.4.5.19.3.8 Dialog 'Options' - 'Visualization User Management'................... 1762
1.4.5.19.3.9 Dialog Box 'Options' - 'Visualization'... 1763
1.4.5.19.3.10 Dialog 'Project Environment' - 'Visualization Profile'................. 1764
1.4.5.19.3.11 Dialog 'Project Environment' - 'Visualization Styles'................. 1765
1.4.5.19.3.12 Dialog 'Project Environment' – 'Visualization Symbols'............ 1765
1.4.5.19.3.13 Dialog 'Project Settings' - 'Visualization'................................... 1766
1.4.5.19.3.14 Dialog ‘Project Settings’ - ‘Visualization Profile’....................... 1767
1.4.5.19.3.15 Dialog 'Properties' of Visualization Objects.............................. 1767
1.4.5.19.3.16 Dialog 'Selected Alarm Class'... 1768
1.4.5.19.3.17 Dialog 'Selected Alarm Group'.. 1769
1.4.5.19.3.18 Dialog 'Advanced Trace Settings'... 1770
1.4.5.19.3.19 Dialog 'Display Settings'... 1770

Dialog 'Access Rights'
Function: This dialog defines the permissions of user groups for a visualization element.
Call: Click in the “Value” field of the “Access Rights” element property of a visualization element.
Requirement: A visualization element is selected in a visualization element and the “Properties”
is open.

“User Groups” Groups that were configured in the “Visualization Manager” (tab “User
Management è Groups”).

“Operable” : The visualization element is available with full functionality.

“Only Visible” : The visualization element is visible only and does not provide any function-
ality.

“Invisible” : The visualization element is not displayed.

“Group hierarchy is used” Display whether the option “Use group hierarchy” is activated in the
“Visualization Manager” (tab “User Management è Settings”).
A group of a higher hierarchy cannot have fewer permissions for an element
than an element of a lower hierarchy.

If no user is logged in, then the permissions apply for the visualization elements
that are configured for the user group “None”. If the permissions for a visualiza-
tion element is restricted, then the group “None” should be granted the lowest
permissions.

See also
● Ä Chapter 1.4.5.19.4.5 “Tab 'Visualization manager' - 'User management'” on page 1782

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1745

Dialog 'Add Visualization'
Function: The dialog is used to create a new object of type “Visualization”.
Call: Menu bar: “Project è Add Object è Visualization”; context menu of an application
Requirement: An application is selected in the device tree.

“Name” Name of the visualization
Example: Visu_A

The following settings are displayed only when you add a “Visualization” object to the project for the first time.

“Symbol library” List of all installed symbol libraries

“Assigned” : Symbol library is selected
Hint: CODESYS manages this setting in the project settings.

“Add” CODESYS creates a new visualization, assigns the selected symbol libraries to
the project, and lists them in the “Visualization Toolbox” view.

See also
● Ä Chapter 1.4.5.3.1 “Select Element” on page 1255
● Dialog 'Project Settings' - 'Visualization'
● Command 'Add Object'

Dialog 'Update Frame Parameters'
Function: The dialog requests you, after changing an interface in the visualization references
concerned, to re-assign the variables for the parameter transfer.
Call: The dialog appears automatically.
Requirement: You have changed the interface of a visualization, for example by adding
an additional variable. After that, you have clicked either “File è Save Project” or “Build
è Generate Code”, or opened a visualization.

“Parameter” Hierarchical structure of the interface parameters as a tree view

Top node of the visualization hierarchy with the name of the visualization. This
contains an element of type “Frame” or “Tabs”.

Name of the element (“Frame” or “Tabs” type)

Name of the referenced visualization

“(Recent)” Interface of the referenced visualization with the new parameters
You can edit the parameter transfer here.

“(Previous)” Interface of the referenced visualization with the previously valid parameters.
You cannot edit the parameter transfer, but you can use it as a template.

 <name> Variable for the parameter transfer (VAR_INPUT scope)

 <name> Variable for the parameter transfer (VAR_IN_OUT scope)

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1746

ms-its:codesys.chm::/_cds_dlg_project_settings_visualization.htm
ms-its:codesys.chm::/_cds_cmd_add_object.htm

“Type” Data type of the variable
Example: INT

“Value” Variable that is transferred as a parameter and with whose value the visualiza-
tion is initialized during instantiation.
Example: PLC_PRG.iVisNr
If the variable lies under the current interface, which is marked in the tree view
with “(Current)”, then you can edit the parameter transfer.
● Click in the field to open the input field.
● Double-click in the field to open the Input Assistant.
● Accept the settings by copying assignments in the “Value” column and

pasting them into another cell. Use the “Copy” and “Paste” links to do this.

“Copy” Link for copying an assignment from the “Value” column.
Requirement: An assignment is selected.

“Paste” Link for inserting an assignment
Requirement: You have copied an assignment.

“OK” Click the button to close the dialog and confirm the changes made under
“(Recent)”.
Result: The assignment is entered in the “References” property and on the
“Interface Editor” tab.

See also
● Ä Chapter 1.4.5.19.5.6 “Visualization Element 'Frame'” on page 1856
● Ä Chapter 1.4.5.19.2.1 “Command 'Interface Editor'” on page 1719

Dialog 'Configure Categories and Items'
Function: The dialog is used to manage the categories in a tree view. The assigned elements
are listed below a category. You can create custom categories and edit the assignment to the
visualization elements. The name of the category is displayed in the “Visualization Toolbox” view
as a label of the button to open the element selection.

Call: Click the symbol in the “Visualization Toolbox” view.
See also
● Ä Chapter 1.4.5.3.1 “Select Element” on page 1255
● Ä Chapter 1.4.5.19.4.1.2 “View 'Visualization Toolbox'” on page 1773

Tree view

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1747

“Category” Tree view

● “<name>”: Default category
● “<name>”: Custom category

Example: “Favorite”

Lists the assigned visualization elements. To remove a selected visualization
element, click the [Del] key.
Hint: The assignment is created in the “Visualization Toolbox” view with the help
of the context menu of a selected element.

“Active” : A button for the category is visible in the “Visualization Toolbox” view.

The “Add Category” dialog opens.

 or [Del] The category selected in the tree view is removed. After you click “OK” to close
the dialog, the button is also removed from the “Visualization Toolbox” view.

Call: Click the symbol in the “Configure Categories and Items” dialog.

“Name” Name of the category
Example: tagA

“Description” Example: Tagged with A

Dialog 'Gradient Editor'
Function: The dialog is for setting the color gradient of visualization elements. If you define two
colors, the color graduates between them. If you only select 1 color, the color graduates within
this color through its brightness. The detailed settings are for a special specification of the initial
position and the angle of the color gradient.
Call: Click in the value field of the property “Gradient settings”

Requirement: You have selected a visualization element in the editor that has the property
“Gradient settings”.

“Gradient type” ● “Linear”
● “Radial”
● “Axial”: The color gradient runs along an axis, with the colors extending

perpendicular to the axis on both sides.

“Color 1” First color of the gradient.

“Color 2” Second color of the gradient.

“Transparency” Transparency of the associated color. Permissible values: Integers in the range
of values from 255 to 0. 255: The color is opaque. 0: The color is fully trans-
parent.

“Standard linear” Requirement: “Linear” color gradient.
Standard direction of the linear color gradient.

“Standard radial” Requirement: “Radial” color gradient.
Standard setting.

Toolbar

Dialog 'Add Cat-
egory'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1748

“Standard axial” Requirement: “Axial” color gradient.
Direction of the color gradient

“Angle (degrees)”: Requirement: “Linear” or “Axial” color gradient.

“Center X (%):” Requirement: “Radial” color gradient.
X-position of the center point (0 – 100%)

“Center Y (%):” Requirement: “Radial” color gradient.
Y-position of the center point (0 – 100%)

“Use one color” Color gradient between “Color 1” and the same color with a different brightness.

“Brightness” Requirement: The option “Use one color” is selected.
Setting from 0 (black) to 100 (white)

“Use two colors” Color gradient between the two selected colors “Color 1” and “Color 2”.

See also
● Ä Chapter 1.4.5.3.3 “Assigning a color” on page 1258
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

Dialog 'Input Configuration'
Symbol:
Function: The dialog is used to assign input actions to specific input events. It also includes
specific settings for the selected input action.
Call: In the “Input configuration” property, click “Configure”.
Requirement: An element is selected in the editor.

“Dialogs and actions” Configures which one of the possible user management dialogs or which action
follows the input event
Note: The dialog used at runtime is configured in the “Dialog Settings” tab of the
Visualization Manager.
See also
● “ Login dialog”
● “Change password dialog”
● “Change configuration dialog”

Default: Dialogs from the VisuUserManagement library

“Login” The login prompt opens.
Default: VisuUserManagement.VUM_Login in “Login dialog”

“Logout” The current user is logged out.

“Change User Password” The dialog for changing the password opens.
Default: VisuUserManagement.VUM_ChangePassword in “Change password
dialog”

“Open User Configuration” The dialog opens for changing the configuration.
Default: VisuUserManagement.VUM_UserManagement in “Change
configuration dialog”

Input action
'User Manage-
ment'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1749

See also
● Ä Chapter 1.4.5.5 “Setting Up User Management” on page 1282
● Ä “Tab 'Visualization manager' – 'Settings'” on page 1777

“Dialog” The visualization of type “Dialog” that will be closed.

: List box with all “Dialog” type visualizations available in the project.
Example:
Default dialogs of the VisuDialogs library, which is usually integrated in the
project.
● FileOpenSave
● Keypad
● Login
● Numpad
● NumpadExtended
● TextinputWithLimits
Note: The setting in the object property (“Visualization” tab) of a visualization
determines whether or not a visualization can be used as a dialog.

“Result” Return value for closing the dialog.
Note: If there are more input actions after closing, then they configured in the
“Input configuration è OnDialogClosed” property of the element.

“None” : No return value

“OK” : The set return value is returned. The return value refers to the button in
the dialog. The value OK is returned for the OK button. The value Cancel is
returned for the cancel button.“Cancel”

“Abort”

“Retry”

“Ignore”

“Yes”

“No”

See also
● Ä Chapter 1.4.5.19.3.15 “Dialog 'Properties' of Visualization Objects” on page 1767

“Dialog” Visualization (type “Dialog”). The dialog opens.

: List box with all dialogs available in the project.
Note: The “VisuDialogs” library provides visualizations (type “Dialog”).
● VisuDialogs.FileOpenSave
● VisuDialogs.Login

Input action
'Close Dialog'

Input action
'Open Dialog'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1750

Transfer parameters of the dialog

“Parameter” Interface parameter as declared in the interface editor of the visualization
Example: filelistProvider

“Type” Data type of the parameter as declared in the interface editor of the visualization.
Example: VISU_FBFILELISTPROVIDER

“Value” Variable (data type corresponds to the data type of the parameter). The value of
the variable is read when the dialog opens and passed to the parameter.
Example: PLC_PRG.fileListProvider // Instance of function
block VisuDialogs.Visu_FbFileListProvider

: The input assistance offers all variables available in the entire project.

Here the return value of the dialog is activated for which the Var_OUTPUT variable and VAR_IN_OUT variable are
written. The dialog closes afterwards.

“Update” “and”
“parameter in case of result”

Note: The parameters are updated before the dialog is closed. Until then, the
values are stored temporarily. They are stored as a copy, not as a reference.

“None” : No return value

“OK” : Defines the return value for which the transfer parameter is written
“Cancel”

“Abort”

“Retry”

“Ignore”

“Yes”

“No”

“Open dialog modal” : Only the dialog processes user inputs. The remaining visualizations are
blocked to user input.

“Position to open”

“Centered” The dialog opens in the center of the visualization.

“Position” The dialog opens at the position defined by “X” and “Y”.

“X” Position (in pixels) or variable (integer data type)

“Y” Position (in pixels) or variable (integer data type)

See also
● Ä Chapter 1.4.5.15.3 “Calling a dialog in a visualization” on page 1338

“Language” Language to be switched
Example: en

: The input assistance offers all languages available in the project.

Input action
'Change Lan-
guage'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1751

Table 316: “Zoom to visualization”
Visualization that is shown at the user input

“Assign” Visualization that is selected from all available visualizations in the project or
libraries.
Example: visMain

“Assign expression” Variable (STRING) that contains the name of the visualization

Example: PLC_PRG.strVisu for the following application code: strVisu:
STRING := 'visMain';

The order in which visualizations are displayed by user inputs is saved internally. The following options use this
information.

“Previous shown visualization” : Visualization that has already been shown before the current one
Requirement: A visualization switch has already occurred.

“Next shown visualization” : Visualization that is next in the call order after the current one.
Requirement: A visualization switch has already occurred which was called by
“Previous shown visualization”.

Commands are listed here with transfer parameters that the visualization processes when an
input event occurs.

“Configure commands”

● “Execute program on the plc”
● “Execute program on client”
● “Print”
● “Navigate to URL (WebVisu)”
● “Create Recipe”
● “Read Recipe”
● “Write Recipe”
● “Write Recipe in File”
● “Load Recipe from File”
● “Delete Recipe ”

Click to add the selected command to the lower command list.

The command in “Configure commands” is added to the list.

The command is removed.
Requirement: A command is selected.

The order in the list defines the order of execution.

The selected command is moved down one position in the list.

The selected command is moved up one position in the list.

Input action
'Change Shown
Visualization'

Input action 'Ex-
ecute Com-
mand'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1752

Table 317: Command “Execute program on the plc”
“Command” “1st parameter” “2nd parameter”
ExecutePlcProgram 'C:\programs\notepad.exe' 'Notes_A.txt'
EXE file that is executed on
the controller
The program is executed
on the PLC and therefore
it must not be interactive or
have any user interfaces.
It is possible, for example,
for a program to copy a file.

Program name with directory as
STRING in single straight quotation
marks

Arguments of the program
as STRING in single straight
quotation marks
Example: Name of the file
that the program opens

Table 318: Command “Execute program on client”
“Command” “1st parameter” “2nd parameter”
ExecuteClientProgram 'C:\programs\notepad.exe' 'Notes_A.txt'
EXE file that is executed on
the display variant. Excep-
tion: WebVisu.
The program is executed
within the context of the dis-
play variant. After this, the
program may be interactive
and have a user interface.

Program name with directory as
STRING in single straight quotation
marks

Arguments of the program
as STRING in single straight
quotation marks
Example: Name of the file
that the program opens

NOTICE!
If the visualization is displayed as a CODESYS WebVisu, then no program
(EXE file) can be started.

Table 319: Command “Navigate to URL (WebVisu) ”
“Command” “1st parameter” “2nd parameter”
NavigateURL 'http://en.wikipedia.org'

PLC_PRG.stURL
'replace'

The visualization navigates
to the web page of the
URL.
Requirement: The visuali-
zation is executed as a
CODESYS WebVisu.

URL
● As a literal in single straight

quotation marks
● As a variable (STRING)

If a parameter is not speci-
fied, then the web page is
displayed in a new window
or a new tab.
If 'replace' is specified,
then the CODESYS Web-
Visu is replaced by the web
page.

Table 320: Command “Read Recipe”
“Command” “1st parameter” “2nd parameter”
ReadRecipe 'RecipeDefinitionForModule

s'
'RecipeModuleA'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1753

 Name of the recipe definition
● As a literal
● As a variable (STRING)

Name of the recipe
● As a literal
● As a variable (STRING)

At visualization runtime, the controller reads the actual values from the variables of the recipe
definition and writes them to the specified recipe. The values are saved implicitly (to a file on
the controller) and shown in the recipe definition in the Recipe Manager of CODESYS. In other
words, the recipe that is managed in CODESYS is updated with values from the controller.

Table 321: Command “Write Recipe”
“Command” “1st parameter” “2nd parameter”
WriteRecipe PLC_PRG.stRecipeDef PLC_PRG.stRecipe
 Name of the affected recipe defini-

tion
● As a literal
● As a variable (STRING)

Name of the recipe (from
the recipe definition)
● As a literal
● As a variable (STRING)

At visualization runtime, the values of the recipe are written to the variables on the controller
as they are in the Recipe Manager.

Table 322: Command “Save Recipe in File”
“Command” “1st parameter” “2nd parameter”
SaveRecipeAs PLC_PRG.stRecipeDef PLC_PRG.stRecipe
 Name of the affected recipe defini-

tion
● As a literal
● As a variable (STRING)

Name of the affected recipe
that is updated and saved
to a file
● As a literal
● As a variable (STRING)
Optional parameter: If you
do not specify a transfer
parameter here, then the
values from the recipe vari-
ables are saved only the file
that is specified later. The
implicit recipe files are not
updated.

At visualization runtime, the “Save Recipe as” dialog opens and prompts the user for
a file name and a storage location on the controller. The file name must not be
<recipe>.<recipe definition>. The file extension is .txtrecipe.

The user can then save the file that includes the actual values from the recipe variables.
If a transfer parameter is not specified in the 2nd parameter, then the file is saved without
changing an implicit recipe file. If a transfer parameter is given in the 2nd parameter, then the
implicit recipe file is also updated.
Note: If the “Save recipe changes to recipe files automatically” option is selected in the
“Recipe Manager - General” tab, then the recipe definition in CODESYS and the implicit recipe
files are kept the same automatically.
Note: Implicit (automatically generated) recipe files exist on the controller with names in the
following syntax: <recipe>.<recipe definition>.txtrecipe. These are typically used
in the application as a buffer when reading and writing recipe variables.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1754

Table 323: Command “Load Recipe from File”
“Command” “1st parameter” “2nd parameter”
LoadRecipeFrom PLC_PRG.stRecipeDef PLC_PRG.stRecipe
 Name of the affected recipe defini-

tion
● As a literal
● As a variable (STRING)

Name of the affected recipe
● As a literal
● As a variable (STRING)

At visualization runtime, the “Load Recipe” dialog opens. It provides the visualization user
with a file list that is located in the file system of the controller and filters by the extension
txtrecipe. The selected file is downloaded. Then the recipes from the file are written to the
implicit files and read to the given recipe in the recipe definition of the Recipe Manager.
Requirement: The file was created with the SaveRecipeAs command.

Table 324: Command “Create Recipe”
“Command” “1st parameter” “2nd parameter”
CreateRecipe PLC_PRG.stRecipeDef PLC_PRG.stRecipe_New
 Name of the affected recipe defini-

tion
● As a literal
● As a variable (STRING)

Name of the new recipe
● As a literal
● As a variable (STRING)

At visualization runtime, a new recipe is created in the given recipe definition.

Table 325: Command “Delete Recipe”
“Command” “1st parameter” “2nd parameter”
DeleteRecipe PLC_PRG.stRecipeDef PLC_PRG.stRecipe
 Name of the affected recipe defini-

tion
● As a literal
● As a variable (STRING)

Name of the recipe
● As a literal
● As a variable (STRING)

At visualization runtime, the specified recipe is deleted from the recipe definition.

Table 326: Command “Print”
“Command” “1st parameter” “2nd parameter”
Print Optional: File name for the vis-

ualization screen to be printed
(example: 'Start screen')

A second parameter cannot
be specified for the Print
command.

The default “Printer” dialog opens while the visualization is running. In the dialog, you select
a printer and configure additional print settings. When you confirm the dialog, the currently
displayed visualization screen is printed.
Note: The command can be executed in the TargetVisu only.

See also
● Changing Values with Recipes
● Object 'Recipe Definition'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1755

ms-its:codesys.chm::/_cds_using_recipes.htm
ms-its:codesys.chm::/_cds_obj_recipe_definition.htm

When the input event occurs, the display switches to another visualization within one frame.

“Frame selection type”

“Switch local visualization” The “Frame Selection” group is visible.

“Switch to any visualization” The “Frame and visualization selection” group is visible.

Requirement: “Switch local visualization” is selected.

“Frame selection” List of all frames that contain the active visualization. The referenced visualiza-
tions are listed below each frame, as determined in the “References” property of
the respective frame.
Example:

“Assign selection” The selection in the “Frame selection” input field is accepted. Then it appears in
the “Selected frame” and “Selected visualization” settings.
Requirement: A visualization is selected in the “Frame selection” input field.

“Selected Frame” Name of the frame to be switched to
Example: MainArea
Hint: Use the “Assign selection” command for changing the setting here.

“Selected Visu” Name of the switched visualization.
Example: visMainArea
Hint: Use the “Assign selection” command for changing the setting here.

Requirement: The “Switch to any visualization” option is selected.

“Frame and visualization
selection”

Contains the frame to be switched to

“Assign” Frame to be switched to (with complete path). The index determines the visuali-
zation.
Example: visMain.frameA.visB.frameB
The path is specified in the following syntax: <visualization
name>.<frame name> { <visualization name>.<frame name> }
Caution: Visualizations can be nested at any depth by means of frame elements.
In order to use the “Switch to any visualization” frame selection type without any
problems, a frame must not contain more than 21 referenced visualizations.

Input action
'Switch Frame
Visualization'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1756

“Assign expression” Variable (STRING). Contains the path of the frame to be switched to

Example: strFrane: STRING := 'visMain.frameA.visB.frameB';
“Index to select” Index that determines which of the referenced visualizations is displayed

● As an integer
● As a variable (integer data type)

Example :PLC_PRG.iIndex
Note: The referenced visualizations of a frame are indexed automatically
according to their order.

Requirement: The project contains visualizations that form a structure.
See also
● Ä “Dialog 'Frame Configuration'” on page 1727

The configuration of the input action defines how a visualization user specifies a value and to
which variable the value is written.

Check all inputs for there validity. Be sure that only values within the range can
be added to a numeric field. Depending on the datatype of the input value, the
limitations can be different.

“Input type”

How the input is prompted.

“Default”: An input field also opens, or if necessary a virtual keyboard (when the display
variant does not have a physical keyboard).
Note: The default option for text input at runtime is set in the Visualization
Manager: “Dialog Settings” tab, “Settings for Default Text Input”.

“Text input” An input field appears. You use the keyboard to specify a number or a text.
Requirement: The display variant has a keyboard as input device.

“Text input with limits” An input field appears. You use the keyboard to specify a number or a text. The
field also shows the range of values for the input. When a limit is passed, the
input value is displayed in red.
Requirement: The display variant has a keyboard as input device.

“VisuDialogs.Keypad” A virtual keyboard opens. You use it to specify a number or a text.

“VisuDialogs.Numpad” A virtual keyboard opens. You use it to specify a number.

“VisuDialogs.NumpadExtended
”

A virtual keyboard opens. You use it to specify a number. Hexadecimal and
exponential notation are also permitted here.

“Choose variable to edit”

“Use text output variable” : The input value is written to the text output variable of the element. This is
the variable that is assigned in the “Text variable è Text” property.

“Use another variable” : Variable where the input value is written.
Example: PLC_PRG.iVariable

“Initial display format” Placeholder with format definition. It defines the output format for the variable
value and the input limits.
Example: %2.3f for displaying the value as a decimal fraction.

Input action
'Write Variable'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1757

“Min” Minimum value of the input limit. If a user specifies a lesser value, then it is not
accepted.
● As a fixed value
● As a variable (data type corresponds to selected variable)

“Max” Maximum value of the input limit. If a user specifies a greater value, then it is not
accepted.
● As a fixed value
● As a variable (data type corresponds to selected variable)

“Dialog title” Text displayed in the title bar of the dialog. Optional.
● As a fixed string

Example: Insert value
● As a variable (STRING)

Example: PLC_PRG.stTitle : STRING := 'Insert value';

“Password field” : Unseen text input. *** is shown instead of the input text.

Table 327: “Position to open input dialog”
“Use global setting (from the
Visualization Manager)”

: This option is applies only for use in a TargetVisu or WebVisu. The settings
are used which are available in the “Dialog Settings” tab of the Visualization
Manager.

“Centered” : The dialog opens in the center of the visualization window.

“Position” : The dialog opens in the visualization at the position defined here.
“X”, “Y”: Variable or explicit number (in pixels) for the definition of the upper left
corner of the dialog in the coordinate system of the visualization window.
You can use the placeholders ElementRectangle.ptTopLeft.iX and .iY
ElementRectangle.ptBottomRight.iY. It is replaced at runtime by the
coordinates of the calling element.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä Chapter 1.4.5.19.3.15 “Dialog 'Properties' of Visualization Objects” on page 1767
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Tab 'Visualization manager' – 'Settings'” on page 1777

Input field Editor for code as Structured Text

“Variable” Variable (BOOL). It toggles between TRUE and FALSE for an input event.

Example: PLC_PRG.bSwitch

With the “File Transfer” input action, a file can be transferred from an operating variant (target or
web visualization) to the PLC as well as to and from the PLC. This works either by means of a
file transfer (“Type”: “File”) or streaming (“Type”: “Streaming”).

Input action 'Ex-
ecute ST Code'

Input action
'Toggle Variable'

Input action 'File
Transfer'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1758

The action has the effect that a file selection dialog is displayed in the visualization at runtime.
There the visualization user can select a file which will be transferred either to or from the PLC:
For a transfer from a PLC to the visualization, the “Save File” dialog opens. For the transfer from
the visualization to the PLC, the “Open File” dialog opens.
“Transfer”

“Direction” Direction of file transfer

“From PLC to Visualization” The object specified in “File name” or “Streaming instance name” is transferred
from the PLC to the visualization.
The “Save File” file selection dialog is displayed in the visualization at runtime.

“From Visualization to PLC” The file specified by the visualization user is transferred to the PLC and saved in
the file path specified in “File name” or “Streaming instance name”.
The “Open File” file selection dialog is displayed in the visualization at runtime.

“Type” Determines how the file is transferred
● Transfer type “File”: By file transfer
● Transfer type “Streaming”: By streaming

“Type” “File”

The data transfer is done by file transfer.

“File name” File path (type STRING) which describes the file in the file system

● Variable
Example: strTransferFile: STRING;

● Literal with relative path
Example: '/Recipes/Recipe_1.txt' saves the file in the directory
Recipes.

● Literal with placeholder $PLCLOGIC$
PlcLogic is the default resolution for the directory placeholder
$PLCLOGIC$.
Example: '$$PLCLOGIC$$/test.txt' saves the file in the directory
PlcLogic.
Example: '$$PLCLOGIC$$/MyData/test.txt' saves the file in the direc-
tory PlcLogic/MyData.

● Literal with placeholder $VISU$
visu is the default resolution for the placeholder $VISU$.
Example: '$$VISU$$/test.txt' save the file in the subdirectory
PlcLogic/visu. Alternatively, 'visu/test.txt' can also be specified.

● Literal with absolute path
Example: 'E:\temp\test.txt'
Note: These kinds of file paths are not always supported.

Note: If a user specifies the file path in the visualization by means of a
“Text Field” element, the masking character $ must not be included: $VISU$/
dummy.txt
Note: In the case that the file path is specified by the user, it should be checked
by the application in order to prevent files from being read or overwritten acci-
dentally.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1759

“Type” “Streaming”

The data transfer is done by streaming.

“Streaming instance name” Instance path (type IVisuStreamWriter or IVisuStreamReader) which
describes the object in the file system of the controller
Type IVisuStreamReader for transfer direction “From PLC to Visualization”

Type IVisuStreamWriter for transfer direction “From Visualization to PLC”

“Control flags” Note: The variable is evaluated only for transfer direction “From Visualization to
PLC”.
Variable (type DWORD)

Determines how the object (file or instance object) is handled on the file system
of the PLC. Two flags are provided for this with which the variable can be set.
● Flag 1:

VisuElems.VisuEnumFileTransferControlFlags.UseOriginalFi
leName

● Flag 2:
VisuElems.VisuEnumFileTransferControlFlags.ConfirmFileOv
erwriteInPlc

Options
● No flag set:

The user selects a file which is saved in the path specified in “File name” or
“Streaming instance name”.

● Flag 1 is set:
The path, which is specified by the user at visualization runtime, is applied
and used as the path in the PLC file system.

● Both flags are set:
The path is also checked. If an object already exists in the path specified
on the client side, then a message prompt is displayed in the visualization.
There the visualization user can confirm that the file will be overwritten.

Example: dwControlFlag

The transfer direction is “From Visualization to PLC” (write).
Example: A new recipe file Recipes/Recipe_2021.txt has been created in the visualiza-
tion device. The visualization user selects this file and wants to save the file on the PLC under
the same name. Because the control flags are set accordingly, a message window opens and
the visualization user can confirm that the file will be overwritten.

PROGRAM PLC_PRG
VAR
 xVisuToggle : BOOL;
 dwControlFlag : DWORD:=
VisuElems.VisuEnumFileTransferControlFlags.UseOriginalFileName +
VisuElems.VisuEnumFileTransferControlFlags.ConfirmFileOverwriteInPlc
;
 strFileName: STRING := '/Recipes/Recipe_new.txt';
END_VAR

Example

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1760

Table 328: “Status Variables”
“Transfer active” Boolean variable (optional)

TRUE: The transfer is in progress.

“Transfer successful” Boolean variable (optional)
TRUE: The transfer has completed successfully.

“Error code” ● 0: No errors
● 1: Unspecified error
● 2: Cancellation of file dialog
● 3: Other file transfer in progress
● 4: Error during file transfer
● 5: Cancellation by timeout
● 6: File read error – The file is not available or cannot be read.
● 7: No device support for file transfer

Possible causes:
– CODESYS WebVisu: File transfer is not possible by default.
– Communication with a controller of a version < 3.5.11: Functionality not

implemented.
– Communication with a controller of a version >= 3.5.11: File transfer not

activated (device description).
Note: In this case, contact the CODESYS support team.

Dialog 'Options' - 'Visualization Styles'
Symbol:
Function: This dialog is used for configuring the display of library visualizations and visualiza-
tions in the POUs view in the visualization editor. In addition, it is used for configuring the tab
“Visualization Manager” - “Settings” (group “Style Settings”).
Call: Menu bar: “Tools è Options” (“Visualization Styles” category).
These settings are not applied at visualization runtime. In runtime mode, only the settings of the
visualization manager are available in the “Settings” tab.
See also
● Ä Chapter 1.4.5.17 “Applying Visualization Styles” on page 1360

These settings are applied for library visualizations and for visualizations in the POUs view.

“Use no visualization style” : Display without using style properties. Elements are displayed as defined by
presets.

“Use the following visualization
style”

: Style with style properties used for displaying visualizations.

'Style Configu-
ration for Libra-
ries and Global
Visualizations'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1761

“Derive visualization style
automatically”

: Display with the style that was selected in the application in the visualization
manager (when possible). Therefore, the display is derived from this style.
It is actually possible for this to cause an incorrect display. Then the fallback
solution is used.

“Fallback if no visualization
style could be derived ”

Another style that is applied after the selected style. Then a style property is
assigned from the style specified here. This is done for element properties that
could not be assigned style properties.
Requirement: The selected style causes a device-specific, deficient display on
the display variant.

The drop-down list of “Selected style” can be configured in the visualization manager (“Settings” tab, “Style
settings” group).

“Display all versions” : All other styles of the repository, including the selected style, are listed for
selection, but only in the latest version. If newer versions are installed for the
selected style, then these are also listed.

: All installed styles in all installed versions are available for selection.

“Last used: <style, version,
vendor>”

Style that is selected automatically when you add a new visualization application.
Note: It is actually possible that a display variant is displayed another way
depending on the device despite this setting.“Preset: <style, version,

vendor>”

“<style, version, vendor>”

Dialog 'Options' - 'Visualization User Management'
Symbol:
Function: The options define the use of visualization user management for global visualizations
in the “POUs” view and for visualizations that are linked from libraries.
Call: Menu bar: “Tools”.
Requirement: A visualization user management exists.

Table 329: “User Management Configuration for Libraries and Global Visualizations”
“Do not use visualization user
management”

The affected visualizations behave as when no user management is configured.

“Use the following visualization
user group list”

● You can edit the list.
● The list is created in the “Visualization manager” (“User management
è Groups”) by clicking “Export groups for global visualizations”.

“ Derive visualization user
management automatically”

The affected visualizations use the user management configuration of the visual-
ization manager selected here.
The drop-down list shows all visualization managers of the project.
If this is not possible, then the user groups are used from the option “Use the
following user group list for the visualization”.

'Style Selection'

'Style for New
Visualization
Managers'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1762

The user management for a visualization in the “Devices” view is configured in
the “Visualization Manager” (tab “User Management”).

See also
● Ä Chapter 1.4.5.19.4.5 “Tab 'Visualization manager' - 'User management'” on page 1782

Dialog Box 'Options' - 'Visualization'
Symbol:
Function: The dialog serves for the configuration of the visualization editor and during runtime it
serves the configuration of the Integrated Visualization.
Call: Main menu “Tools è Options”, category “Visualization”

These settings will not be applied for the following visualization clients:
CODESYS TargetVisu, CODESYS WebVisu.

Table 330: “Presentation options (visualization editor in the programming system)”
“Fixed” The visualization maintains its original size

“Isotropic” The visualization maintains its proportions

“Anisotropic” The visualization adapts to the size of the visualization window

“Antialiased Drawing” : The visualization is drawn with the help of antialiasing methods. This applies
while you are editing and also when the visualization is running as Diagnosis
Visualization.

Table 331: “Editing options”
“Link to toggle/tap variable
when appropriate”

: The placeholder “<toggle/tap variable>” in the visualization element proper-
ties is enabled.
Effect: If you drag an element having the property “Color variable è Toggle
color” in the visualization editor, this property will be configured with the place-
holder “<toggle/tap variable>”.
The following elements are affected: “Button”, “Frame”, “Image”, “Line”, “Pie”,
“Polygon”, “Rectangle”, “Text field”, “Scrollbar”.

See also
● Ä Chapter 1.4.5.19.5.11 “Visualization Element 'Button'” on page 1892
● Ä Chapter 1.4.5.19.5.6 “Visualization Element 'Frame'” on page 1856
● Ä Chapter 1.4.5.19.5.5 “Visualization Element 'Image'” on page 1842
● Ä Chapter 1.4.5.19.5.2 “Visualization Element 'Line'” on page 1804
● Ä Chapter 1.4.5.19.5.4 “Visualization Element 'Pie'” on page 1829
● Ä Chapter 1.4.5.19.5.3 “Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'”

on page 1816
● Ä Chapter 1.4.5.19.5.1 “Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'”

on page 1792
● Ä Chapter 1.4.5.19.5.14 “Visualization Element 'Text Field'” on page 1916
● Ä Chapter 1.4.5.19.5.15 “Visualization Element 'Scroll Bar'” on page 1928

Tab 'General'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1763

“Visible” : The visualization editor contains a grid. The spacing of the grid lines is
defined by “Size”.

“Active” : The visualization elements get aligned to the grid, defined by “Size”, even
if the grid lines are not visible. When you insert or move an element, its center
will be positioned on the grid. When you modify the size of an element, you can
move the position markers onto grid lines only. Elements already available in a
visualization, will not be aligned automatically, until you change their position.

“Size” Spacing of the grid lines in pixel.

“Text list files for textual
"IntelliSense”

File name and path of a file of type .csv. The file contains texts in the format of
a text list.
The file entries will be available when using the function "List Components" as
input assistance.
Note: You can create this file as an export file of the global text list. For this
purpose use the command “Import/Export Text Lists”.

“Visualization Directories”

“Text list files” Storage path for text lists.
Note: This setting will be used in CODESYS only if no storage path for “Text list
files” is defined in the “Project Settings”, category“Visualization”.

“Image files” Storage path for image files. Multiple paths get separated by semicolons.
CODESYS uses this path for example when exporting or importing image files.
Note: This setting will be used in CODESYS only if no storage path for “Image
files” is defined in the “Project Settings”, category“Visualization”.

See also
● Ä Chapter 1.4.1.8.8 “Managing text in text lists” on page 266
● Ä Chapter 1.4.1.20.3.20.6 “Command 'Import/Export Text Lists'” on page 1133

See also
● Ä Chapter 1.4.5.19.3.13 “Dialog 'Project Settings' - 'Visualization'” on page 1766
● Ä Chapter 1.4.5.19.4.7 “Object 'TargetVisu'” on page 1787

Dialog 'Project Environment' - 'Visualization Profile'
Function: The dialog displays the current visualization profile of the project. The profile can be
updated here.
Call: Main menu “Project è Project Environment”, Tab “Visualization Profile”.

“Current visualization profile in
project”

The currently set visualization profile of the opened project.

“Recommended, newest
profile”

The newest profile

“Action”

“Do not update” The visualization profile of the project remains unchanged.

Tab 'Grid'

Tab 'File
options'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1764

“Update to x.x.x.x” CODESYS updates the project to the chosen visualization profile.

“Check for updates when
loading this project”

: CODESYS checks for new profiles when the project is opened. If there are
updates available an update dialog opens automatically.

: No check of the profile when loading the project. The update dialogs do not
open automatically any longer.

“Set All to Newest” CODESYS updates the profile.

Dialog 'Project Environment' - 'Visualization Styles'
Function: The dialog displays the currently used visualization style of the project. The visualiza-
tion style can be updated here.
Call: Main menu “Project è Project Environment”, tab “Visualization Styles”

“For the following visualization styles currently in use, newer versions are available:”

“Visualization Styles” Version of the currently set visualization style of the opened project.

“Current” Current version of the visualization style, for example 3.5.6.0
“Recommended” Recommenden version of the visualization style, for example 3.5.7.0
“Action”

“Do not update” The visualization style of the project remains unchanged.

“Update to x.x.x.x” CODESYS updates the project to the version of the chosen visualization style.

“ Check for updates when
loading the project”

: CODESYS checks for new versions when the project is opened. If there are
updates available an update dialog opens automatically.

: No check of the version. The update dialogs do not open automatically any
longer.

“Set All to Newest” CODESYS updates the version.

See also
● Ä Chapter 1.4.5.17 “Applying Visualization Styles” on page 1360

Dialog 'Project Environment' – 'Visualization Symbols'
Function: The dialog lists installed symbol libraries and allows for you to assign symbol libraries
to a project.
Call: Menu bar: “Project è Project Environment”, “Visualization Symbols” tab
Requirement: The open project contains a visualization and has been saved with a compiler
version < 3.5.7.0. CODESYS recognizes symbol libraries in compiler version 3.5.7.0 and
higher.

“Symbol library” List of all installed symbol libraries

“Active” : Symbol library is selected for the project. CODESYS provides its symbols in
the “Visualization Toolbox” view.

: Symbol library has been previously installed only in the library repository.

See also
● Ä Chapter 1.4.5.3.1 “Select Element” on page 1255

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1765

Dialog 'Project Settings' - 'Visualization'
Symbol:
Function: The dialog is used to configure the project-wide settings for objects of type
“Visualization”.
Call: Menu bar: “Project è Project Settings”, “Visualization” category
Requirement: A project is open.

Table 332: “Visualization Directories”
“Text list files” Directory which contains text lists that are available in the project to configure

texts for different languages. CODESYS uses the directory, for example to
import or export text lists.

After clicking , the “Select Directory” dialog opens which allows for the selec-
tion of a directory in the file system.

“Image files” Directory which contains image files that are available in the project. Multiple
folders are separated with a semicolon. CODESYS uses the directory, for
example to import or export image files.

After clicking , the “Select Directory” dialog opens which allows for the selec-
tion of a directory in the file system.

Table 333: “Advanced”
“Activate property handling in
all element properties”

: You can also configure a visualization element with a property in those
of its properties in which you select an IEC variable. Then CODESYS creates
additional code for the property handling when a visualization is compiled.
Requirement: Its IEC code contains at least an object of type “Interface property”
(a property).

Requirement: “Visible” is selected.

See also
● Object 'Property'

Table 334: “Visualization Symbol Libraries”
“Symbol libraries” List of all installed symbol libraries

Example: VisuSymbols
“Assigned” : Symbol library is selected in the project and CODESYS makes it available in

the “Visualization ToolBox” view of a visualization.

: Symbol library is installed in the library repository, but CODESYS does not
make it available in the “Visualization ToolBox” view of a visualization.

See also
● Ä Chapter 1.4.5.19.3.2 “Dialog 'Add Visualization'” on page 1746

Tab 'General'

Tab 'Symbol
Libraries'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1766

ms-its:codesys.chm::/_cds_obj_property.htm

Dialog ‘Project Settings’ - ‘Visualization Profile’
Symbol:
Function: The dialog box enables the setting of the visualization profile.
Call: Menu “Project è Project Settings”, category “Visualization Profile”

Requirement: A project is open.

Table 335: “Visualization Profile”
“Specific profile” Profile that CODESYS uses in the project and that determines the visualization

elements that are available in the project.
The selection list contains all the profiles installed so far.

Dialog 'Properties' of Visualization Objects
Function: This dialog is used for configuring object-dependent properties.
Call: Menu bar: “View”; context menu of the visualization object in the “Devices” view or “
POUs” view.

“Name ” Example: visMain
“Object type ” visualization

“Open with ” visualization

See also
● Ä Chapter 1.4.1.20.4.10.1 “Dialog Box 'Properties' - 'Common'” on page 1157

This tab is used for defining which user group can execute which actions on the object.
See also
● Ä Chapter 1.4.1.20.4.10.6 “Dialog 'Properties' - 'Access Control'” on page 1161

This tab assigns a visualization type to a visualization.
In addition, it includes settings for window size that are used at runtime.

Tab 'General'

Tab 'Access
Control'

Tab 'Visualiza-
tion'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1767

Table 336: “Use visualization as”
“Visualization” Visualization type for an ordinary or referenced visualization. Preset.

“Dialog ” Visualization type for a visualization that opens as a dialog in its own window for
an input event. The input action for this is “Open dialog”. The “Close dialog” input
action closes the window.
Tip: A dialog usually includes an “OK” button or “Cancel” button at the bottom
edge for confirming or rejecting user input, and for closing the dialog. A simple
dialog or a dialog prompt includes only a question or information and buttons for
closing the dialog with either “Yes” or “No”. A dialog is part of a user interface.
While a dialog is open, the rest of the user interface is usually disabled.

“Numpad / keypad / dialog for
input configuration”

Visualization type for a visualization that displays a virtual numeric keypad or a
virtual keyboard. It appears when the user is prompted to specify text. The input
action for this is “Write variable”.
Note: The interface of this visualization must also conform with the interfaces
for the standard visualizations for the numeric keypad or that keyboard that
provides the VisuDialogs library: Numpad, Keypad, NumpadExtended, or
TextinputwithLimits.

Tip: The VisuDialogs library contains templates for virtual keyboards or
numeric keypads.

“Dialog is opaque” : The screen area that is covered by the dialog is not refreshed. This has a
positive effect on the character and input performance.
Use this option when your drawn dialog is rectangular and opaque, containing no
transparent parts.

“Use automatic detected
visualization size”

: The size is determined so that all visualization elements are enclosed.

“Include background image” : All elements and the background image are completely visible.

: All elements are visible, but a larger background image is truncated.

“Use specified visualization
size”

: The values “Height” and “Width” define the window size of the visualization
(in pixels).

“Internal” : The visualization is internal. It is used exclusively as an internal module of a
complete visualization in a library.
When editing as a library project while the project is open in CODESYS, an
internal visualization is handled like all visualizations. The internal visualization
appears in drop-down lists. Or in the visualization manager (“Visualizations” tab).
The internal visualizations that include a linked library are not visible to you.

See also
● Ä “Dialog 'Frame Configuration'” on page 1727

This tab includes options for compiling the object.
See also
● Ä Chapter 1.4.1.20.4.10.4 “Dialog 'Properties' - 'Build'” on page 1159

Dialog 'Selected Alarm Class'
Function: In this dialog box, you define the alarm classes that are considered for the alarm
table or alarm banner.

Tab 'Build'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1768

Call: Property “Alarm configuration” / “Alarm classes” of the alarm table or alarm banner visuali-
zation element.
Requirement: An alarm table visualization element or alarm banner visualization element is
added to the visualization.

“Available Alarm Classes” Shows all alarm classes created in the project.

“Selected Alarm Classes” The alarm classes in this column are displayed in the alarm table.

“All” : All alarm classes are listed in an alarm table.

Moves all available alarm classes to the “Selected Alarm Classes” column.

Moves the selected alarm classes to the “Selected Alarm Classes” column.

Removes the selected alarm classes from the “Selected Alarm Classes” column.

Removes all selected alarm classes from the “Selected Alarm Classes” column.

See also
● Ä Chapter 1.4.5.19.5.22 “Visualization Element 'Alarm Table'” on page 1969
● Ä Chapter 1.4.5.19.5.22 “Visualization Element 'Alarm Table'” on page 1969
● Ä Chapter 1.4.5.7 “Visualizing alarm management” on page 1289

Dialog 'Selected Alarm Group'
Function: In this dialog box, you define the alarm groups that are considered for the alarm table
or alarm banner.
Call: Property “Alarm configuration” / “Alarm groups” of the alarm table or alarm banner visuali-
zation element.
Requirement: An alarm table visualization element or alarm banner visualization element is
added to the visualization.

“Available Alarm Groups” Shows all alarm groups created in the project.

“Selected Alarm Groups” The alarm groups in this column are displayed in the alarm table.

“All” : All alarm groups are listed in an alarm table.

Moves all available alarm groups to the “Selected Alarm Groups” column.

Moves the selected alarm groups to the “Selected Alarm Groups” column.

Removes the selected alarm groups from the “Selected Alarm Groups” column.

Removes all alarm groups from the “Selected Alarm Groups” column.

See also
● Ä Chapter 1.4.5.19.5.22 “Visualization Element 'Alarm Table'” on page 1969
● Ä Chapter 1.4.5.19.5.22 “Visualization Element 'Alarm Table'” on page 1969
● Ä Chapter 1.4.5.7 “Visualizing alarm management” on page 1289

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1769

Dialog 'Advanced Trace Settings'
Function: The recording rate of the “Trace” visualization element is configured in this dialog
box.
Call
● Properties: “Trace” , “Advanced”
● Context menu: “Configure trace”, “Advanced”

Requirement: A trace is selected in the active visualization editor.

Table 337
“Measurement in every nth
cycle”

The task where the trace is running is the basis for the measurement. The
measurement interval is a multiple of the trace task according to the selected
value. The measurement interval is displayed on the right side.

“Buffer size (samples)”. The number of measurements is calculated according to the time range of the
x-axis.

See also
● Ä Chapter 1.4.5.19.2.13 “Command 'Configure Trace'” on page 1734

Dialog 'Display Settings'
Function: The dialog includes the configuration for the display settings of the trace diagram (for
both the X-axis and Y-axis) and provides a preview in the trace diagram.
Call: “Display” button in “Trace Configuration” dialog.

“Add Y-Axis” Extends the trace diagram by one Y-axis.
Result: The “Trace Configuration” dialog contains an extended selection of Y-
axes in the “Additional axes” option of the variable settings.

“Delete Y-axis” Deletes the Y-axis with the visible tab.

“Display Mode” Scaling

● “Auto”: : CODESYS Scales automatically.
● “Fixed length”: : CODESYS displays a segment of constant “Length”.
● “Fixed”: : CODESYS displays a segment from “Minimum” to “Maximum”.

“Minimum” Initial value of the segment. Requirement: The “Display Mode” is “Fixed”.

“Maximum” End value of the segment. Requirement: The “Display Mode” is “Fixed”.

“Length” Constant length of the segment.

“Grid” : Diagram with vertical grid lines. Select the line color from the list box of
colors.

Table 338: “Tick marks”
“Fixed spacing” : CODESYS draws tick marks with “Distance” and “Subdivisions”.

“Distance” Distance between tick marks

“Subdivisions” Number of subdivisions between two tick marks

Tab 'X-axis'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1770

“Font” Font for the X-axis

“Display Mode” Scaling

● “Auto”: : CODESYS Scales automatically.
● “Fixed”: : CODESYS displays a segment from “Minimum” to “Maximum”.

“Minimum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the initial value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 20,PLC_PRG.iLimit_Min, GVL.c_iLimit_Min
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Min : INT := 20

“Maximum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the end value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 80,PLC_PRG.iLimit_Max, GVL.c_iLimit_Max
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Max : INT := 80

“Grid” : Diagram with a grid line. Select the line color from the list box of colors.

“Label” : The description is displayed on the axis.

Table 339: “Tick marks”
“Fixed spacing” : CODESYS draws tick marks with “Distance” and “Subdivisions”.

“Distance” Distance between tick marks

“Subdivisions” Number of subdivisions between two tick marks

“Font” Font for the Y-axis

Tab 'Y-Axis'

Preview of the
trace diagram

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1771

“Background color” ● “No background”: Transparent display without background color.
● “Draw background”: Background color according to selection below.
● “From visualization style”: Background color as defined in the visualization

style.

“Reset” CODESYS resets all settings to the defaults.

“Use as default” CODESYS saves the settings as default

1.4.5.19.4 Objects
1.4.5.19.4.1 Object 'Visualization' and visualization editor............................. 1772
1.4.5.19.4.2 Object 'Visualization manager'... 1777
1.4.5.19.4.3 Tab 'Visualization Manager' - 'Default Hotkeys'.......................... 1781
1.4.5.19.4.4 Tab 'Visualization manager' – 'Visualizations'............................. 1781
1.4.5.19.4.5 Tab 'Visualization manager' - 'User management'...................... 1782
1.4.5.19.4.6 Tab 'Visualization Manager' - 'Font'.. 1786
1.4.5.19.4.7 Object 'TargetVisu'.. 1787
1.4.5.19.4.8 Object 'WebVisu'.. 1788

Object 'Visualization' and visualization editor
Symbol:
The object represents a single visualization. You can insert a visualization under an application
or, so that it is available project-wide, under the root node of the view “Devices” or directly in the
view “POUs”. You can open the visualization editor for editing by double-clicking on the object
entry in the device tree or in the view POUs.
See also
● Ä Chapter 1.4.5.19.3.15 “Dialog 'Properties' of Visualization Objects” on page 1767
● Ä Chapter 1.4.5.19.4.1.1 “Visualization Editor” on page 1772

Visualization Editor
The visualization editor opens when you double-click a visualization object.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1772

● (1) Graphical editor: Here you create the visualization from the visualization elements which
are provided in the visualization toolbox view.

● (2) View “Visualization Toolbox”: available visualization elements
● (3) View “Properties”: Configuration editor for the visualization element currently selected in

the editor area
● (4) Menu “Visualization”: Commands for working in the visualization editor
The “Visualization” menu contains, for example, commands for opening additional editors.
● (5) “Interface Editor”: Declaration of variables which can be used to parameterize references

of the visualization.
● (6) “Hotkeys Configuration”: Definition of keyboard shortcuts for inputs on the visualization in

online mode.
● (7) “Element List”: List of all elements used in the visualization; possibility to change their

position on the Z-axis.
See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.4.4 “Configuring Keyboard Shortcuts” on page 1274
● Ä Chapter 1.4.5.15.2 “Calling a Visualization with an Interface” on page 1332
● Ä Chapter 1.4.5.19.4.1.2 “View 'Visualization Toolbox'” on page 1773
● Ä Chapter 1.4.5.19.4.1.3 “View 'Properties' of a visualization element” on page 1775
● Ä Chapter 1.4.5.19.2 “Commands” on page 1718
● Ä Chapter 1.4.5.19.2.1 “Command 'Interface Editor'” on page 1719
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.2.3 “Command 'Visualization Element List'” on page 1721

View 'Visualization Toolbox'
Symbol:
Function: The view provides the elements that can be used in the editor. The individual ele-
ments are assigned with specific categories. There is a button for each category. The elements
of selected categories are displayed with thumbnails which can be dragged into the editor. In
addition to the standard categories, you can also define your own categories. You can resize the
thumbnails with the slider or perform a full-text search of element names.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1773

Call: Menu bar: “View è ”

Requirement: A visualization is active.

● (1) “Visualization Toolbox” view
● (2) Toolbar with commands
● (3): Buttons fro selecting element categories
● (4) Selection of individual visualization elements
● (5) Controls
See also
● Command 'Toolbox'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1774

ms-its:codesys.chm::/_cds_cmd_tools.htm

Symbol: Only one button can be selected.

Symbol: Multiple buttons can be selected.

Symbol: The “Configure Categories and Items” dialog opens.

See also
● Ä Chapter 1.4.5.19.3.4 “Dialog 'Configure Categories and Items'” on page 1747

A button is displayed for each defined element category. A selected button is displayed in green.

[Shift] + click a button Changes the selection of the category and the selection type (single or multiple
selection possible)

Right-click a button The context menu opens.

Table 340: Context menu of a button
“Hide Category” Removes the button. Then the category is removed from view.

“Enable Category” The button turns green and the category is enabled, irrespective of the selection
type.

“Disable Category” The button turns gray and the category is disabled, irrespective of the selection
type.

See also
● Ä Chapter 1.4.5.3.1 “Select Element” on page 1255
● Ä Chapter 1.4.5.19.3.4 “Dialog 'Configure Categories and Items'” on page 1747
● Command 'Toolbox'

The visualization elements are displayed as thumbnails and labeled with names. The selection
depends on the search query in or on the chosen buttons.

Slider To resize of the thumbnails.

 with input field For a full-text search by element name of all available elements

“<number> items” Number of visualization element items that are currently displayed as a result of
the selected buttons and the search query in .

View 'Properties' of a visualization element
Symbol:
Function: This view is used for configuring the element properties of the selected visualization
element.
Call: Menu bar: “View è Element Properties”

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Toolbar with
commands

Buttons for
selecting ele-
ment categories

Selection of vis-
ualization ele-
ments

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1775

ms-its:codesys.chm::/_cds_cmd_tools.htm

Table 341: “Filters”
“All categories” List of all element properties

“Default” List of the most frequently used element properties

“Simple” List of certain basic element properties, such as “Texts”, “Colors”, and “Input
configuration”

“Animation” List of element properties for animation with variables

“Colors” List of element properties for designing with color

“Texts” List of element properties for designing with text

“Input” List of element properties for configuring user input

Table 342: “Sort”
“Sort by type” : Element properties are sorted by the original order of categories.

“Sort by name” : Element properties are sorted in alphabetical order.

Table 343: “Order”
“Sort ascending” : The properties are sorted from A to Z.

“Sort descending” : The properties are sorted from Z to A.

“Expert” : The table includes all properties. The menu command “Filter è Show all
categories” is enabled at the same time.

Column “Property” Element properties of the selected element

Column “Value” The assigned value is applied in the editor view.

Double-click in the “Value”
column

A line editor, drop-down list, or dialog opens for editing the value.

 opens the “Input Assistant” dialog for help, for example when assigning
variables or image references.Single-click for a selected field

[Blank] for a selected field

A style selected in the visualization manager can include single, predefined
element properties. As a result, these do not appear in this view because a
fixed value is already assigned to them. They do not have to be configured
anymore.

Visualizations can be configured with device-specific restrictions that block the
availability of element properties.

Menu bar

Element proper-
ties display in a
table

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1776

Device-specific restrictions :
● Elements with restricted availability
● Fonts with restricted availability
● Colors with restricted display
● Image formats with restricted display
● Maximum number of visualization elements
● Maximum number of visualizations below the device

Object 'Visualization manager'
Symbol:
The visualization manager manages the configuration settings for all display variants of the
visualizations of the current application.
The object is automatically inserted when a visualization object is inserted below the application.
On a double-click the configuration dialog opens with several tabs.

If the device employed supports display variants of the visualization, the
visualization manager automatically brings along the corresponding objects
(CODESYS WebVisu, CODESYS TargetVisu).

If the device employed supports CODESYS TargetVisu, the visualization man-
ager automatically brings along the corresponding object CODESYS Target-
Visu.

See also
● Ä Chapter 1.4.5.16 “Configuring and executing display variants” on page 1354
● Ä Chapter 1.4.5.19.4.7 “Object 'TargetVisu'” on page 1787
● Ä Chapter 1.4.5.19.4.8 “Object 'WebVisu'” on page 1788

Symbol:
Function: the tab contains settings for all visualizations that are available application-wide.

“Use unicode strings” : The visualization codes character strings as Unicode.

“Use CurrentVisu variable” : the application knows and uses the global variable
VisuElems.CurrentVisu of the type STRING. It contains the name of the
currently active visualization at the runtime of the application. The application
can read from the variable in order to obtain the name of the currently active vis-
ualization. The application can cause a visualization change by a write access.
Requirement: the application contains a visualization that calls further visualiza-
tions.
Example
● Variable assignment: VisuElems.CurrentVisu:=strVisuName;
● Visualization name assignment: VisuElems.CurrentVisu:='visu1';

Tab 'Visualiza-
tion manager' –
'Settings'

'General set-
tings'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1777

The “Visualization Style Editor” enables new styles to be generated, checked
and installed in the visualization styles repository.

“Selected style” ● Style from the visualization styles repository that every visualization in the
application uses, for example “Flat Style”.

● “<None>”: The visualization displays its elements without style or according
to the internal default. A standard dialog appears instead of a selection list
for selection in the element properties “Color” und “Font”.

Opens a selection list with styles that are installed in the visualization styles
repository.

“Display all versions (for
experts only)”

: The selection list contains only the latest version of each selected style and
all other styles. If a newer version of the selected style is installed it is also
displayed.

: The selection list contains all versions of all installed styles.

Button Opens a selection list with commands for the use of the “Visualization Styles
Editor”.

“Open Style Editor” The “Visualization Styles Editor” opens.

“Create and edit derived style” The “Visualization Styles Editor” opens with the dialog “Create a new
visualization style”. The dialog contains the settings for the first configuration
step.
Requirement: a style is selected in “Selected style”.

“Copy and edit the selected
style”

The “Visualization Style Editor” opens with the dialog “Open existing style as a
copy”. The dialog contains the settings for the first configuration step.
Requirement: a style is selected in “Selected style”.

“Preview” The elements displayed represent the style specified in “Selected style”.

See also
● Ä Chapter 1.4.5.17 “Applying Visualization Styles” on page 1360
● Ä Chapter 1.4.5.17.2 “Managing visualization styles in repositories” on page 1365
● Ä Chapter 1.4.5.20.1 “Dialog 'Create a New Visualization Style'” on page 2127
● Ä Chapter 1.4.5.20.2 “Dialog 'Open Existing Style as a Copy'” on page 2127
● Ä Chapter 1.4.5.19.3.7 “Dialog 'Options' - 'Visualization Styles'” on page 1761

“Selected language” Language used by the display variants at the start of a visualization.

For an element with standard text input, a dialog that supports the input appears at runtime. You
can specify which dialog appears.

'Style settings'

'Language set-
tings'

'Settings for
default text
input'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1778

“Numpad” Dialog that calls the visualization if a user activates the input field for
a number at runtime. The dialog represents a numeric keypad. Default:
“VisuDialogs.Numpad”

“Keypad” Dialog that calls the visualization if a user activates the input field for a text at
runtime. The dialog represents a keyboard. Preset: “VisuDialogs.Keypad”

“Use text input with limits” Requirement: CODESYS TargetVisu or CODESYS WebVisu are configured as
display variants and the “standard text input” is “keyboard”. The visualization
then supports input via keyboard at runtime. The input thus generally takes place
via an input field.

: Instead of the input field you can call a dialog that displays the value range
for inputs with a limited value range.
Default:“VisuDialogs.TextinputWithLimits”. This dialog displays the value range
and doesn't accept any value outside these limits.

See also
● Ä Chapter 1.4.5.19.4.7 “Object 'TargetVisu'” on page 1787
● Ä Chapter 1.4.5.19.4.8 “Object 'WebVisu'” on page 1788

You can configure your visualization with a user management. To do this, configure an input to an element that
causes a user management dialog to appear. The VisuUserManagement library contains ready-to-use dialog
visualizations for this purpose. The library is located in the installation directory, for example in C:\Program
Files (x86)\3S CODESYS\CODESYS\Projects\Visu\Dialogs\VisuUserMgmtDialogs.library.

You can also use other visualizations as user management dialogs. To do that you have to change the defaults
here.

“Login dialog” User management dialog that enables logging in; typically a request to enter a
username and a password. It appears upon an input event on an element that
executes as a consequential action “User management”, action “Login”.
Preset: VisuUserManagement.VUM_Login

“Change password dialog” User management dialog that enables a password to be changed; typically
a request to enter the current password and a new one. It appears upon
an input event on an element that executes as a consequential action “User
management”, action “Change user password”.
Preset: VisuUserManagement.ChangePassword

“Change configuration dialog” User management dialog that enables a configuration change of the user man-
agement, i.e. typically a display of the current user configuration and a possibility
to change it. It appears upon an input event on an element that executes as a
consequential action “User management”, action “Open user configuration”.
Preset: VisuUserManagement.VUM_UserManagement

See also
● Ä Chapter 1.4.5.5 “Setting Up User Management” on page 1282
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

'Settings for
user manage-
ment dialogs'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1779

“Activate multitouch handling” : At runtime the visualization expects user inputs via gestures and touch
events.
Elements concerned
● Elements with input configuration
● Element of the type “Frame”
● Component of the type “Tab control”

“Activate semi-transparent
drawing”

: The visualization draws the elements in a semi-transparent color.
To do this you can additionally specify a graduation value for the transparency
when defining a color. The transparency is defined in the “Transparency” prop-
erty.
The leading byte is evaluated in color variables.
Preset: Activated. Requirement: you create a new visualization and the display
variants can paint semi-transparently.

“Activate standard keyboard
handling”

● [Tab]
● [Shift] + [Tab]
● [Input]
● [Up arrow]
● [Down arrow]
● [Right arrow]
● [Left arrow]

See also
● Ä Chapter 1.4.5.3.3 “Assigning a color” on page 1258
● Ä Chapter 1.4.5.19.1 “Keyboard Shortcuts for Default Keyboard Action” on page 1717

Table 344: “Memory settings”
“Size of memory for
visualization”

Memory size in bytes allocated by the visualization at runtime. Preset: “400000”

“Size of the paintbuffer (per
client)”

Memory size in bytes allocated by the visualization per display variant and used
for painting actions. Preset: “50000”

Table 345: “File transfer mode”
“Transfer visualization files to
the PLC”

: When downloading the application from the visualization directories to the
controller, CODESYS copies image files and text list files that the visualization
references. A CODESYS TargetVisu needs the files on the PLC and similarly the
dialogs that support a numerical input or a keyboard input.

Use local visualization files : The visualization uses image files and text list files from local directories
Note: In order to achieve that the visualization can access the files stored locally,
it is necessary thatthat the file paths are relative. The paths are given in dialog
box “Project è Project settings” in tab “Visualization”.
Note: It is also necessary that the link type of a image is “Link to file”. The link
type is specified in the image pool.

See also
● Ä Chapter 1.4.5.16.3 “Configure File Transfer Mode” on page 1359
● Ä Chapter 1.4.5.19.3.13 “Dialog 'Project Settings' - 'Visualization'” on page 1766

'Additional set-
tings'

'Extended set-
tings'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1780

● Ä Chapter 1.4.5.19.3.9 “Dialog Box 'Options' - 'Visualization'” on page 1763
● Ä Chapter 1.4.1.20.2.13 “Object 'Image Pool'” on page 873

Display variant denotes the type of visualization, for example WebVisu, Tar-
getVisu. A visualization client is a currently connected display medium. Thus,
several browsers (clients) can be connected in parallel for the display variant
WebVisu.

Table 346: “Client settings”
“Maximum number of
visualization clients”

Limits the number of visualization clients that are executed at the same time.
If you configure the elements so that they vary depending on the display var-
iant, then you have to limit the number of display variants. A visualization is
given an ID at runtime that identifies the display variant and then processes
data accordingly. CODESYS can the query the ID using the system variable
CURRENTCLIENTID and thus obtains the information as to which of the running
variants is concerned.
Example: arr[CURRENTCLIENTID].dwColor
Requirement: VisuGlobalClientManager library is integrated in the project.

Tip: You can find in the CODESYS store. example "Global Client Manager"

“Transfer both svg images and
converted images”

This option is visible only if both a WebVisu and a TargetVisu exist. It concerns
images in svg format only.
The option is available if the device description for the controller of the Target-
Visu does not support the svg (full) format.

: The images are transmitted in the png or bmp formats (for TargetVisu) and
additionally in svg format (for WebVisu).

Not all settings are available with an integrated CODESYS visualization.

Tab 'Visualization Manager' - 'Default Hotkeys'
Symbol:
The tab includes a list of configured keyboard shortcuts that are valid for all visualizations avail-
able throughout the application. Therefore, the tab is the central location for defining keyboard
shortcuts for all visualizations that are below an application.
Keyboard shortcuts of the default keyboard action are not listed here.
The tab is similar to the “Keyboard Configuration” tab and provides the same editing options.
See also
● Ä “Tab 'Keyboard configuration'” on page 1720

Tab 'Visualization manager' – 'Visualizations'
Symbol:

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1781

Function: The tab lists all visualizations that are available project-wide and enables an assign-
ment of the visualizations for the loading behaviour, depending on the display variants.

“Standard behaviour” : The visualizations of the application and the actually referenced visualiza-
tions are automatically loaded to the target system. The activated checkboxes
show which one that is.

: The loading behaviour is explicitly defined for each visualization.
Hint: use the explicit selection if you reference visualizations indirectly via IEC
variables.

“Visualizations” The list contains all created visualizations from the device tree and the POU
view.

“Dialogs” The list contains all the referenceable visualizations that are available via the
libraries of the library management.

Only those visualizations selected here using checkboxes are loaded.

“Remote target visualization,
target visualization, web
visualization,”

The column settings affect the loading behaviour for the display variants “remote
target visualization”, “target visualization” and “web visualization”.

Tab 'Visualization manager' - 'User management'
Symbol:
The “User management” tab is used for creating and configuring the user management for
visualizations and their users and groups.

If a user management has not been configured yet, then the following buttons are available:

“Create empty user
management”

The user management opens. The “None” group is created.

“Create user management with
default groups and users”

The user management opens. The following groups and users are created:
● “Admin” group with “Admin” user
● “Service” group with “Service” user
● “Operator” group “Operator” user
● “None” group

Table 347: “Choose between local and remote user management”
Requirement: The project includes several devices with a visualization user management.

“Use local user management” The user management of this visualization manager is used for the visualization.

“Use remote user
management”

Drop-down list with all devices of the project that have their own visualization
user management.

Tab 'Flags'

Project with
multiple visuali-
zation user
managements

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1782

Even if there are no display variants of the visualization in the application, it may be required
that the visualization user management is located on the controller. This is the case, for
example, when HMIs connect to the controller.

Requirement: The visualization does not have any display variants. This means that the objects “Web
visualization”, “Target visualization”, or “Remote target visualization” are inserted below the visualization manager.

See also
● Ä Chapter 1.4.5.5.2 “Configuring users and groups” on page 1283

“Group name” When you click the node, all users are listed that belong to the group.

“Automatic logout” : The “Logout time” input field is active and editable.

“Logout time” Input field for integer value
Drop-down list for time unit “Min”, “Sec”, or “Hr”

“Permission to change user
data”

: The group is granted permission to edit user data when the visualization is in
online mode.

“Description” The text is visible in the development system only. It is not downloaded to the
controller.

“ID” Unique ID for each group. Assigned automatically by the system.

Add a new group In the last row of the table, click in the “Group name” field and specify the name
for the new group.

Delete a group Select a group and press [Del]. The “None” group cannot be deleted.

Table 348: Buttons
“Update visualizations /
hotkeys”

Opens the “Update visualizations and hotkeys” dialog box.
Update, if groups were changed at a time when visualizations or keyboard short-
cuts already had restricted permissions.

“List usage of groups” List of visualizations and keyboard shortcuts with restricted permissions.
The list is displayed in the “Messages” view.

“Export groups for global
visualizations”

The defined group names are transmitted to “Tools è Options è Visualization
user management”. They are then listed in “Use the following user group list for
the visualization”. The list can be changed there as well.

“Delete complete user
management”

The user management is deleted and the start view is shown with the following
buttons:
“Create empty user management” and
“Create user management with default groups and users”.

“Export user management” The drop-down list opens.
● “Before V3.5 SP6”
● “V3.5 SP6 and later”

A standard dialog opens for saving the user management as a CSV file with any
name in any directory.

Visualization
user manage-
ment on the
controller for a
visualization
without a dis-
play variant

Tab 'Groups'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1783

“Import user management” A standard dialog opens for importing a user management. the user manage-
ment must be a CSV file.

, Moves the selected group one line up/down, thus changing the hierarchy of the
group.
A group of a higher hierarchy cannot have fewer permissions for an element
than a group of a lower hierarchy.

Table 349: Dialog box “Update visualizations and hotkeys”
This dialog updates only visualization elements and keyboard shortcuts with configured permissions.

“Add new group” Drop-down list with all new created groups of this user management.
Requirement: A new user group was created.

“Setting for new group” ● “new group in visualization / hotkey will get the right like group”: Drop-down
list with all existing groups of this user management

● “new group should get the following right”
– “for visualization elements”: Drop-down list with the permissions:

“Operable”, “Only visible”, and “Invisible”.
– “for hotkeys”: Drop-down list with the permissions: “Operable”, “Not

operable”.

“Delete not existing groups” If no affected visualization elements or keyboard shortcuts are found for
updating, then this is displayed as a message in the “Messages” view
(“Visualization” category).“Rename groups”

“Update” Updates the permissions of the affected visualization elements and keyboard
shortcuts

“Login name” Name for the user to log in to the visualization at runtime.
This name is unique.

“Full name” This name may exist more than one time in the user management.

“ Password” Encrypted by CODESYS. By default, the “Login name” is displayed here.
If you click the “Password” field of a selected line, then the “Change password”
dialog box opens.

“User group” Group(s) that the user belongs to.
Clicking the “User group” field of a selected user opens the dialog box “User
groups the user belongs to”.
● “Groups”
● “Assigned”: : The user is assigned to this group.

“Deactivate” : The user is deactivated.

“Description” Descriptive text is available in the development system only and is not down-
loaded to the controller.

Table 350: Buttons
“Upload user from device” The data of the user management is uploaded from the controller.

If user data is already configured. then it is overwritten.

“Download user to device” The data of the user management is downloaded to the controller.
The existing user management on the controller is overwritten.

Tab 'User'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1784

“Export user management” The drop-down list opens.
● “Before V3.5 SP6”
● “V3.5 SP6 and later”

A standard dialog opens for saving the user management as a CSV file with any
name in any directory.

“Import user management” A standard dialog opens for selecting the user management (in CSV format)
from the file system.

“Settings for download of user data”

“Download user data on every
login”

The data of the user management is downloaded to the controller at login.
Existing data is overwritten.

“Never download user data on
login”

The data of the user management is never downloaded to the controller, even if
it changes.

“Allow decision on every
download”

A “Warning” dialog box opens for you to accept or refuse the download.

“Access rights for elements”

“Use group hierarchy” : The permissions can be granted to the group hierarchy of the “Groups” tab
only.
The group in the first line of the “Group” list is the highest in the hierarchy.
A group of a higher hierarchy cannot have fewer permissions for an element
than a group of a lower hierarchy.

“Logout behavior”

“Change to start visualization
at logout”

: Switches at logout to the visualization that is configured as the “Start
visualization” in the respective display variant.

The data for user management is saved to a CSV file in the following format:
● User groups: ID;group name; automatic logoff TRUE/FALSE;logoff

time;unit logoff time;permission to change user date TRUE/FALSE
● Users: login name;full name;password encrypt TRUE/

FALSE;password;group ID;user deactivated TRUE/FALSE
Use this format when you want to edit data for user management by means of any tool. If
you set password encrypt to FALSE, then an unencrypted password can be used. In the
example, the unencrypted password Yellow was specified for the user Hugo. If you import
the CSV file with the command “Import user management”, then the password is encrypted
automatically.

Tab 'Settings'

CSV file with the
data for user
management

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1785

V1.0.0.1
Usergroups:
1;Admin;TRUE;1;Minute;TRUE
3;Operator;FALSE;1;Minute;FALSE
7;Service;FALSE;1;Minute;FALSE
0;None;FALSE;1;Minute;FALSE
4;Early and late shift;FALSE;1;Minute;FALSE
2;Early shift;TRUE;1;Minute;FALSE
6;Late shift;FALSE;1;Minute;FALSE
User:
Service;Service;TRUE;C08298D42A35732CFFB7DF43771B7607;2;FALSE
Operator;Operator;TRUE;3D94AB9540B025B07773DE7037F19837;3;FALSE
John;Blue;TRUE;62ED5DE29E5DD4164A01F3AF1B81EFA0;4;FALSE
Paul;White;TRUE;01E2CBD4AE5442D9EACE33669549A3CC;2;FALSE
Hugo;Green;FALSE;Yellow;6;FALSE

Example

See also
● Ä Chapter 1.4.5.5.2 “Configuring users and groups” on page 1283
● Ä Chapter 1.4.5.5.4 “Configuring permissions for groups” on page 1285

Tab 'Visualization Manager' - 'Font'
Symbol:
Function: This tab provides settings for adapting the font and font size in the visualization
according to the language. The settings apply to all visualizations of the application, including
the visualization manager.

Table 351: “Language Specific Font Settings”
“Language” Language used in the project. A column is created for each language. All text

lists, including those from integrated libraries, are scanned for this.

“Font” Font used by the visualization depending on the language.

“Size factor” The factor affects the type size of all texts in the visualization.
Preset: 1
If the factor is smaller than 1, this leads to a reduction of the type size. If the
factor is 1, all texts are displayed unchanged as defined in “Properties”.

Red highlighting of a cell The highlighted language is no longer present in the text lists of the project or the
libraries.
This highlighting is not available in runtime mode.

Context menu of a selected table row

“Delete Language” The associated column is removed. This is advisable above all if settings in the
column are highlighted in red.

“Copy Language Settings” All settings in the column are copied to the clipboard.

“Paste Language Settings” All settings in the column are overwritten with the values from the clipboard.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1786

Table 352: “General Font Settings”
“Automatic decrease of font
size”

: If the text to be displayed does not fit in the text field in the set format, then
the font size is decreased automatically until the text fits completely in the text
field.
Tip: This prevents a text from being truncated when changing to a language
that needs more space. The requirement is that a font is available which has a
sufficiently small font.

See also
● Ä Chapter 1.4.5.6 “Setting Up Multiple Languages” on page 1286

Object 'TargetVisu'
Symbol:
Function: The object is used for configuring CODESYS TargetVisu in order to display the
visualization directly on the controller of an integrated or connected panel.
Requirement: The CODESYS control runtime environment is equipped with the CODESYS
TargetVisu component. The object itself is inserted below the visualization manager.
CODESYS TargetVisu can be executed on different platforms, from embedded controllers to
powerful PC-based systems on different operating systems. Therefore, it can be run on Win-
dows, Windows Embedded CE, Linux, QNX, or VxWorks. A ready-made adaptation to the
graphics interface of the systems is available on these operating systems. An adaptation is
required for embedded controllers or other operating systems. In addition, there are device
manufacturers that integrate visualizations into external applications by means of ActiveX con-
trols.

“Start Visualization” Name of the visualization where the start is displayed as CODESYS TargetVisu.
Hint: Use input assistance for selecting another visualization.

“Update rate (ms)” Refresh rate (in milliseconds) in the visualization
Example: 200

“Show used visualizations” The link opens the “Visualizations” tab in the “Visualization manager” editor.
The tab provides information of the visualizations loaded on the display variants.

See also
● Ä Chapter 1.4.5.19.4.4 “Tab 'Visualization manager' – 'Visualizations'” on page 1781

Table 353: “Scaling Options”
“Fixed” : Fixed size of the visualization (original size).

“Isotropic”: : The size of the visualization is adapted to the dimensions of the display
device, retaining the proportions of the visualization.

“Anisotropic”: : The size of the visualization is adjusted to the size of the display device, for
example a screen.

“Use scaling options for
dialogs”

 The dialogs, also for keypad and numpad, are scaled like the visualization
(drawn with the same scaling factor). This is an advantage when a dialog was
created to match the visualization because then they are scaled together.

“Use automatically detected
client size”

: The visualization fills the screen of the display device completely.

“Use specified client size” : The values in “Client height” and “Client width” are used for the size of the
visualization. The visualization fills this screen area only.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1787

“Client height” Height of the visualization (in pixels).

“Client width” Width of the visualization (in pixels).

Table 354: “Presentation Options”
“Antialiased drawing” : Antialiasing is used in the visualization editor for drawing a visualization as a

TargetVisu and a TargetVisu variant.
Hint: If a horizontal or vertical line is drawn blurry on a specific visualization
platform, then this can be corrected by an offset of 0.5px in the direction of the
line thickness (see element property “Absolute movement”, option “Use REAL
values”). Requirement: The platform in use supports using REAL coordinates.

Table 355: “Default Text Input”
“Input with”

“Touchscreen” Text input on the display variant with touchscreen. The keypad or numpad dialog
opens.

“Keyboard” Text input on the display variant with an ordinary keyboard or a virtual keyboard
(on Linux for example)

Effect:
When you configure a user input for default text input, select an input configuration for input action “Write
variable”, and configure the “Input type” as “Default”, then the settings are used here.

See also
● Ä Chapter 1.4.5.4 “Configuring user inputs” on page 1267
● Ä “Input action 'Write Variable'” on page 1757

Object 'WebVisu'
Symbol:
Function: The object is used to configure the web-based display variant for remote display
of the visualization of the controller in a web browser. This allows for remote access, remote
monitoring, as well as service and diagnostics of an application over the Internet.
Requirement: The object is inserted below the Visualization Manager, and the target system
has a web server with CODESYS WebVisu support. The web server allows for the communica-
tion between the target system and the web browser.
See also
● Ä Chapter 1.4.5.16.1 “Executing as CODESYS WebVisu” on page 1355

“Start Visualization” Name of the visualization where the start is displayed as CODESYS WebVisu.
Hint: Use the Input Assistant to select another visualization.

“Name of the .htm file” Base URL of the web page. The URL is also specified as the address in the web
browser.
Example: http://localhost:8080/webvisu.htm
Note: If you use a BeagleBone Black as a visualization device, then you have
to note that a BeagleBone Black uses port 9090 for its web server. A valid IP
address is as follows: http://192.168.7.2:9090/webvisu.htm

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1788

“Use as default page” : The page specified in “Name of .htm file” is preset as the default page.
Now this page will always open when a user specified in the web browser
the IP address and port of the web server that is running on the controller:
http://<IP address web server>:<port web server>.

Example: http://localhost:8080
Notice: Even if you have created multiple web visualizations, you can activate
this option for exactly one web page only and therefore preset only one page as
the default page.

“Update rate (ms)” Refresh rate (in milliseconds) in the web browser

“Default communication buffer
size”

Default size for communication buffer (in bytes). Defines the maximum available
memory for data transfer between the web client and the web server.
Example: 50000

“Show Used Visualizations” The link opens the “Visualizations” tab in the “Visualization Manager” editor.
The tab provides information about the visualizations downloaded to the display
variants.

See also
● Ä Chapter 1.4.5.19.4.4 “Tab 'Visualization manager' – 'Visualizations'” on page 1781
● Ä Chapter 1.4.5.16.1 “Executing as CODESYS WebVisu” on page 1355

Table 356: “Scaling Options”
“Fixed” : Fixed size of the visualization. The values used are “Client height” and “Client

width”.

“Isotropic” : The size of the visualization is adapted to the dimensions of the web browser,
retaining the proportions of the visualization.

“Anisotropic” : The size of the visualization is adapted to the web browser.

“Use scaling options for
dialogs”

 The dialogs (also for keypad and numpad) are scaled as the visualization
(drawn with the same scaling factor). This is an advantage when a dialog was
created to match the visualization because then they are scaled together.

“Client height” Height of the visualization (in pixels).

“Client width” Width of the visualization (in pixels).

Table 357: “Presentation Options”
“Antialiased drawing” : Antialiasing is used when drawing the visualization in the web browser.

Table 358: “Input handing options”
“Standard text input with” ● “Touchscreen”: Text input on the WebVisu with touchscreen. The keypad or

numpad dialog opens.
● “Keyboard”: Text input on the WebVisu with an ordinary keyboard or a virtual

keyboard (on Android OS for example)
Effect:
When you configure a user input for default text input, select an input configura-
tion for input action “Write Variable”, and configure the “Input type” as “Default”,
then the settings are used here.

“Treat touch as mouse actions” : On devices with a touchscreen, gestures are treated as mouse actions. This
option is required, for example, to operate a slider or scrollbar on a touch device.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1789

See also
● Ä Chapter 1.4.5.4 “Configuring user inputs” on page 1267
● Ä “Input action 'Write Variable'” on page 1757

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1790

1.4.5.19.5 Visualization Elements
1.4.5.19.5.1 Visualization Element 'Rectangle', 'Rounded Rectangle', 'El-

lipse'... 1792
1.4.5.19.5.2 Visualization Element 'Line'.. 1804
1.4.5.19.5.3 Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'.......... 1816
1.4.5.19.5.4 Visualization Element 'Pie'.. 1829
1.4.5.19.5.5 Visualization Element 'Image'... 1842
1.4.5.19.5.6 Visualization Element 'Frame'.. 1856
1.4.5.19.5.7 Visualization Element 'Label'.. 1871
1.4.5.19.5.8 Visualization Element 'Combo Box, Array'................................. 1875
1.4.5.19.5.9 Visualization Element 'Combo Box, Integer'............................... 1881
1.4.5.19.5.10 Visualization Element 'Tabs'... 1887
1.4.5.19.5.11 Visualization Element 'Button'... 1892
1.4.5.19.5.12 Visualization Element 'Group Box'.. 1904
1.4.5.19.5.13 Visualization Element 'Table'.. 1909
1.4.5.19.5.14 Visualization Element 'Text Field'... 1916
1.4.5.19.5.15 Visualization Element 'Scroll Bar'... 1928
1.4.5.19.5.16 Visualization Element 'Slider'.. 1937
1.4.5.19.5.17 Visualization Element 'Spin Box'.. 1943
1.4.5.19.5.18 Visualization Element 'Invisible Input'....................................... 1950
1.4.5.19.5.19 Visualization Element 'Check Box'... 1955
1.4.5.19.5.20 Visualization Element 'Progress Bar'.. 1960
1.4.5.19.5.21 Visualization Element 'Radio Buttons'...................................... 1964
1.4.5.19.5.22 Visualization Element 'Alarm Table'.. 1969
1.4.5.19.5.23 Visualization Element 'Alarm Banner'....................................... 1978
1.4.5.19.5.24 Visualization Element 'Bar Display'.. 1984
1.4.5.19.5.25 Visualization Element 'Meter 90°'... 1990
1.4.5.19.5.26 Visualization Element 'Meter 180°'... 1997
1.4.5.19.5.27 Visualization Element 'Meter'.. 2004
1.4.5.19.5.28 Visualization Element 'Potentiometer'....................................... 2011
1.4.5.19.5.29 Visualization Element 'Histogram'.. 2019
1.4.5.19.5.30 Visualization Element 'Image Switcher'.................................... 2024
1.4.5.19.5.31 Visualization Element 'Lamp'.. 2029
1.4.5.19.5.32 Visualization Element 'Dip Switch', 'Power Switch', 'Push

Switch', 'Push Switch LED', 'Rocker Switch'............................. 2034
1.4.5.19.5.33 Visualization Element 'Rotary Switch'....................................... 2038
1.4.5.19.5.34 Visualization Element 'Trace'.. 2043
1.4.5.19.5.35 Visualization Element 'Trend'.. 2049
1.4.5.19.5.36 Visualization Element 'Legend'... 2057
1.4.5.19.5.37 Visualization Element 'ActiveX'... 2061
1.4.5.19.5.38 Visualization Element 'Web Browser'....................................... 2065
1.4.5.19.5.39 Visualization Element 'Busy Symbol, Cube'............................. 2069
1.4.5.19.5.40 Visualization Element 'Busy Symbol, Flower'........................... 2073
1.4.5.19.5.41 Visualization Element 'Text Editor'.. 2077
1.4.5.19.5.42 Visualization Element 'Path3D'... 2082
1.4.5.19.5.43 Visualization Element 'Control Panel'....................................... 2085
1.4.5.19.5.44 Visualization Element 'Date Range Picker'............................... 2099
1.4.5.19.5.45 Visualization Element 'Time Range Picker'.............................. 2104
1.4.5.19.5.46 Visualization Element 'Date Picker'.. 2108
1.4.5.19.5.47 Visualization Element 'Analog Clock'.. 2115

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1791

1.4.5.19.5.48 Visualization Element 'Date/Time Picker'................................. 2122

Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'
Symbol:

Category: “Basic”

The “Rectangle”, “Rounded Rectangle”, and “Ellipse” are the same type of element. They can
be converted into another element type by changing the “Element type” property.

“Element name” Optional
Example: Werkstueck_3
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Rectangle”, “Rounded Rectangle”, “Ellipse”

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1792

“Angle” Static angle of rotation (in degrees)
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

Visible only when “Rounded Rectangle” is selected in the “Type of element” property.

“Radius” Rounding of the corners.
“From style”

“Relative to the element size”

“Explicit”: Allows for specifying a custom value in the “Value” setting.

“Value” Radius of the rounded corners (in pixels)
Example: 5
Requirement: “Explicit” is selected in the “Radius” setting.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Radius setting

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1793

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

“Use gradient color” : The element is displayed with a gradient of two colors.

“Gradient setting” The “Gradient editor” dialog box opens.

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 1854

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1794

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1797
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1795

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

You can link the variables to a unit conversion.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1796

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 1795

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1797

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1794
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1798

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1799

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1795

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1800

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

The properties contain IEC variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).

“Fill attributes” Variable (DWORD). Controls whether the fill color of the element is visible.
● Variable value = 0: Filled
● Variable value > 0: Invisible; no fill color

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible; no line

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 1806

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1801

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1802

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1803

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Line'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1804

Category: “Basic”

The element draws a simple line.

“Element name” Optional.
Example: Separator_Header
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Line”

The following properties define the position and length of the element in the visualization
window. These are based on the Cartesian coordinate system. The origin is located at the upper
left corner of the window. The positive horizontal x-axis runs to the right. The positive vertical
y-axis runs downwards.

“Dots” “[0]”: Coordinates of the starting point
“[1]”: Coordinate of the end point

You can also change the values by dragging the box symbols () to other
positions in the editor.

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.
Example:

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1805

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color of the line in normal state.
Please note that the normal state is in effect if the expression in the “Color
variables è Toggle color” property is not defined or it has the value FALSE.

“Alarm color” Color of the line in alarm state.
Please note that the alarm state is in effect if the expression in the “Color
variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 1854

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1806

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1809
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1807

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1808

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement point[0]”

● “X”
● “Y”

Variable (numeric data type). It contains the number (in pixels) that the starting
point of the line is moved.
Incrementing the X value moves the element to the right.
Incrementing the Y value moves the element to the down.

“Movement point[1]”

● “X”
● “Y”

Variable (numeric data type). It contains the number (in pixels) that the end point
of the line is moved.
Incrementing the X value moves the element to the right.
Incrementing the Y value moves the element to the down.

See also
● Ä “Element property 'Absolute movement'” on page 1807

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1807
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1809

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1810

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1807

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1811

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” ● Variable (DWORD) for the color
Example: PLC_PRG.dwColor

● Color literal
Example of gray and opaque: 16#FF888888

Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable in the alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1812

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

Dynamic definition of the weight of a line element using a variable.

“Integer value ” Variable (integer data type). Defines the line weight of the element (in pixels).
This overwrites the fixed value that is defined in “Appearance è Line weight”.
Note: The value 0 codes the same as 1 and sets the line weight to one pixel.

“Integer value ” Variable (integer data type). Defines the appearance of the line at runtime.
● 1: Solid
● 2: Dashes
● 3: Dots
● 4: Dash Dot
● 5: Dash Dot Dot
● 6: Invisible: The line is not drawn.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Line width
variable'

Element prop-
erty 'Line style
variable'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1813

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1814

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1815

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1816

Category: “Basic”

The “Polygon”, “Polyline”, and “Bézier Curve” are the same element type. They can be con-
verted into another type by changing the “Element type” property.
Elements can be dragged to the editor. The element is then drawn with five points: [0] to [4].
Other positions are added as follows: Move the mouse pointer over a corner point; the mouse
pointer changes shape. Now if you press and hold [Ctrl] and click the left mouse button, another
point is created. You can delete a point by pressing and holding [Shift]+[Ctrl] and click the
selected point.
As an alternative, you can select the element in the toolbox area and in the editor click multiple
times. At the same time, a connecting line is drawn from one point to the other. End by
double-clicking the element or right-clicking it one time.

“Element name” Optional.
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Werkstueck_1

“Type of element” ● “Polygon”
● “Polyline”
● “Bézier Curve”

The following properties define the position of the corner points in the visualization window.
These are based on the Cartesian coordinate system. The origin is located at the upper left
corner of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis
runs downwards.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1817

“Dots” [0]..[n]: Coordinates of the corner points
Specified in pixels

You can also change the values by dragging the box symbols () to other
positions in the editor.

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

“Use gradient color” : The element is displayed with a gradient of two colors.

“Gradient setting” The “Gradient editor” dialog box opens.

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1818

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 1854

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1819

See also
● Ä “Element property 'Text variables'” on page 1822
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1820

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

You can link the variables to a unit conversion.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1821

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

“Array of points” Variable (POINTER TO). Points to an array of the structure
VisuElems.VisuStructPoint. The elements iX and iY of
VisuStructPoint contain the xy-coordinates of a point The current number of
array elements implicitly contains the variable in the property “Number of points”.
The variable that is assigned to the property “Number of points” contains the
number of array elements and therefore the number of corner points.
Example: pPoints : POINTER TO ARRAY[0..100] OF
VisuElems.VisuStructPoint;

“Number of points” Variable (integer data type): Contains the number of array elements and there-
fore the number of corner points for displaying the element.
Example: PLC_PRG.iNumberOfPoints := 24;
In the example, the element has 24 points. This definition is necessary because
the individual points are defined by a pointer and this does not allow control over
the number of points.
Note: In this way, it is possible to adapt the display of the element dynamically by
updating the number of corner points.

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1819
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Element prop-
erty 'Dynamic
points'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1822

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1823

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1820

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1824

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1825

The properties contain IEC variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).

“Fill attributes” Variable (DWORD). Controls whether the fill color of the element is visible.
● Variable value = 0: Filled
● Variable value > 0: Invisible; no fill color

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible; no line

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 1847

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1826

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1827

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1828

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Pie'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1829

Category: “Basic”

The element draws a pie of any angle.

“Element name” Example: Error_rate_part_1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Pie”

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1830

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Begin” Start angle of the pie. If you also define a variable
for the start, then the start angle is calculated from
the sum of the values for “Begin” and “Variable for
begin”.

Example:
● “Begin”: 330
● “End”: 90

“End” End angle of the pie. If you also define a variable
for the end, then the end angle is calculated from
the sum of the values for “End” and “Variable for
end”.
The pie is drawn clockwise from the start angle to
the end angle.

“Variable for begin” The start of the sector is defined dynamically by a variable.

“Variable for end” The end of the sector is defined dynamically by a variable.

“Only show circle
line”

: The pie is drawn without the radius line or filling color.

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1831

“X” Display of the center coordinates. You cannot modify these values here in the
properties.
If the Pie is selected in the editor, then the center of the Pie (as well as the
center of the enveloping box) is visualized with the symbol . Moreover, the
element is decorated with a position, begin, and end boxes that you can move.

The center coordinates change when you move the center symbol in the
editor. This also changes the size of the Pie so that the position box retains its
position and the center remains in the middle of the element.

“Y”

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

“Use gradient color” : The element is displayed with a gradient of two colors.

“Gradient setting” The “Gradient editor” dialog box opens.

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748

The properties contain fixed values for setting the look of the element.

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1832

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 1854

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1835
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1833

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (integer data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (integer data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1834

“Interior rotation” Variable (integer data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
If a static angle of rotation is specified in “Position
è Angle”, then the static angle of rotation and the
angle of rotation are added.

You can link the variables to a unit conversion.

The “X”, “Y”, and “Interior rotation” properties are supported by the "Client
Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1833
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1835

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1836

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1833

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1837

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1838

The properties contain IEC variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).

“Fill attributes” Variable (DWORD). Controls whether the fill color of the element is visible.
● Variable value = 0: Filled
● Variable value > 0: Invisible; no fill color

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible; no line

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 1847

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1839

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1840

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1841

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Image'
Symbol:

Category: “Basic”

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1842

The element adds an image to the visualization. The displayed image is managed in the image
pool and referenced in the visualization element by means of a static ID. You can also change
the displayed image dynamically by using a variable instead of the static ID.

With the “Background” command, you can define a background for the entire
visualization.

Directories that contain the images for use in visualizations can be defined in
the project settings (category “Visualization”).

“Element name” Example: Status bar
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Image”

“Static ID” Identifier of the image file for a static assignment
ID of the image file on, as it is defined in the corresponding image pool. If
the image is not included in the global image pool in the POU view, then the
instance path must be specified. Then the name of the image pool is preceded
to make the entry unique. Example: imagepool2.button_image.

When a new ID is specified, a file selection dialog opens. The selected file is
saved to the “GlobalImagePool”.
See also: Help for the “Image Pool” object.

“Show frame” : The image file is displayed with a frame.

“Clipping” Requirement: The “Scaling type” property is “Fixed”.

: Only part of the visualization is displayed that fits in the element frame.

“Transparent” : The image pixels that have the “Transparent color” are displayed as trans-
parent.

“Transparent color” Effective only if the “Transparent” option is activated.

The button opens the color selection dialog. This is where you select the
transparent color.

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1843

“Scaling type” Definition of how an image fits in the element frame.
● “Isotropic”: The entire image is displayed in the element frame, either larger

or smaller. As a result, the proportion of height and width are retained.
If the alignment of the elements to each other should also be retained
within a scaled frame element, then note the following. Unwanted horizontal
or vertical offsets can be prevented by setting the properties “Horizontal
alignment” and “Vertical alignment” to “Centered”. The alignment of the ele-
ments is retained and there are no resulting horizontal or vertical offsets.
Example: A lamp is centered above a switch. The lamp should remain in the
horizontally centered position, even if the frame is resized.

● “Anisotropic”: The image resizes automatically to the dimensions of the ele-
ment frame, filling the entire element frame. As a result, the proportions are
not retained.

● “Fixed”: The image retains its original size, even if the element frame is
resized. Note also that the “Clipping” option is selected.
For each reassignment of an image ID, the element size is adapted automat-
ically to the image size.

“Horizontal alignment” Horizontal alignment of the element within the element frame:
● “Left”
● “Centered”
● “Right”

Requirement: The scaling type of the image is “Isotropic” or “Fixed”.
Note: If the visualization is referenced, then the horizontal alignment takes effect
within the frame position.

: The “Variable” property is shown below this.

“Variable” Enumeration variable (ENUM
VisuElemBase.VisuEnumVerticalAlignment). Contains the horizontal
alignment.
Example: PLC_PRG.eHorizontalAlignment

“Vertical alignment” Vertical alignment of the element within the element frame:
● “Top”
● “Centered”
● “Bottom”

Requirement: The scaling type of the image is “Isotropic” or “Fixed”.
Note: If the visualization is referenced, then the horizontal alignment takes effect
within the frame position.

: The “Variable” property is shown below this.

“Variable” Enumeration variable (ENUM
VisuElemBase.VisuEnumVerticalAlignment). Contains the vertical align-
ment.
Example: PLC_PRG.eVerticalAlignment

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1844

A valid declaration is required for the variables used as an example in the table above.

TYPE VisuElemBase.VisuEnumHorizontalAlignment
 LEFT
 HCENTER
 RIGHT
END_TYPE

TYPE VisuElemBase.VisuEnumVerticalAlignment
 DOWN
 VCENTER
 BOTTOM
END_TYPE

PROGRAM PLC_PRG
VAR
 eHorizontalAlignment :
VisuElemBase.VisuEnumHorizontalAlignment :=
VisuElemBase.VisuEnumHorizontalAlignment.HCENTER;
 eVerticalAlignment : VisuElemBase.VisuEnumVerticalAlignment :=
VisuElemBase.VisuEnumVerticalAlignment.VCENTER;
END_VAR

Example
Enumeration

Declaration

See also
● Object 'Image Pool'

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1845

ms-its:codesys.chm::/_cds_obj_image_pool.htm

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color for the frame
Requirement: “Show frame” property is activated.
Please note that the normal state is in effect if the expression in the “Color
variables è Toggle color” property is not defined or it has the value FALSE.

“Alarm color” Color for the frame in alarm state
Requirement: “Show frame” property is activated.
Please note that the alarm state is in effect if the expression in the “Color
variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1846

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 1854

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1850
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1847

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

“Image ID” Variable (STRING). Contains the image ID. The contents of the string corre-
sponds to the description of the “Static ID” property.
Example: PLC_PRG.stImageID := 'ImagePool_A.Image3';

See also
● Ä Chapter 1.4.5.18.1.5 “Visualization Element 'Image'” on page 1418
● Ä Chapter 1.4.1.20.2.13 “Object 'Image Pool'” on page 873

You can use this element property for animating a series of image files.

“Bitmap version” Variable (integer data type). Contains the version of the image.
If the variable changes, then the visualization re-reads the image referenced in
the “Image ID” property and displays it.
The visualization displays animations when the image file on the controller is
updated continuously, thus incrementing the version variable. The application
must be programmed for this.
Possible applications
● Displaying graphics that are generated by the application
● Displaying images that are refreshed by a camera

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Image ID
variable'

Element prop-
erty 'Dynamic
image'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1848

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1849

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 1820

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1847
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1850

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1851

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1847

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1852

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” Color variable for the frame
● Variable (DWORD) for the color

Example: PLC_PRG.dwColor
● Color literal

Example of gray and opaque: 16#FF888888
Requirement: “Show frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable for the frame in alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1853

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777

The properties contain variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible: The line is not drawn.

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 1847

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1854

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
User input is a user event from the perspective of the element.

The “Configure” button opens the “Input configuration” dialog box for creating or modifying a user input configura-
tion.
A configuration contains one or more input actions for the respective input event. Existing input actions are
displayed below it.

Example: “Execute ST code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog box.

“OnMouseClick” Input event: A user clicks the element completely. The mouse button is clicked
and released.

“OnMouseDown” Input event: A user clicks down on the element only.

“OnMouseEnter” Input event: A user drags the mouse pointer to the element.

“OnMouseLeave” Input event: A user drags the mouse pointer away from the element.

“OnMouseMove” Input event: A user moves the mouse pointer over the element area.

“OnMouseUp” Input event: The user releases the mouse button over the element area.

See also
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1855

“Hotkeys” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Event(s)”
property are triggered.

“Key” Key pressed for input action.
Example: [T]

“Event(s)” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed in the “Keyboard configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Project Settings - Visualization
● Ä Chapter 1.4.5.19.2.10 “Command 'Background'” on page 1728
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Frame'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1856

ms-its:codesys.chm::/_cds_dlg_project_settings_visualization.htm

Category: “Basic”

The element serves as a frame in which to display one or more already existing visualizations.
You get a structured user interface. The size of the frame can be fixed or scaled. The display
area of the referenced visualization then adapts itself to the frame size.

“Element name” Example: refVisUserInfo
“Type of element” “Frame”

“Clipping” : Fixed size. Only that part of the referenced visualization that fits inside the
frame is displayed.
Requirement: The “Scaling type” property is “Fixed”.

“Show frame” Displays the frame
● “No frame”: The displayed area of the frame does not have borders.
● “Frame”: The displayed area of the frame has borders.
● “No frame with offset”: The displayed area of the frame does not have a

border and the displayed area of the referenced visualization is reduced
inwards by one pixel as compared to the frame area. The gap prevents the
referenced visualization from touching any adjacent elements.

“Scaling type” The method with which the height and width of the referenced visualization are
scaled.
● “Isotropic”: The visualization is scaled to the size of the element. The visuali-

zation retains its proportions with a fixed height/width ratio.
● “Anisotropic”: The visualization is scaled to the size of the element. The

height and width are adapted to the element independently of each other.
● “Fixed”: the visualization is displayed in its original size without taking into

account the size of the element.
● “Fixed and scrollable”: The visualization is displayed fixed in the element. If it

is larger than the element, the element will be provided with scrollbars.
Please note: assign variables to the properties “Scroll position variable
horizontal” or “Scroll position variable vertical”. You can then edit the data
of the scrollbar position in the application.

The properties contain variables for the position of the scrollboxes in the scrollbars. You can
then edit the data of the scrollbox position in the application.

Element proper-
ties

Element proper-
ties 'Scrollbar
settings'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1857

Requirement: the property “Scaling type” is “fixed and scrollable”.

“Scroll position variable
horizontal”

Variable (integer data type, also as array). Contains the position of the horizontal
or vertical scrollbox. The array contains the position for every display variant. If
the visualization runs on several display variants, then the position changes are
decoupled from each other.
Example:
PLC_PRG.iScrollHor[CURRENTCLIENTID]
PLC_PRG.iScrollVer[CURRENTCLIENTID]
The variable is declared as an array in the example.
iScrollHor: ARRAY[0..20] OF INT;
iScrollVer: ARRAY[0..20] OF INT;
CURRENTCLIENTID indexes the current display variant.

“Scroll position variable
vertical”

You can combine the variables with a unit conversion.

See also
● Unit conversion

“Deactivation of the
background character”

: The background is drawn. The non-animated element of the referenced visu-
alization is drawn as a background bitmap in order to optimize the performance
of the visualization.
Consequence: Elements can be displayed in an unexpected order at runtime.
For example, an animated element can push itself behind the Frame at runtime.

: Background character is deactivated in order to avoid the behavior described
above.

Contains the currently configured visualization references as a subnode

“References” Clicking “Configure” opens the “Frame Configuration” dialog. This is used to
manage the referenced visualizations.
Caution: Visualizations can be nested at any depth by means of Frame ele-
ments. In order to use the “Switch to any visualization” Frame selection type
without any problems, a Frame must not contain more than 21 referenced
visualizations. For more information, see also the description for the “Input
configuration” of an element: Action “Switch Frame visualization”.

List of the currently referenced
visualizations

Visualizations that have a button also have this displayed as a subnode. Each
interface variable is listed with the currently assigned transfer parameters.
Example:
vis_FormA
● iDataToDisplay_1 : PLC_PRG.iVar1
● iDataToDisplay_2 : PLC_PRG.iVar2
Hint: You can change the assignment of the variables to an interface variable
here and edit the value field. Or click the “Configure” button instead.

Element prop-
erty 'Referen-
ces'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1858

ms-its:codesys.chm::/_cds_unit_conversion.htm

See also
● Ä Chapter 1.4.5.19.2.1 “Command 'Interface Editor'” on page 1719
● Ä Chapter 1.4.5.15 “Creating a structured user interface” on page 1321
● Ä “Input action 'Switch Frame Visualization'” on page 1756

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the colors.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1859

“Color” Color of the frame

: Selection list with style colors appears

: Standard dialog “Color” opens for selecting a color.
Please note: the normal state is when the boolean variable in the property “Color
variables è Toggle color” is not defined or its value is FALSE.

“Alarm color” Color with which the element is filled during the alarm state.
Please note: Alarm state is when the value of the boolean variable in the prop-
erty “Color variables è Toggle color” is FALSE.

“Transparency” Integer number (value range from 255 to 0). Specifies the transparency of the
associated color.
255: The color is opaque.

0: The color is fully transparent.

Please note: If the color is a style color and already contains a transparency
value, then this property is write-protected.

See also
● Ä Chapter 1.4.5.3.3 “Assigning a color” on page 1258

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 1867

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1860

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1863
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1861

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

Element prop-
erty 'Relative
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1862

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 1820

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1860
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

Element prop-
erty 'Text varia-
bles'

Element prop-
erty 'Dynamic
texts'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1863

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1864

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1861

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1865

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” Color variable for the Frame
● Variable (DWORD) for the color

Example: PLC_PRG.dwColor
● Color literal

Example of gray and opaque: 16#FF888888
Requirement: “Show Frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable for the Frame in alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1866

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777

The properties contain variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible: The line is not drawn.

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 1860

The variable controls the switching of the referenced visualizations. This variable indexes one
of the referenced frame visualizations and this is displayed in the frame. When the value of the
variable changes, it switches to the recently indexed visualization.

“Variable” ● Variable (integer data type) that contains the index of the active visualization
Example: PLC_PRG.uiIndexVisu
Hint: The “Frame Configuration” dialog includes a list of referenced visualiza-
tions. The visualizations are automatically numerically indexed via the order
in the list.
Note: This variant of switching usually affects all connected display variants.

● Array element (integer data type) for index access via CURRENTCLIENTID
Example: PLC_PRG.aIndexVisu[CURRENTCLIENTID]
Note: This variant of switching applies to the current client only, and there-
fore only on one display variant. That is the display variant where the value
change was triggered (for example, by means of user input).

See also
● Ä Chapter 1.4.5.19.2.9 “Command 'Frame Selection'” on page 1727

The variables control the element behavior dynamically.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'Switch
frame variable'

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1867

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1868

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1869

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1870

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.15 “Creating a structured user interface” on page 1321
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Visualization Element 'Label'
Symbol:

Category: “Common Controls”

The element is used to label visualizations.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Header_Parameter

“Type of element” “Label”

The property requires a character string.
This text is entered automatically into the GlobalTextList text list and can be localized there.

“Text” Character string (without single straight quotation marks)
Example: Main page

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Texts'

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1871

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1872

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1873

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1874

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Combo Box, Array'
Symbol:

Category: “Common Controls”

The element shows values of an array as a list box. When the visualization user clicks an entry,
the array index of the entry is written to an integer variable.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1875

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: List_Product_Number

“Type of element” “Combo Box, Array”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1876

“Variable” The array index of the list entry that the user clicks is saved at runtime.
Property value
● Variable (integer data type)

Example: PLC_PRG.iIndexComboboxEntry
● Enumeration variable with text list support

Example: PLC_PRG.eMyCombobox<COMBO>
Note: Value range of the enumeration value that lies within the DWORD or
DINT value range

“Data array” Displayed as a combo box. Every array component becomes a combo box entry.
Property value
● Array variable (ARRAY[...] OF)

Example: PLC_PRG.astrCombobox
Declaration: astrCombobox : ARRAY[0..4] OF STRING :=
['First', 'Second', 'Third', 'Fourth'];

See also
● Enumerations
● Ä Chapter 1.4.5.6 “Setting Up Multiple Languages” on page 1286

The "Combo box – Array" element visualizes an array variable or structure variable in a tabular
view. The index of array elements or structure members is shown in a column or row. Two-
dimensional arrays or structure arrays are shown in several columns. You specify the visualized
variable in the “Data array” property. If a variable is assigned there, then you can specify the
display of the table columns where the array elements are shown. You can customize each
column that is assigned to an index [<n>].

“Columns”

● [<n>]
Due to the structure of the variable that is defined in “Data array”, CODESYS
determines the number of columns and defines them with the index <n>.
Example: StringTable : ARRAY [0..2, 0..4] OF STRING :=
['BMW','Audi','Mercedes','VW','Fiat',
'150','150','150','150','100','blue','gray','silver','blue'
,'red'];: three columns are formed [0], [1] and [2].

“Max. array index” Optional. Variable (integer data type) or value. Defines up to which array index
the data is displayed.

“Row height” Height of the rows (in pixels).

“Number visible rows” Optional. If the array is larger than the number of visible rows, then a scrollbar is
included.

“Scrollbar size” Width of the vertical scrollbar (in pixels).

Table 359: “Element property 'Columns: Column [<n>]'”
“Width” Column width (in pixels).

“Image column” : Images can be displayed in the column. Images are used from the global
image pool or user-defined image pools. The image IDs are shown in the cells of
the table as defined in the image pool.

“Image configuration”

Element prop-
erty 'Columns'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1877

ms-its:codesys.chm::/_cds_datatype_enum.htm

“Fill mode” ● “Fill cell”
The image resizes to the dimensions of the cell without fixing the height/
width ratio.

● “Centered”
The image is centered in the cell and retains its proportions (height-width
ratio).

“Transparency” : The color that is specified in “Transparent color” is displayed as transparent.

“Transparent color” When the “Transparent” property is enabled, the color specified here is not
displayed. Pixels with this color are transparent.

“Text alignment in column” ● “Left”
● “Centered”
● “Right”

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element in runtime mode
Example: Products of customer A
Hint: The text is accepted automatically into the “GlobalTextList” text list and can
be localized there.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Font” Example: “Default”

: The “Font” dialog opens.

: List box with style fonts

“Font color” Example: “Black”

: The “Color” dialog opens.

: List box with style colors

“Transparency” Integer (value range from 0 to 255). This determines the transparency of the
respective color.
255: The color is opaque.

0: The color is completely transparent.

Note: If the color is a style color and already has a transparency value, then this
property is write-protected.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1878

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1879

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1880

Visualization Element 'Combo Box, Integer'
Symbol:

Category: “Common Controls”

The element shows values as a list box. When the user clicks an entry, the ID of the entry is
written to an integer variable. The entries in the list box can be from a list and contain images
from an image pool.

“Element name” Example: List of product numbers
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Combo Box, Integer”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1881

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” At runtime, the text list ID of the list entry that the user clicks is saved at runtime.
If only one image pool is displayed, then the image ID is saved.
Property value
● Variable (integer data type)

Example: PLC_PRG.iIDComboboxEntry
● Enumeration variable with text list support

Example: PLC_PRG.eMyCombobox<COMBO>
“Text List” Displayed as a combo box. Every text list entry becomes a combo box entry.

Note: A maximum of 32766 entries can be displayed.
Transfer value
● Text list identifier as string

Example: 'TextList_A'
Note: The IDs of the text list have to be within the range of values of DWORD
or DINT.

● Blank
– When an enumeration variable with text list support is specified in the

“Variable” property
– When only one image pool is displayed

“Image Pool” Displayed as a combo box. Every image in the image pool becomes a combo
box entry.
Example: 'ImagePool_A'

See also
● Enumerations
● Ä Chapter 1.4.5.6 “Setting Up Multiple Languages” on page 1286

Displayed list that expands when a visualization user clicks into the element.

“Number of rows setting” ● “From style”:
● “Explicit”: Then the “Number of visible rows” property appears below it.

“Number of visible rows” Number of visible lines of the combo box drop-down list defined here
● Integer literal

Example: 5
● Variable (integer data type)

Example: PLC_PRG.iNumberOfVisibleRows
Note: The property is available when the “Number of rows setting” property is set
to “Explicit”.

Element prop-
erty 'Settings of
the list'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1882

ms-its:codesys.chm::/_cds_datatype_enum.htm

“Row height” ● “From style”:
● Literal

Example: 20
“Height of image” Image height (in pixels) of the image displayed in the drop-down list entry

● “From style”:
● Integer literal

Example: 30
Note: Images are displayed only when a value is specified in the “Image pool”
property.

“Width of image” Image width (in pixels) of the image displayed in the drop-down list entry
● “From style”:
● Literal

Example: 30
Note: Images are displayed only when a value is specified in the “Image pool”
property.

“Offset of image” Makes the images in the selection list appear offset (in pixels) from the left
margin. An offset of 0 means that the images are displayed directly on the
margin.
● “From style”:
● Literal

Example: 4
Note: Images are displayed only when a value is specified in the “Image pool”
property.

“Scrollbar size” Size of the scrollbar (in pixels). The scrollbar is displayed when more entries are
specified in the drop-down list than in “Number of visible rows”.
Default: 20

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element in runtime mode
Example: Products of customer A
Hint: The text is accepted automatically into the “GlobalTextList” text list and can
be localized there.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Element prop-
erty 'Texts'

Element prop-
erty 'Value
range'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1883

“Limit valuerange” Limits the text list to one subrange. This subrange is displayed by the combo
box.
Requirement: A value is specified in the “Text list” property.

: Only the subrange that is defined by the “Minimum value” “Maximum value”
properties is displayed as a drop-down list.

“Minimum value” ID of the text list entry from which a combo box entry is displayed
● Literal (ANY_NUM)

Example: 5
● Variable (integer data type)

Example: PLC_PRG.iFirstEntry
“Maximum value” ID of the text list entry up to which combo box entries are displayed

● Literal (ANY_NUM)
Example: 10

● Variable (integer data type)
Example: PLC_PRG.iLastEntry

“Filter missing textentries” : Text list is refreshed and any unused texts (IDs) are removed.
Requirement: A value is specified in the “Text list” property.

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1884

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1885

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1886

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Tabs'
Symbol:

Category: “Common Controls”

The element displays selected visualizations in tabs. The tabs can be used by means of the tab
header without having to configure an input configuration. A visualization user switches between
visualizations by clicking the tab header.

“Element name” Example: Assembly A
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Tabs”

“Tab width” Width of the tab (in pixels). If there is not space for all tab headers, then a scroll
bar is added.
Example: 30

“Tab height” Height of the tab (in pixels)
● Integer literal

Example: 15
● “From style”

“Scaling type” The method with which the height and width of the referenced visualization are
scaled.
● “Isotropic”: The visualization is scaled to the size of the element. The visuali-

zation retains its proportions with a fixed height/width ratio.
● “Anisotropic”: The visualization is scaled to the size of the element. The

height and width are adapted to the element independently of each other.
● “Fixed”: the visualization is displayed in its original size without taking into

account the size of the element.
● “Fixed and scrollable”: The visualization is displayed fixed in the element. If it

is larger than the element, the element will be provided with scrollbars.
Please note: assign variables to the properties “Scroll position variable
horizontal” or “Scroll position variable vertical”. You can then edit the data
of the scrollbar position in the application.

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1887

“Deactivate background
drawing”

: The non-animated elements of the referenced visualization are displayed as
background images in order to optimize the performance of the visualization.
Result: At runtime, the elements can be displayed in any order, for example
when an element moves behind the frame at runtime.

: Deactivates the background display in order to prevent the behavior
described above
The property is not available for the following settings:
● The “Scaling type” property is set to “Fixed and scrollable”
● The client animation functionality is enabled.

The properties include variables for the position of the scroll boxes in the scroll bars. You can
process the data for the scroll box position in the application.

Requirement: The “Scaling type” property is “Fixed and scrollable”.

“Scroll position variable
horizontal”

Variable (integer data type, also array). Includes the position of the horizontal or
vertical scroll box. The array contains the position for each display variant. If the
visualization is running on multiple display variants, then the position changes
are disconnected from each other.
Example:
PLC_PRG.iScrollHor[CURRENTCLIENTID]
PLC_PRG.iScrollVer[CURRENTCLIENTID]
In this example, the variable is declared as an array:
iScrollHor: ARRAY[0..20] OF INT;
iScrollVer: ARRAY[0..20] OF INT;
CURRENTCLIENTID indicates the current display variant.

“Scroll position variable,
vertical”

See also
● Unit conversion

“References” Clicking “Configure” opens the “Frame Configuration” dialog. You can select an
existing visualization there.
Selected visualization references are shown in the properties.
Selected visualization references are listed here as subordinate properties.

Name pf the visualization refer-
ence (example: PLC_PRG.S1)

“Heading” Tab caption (example: Panel)

“Image ID” Image ID in the theme <image pool name>.<ID>
Example: Imagepool_A.1 for the image with ID 1 in Imagepool_A

Interface parameter of the visu-
alization reference
Example: iX

If the visualization has an interface, then their parameters are displayed here as
subordinate properties.
Variable (data type conforms to data type of the interface parameter). Includes
the initialization value for the instantiation of the visualization.

Element prop-
erty 'Scroll bar
settings'

Element prop-
erty 'Referen-
ces'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1888

ms-its:codesys.chm::/_cds_unit_conversion.htm

See also
● Ä Chapter 1.4.5.15 “Creating a structured user interface” on page 1321
● Ä Chapter 1.4.5.19.2.1 “Command 'Interface Editor'” on page 1719
● Ä Chapter 1.4.5.19.2.9 “Command 'Frame Selection'” on page 1727

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Switch
frame variable'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1889

“Variable” Variable (integer data type). Specifies the index of the active visualization.
Example: PLC_PRG.uiActiveVisuID.

Tip: The “Frame Configuration” dialog box includes a list of selected visualiza-
tions. The visualizations are ordered automatically in numeric order in the list.

See also
● Ä Chapter 1.4.5.19.2.9 “Command 'Frame Selection'” on page 1727

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1890

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1891

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Button'
Symbol:

Category: “Common Controls”

The element triggers an action, such as setting a variable.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Voltage_on

“Type of element” “Button”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1892

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color for the element in its normal state.
Please note that the normal state is in effect if the expression in the “Color
variables è Toggle color” property is not defined or it has the value FALSE.

“Alarm color” Color for the element in alarm state.
Please note that the alarm state is in effect if the expression in the “Color
variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

“Use gradient color” : The element is displayed with a color gradient.

“Gradient setting” The “Color gradient editor” dialog box opens.

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1893

“Static ID” Reference to an image in an image pool of the format <name of image
pool>.<image ID> (example: image_pool.GreenButton).

If the image is from the “GlobalImagePool”, then you can omit the name of the
image pool because CODESYS always searches this pool first.

: The “Input Assistant” dialog box opens and lists all available image pools
and images in the entire project.

“Scale type” Behavior of the image when resizing the button.
● “Isotropic”: The image retains its proportions. The ratio of height to width is

retained, even if you change the height or width of the button separately.
● “Anisotropic”: The image resizes to the dimensions of the button.
● “Fixed”: The image retains its original size, even if you change the size of the

button.

“Transparency” The visualization displays the image with the transparency color that is selected
in “Transparency color”.

“Transparency color” Color that is transparent in the image (example: “White”). if the image back-
ground that is reference by “Static ID” is white, then this background is displayed
transparent. Clicking opens a color selection dialog.
Requirement: The “Transparency” option is activated.

“Horizontal alignment” Horizontal alignment of the image
● “Left”
● “Centered”
● “Right”

“Vertical alignment” Vertical alignment of the image
● “Top”
● “Centered”
● “Bottom”

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

Element prop-
erty 'Image'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1894

See also
● Ä “Element property 'Text variables'” on page 1897
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1895

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

Element prop-
erty 'Relative
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1896

See also
● Ä “Element property 'Absolute movement'” on page 1820

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1894
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

Element prop-
erty 'Text varia-
bles'

Element prop-
erty 'Dynamic
texts'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1897

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1898

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1895

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1899

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” Color variable for the Frame
● Variable (DWORD) for the color

Example: PLC_PRG.dwColor
● Color literal

Example of gray and opaque: 16#FF888888
Requirement: “Show Frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable for the Frame in alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1900

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

“Digital variable” At runtime, the property controls whether the Button is displayed as pressed or
not.
Values:
● FALSE: The Button is displayed as not pressed.
● TRUE: The Button is displayed as pressed.

Argument passed to the property:
● Placeholder for the user input variable to couple the representation of the

Button with the input variable.
– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

Note: Specify a variable for the mouse events “Tap” or “Toggle” in the input
configuration of the Button. Only then is the placeholder set. If you configure
a variable in both “Toggle” and “Tap”, then the variable specified in “Tap” is
used.
Hint: Click the symbol to insert the placeholder “<toggle/tap variable>”.
When you activate the “Inputconfiguration”, “Tap FALSE” property, then the
“<NOT toggle/tap variable>” placeholder is displayed.

● Instance path of a project variable (BOOL)
Example: prgA.xButtonState
Note: Implement a value assignment in the code for the variable specified
here.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Button
state variable'

Element prop-
erty 'Image ID
variable'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1901

“Image ID” Variable (STRING). Contains the image ID. The contents of the string corre-
sponds to the description of the “Static ID” property.
Example: PLC_PRG.stImageID := 'ImagePool_A.Image3';

See also
● Ä Chapter 1.4.5.19.5.5 “Visualization Element 'Image'” on page 1842
● Ä Chapter 1.4.1.20.2.13 “Object 'Image Pool'” on page 873

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1902

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1903

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Group Box'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1904

Category: “Common Controls”

The element provides a visual grouping of visualization elements. The group box can have
multiple levels of nesting.

You can also use drag&drop to add elements to a “Group Box”. To do this, drag
the element to the window area of the “Group Box”. The appearance of the
cursor changes (a small plus sign is displayed). When you click the [Shift] key at
the same time, the element is not added.

You can remove elements from the “Group Box” by dragging them out of the
window area.

“Element name” Example: Parameter axis 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Group Box”

“Clipping” : Elements that protrude beyond the size of the group box are clipped.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1905

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contains character strings for labeling the element.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element.
Example: Axis 1.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Parameters of Axis 1.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for the text properties.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1906

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1907

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1908

Visualization Element 'Table'
Symbol:

Category: “Common Controls”

The element displays data that can be represented as an array in a table. Therefore, the data
type of the visualizing variable can be 1) a one-dimensional array, 2) a maximum two-dimen-
sional array, 3) an array of an array, 4) an array of structures, or 5) an array of a function block.

“Element name” Example: Data set component 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” Table

“Data array” Array whose data is visualized as a table
Variable (ARRAY) whose data type determines the number of columns and rows
in the table
Array types
● One-dimensional array: The table has one column.
● Two-dimensional array: The second dimension determines the number of

columns.
● Array of an array: The number of array elements of the back array deter-

mines the number of columns.
● Array of a structure: The number of structure members determines the

number of columns.
● Array of a function block: The number of local variables determines the

number of columns.
Example: PLC_PRG.aiTable
Declaration: aiTable : ARRAY[0..3, 0..4] OF INT := [4(1, 2, 3,
4, 5)];
Hint: If the declaration of the array changes, then the table can be refreshed by
placing the cursor in the data array value field and pressing the [Enter] key.

“Max. array index” Top index limit for the displayed table. Limits the number of displayed rows. The
index begins at 0.
● Variable (integer data type)

Example: PLC_PRG.iUpperIndexBoundToDisplay
● Integer literal

Example: 4 is displayed as 5 in the row of the table.

See also
● Data Type 'ARRAY'

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1909

ms-its:codesys.chm::/_cds_datatype_array.htm

The “Table” element shows the values of a variable in a tabular view. The array elements of
structure members are shown in a column or in a row. Two-dimensional arrays or arrays of a
structure are shown in multiple columns. The visualized variable is defined in the “Data array”
property. When a variable is assigned there, you can specify the display of the Table columns
where the array elements are shown. An individual configuration is possible for each column
that is assigned to an index [<n>].

“Show row header” : The row header is visible.
Example: For an array, the index of the array element is displayed in the header.

“Show column header” : The column label is visible.

“Row height” Height of the rows (in pixels)

“Row header width” Width of the row label

“Scroll bar size ” Size of the scroll bar (in pixels)

Table 360: “Element property 'Columns: Column [<n>]'”
“Column header” By default, the name of the array or structure is applied as the heading with

the index or structure member for the column. If an array of a function block
has been selected for “Data array”, then the name of the array is applied to the
column header with the local variables of the function block that belong to the
column.
The column label can be changed here by specifying a new title.

“Width” Column width (in pixels)

“Image column” : Images can be displayed in the column. Images are used from the global
image pool or custom image pools. The image IDs are shown in the cells of the
Table as they are defined in the image pool.

“Image configuration”

“Fill mode” ● Fill cell: The image resizes to the dimensions of the cell without fixing
the height/width ratio.

● Centered: The image is centered in the cell and retains its proportions
(height/width ratio).

“Transparency” : The color which is specified in “Transparent color” is displayed as trans-
parent.

“Transparent color” This color is displayed as transparent.
Requirement: The “Transparency” property is activated.

“Text alignment of header” Alignment of the column header:
● Left
● Centered
● Right

“Use template” : Another visualization element (type “Rectangle”, “Rounded Rectangle”, or
“Ellipse”) is inserted into each line of this Table column. The properties list is
extended automatically with the properties of this element in “Template”.

“Text alignment of the headline
from the template”

Requirement: The “Use template” property is activated.

: When activated, the settings for font (size) and alignment in the inserted
template are also applied to the column header.

“Template” Requirement: The “Use template” property is activated.
The properties of all elements assigned to the column are listed in “Template”.
They can be modified there as described in “Rectangle”, “Rounded Rectangle”,
and “Ellipse”.

Element prop-
erty 'Columns'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1910

See also
● Ä Chapter 1.4.5.19.5.1 “Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'”

on page 1792

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1911

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables enable dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog box.

“Size” Variable (integer data type). Contains the font size (in pixels).
Example: PLC_PRG.iFontHeight := 16;.

The selection of font sizes corresponds to the default “Font” dialog box.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1912

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Charset” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog box.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1919

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1913

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1914

The “Invisible” property is supported by the "Client Animation" functionality.

“Background color on
selection”

Fill color of the selected row.

“Selection font color” Font color of the selected row.

“Selection type” Selection when clicking the table row.
● No selection: No selection
● Cell selection: The clicked cell only.
● Row selection: Row of the clicked cell.
● Column selection: Column of the clicked cell.
● Row and column selection: Row and column of the clicked cell.

“Frame around selected cells” : A frame is drawn around the selected cells.

“Variable for selected column” Variable (INT). Contains the array index of the “Column” of the selected cell. If
the data array points to a structure, then the structure components are indexed,
starting at 0.
Warning: This index represents the correct position in the array only if no col-
umns have been removed from the table in the display.

“Variable for selected row” Variable (INT). Contains the array index of the “Row” of the selected cell.

“Variable for valid column
selection”

Variable (BOOL).
TRUE: The “Variable for selected column” variable contains a valid value.

“Variable for valid row
selection”

Variable (BOOL).
TRUE: The “Variable for selected row” variable contains a valid value.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Selection'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1915

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.21.5 “Displaying Array Variables in Tables” on page 2140
● Data Type 'ARRAY'

Visualization Element 'Text Field'
Symbol:

Category: “Common Controls”

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1916

ms-its:codesys.chm::/_cds_datatype_array.htm

The element is used for the following purposes:
● Static output of text. The contents of a variable can be part of the text.
● Showing a tooltip. The text is managed as static text and can also be defined so that the

contents of a variable are also displayed.
● Dynamic output of text. Texts of a text list are displayed dynamically.
● Input of text. For example, a user can input a number or a text literal.
See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

“Element name” Optional
Example: FileName_A
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Text Field”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1917

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 1867

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1918

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 1919
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

These properties are variables with contents that replace a format definition.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1919

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1918
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1920

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1921

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1919

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1922

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1923

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

The variables allow for controlling the caret position and the selection of the text.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Selection
and caret con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1924

“Caret position” Variable (integer data type). Contains the position of the cursor.

“Selection start” Variable (integer data type). Contains the position of the first selected character.
Example: PLC_PRG.iSelStart

“Selection end” Variable (integer data type). Contains the position of the last selected character.
Example: PLC_PRG.iSelEnd

“All selected” Variable (BOOL). Toggles the selection of the entered text.
TRUE: The text in the text field is selected.

FALSE: The selection starts with the value in “Selection start” and ends with
“Selection end”.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1925

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1926

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1927

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Scroll Bar'
Symbol:

Category: “Common Controls”

The element sets the value of a variable, depending on the position of the scroll bar.

“Element name” Example: Speed Conveyor Belt 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Scroll Bar”

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Value” Variable as type integer that includes the position of the scroll bar.

“Minimum value” Smallest value of the scroll bar (fixed value or variable).

“Maximum value” Largest value of the scroll bar (fixed value or variable).

Element proper-
ties

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1928

“Page size” Page size
● As a fixed value, for example 10
● As a variable of data type integer
Requirement: Visible when the “Move to click” property is not selected.

“Move to click” Behavior of the scroll bar at visualization runtime when it is clicked:

: The scrollbar moves to the clicked position.

: The scrollbar moves to one “Page size” in the direction of the click.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The property defines the representation of scaling and direction of travel.

Element prop-
erty 'Position'

Element prop-
erty 'Bar'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1929

“Orientation” Alignment of the slider; defined by the ratio of width to height.
● “Horizontal”
● “Vertical”

You can modify the alignment in the visualization editor by using the pointing
device to adjust the width and height of the Scroll Bar.

“Running direction” The drop-down list varies depending on the alignment of the slider.
Horizontal
● “Left to right”: Scale starts at the left.
● “Right to left”: Scale starts at the right.
Vertical
● “Bottom to top”: Scale starts at the bottom.
● “Top to bottom”: Scale starts at the top.

The properties contain fixed values for setting colors.

“Color” Color for the element in its normal state.
Please note that the normal state is in effect if the expression in the “Color
variables è Toggle color” property is not defined or it has the value FALSE.

“Alarm color” Color for the element in alarm state.
Please note that the alarm state is in effect if the expression in the “Color
variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

Element prop-
erty 'Colors'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1930

See also
● Ä “Element property 'Text variables'” on page 1931
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 1930
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1931

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1932

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 1919

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1933

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1934

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1935

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1936

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Slider'
Symbol:

Category: “Common Controls”

The element changes the value of a variable, depending on the position of the slider within the
slider bar. You define the value range of the slider bar by means of the scale start and scale
end.

“Element name” Example: Speed controller conveyor belt 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Slider”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1937

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable (numeric data type)
Example: PLC_PRG.rSlider
When executed, the variable assigns a value that corresponds to the position of
the slider in the bar.

“Page size” Page size
● As a fixed value, for example 10
● As an IEC variable of data type integer
Requirement: The “Move to click” element property is not selected.

“Move to click” Behavior of the slider at visualization runtime when it is clicked:

: The slider moves to the clicked position.

: The slider moves to the value (defined in the “Page size” element property) in
the direction of the click.

“Show scale” : The element has a visible scale.
Note: This option is available for the “Slider” only.

“Scale start” Least value of the scale and the lower limit of the value range for the element.
Example: 0

: The property “Variable” is shown below.

Element prop-
erty 'Center'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1938

“Variable” Variable (integer data type). Contains the scale start.
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the ele-
ment.
Example: 100

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale end.
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two tick marks on the rough scale.
Example: 10

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Subscale” Distance between two dashes on the fine scale. You can hide the fine scale by
setting the value to 0.

Example: 2
: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 5;
END_VAR

“Scale format (C Syntax)” Formatting of the scale label (example: %d %s)

Note: This property is available for the Slider only.

“Scale proportion” Size of the scale (in %) of the total size

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1939

The property defines the representation of scaling and direction of travel.

“Diagram type” The drop-down list varies depending on the alignment of the diagram.
Horizontal
● “Top”: Scale is above the slider.
● “Bottom”: Scale is below the slider.
● “Top and bottom”: Two scales frame the slider above and below.
Vertical
● Left: Scale is left of the slider.
● Right: Scale is right of the slider.
● Left and right: Two scales frame the slider on the left and the right.

“Orientation” Alignment of the slider; defined by the ratio of width to height.
● “Horizontal”
● “Vertical”

You can modify the alignment in the visualization editor by using the pointing
device to adjust the width and height of the scrollbar.

“Running direction” The drop-down list varies depending on the alignment of the slider.
Horizontal
● “Left to right”: Scale starts at the left.
● “Right to left”: Scale starts at the right.
Vertical
● “Bottom to top”: Scale starts at the bottom.
● “Top to bottom”: Scale starts at the top.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Bar'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1940

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1941

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1942

Visualization Element 'Spin Box'
Symbol:

Category: “Common Controls”

The element increments or decrements the value of a variable in defined intervals.

“Element name” Example: Speed controller conveyor belt
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Spin Box”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1943

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable (numeric data type)
Example: PLC_PRG.iTemp

“Number format” Format of the value in printf syntax
Example: %d, %5.2f

“Interval” Interval used for modification of the value

“Minimum value” Lower limit of the output value
● fixed value
● Variable (INT)

“Maximum value” Upper limit of the output value
● fixed value
● Variable (INT)

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Element prop-
erty 'Value
range'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1944

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Color varia-
bles'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1945

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1946

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
User input is a user event from the perspective of the element.

The input configuration refers to the text area of the element only, not the two
buttons.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1947

The “Configure” button opens the “Input configuration” dialog box for creating or modifying a user input configura-
tion.
A configuration contains one or more input actions for the respective input event. Existing input actions are
displayed below it.

Example: “Execute ST code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog box.

“OnMouseClick” Input event: The user clicks the element completely. The mouse button is clicked
and released.

“OnMouseDown” Input event: The user clicks down on the element only.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input event: The user releases the mouse button over the element area.

See also
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the options “Tap FALSE” and “Tap on
enter if captured”.

“Variable” Variable (BOOL). Contains the information whether a mouse click event exists.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts while the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1948

“Shift” When a mouse click event occurs, the variable here is described in the applica-
tion. When the mouse click event ends, its value is toggled with the “Toggle on
up if captured” option.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Tip: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

“Hotkeys” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Event(s)”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Event(s)” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed in the “Keyboard configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1949

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Invisible Input'
Symbol:

Category: “Common Controls”

This element is displayed in the editor with a dashed line which is not visible in online mode.
You define the behavior of the el in the input configuration.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Unsichtbare_Eingabe_1

“Type of element” “Invisible Input”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1950

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1951

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1952

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1953

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1954

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Check Box'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1955

Category: “Common Controls”

The element is used for setting and resetting a Boolean variable. The set state is identified by a
check mark.

“Element name” Example: signal_tone_for_parts_deficit
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Check Box”

“Text ID” ID for the text in the “GlobalTextList”

Example: 22
The text ID cannot be changed. As soon as you specify and save a text in
“Texts” - “Text”, CODESYS automatically creates an entry in the “GlobalTextList”
and displays the ID here.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1956

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable of type BOOL
Example: “PLC_PRG.xIsTrue”

“Frame size” Distance of the element to the edge
Example: “From style”

The properties contains character strings for labeling the element.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element.
Example: Axis 1.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Parameters of Axis 1.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1957

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1958

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1959

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Progress Bar'
Symbol:

Category: “Common Controls”

The element displays the value of a variable as a progress bar.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1960

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Progress_Data_Transfer

“Type of element” “Progress Bar”

“Text ID” ID of the global text list
Requirement: Text is configured in the property “Texts è Text”.

“Variable” Variable (numeric data type). Represents the length of the progress bar.

“Minimum value”
Value range of the variable

“Maximum value”

“Style” ● “Blocks”
● “Bar”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1961

You can also change the values by dragging the symbols () to other positions
in the editor.

“Text” String label for the element.
Example: Zoom

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Texts'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1962

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1963

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Radio Buttons'
Symbol:

Category: “Common Controls”

The element provides a series of radios buttons with an unlimited number of options.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1964

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Morning Shift

“Type of element” “Radio Buttons”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Variable” Variable (integer data type) that gives the index of the radio button that the
visualization user has activated
Example: PLC_PRG.iNrOfActivatedRadioButton

“Number of columns” Definition of the number of list boxes displayed in a row
Example: 2

“Radio button order” “Left to right”: The radio buttons are aligned by rows until the number of columns
is reached.
“Top to bottom”: The radio buttons are aligned row by columns until the number
of columns is reached.

“Frame size” Defines the distance from the list boxes to the edge (in pixels).

“Row height” Height of the row (in pixels) Modifying the height of the row also changes the
size of the list box.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1965

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1966

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1967

The “Invisible” property is supported by the "Client Animation" functionality.

“Radio button”

● “Areas”
– “[<n>]”

“Create new”: Clicking this button creates a new selection button in
the editor and lists an additional area in the properties editor.
For each radio button, an area is visible that records the settings.
● [<n>]

– “[<n>]”: This number indicates the area. Clicking “Delete”
will delete the associated radio button with its settings
“Text”, “Tooltip”, and “Line spacing (in pixels)”.

Areas: [<n>]

“Text” The button name is specified here. Default value: “Radio_button”

“Tooltip” Text is specified here that is displayed in a tooltip.

“Line spacing (in pixels)” The distance (in pixels) to the upper button can be specified here.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'Radio
button settings'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1968

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Alarm Table'
Symbol:

Category: “Alarm Manager”

The element displays alarms in a list. In the element properties, you specify which information
is shown. You define the appearance of the element and the variables that control the element
behavior.

In online mode, you can sort an alarm table by a specific column – even in the
classic view. Click into the column header. A small triangle indicates the current
sort order (ascending, descending). Clicking the symbol reverses the order.

Sorting inside the column depends on the type of the contained information.
The "Priority" column is sorted numerically, and the "Message" and "Class"
columns alphabetically. The "Value" and "Latch" columns may contain different
value types. In this case, sorting is first by type (blank, Boolean, numeric value,
character string) and then either numerically or alphabetically depending on the
type.

If an alarm history has been created, then you can programmatically delete it at
runtime. The recording starts again from the time of deletion. See the help page
for "Visualizing Alarm Management".

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1969

“Element name” Example: GenElemInst_1
“Type of element” “Alarm Table”

“Data source” Selection of the device and the application where the data to be visualized and
the alarms are generated
● Remote data source which accesses a remote device, accesses a remote

application, and then transfers the data to the alarm configuration
Example: DataSource_A
Below the (now visible) “Application” property, the remote application is dis-
played as configured in the data source.
Example: App_A
Note: If the data source is accessed symbolically by means of a symbol file
(CODESYS symbolic), then the required symbol file and the corresponding
project have to be saved in the same folder.

● Local application below which the alarm configuration is located
Example: “<local application>”

See also
● Object 'Data Source'

“Alarm groups” Opens the “Select Alarm Group” dialog where you define the alarm groups that
you want to display.

“Priority from” Least priority for alarm display. (0 to 255).

“Priority to” Greatest priority for alarm display. (0 to 255).

“Alarm classes” Opens the “Select Class Group” dialog where you define the alarm classes that
you want to display.

“Filter criterion” For the “Alarm Banner” element only
● “Most important”: The alarm with the highest priority (lowest value) is dis-

played.
● “Newest”: The most recent alarm is displayed.

Element prop-
erty 'Alarm con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1970

ms-its:codesys.chm::/_cds_obj_data_source_communication.htm

“Filter by latch 1” The generated alarms (previous and current) can be filtered by the contents of
“Latch variable 1”, which is specified in the configuration of the alarm group. In
“Filter type”, you define whether or not the filtering is performed by a string value
or a numerical value.
● “Filter variable”: Indicates what the alarms are filtered by. Possible entries:

Application variable of data type STRING or WSTRING, or a literal value
directly. Examples:PLC_PRG.strFilterVariable, 'STRING'.

● “Filter type”: Integer value that determines by which criteria the latch variable
value is used for filtering. Possible entries: Numerical variable from the appli-
cation (example: PLC_PRG.diFilterType, or a value directly (example:
2).
Possible values:
– 0: No filtering
– 1: Filter by alarms whose latch variable 1 contains the string specified in

“Filter variable”. Example: The filter variable contains 'Error 1' which
is the latch variable 1 of different alarms of type STRING and has the
value 'Error 1' ->. Only these alarms are displayed.

– 2: Filter by alarms whose latch variable 1 contains the typed literal speci-
fied in “Filter variable” according to IEC 61131-3. Examples: T#1h2s,
DINT#15, REAL#1.5, FALSE

– 3: Filter by alarms whose latch variable 1 contains the LINT literal
value specified in “Filter variable”. Therefore, the value of the latch
variables has to be in the range of 9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

– All other values: The behavior is not defined and can change in the
future.

“Filter by time range” The generated alarms (remote, historical, local) can be displayed for a specified
time range. You use the “Filter type” to define whether filtering by time range is
enabled or disabled.
● “Filter variable, from”: Variable of data type DT or DATE_AND_TIME

(example: PLC_PRG.filterTimeFrom) for the start time that the alarms
are displayed.

● “Filter variable, to”: Variable of data type DT or DATE_AND_TIME (example:
PLC_PRG.filterTimeTo) for the end time that the alarms are displayed.

● “Filter type”: Variable of integer data type that determines whether “Filter by
time range” is enabled or disabled.
Possible values:
– 1: Filtering is enabled
– 0: Filtering is disabled

See also
● Ä Chapter 1.4.5.19.3.17 “Dialog 'Selected Alarm Group'” on page 1769
● Ä Chapter 1.4.5.19.3.16 “Dialog 'Selected Alarm Class'” on page 1768

“Show row header” : Display of the row number at the beginning of the row.

“Show column header” : Display of the column heading as defined in “Column heading”.

“Row height” Height of the table rows (in pixels).

“Row header width” Width of the line header (in pixels).

Element prop-
erty 'General
table configura-
tion'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1971

“Scrollbar size” Width of the scrollbar when it runs vertically. Width of the scrollbar when it runs
horizontally. Specified in pixels

“Automatic line break for alarm
message”

: The message text is truncated at the end of the line.

: The message text is truncated at the end of the column, if the text is too long.

By default, columns [0] and [1] are configured: “Time stamp” and “Message text”. You can
create more columns by clicking the “Create new”, and remove columns by clicking “Delete”.
Animations (dynamic text, font variables), text, and tooltip are not supported.

“Column header” The standard header is set and changed here by specifying a new text.

“Use text alignment in title” : The text in the column header is aligned according to the current definition in
“Text alignment”.

: The text in the column header is centered.

“Width” Width of the column (in pixels).

“Data type” Notice about time stamps: For use in a TargetVisu or WebVisu, you can
control the date and time format with the help of the global string variables
from the library Alarmmanager.library: AlarmGlobals.g_sDateFormat
(example: AlarmGlobals.g_sDateFormat := 'MM.yyyy')
and AlarmGlobals.g_sTimeFormat (example:
AlarmGlobals.g_sTimeFormat := 'HH:mm').

Define the information to be displayed in the column.
● “Symbol”
● “Time stamp”: Date and time of the last status change of the alarm.
● “Time stamp active”: Date and time of the last activation of the alarm.
● “Time stamp inactive”: Date and time of the last deactivation of the alarm.
● “Time stamp acknowledge”: Date and time of the last acknowledgment.
● “Value”: Current value of the printout
● “Message text”: Output of the message text
● “Priority”: Alarm priority
● “Class”: Alarm class
● “State”: Alarm state
● “Latch Variable <n>”: Value of the selected latch variables

“Text alignment” Alignment of the text in this column
● “Left”
● “Centered”
● “Right”

“Color settings” ● “Activate color settings”: Boolean variable for activating and deactivating the
color settings defined here. Example: PLC_PRG.bColorSettings

● “Cell fill color”:
– “Color variable”: Variable for the cell fill color, example: dwCellColor

(hexadecimal color definition: 16#TTRRGGBB)
– “Use color also for column header”: : The color defined via “Color

variable” is used in the column header as well.
● “Text color”:

– “Color variable”: Variable for the definition of the text color in the column,
example: dwTextColor (hexadecimal color definition: 16#TTRRGGBB)

– “Use color also for column header”: : The color defined via “Color
variable” is used in the column header as well.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

Element prop-
erty 'Columns:
Column [<n>]'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1972

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1973

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

“Selection color” Fill color of the selected row

“Selection font color” Font color of the selected row

“Frame around selected cells” : A frame is drawn around the selected cells at runtime.

“Variable for selected alarm
group”

Name of the affected alarm group; type: STRING, WSTRING

“Variable for selected alarm ID” Alarm ID of the affected alarm group; type: STRING, WSTRING
“Variable for selected line” Index of the selected alarm line (0-based). The index can be read and written;

integer data type

“Variable for valid selection” TRUE: An alarm line is selected.
FALSE: The selection is invalid. For example, for an empty alarm table or when
an alarm is not selected yet.

“Variable for selected alarm
information”

Information about the selected alarm. Type AlarmSelectionInfo
For easy usage, the function block AlarmSelectionInfoDefault is pro-
vided. This FB fills the structure with the memory for 10 messages and 10 latch
variables.
Example: myAlarmSelectionInfoDefault.AlarmSelectionInfo
The following information is available:
● sAlarmgroup
● uialarmID
● timeStampActive
● timeStampInactive
● timeStampAcknowledge
● timeStampLast
● paLatchVariables
● iLatchVariablesCount
● papwsAlarmMessages
● dwAlarmMessageTextBufferSize
● iAlarmMessagesCount
● iSelectionChangedCounter

Element prop-
erty 'Selection'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1974

Boolean variables are defined here for executing specific actions in the table can be executed at
runtime.

“Acknowledge selected” Variable (BOOL)

Example: PLC_PRG.bAckSelectedAlarms
If the assigned variable is TRUE, then the selected alarm is acknowledged.

“Acknowledge all visible” Variable (BOOL)

Example: PLC_PRG.bAckVisibleAlarms
If the assigned variable is TRUE, then all alarms are acknowledged that are
visible in the alarm table.

“History” Variable (BOOL)

Example: PLC_PRG.bShowHistory
If the assigned variable is TRUE, then the history alarms are displayed in addition
to the active alarms. In the classic view, the same sort options apply as in normal
mode.
Note: Acknowledgment is not possible in this view.

“Freeze scroll position” Variable (BOOL)

Example: PLC_PRG.bFreezeScrollPosition
If the assigned variable is TRUE, then the scroll position set in the “History” view
is retained, even if a new alarm is active. If not, then the scroll position jumps to
the first table row (the newest alarm).

“Count alarms” Variable (integer data type)
Example: PLC_PRG.iNumberOfAlarms.

Number of alarms that are currently displayed in the alarm table. Defined by the
alarm table.

“Count visible rows” Variable (integer data type)
Example: PLC_PRG.iNumberVisibleLines
Number of alarms that can be displayed on one page of the alarm table. Defined
by the alarm table.

“Current scroll index” Variable (integer data type)
Example: PLC_PRG.iScrollIndex
The index of the first visible row if the alarm table (0-based). The variable can be
read and written.

“Current column sorting” Variable (integer data type)
Example: PLC_PRG.iColSort
The variable contains a value of the enumeration "VisuElemsAlarm.VisuEnumA-
larmDataType". This value determines the column that sorts the alarm table.

“Variable for sorting direction” Variable (BOOL)
Example: PLC_PRG.xSortAscending
The variable determines the sort order for the entries in the alarm table (TRUE:
ascending; FALSE: descending).

You can also use the “Insert Elements for Acknowledging Alarms” command to
define buttons with predefined control variables.

Element prop-
erty 'Control
variables'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1975

See also
● Ä Chapter 1.4.5.19.2.23 “Command 'Add Elements for Alarm Acknowledgement'”

on page 1744

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1976

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1977

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Alarm Banner'
Symbol:

Category: “Alarm Manager”

The element is a simplified version of the alarm table. It visualizes a single alarm only. In the
element properties, you specify which information is shown. You define the appearance of the
element and the variables that control the element behavior.

The alarm banner displays active alarms only. If the alarm is acknowledged,
then it disappears from the alarm banner.

“Element name” Example: GenElemInst_1
“Type of element” “Alarm Banner”

“Data source” If you intend to use a remote alarm configuration, then you have to specify the
name of the remote application here. If you do not specify anything, the alarm
configuration will be located locally.

“Alarm groups” Opens the “Select Alarm Group” dialog where you define the alarm groups that
you want to display.

“Priority from” Least priority for alarm display. (0 to 255).

“Priority to” Greatest priority for alarm display. (0 to 255).

“Alarm classes” Opens the “Select Class Group” dialog where you define the alarm classes that
you want to display.

“Filter criterion” For the “Alarm Banner” element only
● “Most important”: The alarm with the highest priority (lowest value) is dis-

played.
● “Newest”: The most recent alarm is displayed.

Element proper-
ties

Element prop-
erty 'Alarm con-
figuration'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1978

“Filter by latch 1” The generated alarms (previous and current) can be filtered by the contents of
“Latch variable 1”, which is specified in the configuration of the alarm group. In
“Filter type”, you define whether or not the filtering is performed by a string value
or a numerical value.
● “Filter variable”: Indicates what the alarms are filtered by. Possible entries:

Application variable of data type STRING or WSTRING, or a literal value
directly. Examples:PLC_PRG.strFilterVariable, 'STRING'.

● “Filter type”: Integer value that determines by which criteria the latch variable
value is used for filtering. Possible entries: Numerical variable from the appli-
cation (example: PLC_PRG.diFilterType, or a value directly (example:
2).
Possible values:
– 0: No filtering
– 1: Filter by alarms whose latch variable 1 contains the string specified in

“Filter variable”. Example: The filter variable contains 'Error 1' which
is the latch variable 1 of different alarms of type STRING and has the
value 'Error 1' ->. Only these alarms are displayed.

– 2: Filter by alarms whose latch variable 1 contains the typed literal speci-
fied in “Filter variable” according to IEC 61131-3. Examples: T#1h2s,
DINT#15, REAL#1.5, FALSE

– 3: Filter by alarms whose latch variable 1 contains the LINT literal
value specified in “Filter variable”. Therefore, the value of the latch
variables has to be in the range of 9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

– All other values: The behavior is not defined and can change in the
future.

“Filter by time range” The generated alarms (remote, historical, local) can be displayed for a specified
time range. You use the “Filter type” to define whether filtering by time range is
enabled or disabled.
● “Filter variable, from”: Variable of data type DT or DATE_AND_TIME

(example: PLC_PRG.filterTimeFrom) for the start time that the alarms
are displayed.

● “Filter variable, to”: Variable of data type DT or DATE_AND_TIME (example:
PLC_PRG.filterTimeTo) for the end time that the alarms are displayed.

● “Filter type”: Variable of integer data type that determines whether “Filter by
time range” is enabled or disabled.
Possible values:
– 1: Filtering is enabled
– 0: Filtering is disabled

See also
● Ä Chapter 1.4.5.19.3.17 “Dialog 'Selected Alarm Group'” on page 1769
● Ä Chapter 1.4.5.19.3.16 “Dialog 'Selected Alarm Class'” on page 1768

By default, columns [0] and [1] are preconfigured: “Time stamp” and “Message text”. You create
more columns by clicking “Create new”. You remove columns by clicking “Delete”.
Animations (dynamic text, font variables), texts, and tooltips are not supported.

Element prop-
erty 'Columns:
Column [<n>]'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1979

“Width” Width of the column (in pixels)

“Type of data” About time stamps: When used in a TargetVisu or WebVisu, you can con-
trol the date and time format by means of the global string variables
from the library Alarmmanager.library: AlarmGlobals.g_sDateFormat
(example: AlarmGlobals.g_sDateFormat := 'MM.yyyy')
and AlarmGlobals.g_sTimeFormat (example:
AlarmGlobals.g_sTimeFormat := 'HH:mm').

Here you define the information to be displayed in the column.
● “Bitmap”
● “Time stamp”: Date and time of the last status change of the alarm
● “Time stamp active”: Date and time of the last activation of the alarm
● “Time stamp inactive”: Date and time of the last deactivation of the alarm
● “Time stamp acknowledge”: Date and time of the last acknowledgement
● “Value”: Actual value of the expression
● “Message”: Output of the message text
● “Priority”: Alarm priority
● “Class”: Alarm class
● “State”: Alarm state
● “Latch Variable <n>”: Value of the selected latch variables

“Text alignment” Alignment of the contents in the column
● “Left”
● “Centered”
● “Right”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1980

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

“Acknowledge variable” A rising edge of this variable acknowledges the alarm.

“Automatic switch” : The display in the alarm banner is
switched automatically according to the time
to the next alarm as configured in “Every N
second”.

“Every N second” Time period until the next switching. Available
only if “Automatic switch” is selected.

“Next alarm” Variable for switching to the next alarm. Avail-
able only if “Automatic switch” is not selected.

“Previous alarm” Variable for switching to the previous alarm.
Available only if “Automatic switch” is not
selected.

“Multiple alarms active” Variable that has the value TRUE if multiple
alarms are active.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

Handling of mul-
tiple active
alarms

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1981

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1982

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1983

Visualization Element 'Bar Display'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable.
See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

“Element name” Example: GenElemInst_2
“Type of element” “Bar Display”

“Value” Variable (numeric data type)
The value of the variable is displayed as a bar length.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element proper-
ties

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1984

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1985

“Background color” Drop-down list with background colors
Note: This property depends on the style. For example, there are no heterochro-
matic background images for “FlatStyle” and “Whitestyle”.

“Own image” ● “image”: Image ID of the background image. You select the background
image from an image pool by clicking the symbol.
Info: If you specify the “<default>” value or select the image from the
“Default” category in the input assistant, then the original element back-
ground image is used.

● “Transparent color”: Color of pixels that are displayed as transparent.
Selection from drop-down list or input assistant.

“Optimized drawing” : The background image is drawn one time. If there is a change in the fore-
ground, then only the affected part of the image is redrawn.

: The background image is redrawn in cycles.
Note: Deactivating this option is sensible only in certain exceptional cases.

“Diagram type” Position of the scale
● “Scale besides bar”
● “Scale in bar”
● “Bar in scale”
● “No scale”

“Orientation” Orientation depending on the ratio of width to height of the Bar Display:
● “Horizontal”
● “Vertical”

“Running direction” Direction the values are increased.
Drop-down list for “Orientation Horizontal”:
● “Left to right”
● “Right to left”

Drop-down list for “Orientation Vertical”:
● “Bottom to top”
● “Top to bottom”

“Optimum size for bar” : The bar width requires the majority of the element surface.
Note: This property depends on the style. It is not provided for “FlatStyle” or
“WhiteStyle”.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Bar'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1986

“Scale start” Least value of the scale and the lower limit of the value range for the element.
Example: 0

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale start.
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the ele-
ment.
Example: 100

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale end.
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between 2 values on the rough scale.
Example: 10

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Subscale” Distance between 2 values on the fine scale.
You can hide the fine scale by setting the value to 0.

Example: 2
: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the spacing.
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1987

“Scale line width” Specified in pixels.
Example: 3

“Scale color” Color of scale lines

● :
The “Color” dialog box opens.

● : A drop-down list with color names opens.

“Scale in 3D” : Tick marks are displayed with slight 3D shadowing.
Note: This property depends on the style. Not available for “FlatStyle”.

“Element frame” : A frame is drawn around the element.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

“Horizontal offset” Distance from the scale (bar) to the horizontal element frame
Specified in pixels.
Used for achieving the exact position relative to the background image.

“Vertical offset” Distance from the scale (bar) to the vertical element frame
Specified in pixels.
Used for achieving the exact position relative to the background image.

“ Horizontal scaling” Horizontal division of the scale
Specified in pixels.
Used for achieving the exact positioning relative to the background image.

“Vertical scaling” Vertical division of the scale
Specified in pixels.
Used for achieving the exact positioning relative to the background image.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1988

“Graph color” Color of the bar

“Bar background” : The background of the bar is black.

: The background of the bar is white.

“Frame color” Color that the frames are drawn.

“Switch whole color” : The total color of the bar is switched to the color of the color area of the
current value.

“Use gradient color for bar” : Bar is displayed with a gradient.

“Color range markers” The color areas can be separated from each other inside the bar with a vertical
mark.
● “No markers”: No display.
● “Marker forwards”: The color of the vertical mark corresponds to the color of

the previous color area.
● “Marker backwards”: The color of the vertical mark corresponds to the color

of the next color area.

“Color areas”

“Create new” A new color area is added.

“ Delete” The color area is removed from the list.

“Begin of area” Start value of the color area

“End of area” End value of the color area

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1989

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Meter 90°'
Symbol:

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1990

Category: “Measurement Controls”

The element displays the value of a variable. The needle is positioned according to the value of
the assigned variable. A meter is used to represent a tachometer, for example.

“Element name” Example: GenElemInst_1
“Type of element” “Meter 90°”

“Value” Variable (numeric data type)
The variable value determines the pointer direction of the element.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1991

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Angle range” Drop-down list for the alignment of the element

“Additional arrow” : An additional arrow is shown inside the scale.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1992

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1993

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1994

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1995

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1996

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254“”

Visualization Element 'Meter 180°'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable. The needle is positioned according to the value of
the assigned variable on a scale. A meter is used to represent a tachometer, for example.

“Element name” Example: GenElemInst_1
“Type of element” “Meter 180°”

“Value” Variable (numeric data type)
The variable value determines the pointer direction of the element.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element prop-
erty 'Access
rights'

Element proper-
ties

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1997

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US1998

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Angle range” Drop-down list for the alignment of the element

“Additional arrow” : An additional arrow is shown inside the scale.

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 1999

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2000

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2001

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2002

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2003

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Meter'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable. The needle is positioned according to the value of
the assigned variable. A meter is used to represent a tachometer, for example.

“Element name” Example: GenElemInst_1
“Type of element” “Meter”

“Value” Variable (numeric data type).
The variable value determines the pointer direction of the element.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element prop-
erty 'Access
rights'

Element proper-
ties

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2004

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2005

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Arrow start” Angle (in degrees) between the scale start and the horizontal axis

“Arrow end” Angle (in degrees) between the right edge of the pointer instrument and the
horizontal axis

“Additional arrow” : An additional arrow is shown inside the scale.

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2006

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2007

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2008

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2009

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2010

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Potentiometer'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable as a setting on the potentiometer. A visualization
user can modify the value by dragging the pointer to another position.
See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

“Element name” Example: GenElemInst_1
“Type of element” “Potentiometer”

“Variable” Variable (numeric data type). Contains the position of the pointer for the potenti-
ometer.
A visualization user can modify the value by dragging the pointer to another
position.

Element prop-
erty 'Access
rights'

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2011

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element prop-
erty 'Center'

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2012

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Arrow start” Angle (in degrees) between the left edge of the element and the horizontal axis

“Arrow end” Angle (in degrees) between the right edge of the element and the horizontal axis

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2013

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2014

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2015

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

Element prop-
erty 'Colors'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2016

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2017

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2018

Visualization Element 'Histogram'
Symbol:

Category: “Measurement Controls”

The element displays the data of a one-dimensional array as a histogram. You can define
specific colors for certain value ranges.
See also
● Ä Chapter 1.4.5.21.4 “Displaying Array Data in a Histogram” on page 2138

“Element name” Example: GenElemInst_35
“Type of element” “Histogram”

“Data array” One-dimensional array with data displayed in this histogram.
Example: PLC_PRG.arr1

“Use subrange” : Only part of the array is displayed in the histogram.

“Start index” First array index with a displayed value.
Requirement: “Use subrange” is activated.

“End index” Last array index with a displayed value.
Requirement: “Use subrange” is activated.

“Display type” ● “Bars”: Data is displayed as bars.
● “Lines”: Data is displayed as lines.
● “Curve”: Interpolation of data into a curve.

“Line width” Specified in pixels
Requirement: “Curve” is selected as the “Display type”.

“Show horizontal lines” : Horizontal lines are drawn on the main scale.
Note: Not all visualization styles have this property. This element property is not
available for visualization styles that have striped backgrounds (example: “Flat
style”).

“Relative bar width” Integer value between 1 and 100
● 1: The bars are drawn as lines.
● 100: The entire width of the histogram is filled with the bars.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Subrange
of array'

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2019

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Scale start” Least value of the scale and the lower limit of the value range for the element.
Example: 0

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale start.
Example: PLC_PRG.iScaleStart

“Scale end” Greatest value of the scale and the upper limit of the value range for the ele-
ment.
Example: 100

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale end.
Example: PLC_PRG.iScaleEnd

Element prop-
erty 'Center'

Element prop-
erty 'Scale'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2020

“Main scale” Distance between 2 values on the rough scale.
Example: 10

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iMainScale

“Subscale” Distance between 2 values on the fine scale.
You can hide the fine scale by setting the value to 0.

Example: 2
: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the spacing.
Example: PLC_PRG.iSubScale

“Scale color” Color of scale lines

● :
The “Color” dialog box opens.

● : A drop-down list with color names opens.

“Base line” Value of the main scale where the horizontal base line of the Histogram is
located.
The drawing of the bar starts at the base line.

A valid declaration is required for the variables used as an example in the table above.

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
 iScaleEnd : INT := 120;
 iMainScale : INT := 20;
 iSubScale : INT := 5;
END_VAR

Example

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” Optional value that defines the maximum width of the scale label.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” Optional value that defines the maximum height of the scale label.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

Element prop-
erty 'Label'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2021

“Graph color” Color of the bar in normal state.
Note: The normal state is in effect when the current value of the array compo-
nent does not fulfill the alarm condition.

“Alarm value” Threshold for the alarm

“Alarm condition” If the current value of the array component fulfills the alarm condition, then the
alarm condition is set.
● “Less”: The current value is less than the “Alarm value”
● “More”: The current value is greater than the “Alarm value”

“Alarm color” Color of the bar in alarm state.

“Use color areas” : The color areas defined in this element are used.

“Color areas”

“Create new” A new color area is added.

“ Delete” The color area is removed from the list.

“Begin of area” The start value on the “Scale” of the Histogram where the color area begins.

“End of area” The end value on the “Scale” of the Histogram where the color area ends.

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2022

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2023

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Image Switcher'
Symbol:

Category: “Lamps/Switches/Bitmaps”

The element displays one of three referenced images. Mouse actions change the displayed
image. The images are defined in the “Image settings” element properties. The effects of mouse
clicks are defined in the “Element behavior” property.

Element prop-
erty 'Access
rights'

Element proper-
ties

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2024

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: ImageSwitcher_1

“Type of element” “Image Switcher”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Variable” Variable (BOOL).

The value of the variable changes according to user input and it is independent
of the “Element behavior” element property.

“Image "on"” Image ID from an image pool. The image can be selected using the input assis-
tant.
The image is used if the variable of the “Variable” property has the value TRUE.

“Image "off"” Image ID from an image pool. The image can be selected using the input assis-
tant.
The image is used if the variable of the “Variable” property has the value FALSE.

“Image "clicked"” Image ID from an image pool. The image is selected using the input assistant.
In runtime mode, the visualization displays the referenced image when the ele-
ment is clicked (and the mouse button is held down).
Requirement: The “Element behavior” is “Image toggler”.

Element prop-
erty 'Position'

Image settings

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2025

“Transparency” : The “Transparent color” is selected.

“Transparent color” The image pixels that have the transparent color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with color names opens.

“Scaling type” Defines how an image fits in the element frame.
● “Fixed”: The original size of the image is retained, regardless of the dimen-

sions of the element.
● “Isotropic”: The entire image is shown in the element frame, either larger or

smaller. As a result, the proportion of height and width are retained.
● “Anisotropic”: The image resizes automatically to the dimensions of the ele-

ment frame, filling the entire element frame. As a result, the proportions are
not retained.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

“Element behavior” ● “Image toggler”: Every mouse click switches the image.
● “Image tapper”: While a visualization user holds down the mouse button, the

image of the “Image on” property is displayed. At the same time, the value
TRUE is assigned to the “Variable” property.

“Tap FALSE” : While the mouse button is pressed, the image of the “Image” property is
displayed and the “Variable” property gets the value FALSE instead of the value
TRUE, and back.

Requirement: “Image tapper” is selected in the “Element behavior” property.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2026

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2027

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2028

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Lamp'
Symbol:

Category: “Lamps/Switches/Bitmaps”

The element shows the value of a variable, and the element is displayed as illuminated or not.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2029

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Lamp_green

“Type of element” “Lamp”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Variable” Variable (BOOL).

The variable value is displayed as a lamp that goes on (TRUE) or off (FALSE).

“Transparency” : The “Transparent color” property is selected.

“Transparent color” Pixels in this color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with style colors opens.

Element proper-
ties

Element prop-
erty 'Position'

Image settings

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2030

“Scaling type” Reaction of the element when the dimension of the “Frame” element is changed:
● “Isotropic”: The height and width of the image are resized proportionally to

the “Frame”.
Please note: To retain the alignment of elements also within a scaled
“Frame” element, define the “Horizontal alignment” or “Vertical alignment”
explicitly with “Centered”.

● “Anisotropic”: The image fills the entire “Frame” regardless of its proportions.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2031

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2032

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

“Image” Drop-down list with background colors
Depends on the visualization style

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2033

Visualization Element 'Dip Switch', 'Power Switch', 'Push Switch', 'Push Switch LED', 'Rocker Switch'
Symbols:

Category: “Lamps/Switches/Bitmaps”

The element assigns a value to a Boolean variable. The switch position "on" the value TRUE to
the variable, and the switch position "off" assigns the value FALSE. Use the mouse to change
the switch position.

“Element name” Example: Operating_Switch
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” Depending on the element: “Dip Switch”, “Power Switch”, “Push Switch”, “Push
Switch LED”, or “Rocker Switch”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Variable” Variable (BOOL)

The value of the variables TRUE and FALSE indicates the switch position on/off.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2034

“Transparency” : The “Transparent color” property is selected.

“Transparent color” Pixels in this color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with style colors opens.

“Scaling type” Reaction of the element when the dimension of the “Frame” element is changed:
● “Isotropic”: The height and width of the image are resized proportionally to

the “Frame”.
Please note: To retain the alignment of elements also within a scaled
“Frame” element, define the “Horizontal alignment” or “Vertical alignment”
explicitly with “Centered”.

● “Anisotropic”: The image fills the entire “Frame” regardless of its proportions.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

“Element behavior” ● “Image toggler”: Every mouse click changes the switch and the “ Variable”
value.

● “Image tapper”: The switch is "on" and the “Variable” value is TRUE while the
mouse button is pressed.

“Tap FALSE” : The value TRUE is assigned to the “Variable” property instead of the value
FALSE, and back.

Requirement: “Image tapper” is selected in the “Element behavior” property.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Image settings

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2035

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2036

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2037

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

“Image” Drop-down list with background colors
Depends on the visualization style

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Rotary Switch'
Symbol:

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2038

Category: “Lamps/Switches/Bitmaps”

The element assigns a value to a Boolean variable. The switch position "on" the value TRUE to
the variable, and the switch position "off" assigns the value FALSE. Use the mouse to change
the switch position.

“Element name” Example: Operating_Switch
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Rotary Switch”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Variable” Variable (BOOL).

The value of the variables TRUE and FALSE indicates the switch position on/off.

Element proper-
ties

Element prop-
erty 'Position'

Image settings

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2039

“Transparency” : The “Transparent color” property is selected.

“Transparent color” Pixels in this color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with style colors opens.

“Scaling type” Reaction of the element when the dimension of the “Frame” element is changed:
● “Isotropic”: The height and width of the image are resized proportionally to

the “Frame”.
Please note: To retain the alignment of elements also within a scaled
“Frame” element, define the “Horizontal alignment” or “Vertical alignment”
explicitly with “Centered”.

● “Anisotropic”: The image fills the entire “Frame” regardless of its proportions.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

“Element behavior” ● “Image toggler”: Every mouse click changes the switch and the “ Variable”
value.

● “Image tapper”: The switch is "on" and the “Variable” value is TRUE while the
mouse button is pressed.

“Orientation” ● “At top”: The rotary switch turns from the top right to the top left.
● “At side”: The rotary switch turns from the top right to the bottom right.

“Color change” : The element changes in color when “ Variable” is TRUE.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2040

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2041

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2042

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

“Image” Drop-down list with background colors
Depends on the visualization style

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Trace'
Symbol:

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2043

Category: “Special Controls”

The element displays the graphical curve of variable values. In addition, variables can be
configured to control the view.
See also
● Ä Chapter 1.4.5.10 “Displaying data curve with trace” on page 1306
● Ä “Dialog box 'Trace Configuration'” on page 1734

“Element name” Example: Velocity
“Data Source” Location where the trace data is buffered.

:
● “<local application>”: The trace record is listed below the local application.

The visualization that contains the trace is located below this application.
When the application is downloaded, the trace configuration is downloaded
to the local device. During execution, the data is stored locally in the trace
buffer.

● “ <data source name>”: Data source that identifies the remote device where
the trace record is created.
When the local application is downloaded with the visualization, the trace
configuration is downloaded to the remote device. During execution, the
trace buffer is filled, and the trace data is transferred and then displayed in
the local visualization as HMI.
Example: DataSoure_PLC_A
Note: The trace buffer is filled only if the remote application is being exe-
cuted. The data recording is started when the local visualization is started.

“Application” Application where data was recorded.

: Lists all applications that are present below the data source.
Requirement: A remote data source (not “<local application>”) is referenced in
the “Data source” property.

“Type of element” “Trace”

“Trace” “ <name of trace configuration>”: Opens the “Trace Configuration” dialog
where you can modify the trace configuration.

See also
● Ä “Dialog box 'Trace Configuration'” on page 1734
● Data Source Manager

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2044

ms-its:codesys.chm::/_cds_obj_data_sources_manager.htm

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

“Angle” Static angle of rotation (in degrees)
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Show cursor” : A cursor (vertical line) is displayed at the mouse position. The trigger and
variable values where the cursor points are displayed as a tooltip.

“Overwrite existing trace on
PLC”

: If a trace with the same name is on the PLC, then it is overwritten at down-
load with the configuration that is defined here.

“Number format” Number format of values in the tooltip in printf syntax (example: %d, %5.2f).

The control variables are assigned automatically when you click “Insert elements for controlling
Trace”.

Element prop-
erty 'Control
variables'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2045

“Reset Trigger” Variable (BOOL).

Standard control variable: bResetTrigger
TRUE: Resets the triggering. After the action is executed, the variable is set
automatically to FALSE.

“Start Trace” Variable (BOOL).

Standard control variable: bStart
TRUE: Starts the Trace. After the action is executed, the variable is set automati-
cally to FALSE.

“Stop Trace” Variable (BOOL).

Standard control variable: bStop
TRUE: Stops the Trace. After the action is executed, the variable is set automati-
cally to FALSE.

“Save Trace to a file”

“Save Trace” Variable (BOOL).

Standard control variable: bStore
TRUE: Saves the current trace configuration and the data that is stored in the
development system to a file. When the action is ended, the variable is set
automatically to FALSE.

“File name” Variable (STRING) that contains the file name of the file to be saved.

Standard control variable: sStoreFilename
“Load trace from file”

“Load Trace” Variable (BOOL).

Standard control variable: bRestore
TRUE: Reads the file specified below and loads its contents into the trace editor.
The file contains a trace configuration and possibly also trace data. To do this,
the stored trace configuration must match the application where the trace config-
uration is located. When the action is ended, the variable is set automatically to
FALSE.

Note: A trace configuration can be loaded from a file only under special cir-
cumstances. The file must have been created with exactly the same (running)
application with which it will then be loaded. The consequence of changing the
running application (for example by downloading again) is that a file which was
previously created from the application cannot no longer be read into the appli-
cation. Even external manual changes to the file can cause this. You should edit
only those configuration settings that have an effect on displaying the variables.
If you change variable definitions directly in the file (for example by replacing
variable x with v y), then the file cannot be loaded.

“File name” Variable (STRING) that contains the file name of the file to be read.

Standard variable: sRestoreFilename

See also
● Ä Chapter 1.4.5.19.2.15 “Command 'Insert Elements for Controlling Trace'” on page 1737

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2046

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2047

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2048

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Trend'
Symbol:

Category: “Special Controls”

The element displays the curve of variable values as a trend diagram. The trend diagram is
suitable for representing a long-term data curve because the data is read from a trend recording
and hence from a database. Moreover, you can run the “Trend” element together with the “Date
Range Picker”, “Legend”, and “Time Range Picker” operating elements so that the user can
navigate conveniently in the diagram.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2049

You can programmatically delete the recorded trend curve at runtime. The
recording starts again from the time of deletion. See the help page for "Pro-
gramming a Trend Visualization".

“Element name” Example: Velocity
“Data source” Data source for the connection via the device and the application to the “Trend

Recording” object where the trend data that you want to show was saved.
If the “Trend Recording” object is on the local device, then it is sufficient when
you specify the respective application. If the trend recording is on a remote
device, then you need to specify the data source connection to this device.

● “ <local application>”
The “Trend Recording” object is located on the local device in the local
application.

● <device name> . <application name>
Example: Device_A.App_A
The “Trend Recording” object is located on the local device Device_A below
the application App_A.

● <data source name>
Example: DataSource_B
The “Trend Recording” object is located on a remote device that is
connected via the data source DataSource_B. Below the (now visible)
“Application” property, the remote application is displayed as configured in
the data source.
Example: App_B
Note: If the data source is accessed symbolically by means of a symbol file
(CODESYS symbolic), then the required symbol file and the corresponding
project have to be saved in the same folder.

“Type of element” “Trend”

“Trend recording” : Trend recording whose data is displayed as a diagram
The trend recording is located on the device specified in the “Data source”
property.

“Display Mode” : Opens the “Display Settings” dialog.

See also
● Ä Chapter 1.4.5.11 “Displaying data curve with trend” on page 1309
● Ä Chapter 1.4.5.19.2.16 “Command 'Configure Display Settings of Trend'” on page 1738
● Object 'Data Source'

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2050

ms-its:codesys.chm::/_cds_obj_data_source_communication.htm

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

“Angle” Static angle of rotation (in degrees)
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property “Absolute
movement è Internal rotation”, then the static and dynamic angles of rotation
are added in runtime mode. The static angle of rotation acts as an offset.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2051

“Show cursor” : A cursor (black triangle with vertical line) is shown in the trend diagram.
Behavior at runtime: As soon as the graph is drawn, the user can move the
cursor along the time axis in order to mark a specific time. Then the variable
value belonging to the cursor position is displayed in the legend above the
graph.

“Show tooltip” Requirement: “Show cursor” is activated.

: A tooltip opens at the cursor.
Behavior at runtime: The variable value belonging to the cursor position is dis-
played as a tooltip.

“Show frame” : The trend diagram is drawn with a frame.

“Number format” Format specification in printf syntax, which determines how the values are dis-
played in the tooltip and in the legend
Example: %d (integer variable) or %5.2f (floating-point number)

The time stored in the trend recording are in the UTC time zone. If the time
is displayed in the trend of the visualization element, then the time stamps are
converted to the local time zone of the operating system of the PLC.

Change the time zone in the operating system if the times in the trend diagram
are not in the zone that you need.

Element prop-
erty 'Tick mark
labels'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2052

“Time stamps” X-value of the trend diagram
● “Absolute time stamps”

The absolute time with date and time is displayed at each tick mark on the
time axis.
Example: 03/18/2016 12h30m50s

● “Relative time stamps”
The time period from the start of the recording (=0) is displayed at each tick
mark.
Example: 5m30s

“Draw labels on two lines” : The time stamps are displayed on two lines (for example, the date is dis-
played on the first line and the time on the second line).

: The time stamp is displayed on one line. Example: 2019-11-01-12:30:50.

“ Omit irrelevant information in
timestamps”

: The time stamps are displayed in a truncated form (without insignificant
information). For example, the date is displayed at the first tick mark, and only
the time is displayed at the following tick marks. The “Internationalization (format
strings)” property is not visible and is ignored.

: The time stamps are displayed with all information. This takes into considera-
tion the “Internationalization (format strings)” property which contains the format
specification for the date and time display.

“Internationalization (format
strings)”

Format specification for the date and time display of the time stamp (when it is
displayed in full)
Note: The property is visible only if the “Omit irrelevant information in
timestamps” option is not selected.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2053

“Date” Format string that returns the date display according to the defined format. The
operating system locale is used as the default setting.
Defined format strings for the date:
● Year: yyyy, yy, y
● Month: MM, M
● Day: dd, d
● Recommended separator: - . /
Example:
yyyy-MM-d displays 2019-10-25
yyyy-MM-dd displays 2019-10-25
dd.MM.yyyy displays 25.10.2019
dd/MM/yyyy displays 25/10/2019

“Time” Format string that returns the time (or time of day) display according to the
defined format. The operating system locale is used as the default setting.
Defined format strings for the time:
● 24-hour time definition: HH, H
● 12-hour time definition: hh, h
● AM/PM for 12-hour time definition: tt
● Minutes: mm, m
● Seconds: ss, s
● Milliseconds: ms
● Microseconds: us
● Recommended separator: : or space character

Example:
HH:mm:ss:ms displays 15:30:59:123
h:mm:ss tt displays 3:30:59 PM

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

These elements are created automatically when the control elements are added with the com-
mand “Insert elements for controlling Trend”.

“Date Range Picker” Control element for changing the date and time of the displayed data sets.
With , all elements are provided that have implemented the interface
IDateRangeSelector. By default, instances of the “Date Range Picker” visu-
alization element are available.

“Time Range Picker” Control element for changing the time of the displayed data sets. With , all
elements are provided that have implemented the interface ITimeSelector.
By default, instances of the “Time Range Picker” visualization element are avail-
able.

“Legend” Control element for displaying a legend for the graphs. With , all elements are
provided that have implemented the interface ILegendDisplayer.

See also
● Ä Chapter 1.4.5.19.2.18 “Command 'Insert Elements for Controlling the Trend'”

on page 1739

Element prop-
erty 'Assigned
control ele-
ments'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2054

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2055

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2056

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.11 “Displaying data curve with trend” on page 1309
● Ä Chapter 1.4.5.11.1 “Getting Started with Trend Visualization” on page 1309
● Ä Chapter 1.4.5.11.2 “Programming a Trend Visualization” on page 1312
● Object 'Trend Recording'

Visualization Element 'Legend'
Symbol:

Category: “Special Controls”

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2057

ms-its:codesys.chm::/_cds_obj_trend_recording.htm

The element is used as a legend for another element (for example, a trend). The legend is
assigned in the properties of the other element.
See also
● Ä Chapter 1.4.5.11 “Displaying data curve with trend” on page 1309

“Element name” Example: LegendOfTrendA
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Legend”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2058

You can also change the values by dragging the symbols () to other positions
in the editor.

“Orientation” Orientation of the element. The value is configured in the assigned element.
● “Horizontal”
● “Vertical”

“Attached element instance” Example: Element_A
“Show frame” : The element is displayed with frames.

“Number format” The format of the value in printf syntax (example: %d, %5.2f)

Defines how many variables can be displayed at a maximum and is calculated from the row and column number.

“Max. number of rows” Example: 3
“Max. number of columns” Example: 2

The property affects the text configured in the associated element.

“Text format” “Default”: The text will be cut and displayed in only the part that fits into the
visualization element.
“Linebreak”: The text will be wrapped in rows.
“Ellipsis”: The text is cut and ellipsis ... are added to indicate that something is
missing.

“Font” Font of the text. The entries of the selection list are defined in the visualization
style.

“Font color” Text color, for example Grey. The entries of the selection list are defined in the
visualization style.

“Transparency” Transparency value (255 to 0), which defines the transparency of the corre-
sponding color.
Example: 255: The color is opaque. 0: The color is fully transparent.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element Prop-
erty 'Layout'

Element Prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2059

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2060

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'ActiveX'
Symbol:

Category: “Special Controls”

The element is used to link an existing ActiveX control in the visualization. You can configure
the method calls and their parameters in the element properties of the “ActiveX” element.

Element prop-
erty 'Access
rights'

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2061

“Element name” Example: GenElemInst_1
“Type of element” “ActiveX”

“Element” Installed ActiveX component that is linked to the visualization.
Hint: To avoid typing errors, select the required ActiveX component by means of
the Input Assistant.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2062

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2063

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These method calls are executed during initialization. They are executed in the first cycle only.

“Method calls ” Button '“Create new”'
Creates a subnode below “Methods” with parameters for the method call.

“Methods” “[<number>]”

● “Method”: Name of the method
● “Parameter”: Parameter passed at the method call
● “Result parameter”: Optional variable for the return value of the method

These method calls are executed in every cycle. They are executed in the refresh rate of the
visualization.

“Method calls ” Button '“Create new”'
Creates a subnode below “Methods” for a method call and its parameters.

“Methods” “[<number>]”

● “Method”: Name of the method
● “Parameter”: Parameter passed at the method call
● “Result parameter”: Optional variable for the return value of the method

These method calls are executed in the refresh rate of the visualization. You define the call
condition in the property “Methods è [<number>] è Call condition”.

“Method calls ” Button '“Create new”'
Creates a subnode below “Methods” with a call condition and parameters for the
method call.

“Methods” “[<number>]”

● “Method”: Name of the method
● “Call condition”: Variable (BOOL). A rising edge of this variable triggers the

call of this method.
● “Parameter”: Parameter passed at the method call
● “Result parameter”: Optional variable for the return value of the method

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Initial calls'

Element prop-
erty 'Cyclic
calls'

Element prop-
erty 'Conditional
calls'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2064

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Web Browser'
Symbol:

Category: “Special Controls”

The element shows a website, PDF file, or video that has a URL.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2065

NOTICE!
The display options of the “Web Browser” element depend on the operating
system and the display variant of the visualization.

Requirement: The software components of the web browser are available in the runtime and
configured accordingly (example: videos to be shown on Linux).
See also
● Ä Chapter 1.4.5.21.6 “Displaying Web Contents” on page 2141

“Element name” Example: GenElemInst_59
“Type of element” “Web Browser”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2066

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2067

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

“URL” URL of the web page that is displayed in the visualization.
● Variable (STRING or WSTRING)

Example: PLC_PRG.stURL
● Literal in single straight quotation marks

Example: 'http://de.wikipedia.org'
“Show” Variable (BOOL).

Example: PLC_PRG.bSetURL
Controls the display of the “Web browser” element.
If the variable contains a rising edge, then the visualization calls the web page
given in “URL” and displays its contents in the 'Web browser' visualization ele-
ment.

“Back” Variable (BOOL).

Example: PLC_PRG.bGoBack
Controls the back navigation in the “Web browser”. If the variable has a rising
edge, then the visualization displays the contents of the previously displayed
page.

“Forward” Variable (BOOL).

Example: PLC_PRG.bGoForward
Controls the forward navigation in the “Web browser”. If the variable has a rising
edge, then the visualization displays the contents of the previously displayed
page.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Control
variables'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2068

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Busy Symbol, Cube'
Symbol:

Category: “Special Controls”

At runtime, this element indicates automatically that the runtime is busy or waiting for data.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2069

“Element name” Example: Data_Transfer
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Busy Symbol, Cube”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2070

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2071

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2072

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Busy Symbol, Flower'
Symbol:

Category: “Special Controls”

The element indicates that the system is busy or waiting for data.

“Element name” Example: Data_Transfer
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Busy Symbol, Flower”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2073

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Frame color”

“Fill color”

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 2095

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2074

“Symbol color” Selection of a color for the flower symbol.

“Line” Stroke width of the lines (in pixels).

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2075

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2076

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Text Editor'
Symbol:

Category: “Special Controls”

The element shows the contents of text files that are saved on the controller. Files can be
encoded in ASCII or Unicode formats.
A visualization user can also edit the text.

“Element name” Example: GenElemInst_1
“Type of element” “Text Editor”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2077

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Font name” Non-proportional font used by the visualization to display the contents of the file
Example: “Courier New”

“Size” Font size
Example: 12

Table 361: Element property “Control variables --> File”
“Variable” Variable (STRING). Contains the file names and optionally the location of the file.

It is located in the file system of the controller.
Example: PLC_PRG.strFile: STRING := '/Documentation/
Info.txt';

“Open” Variable (BOOL). Controls opening the file which is defined in the “Variable”
property
Example: bOpen: BOOL;
TRUE: The file is opened.

“Close” Variable (BOOL). Controls closing the file which is defined in the “Variable” prop-
erty
Example: bClose: BOOL;
TRUE: The file is closed.

“Save” Variable (BOOL). Controls saving the file which is defined in the “Variable” prop-
erty
Example: bStore: BOOL;
TRUE: The file is saved.

“New” Variable (BOOL). Controls creating a new file. The name is defined in the
“Variable” property.
Example: bCreate: BOOL;
TRUE: A file is created and opened.

Element prop-
erty 'Font'

Element prop-
erty 'Control
variables'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2078

Table 362: Element property “Control variables --> Edit ”
“Variable” Variable (STRING). Contains the string to search for in the file

Example: strFind: STRING := 'abc';
“Find” Variable (BOOL). Controls executing the search for the string in the “Variable”

property
Example: bFind: BOOL;
TRUE: The search is performed. The variable is automatically reset to FALSE.

“Find next” Variable (BOOL). Controls the location to begin the search in the file

Example: bFindNext: BOOL;
TRUE: The search begins at the last search result location.

FALSE: The search begins at the beginning of the file.

Table 363: Element property “Control variables --> Cursor position”
“Line” Variable (integer data type). Contains the line of the cursor

Example: iRowCursor: INT;
“Column” Variable (integer data type). Contains the column of the cursor

Example: iColumnCursor: INT;
“Position” Output variable (integer data type). Shows the absolute cursor position in the

text.
Example: iPosCursor: INT;

“Set cursor” Variable (BOOL). Controls the setting of the cursor at a specific location

Example: iSetCursor: INT;
TRUE: The cursor is moved. The new position is defined in the “Line” and
“Column” properties.
FALSE: The “Line”, “Column”, and “Position” properties contain the actual
values.
Note: The variable is used as the control variable for an input event triggered
by a visualization user.

Table 364: Element property “Control variables --> Selection”
“Start position” Output variable (integer data type). Shows the absolute position for starting the

text selection
Example: iPosSelection: INT;

“End position” Output variable (integer data type). Shows the absolute position for ending the
text selection.
Example: iPosEndSelection: INT;

“Start line number” Output variable (integer data type). Shows the line where the text selection
begins
Example: iRowSelection: INT;

“Start column index” Output variable (integer data type). Shows the column where the text selection
begins
Example: iColumnSelection: INT;

“End line number” Output variable (integer data type). Shows the line where the text selection ends
Example: iRowEndSelection: INT;

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2079

“End column index” Output variable (integer data type). Shows the column where the text selection
ends
Example: iColumnEndSelection: INT;

“Line to select” Variable (integer data type). Contains the line number that is selected
Note: The selection is controlled by the variables in the “Trigger selection” prop-
erty.

“Set selection” Variable (BOOL). Controls the selection of a line.

Example: bSetSelection: BOOL;
TRUE: The line from the “Line to select” property is selected and highlighted in
the Text Editor.
if the line is not in the current text segment of the Text Editor, then the text
segment is moved to this line.
Note: The variable is used as the control variable for an input event triggered
by a visualization user. The control variable is not reset automatically. You are
responsible for this to occur in the visualization.

Table 365: Element property “Control variables --> Error handling”
“Variable for error code” Variable (integer data type). Contains the error code when an error occurs

Example: iError: INT;
The error codes are declared in GVL_ErrorCodes in the
VisuElemTextEditor library. To display the error text, the
VisuFctTextEditorGetErrorText() function of the library must be called.

“Variable for content changed” Variable (BOOL). Shows whether the contents have changed

Example: bIsContentEdited: BOOL;
TRUE: The contents of the Text Editor have changed.

“Variable for access mode” Variable (BOOL). Controls the access privileges to the file

Example: bIsReadOnly: BOOL;
TRUE: A visualization user has read-only permission. At runtime, the file contents
are highlighted in gray in the Text Editor.
FALSE: A visualization user has read/write permission.

Note: The variable overwrites the setting in the “Editor mode” property.

“Maximum line length” Maximum number of characters per line

“Editor mode” ● “Read-only”: A visualization user has read-only permissions to the file. At
runtime, the file contents are highlighted in gray in the text editor.

● “Read/write”: A visualization user has read-write permissions.

Element prop-
erty 'New files'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2080

“Encoding” Character encoding of the new file:
● “ASCII”
● “Unicode (Little endian)”
● “Unicode (Big endian)”

“New line character sequence” End of line character of the new file:
● “CR/LF”: Normal for Windows systems
● “LF”: Normal for UNIX systems
Please note: When a visualization user opens an existing file, the end-of-line
character of the file is detected and used automatically.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2081

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Path3D'
Symbol:

Category: “Special Controls”

The “Path3D” visualization element graphically displays the curves of two independent records
as a 3D path. It is specially designed for use with Motion Solution CNC in order to display
the trajectory of a machine tool or a robot. The programmed path (path) and the path actually
traveled (track) is displayed.
Although the visualization element is designed for use with Motion Solution CNC, it can also be
used to display any other record. In this case the application has to provide the path data. The
sample application 3D Path Generator, which is available in CODESYS Forge, shows how
these data can be generated.
If the element is used together with SoftMotion CNC, then function blocks from the library
SM3_CNC_Visu help to generate the data from the path and track. These function blocks are
used by the sample project CNC_File_3DPath, which is stored in the installation directory of
CODESYS.
● SMC_PathCopier
● SMC_PathCopierCompleteQueue
● SMC_PathCopierFile
● SMC_PositionTracker
A description of the function blocks can be found in the Library Manager in the library
SM3_CNC_Visu.

The element does not work with the CODESYS HMI display variant.

See also
● CNC Example 6: Using Path3D with SoftMotion CNC
● Sample project in CODESYS Forge

“Element name” Example: GenElemInst_1
“Type of element” “Path3D”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2082

ms-its:codesys_softmotion.chm::/_sm_example_cnc_6.htm
https://forge.codesys.com/prj/codesys-example/home/Home/

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Path data
(VisuStruct3DTrack)”

Variable of the type VisuStruct3DTrack, which is declared in the IEC code.
Example: PLC_PRG.pc.vs3dt. A description of the structure can be found in
the library manager in the library VisuElem3DPath.library.

The data structure describes a path or track through a certain number of points.
The points are determined and buffered by the application. The track typically
displays the last n positions, so that only a certain part of them is ever displayed
at any one time. VisuStruct3DTrack.pProjection is a variable that is
set by the visualization element and contains information about the path/track
projection. It can be read (only) by the application. In addition, the methods
Projection.Apply or .ApplyV can be used in order to see whether the
transformed position lies inside or outside the visualization display area, which is
defined by Projection.ElementRect.

“Path color” Color of the path drawn

“Path line width” Path line width in pixels, e.g.: "2"

“Style of boundary points” Display of the points between two successive objects in the path
● End points are not displayed
● End points are marked with a circle
● End points are marked with a cross
● End points are marked with a plus

The track data are structured in exactly the same way as the path data: VisuStruct3DTrack

“Track data
(VisuStruct3DTrack)”

Variable of the type VisuStruct3DTrack, which is declared in the IEC code.
Example: PLC_PRG.pc.vs3dt. A description of the structure can be found in
the library manager in the library VisuElem3DPath.library.

“Track color” Color of the track drawn

“Track line width” Track line width in pixels, e.g.: "2"

Path description

Track descrip-
tion

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2083

The camera position for the 3D mode is controlled with a reference to the external data struc-
ture. This structure allows the following operations:
● Shifting to the left/to the right/upwards/downwards
● Rotation around the X/Y/Z axis
● Resetting of the view at X/Y, Y/Z or Z/X level, so that the path and the track are completely

visible.

“Control data
(VisuStruct3DControl)”

Variable of the type VisuStruct3DControl, which is declared in the IEC
code. Example: PLC_PRG.pc.vs3dc.

A description of the structure can be found in the library manager in the library
VisuElem3DPath.

The values can be set via the application itself or via the visualization element
“ControlPanel”. The library VisuElem3DPath contains ready-to-use visualiza-
tion frames that provide a possible user interface for these data.

“Coordinate system” : The coordinate system is displayed

“Grid” : Grid lines are displayed

“Grid color” Color of the grid lines

Individual parts of the path can be visually highlighted. This is typically used to mark the already
processed part of a track with a different color. Each point in the path is given a unique ID,
which in the case of a CNC editor is linked with the object ID on which the point lies. This ID
("highlight ID") can be specified via the application so that dynamic elements/parts of the track
can be highlighted.

Highlight mode Select one of the following highlight modes:
● Only the element whose ID corresponds to the value of the variable is high-

lighted.
● All elements whose ID (linked with the object ID in the case of a CNC editor)

is smaller than or equal to the value in Variable are highlighted.

Variable Project variable that specifies the ID of an element. Example:
PLC_PRG.iVarElementID. This "highlight ID" is taken into account for the
setting of the highlight mode. The variable must be set in the IEC application.

Highlight color

“Frame line width” Width of the frame around the element, in pixels, for example: "1"

“Frame line style” Select one of these style types for the frame line:
● Solid
● Dashes
● Dots
● Dash Dot
● Dash Dot Dot
● Hollow

Camera control

Additional
aspects

Highlighting

Element look

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2084

“Transparent background” : The background of the element is displayed transparently.

: The background of the element is displayed in the defined background color.

“Background color”

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Control Panel'
Symbol:

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2085

Category: “Special Controls”

This visualization element is used in connection with the “Path3D” visualization element. It is
used for changing the position and orientation to the CNC path shown with “Path3D”.
See also
● Ä Chapter 1.4.5.19.5.42 “Visualization Element 'Path3D'” on page 2082

“Element name” Optional.
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Camera_Path_1

“Type of element” “Frame”

“Clipping” : If you have set the “Scaling type” to “Fixed”, then only that part of the
visualization is displayed that fits in the frame.

“Show frame” Displays the frame
● “No frame”: The displayed area of the frame does not have borders.
● “Frame”: The displayed area of the frame has borders.
● “No frame with offset”: The displayed area of the frame does not have a

border and the displayed area of the referenced visualization is reduced
inwards by one pixel as compared to the frame area.
The resulting gap prevents the referenced visualization from touching any
adjacent elements.

“Scaling type” Describes how the frame reacts when the visualization is resized:
● “Isotropic”: The frame retains its proportions. This allows the ratio of height to

width to be preserved, even if the height and width of the visualization have
been changed separately.

● “Anisotropic”: The frame depends on the size of the visualization, so that
height and width of the referenced visualization can be changed separately.

● “Fixed”: The original size of the frame is retained, regardless of the visualiza-
tion size. If you have also selected the “Clipping” option, then only the fitting
part is displayed.

● “Fixed and scrollable”: The referenced visualization is displayed without
scaling. If the value is greater than the window area of the frame, then
scrollbars are added to the frame. To set the position of the scroll bar with
a variable, use the “Scroll position variable horizontal” or “Scroll position
variable vertical” property.

“Deactivation of the
background drawing”

: To optimize the performance of the visualization, the non-animated elements
of the frame element are drawn as a background bitmap. This could result in the
elements not being displayed in the expected order.

: Deactivation of the background drawing. This can prevent the behavior
described above.

Contains the currently configured visualization references as a subnode

Element proper-
ties

Element prop-
erty 'Referen-
ces'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2086

“References” Clicking “Configure” opens the “Frame Configuration” dialog. This is used to
manage the referenced visualizations.
Caution: Visualizations can be nested at any depth by means of Frame ele-
ments. In order to use the “Switch to any visualization” Frame selection type
without any problems, a Frame must not contain more than 21 referenced
visualizations. For more information, see also the description for the “Input
configuration” of an element: Action “Switch Frame visualization”.

List of the currently referenced
visualizations

Visualizations that have a button also have this displayed as a subnode. Each
interface variable is listed with the currently assigned transfer parameters.
Example:
vis_FormA
● iDataToDisplay_1 : PLC_PRG.iVar1
● iDataToDisplay_2 : PLC_PRG.iVar2
Hint: You can change the assignment of the variables to an interface variable
here and edit the value field. Or click the “Configure” button instead.

See also
● Ä Chapter 1.4.5.19.2.1 “Command 'Interface Editor'” on page 1719
● Ä Chapter 1.4.5.15 “Creating a structured user interface” on page 1321
● Ä “Input action 'Switch Frame Visualization'” on page 1756

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2087

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color for the element in its normal state.
Please note that the normal state is in effect if the expression in the “Color
variables è Toggle color” property is not defined or it has the value FALSE.

“Alarm color” Color for the element in alarm state.
Please note that the alarm state is in effect if the expression in the “Color
variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

“Use gradient color” : The element is displayed with a color gradient.

“Gradient setting” The “Color gradient editor” dialog box opens.

“Frame color” Example: “Black”

“Fill color” Example: “Light gray”

See also
● Ä Chapter 1.4.5.19.3.5 “Dialog 'Gradient Editor'” on page 1748
●

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2088

See also
● Ä “ Element property 'Appearance variables'” on page 2095

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 2091
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2089

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2090

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 2117

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2091

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708
● Ä “Element property 'Texts'” on page 2089
● Ä Chapter 1.4.1.19.5.17 “Enumerations” on page 676

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 1.4.1.20.2.24 “Object 'Text List'” on page 927

The variables allow for dynamic control of the text display.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2092

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2093

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 2089

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

Element prop-
erty 'Color varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2094

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 1.4.5.8.3 “Animating a color display” on page 1295

The properties contain variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible: The line is not drawn.

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 2088

The variable controls the switching of the referenced visualizations. This variable indexes one
of the referenced frame visualizations and this is displayed in the frame. When the value of the
variable changes, it switches to the recently indexed visualization.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'Switch
frame variable'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2095

“Variable” ● Variable (integer data type) that contains the index of the active visualization
Example: PLC_PRG.uiIndexVisu
Hint: The “Frame Configuration” dialog includes a list of referenced visualiza-
tions. The visualizations are automatically numerically indexed via the order
in the list.
Note: This variant of switching usually affects all connected display variants.

● Array element (integer data type) for index access via CURRENTCLIENTID
Example: PLC_PRG.aIndexVisu[CURRENTCLIENTID]
Note: This variant of switching applies to the current client only, and there-
fore only on one display variant. That is the display variant where the value
change was triggered (for example, by means of user input).

See also
● Ä Chapter 1.4.5.19.2.9 “Command 'Frame Selection'” on page 1727

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2096

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2097

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2098

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 1.4.5.19.2.2 “Command 'Keyboard Configuration'” on page 1720
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Date Range Picker'
Symbol:

Category: “Date/Time Controls”

The element provides the capability of selecting the date and time range of a saved data set.
The element is used with the “Trend” visualization element.

Element proper-
ties

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2099

“Element name” Example: DateTrend1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Date Range Picker”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2100

“Show frame” : The visualization element is drawn with a frame.

“Resolution” Resolution saved for the time stamp: “Millisecond” or “Microsecond”

“Attached element instance” The element can be assigned to a “Trend” visualization element. As a result, the
time range of the trend element can be changed. The available visual elements
are selected with the help of the Input Assistant ().

“Two-line labelling” : The time stamps are displayed in two lines. The date is displayed in the first
line and the time is displayed in the second line.

: Time stamp is displayed in one line. The date and time can also be displayed
in one line depending on the formatting.

“ Omit irrelevant information in
time stamp”

: The time stamp has a shorter form. For example, the date is displayed only
for the first tick mark, and only the time for the following tick marks. The settings
in “Internationalization (format strings)” are ignored for this setting.

: All information is displayed for all time stamps.

“Internationalization (format
strings)”

Only active when the parameter “Omit irrelevant information in timestamps” is
deactivated.

“Date” Definition of the date format. The default setting is taken from the Windows
control panel.

“Time” Definition of the time format. The default setting is taken from the Windows
control panel.

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Element prop-
erty 'Tick mark
labels'

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Additional
buttons'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2101

“Jump to the largest possible
time stamp”

: An additional button () is displayed for jumping to the last time stamp.

“Jump to the smallest possible
time stamp”

: An additional button () is displayed for jumping to the first time stamp.

“Zoom out” : An additional button () is displayed for setting the current min./max. range
to the maximum range. The selected range is left.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2102

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2103

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Time Range Picker'
Symbol:

Category: “Date/Time Controls”

The element provides configurable buttons for setting the time range of a trend display to a
defined time. In the process the end time of the previous display is left unchanged and the start
time is adapted.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: TimeRangeTemperature

“Type of element” “Time range picker”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2104

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

“Orientation” Specifies whether the time picker element is aligned horizontally or vertically in
the editor.
Hint: Change the width to height ratio of the element in the editor.

“Show frame” : The visualization element is drawn with a frame.

“Resolution” Resolution saved for the time stamp: “Millisecond” or “Microsecond”

“Attached element instance” Assignment to the element that processes the time picker
The element can be assigned for example to a “Trend” visualization element.
Then the time range of the trend element can be changed. The available visual
elements are selected with the help of the input assistance ().
Example: GenElemInst_1

“Text” String label for the element.
Example: Zoom

The properties contain fixed values for the text properties.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

In “Times”, the buttons that the element provides at runtime are defined and configured in an
array.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Property 'Times'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2105

“Provide "All" selection” :Time Range Picker bar extended by "All" button. The diagram represents a
time interval that covers all time stamps.

“Times” : Adds another button to the Time Range Picker bar and increases the array
by one entry. An additional index is present in the property “Times è Times
è Times è [<new>]”. “Time” is located under this index. The configuration of
the button is to be entered there.

“Times”

● “ [Index]”

with index Î {0, 1, 2,...}

Array of all buttons in the time selection bar. Index corresponds to the number of
buttons.

: The associated button is removed from the Time Range Picker bar. The
configuration entry is deleted from the “Times” property list.

“ [Index]”

● “Time”

: Time interval in standardized notation. Example: 3M for 3 months; 30m for 30
minutes. If a time interval is indicated in the field, then the button is labelled with
it. If a user clicks on the button at runtime, the command is executed to switch
the diagram to this time interval. The default is empty.

“Time” Displays which time is currently selected.
Variable (STRING)

Example: PLC_PRG.strSelcetedTime
“"All" selected” Displays the state of the "All" button

Variable (BOOL)
Example: PLC_PRG.AllTimesAreSelected

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Control
variables'

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2106

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2107

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

Visualization Element 'Date Picker'
Symbol:

Category: “Date/Time Controls”

The element is a calendar that displays the current date. A user can click a day to select a date,
which is saved to a variable. In addition, it can customize the time interval that the calendar
displays. Clicking the calendar header changes the year. Clicking the arrows in the calendar
header changes the month.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2108

The element contains language-dependent texts that are managed in the System text list.
This deals with the names of the month and the days of the week written out completely or
abbreviated. When the date picker is added to a visualization, CODESYS generates the text
list automatically below the POU view. The IDs correspond to the standard text and therefore
English terms. The text list makes it possible to translate these texts.

System text list

ID Default
Apr Apr
April April

Example

See also
● Ä Chapter 1.4.5.6 “Setting Up Multiple Languages” on page 1286

“Element name” Example: DueDateCalendar
“Type of element” “Date Picker”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Language-
dependent texts
of the element

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2109

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Input variable (DATE). Contains the date that a user selects in the calendar.

Example: PLC_PRG.dtDueDate
“Design” ● “From style”: All settings are preconfigured according to the style.

● “Explicit”: The “Design settings” property is available. You can customize the
calendar here.

Requirement: This property is visible only if the “Design” property is set to “Explicit”.
The values of the property can be predefined in the style. Then they are available in the
drop-down list.

Table 366: “Header of Date Picker”
Design of the header

“Font” Style font or user-defined font

Style color or user-defined color“Font color”

“Arrows”

“Arrow color” Style color or user-defined color

“Color of printed arrow”

“Background”

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Fill color” Style color or user-defined color

Table 367: Design of the main display area
Design of the main display
area

“Today” Design of today

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The style defines whether and which background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color” Style color or user-defined color. Used if “Yes” is selected in “Draw background”.

Design settings

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2110

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Selected day” Design of the selected day

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color” Style color or user-defined color

“Show frame” “From style”: The style defines whether and how a background is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Current month” Design of the current month

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color”

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Other months” Design of the previous and subsequent months

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Display other month” Design of the previous and subsequent months

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2111

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color”

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Day of week heading” Design of the heading with the days of the week

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The background is filled with the style color “From style”. The style
defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color”

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Display separator line” “From style”: The style defines whether and how a separator line is drawn.
“Yes”: Display with the following properties.
“No”: A separator line is not displayed.

“Color of the separator line” Used if “Yes” is selected in “Display separator line”.

“Width of separator line”

“Background” Design of the calendar days

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Fill color” property and
framed in the “Frame color”.
“No”: The background is not filled with a color.

“Fill color” Style color or user-defined color

“Frame color”

Element prop-
erty 'Display
type'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2112

“Rows” Number of month calendars per row (preset: 1)

“Columns” Number of month calendars per column (preset: 1)

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2113

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2114

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Analog Clock'
Symbol:

Category: “Date/Time Controls”

The element is a clock that displays the current time of day. The clock can also display a
random time.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2115

“Element name” Example: GenElemInst_1
“Type of element” “Analog Clock”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Time Dis-
play'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2116

“Use system time” : The system time of the PLC is displayed.

“Variable” Variable (time data type TOD, TIME_OF_DAY). This receives the time of day that
is not the system time.
Example: PLC_PRG.todTimeTokio
Requirement: The “Use system time” property is not activated.

See also
● Ä Chapter 1.4.1.19.5.5 “Data Type 'TIME'” on page 649

“Design” ● “From style”: All settings are preconfigured according to the style.
● “Explicit”: The “Settings” property is available. Here you can customize the

analog clock.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2117

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

Requirement: The “Property” is “Explicit”. Only then is the “Clock Settings” category visible.

Table 368: “Background”
“Background color” Color variants of the default background image

● “Yellow”
● “Red”
● “Blue”
● “Green”
● “Black”

“Own background” Background display with the specific “Image”. Replaces the default background
image.

Element prop-
erty 'Settings'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2118

“Image” Image from an image pool or library
Example: myImagepool.myImage

“Transparency color” The transparent color in the image representation.
Example: “White”. The white parts of the image are transparent.

“Use background color” : The image background is displayed using the color defined in the
“Background color” property.
Requirement: No image reference is given in the “Image” property.

“Background color” Style color or color
Requirement: “Use background color” is activated.

Table 369: “Hands”
“Hand style” Example: “Thin arrow”

“Color hour hand” Style color or color for the hands

“Color minute hand”

“Color second hand”

Table 370: “Lines”
“Lines style” Clock face graduation

● “None”
● “Line”: Graduation lines by hour
● “Hours and minutes”: Graduation lines by hours and minutes
● “Dots”: Graduation dots by hour

“Color” Color of the clock face graduation

“Line width” Line weight of the clock face graduation

“Scale in 3D” : Representation of the clock face with 3D effect

Table 371: “Numerics”
“Style of numerics” Digits on the clock face

● “None”
● “Quarter”
● “All”

“Font” Font for displaying the digits

“Font color” Font for displaying the digits

Table 372: “Center point”
“Color” Color of the center of the clock

Table 373: “Positioning”
“Usage of” ● “Default style values”: Presetting of the style values

● “Individual settings”: User-defined settings in the subordinate “Positioning”
property.

“Positioning” Requirement: Visible when the “Usage or” property is set to “Individual settings”.

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2119

“Numerics movement” Value (in pixels) for shifting the digits.
Example: 80

“Line movement” Value (in pixels) for shifting the hour lines.
Example: 100

“Hands scaling” Factor for scaling the length of the hour hand. You can customize the exact
position of the hour hand relative to the background image.
Example: 100

“Scaling type” Defines the scaling of the height and width of the element.
● “Anisotropic”: The background image is scaled to the size of the element The

height and width are scaled independently of each other.
● “Isotropic”: The background image is scaled to the size of the element,

retaining its proportion. The proportion of height and width is fixed.

“Optimized drawing” : The background image is drawn one time. When the hour hand moves, only
the affected part of the image is redrawn.

: The background image is redrawn in cycles.
Hint: Disable this option only for extreme exceptions.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2120

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2121

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 1.4.5.3 “Designing a visualization with elements” on page 1254

Visualization Element 'Date/Time Picker'
Symbol:

Category: “Date/Time Controls”

The element provides the capability of selecting the date and time. The value can be changed
by means of the arrow keys on the keyboard. The date can be selected from a calendar.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: StartDateAndTime

“Type of element” “Date/Time Picker”

Element proper-
ties

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2122

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 1.4.5.3.2 “Positioning the Element, Adapting Size and Layer” on page 1256

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2123

“Variable” Variable (DATE, DT, TIME, LTIME, TOD)

The value of the value of the variable is displayed and modified by means of the
element.
The data type automatically determines the displayed value units:
● TIME: Day, hour, minute, and second (by default, milliseconds are not dis-

played)
● DATE: Year, month, and day
● DT: Year, month, day, hour, minute, and second
● TOD: Hour, minute, and second (by default, milliseconds are not displayed)
● LTIME: Day, hour, minute, and second (by default, milliseconds, microsec-

onds, and nanoseconds are not displayed)

“Format string” The format can restrict the output to individual values.
Example for LTIME: Format: HH:mm:ss.ms.us.ns --> displayed:
08:15:12.780.150.360 LTIME restricted: format: HH:mm --> displayed: 08:15

Example for DATE: Format: yyyy/MM/dd --> displayed: 2015/12/17 .

Basically, all usual formats available for %t are also supported.

“Design date time picker” ● “From style”: All settings are preconfigured according to the style.
● “Explicit”: The “Design settings” property is available. You can customize the

calendar here.

“Design date picker” ● “From style”: All settings are preconfigured according to the style.
● “Explicit”: The “Design settings” property is available. You can customize the

calendar here.

“Positioning date picker” ● “Dynamic”: The calendar is adapted and positioned automatically.
● “Manual”: The “Position settings” property is available. You can customize

the calendar here.

See also
● Ä Chapter 1.4.5.18.2 “Placeholders with Format Definition in the Output Text” on page 1708

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Absolute
movement'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2124

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
● Ä Chapter 1.4.1.8.18 “Unit conversion” on page 298

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2125

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

Element prop-
erty 'Access
rights'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2126

See also
● Ä Chapter 1.4.5.19.3.1 “Dialog 'Access Rights'” on page 1745

1.4.5.20 Reference, visualization style editor
1.4.5.20.1 Dialog 'Create a New Visualization Style'...................................... 2127
1.4.5.20.2 Dialog 'Open Existing Style as a Copy'... 2127
1.4.5.20.3 Editor 'Visualization Style Editor'... 2128

1.4.5.20.1 Dialog 'Create a New Visualization Style'
Symbol:
Function: The dialog prompts you to specify data for a new created style file.
Call:
● In CODESYS:

In the “Visualization Manager” object (tab “Settings”, group “Style Settings”):
Clicking opens a drop-down list. Click “Create and Edit Derived Style”.

● In the visualization style editor:
Menu bar: “File è New Style”

“Name” Name of the new style.
Example: Style_CI

“Storage location” Working directory for style editing

“Base style” Style to base the new style on The drop-down list includes all styles that are
installed in the repository.
“<none>”: The new style does not derive itself from an existing style.

“Visualization profile” The profile is intended for informational purposes. For example, you find ele-
ments that are not preconfigured with special style entries, and information from
the profile. In addition, CODESYS checks in the profile whether a required style
is missing.
Example: CODESYS V3.5 SP9

Click “OK” The new style is created and opened for editing in the visualization style editor.
It already includes all required style entries and the localization in German (lan-
guage column de).

See also
● Ä Chapter 1.4.5.20.3 “Editor 'Visualization Style Editor'” on page 2128
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777
● Ä Chapter 1.4.5.17 “Applying Visualization Styles” on page 1360

1.4.5.20.2 Dialog 'Open Existing Style as a Copy'
Function: This dialog prompts you to specify data for copying a style file.
Call:
● In CODESYS:

In the editor of the “Visualization Manager” object (tab “Settings”, group “Style Settings”,
click for a drop-down list). Click “Copy and Edit Style”.

● In the visualization style editor:
Menu bar: “File è Open as Copy”

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2127

“Style” Style to be copied.
Example: Basic Style, 3.5.9.0
Note: You can also select a style from the repository.

“Destination” Working directory for style editing

“OK” A copy of the style is created and opened for editing in the visualization style
editor.

See also
● Ä Chapter 1.4.5.17 “Applying Visualization Styles” on page 1360
● Ä Chapter 1.4.5.20.3 “Editor 'Visualization Style Editor'” on page 2128
● Ä Chapter 1.4.5.19.4.2 “Object 'Visualization manager'” on page 1777

1.4.5.20.3 Editor 'Visualization Style Editor'
Symbol:
Function: The editor is used for creating, deriving, editing, and localizing visualization styles. In
addition, it makes it possible to check and install a style or a hierarchy of styles.
Call:
● In CODESYS:

In the “Visualization Manager” object (tab “Settings”, group “Style Settings”, click for a
drop-down list). Click “Open Style Editor”.

● Start menu > CODESYS installation folder > 'CODESYS' > 'Visualization Style Editor'

 “New style” The “Create a New Visualization Style” dialog box opens.

 “Open” The “Open Dialog” dialog box opens.
This dialog prompts you to select a style file (format .visustyle.xml) to be
opened and edited.

 “Open as copy” The “Open Existing Style as Dialog” dialog box opens.
This dialog prompts you to select a style that is copied, saved to the target
location, and opened for editing.

“Close” Closes the style open in the editor.

 “Save” Saves the changes of the open style.

“Save As” The “Select Visualization Style(s)” dialog box opens.
This dialog prompts you to select a file to save the current settings.

 “Save and Install” Saves the open visualization style and installs it to the visualization style reposi-
tory.

“Recently opened files” Lists the files for selection that were last opened.

“Abort” Closes the visualization style editor.

See also
● Ä Chapter 1.4.5.20.1 “Dialog 'Create a New Visualization Style'” on page 2127

The commands affect the contents of the “Style Properties” tab.

Menu 'File'

Menu 'Styles'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2128

 “New Entry (as Child) ” Creates another style entry as a child of the selected style property.

 “New Entry (Afterwards)” Creates a new style entry in the list after the selected style property.

 “Move Down” Moves the selected style entry down.
Requirement: Sort order is flat.

 “Move Up” Moves the selected style entry up.
Requirement: Sort order is flat.

 “Sort Order” Toggles between three sort orders:
● Flat structure and alphabetical order
● Flat structure and order according to the position of the entry in the XML

style file
This position also determines the position of the property in CODESYS. The
property appears, for example, in the “Properties” view below the “Values”
column in the drop-down list for style properties.

● Hierarchical structure of entries
Requirement: The names of the style properties contain at least one dash.

 “Check” The settings of the style properties are checked for consistency errors. This
check is also performed when saving the style.

The commands affect the contents of the “Localization” tab.

 “Add Language” The dialog box “Add New Language” opens. The dialog prompts you to specify
data for creating a new language column.

 “Remove Selected
Language”

Removes the columns of the selected cell.

“Rename Selected Language” The “Rename Language” dialog box opens. The dialog is used for renaming the
column that defines the selected cell and removes all previous translations.

Table 374: Dialog box “Add New Language”
“Name” Name of the new language as a language code according to ISO 639-1.

Examples: de, en, es, it, fr, ja
“Copy from existing” All existing language columns are available for selection. The selected language

is copied with all entered translations.
“<do not copy text>”: The new language receives a blank translation column.

This tab contains the general metadata of the open style file and allows it to be edited.

Table 375: “Identification”
“Company” Example: Xy-z GmbH

Tip: In the installed styles, CODESYS can filter by the company names specified
here.

“Name” Example: Style_A
“ Version” User-defined version number

Example: 1.1.1.1

Menu 'Localiza-
tion'

Tab 'General'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2129

Table 376: “General Settings”
“Base style” Name and version of the style that the open style is based on.

Tip: The derived style properties from the base style are highlighted in yellow in
the “Style Properties” tab.

“Partial style (usable only as
base for other visualization
styles)”

: The style is identified as incomplete. Therefore, it can be used for other
styles as a base style only.
Example: Style only with color definitions that derive this to many other styles.
Note: CODESYS does not check for consistency errors of an incomplete style for
itself.

: The style is identified as complete.

“From” The “Select Base Style” dialog box opens. This dialog prompts you to select a
style file that is saved to the file system (and not does not have to be installed).
The file is used as a base style.

Table 377: “Informational”
“Visualization profile” The profile is intended for informational purposes. For example, you find ele-

ments that are not preconfigured with special style entries, and information from
the profile. In addition, CODESYS checks in the profile whether a required style
is missing.

This tab lists the names of the style properties with the associated values and makes it possible
to edit it, even by means of the commands in the “Styles” menu.
The style properties can be defined for colors, fonts, images, and any values.
The style properties defined in a base style are derived and highlighted in yellow.

“Name” Name of the style property.
If the name contains a dash, then the Visualization Style Editor can sort the style
properties by the prefixed terms before the dash and display them in a hierarchy.
A name can contain more than one dash.

“Value” Value that is assigned to the style property.

“Type” Data type of the style property; selected from a drop-down list.
Note: This is possible and necessary only for specific style properties with a data
type that is not implicitly defined.

“Attribute” “hide”: The associated style property is not listed in the drop-down lists in
CODESYS.

“Used by” Visualization element that can be configured with this style property. Can be
edited.

Comment Example: Special setting for Bar Display. Optional.

Double-click a cell. An input field opens for editing.

[Del] Removes the selected row.

This tab makes it possible to translate the names of the style properties into other languages.

Tab 'Style Prop-
erties'

Tab 'Localiza-
tion'

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2130

“Name” Lists the name of the style properties as they are defined in the “Style
Properties” tab.

“<language>” Identification of the language name (as language code according to ISO 639-1)
in which the style property name should be translated.

Double-click a cell. An input field opens for editing.

1.4.5.21 Tutorial
Here you find instructions specific to different use cases.

This collection of instructions is expanded regularly.

1.4.5.21.1 CODESYS visualization - first steps
If you are not yet familiar with the CODESYS visualization, we recommend the application
example. The example demonstrates the main features of visualization and provides insights
into possible use cases.

1.4.5.21.2 Show instance names
For complex visualizations, it can be helpful if the instance names are displayed within the
visualization. How to show instance names is described in the application example.

1.4.5.21.3 Visualizing a Refrigerator Controller
This tutorial demonstrates how to add visualizations to the project and link the elements of the
visualization to the variables of the control program.

This tutorial is based on the sample program RefigeratorControl, which was created in
the "Your First Program in CODESYS" chapter. The finished program can also be found in the
installation directory of CODESYS, in the "Projects" subfolder.
See also
● Your First CODESYS Program

The visualization consists of the following three visualization screens:
● Visualization: Control elements and display of the refrigerator
● Diagnosis: History of the set and actual temperature, parameter settings
● Live Visu: Animation with refrigerator

1. Select the “Application” object in the device tree.
2. Click “Project è Add Object è Visualization”.
3. Specify Live_Visu as the name.

4. Create two more visualizations with the names Diagnosis and Visualization.

Preparation

Creating the vis-
ualizations

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2131

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010670&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010670&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010774&LanguageCode=en&DocumentPartId=&Action=Launch
ms-its:codesys.chm::/_cds_quick_guide.htm

This screen consists of control and display elements that control the refrigerator.

● (1) Numeric display of the actual temperature
● (2) Pointer to display of the actual temperature
● (3) Numeric display of the set temperature
● (4) Potentiometer for setting the set temperature
● (5) Label for compressor lamp
● (6) Lamp for compressor on
● (7) Label for signal lamp
● (8) Lamp for signal "Close doors"
● (9) Switch for opening and closing the refrigerator door
1. Open the visualization Visualization in the editor.

2. Drag a “Rectangle” visualization element to the editor.
Change the following properties
● “Texts è Text”: Actual temperature: %2.1f °C
● “Text variables è Text variable”: Glob_Var.rTempActual

3. Drag a “Meter 180°” visualization element to the editor.
Change the following properties
● “Value”: Glob_Var.rTempActual
● “Scale è Scale end”: 20
● “Scale è Main scale”: 5
● “Scale è Subscale”: 1

4. Drag a “Rectangle” visualization element to the editor.
Change the following properties
● “Texts è Text”: Temperature presetting: %.1f °C
● “Text variables è Text variable”: Glob_Var.rTempSet

Structure of the
visualization
Visualization

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2132

5. Drag a “Potentiometer” visualization element to the editor.
Change the following properties
● “Variable”: Glob_Var.rTempSet
● “Background è Background color”: “yellow”
● “Pointer è Color”: “red”
● “Scale è Subscale position”: “Outward”
● “Scale è Scale start”: 3
● “Scale è Scale end”: 13
● “Scale è Subscale”: 1
● “Scale è Main scale”: 1
● “Label è Unit”: °C
● “Label è Scale format (C syntax)”: %.0f
● “Label è Max. text width of labels”: 21
● “Label è Height of labels”:15

6. Drag a “Label” visualization element to the editor.
Change the following properties
● “Texts è Text”: Cooling compressor

7. Drag a “Lamp” visualization element to the editor. Position it behind the text Cooling
compressor.

Change the following properties
● “Variable”: Glob_Var.bCompressor

8. Drag a “Label” visualization element to the editor.
Change the following properties
● “Texts è Text”: Signal (beep)

9. Drag a “Lamp” visualization element to the editor. Position it behind the text "Signal
(beep)".
Change the following properties
● “Variable”: Glob_Var.bSignal
● “Background è Image”: Red

10. Drag a “Rectangle” visualization element to the editor.
Change the following properties
● “Texts è Text”:Door open

11. Drag a “Rocker Switch” visualization element to the editor.
Change the following properties
● “Variable”: Glob_Var.rDoorOpen

In this screen, you can monitor the temperature curve and optimize the parameters.Structure of the
visualization
Diagnosis

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2133

● (1) “Label” elements for the heading
● (2) “Trace” element for displaying the temperature curve
● (3) “Rectangle” elements for displaying the values
1. Open the visualization Diagnosis in the editor.

2. Drag a “Label” visualization element to the editor.
Change the following properties
● “Texts è Text”: Refrigerator Diagnosis & Service Menu
● “Text properties è Font”: Arial, Standard, 18

3. Drag a “Trace” visualization element to the editor.
4. Click the Diagnosis_Trace1 value of the “Trace” property.

ð The “Trace Configuration” dialog opens.

5. Select the “MainTask” in “Task”.
6. Click the “Add Variable” link.

ð A variable is added to the trace. The variable settings are displayed in the dialog.

7. Select Glob_Var.bCompressor for the variable.

8. Add the Glob_Var.rTempSet and Glob_Var.rTempActual variables to the trace. For
the other settings, you can use the default values.

9. Click “OK” to exit the dialog.
10. Drag a “Rectangle” visualization element to the editor. Position it on he right next to the

trace element.
Change the following properties
● “Texts è Text”: %s
● “Text variables è Text variable”: PLC_PRG.rHysteresis

11. Configure the “OnMouseDown” input configuration of the element. Click “Input
configuration è OnMouseDown è Configure”.

ð The “Input Configuration” dialog opens.

12. Assign the “Write Variable” command to the action. Accept the default values and click
“OK”.

13. Drag a “Label” visualization element to the editor. Position it over the first rectangle.
Change the following properties
● “Texts è Text”: Hysteresis Regulator

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2134

14. Adjust the size and position of both elements.
15. Select both of the “Rectangle” and “Label” elements and duplicate them by means of copy

and paste.
16. Adjust the labels and variables of the copied elements.

● “Text”: Compressor Efficiency, “Text variable”: Simulation.P_Cooling
● “Text”: Environment Efficiency, “Text variable”: Simulation.P_Environment
● “Text”: Environ. Efficiency DoorOpen Sim, “Text variable”:

Simulation.P_EnvironmentDoorOpen
● “Text”: Time until Beep for DoorOpen, “Text variable”:

Glob_Var.timDoorOpenThreshold
● “Text”: Time until Beep for Compressor On, “Text variable”:

Glob_Var.timAlarmThreshold

See also
● Ä Chapter 1.4.5.19.3.6 “Dialog 'Input Configuration'” on page 1749

This screen includes the representation of a refrigerator. The refrigerator consists of several
polygon type visualization elements. The doors of the refrigerator are drawn in both the closed
and open states. Both doors consist of a group of single elements.

1. Open the Live_Visu visualization in the editor.

2. Select the “Polygon” visualization element in the “Visualization Toolbox” view.

Structure of the
visualization
'Live Visu'

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2135

3. Click several times in the editor to create a surface. Right-click to stop adding corner
marks.

4. Move the corner marks to the required position so that the element (1) is formed.

5. Select the element.
Change the following properties:

● “Colors è Use gradient color”:
● “Appearance è Line style”: “Invisible”

6. Click the “Colors è Use gradient color” property.
7. Select the color “Gray” for “Color 1” in the “Gradient Editor” dialog.

8. Create all other elements with the “Polygon” visualization element.
9. Group the elements of the closed doors (2+3+4) and the open doors (5+6+7+8). To do

this, press the [Shift] key and click “Visualization è Group” to select the elements.
10. Move the elements together so that the completed refrigerator is formed. Position the

open doors precisely on the closed doors.
11. Select the "Open doors" group.
12. In the properties, double-click the input field “State variable è Invisible”.
13. Press [F2] to open the Input Assistant.
14. Select the rDoorOpen variable in the “Variables” category (below “Application

è Glob_Var”).
15. Negate the variable with NOT (--> NOT Glob_Var.rDoorOpen).

ð If the rDoorOpen variable is FALSE (door is closed), then the element is invisible.
Then the underlying doors are visible.

16. Copy the following elements from the Visualization screen:

● Potentiometer for setting the temperature
● Rectangle for displaying the set temperature
● Door open switch
● Cooling compressor lamp
● Signal (beep) lamp

17. Insert the elements from the clipboard to the Live_Visu visualization screen.

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2136

18. Reduce the elements and position them on the refrigerator.

When the visualization is complete, test it in simulation mode.

1. Click “Online è Simulation”.
2. Click “Online è Login”.

ð A dialog opens and prompts you to create and download the application.

3. Click “Yes” to confirm the dialog.
4. Click “Debug è Start”.
5. Open the visualization Live_Visu in the editor.

ð The refrigerator is in online mode.

6. Open the doors with the switch and monitor the temperature and the alarms. Change the
parameters in the screen Diagnosis and watch the reaction in the temperature curve.

Visualization in
online mode
(simulation)

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2137

1.4.5.21.4 Displaying Array Data in a Histogram

Requirements
● A project contains a visualization object and a program.
● A one-dimensional array is declared in the program (example: histogram :

ARRAY[1...10] OF INT;).
● In the program, histogram data is assigned to the array (example: within the range from 0

to 50).

1. Double-click the “Visualization” object in the device tree.
2. In the “Visualization Toolbox” view, click “Measurement Controls” and drag the “Histogram”

element to the visualization editor.
3. In the visualization editor, click the inserted “Histogram”.

ð The “Properties” view opens.

4. In the “Properties” view, double-click the “Value” input field in the “Data array” element
property. Then click .

5. In the “Input Assistant” dialog in the “Variables” category of the “PLC (PRG)” program,
select the array (example here: histogram : ARRAY[1..10] OF INT;) and click
“OK”.

6. To display only part of the array as a histogram, activate the “Use subrange” option
and specify the index values of the array in “Start index” and “End index” to define the
subrange.

7. Select the “Display type” (example: “Bar”).
8. Specify a value between 1 and 100 (example: 30) for the “Relative bar width”.

9. Click the histogram in the visualization editor and change the size and position as desired.

ð The “Position” property changes its values accordingly.

10. Specify the values for the “Scale” element property. Select the values for “Scale start” and
“Scale end” so that the array is displayed completely. For the example: “Scale start” 0,
“Scale end” 50.

For the distance between values on the main scale, specify the value 10, for example, in
“Main scale”.

11. In the “Label” element property, specify the “Unit” for the display values.
12. Click “Build è Generate Code”.

Setting element
properties for
the histogram

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2138

13. If the project has been compiled without errors, then click “Online è Login” and click
“Debug è Start” to start the application.

ð The histogram is displayed in the visualization as follows:

The visualization displays a histogram with bars all the same color (example: green).
Now you want the bars with values less than 30, for example, to be displayed in another color
(example: red).
1. Click the element property “Colors è Alarm color”.
2. Specify the limiting value in “Alarm value” above or below which the bars should be

displayed in another color.
3. Select “More” from the list box in “Alarm condition” if all values greater than the “Alarm

value” should be displayed in another color. Otherwise, select “Less”.
4. Select an “Alarm color” (example: “Red”).
5. Click “Build è Generate Code”.

Defining alarm
colors for the
histogram

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2139

6. If the project has been compiled without errors, then click “Online è Login” and click
“Debug è Start” to start the application.

ð In the example histogram, all bars with values greater than 30 are displayed in red.

See also
● Ä Chapter 1.4.5.19.5.29 “Visualization Element 'Histogram'” on page 2019

1.4.5.21.5 Displaying Array Variables in Tables
A frequently required function of a user interface is the display of data arrays. CODESYS
Visualization provides the element “Table” for this.
In the configuration of the element “Table”, enter an array variable in the property “Data array”.
The array components are displayed in the rows and columns of the table.

Subsequent instructions describe an example of how an array of a structure is displayed in
a table. As a preparation, create the MYSTRUCT DUT and the declarations in the PLC_PRG
program.

TYPE MYSTRUCT :
 STRUCT
 iNo : INT;
 bOnStock : BOOL;
 strPartNumber : STRING;
 END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 arrStruct : ARRAY[0..6] OF MYSTRUCT;
 iSelectedColumn : INT;
END_VAR

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2140

1. Drag the “Table” visualization element to the visualization editor.
2. Assign the array variable arrStruct to the “Data array” property.

ð The structure members are displayed as column headings and the array index as row
headings.

3. Change the “Columns è Column è [0] è Column header” property to an informative
heading (example: Number).

4. Change the heading of column [1] to in stock and column [2] to Part number. Adjust
the column width.

5. Assign a color to the “Selection è Selection color” property.
6. Define the “Selection è Selection type” property as Row selection.

7. In the “Selection è Variable for selected row” property, define the
PLC_PRG.iSelectedColumn variable.

ð The following display results in online mode:

See also
● Ä Chapter 1.4.5.19.5.13 “Visualization Element 'Table'” on page 1909

1.4.5.21.6 Displaying Web Contents

Requirement: A visualization open in a CODESYS project. The “Visualization Toolbox”
and “Properties” views of the visualization are also open.
1. Drag the “Web Browser” element from “Special Controls” to the visualization editor.
2. Select the element in the editor.

ð In the “Properties” view, the element properties are listed for the “Web Browser”
element.

3. In the “Position” property, specify the size (in pixels) for the “Width” and the “Height”
(example: 600).

4. In “Control variables è URL”, specify the URL for the website (example: 'http://
de.wikipedia.org'). You can also specify a variable here (STRING or WSTRING)
where the URL is assigned in the project.

5. In “Control variables è Display”, specify a Boolean variable (example: bSetURL).

ð If the variable bSetURL has the value TRUE, then the website 'http://
en.wikipedia.org' is displayed at runtime.

Displaying web-
sites in a visual-
ization

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2141

Requirement: The “Web Browser” element of your visualization is configured as described
above.
1. In a POU, declare both Boolean variables bGoBack and bGoForward.

2. In the visualization editor, click the “Web browser”.
3. For the property “Control variables è Back”, select the variable bGoBack from the

Input Assistant. For the property “Control variables è Forward”, select the variable
bGoForward.

4. In “General Controls”, add the “Button” element to your visualization two times.
5. Click a “Button” in the visualization editor and drag the “Button” to the required position

(for example above the “Web Browser” element).
6. In the property “Texts è Text”, specify the character >. In “Text properties è Font”, select

a font from the Input Assistant (example: Arial, Bold, 14).

7. Configure the property “Input configuration è OnMouseClick” so that the variable
bGoForward switches.

8. Configure the second button for back navigation in the same way as described in Steps 5
to 7.

ð If the variable bSetURL has the value TRUE, then the website 'http://
de.wikipedia.org' is displayed with the forward and back buttons. When you click
the buttons, navigation to the previous and next websites is successful.

See also
● Ä Chapter 1.4.5.19.5.38 “Visualization Element 'Web Browser'” on page 2065
● Ä “Input action 'Toggle Variable'” on page 1758

1.4.5.21.7 Using Client Animation
The example shows a visualization with 3 screens. A menu controls the navigation of the
screens. The menu is hidden until it moves into view by means of a hamburger button. During
the movement, the transparency of the menu is changed. After the screen is selected, the
menu moves back out of view. The animation is computed entirely on the target system. The
CODESYS visualization only defines the target values (positions, transparency).

1. Create a new standard project with the CODESYS Control Win V3 controller.
2. Add a “Visualization” object below the “Application”. Choose the name Visu_Main.

3. Open the Visualization Manager in the editor and select the “Support client animations
and overlay of native elements” option.

The program checks whether the menu button has been pressed. If the menu bar is not visible
(position –300), then the position is moved to the visible area (0). If the menu bar is already
visible (position 0), then the position is moved to the hidden area.

Configuring the
buttons for for-
ward and back
navigation of
the website

1. Preparation

2. Creating the
PLC_PRG pro-
gram

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2142

1. Open the “PLC_PRG” program in the editor.
2. Input the following code into the declaration editor:

PROGRAM PLC_PRG
VAR
 iSelection : INT; // to switch the
referenced visualization page
 xVisible: BOOL; // auxiliary variable to
toggle the menu bar
 iMenuPos : INT := -300; // position of the menu bar
 xToggle: BOOL; // button variable to
toggle the menu bar
END_VAR

3. Input the following code into the implementation:
IF xToggle THEN
 xToggle := FALSE;
 IF xVisible THEN
 xVisible := FALSE;
 iMenuPos := -300;
 ELSE
 xVisible := TRUE;
 iMenuPos := 0;
 END_IF
END_IF

The menu bar has 3 menu items. A visualization screen is displayed by clicking the corre-
sponding menu item.
1. Insert a “Visu_Menu” visualization below the application.
2. Open the object properties. In the “Visualization” tab, set the “Visualization size” to a

“Width” of 300 and a “Height” of 180.
3. Open the visualization in the editor.
4. Select the “Advanced” option in the “Properties” view.
5. In the upper left corner, add a button with a “Width” of 300 and a “Height” of 60.
6. Label the button as "Visu 1". Set the font size to 24.
7. Open the “Input configuration è OnMouseClick” property.
8. Select the “Execute ST code” action.
9. Input the following ST code:

PLC_PRG.iSelection := 0;
PLC_PRG.xToggle := TRUE;

10. Set the “Button state variable è Digital variable” property to PLC_PRG.iSelection=0
11. Add two more buttons named "Visu 2" and "Visu 3".

3. Creating the
menu bar

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2143

12. Edit the button properties of "Visu2" (PLC_PRG.iSelection = 1) and "Visu3"
(PLC_PRG.iSelection = 2).

ð Result:

1. Insert the "Visu1" visualization below the application.
2. Open the object properties. In the “Visualization” tab, set the “Visualization size” to a

“Width” of 800 and a “Height” of 600.
3. Change the background color of the screen (for example, light gray).
4. Insert a “Label” object into the visualization screen and name the element (example: "Visu

1").
5. Insert two more visualizations "Visu2" and "Visu3" below the application. Edit the proper-

ties in the same way as for "Visu1".

On this screen, you can see the menu bar and a button to show or hide the menu bar. The
different visualization screens are navigated in a “Frame” visualization element.

1. Open the properties of the “Visu_Main” visualization. In the “Visualization” tab, set the
“Visualization size” to a “Width” of 800 and a “Height” of 600.

2. Open the visualization in the editor.
3. Insert a “Frame” element into the visualization.

ð The “Frame Configuration” dialog opens.

4. Add the “Visu1” (Index 0), “Visu2” (Index 1), and “Visu3” (Index 2) visualizations.
5. Set the property values of “Position” as follows: “X” = 0, “Y” = 0, “Width” = 800, and

“Height” = 600.

6. Set the property value of “Switch frame variable è Variable” to PLC_PRG.iSelection.

7. Insert a “Button” element into the visualization.
8. Set the property values of “Position” as follows: “X” = 0, “Y” = 0, “Width” = 800, and

“Height” = 600.

9. Set the property value of “Texts è Text” to =.

10. Set the property value of “Text properties è Font” to Arial; 36.

11. Open the “Input configuration è OnMouseClick” property.

4. Creating more
visualization
screens

5. Creating the
main visualiza-
tion screen

PLC Automation with V3 CPUs
Programming with CODESYS > CODESYS Visualization

2022/01/213ADR010583, 3, en_US2144

12. Select the “Execute ST code” action.
13. Input the following ST code:

PLC_PRG.xToggle := TRUE;
14. Set the property value of “Button state variable è Digital variable” to

PLC_PRG.xVisible.

15. Insert the “Visu_Menu” visualization element from the “Current Project” category into the
visualization.

16. Set the property values of “Position” as follows: “X” = 0, “Y” = 0, “Width” = 300, and
“Height” = 180.

17. Set the property value “Absolute movement è Movement è X” to PLC_PRG.iMenuPos.

18. Set the property value of “State variables è Invisible” to not(PLC_PRG.xVisible).

19. Set the property value of “Animation duration” to 2000.

ð Result:

See also
● Ä Chapter 1.4.5.19.5.6 “Visualization Element 'Frame'” on page 1856

1. Build the project and download it to the PLC.
2. Start the project.
3. In the browser, connect to the visualization (http://localhost:8080).

ð The WebVisu connects to the controller and the visualization opens.

4. In the visualization, click the menu button.

ð The menu moves into view.

6. Downloading
the project to
the controller
and starting the
WebVisu

PLC Automation with V3 CPUs

Programming with CODESYS > CODESYS Visualization

2022/01/21 3ADR010583, 3, en_US 2145

5. Select a menu item.

ð The visualization screen is selected and the menu moves back out of view.

1.5 Libraries and solutions
1.5.1 Information on libraries

When upgrading Automation Builder or an existing project, new AC500 V2 system libraries are
installed automatically. Older library versions will be removed as coexistence of a new library
version and an older library version is not possible. Check the available library version in the
Library Manager.

Usually, when upgrading Automation Builder or an existing project, new AC500
V2 system libraries are installed automatically and older library versions are
removed.

As an exception, for the CANopen device CM598-CN both library versions
are available in the Library Manager due to compatibility reasons. However,
coexistence of a new library version and an older library version is not possible.
In order to avoid compile errors remove the older library version.

Ä Chapter 1.6.2.9 “Converting an AC500 V2 project to an AC500 V3 project” on page 2430

Target change from AC500 V2 to AC500 V3
After a target change from AC500 V2 to AC500 V3 the customer libraries have to be converted
manually using the Library Converter . For further information see Ä Chapter 1.6.6.1.3 “Later
change-over of a target system” on page 3648.
Some Standard CODESYS libraries are automatically converted during the target change.

● Description for the use of and information about selected libraries Ä Chapter 1.5 “Libraries
and solutions” on page 2146.

● Reference for function blocks, functions, structures etc. Ä Chapter 1.10 “Reference, func-
tion blocks” on page 4292

1.5.2 Reference to CODESYS (V3)
Note that CODESYS V3 libraries are used.
For information on programming, see Ä Chapter 1.4.1.16.1 “Information for Library Developers”
on page 449.

1.5.3 Library Manager functionality
The Library Manager contains descriptions of libraries and function blocks.
In the Automation Builder the Library Manager is located under the node “Application”.

System libraries

Customer libra-
ries

Documentation
for libraries

PLC Automation with V3 CPUs
Libraries and solutions > Library Manager functionality

2022/01/213ADR010583, 3, en_US2146

The Library Manager offers a wide array of functionality for the user. Use cases and how to
handle the function blocks of a certain library is described in application examples:
● StringUtils library.

1.5.3.1 Search function
In the Library Manager the search function allows you to quickly find any library or function.

PLC Automation with V3 CPUs

Libraries and solutions > Library Manager functionality

2022/01/21 3ADR010583, 3, en_US 2147

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010740&LanguageCode=en&DocumentPartId=&Action=Launch

To search for a library or function:
1. Select “Add Library”.

ð The Add Library Window opens and a list of all available libararies is displayed.

Libraries in folder “ABB - AC500” are created by ABB and tested in combination with
Automation Builder.
We recommend to use libraries of subfolder “Use Cases” for your project.
Libaries in subfolder “Intern” are necessary for internal procedures.
All 3S libraries distributed with Automation Builder are required by ABB libraries and
have been tested in combination with AC500 and Automation Builder. Additional 3S
libaries that are not distributed with Automation Builder can easily be added. There are
no known major issues with using them, however, be aware that they are not tested by
ABB.

2. Enter the name of the library or function you are searching for.

1.5.3.2 View embedded documentation of all libraries
In the Library Manager you can view embedded documentation of any ABB and 3S libraries.
Precondition: Library must be available in Library Manager.

PLC Automation with V3 CPUs
Libraries and solutions > Library Manager functionality

2022/01/213ADR010583, 3, en_US2148

1. Select a library.

ð The contents of the library are shown.

2. From the contents select an object.

ð The corresponding documentation is opened.

1.5.3.3 Access version history
The Library Manager allows you to access the version history of ABB libraries.
The version history is not available for non ABB libraries

PLC Automation with V3 CPUs

Libraries and solutions > Library Manager functionality

2022/01/21 3ADR010583, 3, en_US 2149

To access the version history of an ABB library:
1. Select a library.

ð The contents of the library are shown.

2. Select “history”.

ð The version history is shown.

1.5.3.4 Add user defined libraries
If there are any unresolved library references, you can add user defined libraries.

PLC Automation with V3 CPUs
Libraries and solutions > Library Manager functionality

2022/01/213ADR010583, 3, en_US2150

To add libraries:
1. Right-click on a library.
2. Select “Add Library”.

ð The Add Library Window opens.

3. Choose the library you want to add.

1.5.3.5 Download missing libraries
The Library Manager allows you to automatically download missing 3S libraries from the project
that are not available from the library repository.

PLC Automation with V3 CPUs

Libraries and solutions > Library Manager functionality

2022/01/21 3ADR010583, 3, en_US 2151

To download missing libraries:
1. Select “Download missing libraries”.

ð The 'Download missing libraries' window is opened.

2. Select which libraries you want to download.

1.5.4 ACS/DCS drives libraries
1.5.4.1 Introduction
1.5.4.1.1 Scope of the document

The purpose of system technology document is to give an overview and explain the overall
concepts of the Drives library in V3. The library contains function blocks to establish communi-
cation, to control the ABB ACS / DCS drives from AC500 V3 PLCs.

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2152

1.5.4.1.2 Safety instructions and preconditions to use drives library
The user has to read the following instructions and documents before using the libraries:
● All pertinent state, regional, and local safety regulations must be observed when installing

and using this product. When functions or devices are used for applications with technical
safety requirements, the relevant instructions must be followed.

● Read the complete safety instructions of the user's manuals for the devices you are using,
before installation and commissioning.

● Read all safety instructions of the AC500 PLC. See System description AC500 in the online
help in Automation Builder.

● Read the user information of the devices and functions you are using, see online help in
Automation Builder.

● Installation and commissioning of the drive(s) is not part of this document nor the online
help of Automation Builder. Installation and commissioning of the drive(s) must be done
according to the related drives manuals and safety instructions.

The library package has been released for the software and firmware versions listed in the
readme file of the package only.
In no event will ABB or its representatives be liable for loss of data, profits, revenue or conse-
quential, incidental or other damage that may result from the use of other versions of product,
software or firmware versions. The error-free operation of the Drives V3 Library with other
devices, software or firmware versions should be possible but cannot be guaranteed and may
need adaptations e.g. of example programs.
The user must follow all applicable safety instructions and the guidelines mentioned in the user
documents of the ABB products.
Read the complete safety instructions for the AC500 before installation and commissioning.

CAUTION!
Generally, the user in all applications is fully and alone responsible for checking
all functions carefully, especially for safe and reliable operation.

The function blocks contained in the library can only be executed in RUN mode
of the PLC, but not in simulation mode.

1.5.4.1.3 Comparison of V2 and V3 drives library
The below table compares the FBs in the V2 library package and corresponding adapted FBs in
the V3 library package.
The V2 package (PS553-Drives) has different library files for each protocol and the same is
replaced with a single library in V3 (ABB_Drives_AC500).

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2153

PS553-Drives Library package (V2) PS5605-Drives Library package (V3)
Library Name Function Block Library Function Block
ACSDrives-
Base_AC500_V2

ACS3XX_DRIVES_CTRL_
BASIC

Not supported – use DrvControlModbusACS

ACS_DRIVES_CTRL_EN
G

ABB_Drives_AC500 DrvControlModbusEng

ACS_DRIVES_CTRL_STA
NDARD

DrvControlModbusACS

ACS_DRIVES_CTRL_STA
NDARD_GEN

DrvControlACS

ACS_MOD_READ_N_PR
M

DrvModbusRead

ACS_MOD_WRITE_N_PR
M

DrvModbusWrite

ACS_REF_SCALING DrvScaling

ACSDrivesCom-
ModRTU_AC500_V20

ACS3XX_COM_MOD_RT
U

Not supported

ACS_COM_MOD_RTU ABB_Drives_AC500 DrvModbusRtu

ACS_COM_MOD_RTU_E
NHANCED

DrvModbusRtu

ACS_COM_MOD_RTU_G
EN

ABB_ModbusRtu_AC500 ModRtuToken

ACS_COM_MOD_RTU_G
EN_READ_N_PRM

ModRtuRead

ACS_COM_MOD_RTU_G
EN_WRITE_N_PRM

ModRtuWrite

 ModRtuReadWrite23

ACSDrivesCom-
ModTCP_AC500_V22

ACS_COM_MOD_TCP ABB_Drives_AC500 DrvModbusTcp

ACS_COM_MOD_TCP_E
NHANCED

DrvModbusTcp

ACSDrivesCom-
ModTCP_Ext_AC500_V24

ACS_COM_MOD_TCPx ABB_Drives_AC500 DrvModbusTcp

ACS_COM_MOD_TCPx_E
NHANCED

DrvModbusTcp

DCSDrives_AC500_V24 DCS_DRIVES_CTRL ABB_Drives_AC500 DrvControlModbusDCS

DCS_DRIVES_CTRL_GE
N

DrvControlDCS

ACSDrives-
ComPN_AC500_V24

ACS_PN_WRITE_N_PRM
_DPV1

ABB_Drives_AC500 DrvPnWrite

ACS_PN_READ_N_PRM_
DPV1

DrvPnRead

ACSDrives-
ComPB_AC500_V24

ACS_PB_READ_N_PRM_
DPV1

Will be supported in next Release

ACS_PB_WRITE_N_PRM
_DPV1

ACS_COM_PB Not supported

ACS_COM_PB_PZD

ACS_PB_READ_PRM_DP
V0

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2154

PS553-Drives Library package (V2) PS5605-Drives Library package (V3)
Library Name Function Block Library Function Block

ACS_PB_WRITE_PRM_D
PV0

 ABB_Drives_AC500 DrvModbusReadWrite23

 ABB_Drives_AC500 DrvModbusRtuBroadcast

 ABB_Drives_AC500 DrvControlCANCiA402

1.5.4.1.4 Overview of the drives library for V3 PLC
This document will briefly explain about communication settings between PLCs with drives, how
to control the drives from PLC using the control function blocks.
Each input and output of the function blocks are explained in the integrated documentation in
the library.
This library is released for the following products:
● AC500 V3 CPU
● ABB Drives:

– ACS380, ACS480, ACS580, ACH580, ACQ580, ACSM1, ACS880, DCS550, DCS800,
DCS880. Other drives may still work, but are not tested.

– To use the control blocks the Communication Profile must be “ABB Drives Profile” or
“ABB Drives Profile enhanced”

● Fieldbus Adapters: FENA-01, FENA-11, FENA-21, FSCA-01, FCAN-01, FECA-01,
RETA-01, RETA-02, RCAN-01, FPNO-21, FMBT-21.
Fieldbus adapter support is dependent on the drive and for more details refer the corre-
sponding drive manual.

Drives Library in V3 will support following protocols for the communication:
● Modbus TCP (onboard ETH1 and ETH2 ports)
● Modbus RTU (onboard COM1 port)
● PROFINET (using communication module CM579-PNIO)
● EtherCAT (using communication module CM579-ETHCAT)
● CANopen (onboard CAN port)

Modbus TCP
The following hardware components must be available:
● AC500 V3 PLC with ETH option. Configure onboard ETH1 or ETH2 for Modbus TCP.
● Drive with fieldbus adapter module

– ACS Drives and DCS880: FENA-01 or FENA-11 or FENA-21 or FMBT-21
– DCS550 and DCS800: RETA-01

● RJ45 Ethernet cable

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2155

ACS drives

Fig. 12: FB - Overview of Modbus TCP connection with ACS drives

To exchange only status word, actual speed, control word and speed reference:
● Communication profile in drive parameters: ABB Drives classic
● Communication function block in AC500 program:

Use function block ‘DrvModbusTcp’. Ä Chapter 1.5.4.2.3.1.8 “DrvModbusTcp” on page 2181
● DrvModbusTcp
● Control function block in AC500 program:

Use function block ‘DrvControlModbusACS’. Ä Chapter 1.5.4.2.3.1.4 “DrvControlModbu-
sACS” on page 2177

● Scaling of the speed or torque (optional):
Use function block ‘DrvScaling’. Ä Chapter 1.5.4.2.3.1.1 “DrvScaling” on page 2172

To exchange status word, actual value1 (speed), actual value2 (torque), control word,
reference1 (speed), reference value2 (torque) and up to 12 more values read from drive and
up to 12 more values write to the drive:
● Communication profile in drive parameters: ABB Drives enhanced
● Communication function block in AC500 program:

Use the function block ‘DrvModbusTcp’ with input EnhancedProfile = TRUE. Ä Chapter
1.5.4.2.3.1.8 “DrvModbusTcp” on page 2181

● DrvModbusTcp
● Control function block in AC500 program:

Use function block ‘DrvControlModbusACS’. Ä Chapter 1.5.4.2.3.1.4 “DrvControlModbu-
sACS” on page 2177

● Scaling of the speed or torque (optional): Use function block ‘DrvScaling’. Ä Chapter
1.5.4.2.3.1.1 “DrvScaling” on page 2172

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2156

To exchange more than above mentioned values use additionally the following blocks:
● Read the values:

Use the function block ‘DrvModbusRead’. Ä Chapter 1.5.4.2.3.1.6 “DrvModbusRead”
on page 2180

● Write the values:
Use the function block ‘DrvModbusWrite’. Ä Chapter 1.5.4.2.3.1.7 “DrvModbusWrite”
on page 2181

● Read Write the values:
Use the function block ‘DrvModbusReadWrite23’. Ä Chapter 1.5.4.2.3.1.11 “DrvModbus-
ReadWrite23” on page 2201

DCS drives

Fig. 13: FB - Overview of Modbus TCP connection with DCS drives

To exchange only status word, actual speed, control word and speed reference:
● Communication function block in AC500 program:

Use function block “DrvModbusTcp”. Ä Chapter 1.5.4.2.3.1.8 “DrvModbusTcp”
on page 2181

● “DrvModbusTcp”
● Control function block in AC500 program:

Use function block “DrvControlModbusDCS”. Ä Chapter 1.5.4.2.3.1.5 “DrvControlMod-
busDCS” on page 2179

● Scaling of the speed or torque (optional):
Use function block “DrvScaling”. Ä Chapter 1.5.4.2.3.1.1 “DrvScaling” on page 2172

DCS550 and
DCS800 drives

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2157

To exchange more than above mentioned values use additionally the following blocks:
● Read the values:

Use the function block “DrvModbusRead”. Ä Chapter 1.5.4.2.3.1.6 “DrvModbusRead”
on page 2180

● Write the values:
Use the function block “DrvModbusWrite”. Ä Chapter 1.5.4.2.3.1.7 “DrvModbusWrite”
on page 2181

● Read write the values:
Use the function block “DrvModbusReadWrite23”. Ä Chapter 1.5.4.2.3.1.11 “DrvModbus-
ReadWrite23” on page 2201

To exchange only status word, actual speed, control word and speed reference:
● Communication profile in drive parameters: ABB Drives classic
● Communication function block in AC500 program:

Use function block “DrvModbusTcp”. Ä Chapter 1.5.4.2.3.1.8 “DrvModbusTcp”
on page 2181

● “DrvModbusTcp”
● Control function block in AC500 program:

Use function block “DrvControlModbusDCS”. Ä Chapter 1.5.4.2.3.1.5 “DrvControlMod-
busDCS” on page 2179

● Scaling of the speed or torque (optional):
Use function block “DrvScaling”. Ä Chapter 1.5.4.2.3.1.1 “DrvScaling” on page 2172

To exchange status word, actual value1 (speed), actual value2 (torque), control word,
reference1 (speed), reference value2 (torque) and up to 12 more values read from drive and
up to 12 more values write to the drive:
● Communication profile in drive parameters: ABB drives enhanced
● Communication function block in AC500 program:

Use the function block “DrvModbusTcp” with input EnhancedProfile = TRUE. Ä Chapter
1.5.4.2.3.1.8 “DrvModbusTcp” on page 2181

● “DrvModbusTcp”
● Control function block in AC500 program:

Use function block “DrvControlModbusDCS”. Ä Chapter 1.5.4.2.3.1.5 “DrvControlMod-
busDCS” on page 2179

● Scaling of the speed or torque (optional): Use function block “DrvScaling”. Ä Chapter
1.5.4.2.3.1.1 “DrvScaling” on page 2172

To exchange more than above mentioned values use additionally the following blocks:
● Read the values:

Use the function block “DrvModbusRead”. Ä Chapter 1.5.4.2.3.1.6 “DrvModbusRead”
on page 2180

● Write the values:
Use the function block “DrvModbusWrite”. Ä Chapter 1.5.4.2.3.1.7 “DrvModbusWrite”
on page 2181

● Read Write the values:
Use the function block “DrvModbusReadWrite23”. Ä Chapter 1.5.4.2.3.1.11 “DrvModbus-
ReadWrite23” on page 2201

DCS880 drives

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2158

Modbus RTU
The following hardware components must be available:
● AC500 V3 PLC. Configure onboard COM1 for the Modbus RTU communication.
● Drive with

– ACS Drives and DCS880: Embedded fieldbus or FSCA-01
– DCS550 and DCS800: Embedded fieldbus or RMBA-01
– Twisted pair serial cable

ACS drives

Fig. 14: FB - Overview of Modbus RTU connection with ACS drives

To exchange only status word, actual speed, control word and speed reference:
● Communication profile in drive parameters: ABB Drives classic
● Communication function block in AC500 program:

Use function block “DrvModbusRtu”. Ä Chapter 1.5.4.2.3.1.9 “DrvModbusRtu”
on page 2188

● DrvModbusRtu
● Control function block in AC500 program:

Use function block “DrvControlModbusACS” . Ä Chapter 1.5.4.2.3.1.4 “DrvControlModbu-
sACS” on page 2177

● Scaling of the speed or torque (optional):
Use function block “DrvScaling”. Ä Chapter 1.5.4.2.3.1.1 “DrvScaling” on page 2172

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2159

To exchange status word, actual value1 (speed), actual value2 (torque), control word,
reference1 (speed), reference value2 (torque) and up to 12 more values read from drive and
up to 12 more values write to the drive:
● Communication profile in drive parameters: ABB Drives enhanced
● Communication function block in AC500 program:

Use the function block “DrvModbusRtu”. Ä Chapter 1.5.4.2.3.1.9 “DrvModbusRtu”
on page 2188

● “DrvModbusRtu”
● Control function block in AC500 program:

Use function block “DrvControlModbusACS”. Ä Chapter 1.5.4.2.3.1.4 “DrvControlModbu-
sACS” on page 2177

● Scaling of the speed or torque (optional): Use function block “DrvScaling”. Ä Chapter
1.5.4.2.3.1.1 “DrvScaling” on page 2172

To exchange more than above mentioned values use additionally the following blocks:
● Read the values:

Use the function block “DrvModbusRead”. Ä Chapter 1.5.4.2.3.1.6 “DrvModbusRead”
on page 2180

● Write the values:
Use the function block “DrvModbusWrite”. Ä Chapter 1.5.4.2.3.1.7 “DrvModbusWrite”
on page 2181

● Read Write the values:
Use the function block “DrvModbusReadWrite23”. Ä Chapter 1.5.4.2.3.1.11 “DrvModbus-
ReadWrite23” on page 2201

DCS drives

Fig. 15: FB - Overview of Modbus RTU connection with DCS drives

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2160

To exchange only status word, actual speed, control word and speed reference:
● Communication function block in AC500 program:

Use function block “DrvModbusRtu”. Ä Chapter 1.5.4.2.3.1.9 “DrvModbusRtu”
on page 2188

● “DrvModbusRtu”
● Control function block in AC500 program:

Use function block “DrvControlModbusDCS”. Ä Chapter 1.5.4.2.3.1.5 “DrvControlMod-
busDCS” on page 2179

● Scaling of the speed or torque (optional):
Use function block “DrvScaling”. Ä Chapter 1.5.4.2.3.1.1 “DrvScaling” on page 2172

To exchange more than above mentioned values use additionally the following blocks:
● Read the values:

Use the function block “DrvModbusRead”. Ä Chapter 1.5.4.2.3.1.6 “DrvModbusRead”
on page 2180

● Write the values:
Use the function block “DrvModbusWrite”. Ä Chapter 1.5.4.2.3.1.7 “DrvModbusWrite”
on page 2181

● Read Write the values:
Use the function block “DrvModbusReadWrite23”. Ä Chapter 1.5.4.2.3.1.11 “DrvModbus-
ReadWrite23” on page 2201

To exchange only status word, actual speed, control word and speed reference:
● Communication profile in drive parameters: ABB Drives classic
● Communication function block in AC500 program:

Use function block “DrvModbusRtu”. Ä Chapter 1.5.4.2.3.1.9 “DrvModbusRtu”
on page 2188

● “DrvModbusRtu”
● Control function block in AC500 program:

Use function block “DrvControlModbusDCS”. Ä Chapter 1.5.4.2.3.1.5 “DrvControlMod-
busDCS” on page 2179

● Scaling of the speed or torque (optional):
Use function block “DrvScaling”. Ä Chapter 1.5.4.2.3.1.1 “DrvScaling” on page 2172

To exchange status word, actual value1 (speed), actual value2 (torque), control word,
reference1 (speed), reference value2 (torque) and up to 12 more values read from drive and
up to 12 more values write to the drive:
● Communication profile in drive parameters: ABB Drives enhanced
● Communication function block in AC500 program:

Use the function block “DrvModbusRtu”. Ä Chapter 1.5.4.2.3.1.9 “DrvModbusRtu”
on page 2188

● “DrvModbusRtu”
● Control function block in AC500 program:

Use function block “DrvControlModbusDCS”. Ä Chapter 1.5.4.2.3.1.5 “DrvControlMod-
busDCS” on page 2179

● Scaling of the speed or torque (optional): Use function block “DrvScaling”. Ä Chapter
1.5.4.2.3.1.1 “DrvScaling” on page 2172

DCS550 and
DCS800 drives

DCS880 drives

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2161

To exchange more than above mentioned values use additionally the following blocks:
● Read the values:

Use the function block “DrvModbusRead”. Ä Chapter 1.5.4.2.3.1.6 “DrvModbusRead”
on page 2180

● Write the values:
Use the function block “DrvModbusWrite”. Ä Chapter 1.5.4.2.3.1.7 “DrvModbusWrite”
on page 2181

● Read Write the values:
Use the function block “DrvModbusReadWrite23”. Ä Chapter 1.5.4.2.3.1.11 “DrvModbus-
ReadWrite23” on page 2201

PROFINET
The following hardware components must be available:
● AC500 V3 PLC with CM579-PNIO (PROFINET Master communication module)
● Drive with fieldbus adapter module

– ACS Drives and DCS880: FENA-01 or FENA-11 or FENA-21
– DCS550 and DCS800: RETA-02

● RJ45 Ethernet cable

The following values should be mapped in the fieldbus configuration of the drive and the
configuration of AC500. These settings must be done in the Automation Builder hardware
configuration.
● Drive ® AC500: Status word and actual value 1 (speed) and optional actual value 2

(torque).
● AC500 ® Drive: Control word and reference value 1 (speed) and optional reference value 2

(torque).

The following function blocks can be configured in the AC500 program.
● Communication profile: ABB Drives Profile
● Control block:

– ACS Drives: Use function block ‘DrvControlACS’. Ä Chapter 1.5.4.2.3.1.2 “DrvContro-
lACS” on page 2173.

– DCS Drives: Use function block ‘DrvControlDCS’. Ä Chapter 1.5.4.2.3.1.3 “DrvCon-
trolDCS” on page 2175.

● Scaling of the speed or torque (optional): Use function block ‘DrvScaling’. Ä Chapter
1.5.4.2.3.1.1 “DrvScaling” on page 2172.

● PROFINET read function block. Ä Chapter 1.5.4.2.3.1.14 “DrvPNRead” on page 2205
● PROFINET write function block. Ä Chapter 1.5.4.2.3.1.15 “DrvPnWrite” on page 2206

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2162

ACS drives

Fig. 16: FB - Overview of PROFINET connection with ACS drives

DCS drives

Fig. 17: FB - Overview of PROFINET connection with DCS drives

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2163

EtherCAT
The following hardware components must be available:
● AC500 V3 PLC with CM579-ETHCAT (EtherCAT Master communication module)
● Drive with fieldbus adapter module

– ACS Drives and DCS880: FECA-01
– DCS550 and DCS800: RECA-01

● RJ45 Ethernet cable

The following values should be mapped in the fieldbus configuration of the drive and the
configuration of AC500. These settings must be done in the Automation Builder hardware
configuration.
● Drive ® AC500: Status word and actual value 1 (speed) and optional actual value 2

(torque).
● AC500 ® Drive: Control word and reference value 1 (speed) and optional reference value 2

(torque).

A direct Ethernet cable from CM579-ETHCAT to FECA-01 module is
recommended, connection through switch is not recommended since it will slow
down the connectivity. Also, the drives need to be connected in the same
sequence as they are added in the Automation Builder when multiple drives are
connected.

The following function blocks can be configured in the AC500 program.
● Communication profile: ABB Drives Profile
● Control block:

– ACS Drives: Use function block “DrvControlACS”. Ä Chapter 1.5.4.2.3.1.2 “DrvContro-
lACS” on page 2173

– DCS Drives: Use function block “DrvControlDCS”. Ä Chapter 1.5.4.2.3.1.3 “DrvCon-
trolDCS” on page 2175

● Scaling of the speed or torque (optional): Use function block “DrvScaling”. Ä Chapter
1.5.4.2.3.1.1 “DrvScaling” on page 2172

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2164

ACS drives

Fig. 18: FB - Overview of EtherCAT connection with ACS drives

DCS drives

Fig. 19: FB - Overview of EtherCAT connection with DCS drives

CANopen
The following hardware components must be available:
● AC500 V3 PLC. Configure onboard CAN port for CANopen communication.
● Drive with fieldbus adapter module

– ACS Drives and DCS880: FCAN-01
– DCS550 and DCS800: RCAN-01

● CANopen communication cable with 120 Ω resistor.

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2165

The following values should be mapped in the fieldbus configuration of the drive and the
configuration of AC500. These settings must be done in the Automation Builder hardware
configuration.
● Drive ® AC500: Status word and actual value 1 (speed) and optional actual value 2

(torque).
● AC500 ® Drive: Control word and reference value 1 (speed) and optional reference value 2

(torque).

The following function blocks can be configured in the AC500 program.
● Communication profile: ABB Drives Profile
● Control block:

– ACS Drives: Use function block “DrvControlACS”. Ä Chapter 1.5.4.2.3.1.2 “DrvContro-
lACS” on page 2173

– DCS Drives: Use function block “DrvControlDCS”. Ä Chapter 1.5.4.2.3.1.3 “DrvCon-
trolDCS” on page 2175

● Scaling of the speed or torque (optional): Use function block “DrvScaling”. Ä Chapter
1.5.4.2.3.1.1 “DrvScaling” on page 2172

ACS drives

Fig. 20: FB - Overview of CANopen connection with ACS drives

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2166

DCS drives

Fig. 21: FB - Overview of CANopen connection with DCS drives

CANopen with CAN CiA402 Profile for generic Drives
The following hardware components must be available:
● AC500 V3 PLC. Configure onboard CAN port for CANopen communication.
● Any drive with CAN fieldbus adapter module and CAN CiA402 profile.
● CANopen communication cable with 120 Ω resistor.

The following values should be mapped in the fieldbus configuration of the drive and the
configuration of AC500. These settings must be done in the Automation Builder hardware
configuration.
● Drive ® AC500: Status word and actual speed.
● AC500 ® Drive: Control word and reference speed.

The following function blocks can be configured in the AC500 program.
● Communication profile: CANopen device profile CiA402
● Control block: Use function block “DrvControlCANCiA402”. Ä Chapter 1.5.4.2.3.1.13

“DrvControlCANCiA402” on page 2204

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2167

General drives with CAN CiA402 interface

Fig. 22: FB - Overview of CANopen CiA402 with any drives

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2168

1.5.4.1.5 Compatibility
To check the compatibility of the drives and their communication modules please refer to the
following table, it shows the tested combinations.

Communi-
cation

PLC communication
modules

Drive fieldbus adapter module Drive

PLC cou-
pler

Firmware
version

FBA FBA
comm sw
ver

FBA appl
sw ver

Drive Firmware
version

Drive
rating ID

Modbus
RTU -
Classic

Onboard FSCA-01 1.63 ACS580 1.70.4.0
(CCON-11)

ACS580-0
1-12A6-4

 Embed-
ded

 ACS380 2.04.0.3 ACS380-0
4-
XX-01A8-4

 Embedded ACS480 2.06.255.5 ACS480-0
4-02A7-4

Modbus
RTU –
Enhanced

Onboard FSCA-01 1.63 ACS880 2.8.2 ACS880-0
1-04A0-3

Modbus
TCP

Onboard
ETH1 /
ETH2

 RETA-01 1.30 3.05 DCS800 3.7

Modbus
TCP -
Enhanced

Onboard
ETH1 /
ETH2

 FENA-21 3.20 ACH580 2.06.0.2 ACH580-0
1-02A6-4

PROFINE
T

CM579-
PNIO

2.8.6.21 FENA-21 3.20 ACS880 2.82 ACS880-0
1-04A0-3

FENA-21 3.20 ACSM1 UMFI2000
(N2020)

ACSM1-03
A0-4

EtherCAT CM579-
ETHCAT

4.4.3.21 FECA-01 1.31 ACQ580 2.05.0.4 ACQ580-0
1-02A6-4

CANopen
(ABB Pro-
file)

Onboard FCAN-01 1.16 ACSM1 UMFI2000
(N2020)

ACSM1-03
A0-4

CANopen
(CiA402)

Onboard FCAN-01 1.16 ACS380 2.04.0.3 ACS380-0
4-
XX-01A8-4

1.5.4.2 Overview of the library
1.5.4.2.1 Installation

The library is part of the Automation Builder 2.2. or higher. Use the Library manager to add the
library into project.
For more details on the package, refer to the release notes of the latest Automation Builder.

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2169

1.5.4.2.2 Hardware and software requirement

Hardware Software
AC500 V3 PLCs:
PM5630-2ETH,
PM5650-2ETH,
PM5670-2ETH and
PM5675-2ETH

Automation Builder 2.2. or higher

ABB Drive:
ACS380, ACS480, ACS580, ACH580,
ACQ580,
ACS880, ACSM1, DCS550, DCS800,
DCS880.
(other drives may work, but are not tested)

Drive Composer Pro,
Drive Studio,
Drive Window or
Drive Window Light

Fieldbus adapter module:
FSCA-01, RMBA-01
FENA-01 / FENA-11 / FENA-21, RETA-01,
FPNO-21, FMBT-21
FECA-01, RETA-02
FCAN-01, RCAN-01
(other fieldbus adapter modules may work, but
are not tested)

Drive configuration tool and fieldbus adapter module support is dependent on
the drive used, for the compatible tool details refer to the drive manual.

1.5.4.2.3 Description of the library
This chapter briefly explains the functions, function blocks, structures, enumerations and visuali-
zation present in the library.

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2170

Fig. 23: FB - Overview of the Drives Library

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2171

Function blocks
DrvScaling

Fig. 24: DrvScaling

DrvScaling function block is used to scale the speed or torque reference to the drive based on
the maximum values defined.
Function block “DrvScaling” can be used to scale the variables from fieldbus equivalent values
to values used in the program. Fieldbus variables are given in fieldbus equivalent values as
INT values. With the scaling a conversion from INT (fieldbus) to REAL (program) and vice
versa is performed. Reference1 and Actual Value1 (speed) are mostly given in the range of
-20000 ... +20000. Reference2 and Actual Value2 (torque) are mostly given in the range of
0 ... +10000.

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2172

DrvControlACS

This function block can be used to control ACS drives with ABB drives profile using direct
input of status word (SW) from drive via any supported fieldbus communication like PROFINET,
EtherCAT, CANopen.
Control word (CW) will be built by the function block according to the ABB drives profile state
machine. Output CW has to be send to the drive via any fieldbus communication supported.
Function block provides standard start/stop signals to control the drive and standard diagnosis
signals are read from the drive.

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2173

Drive Parameter ACS380/ ACS480/
ACS580/ ACH580/
ACQ580/ ACS880

ACSM1 Comment

EXT1 COMMANDS 20.01 = Fieldbus A 10.01 = FBA Fieldbus interface as
source for start and stop

EXT1 / EXT2 SEL 19.11 = MCW Bit11 (06.01) 34.01 = P02.12 bit 15 Fieldbus interface as
source to switch to EXT2
control place

REF1 SELECT 22.11 = FBA ref1 24.01 = FBA ref1 Fieldbus interface as
source to speed reference

FAULT RESET SELECT 31.11 = P06.01 bit 7 10.08 = P02.12 bit 8 Fieldbus interface as
source for fault reset

PROFILE 51.02 = Drives Classic /
Enhanced

51.02 = Drives Classic /
Enhanced

Control profile to ABB
Drives profile classic or
enhanced

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2174

DrvControlDCS

This function block can be used to control DCS drives with ABB drives profile using direct
input of status word (SW) from drive via any supported fieldbus communication like PROFINET,
EtherCAT, CANopen.
Control word (CW) will be built by the function block according to the ABB drives profile state
machine. Output CW must be sent to the drive via any fieldbus communication supported.
Function block provides standard start/stop signals to control the drive and standard diagnosis
signals are read from the drive.

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2175

Drive Parameter DCS550 DCS800 DCS880 Comment
EXT1 COMMANDS 10.01 = Main Ctrl

Word
10.01 = Main Ctrl
Word

20.01 = Main Ctrl
Word

Fieldbus interface as
source for start and
stop

EXT1 / EXT2 SEL 10.07 (HandAuto)
MCW: Bit11
11.02 (Ref1Mux)
MCW: Bit11
11.12 (Ref2Mux)
Invert 11.02

10.07 (HandAuto)
MCW: Bit11
11.02 (Ref1Mux)
MCW: Bit11
11.12 (Ref2Mux)
Invert 11.02

19.11 = MCW Bit11
(06.01)

Fieldbus interface as
source to switch to
EXT2 control place

REF1 SELECT 11.03 =
SpeedRef2301

11.03 =
SpeedRef2301

22.11 = FBA ref1 Fieldbus interface as
source to speed
reference

FAULT RESET
SELECT

NA NA NA Fieldbus interface as
source for fault reset

PROFILE NA NA 51.02 = Drives
Classic / Enhanced

Control profile to
ABB Drives profile
classic or enhanced

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2176

DrvControlModbusACS

This function block can be used to control ACS drives with ABB Drives profile or ABB Drives
enhanced profile using Modbus communication block like DrvModbusTcp or DrvModbusRtu.
Status Word (SW) is read from drive through Modbus communication block using “DriveData”
interface. Ä Chapter 1.5.4.2.3.3 “Structure: DrvDataType” on page 2207

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2177

Control Word (CW) will be built by the function block according to the ABB drives profile
state machine. CW will be sent via DriveData and the used communication block to the drive.
Function block provides standard start/stop signals to control the drive and standard diagnosis
signals are read from the drive.

The function block should be used for ACS drives using ABB drive (Classic/
Enhanced) profile for Modbus protocol only. The data transfer to the ACS drive
is realized via the “IN_OUT” variable DriveData, which must be connected to
“DrvModbusTcp” or “DrvModbusRtu” function block.

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2178

DrvControlModbusDCS

This function block can be used to control DCS drives with ABB Drives profile using Modbus
communication block like “DrvModbusTcp” or “DrvModbusRtu”.
Status Word (SW) is read from drive through Modbus communication block using DriveData
interface. Ä Chapter 1.5.4.2.3.3 “Structure: DrvDataType” on page 2207

Control Word (CW) will be built by the function block according to the ABB drives profile
state machine. CW will be sent via DriveData and the used communication block to the drive.
Function block provides standard start/stop signals to control the drive and standard diagnosis
signals are read from the drive.

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2179

The function block should be used for DCS drives using ABB drive profile for
Modbus protocol only. The data transfer to the DCS drive is realized via the
“IN_OUT” variable DriveData, which must be connected to “DrvModbusTcp” or
“DrvModbusRtu” function block.

DrvModbusRead

The function block 'DrvModbusRead' reads one or more parameters / values of the drive. The
number of data to be read is specified at the input 'Nvar'. The first parameter number is
specified at the input 'PrmNum'. All parameters must be accessible from consecutive Modbus
registers in the drive. The values of the parameters are stored in the PLC memory area, defined
at the input 'Data'.
The values in the PLC memory area are updated when the read job was performed without
error. This is indicated by JobDone = TRUE and ModMastErrorAct = FALSE.
If the Modbus job was finished with an error, the output ModMastErrorAct is set for one
cycle. The Error ID returned by the Modbus job is shown at the output ModMastErrorIDLast.
The output ModMastErrorIDLast will show that last Error ID until the input Enable is set from
TRUE to FALSE.
As long as the Enable = TRUE a new read job is requested automatically one cycle after the
further read job was terminated. The Modbus job is started from the Communication Block
which is connected to the same 'DriveData' variable. It uses the Modbus function code 03
(read n words). The drive (Modbus device) from which the parameter is read is specified
at this Communication Block. The Communication Blocks are available from the library e.g.
DrvModbusTcp or DrvModbusRtu.
The function block is activated (Enable = TRUE) or deactivated (Enable = FALSE) via input
Enable. If the block is active, the current values are available at the outputs. To start a new read
job the input Enable must be set to TRUE. If the input values are valid, a request to perform a
Modbus job is send to the Communication Block via the 'DriveData' variable. If at least 1 input is
invalid, no job is generated, and the error is displayed at the outputs Error and ErrorID instead.

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2180

DrvModbusWrite

Function block 'DrvModbusWrite' writes 'n' parameters to the drive. The number of parameters
to be written must be available in the PLC memory area, defined at the input Data. The write job
has been performed without error if JobDone = TRUE and ModMastErrorAct = FALSE.
If the Modbus job was finished with an error, the output ModMastErrorAct is set for one cycle.
The Error ID returned by the Modbus job is shown at the output ModMastErrorIDLast. The
output ModMastErrorIDLast will show that last Error ID until the input Execute is set from
TRUE to FALSE.
To start a new write job the input Execute must be set from FALSE to TRUE (edge sensitive).
The Modbus job is started from the Communication Block which is connected to the
same DriveData variable. It uses the Modbus function code 16 (write n words). The drive
(Modbus device) to which the parameter is written is specified at the Communication Block.

Drive parameters are only saved temporarily, if changed via fieldbus.
To make these changes permanent in the drive the special parameter
"PARAMETER SAVE" must be set.

Please see drive manuals for the parameter details.

DrvModbusTcp

Function block DrvModbusTcp controls the Modbus TCP communication to ACS/DCS drives
and provides the basic values (CW, Ref1, Ref2, SW, Act1, Act2) which are used for the basic
control of drives with ABB Drives Profile or ABB Drives Enhanced Profile.

ABB drives classic profile
With input parameter EnhancedProfile = FALSE, the function block works for ABB Drives
Classic Profile.

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2181

The function block continuously reads data from the drive starting at Modbus register 400004.
So at least the Status Word (SW), Actual Value 1 (Speed Reference), Actual Value 2
(Actual Value 2) are continuously read from the drive and written to the DriveData variable.
These values are stored in DriveData.StatusWord, DriveData.ActValue1 and
DriveData.ActValue2.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Modbus register
address in drive

Mapping configuration in drive Written in
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1

DCS550,
DCS800

DCS880

Communication
module

FENA-01/ 11/21
FMBT-21

RETA-01 FENA-01/11/21
FMBT-21

400004 Status Word
(SW)

Status Word
(SW)

Status Word
(SW)

DriveData.wSta-
tusWord

Enable = TRUE

400005 Actual Value 1 Actual Value 1 Actual Value 1 DriveData.iAct-
Value1

Enable = TRUE

400006 Actual Value 2 Actual Value 2 Actual Value 2 DriveData.iAct-
Value2

Enable = TRUE

To write the Control Word (CW), Reference Value 1 (Speed Reference) or
Reference Value 2 (Reference Value 2) from the DriveData variable (DriveData.ControlWord,
DriveData.Reference1, DriveData.Reference2) to the drive, the input EnableWrite has to be
TRUE (default).
If the input SteadyWrite = TRUE (default = FALSE) these values are written steadily.
If the input SteadyWrite = FALSE (default) these values are only written if there was a change
on any of those values.
These 3 values are written to the ACS drive starting at Modbus register 400001.
The function block checks if there are changes of the Control Word (wControlWord),
Reference Value 1 (iRefValue1) or Reference Value 2 (iRefValue2) on the DriveData variable. If
there is a change a write job is requested to send these 3 values to the ACS/DCS drive starting
at Modbus register 400001.
The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Reading status
information
from drives

Writing control
word and
reference value
to drives

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2182

Modbus register
address in drive

Mapping configuration in drive Written from
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1

DCS550,
DCS800

DCS880

Communication
module

FENA-01/ 11/21
FMBT-21

RETA-01 FENA-01/11/21
FMBT-21

400001 Control Word
(CW)

Control Word
(CW)

Control Word
(CW)

DriveData.wCon-
trolWord

Enable = TRUE

400002 Reference Value
1

Reference Value
1

Reference Value
1

DriveData.iRe-
fValue1

Enable = TRUE

400003 Reference Value
2

Reference Value
2

Reference Value
2

DriveData.iRe-
fValue2

Enable = TRUE

ABB drives enhanced profile
With input parameter EnhancedProfile = TRUE, the function block works for ABB Drives
Enhanced Profile.

The function block continuously reads data from the drive starting at Modbus register 400051.
So at least the Status Word (SW), Actual Value 1 (Speed Reference), Actual Value 2
(Actual Value 2) are continuously read from the drive and written to the DriveData variable.
These values are stored in DriveData.StatusWord, DriveData.ActValue1 and
DriveData.ActValue2.
Apart from these three parameters there is also an option to read 12 additional drive
parameters.
Using the input NvarRead the function block can be configured to read between 0 and 12
parameters from the drive. All read data is then written to the array at the ReadValue
output array. Configuration in ACS drive is depending on configured parameters in group
FBA DATA IN.

Reading status
information
from drives

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2183

Modbus register
address in drive

Mapping configuration in drive Written in
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1

DCS550,
DCS800

DCS880

Communication
module

FENA-01/ 11/21
FMBT-21

RETA-01 FENA-01/11/21
FMBT-21

400051 Status Word
(SW)

Status Word
(SW)

Status Word
(SW)

DriveData.wSta-
tusWord

Enable = TRUE

400052 Actual Value 1 Actual Value 1 Actual Value 1 DriveData.iAct-
Value1

Enable = TRUE

400053 Actual Value 2 Actual Value 2 Actual Value 2 DriveData.iAct-
Value2

Enable = TRUE

400054 FBA Data IN 1 FBA Data IN 1 FBA Data IN 1 ReadValues[1] Enable = TRUE
NVarRead >= 1

400055 FBA Data IN 2 FBA Data IN 2 FBA Data IN 2 ReadValues[2] Enable = TRUE
NVarRead >= 2

...

400064 FBA Data IN 11 FBA Data IN 11 FBA Data IN 11 ReadValues[11] Enable = TRUE
NVarRead >= 11

400065 FBA Data IN 12 FBA Data IN 12 FBA Data IN 12 ReadValues[12] Enable = TRUE
NVarRead >= 12

If 32-bit parameters are mapped to DATA IN,

– The following field in DATA IN must be left open (= 0)
– The word order of the High-Word (HW) and Low-Word (LW) can be

configured in the drive.
(using FENA-X1: Par. 51.22)

– To retrieve the original 32-bit value from the drive in AC500 the HW and LW
from ReadValues fields must be recombined in the program.

Function block DATA IN has to be configured in drive in the following groups see also
FENA-x1 manual.

Drive Parameter Group
ACS355
ACS380, ACS480, ACS580, ACH580,
ACQ580, ACS880, ACSM1

54.01 ... 54.10
52.01 ... 52.12 52.01 ... 52.12 if installed as
adapter A

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2184

To write the Control Word (CW), Reference Value 1 (Speed Reference) or
Reference Value 2 (Reference Value 2) from the DriveData variable (DriveData.ControlWord,
DriveData.Reference1, DriveData.Reference2) to the drive, the input EnableWrite has to be
TRUE (default).
If the input SteadyWrite = TRUE (default = FALSE) these values are written steadily.
If the input SteadyWrite = FALSE (default) these values are only written if there was a change
on any of those values.
These 3 values are written to the ACS drive starting at Modbus register 400001.
Apart from these three there parameters there is also an option to write 12 additional drive
parameters.
Using the input NvarWrite the function block can be configured to write between 0 and 12
parameters to the drive. The necessary values must be present in the array connected to
WriteValues input. Configuration in ACS drive is depending on configured parameters in group
FBA DATA OUT.

Modbus register
address in drive

Mapping configuration in drive Written from
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1

DCS550,
DCS800

DCS880

Communication
module

FENA-01/ 11/21
FMBT-21

RETA-01 FENA-01/11/21
FMBT-21

400001 Control Word
(CW)

Control Word
(CW)

Control Word
(CW)

DriveData.wCon-
trolWord

Enable = TRUE

400002 Reference Value
1

Reference Value
1

Reference Value
1

DriveData.iRe-
fValue1

Enable = TRUE

400003 Reference Value
2

Reference Value
2

Reference Value
2

DriveData.iRe-
fValue2

Enable = TRUE

400004 FBA Data OUT 1 FBA Data OUT 1 FBA Data OUT 1 WriteValues[1] Enable = TRUE
NVarWrite >= 1

400005 FBA Data OUT 2 FBA Data OUT 2 FBA Data OUT 2 WriteValues[2] Enable = TRUE
NVarWrite >= 2

...

400014 FBA Data OUT
11

FBA Data OUT
11

FBA Data OUT
11

WriteValues[11] Enable = TRUE
NVarWrite >= 11

400015 FBA Data OUT
12

FBA Data OUT
12

FBA Data OUT
12

WriteValues[12] Enable = TRUE
NVarWrite >= 12

If a Modbus TCP job tries to access a register in the drive which has no valid
mapping information then job is aborted with an error.

Therefore, the drive parameters in FBA DATA IN group and FBA DATA OUT
must be configured according to the used ‘NvarRead’ and ‘NvarWrite’ input
number respectively.

Writing control
word and
reference value
to drives

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2185

If 32-bit parameters are mapped to DATA OUT,

– The next/following field in DATA OUT must be left open (= 0)
– The word order of the High-Word (HW) and Low-Word (LW) can be

configured in the drive.
(using FENA-X1: Par. 51.22)

– To retrieve the original 32-bit value from the drive in AC500 the HW and LW
from WriteValues fields must be recombined in the program.

ACS drive parameters are only saved temporarily, if changed via fieldbus.
To make these changes permanent in the drive the special parameter
"PARAMETER SAVE" must be set.

Please see also drive manuals which parameter must be set.

For ACS380, ACS480, ACS580, ACH580, ACQ580, ACS880 and DCS880 –
Par 96.07 = 1

For ACSM1, DCS800 and DCS550 – Par 16.06 = 1

Diagnosis
If a Modbus TCP job tries to access a register in the drive which has no valid mapping
information the job is aborted with an error.
The output ModMastErrorAct reflects that an actual error occurred. This output is only TRUE
for one cycle. At that cycle the output ModMastErrorIDLast reflects the actual ErrorID from the
ModTcpMast job. The ModMastErrorIDLast will keep this Error ID until a new rising edge of the
Enable is given.

However, there are internal diagnosis variables available, which are not shown at any output,
but can be accessed from the function block instance.
These additional diagnosis variables can be accessed by opening the function block instance or
through the block visualization “VisuDrvModbusTcp”.
● iWriteErrCnt: number of errors in write jobs since Enable = TRUE.
● wLastWriteErno: holds the error number of the last executed write job.
● iReadErrCnt: number of errors in read jobs since Enable = TRUE.
● wLastReadErno: holds the error number of the last executed read job.
● iReadWriteErrCnt: number of errors in read write jobs since Enable = TRUE.
● wLastReadWriteErno: holds the error number of the last executed read write job.

If the user changes drive profile while drive is online with PLC, function block
outputs may give wrong indication.

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2186

Drive parameter settings

Settings in the drive
according to AC500
configuration

ACS380, ACS480,
ACS580, ACH580,
ACQ580, ACS880,
ACSM1

DCS550,
DCS800

DCS880

Communication module FENA-01 /11/21
FMBT-21

RETA-01 FENA- 01/11/21
FMBT-21

Fieldbus activation =
EXT FBA / ENABLE

50.01 98.02 50.01

FBA A Comm loss func 50.02 30.35 50.02

Comm Rate = Auto (0) 51.03 51.02 51.03

IP configuration = Static IP 51.04 51.03 51.04

IP address1 … IP
address2

51.05 … 51.08 51.04 … 51.07 51.05 … 51.08

Subnet CIDR = 24
(eg: 255.255.255.0)

51.09 51.08 ... 51.11 51.09

Gateway Address
(normally = 0.0.0.0)

51.10 … 51.13 51.12 … 51.15 51.10 … 51.13

Protocol / Profile =
MB/TCP ABB E or
MB/TCP ABB C

51.02 51.16 51.02

Word order for
32-bit parameter

51.22 No 32-bit access 51.22

Modbus timeout.
Depending on timeout
mode. Value in 100 ms

51.20 51.17 51.20

Modbus timeout mode:
If input “SteadyWrite” is
false set to “Any message“
If input “SteadyWrite” is
true can also be set to
“Control RW“

51.21 51.21

Refresh settings in drive 51.27 51.27 51.27

– Please refer the respective drive / fieldbus module manual for the parameter
settings if the drive setting is not mentioned in above table.

– For RETA-01/-02 IP address could also be set via hardware Dip-Switches.
If any switch is set (192.168.0.xxx) with xxx = Dip-Switches setting

– ACS drive parameters are only saved temporarily, if changed via fieldbus.
To make these changes permanent in the drive the special parameter
"PARAMETER SAVE" must be set.
Please see also drive manuals which parameter must be set.
For ACS380, ACS480, ACS580, ACH580, ACQ580, ACS880 and DCS880
– Par 96.07 = 1
For ACSM1, DCS800 and DCS550 – Par 16.06 = 1

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2187

DrvModbusRtu

Function block DrvModbusRtu controls the Modbus RTU communication to ACS/DCS drives
and is used for the basic control of drives with ABB Drives Profile or ABB Drives Enhanced
Profile.

ABB drives classic profile
With input parameter EnhancedProfile = FALSE, the function block works for ABB Drives
Classic Profile.

The function block continuously reads data from the drive starting at Modbus register 400004.
So at least the Status Word (wStatusWord), Actual Value 1 (iActValue1), Actual Value 2
(iActValue2) are continuously read from the drive and written to the DriveData variable.
These values are stored in DriveData.wStatusWord, DriveData.iActValue1 and
DriveData.iActValue2.
With input NvarRead the function block can be configured to read in the same job between
0 ... 24 data more from the drive. These additional data are written to the array at the
‘ReadValues’ output. These data must be configured in the drive and are only accessible if
the embedded Modbus is used.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Reading status
information
from drives

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2188

Modbus register
address in drive

Mapping configuration in drive Written in
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1

DCS550,
DCS800

ACS380,
ACS480,
ACS580,
ACH580,
ACQ580,
ACS880,DCS880

Communication
module

FSCA-01 RMBA-01 Embedded
fieldbus

400004 Status Word
(SW)

Status Word
(SW)

Status Word
(SW)
58.104 = 4

DriveData.wSta-
tusWord

Enable = TRUE

400005 Actual Value 1 Actual Value 1 Actual Value 1
58.105 = 5

DriveData.iAct-
Value1

Enable = TRUE

400006 Actual Value 2 Actual Value 2 Actual Value 2
58.106 = 6

DriveData.iAct-
Value2

Enable = TRUE

400007 - - 58.107 DATA I/O
7

ReadValues[1] Enable = TRUE

400008 - - 58.108 DATA I/O
8

ReadValues[2] Enable = TRUE

...

400014 - - 58.114 DATA I/O
14

ReadValues[8] Enable = TRUE

...

400024 - - 58.124 DATA I/O
24

ReadValues[18] Enable = TRUE

More details on the limits for the data read and write is explained in Ä Chapter
1.5.4.2.4 “Limits for the data read and write between AC500 and drives”
on page 2208. The value is dependent on the Drive used.

The function block checks if there are changes of the Control Word (wControlWord),
Reference Value 1 (iRefValue1) or Reference Value 2 (iRefValue2) on the DriveData variable. If
there is a change a write job is requested to send these 3 values to the ACS/DCS drive starting
at Modbus register 400001.
The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Writing control
word and
reference value
to drives

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2189

Modbus register
address in drive

Mapping configuration in drive Written from
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880,
ACSM1DCS880
DCS880

DCS550,
DCS800

ACS380,
ACS480,
ACS580,
ACH580,
ACQ580,
ACS880DCS880

Communication
module

FSCA-01 RMBA-01 Embedded
fieldbus

400004 Control Word
(CW)

Control Word
(CW)

Control Word
(CW)
58.101 = 1

DriveData.wCon-
trolWord

Enable = TRUE

400005 Reference Value
1

Reference Value
1

Reference Value
1
58.102 = 2

DriveData.iRe-
fValue1

Enable = TRUE

400006 Reference Value
2

Reference Value
2

Reference Value
2
58.103 = 3

DriveData.iRe-
fValue2

Enable = TRUE

More details on the limits for the data read and write is explained in Ä Chapter
1.5.4.2.4 “Limits for the data read and write between AC500 and drives”
on page 2208. The value is dependent on the Drive used.

ABB drives enhanced profile
With input parameter EnhancedProfile = TRUE, the function block works for ABB Drives
Enhanced Profile.
The ABB Drives Profile Enhanced communication profile provides register mapped access to
the Control, Status, Reference and Actual Values of the ABB Drives Profile Enhanced. The
mapping of the registers has been enhanced to allow additional writing of up to 12 control and
reading of up to 12 additional status parameters in a single Modbus job.

The function block continuously reads data from the drive starting at Modbus register 400051.
So at least the Status Word (wStatusWord), Actual Value 1 (iActValue1), Actual Value 2
(iActValue2) are continuously read from the drive and written to the DriveData variable.
These values are stored in DriveData.wStatusWord, DriveData.iActValue1 and
DriveData.iActValue2.
Apart from these three parameters there is also an option to read 12 additional drive parameters
in the same job.
Using the input NvarRead the function block can be configured to read between 1 and 12 more
parameters from the drive. All read data is then written to the array at the ReadValues output.
Configuration in ACS drive is depending on configured parameters in group FBA DATA IN.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Reading status
information
from drives

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2190

Modbus register
address in drive

Mapping configuration in drive Written in
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1

DCS550,
DCS800

DCS880

Communication
module

FSCA-01 RMBA-01 FSCA-01

400051 Status Word
(SW)

Status Word
(SW)

Status Word
(SW)

DriveData.wSta-
tusWord

Enable = TRUE

400052 Actual Value 1 Actual Value 1 Actual Value 1 DriveData.iAct-
Value1

Enable = TRUE

400053 Actual Value 2 Actual Value 2 Actual Value 2 DriveData.iAct-
Value2

Enable = TRUE

400054 FBA Data IN 1 FBA Data IN 1 FBA Data IN 1 ReadValues[1] Enable = TRUE
NVarRead >= 1

400055 FBA Data IN 2 FBA Data IN 2 FBA Data IN 2 ReadValues[2] Enable = TRUE
NVarRead >= 2

...

400064 FBA Data IN 11 FBA Data IN 11 FBA Data IN 11 ReadValues[11] Enable = TRUE
NVarRead >= 11

400065 FBA Data IN 12 FBA Data IN 12 FBA Data IN 12 ReadValues[12] Enable = TRUE
NVarRead >= 12

The function block checks if there are changes in any of the following values since last write job:
● Control Word (wControlWord),
● Reference Value 1 (iRefValue1),
● Reference Value 2 (iRefValue2) on the DriveData variable,
● values in the input array WriteValues – WriteValues[1..NvarWrite].
If there is a change a write job is requested to send the 3 control values and the values
in WriteValues array (WriteValues[1..NvarWrite]) to the ACS/DCS drive starting at Modbus
register 400001. Configuration in ACS drive is depending on configured parameters in group
FBA DATA OUT.
The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Writing control
word and
reference value
to drives

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2191

Modbus register
address in drive

Mapping configuration in drive Written from
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1
DCS880

DCS550,
DCS800

DCS880

Communication
module

FSCA-01 RMBA-01 FSCA-01

400001 Control Word
(CW)

Control Word
(CW)

Control Word
(CW)

DriveData.wCon-
trolWord

Enable = TRUE

400002 Reference Value
1

Reference Value
1

Reference Value
1

DriveData.iRe-
fValue1

Enable = TRUE

400003 Reference Value
2

Reference Value
2

Reference Value
2

DriveData.iRe-
fValue2

Enable = TRUE

400004 FBA Data OUT 1 FBA Data OUT 1 FBA Data OUT 1 WriteValues[1] Enable = TRUE
NVarWrite >= 1

400005 FBA Data OUT 2 FBA Data OUT 2 FBA Data OUT 2 WriteValues[2] Enable = TRUE
NVarWrite >= 2

...

400014 FBA Data OUT
11

FBA Data OUT
11

FBA Data OUT
11

WriteValues[11] Enable = TRUE
NVarWrite >= 11

400015 FBA Data OUT
12

FBA Data OUT
12

FBA Data OUT
12

WriteValues[12] Enable = TRUE
NVarWrite >= 12

Reconnection pause
When one or more drives in the Modbus RTU lines are offline, all the other drives have to wait
for the TimeOut to elapse until a line token is assigned to next drive. Reconnection pause input
helps in skipping the drives which are offline from the next Modbus job and execute Modbus job
operations only for the drives which are online.
“ReconnectPause” is time in seconds before next retry to connect after a timeout was detected.
Timeout is detected with ModMastErrorIDLast = 16#120 (ERR_TIMEOUT).
This feature can be used with the DrvModbusRtu function block in both ABB Drives Profile and
ABB Drives Enhanced Profile. User must configure the reconnect pause input value using the
input variable “ReconnectPause”.
For the generic RTU block ModRtuToken (part of AC500_ModbusRtu library), also the value for
the reconnect pause must be configured at input variable “ReconnectPause”.

Diagnosis
The output ErrorID which reflects an actual error number is only valid for one cycle if output
Error is set to TRUE. To capture this error number an external function must be programmed.
The output ModMastErrorAct reflects that an actual error occurred. This output is only TRUE
for one cycle. At that cycle the output ModMastErrorIDLast reflects the actual ErrorID from the
ModRtuMast job. The ModMastErrorIDLast will keep this error ID until a new rising edge of the
Enable input is given.

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2192

However, there are internal diagnosis variables available, which are not shown at any output,
but can be accessed from the function block instance.
These additional diagnosis variables can be accessed by opening the function block instance or
through the block visualization “VisuDrvModbusRTU”.
● iWriteErrCnt: number of errors in write jobs since Enable = TRUE.
● wLastWriteErno: holds the error number of the last executed write job.
● iReadErrCnt: number of errors in read jobs since Enable = TRUE.
● wLastReadErno: holds the error number of the last executed read job.
● iReadWriteErrCnt: number of errors in read write jobs since Enable = TRUE.
● wLastReadWriteErno: holds the error number of the last executed read write job.

If several drives are used, for each drive a communication function block such
as DrvModbusRtu must be programmed. Also, every other generic Modbus
server device on the same Modbus RTU line must be programmed with its
own ModRtuToken function block. All those communication function blocks
of one Modbus RTU line must be linked together via one variable of type
ModRtuTokenType, connected to the InOut LineToken. Via this variable the
Modbus token is passed to the next drive/device, so only one drive/device at a
time is communicating with the PLC.

ModRtuToken function block and ModRtuTokenType structure are part of
AC500_ModbusRtu library. Kindly refer the same.

If the user changes drive profile while drive is online with PLC, function block
outputs may give wrong indication.

If a Modbus RTU job tries to access a register in the drive which has no valid
mapping information then the job is aborted with an error.

Therefore, the drive parameters in FBA DATA IN group and FBA DATA OUT
must be configured according to the used ‘NvarRead’ and ‘NvarWrite’ input
number respectively.

Modbus RTU using Embedded Fieldbus:
When embedded fieldbus is used for the Modbus RTU communication, user
can read maximum of 24 parameters (based on the limitation in drive) from
the DATA I/O parameters in the embedded fieldbus parameter group. These
parameters can only be used for reading operation and cannot be configured to
write data.

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2193

Drive parameter settings

Settings in the drive
according to AC500
configuration

ACS380, ACS480,
ACS580, ACH580,
ACQ580, ACS880,
ACSM1, DCS880

DCS550,
DCS800

ACS380, ACS480,
ACS580, ACH580,
ACQ580, ACS880,
DCS880

Communication module FSCA-01 RMBA-01 Embedded fieldbus

Fieldbus activation =
EXT FBA / ENABLE

50.01 98.02 58.01

FBA A Comm loss func 50.02 30.35 50.02

Slave number 51.03 51.02 58.03

Transmission rate 51.04 51.03 58.04

Parity 51.05 51.05 58.05

Protocol / Profile = ABB
Classic/ABB Enhanced

51.02 51.16 51.02

Word order for
32-bit parameter

51.22 No 32-bit access 51.22

Mapping of control word,
Mod-bus reg 400001

Fix Fix 58.101

Mapping of refer-
ence value 1,
Modbus reg 400002

Fix Fix 58.102

Mapping of refer-
ence value 2,
Modbus reg 400003

Fix Fix 58.103

Mapping of status word,
Modbus reg 400004

Fix Fix 58.104

Mapping of actual value 1,
Modbus reg 400005

Fix Fix 58.105

Mapping of actual value 2,
Modbus reg 400006

Fix Fix 58.106

Timeout mode = None (0)
or Any Message (1),
but not Ctrl write (2)
as these values are only
written after changes

51.07 58.15

Modbus timeout.
Depending on timeout
mode. Value in 100 ms

 58.17 58.16

Refresh settings in drive 51.27 51.27 58.06

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2194

– Please refer the respective drive / fieldbus module manual for the parameter
settings if the drive setting is not mentioned in above table.

– ACS drive parameters are only saved temporarily, if changed via fieldbus.
To make these changes permanent in the drive the special parameter
“PARAMETER SAVE” must be set.
Please see also drive manuals which parameter must be set.
For ACS380, ACS480, ACS580, ACH580, ACQ580, ACS880 and DCS880
– Par 96.07 = 1
For ACSM1, DCS800 and DCS550 – Par 16.06 = 1

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2195

DrvModbusRtuBroadcast

Function block DrvModbusRtuBroadcast is a communication block which sends the broadcast
messages via the Modbus RTU communication to all ACS/DCS drives and other Modbus
devices connected to the same Modbus RTU line (physical line). The function block can be
used with all drives with either ABB Drives Profile or ABB Drives Enhanced Profile but not a mix
of both profiles.
As the broadcast job will be received by all devices on the same physical Modbus line it´s highly
recommended to use this block only in case there are no other Modbus devices connected to
this line and all drives use the same profile.
This function block does not perform any Modbus read operation, hence it does not read any
values such as status word, actual value 1 and actual value 2 etc., from any of the drive.
This function block should not be used along with 'DrvModbusRead' and
'DrvModbusReadWrite23' function blocks. They will be ignored showing an error. This function
block should be only used independently or in combination with 'DrvModbusWrite' function block
for broadcasting write operation.
A successful broadcast message for writing control word, reference values and additional
mapped parameters (only in case of Enhanced Profile) is indicated by JobDone = TRUE and
ModMastErrorAct = FALSE. A next broadcast job for writing these values can once again
started with a fresh rising edge at ‘SendCtrlValues’ input.
Apart from sending control values and up to 12 additional values from WriteValues array (only in
case of ABB Drives Enhanced Profile) a normal Modbus write function block “DrvModbusWrite”
can be used to send broadcast write messages to specific address on all drives connected to
the Modbus RTU line. The requests to process broadcast write Modbus jobs is transferred via
the DriveData structure at the InOut variable DriveData which can be connected to multiple
instances of write function block 'DrvModbusWrite'.
After each successful broadcast write job a fixed pause of 250 ms is implemented before any
other Modbus job within the same line will be started.

ABB drives classic profile
With input parameter EnhancedProfile = FALSE, the function block works for ABB Drives
Classic Profile.

A rising edge from FALSE to TRUE at input 'SendCtrlValues' starts sending broadcast message
with Control Word and Reference Values to all the drives starting at Modbus register 400001.
Following control values: Control Word (wControlWord), Reference Value 1 (iRefValue1) or
Reference Value 2 (iRefValue2) are taken from DriveData variable for sending broadcast
message.
The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Writing control
word and
reference value
to drives

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2196

Modbus register
address in drive

Mapping configuration in drive Written from
AC500

Condition at
function block
and input
SendCtrlvalues

ACS380,
ACS480,
ACS580,
ACH580,
ACQ580,
ACS880,
ACSM1DCS880
DCS880

DCS550,
DCS800

ACS380,
ACS480,
ACS580,
ACH580,
ACQ580,
ACS880DCS880
DCS880

Communication
module

FSCA-01 RMBA-01 Embedded
fieldbus

400001 Control Word
(CW)

Control Word
(CW)

Control Word
(CW)
58.101 = 1

DriveData.wCon-
trolWord

Enable = TRUE
and Rising Edge
at
SendCtrlvalues

400002 Reference Value
1

Reference Value
1

Reference Value
1
58.102 = 2

DriveData.iRe-
fValue1

Enable = TRUE
and Rising Edge
at
SendCtrlvalues

400003 Reference Value
2

Reference Value
2

Reference Value
2
58.103 = 3

DriveData.iRe-
fValue2

Enable = TRUE
and Rising Edge
at
SendCtrlvalues

ABB drives enhanced profile
With input parameter EnhancedProfile = TRUE, the function block works for ABB Drives
Enhanced Profile.
With the ABB Drives Profile Enhanced profile, along with 3 control values Control Word ,
Reference Value 1, Reference Value 2 , up to 12 additional values can be sent as broadcast
message in a single Modbus job.

A rising edge from FALSE to TRUE at input 'SendCtrlValues' starts sending broadcast message
with Control Word and reference values to all the drives starting at Modbus register 400001.
Following control values: Control Word (wControlWord), Reference Value 1 (iRefValue1) or
Reference Value 2 (iRefValue2) from DriveData along with values in the input array WriteValues
– WriteValues[1..NvarWrite] are taken for sending broadcast message.
For the additional 12 values the configuration in ACS drive is depending on configured
parameters in group FBA DATA OUT.
The following table shows the performed Modbus broadcast write job and the needed mapping
in the drive as well as the area where the data is taken from the AC500.

Writing control
word and
reference values
to drives

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2197

Modbus register
address in drive

Mapping configuration in drive Written from
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1
DCS880

DCS550,
DCS800

DCS880

Communication
module

FSCA-01 RMBA-01 FSCA-01

400001 Control Word
(CW)

Control Word
(CW)

Control Word
(CW)

DriveData.wCon-
trolWord

Enable = TRUE

400002 Reference Value
1

Reference Value
1

Reference Value
1

DriveData.iRe-
fValue1

Enable = TRUE

400003 Reference Value
2

Reference Value
2

Reference Value
2

DriveData.iRe-
fValue2

Enable = TRUE

400004 FBA Data OUT 1 FBA Data OUT 1 FBA Data OUT 1 WriteValues[1] Enable = TRUE
NVarWrite >= 1

400005 FBA Data OUT 2 FBA Data OUT 2 FBA Data OUT 2 WriteValues[2] Enable = TRUE
NVarWrite >= 2

...

400014 FBA Data OUT
11

FBA Data OUT
11

FBA Data OUT
11

WriteValues[11] Enable = TRUE
NVarWrite >= 11

400015 FBA Data OUT
12

FBA Data OUT
12

FBA Data OUT
12

WriteValues[12] Enable = TRUE
NVarWrite >= 12

Diagnosis
The output ErrorID which reflects an actual error number is only valid for one cycle if output
Error is set to TRUE. To capture this error number an external function must be programmed.
The output ModMastErrorAct reflects an actual error occurred in Modbus job. This output is only
TRUE for one cycle. At that cycle the output ModMastErrorIDLast reflects the actual ErrorID
from the ModRtuMast job. The ModMastErrorIDLast will keep this error ID until a new rising
edge of the Enable input is given.

However, there are internal diagnosis variables available, which are not shown at any output,
but can be accessed from the function block instance.
These additional diagnosis variables can be accessed by opening the function block instance or
through the block visualization “VisuDrvModbusRTUBroadcast”.
● iWriteErrCnt: number of errors in write jobs since Enable = TRUE.
● wLastWriteErno: holds the error number of the last executed write job.

For all drives, which are connected to same Modbus RTU line, one instance of
broadcast block DrvModbusRtuBroadcast is enough and it must be connected
to same LineToken of DrvModbusRtu function blocks which are used for
communication between PLC and each drive on Modbus RTU line. All those
communication function blocks of one Modbus RTU line must be linked together
via one variable of type ModRtuTokenType, connected to the InOut LineToken.
Via this variable the Modbus token is passed to the next drive / device, so only
one drive / device at a time is communicating with the PLC.

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2198

All the drives should be configured either in Classic Profile or Enhanced
Profile and accordingly the function block DrvModbusRtuBroadcast should be
parameterized. Mix of profile with few drives in Classic and few drives in
Enhanced should not be used when using DrvModbusRtuBroadcast block,
if using such configuration along with DrvModbusRtuBroadcast may lead to
incorrect operation.

If the user changes drive profile while drive is online with PLC, function block
outputs may give wrong indication.

The Modbus RTU broadcast job is sent to all devices on the same physical
Modbus RTU line.

Therefore, if other Modbus devices than ACS / DCS drives are connected
to the same line using the ModRtuToken communication block it´s highly
recommended not to use the DrvModbusRtuBroadcast function block.

This might only be used, if the user is aware about the behavior of the
connected devices if they receive the Modbus broadcast job.

If a Modbus RTU broadcast job is sent to access a register in the drive which
has no valid mapping information then Modbus broadcast job is not aborted but
will just send out the broadcast message without any error in the function block.
This broadcast message is ignored by drives which have no valid mapping
information.

Therefore, the drive parameters in FBA DATA OUT have to be configured
according to the used ‘NvarWrite’ input number respectively.

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2199

Drive parameter settings

Settings in the drive
according to AC500
configuration

ACS380, ACS480,
ACS580, ACH580,
ACQ580, ACS880,
ACSM1, DCS880

DCS550,
DCS800

ACS380, ACS480,
ACS580, ACH580,
ACQ580, ACS880,
DCS880

Communication module FSCA-01 RMBA-01 Embedded fieldbus

Fieldbus activation =
Modbus / RS-485 comm

50.01 98.02 58.01

FBA A Comm loss func 50.02 30.35 50.02

Slave number 51.03 51.02 58.03

Transmission rate 51.04 51.03 58.04

Parity 51.05 51.05 58.05

Protocol / Profile =
ABB Classic / ABB Enhanced

51.02 51.16

Mapping of control word,
Modbus reg 400001

Fix Fix 58.101

Mapping of refer-
ence value 1,
Modbus reg 400002

Fix Fix 58.102

Mapping of refer-
ence value 2,
Modbus reg 400003

Fix Fix 58.103

Mapping of status word,
Modbus reg 400004

Fix Fix 58.104

Mapping of actual value 1,
Modbus reg 400005

Fix Fix 58.105

Mapping of actual value 2,
Modbus reg 400006

Fix Fix 58.106

Timeout mode = None (0)
or Any Message (1),
but not Ctrl write (2)
as these values are only
written after changes

51.07 58.15

Modbus timeout.
Depending on timeout
mode. Value in 100 ms

 58.17 58.16

Refresh settings in drive 51.27 51.27 58.06

– Please refer the respective drive / fieldbus module manual for the parameter
settings if the drive setting is not mentioned in above table.

– ACS drive parameters are only saved temporarily, if changed via fieldbus.
To make these changes permanent in the drive the special parameter
"PARAMETER SAVE" must be set.
Please see also drive manuals which parameter must be set.
For ACS380, ACS480, ACS580, ACH580, ACQ580, ACS880 and DCS880
– Par 96.07 = 1
For ACSM1, DCS800 and DCS550 – Par 16.06 = 1

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2200

DrvModbusReadWrite23

The function block 'DrvModbusReadWrite23' reads and writes one or more parameters of
the drive via DriveData connected to Modbus TCP / Modbus RTU communication blocks
with Modbus function code FCT = 23. This function block internally calls DrvModbusWrite
to execute ReadWrite job with FCT = 23, used along with the internal structure for Fct23,
DrvModFct23Type.
The number of parameters to be read is specified at the input 'NvarRead'. The first address for
read operation is specified at the input 'PrmNumRead'. The values of the data are stored in the
PLC memory area, defined at the input 'DataRead'.
The number of parameters to be written is specified at the input 'NvarWrite'. The first address
for write operation is specified at the input 'PrmNumWrite'. The values of the data that should be
written must be stored in the PLC memory area, defined at the input 'DataWrite'.
To start a new ReadWrite job the input Execute must be set from FALSE to TRUE
(edge sensitive). The Modbus job is started from the communication block DrvModbusTcp or
DrvModbusRtu which is connected to the same DriveData variable. It uses the Modbus function
code 23 (Read and write n words). The drive (Modbus device) to which the parameter is written
is specified at the Communication Block.
The values in the PLC memory area are updated when the ReadWrite job was performed
without error. The ReadWrite job has been performed without error if JobDone = TRUE and
ModMastErrorAct = FALSE.
If the Modbus job was finished with an error, the output ModMastErrorAct is set for one cycle.
The Error ID returned by the Modbus job is shown at the output ModMastErrorIDLast. The
output ModMastErrorIDLast will show that last Error ID until the input Execute is set from
TRUE to FALSE.
After termination of this job, even if it was not successful, a next ReadWrite job can once again
only be started with a rising edge at 'Execute' input.

Drive parameters are only saved temporarily, if changed via fieldbus.
To make these changes permanent in the drive the special parameter
"PARAMETER SAVE" must be set.

Please see drive manuals for the parameter details.

For ACS380, ACS480, ACS580, ACH580, ACQ580, ACS880 and DCS880 –
Par 96.07 = 1

For ACSM1, DCS800 and DCS550 – Par 16.06 = 1

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2201

DrvControlModbusEng

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2202

The function block “DrvControlModbusEng” is designed for user specific control of the drive by
setting the control word (CW) by the user itself in the program.
Therefore, the user should have a detailed knowledge of the ABB drives profile handling.
The reference and actual values must be given in fieldbus equivalent , e.g. range
-20000 ... +20000.
Inputs “RefValue1”, “RefValue2” and the generated control word are written to the “DriveData”
variable which transfers these values to a communication function block, e.g. “DrvModbusRtu”,
“DrvModbusTcp” or “DrvModbusRtuBroadcast” communication function block writes to the drive.
In the same way “ActValue1”, “ActValue2” and the status word are transferred from the com-
munication function block to the “DrvControlModbusEng” block, where they are written to the
outputs.
The control word can be generated in 2 ways.
First way is to set the single bits of the control word separately at the inputs “Off1”, “Off2” ...
“ControlWordB15” while the input “UseControlWord” = FALSE.
Second way is to set the input “UseControlWord” = TRUE and write the control word as a whole
word directly to the input control word. The generated control word is written to the “DriveData”
variable and for diagnosis purpose also available at output “UsedControlWord”.
The input and output names of the bits in control word and status word reflect the functions
used with ABB Drive Profile. So the block should be used with ABB Drives Profil setting in the
drive.

The function block does not execute any functionality expect data transfer to
and from the “DriveData” variable. There is no special drive parameter setting
necessary to use this block.

The programmer using this block should have a detailed understanding of how
to set the control word according to the status word and the description of the
used drive.

For standard speed and torque control application it is recommended to use the
“DrvControlModbusACS” instead.

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2203

DrvControlCANCiA402

The function block “DrvControlCANCiA402” is used for the control of ABB ACS Drive or non-
ABB drives from AC500 using CANCiA402 Profile . The CANopen CiA402 function block and
visualization from the library can also be used for the 3rd party drives which comply to the
CANopen CiA402 Profile.

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2204

DrvPNRead

Function block “DrvPnRead” reads maximum 37 parameters from the drive in a single DPV1
query. The number of parameters to be read is specified at the input Nvar.
Parameters to read from the drive are specified at the Data input. “DrvPbPnPrmDpv1DataType”
structure must be declared to a variable and connected to Data input using ADR. This structure
contains the group, index, which must be given to the variable. Read parameter type and values
are stored in the same variable.
“DrvPdPrmDpv1DataType” structure has the following array elements:
Ä Chapter 1.5.4.2.3.4 “Structure: DrvPdPrmDpv1DataType” on page 2208

● “abyPrmGroup”: Array of 37 WORD for specifying parameter group.
● “abyPrmIndex”: Array of 37 WORD for specifying parameter index.
● “abyPrmType”: Array of 37 DRV_PDRIVE_PRM_TYPE. READ parameter data type will be

available here. For details refer to DRV_PDRIVE_PRM_TYPE. If a type is set here at the
start, it can be compared with the type read from the drive if the compare input is TRUE.

● “adwPrmValue”: Array of 37 DWORD. Read parameter value will be available here. If a
value is set at the start, it can be compared with the value read from the drive if the compare
input is TRUE.

Read errors:
If the drive rejects to read a specific parameter, it returns the error code DRV_ERROR_PRM
(16#44) in the corresponding abyPrmType element and a more specific error value in the
corresponding adwPrmValue element.
The number of elements with errors from the drive are given at the output “NumPrmErrors”. The
output “PrmErrCmpValues” gives an array, which contains the more specific error values in the
elements (index). This can be used to quickly identify the erroneous elements.
Compare input:
As the “DrvPnWrite” function block does not return an error in case a parameter in the drive
could not be written correctly it is recommended to verify the writing.
This can be done with the call of this function block “DrvPnRead” if the same parameters, types
and values are connected to the DATA input (use the same struct as for the writing), and the
input “Compare” is set to TRUE.
Then the types and values of the connected struct are copied at the rising edge of execute
inputs and compared with the returned types and values from the drive.
In case of a difference this is set into the corresponding element of the output
array “PrmErrCmpValues” with the possible three error codes DRV_CMP_DIFF_TYPE,
DRV_CMP_DIFF_VALUE or DRV_CMP_DIFF_TYPE_AND_VALUE.
Mode input:
● Mode = 16#00 => Read direct variables and parameters via an Fxxx module, e.g. FENA-21

or FPNO-21. Group and Index have to be used as in the “Data.awPrmGroup” and
“Data.awPrmIndex” array. (Number of Elements in the PN Data block is set to 16#01)

● Mode = 16#01 => Read direct variables and parameters via an Rxxx module, e.g. RETA-21
for ACS800 or DCS500. Group and Index have to be used as in the “Data.awPrmGroup”
and “Data.awPrmIndex” array. (Number of Elements in the PN Data block is set to 16#01)

● Mode = 16#1x => to be used to access “PROFIDrive” parameters with Attribute = 16#10
(Value) and Number of Elements = x.

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2205

● Mode = 16#2x => to be used to access “PROFIDrive” parameters with Attribute = 16#20
(Description) and Number of Elements = x. (Not supported with Fxxx or Rxxx modules)

● Mode = 16#3x => to be used to access PROFIDrive parameters with Attribute = 16#30
(Text) and Number of Elements = x. (Not supported with Fxxx or Rxxx modules)

For “PROFIDrive” parameters using Mode = 16#1x, 16#2x or 16#3x the Number of Elements =
x is used for all the parameters in the Data array.

DrvPnWrite

Function block “DrvPnRead” reads maximum 37 parameters from the drive in a single DPV1
query. The number of parameters to be written is specified at the input Nvar.
Another limit while using the “DrvPnWrite” function block is, it can process only up to 240-byte
data in one request or 37 drive parameters whichever is lower. If the write data length is more
than 240 bytes, the function block generates an error code WRITE_PACKAGE_SIZE_TOO_LONG
16#0004. At the output “PackageSize” the precalculated size of the request is shown.
Parameters to write to the drive are specified at the data input. “DrvPdPrmDpv1DataType”
structure must be declared to a variable and connected to data input using ADR.
“DrvPdPrmDpv1DataType” structure has the following array elements:
Ä Chapter 1.5.4.2.3.4 “Structure: DrvPdPrmDpv1DataType” on page 2208

● “abyPrmGroup”: Array of 37 WORD for specifying parameter group.
● “abyPrmIndex”: Array of 37 WORD for specifying parameter index.
● “abyPrmType”: Array of 37 DRV_PDRIVE_PRM_TYPE for specifying parameter type, refer

the respective drives manual for parameter data type and enter the respective enumeration.
For details about enumeration refer DRV_PDRIVE_PRM_TYPE in the library.

● “adwPrmValue”: Array of 37 DWORD for specifying parameter value that should be written.
The values in the structure area are updated when the write job was performed without error.
This is indicated by Done=TRUE.
Mode input:
● Mode = 16#00 => Write direct variables and parameters via an Fxxx module, e.g. FENA-21

or FPNO-21. Group and Index have to be used as in the “Data.awPrmGroup” and
“Data.awPrmIndex” array. (Number of Elements in the PN Data block is set to 16#01)

● Mode = 16#01 => Write direct variables and parameters via an Rxxx module, e.g. RETA-21
for ACS800 or DCS500. Group and Index have to be used as in the “Data.awPrmGroup”
and “Data.awPrmIndex” array. (Number of Elements in the PN Data block is set to 16#01)

● Mode = 16#1x => to be used to access “PROFIDrive” parameters with Attribute = 16#10
(Value) and Number of Elements = x.

● Mode = 16#2x => to be used to access “PROFIDrive” parameters with Attribute = 16#20
(Description) and Number of Elements = x. (Not supported with Fxxx or Rxxx modules)

● Mode = 16#3x => to be used to access PROFIDrive parameters with Attribute = 16#30
(Text) and Number of Elements = x. (Not supported with Fxxx or Rxxx modules)

For “PROFIDrive” parameters using Mode = 16#1x, 16#2x or 16#3x the Number of Elements =
x is used for ALL the parameters in the Data array.

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2206

Function: DrvModPara32Bit

Creates the Modbus address for 32-bit parameters of the ACSxxx drives.
To access 32-bit parameters in ACSxxx drives using Modbus a special address calculation must
be performed.
This block calculates the 6-digit address out of the 5-digit address used for 16-bit parameters.
Input is the 5-digit address: GGii, where GG = parameter group and ii = the index.
E.g. Par 12.02 ➨ address = 1202.
Output is the calculated address for 32-bit parameters according to the following rule:
DrvModPara32Bit = 20000 + (200 * GG) + (2 * ii) e.g. Par. 14.54 ➨ output = 22908
This output can be connected directly to the input "PrmNum" of one of the blocks
DrvModbusRead or DrvModbusWrite or inputs “PrmNumRead” and “PrmNumWrite” of the block
DrvModbusReadWrite23.

Structure: DrvDataType
Structure DrvDataType is used for the DriveData variable to exchange the data for one drive.
Structure DrvDataType is used for the DriveData variable which must be connected to all
function blocks related to the same drive.
Besides the element “sName” all variables should not be written by the user directly. They are
read and written within the function blocks. The DrvDataType contains some more internal,
invisible variables which are used for internal functionality and not meant for user access.
The following table shows the visible variables of DrvDataType.

Variable Data Type Default value Description
wStatusWord WORD 0 Actual status word from drive

iActValue1 INT 0 Actual value1 from drive – mostly equal speed

iActValue2 INT 0 Actual value2 from drive – mapping is made in drive
configuration

wControlWord WORD 0 Control word to drive

iRefValue1 INT 0 Reference value1 to drive – mostly speed reference

iRefValue2 INT 0 Reference value2 to drive – mapping is made in drive
configuration

xOnline BOOL FALSE Connection established – set in Modbus communication
function block after successful reading and writing one
Modbus job

xCtrlBlockUsedf BOOL FALSE A control block is used to generate the control word,
ref1 and ref2 values

sName STRING ‘Default
Drive Name’

Name for drive, which can be set by user directly to
DriveData variable

PLC Automation with V3 CPUs

Libraries and solutions > ACS/DCS drives libraries

2022/01/21 3ADR010583, 3, en_US 2207

Structure: DrvPdPrmDpv1DataType
Structure “DrvPdPrmDpv1DataType” is required to exchange the data between AC500 and
Drives using the PROFINET communication. “DrvPdPrmDpv1DataType” structure must be
declared to a variable and connected to data input using ADR in the “DrvPnRead” or
“DrvPnWrite” function blocks.

Variable Data Type Default value Description
awPrmGroup ARRAY [1..37]

OF WORD
[37(0)] ABB drive Group number from where the parameter to

read or write - Profidrive Parameter Index.

awPrmIndex ARRAY [1..37]
OF WORD

[37(0)] ABB drive index number from where the parameter to
read or write - Profidrive Parameter Subindex.

abyPrmType ARRAY [1..37]
OFDRV_PDRI
VE_PRM_TYP
E

[37(DRV_EMP
TY_PRM)]

Parameter Type in array. While using read block it will
act as an output (and input at start of block with Com-
pare=TRUE). While using write block it will act as an
input.

adwPrmValue ARRAY [1..37]
OF DWORD

[37(0)] Parameter Value in array. While using read block it will
act as an output (and input at start of block with Com-
pare=TRUE). While using write block it will act as an
input.

1.5.4.2.4 Limits for the data read and write between AC500 and drives
The below table defines the limits for the reading of data from the drive and limits for writing
data to drives from AC500 with cyclic data exchange.
If fieldbus adapter Plug (FBA) is used, then parameter group FBA DATA IN (e.g. 52) and group
FBA DATA OUT (e.g. 53) is accessed in the drive. For the embedded fieldbus (EFB) parameters
are used in EFB group (e.g. 58).
According to the table below, limits are defined for the variables ‘NVarRead’, ‘NVarWrite’ in
DrvModbusRtu and DrvModbusTcp blocks.

Drive Fieldbus Adapter (FBA) Embedded Fieldbus
(EFB)

 Data In (Group 52) Data Out (Group 53) Data I/O (group 58)
Configurable as input
or output.

ACS380 12 12 14

ACS480 12 12 14

ACS580 12 12 14

ACQ580 12 12 14

ACH580 12 12 14

ACS880 12 12 24

ACSM1 12 12 Not supported

DCS550

DCS800

DCS880 12 12 24

PLC Automation with V3 CPUs
Libraries and solutions > ACS/DCS drives libraries

2022/01/213ADR010583, 3, en_US2208

1.5.5 BACnet-BC

1.5.5.1 Introduction to BACnet
BACnet is a standardized data communication protocol for Building Automation and Control
networks as defined in the ANSI/ASHRAE standard 135 and ISO 16484-5.
The advantage is interoperability between devices of different vendors.
The BACnet protocol defines services to allow communication between devices. Examples
include 'Who is', 'I am', 'Who has' and 'I have' for device and object search and identification,
“Read Property” and “Write Property” for the exchange of data, up to more complex services for
alarm and event management, scheduling and trending.
The BACnet protocol defines a number of object types on which the services operate. Each
object is characterized by its properties.
The BACnet objects are combined in a BACnet device. A BACnet device represents the func-
tionality of a physical device.
More background information and introduction can be found here:
http://www.bacnet.org

http://www.bacnet.org/Bibliography

1.5.5.2 AC500 and BACnet
A BACnet device can be described by its “BACnet Interoperability Building Blocks” (BIBB)s,
which are needed to establish services. They are grouped in different areas:
● “Data Sharing” (DS)
● “Alarm and Event Management”(AE)
● “Scheduling” (SCHED)
● “Trending” (T)
● “Device and Network Management” (DM)
“Data Sharing” for example contains two BIBBs which are needed for the “Service Read
Property”:
● Client side: DS-RP-A (Data Sharing - Read Property - A)
● Server side: DS-RP-B (Data Sharing - Read Property - B)
The BACnet standard defines profiles by the minimum required BIBBs, see table below.
“BACnet Simple Sensor” (B-SS) is the simplest one, only containing one BIBB. More complex
devices contain more BIBBs (from right to left).

PLC Automation with V3 CPUs

Libraries and solutions > BACnet-BC

2022/01/21 3ADR010583, 3, en_US 2209

http://www.bacnet.org/Overview/index.html
http://www.bacnet.org/Bibliography/ES-7-96/ES-7-96.htm

The AC500 V2 supports BIBBs qualifying it as “BACnet Application Specific Controller” (B-
ASC), by installing the BACnet B-ASC library.
AC500 V3 supports many more BIBBs qualifying it as “BACnet Building Controller” (B-BC),
which contains a server (all BIBBs ending with -B) and a client (all BIBBs ending with -A). In
fact, the AC500 contains some more BIBBs. All BIBBs under B-BC in the table above, plus:

DS-COV-A, -B (Change of Value-A, -B)
DS-COVP-A, -B (Change of Value of Properties-A, -B)
AE-N-E-B (Alarm and Event-Notification External-B)
AE-ASUM-B (Alarm and Event-Alarm Summary-B)
SCHED-I-B (Scheduling-Internal-B)
T-VMT-E-B (Viewing and Modifying Trends External-B)
DM-TS-B (Time Synchronization-B)
DM-UTC-B (UTC Time Synchronization-B)
DM-MTS-A (Manual Time Synchronization-A)
DM-LM-B (List Manipulation-B)
DM-OCD-B (Object Creation and Deletion-B)
NM-BBMDC-B (BBMD Configuration-B)
...

A list with all details can be found in the Automation Builder pdf document ABB-B-BC-PICS-
AC500_V3.pdf. Direction: Help/Project examples/Examples.
The figure below shows a typical application for an AC500 V3, acting as B-BC.

PLC Automation with V3 CPUs
Libraries and solutions > BACnet-BC

2022/01/213ADR010583, 3, en_US2210

A drive with several actuators and sensors is acting as B-ASC, for example providing a temper-
ature value as “Analog Input” (AI) object on the MS/TP network.
Ä Chapter 1.5.5.3.1 “Supported BACnet networks ” on page 2211

AC500 B-BC as client can read this temperature value, perform some processing (scaling, limit
check) and on the server side provide the processed value as “Analog Value” (AV) object and
as “Trend” object on the IP network. Higher level clients like BACnet Operator Workstation
(B-OWS) can access the processed objects “Analog Value” and “Trend” for supervision.
The following chapters describe the possible applications and how to configure an AC500 V3 as
B-BC.

1.5.5.3 AC500 V3 as BACnet Building Controller (B-BC)
The BACnet integration into CODESYS implements the ANSI/ASHRAE standard 135-2012
(ISO 16484-5) protocol revision 14 and is based on the AMEV AS-A and AS-B standards.
Integration allows access to the properties of BACnet objects and the configuration parameters
of a BACnet device by means of an IEC application. You can program a dynamic BACnet
configuration and have access to the BACnet functions in the BACnet network by reading and
writing BACnet object properties.

1.5.5.3.1 Supported BACnet networks
BACnet can run on different local area network types. The AC500 B-BC supports the following
ones:
● MS/TP (Master Slave / Token Passing), based on serial RS-485
● BACnet IP, based on Ethernet / UDP / IP

PLC Automation with V3 CPUs

Libraries and solutions > BACnet-BC

2022/01/21 3ADR010583, 3, en_US 2211

Different networks can be combined to one common “BACnet internetwork”. The figure above
shows an example of some BACnet devices in one “BACnet internetwork”. Each device has
a device ID (10 to 15) which must be unique on application level. Services on application
level (e.g. read or write request) are working with these device IDs and need no addressing
information of the lower levels.
The example “BACnet internetwork” consists of different BACnet networks:
● BACnet MS/TP network connecting device 10, 11 and 12
● BACnet IP network (UDP port 47808), consisting of one IP subnets with IP range

192.168.0.x, connecting device 12, 13 and 14
● BACnet IP network (UDP port 47809), consisting of one IP subnet with IP range

192.168.2.x, connecting device 14 and 15
Addressing in a BACnet network is done through datalinks which must have a unique BACnet
MAC address (which is different to an Ethernet MAC address).
● In a MS/TP network the BACnet MAC address is just one octet (1, 2, 3 in the example).
Ä Chapter 1.5.5.3.4.4 “Configuration of datalinks ” on page 2220

● In an IP network the BACnet MAC address is the combination of the IP address and the
UDP port number (for example 192.168.0.130.47808 for device 13). The following 16 UDP
ports are reserved for BACnet: BAC0 (=47808 decimal) to BACF.
Ä Chapter 1.5.5.3.4.4 “Configuration of datalinks ” on page 2220

To form a common “BACnet internetwork” the single BACnet networks must be combined by
BACnet routers. AC500 can act as a BACnet router between BACnet MS/TP and IP networks
(device 12 in the figure above) or between two different BACnet IP networks (device 14).
Two IP subnets using the same UDP ports can be combined to one BACnet IP network with an
internet router.

The problem is that internet routers block local broadcast messages, which are required for
BACnet communication. This can be solved by “Broadcast Management Devices” (BBDM).
AC500 V3 can be configured as BBDM. In the figure above the devices 12 and 14 should be
configured as BBDM in order to enable the BACnet communication across the internet router.
An alternative is to configure AC500 V3 as foreign BACnet device if an IP subnet contains no
BBDM device to pass broadcast messages over internet routers.
Configuring the AC500 as BBDM or foreign device is described in Ä Chapter 1.5.5.3.4.4 “Con-
figuration of datalinks ” on page 2220.

PLC Automation with V3 CPUs
Libraries and solutions > BACnet-BC

2022/01/213ADR010583, 3, en_US2212

1.5.5.3.2 Supported objects and properties
Communication with BACnet is done through objects and properties.
The AC500 B-BC server of the figure below is represented as a BACnet device object with “ID
12”. The device contains more objects like the Analog Input object, representing the input of a
temperature measurement device. An object contains several properties, like “ID, Description,
Present Value, Unit” etc.
Further possible objects of an AC500 B-BC are:
● “Binary Input” for example from connected to a switch
● “Analog / Binary Output” for actuators
● “Analog / Binary Values” for local variables
● “Calender”
● “Schedule”
● “Trend Log”
● ...
● A list with all details can be found in the Automation Builder pdf document ABB-B-BC-PICS-

AC500_V3.pdf. Help/Project examples/.

Fig. 25: BACnet objects, properties, services and BIBBs

1.5.5.3.3 Supported BIBBs and services
While objects and properties describe which data are communicated, the communication itself
is done with services between clients and servers. A certain service can only be executed if
client and server have the related BIBBs. The Fig. 25 BACnet objects, properties, services and
BIBBs shows a simple “Service Read Property” which is possible because the client on the right
supports DS-RP-A and the server on the left supports DS-RP-B. The service is executed in two
steps:
1. The client initiates a confirmed request “Read Property”, asking for the present value of

the “Analog Input” of object with “ID 1010”.
2. The server answers with an acknowledge, sending the present value which is 21,89°C in

the example.

A list of all supported BIBBs and services of AC500 V3 is given in the Automation Builder pdf
document ABB-B-BC-PICS-AC500_V3.pdf. Help/Project examples/Examples.

PLC Automation with V3 CPUs

Libraries and solutions > BACnet-BC

2022/01/21 3ADR010583, 3, en_US 2213

1.5.5.3.4 BACnet configuration in Automation Builder
To act as a BACnet server or client, the AC500 must be configured accordingly. The figure
below shows the basic configuration of a BACnet server (left) and a BACnet server with client
functionality (right). It is also possible to have server and client functionality in parallel.

Following objects need to be created:
1 “BACnet Server” root object. This is the root object for the server functionality, as well as for

the client functionality. It is mandatory, even if only client functionality is required. Ä Chapter
1.5.5.3.4.1 “Configuration of BACnet server root object ” on page 2214

2 BACnet server objects, for example “BACnet Analog Input” Temperature. The properties
of the objects must be controlled (written or read) by the PLC logic. Ä Chapter 1.5.5.3.4.2
“Adding BACnet server objects” on page 2216

3 BACnet client objects, represented by a different symbol. For example, “BACnet Client
Read Property”. The functionality of the client objects must be programmed in the PLC logic.
Inserting the client objects below the server is optional. It is also possible to instantiate
the objects only in a PLC logic. Ä Chapter 1.5.5.3.4.3 “Adding BACnet client functionality”
on page 2217

4 Datalink for the physical layer. This object links the physical interface (Ethernet IP or serial
MS/TP) to the “BACnet Server” object. In the example above the IP address of ETH1 is
automatically retrieved by inserting the “BACnet IP datalink” below the ETH1 port. Ä “Con-
figuration of an IP datalink” on page 2221. For MS/TP refer to Ä “Configuration of an MS/TP
datalink” on page 2220.

Configuration of BACnet server root object
1. Create an empty project with an AC500 V3 CPU type and call it fpr example “Device_12”.
2. Insert a “BACnet Server” object below the interfaces object in the device tree.

PLC Automation with V3 CPUs
Libraries and solutions > BACnet-BC

2022/01/213ADR010583, 3, en_US2214

3. Set the device InstanceNumber in the “BACnet Parameters” of the “BACnet Server”,
e.g. to 12 and the InstanceName to Device_12 (according to Fig. 25 BACnet objects,
properties, services and BIBBs).

4. Add a datalink, IP or MS/TP. In the example an IP datalink is inserted below ETH1. Default
parameters are sufficient if only one datalink is used.
Ä “Configuration of an IP datalink” on page 2221

5. Build the project, download to the PLC and set it to [RUN]. The status of the “BACnet
Server” should be green (running). If not, please ensure that you have installed the
runtime license BACnet Protocol B-BC Runtime, verifiable by right-click on the PLC node
and select [Show license information] from the runtime licensing menu. The project is
scanned for required licenses. If you are logged in to a PLC, then the licenses available on
the PLC are displayed. A missing required license is highlighted.
Ä Chapter 1.6.6.2.2.2 “PLC runtime licensing” on page 3665

PLC Automation with V3 CPUs

Libraries and solutions > BACnet-BC

2022/01/21 3ADR010583, 3, en_US 2215

6. Start any BACnet client to find the server, for example Inneasoft BACnet Explorer.

Adding BACnet server objects
Goal is to publish an analog value as BACnet server object. This example is according to
Fig. 25 BACnet objects, properties, services and BIBBs, left part containing a temperature
value.
1. Configure a “BACnet Server” root object according to Ä Chapter 1.5.5.3.4.1 “Configura-

tion of BACnet server root object ” on page 2214.
2. Add a “BACnet Analog Input” object below the “BACnet Server”.

3. Rename it to Temperature, adjust the parameters: InstanceNumber: 1010,
Description: Temperature, Units: UNIT_DEGREES_C.

PLC Automation with V3 CPUs
Libraries and solutions > BACnet-BC

2022/01/213ADR010583, 3, en_US2216

4. The present value of the objects Temperature needs to be fed with the value from the
real temperature device. Alternatively, a simple PLC program can simulate this value.

5. Download the program and observe the temperature value in the BACnet client.

Adding BACnet client functionality
Goal is to configure a second AC500 controller as BACnet client which reads an analog value
from a server. This example is according to Fig. 25 BACnet objects, properties, services and
BIBBs, right part.
1. Add a new controller and configure a “BACnet Server” root object according to Ä Chapter

1.5.5.3.4.1 “Configuration of BACnet server root object ” on page 2214.
2. Set InstanceNumber to 14 and InstanceName to Device 14.

PLC Automation with V3 CPUs

Libraries and solutions > BACnet-BC

2022/01/21 3ADR010583, 3, en_US 2217

3. In addition to BACnet objects, BACnet clients can also be inserted as devices under a
“BACnet Server”. Add a “BACnet Client Read Property” below the “BACnet Server” node.

4. The created object “BACnet Client Read Property” generates a function block instance
which can be used to program the client read functionality. The figure below shows a
simple example.
In line 1-5 of the code part the function block is called with the following parameter:
● Device ID of the server to read from (12) Ä Chapter 1.5.5.3.2 “Supported objects and

properties ” on page 2213
● Object ID of the object to read from (1010 for the “Analog Input”)
● Object type (“Analog Input”)
● Property to read (“present value”)
● triggerRead to start the read operation

When the user (or another program part) sets the variable triggerRead from FALSE to
TRUE the edge triggered function block BACnet_Client_Read_Property starts opera-
tion and sends the read request to the server device. After receiving the reply from the
Server, the output .xDone gets TRUE (line 8) and the temperature value can be read from
the output .result (line 14).

PLC Automation with V3 CPUs
Libraries and solutions > BACnet-BC

2022/01/213ADR010583, 3, en_US2218

5. Download this program to another AC500 V3 controller, which is in the same IP network
as the server. Set it to run and read the temperature value by setting triggerRead to
TRUE. In online mode the read temperature value can be observed in line 14.

Unlike BACnet objects, a BACnet client does not require a complex (static) configuration, thus a
client function block can be used without creating a BACnet client as device.

There is no BACnet_Client_Read_Property object created below the “BACnet Server”.
Instead a function block BACnet_Client_Read_Property must be declared in the PRG
(line 6 in the declaration) and initially "connected" to its “BACnet Server” in IEC-code via
RegisterToServer(), and thus get activated (line 2 in the code) Ä Chapter 1.10 “Reference,
function blocks” on page 4292.

Alternative con-
figuration

PLC Automation with V3 CPUs

Libraries and solutions > BACnet-BC

2022/01/21 3ADR010583, 3, en_US 2219

Configuration of datalinks
For communication with other BACnet devices AC500 provides two different possibilities:
MS/TP and IP.
Ä Chapter 1.5.5.3.1 “Supported BACnet networks ” on page 2211

For a non-routing device one MS/TP or IP datalink must be configured.
If more than one datalink is configured, routing between the datalinks is automatically enabled.

● Add the “BACnet MS/TP COM” object below the COM port.

In fact the empty COM port is replaced by the “BACnet MS/TP COM”. By that the COM port is
configured as RS-485 with fixed settings for MS/TP: No parity, 8 data bits, 1 stop bits.
● Below the “BACnet MS/TP COM” port object an “BACnet MS/TP datalink” is inserted auto-

matically which can be configured according to the requirements.

Configuration of
an MS/TP data-
link

PLC Automation with V3 CPUs
Libraries and solutions > BACnet-BC

2022/01/213ADR010583, 3, en_US2220

● NetworkNumber: Use the default value 1 if no routing is required. For routing, use a unique
network number in one controller.

● ConnectionType: Use the default value Master if no routing is required. For routing, use
“Master – answering always postponed”.

● Baudrate can be set according to requirements in the range of from 9600 to 38400 bits/s,
higher values (57600 and 115200 bits/s) are not recommended.

● DatalayerAddress: This is the MAC address as described in Ä Chapter 1.5.5.3.1 “Sup-
ported BACnet networks ” on page 2211. The MAC address must be unique in the MS/TP
network.

● For all other parameters the default values are recommended for typical applications.

● Add a “BACnet_IP_datalink” object below the Ethernet port ETH1 or ETH2.

● NetworkNumber: Use the default value if no routing is required. For routing, use a unique
network number in one controller.

● UPDport: Use the default value (47808 decimal) in the normal case. Range is possible
from BAC0 (= 47808 decimal) to BACF. UDPport + IP address form the MAC address
of the IP datalink as described in Ä Chapter 1.5.5.3.1 “Supported BACnet networks ”
on page 2211. The IP address cannot be specified here. It is automatically taken from the
parent Ethernet node (ETH1 or ETH2); its IP address is set in the communication settings of
the CPU node, “Device_14” in the example.

● ForeignDevice and BBMD: Special configuration is only needed if an internet router is
located between two BACnet devices.
Ä Chapter 1.5.5.3.1 “Supported BACnet networks ” on page 2211
AC500 can be configured as ForeignDevice or BBMD, but not the combination of both. An
example for BBDM can be found in the example folder.

Routing enables the combination of different BACnet networks to one common “BACnet
internetwork”.
Ä Chapter 1.5.5.3.1 “Supported BACnet networks ” on page 2211

BACnet devices from different BACnet networks can communicate with each other.
If more than one datalink is configured in one CPU, routing between the different networks
is automatically enabled. It must only be ensured that the network number is unique in one
controller.
Ä Chapter 1.5.5.3.1 “Supported BACnet networks ” on page 2211

For MS/TP the ConnectionType must be set to “Master – answering always postponed”. An
example for routing can be found in the example folder.

Time syncronisation
The BACnet clients expect to receive the local time. Currently the AC500 V3 does not distin-
guish between UTC time and local time and its time zone is set to 0. This will be improved in
the near future. In the meantime, it is recommended to store the local time (green color in the
following figure) in the AC500 as a workaround.

Configuration of
an IP datalink

Configuration of
Routing

PLC Automation with V3 CPUs

Libraries and solutions > BACnet-BC

2022/01/21 3ADR010583, 3, en_US 2221

Using this workaround, the following time sync mechanisms can be used:
● Set local time from Automation Builder Tab “PLC Shell”:

Set the time by the command “time hh:mm:ss"

● Read the local time from the Automation Builder Tab “Statistics”:
“Current PLC Date and time” shows the PLC time as local time without conversion, if the tab
“Show PLC time in UTC” is enabled.

For storing the local time in AC500, do not use the button [Set PLC to PC Time]
(Tab “Statistics”), since this is always converting from local time to UTC time.

PLC Automation with V3 CPUs
Libraries and solutions > BACnet-BC

2022/01/213ADR010583, 3, en_US2222

● BACnet clients can read local or UTC time, both requests will deliver the same (local) time
information, since the timezone is 0.

● If an SNTP time sync is required (for example with a Meinberg clock), UTC times are
exchanged. For conversion of UTC to local time in AC500 a proprietary STNP client must be
programmed.
Please contact the PLC support for more information.

1.5.5.3.5 Package content
The BACnet package PS5607-BACnet-BC can be installed with the Installation Manager and
contains the following components:
● BACnet runtime component, part of AC500 firmware.
● Automation Builder package: CODESYS BACnet

– BACnet plug-in component
– Device descriptions for “BACnet Server”, BACnet objects, BACnet client and datalinks
– Libraries: BACnet, BACnetDefaultImpl and CmpBACnet.
Ä Chapter 1.5.5.3.5.1 “BACnet libraries” on page 2223

● Example folder
– Examples and example documentation
Ä Chapter 1.5.5.3.5.2 “Application examples” on page 2224

– Datasheet and FAQ
BACnet Protocol Implementation Conformance Statement (PICS), acting as a data-
sheet, describing all BACnet objects, services and communication capabilities.
BACnet Conformance Certificate
FAQ – Frequently Asked Questions, including AC500 specific information, performance
and limit

BACnet libraries
The IEC library CmpBACnet represents the integration of the BACnet stack into a CODESYS
IEC environment and provides the BACnet data types as well as the BACstack methods.
The sole use of the IEC library CmpBACnet (without the BACnet and BACnetDefaultImpl
libraries) would result in complex and lengthy IEC application code.
The BACnet library simplifies BACnet application development considerably as compared to the
sole use of CmpBACnet, especially in the following areas:

● Starting and stopping the BACnet stack
● Using BACnet server objects and their properties
● Triggering asynchronous requests (mainly client service requests) and processing the

request transaction
● Processing of callbacks from the BACnet stack (see IBACnetEventConsumer) and distrib-

uting the callbacks to multiple receivers in the application
Furthermore, the BACnet library provides a plug-in mechanism (BACnetServerPlugin) for
extending certain aspects of the BACnet library. BACnetServerPlugin is the basis for the
BACnetDefaultImpl library.

The BACnetDefaultImpl library is used for the additional simplification of BACnet application
development. The BACnet standard ASHRAE 135 leaves some aspects of the practical use of
BACnet open. The most notable examples include the following:
● Persistence of server objects
● Storage and persistence of Trend Log, Trend Log Multiple, and Event Log entries
● Update of the date/time information of the device object

Example folder

PLC Automation with V3 CPUs

Libraries and solutions > BACnet-BC

2022/01/21 3ADR010583, 3, en_US 2223

The IEC library BACnet is intended as a layer over the IEC library CmpBACnet. However, the
layer does not hide the library because this would require the BACnet library to have "facade"
functions for CmpBACnet functions. These facade functions would result in larger application
code and increased runtime requirements. This is difficult for the PLC to accept. For this reason,
it is necessary to know when elements from the BACnet library or CmpBACnet library are to be
used.
General rules:
● Starting and stopping the BACnet stack

Always use BACnetServer.StartBACnetStack and
BACnetServer.StopBACnetStack or AutoStart. Never directly use the corresponding
functions of the CmpBACnet library, such as CmpBACnet.BACnetServerInit.

● Using BACnet server objects and their properties
Always use the specified function blocks in IEC-lib-BACnet, such as BACnetAnalogValue.
Never directly use the corresponding functions of the BACnet library, such as
CmpBACnet.BACnetStorePropertyInstance.

● Triggering of asynchronous requests
Always use the specified client function blocks of the BACnet library, such as
BACnetClientReadProperty. Never directly use the corresponding functions of the
CmpBACnet library, such as CmpBACnet.BACnetReadProperty. All functions of the
CmpBACnet library that require a BACnetAsyncTransactionToken belong to this cate-
gory and should never be used directly.

● Processing of callbacks from the BACnet stack and distributing the callbacks to multiple
receivers in the application
Always use IBACnetEventConsumer and BACnetServer.RegisterHook/
UnregisterHook/RegisterCallback/UnregisterCallback. Never directly use the
corresponding functions of the CmpBACnet library, such as CmpBACnet.BACnetSetHook
or CmpBACnet.BACnetSetCallback.

When is it appropriate and safe to directly call the functions of the CmpBACnet library?

Basically, it is only necessary to call functions of CmpBACnet directly when a corresponding
functionality is not provided in the BACnet library. Check the BACnet library first before trying
to use CmpBACnet directly. It is possible to use blocking functions in CmpBACnet, such as
BACnet*CbCompletion, BACnetIam(Ex), or BACnetIHave(Ex), BACnetUnconf*.

Most often, you will use BACnet*CbCompletion to implement your specific
IBACnetEventConsumer.BACnetEventCallbacks. But first check whether or not the
BACnetDefaultImpl library already contains an appropriate standard implementation.

Application examples
● AC500_V3_BACnet_B-BC_Example_ABxxx.project including simple read and write

operations between client and server.
– Use case 1: AC500 as BACnet client, read and write (with priority)
– Use case 2: AC500 as “BACnet Server”, publish the analog value

● AC500_V3_BACnet_B-BC_Example_Routing_ABxxx.project
● Examples from 3S, including

– Read and write operations with more options, notification class, calendar, scheduler, etc.
– Device discovery
– BBMD
– Persistence
– Logging
– Routing

PLC Automation with V3 CPUs
Libraries and solutions > BACnet-BC

2022/01/213ADR010583, 3, en_US2224

1.5.6 CAA library guidelines
Function block descriptions for the CAA library can be found in the Library Manager.
The guidelines for the CAA libraries correspond to the general guidelines for library develop-
ment. For a detailed description see help chapter Guidelines for Library Development.
With the help of the CAA library, different use cases for dealing with AC500 PLCs can be
programmed. A possible example is the use of the so-called CSV read function, with which
information from CSV or other formatted DAT files can be read into Structured Text. This use
case is described in the application example.
Another application example describes the file handling in order to write, read and append files.

1.5.7 Datalogging library

1.5.7.1 Overview
The Datalogging function block library (PS5609-Log) contains five function blocks for the pur-
pose of advanced time-stamped data logging for different use cases.
In the most challenging use case it also can be called buffering: The AC500 application program
generates data which are normally transmitted to a telecontrol system for storage and further
processing or displaying to the end user. Typically, these may be remote applications like water-
or oil-pumping or electrification stations or solar power plants. The connection between these
remote stations with an AC500 and a central SCADA/telecontrol station is not always stable or
only sporadically connected. Sporadically connected can be by intention, e.g. to save communi-
cation costs or open ports/connections to be used with a control station only in a limited way.
● Then the Datalogging function blocks buffer or store data in case of a broken or intentionally

interrupted connection between AC500 and the telecontrol system.

Fig. 26: Overview

1 AC500 application (remote substation)
2 Telecontrol (control station)

● The Datalogging library can be also used as an event recorder. In this special mode data
is continuously recorded in a ring buffer which can be read out after a certain event x (e.g.
outage) in order to analyze the values especially before but also after the event x.
OR

● Data can be logged only and on command transferred to the ftp area to be analyzed offline
or taken out via the memory card.

The following figure gives an overview of the described interaction of the data logging function
blocks. There is always an input function block (“LogInput”) needed which transfers the input
data into data sets with timestamp for use by the datalogger (“LogHandling”). An output func-
tion block (LogOutput) receives the current or retrieved data from the datalogger in case of
communication or further processing. The input function blocks “Logxx_Input”, the function block

PLC Automation with V3 CPUs

Libraries and solutions > Datalogging library

2022/01/21 3ADR010583, 3, en_US 2225

ms-its:LibDevSummary.chm::/guidelines.html
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010477&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010565&LanguageCode=en&DocumentPartId=&Action=Launch

“LogHandling” and the output function blocks “Logxx_Output” communicate via SRAM FIFOin
and FIFOout areas in the memory. The SRAM FIFOin is power-fail-safe intermediate buffer
and help in decoupling time wise and speeding up the necessary write/read operations on the
logging file structures significantly. These read/write operations on the files are done in blocks of
Data sets, enabling a comparably fast interaction with the otherwise slow file system.

Fig. 27: Overview function blocks

Each Datalogging application requires the main function block “LogHandling”, one of the input
function blocks to provide data to be logged and one output function block to retrieve the data
and send the data to telecontrol (scada).
As input and output function blocks two different types exist:
● For logging data of an interrupted IEC60870 communication, the function blocks

“LogIec60870_Input” and “LogIec60870_Output” are provided. The IEC60870 Datalogging
function blocks support the IEC data types and work internally with the standard AC500
IEC60870 library. The IEC Datalogger output function block does not need special handling
or control/inputs.

● For other types of general data “LogGeneric_Input” and “LogGeneric_Output” are provided.
The generic Datalogging function blocks support an even larger variety of data types. The
generic output function block needs to be hand-shake with for each data set, in order to
retrieve the data from the Datalogging files. Therefore the generic function blocks can also
be used to integrate the data logging into any other protocol, e.g. Modbus.

The function block “LogHandling” ensures that also several consecutive and fast interruptions
can be handled without losing data. While the log file is replayed, arriving new data is stored in
the SRAM FIFOin and added to the Datalogging files (File FIFO) if the SRAM FIFOin becomes
full (during that short time the log file replay is paused). Nevertheless any data send to a control
station via a communication is always with the oldest data first (FIFO = "First In First Out").
As it takes up to 30 seconds before a communication break is detected (e.g. with TCP/IP
protocols by the AC500 hardware/firmware), the data rate at which data should be logged in
case of a communication break has to be calculated and limited.
As an improvement a ping mechanism should be implemented in the substation. This was
done in the example program for the IEC logger. With this ping the interruption is already
detected after 1-2 seconds (can be configured in the example program - the configurable
“SecureReadTime” must be considered in this context. This ensures that the time delay - before
a loss of connection is detected and is compensated).

PLC Automation with V3 CPUs
Libraries and solutions > Datalogging library

2022/01/213ADR010583, 3, en_US2226

As the SRAM FIFO has to store data during this time its size limits the data rate. The SRAM
FIFO size is 160 Data sets. If data rate is too high, FIFO will overflow. The maximum data
rate is depending on the CPU type, storage media (memory card / flash disk) and cycle time
configured, must be determined by try and error.
The data rates for storing only without this detection can be much higher and depends on
the CPU and memory type chosen. The data is always logged in directly readable csv format
Ä Chapter 1.5.7.1.5 “CSV file formats” on page 2232. Depending on the input function block
and data type, the log file contains only one or up to 32 data variables per timestamped data
set. The Datalogging files can be configured (up to 65k Data sets per file, up to 999 consecutive
log files, name format).

1.5.7.1.1 Operating modes
This chapter describes the different operating modes of the Datalogging and their behavior.
● Mode 0/1: Buffer and disposal in chronologic order

– Mode 0: Limited storage (keeps oldest, but stops if full)
– Mode 1: Endless (ring buffer) operation modes (deletes oldest)

● Mode 2: Buffer and disposal via FTP, Log file(s) copied to ftp server area for further use
● Mode 3: Events Recorder, logs data before and after an event.

Fig. 28: Overview Mode 0/1

Mode 0/1 is for buffering the values from the AC500 application in case of a broken or intention-
ally interrupted connection between AC500 and telecontrol. In the normal state 1 the values are
directly sent from the FIFOin (input values from application) to FIFOout (telecontrol connection).
As soon as the connection is interrupted, the Datalogger changes to working state 2. The
values are sent to the file FIFO instead. When the file FIFO is full, the Datalogging is stopped
(Mode 0) or the oldest data will be overwritten (Mode 1 = ringbuffer). When the connection is
established again and the “ReleaseHistory” pin is triggered, the datalogger changes to working
state 3. It cares for disposal of the values in chronological order. The buffered values are

Mode 0/1: Buffer
and disposal in
chronologic
order

PLC Automation with V3 CPUs

Libraries and solutions > Datalogging library

2022/01/21 3ADR010583, 3, en_US 2227

written to FIFOout (working state 3a). This may take some time during which new values are
coming from the application and stored into FIFOin. Before the FIFOin overflows the datalogger
switches to working state 3b and buffers the new values. After that it can continue with working
state 3a. Only if the File FIFO is empty (all files deleted) the datalogger changes back to normal
state 1.
The advantage of Mode 0/1 is that all values (directly and buffered) are sent to telecontrol in
strictly chronological order which is expected by most control stations (SCADA systems/histor-
ians).
If a historical value is sent to the SCADA after a current value has already been sent, the
historical value is normally rejected by the SCADA.
As it takes up to 30 seconds before a communication break is detected (e.g. with TCP/IP
protocols by the AC500 hardware/firmware), the data rate at which data should be logged in
case of a communication break has to be calculated and limited. It therefore makes sense to
use PING to detect a possible interruption in the connection. This enables an earlier detection of
the connectionless state.

Fig. 29: Overview Mode 2

Mode 2 is also used for buffering the values from AC500 application in case of a broken
connection between AC500 and telecontrol. State 1 and state 2 are similar to Mode 0/1. The
difference is the disposal. When the connection is established again the Datalogger changes
directly back to state 1 and the input values in FIFOin are directly sent to FIFOout (telecontrol
connection). The buffered values in File FIFO are internally moved from disk 1 to disk 2 which
can then be accessed or used by FTP (client or server). This move action can also be triggered
by the command “MoveFile”, or when file 1 is full. The advantage of Mode 2 is the immediate
availability of the latest and all current values after an outage.

Mode 2: Buffer
and disposal via
FTP

PLC Automation with V3 CPUs
Libraries and solutions > Datalogging library

2022/01/213ADR010583, 3, en_US2228

Fig. 30: Overview Mode 3

Mode 3 is used to record data values around an event, before and after the event X, e.g.
outage of a part of the plant. The values are continuously recorded into the File FIFO file system
independent of the connection status to telecontrol. If the File FIFO is full the oldest values are
overwritten (ring buffer). Thus the file FIFO always contains the values from the past period n,
which is depending on the number of values per second and on the size of the File FIFO. When
a certain event x occurs, the command “MoveFile” can be given directly or after the period m.
With the command “MoveFile” the values in File FIFO are internally moved from disk1 to disk 2
and can be read out by an FTP action (client or server) when required.

Fig. 31: The buffered values represent the time before the event (n-m) and after the event (m).

The advantage of Mode 3 is that the values from the time period before the event (n-m) and
after the event (m) are recorded and can help to reconstruct the cause and effect of the event.

1.5.7.1.2 Technical details

Parameter Value
IEC 60870-5-104 protocol inte-
grated in Datalogging, IEC data
types

SinglePoint SP1/16, DoublePoint DP, IntegratedTotal
IT1/16, MeasurementValue ME1/16

Generic logging to file(s); AC500
data types

BIN, BYTE, INT, UINT, DINT, UDINT, REAL

Trigger Cyclic, event, tolerance

Mode 3: Events
recorder

PLC Automation with V3 CPUs

Libraries and solutions > Datalogging library

2022/01/21 3ADR010583, 3, en_US 2229

Parameter Value
File format CSV, including local timestamp. Generic Logging with

separate ID (max. 8 characters), IEC Logging with IEC
addresses.
Timestamped Data sets contain 1-16 values (IEC)
depending on type logged. Generic contain different
number of values, depending on type logged.
BINARY: max. 58
BYTE: max. 88
INT: max. 50
UINT: max. 58
DINT: max. 29
UDINT: max. 31
REAL: max. 27

Datalogging target Flash disk or memory card, power fail input for memory
card (from UPS)

Datalogging file sizes and storage
depth

FIFO storage in file system, Datalogging depth only
limited by memory size

Configurable file FIFO Number of files (max. 999); number of Data sets per file
(max. 65535)

Internal SRAM FIFO size 160 Data sets

Block write mode into files Up to 50 Data sets/second per max. 88 values

Operation modes Mode 0: Buffer and disposal in chronologic order Limited
storage (keeps oldest, but stops if full)
Mode 1: Buffer and disposal in chronologic order End-
less (ring buffer) operation modes (deletes oldest)
Mode 2: Buffer and disposal via FTP, Log file(s) copied
to ftp server area for further use
Mode 3: Events Recorder, logs data before and after an
event.

Supported software/firmware V3.4 or higher

Current restrictions One logger per PLC
One IEC 60870 connection only: While log file is
replayed, no other current information via IEC available
Usable solutions:
● Delay replay of log file after connection returned to

allow a “general inquiry”
● Use of Mode 2

Logging capacity:
● Data set: 1 data set always has 400 byte
● FIFOin: Has a maximum capacity of 161 data sets (a 400 byte = 64400 byte)
● FIFOout: Has a maximum capacity of 161 data sets (a 400 byte = 64400 byte)
● File: 1 file stores up to 65535 data records, which are copied block by block from the FIFOin

in case of a communication lost
● A maximum of 999 files can be saved.
In purely mathematical terms, that would be 999 files * 65535 Data sets * 400 byte / Data set =
26,187,786,000 bytes = 26 GB

PLC Automation with V3 CPUs
Libraries and solutions > Datalogging library

2022/01/213ADR010583, 3, en_US2230

Since neither the flash disk nor the usable memory card have such a capacity, the user has to
find a sensible compromise. The flash disk as a storage medium is fail-safe, i.e. in the event
of a sudden power failure, data in the possibly currently open file is reconstructed when the
power is restored. This is not the case with a memory card. There the file is destroyed. It is
therefore advantageous if such a variant is operated with a power supply that keeps the PLC
alive for at least a few seconds after the supply voltage failure (see “Input ExternalPower” on the
“LogHandling” function block).
Time synchronization:
Currently the AC500 V3 does not distinguish between UTC time and local time and its time zone
is set to 0. This will be improved in near future. In the meantime, it is recommended to store the
local time in the AC500 as a workaround.
Ä Chapter 1.5.5.3.4.5 “Time syncronisation” on page 2221

1.5.7.1.3 File names
File names are renamed according to storing time with an accuracy of 100 ms. The files are
renamed from “filename.csv” to a file name with timestamp and with or without file extension,
according to input “Disk2Extension” is applicable only in Mode 2.

02281448.593 = February 28th, 2:48pm (14:48), 59s, 300msFile name with
timestamp

02281448.csv = February 28th, 2:48pm (14:48)File name with
timestamp and
file extension

1.5.7.1.4 Preconditions

The Datalogging library supports CPU PM5650 or higher.

The Datalogging library does not support CPUs of the AC500-eCo series.

CAUTION!
Failure in Processing of the function blocks.
– The function blocks LOGxxxxxx_Input, LogHandling and

LOGxxxxxx_Output must be put in the same task.

CPU firmware must be V 3.4.0 or higher.
Use memory card from ABB with sufficient free space, at least 1.5 x file size as configured (file
size is depending on input “MaxNumDatasetFile” from “LogHandling” function block).
Maximum number of files (input of “LogHandling”) is limited to 999. ABB memory card is
formatted with FAT by default.
Ä Chapter 1.6.7.1 “Introduction of AC500 storage devices for AC500 Products” on page 3994

PLC Automation with V3 CPUs

Libraries and solutions > Datalogging library

2022/01/21 3ADR010583, 3, en_US 2231

1.5.7.1.5 CSV file formats

Fig. 32: Explanation of the csv file structure

1 Data set consists of:
ID (8 any char) + TimeStamp + msec + Datatype(num) + Datatype(txt) + Length(following data)
+ max 32 data

Parameter Value
ID = ID of LogGeneric_Input (max 8 any characters)

Datatype = DataType of LogGeneric_Input (1…7)

Length = Length of LogGeneric_Input (max 88)
BINARY (58); BYTE (88); INT (50); UINT (58); DINT (29); UDINT (31);
REAL (27)

Fig. 33: File opened directly with Excel

Example

Fig. 34: Explanation of the csv file structure

Table 378: 1 Data set consists of the following parameters
Parameter Explanation
IecType = IecType of LogIec60870_Input (1…7)

Slot/Con/Idx/NoDP = Pin group of LogIec60870_Input (1…7)

Quality_Bits(Byte) = IV/NT/SB/BL/CA/CY/QOV (packed in 1 byte) of LogIec60870_Input
(1…7)

Quality (SQ) = SQ of LOG_IEC60870_INPUT (1…7)

GADU = calculated internally, from Automation Builder Configurator
(Gadu1+Gadu2)

Generic data
logger

IEC60870 Data-
logger

PLC Automation with V3 CPUs
Libraries and solutions > Datalogging library

2022/01/213ADR010583, 3, en_US2232

Parameter Explanation
IAD3/2/1(n) = calculated internally, for every datapoint separately, from

Automation Builder Configurator (IAD1+IAD2+IAD3)

n = 1 or 16, in case of DP is n=2

VAR(n) = variable

IEC type Values Meaning
SP1 - SinglePoint 1

SP16 - SinglePoint 16

DP - DoublePoint

IT1 - IntegratedTotal 1

IT16 - IntegratedTotal 16

ME1 - MeasurementValue 1

ME16 - MeasurementValue 16

Quality_Bits(Byte): Quality.0 := IV; Quality with quality invalid

 Quality.1 := NT; Quality not topical

 Quality.2 := SB; Quality substituted

 Quality.3 := BL; Quality blocked

 Quality.4 := CA; Quality with quality carry

 Quality.5 := CY; Quality with quality counter
adjusted

 Quality.6 := QOV; Quality Overflow Quality

 Quality.7 := Reserve; (*Reserve - Quality*)

Quality SQ(Byte) SQ Quality sequence number
(Range: 0 to 31)

Fig. 35: File opened directly with Excel

Example

1.5.7.2 Examples
Example projects for the libraries can be found in the folder:
\Users\Public\Documents\AutomationBuilder\Examples\PS5609-Log

PLC Automation with V3 CPUs

Libraries and solutions > Datalogging library

2022/01/21 3ADR010583, 3, en_US 2233

1.5.8 High Availability Modbus TCP
1.5.8.1 HA-Modbus TCP - System technology
1.5.8.1.1 The AC500 High Availability system

The AC500 High Availability system is designed for the demand of automation systems that
require a higher availability, which is realized by redundant devices and communications.
The redundancy concept reduces the risk of losing production due to failure of parts of the
automation system and thereby minimizes scheduled idle times.
For instance, control can be taken over by the secondary station automatically if the primary
station fails.
AC500 High Availability system implements redundancy based on standard AC500 PLCs:
● PLC
● Field communication
● SCADA communication

General differences in high availability / redundancy systems are in which way and how fast the
switchover between redundancies happens.
● Cold standby: A replacement system is there but not up and running - Process has (to

allow) to completely stop for switchover – e.g. outputs may go to zero.
● Warm standby: Both CPU may be running (= warm) but e.g. communication need to be

started/stopped for switch-over - Process needs to tolerate longer freeze times e.g. on
outputs - e.g. several seconds.

● AC500 High Availability systems are "hot-standby":
– Redundant CPUs and all communications are always up and running (hot)
– Continuous failure detection in both CPU´s and mutual exchange of status
– Continuous synchronization of critical/historical data from primary to secondary
– Automatic switch-over in very short time in case of any failure in primary CPU

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2234

Fig. 36: Principle AC500 HA-Modbus TCP architecture example based on Ethernet redundancy

Details of AC500 HA operation along the figure above:
● PLC redundancy: The two PLCs (A and B) are running in parallel and calculating and

reading.
One is “primary” = active, which means also writing data to field devices.
The other one is “secondary” (= stand-by), also calculating but only reading data from field
and receiving synchronization (or short = sync) data from the primary.

● Synchronisation data are critical internal variables with e.g. historical content, which will
be transmitted from primary to secondary CPU over the sync connection, so that secon-
dary always has the latest data and can take over immediately. Automatically synced are
the historic data of the special HA library function blocks (like counters, timers, integral
controllers, …), additional Data e.g. of events and diagnosis can be synced by the user
with sync blocks. The sync connection also transmits a “lifecom1” signal (back and forth)
containing diagnosis data of each CPU, so that both CPU know the status of the other CPU.
If secondary CPU receives no “lifecom1” anymore it assumes that primary CPU has a failure
and takes over primary status. If the sync connection is broken both CPUs would try to
adopt primary status, therefore, a separate connection “lifecom2” is used to differential a
“sync link” failure from an “other PLC” failure. The “lifecom2” should be routed via a different
physical communication path than the data sync/lifecom1, e.g. the Field or SCADA network.

● The field I/O connection is performed via the Ethernet protocol ModbusTCP - connecting
the CI52x devices (Ä Chapter 1.6.3.7.4.1 “CI521-MODTCP” on page 3156 or Ä Chapter
1.6.3.7.4.2 “CI522-MODTCP” on page 3196).

For high availability/redundancy of the field or SCADA network, proven Ethernet network redun-
dancy mechanisms are used. (In AC500 this is assumed to be realized by at least 2 (to avoid a
single point of failure) external, managed switches), which has the advantage to be able to use
AC500 HA with any faster redundancy mechanism / protocol.

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2235

● For the I/O communication with CI52x modules two variants exist (see online help: PLC
Automation with V2 CPUs ➔ PLC integration ➔ Device specifications ➔ Communication
interface modules (S500) ➔ Modbus XY)
For smaller systems, the CI52x modules can be directly daisy chained (as in previous figure
above) if MRP (Media Redundancy Protocol) or DLR (Device Level Ring) is used. Ci52x are
not actively participating in ring recovery however, a special FW allows fast ring detection
and very short freeze times. Larger systems with e.g. many IO and clusters typically anyway
connect to the network via a dedicated managed switch.

● SCADA connection is redundant by nature of the two Ethernet ports and can be extended
with further redundancy level as well by managed switches. SCADA itself can also switch
the primary PLC to ensure communication to the active PLC in case of a simple connection
and a connection failure. If the redundancy mechanism of the OPC DA server is not used,
SCADA level itself must be able to handle and differentiate primary and secondary PLC and
IP addresses based on the HA-status bits. For CP600 a script exists to do the same for
Modbus or AC500 communication protocol.

In most PLC applications the critical components to fail are, beneath PLC, typically the power
supply or communication components such as wires or switches. Therefore a SPOF (Single
Point Of Failure) has to be avoided by adding redundant devices or redundancy functions
wherever a failure likelihood is high and failures are not tolerable.
HA core functionality typically can tolerate only a single failure in the different levels. Then, a
repair of the failed part is highly advised to achieve and ensure redundancy again. As shown
in the above figure, the I/O-network cabling already provides a second independent redundancy
layer e.g. for cable failure by its redundancy mechanism (e.g. ring), which can keep up commu-
nication without switching the PLCs: There a second failure in the PLC level could be tolerated
as long as both connecting, managed switched still work, but it is highly advised to repair
immediately anyway.

The AC500 High Availability system itself only takes care of the first fault. For
example, in case of a second fault the primary PLC remains primary PLC
until the second fault occurs. This results in no further switchovers (manual
switchovers included).

Due to the efficient data sync mechanism, which allows data sync over normal and shared
ethernet networks, with a well-planned communication network, the PLCs can operate geo-
graphically separated (by many 10th of kilometers). So even in catastrophic events with full
mechanical destruction still one PLC will be available to control the process or infrastructure.
The secondary PLC or single CI52x modules can be exchanged in a running system without
interruption of the primary PLC or the process. (Check document in “Examples” directory of
Automation Builder if HA package was installed.)

In order to achieve high availability, the CODESYS application must be enhanced with HA
function blocks, from the HA-Modbus TCP library and the CI52x library. If the bulk data manager
tool (BDM) is used for configuring the System and I/O modules - this is done automatically
for the basic initial configuration step by code creation resulting in a prepared user specific
“template” application (see below).
● HA-Modbus TCP library contains HA control and HA utility function blocks

– HA control function blocks manage the core HA functionality by collecting diagnosis and
switching if necessary.

– HA utility function blocks provide standard functions in the application program with
internal sync for integral data e.g. timers, counters, PI control.

● CI52x library contains a function block to configure and communicate to the communication
interface modules and ensures that only the primary PLC writes to the outputs. The inputs
are read by both PLCs.

● For both PLCs the same application must be used/downloaded.

Libraries

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2236

For configuration of the CI52x Modbus TCPs, a separate Bulk Data Manager tool (BDM) is
provided. Especially in larger systems usage of BDM is recommended to comfortably engineer
HA and create CI52x related configuration and variable data in one place:
● Configuration and parameters of the used I/O modules
● Program code creationfor variable naming, configuration, communication and all basic HA

functionality
The BDM tool can serve SCADA programming and documentation as well in an efficient
manner.

1.5.8.1.2 Hardware, requirements and options overview
Two same type AC500 PLCs are required as central hardware components. Each PLC is
equipped with at least two Ethernet ports at a processor module or at a communication module.
The two PLCs, called PLC A and PLC B, are linked by Ethernet to exchange and synchronize
information (Sync). Connections to the AC500 peripheral field devices (I/O) are performed via
Ethernet as well.
For further information on which CPU type and library to be used refer to Ä Table 379 “Over-
view of AC500 HA systems and options” on page 2238.
The following table gives an overview of the different High Availability variants possible with
AC500.
The figures are indicative, depend on chosen architectures, system size, network and CPU/CM
modules used.

Bulk data man-
ager tool (BDM)

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2237

Table 379: Overview of AC500 HA systems and options
Library version HA-CS31 HA-Modbus TCP

CPU version V2 CPUs V2 CPUs V3 CPUs

I/O communication Parallel
serial

Ethernet Ethernet

CPUs PM573 - 595 PM5
73

PM59
1

PM595 PM5630 PM5650 PM5670

Parallel serial I/O network based on Ethernet and ext.edundancy
mechanism

Max. system size
CI52x 1, 6)

3 - 50 2) 3 < 25 /
50

< 60 /
92

< 30 < 50 < 120

I/O modules CI590: S500 CI52x: S500 and S500-eCo usable 4)

Switch-
over

times

CPU 25 -120 ms 3) Typically < 50 ms ~6)

Field 15 - 120 ms
3)

Depends mainly on network size, redundancy mecha-
nism of external switches 7)

SCADA connectivity OPC DA,
IEC60870,

…

OPC DA, IEC60870, … OPC DA, OPC UA, IEC60870,
…

Interfaces Several
CS31 and
Ethernet

Several ETH ports, via
CM597

2 ETH ports 5)

+ 1 CAN Interface

Sync UDP UDP UDP

Lifecom1 - UDP UDP

Lifecom2 - Modbus TCP Modbus TCP / CAN

Overview of AC500
HA system

1) Number of CI52x recommendation based on performance or max. number of sockets (CPU
and CM modules).
For more details of Modbus clients supported in AC500 V3 PLCs refer to Ä Chapter 1.6.1.3.3
“Limitation of connections per protocol” on page 2392.
2) Limited by CPU performance, number of CM574 modules number of CS31 clients and
process data limits.
3) Depends on system size and CPU type.

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2238

4) For details on certain S500-eCo modules not supported, see the Automation Builder release
notes, Appendix 1.
5) CM597 not available for V3 CPUs.
6) Based on HA bits switchover, depending on failure case Ä Chapter 1.5.8.1.3.2 “Use case
descriptions” on page 2245 Ä Chapter 1.5.8.1.5.2 “Task configuration recommendations for HA
system” on page 2258.
7) Field network: If CI52x are used with their 2 ports as part of a ring: In the moment of a network
switchover single telegrams may be destroyed: - for V2 ETH onboard: Standard TCP delays
repeats by 500 ms - for V3 CPUs onboard or V2 CPU using CM597: A special HA-FW ensures
fast repeats of typ. ~50ms (settable).

CPU choice, system size and performance indications
The diagrams below indicate the example choices of AC500 CPU's (horizontal axes) based
on the number of communication interface CI-remote I/O clusters (Communication Interface
modules; numbers see legend) used in a system and resulting application cycle times (vertical
axes).
Further details can be found in Ä Chapter 1.5.8.1.5.2 “Task configuration recommendations
for HA system” on page 2258. The values in below graphs base on the assumption to use
max. 50-60% as CPU loading by the bare fast IO communication and HA functionality. So the
application load would come on top and cycle times (especially HA, Modbus) need to be relaxed
(made higher) compared to below indication.

Fig. 37: Indication of AC500 CPU's performance (horizontal axes) based on the number of
communication interface CI-remote I/O clusters (Communication Interface modules; numbers
see legend) used in a system and resulting application cycle times (vertical axes).

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2239

Example: If you need a system supporting min. 25 CI at application cycle time around 120 ms,
suitable options based on above graph would be V2 PLCs - PM592 or PM595 and V3 PLCs –
PM5650 or PM5670. The main parameter in the application cycle determination is the amount of
overall Sync data, which is assumed 160 bytes per CI for the smaller systems, up to 250 bytes
per CI for the larger ones. Sync data of the project of in total more than ~1200 byte necessitates
several HA cycles to transfer within one application cycle.
The V2 or V3 PLCs types, also differ in available interfaces, protocols supported and memory
size.
CI521-MODTCP or CI522-MODTCP can be used as peripheral devices which communicate via
the Modbus TCP protocol with the PLCs. The HA-Modbus TCP library supports currently up
to 120 CI52x, depending on the CPU type as listed in Ä Further information on page 2238.
Each CI52x supports up to a maximum of 10 S500-I/O modules. Nevertheless the standard
Modbus TCP communication of the HA library transfers only 120 words per cycle: Therefore
please check if for your module configuration matches: In case of many analog IO modules
with high-density - like 16 channel AI523/AO523 or modules with fast counters - this limit might
be surpassed by roughly 5-6 such modules (to help calculate exactly, there is an Excel sheet
provided in the HA “Examples” subfolder of Automation Builder once installed).
For more details of Modbus clients supported in AC500 V3 PLCs refer to Ä Chapter 1.6.1.3.3
“Limitation of connections per protocol” on page 2392.

Local I/O on a CPU can signal / interact for diagnosis or service with / from this
CPU. This local I/O is not redundant and won't be available to communicate to
in case of a CPU failure.

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2240

Hardware connections

Fig. 38: AC500 HA and SCADA connection

SCADA/ Engineering connection is done using ETH ports of both PLCs and one or several
managed Ethernet switches depending on the redundancy requirements in the Ethernet levels.
● HA communication between PLC A and PLC B must be done via two physical connections

between PLC A and PLC B in order to distinguish a “sync link” failure from another PLC
failure:
– Sync (including “lifecom1”) over Ethernet
– “Lifecom2”

over Ethernet (Modbus TCP): Can be combined with Field or SCADA network or a
separate Ethernet network
over CAN (only possible with AC500 V3 CPU)

● Field devices (CI52x modules) will be connected via Ethernet switches, forming a redundant
network (if requested). For details on network configuration see Ä Chapter 1.5.8.1.5.3 “Field
I/O network topologies” on page 2260.

The following table shows possible combinations of connections for different CPU types. There
must be at least two physical connections. The availability can be increased with a third physical
connection, e.g. CM597 for AC500 V2 CPUs or CAN for AC500 V3 CPUs.

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2241

1 ETH1 (orange)
2 ETH2 (green)
3 CAN (blue, applicable only in V3)
11 CM597 communication module at slot1 (grey)

The blue box indicates the example which is used in the next chapters.
The numbers in the figure above define the slot on which the connection is made. Last line # of
physical connections define how many physical interfaces are used or connected between the
PLCs.
It is also possible to realize an HA system without a communication interface CI module see
chapter Ä Chapter 1.5.8.1.6.1.1 “Configuration without communication interface modules to
establish redundancy” on page 2264.

Hardware Example
HA hardware configuration based on V3 PLC to explain the minimal recommended Ethernet
port configuration.
● The Sync connection is performed via SCADA network, the
● “lifecom2” is performed via field network (or the other way around).
The following figure represents the connection example with the details from the highlighted box
(see previous figure).

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2242

Fig. 39: Physical connection example: 2 ETH CPUs combining sync data / “lifefcom2” with
SCADA / Field I/O network

Support of I/O modules (S500/S500-eCo) depends on the version of the library
package. See the version details of the library in the Automation Builder release
notes.

1.5.8.1.3 Functionality
Failures and use cases

The AC500 High Availability system performs a switch-over whenever the primary PLC is
powered off, crashed or stopped or if the primary PLC loses fieldbus communication (cut of ETH
or defect MRP switch) while the secondary PLC still has connection.
In the following the different use cases and reaction times are outlined.

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2243

Fig. 40: HA use cases – failures, assuming PLC A is primary and “lifecom2” over field network

The below use case table with reaction and diagnosis messages are based on the setup where
Sync is via SCADA network, “lifecom2” over field network and PLC A is primary.

Case Use case Reaction Diagnosis message
on
*)

1 Primary PLC is powered off,
crashed or stopped.

Switchover to secondary
PLC. CI52x outputs are
frozen during switchover
period.

Secondary

2 Secondary PLC is powered
off, crashed or stopped.

No switchover, process con-
tinues.

Primary

3 Primary PLC loses con-
nection to fieldbus CI52x
modules while secondary
PLC still has a connection.

Switchover to the secon-
dary PLC. CI52x outputs
are frozen during switchover
period.

Primary

4 Secondary PLC loses con-
nection to one or more CI52x
modules.

No switchover, process con-
tinues.

Secondary

5 CI52x module is stopped/
powered off.

No switchover, process con-
tinues.

Primary and secon-
dary

6 Connection lost in Field
Ethernet network.

Depending on Ethernet net-
work structure, and redun-
dancy mechanisms used a
reconfiguration time exists.

Lifecom2 lost and CI
module lost errors will
be generated in pri-
mary and secondary.

7 Sync and/ or “lifecom2” are
broken.

No switchover, process con-
tinues.

Primary and secon-
dary

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2244

Case Use case Reaction Diagnosis message
on
*)

8 Primary PLC loses connec-
tion to SCADA.

SCADA is responsible to
detect and to switch over.

-

9 Secondary PLC loses con-
nection to SCADA.

SCADA is responsible to
detect and to switch over.

-

10 SCADA is broken SCADA is responsible to
detect and to switch over.

-

11 Manual switchover by the
user.

Switchover to the secon-
dary PLC. CI52x outputs
are frozen during switchover
period.

-

*) Diagnosis description, see function block description.

Use case descriptions
The below cases explain the behavior of the system during different use cases.
Basic diagnosis information is provided for each case. For diagnosis description refer to
Ä Chapter 1.5.8.1.8 “Diagnosis” on page 2269.

Reaction Switchover to secondary PLC. The communi-
cation interface modules are updated by the
new primary PLC.

Comment CI52x outputs are frozen during switchover
period.

Diagnosis message on function block Primary PLC is powered off.
Secondary PLC: control block output Runtime
Error = 16#001E and xHaModPrimary = TRUE

Case 1 a): Pri-
mary PLC is
powered off or
crashes

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2245

Reaction Switchover to secondary PLC. The communi-
cation interface modules are updated by the
new primary PLC.

Comment CI52x outputs are frozen during switchover
period.

Diagnosis message on function block Primary PLC is stopped.
Secondary PLC: control block output Runtime
Error = 16#0016 and xHaModPrimary = TRUE

If “lifecom2” is lost and the PLC is in STOP mode RUNTIME ERROR will not
be TRUE. This is because Modbus is still responding even if PLC is in STOP
mode.

Case 1 b): Pri-
mary PLC is
stopped

Case 2 a): Sec-
ondary PLC is
powered off or
crashes

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2246

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#001E and xHaModPrimary = TRUE
Secondary PLC is stopped.

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0016 and xHaModPrimary = TRUE
Secondary PLC is stopped.

If “lifecom2” is lost and the PLC is in STOP mode RUNTIME ERROR will not
be TRUE. This is because Modbus is still responding even if PLC is in STOP
mode.

Case 2 b): Sec-
ondary PLC
stop

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2247

Reaction Switchover to secondary PLC. The communi-
cation interface modules are updated by the
new primary.

Comment CI52x outputs are frozen during the switch-
over period.

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0094 and xHaModPrimary =
FALSE
Secondary PLC: control block output Runtime
Error = 16#0015 and xHaModPrimary = TRUE

Case 3: Primary
PLC loses con-
nection to
fieldbus CI52x
modules

Case 4: Secon-
dary PLC loses
connection to
fieldbus CI52x
modules

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2248

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0015 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0094 and xHaModPrimary =
FALSE

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0081 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0081 and xHaModPrimary =
FALSE

If any CI52x-MODTCP module is powered off and on, there is no need to
power restart the complete system. The module will be recognized once the
communication is reestablished.

Case 5: CI52x is
powered off or
stopped

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2249

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0014 / 16#0094 and xHaModPri-
mary = TRUE
Secondary PLC: control block output Runtime
Error = 16#0014 / 16#0094 and xHaModPri-
mary = FALSE

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0008 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0008 and xHaModPrimary =
FALSE

Case 7 a): Sync
connection is
broken between
the PLCs

Case 7 b):
Lifecom2 con-
nection is lost
between the
PLCs

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2250

Reaction No switchover

Comment Process continues, SCADA is responsible to
detect and switchover

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0000 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0000 and xHaModPrimary =
FALSE

Case 8: Primary
PLC loses
SCADA connec-
tion

Case 9: Secon-
dary PLC loses
SCADA connec-
tion

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2251

Reaction No switchover

Comment Process continues, SCADA is responsible to
detect and switchover

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0000 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0000 and xHaModPrimary =
FALSE

SCADA link may be combined with sync connection or “lifecom2” connection. In
that case runtime error and system behavior will be as described in the cases
above (Sync connection lost / “lifecom2” connection broken).

Reaction Changeover from primary PLC to secondary
PLC.

Comment CI52x outputs will be frozen during switchover

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0000 and xHaModPrimary =
FALSE
Secondary PLC: control block output Runtime
Error = 16#0000 and xHaModPrimary = TRUE

A manual switchover can be triggered from both PLCs. For each trigger a
switchover from primary PLC to secondary PLC will take place.

1.5.8.1.4 How to get and install the AC500 High Availability system package
The PS5601- High Availability Modbus library package can be installed from the Automation
Builder Installation Manager by selecting the component.

Case 11: Manual
changeover by
user

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2252

Fig. 41: Automation Builder Installation Manager

The following components are installed:
● Libraries

– AC500 V2 libraries: C:\Program Files (x86)\Common Files\CAA-Tar-
gets\ABB_AC500\AC500_V12\library\PS5601-HA-MTCP
CI52x_AC500_Vxx.lib, HAModbus_AC500_Vxx.lib.

– AC500 V3 libraries available in library repository:
ABB_CI52x_AC500.compiled-library, ABB_HaModbus_AC500.compiled-library

● Online help: HA-CS31, HA Modbus V2 function block description
● Automation Builder Example folder: C:\Users\Public\Documents\AutomationBuilder\Exam-

ples\PS5601-HA-MTCP
– AC500_V2: Examples for AC500 V2 including documentation
– AC500_V3: Examples for AC500 V3 including documentation
– BulkDataManager: Bulk Data Manager (BDM) tool which helps efficient engineering in

larger projects. This requires a separate installation. Further information can be found
in the document: C:\Users\Public\Documents\AutomationBuilder\Examples\PS5601-HA-
MTCP\BulkDataManager\Documentation.

– HA-Modbus TCP System Technology.pdf (this document)

1.5.8.1.5 System structure
This chapter explains the detailed structure of the HA system in CODESYS. A HA-Modbus TCP
system is characterized by two AC500 PLCs with the following features:
● Identical programs (application with additional HA and Modbus function blocks) that are

loaded to both PLCs.
● Communication interface modules CI52x-MODTCP that are connected via Modbus TCP.
● Synchronization of both PLCs (sync/lifecom1 and lifecom2 logical connections).

Programming
Each PLC contains at least three main tasks/ programs:
● HA program
● Application program
● Modbus program

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2253

The programs in one PLC communicate via internal structures of the libraries and dedicated
internal memory areas for HA-Sync array and the Modbus CI52x memory(ies) CiModDataxx.

Fig. 42: Principle structure of the HA system and recommended tasks: HA, Modbus, Application

Table 380: Image description
Layout element Meaning
Dotted outline box Indicates optional function block or programs.

Solid outline box Indicates the mandatory function blocks or
programs. All mandatory blocks are called
when an export is created from Bulk data
manager.

Italic font Indicates the program or functions user should
call in his project and not created by Bulk data
manager.

Light yellow background block / blue arrow Indicates the operations which are handled
internally in the library.

Green solid box Indicates the three different tasks which user
has to configure.

The function block CIModCI52x (V3) / CI_MOD_CI52x (V2) reads the input values from the
CI52x modules and stores them in the structure CiModDataxx. If the CPU is primary it also
writes the outputs to the CI52x modules. The Function block also parametrizes the CI Module
as configured in e.g. Bulk data manager tool during the first startup or when a CI module is
exchanged.

Modbus pro-
gram

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2254

Normally the HA-Modbus TCP library takes care of communication monitoring.
Nevertheless if com- munication is cut completely, the CI52x communication
interfaces and its I/O modules have to react on their own to achieve a bumpless
or desired behavior: The following parameters for the CI52x com- munication
interfaces and I/O modules need to be considered:

– – CI52x: parameter “Timeout" for Bus supervision: 2)

Allows to detect errors from communication interface side as well and take
action to ensure a fail- safe behavior if communication is cut. It can be set in
10 ms steps. If set to 0 no bus supervision is active. Proposed value: 50 =
500 ms = default in Bulk data manager; this value should be increased, e.g.
to value 65 if AC500 V2 CPU ports are used for field communication to take
care of the larger TCP retransmit time.

– “Behaviour Outputs” at “Timeout for Bus supervision” 1), 2). This fail-safe
parameter has to be con- sciously set: separate settings are possible for
each module (and communication interface): “off”; “last” or “substitute”: 5 s,
10 s, ∞ s 1).

Remarks:
1) The parameters “Behaviour Outputs at comm. Error” is only analyzed if the
Failsafe-mode is [ON].
2) Both are CI52x parameters set e.g. via Bulk data manager tool in the pro-
gram.

● At the start of the application task the InputRefresh program has to be called. It copies data
from Modbus via the structure CiModDataxx to the user variables, which were defined in
BDM as signals. For further information refer to BDM documentation, chapter 7 which is
available in the path: C:\Users\Public\Documents\AutomationBuilder\Examples\PS5601-HA-
MTCP\BulkDataManager\Documentation.

● Only the main application programs should be in this task and use these variables
for the user defined functions. E.g here the user programs and logic should be called
and use the HA libraries utility blocks (which sync their historic data automatically) and
HA_MOD_DATA_SYNC blocks for further user data which should be synchronized.

● Data of utility blocks and HA_MOD_DATA_SYNC blocks are copied to the HA Sync array of
the primary CPU (which is sent to the secondary CPU by the HA program).

● OutputRefresh program is called as a last step. It copies data from the user variables via
structure CiModDataxx to Modbus.

Consider the on-delay timer HA_MOD_TON (V2)/ HaModTon (V3).

Fig. 43: HaModTon utility function block with internal synchronization

Both PLCs require the same function block called in the program. Under normal operating
conditions the elapsed time ET and output Q of the timer is synchronized internally from primary
to the secondary CPU. ET and Q data are available and can be attached to local or global
variables in the program as per application requirements. If PLC A shuts down due to a fault,
the primary status switches over to PLC B.

Application pro-
gram

Example of a
utility function
block (with inte-
grated sync
data)

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2255

In the event of a switchover, the moment PLC B becomes the primary, the timer on this PLC
will keep running. Until the time of PLC A failure, the timer on PLC B was synchronized. This
is most important in cases when one CPU was not in run or off and needs to “catch up” such
integral or historic system values (timers, counters, operator settings, …). The actual process
remains then unaffected by the switchover.

HA_MOD_CONTROL has two functions:
● Exchange status data (lifecom1 and lifecom2) and switch from secondary to primary PLC

(or vice versa) based on the status according to the use cases described in Ä Chapter
1.5.8.1.3.1 “Failures and use cases” on page 2243.

● Send sync “HA SYNC” array from primary to secondary PLC to ensure that the secondary
PLC is always in hot-stand-by and can take over immediately. UDP protocol is used for data
synchronization between the CPUs.

This chapter explains how the data synchronization happens between primary and secondary
PLC via UDP.
All prepared sync data is synchronized with the secondary PLC. Typically only integral values
(timers, counters, PID, …) or settings which might have been received have to be synchronized.
For example for fast start-up cases when a secondary CPU was restarted, as both PLCs are
running and calculating closely in parallel and based on the same input values, synchronization
will make the secondary start with current value instead of default value. For details on how to
configure or use the data sync function block refer example projects.
Following steps are performed:
● HA SYNC array is transferred via UDP to the secondary CPU. This includes the exchange

of lifecom1 status between primary and secondary CPU.
● In the HA program the HA_MOD_CONTROL function block collects all diagnosis, sync and

lifecom2 data from the field and/ or the other PLC. Whether a switchover is necessary is
decided based on a simple decision matrix.

● Lifecom2 is exchanged between CPUs over Modbus TCP every cycle.
● One task per program, see figure above.
● Status of the inputs connected to CI52x decentralized I/O stations is transferred to both

PLCs simultaneously in every PLC cycle. They are received by the CI52x function block.
● At the end of the program, the generated output values are sent, by transferring from the

primary PLC respective buffers to the CI52x-MODTCP module(s) via CI52x function block
and Modbus TCP. The secondary PLC is prepared to send but stays “silent” (not sending
output values).

PLC needs one HA cycle to send one ETH frame data from primary to secon-
dary CPU and receive acknowledge from secondary CPU. Similarly V3 PLC
needs two HA cycles.

One ETH frame copies approx. 1412 data bytes. The number of ETH frames needed to syn-
chronize HA Sync Array completely depends on the number of data sync bytes. Global variable
iNoOfEthFrames gives the user this information, which should be used to calculate the cycle
time for the application task.
Ä Chapter 1.5.8.1.5.2 “Task configuration recommendations for HA system” on page 2258

Up to max. 60 kB of Sync data can be synchronized.
Synchronization between the primary and the secondary PLC happens over a few cycles of HA
task time depending on the total sync data bytes configured in the system. Lifecom1 is also
exchanged between the primary and the secondary PLC. The primary PLC sends lifecom1 to
the secondary PLC along with sync data. Backwards the secondary PLC sends lifecom1 to the
primary PLC every cycle.
The following figures shows an example for V2 PLC. When in the project the sync data is equal
to 4 iNoOfEthFrames then it takes 4 HA cycles to synchronize the data between the PLCs.

HA program

Data synchroni-
zation via UDP

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2256

When sync data in the project is equal to 6 iNoOfEthFrames then it takes 6 HA cycles to
synchronize the data between the PLCs.

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2257

Task configuration recommendations for HA system
For a balanced performance of the HA system consider the following recommendations in your
project task configuration:
General
● Use the real time priorities for all HA related tasks. The HA program/ task should be called

at highest priority as it is responsible for the core HA functionality and should be the fastest
task.

● The Modbus task contains the Modbus communication function blocks at lower priority and
(depending on CPU performance) also a faster cycle time to ensure sufficient update rates
on Modbus without over- loading the CPU with communication.

● The application program parts should be called in the application task with even lower
priority and a larger cycle time than above tasks.

● Configuration to improve standard Modbus TCP for a fast switch over between PLCs.
● AC500 V2

– CM597ETH_SET_TCP_RTO function block from CM597_ETH_AC500_V28.lib needs to
be called inside HA task. User needs to call this function block for each CM597 module
connected. For recommended values see example description.

● AC500 V3
– RTO retransmission time function block “EthSetRtoMin” for the ETH port where fieldbus

communication is configured. By default, minimum retransmission time configured is 15
ms.

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2258

Task Priority PM57x, PM58x,
PM59x

PM595-4ETH V3 PLCs

HA 10 (high) 4 ms or higher 2 ms or higher 4 ms or higher

Modbus 11 (medium) Maximum of (HA cycle
time *2), (3 ms +
roundup (#CI/2))

Maximum of (HA
cycle time *2),
(3 ms + roundup
(#CI/2))

Maximum of (HA
cycle time *2),
(3 ms + roundup
(#CI/2))

Application 12 (low) Maximum of (Modbus
cycle time *2), (iNoO-
fEthFrames * HA cycle
time)

(iNoOfEthFrames
* HA cycle time)

Maximum of
(Modbus cycle
time *2), (iNoO-
fEthFrames * HA
cycle time *2)

1. Choose suitable CPU type according to chapter CPU choice, system size, performance
indications

2. Configure task priorities according to the table
3. Set HA task to minimum according to above table
4. Calculate Modbus cycle time according formulas in the table, based on HA cycle and

number of CI modules “#CI”
5. Calculate Application cycle time according to formulas in the table, based on Modbus

cycle time and variable iNoOfEthFrames, which is defined in the global variables of HA-
Modbus TCP library.

6. Measure PLC and CPU load during trial operation.
V3: PLC Utilisation: Ä Chapter 1.6.5.1.2.1.4 “PLC utilization” on page 3470

If the PLC load is higher than 40 % or CPU load higher than 60 % then increase HA cycle
time (e.g. to 8 ms / 12 ms / 24 ms, …) and go to step 4, repeat the steps until loading is
within defined range.

A new V3 CPU configuration option is introduced from Automation
Builder 2.4.1 and onwards which allows to change the priority for Ethernet
communication in PLCs.

Set this configuration in the device tree of the CPU in Automation Builder
double click on PLC “CPU_Parameters Parameters è Communication
Schema è Select “Onboard Ethernet””.

The above parameter should be set to “Onboard” Ethernet for HA systems
and it will consequently increase the loading due to the higher priority.
PLC Load < 50 % and CPU load < 70 % should be considered as guide-
lines here instead, while setting the task times while setting the task times.

7. Following timeout values has to be defined in the user project according to the relation
defined.

Timeout variables (see defini-

tions in box below table)

HA in V2 HA in V3

timCI52xTimeOut 1 * Modbus Task time 50 ms or Modbus Task time,
whichever is higher

timHaModSyncTimeOut 1* HA Task time 2 * HA Task time

timResponseTimeout Not applicable 50ms or (2 * Modbus Task
time), whichever is higher

timCanTimeOut Not applicable 100 ms or (2 * Applica-
tion Task time) whichever is
higher

Procedure for
task configura-
tion

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2259

8. Add additional applications and SCADA communication: Check PLC and CPU load again
vs. your requirements.

In the HA Modbus system different timeouts must be configured for the fine
operation of the system as described above in the task configuration for V2 and
V3 PLCs. These different timeouts meaning, and relation is explained below:

timHaModSyncTimeOut:
Time limit to check if the new sync data is received or not in the secondary PLC.
If this timeout is not defined properly, Sync lost error/ “lifecom1” lost error will be
generated.

timCanTimeOut:
Time used for the check whether “lifecom2” is received when configured via
CAN. This value is applicable only in AC500 V3. Lifecom2 via CAN won’t be
stable between the PLCs and runtime error "lifecom2 lost" will be flickering if not
the right value is configured.

timCI52xTimeOut:
Time limit to check whether new data is received in the Modbus field modules.
It is also used to check whether “lifecom2” is received when configured via
Modbus TCP. If 'timCI52xTimeOut' is not defined as described, “lifecom2” error /
communication interface diagnosis error will not be generated as expected.

timResponseTimeOut:
Timeout value to check whether CPU has lost the communication interface
modules connected in the network. If this value is not defined as described,
communication interface module lost detection will not be indicated properly.

Field I/O network topologies
Modbus TCP communication between PLC and communication interface modules CI521-
MODTCP or CI522-MODTCP can be done using different network topologies. In the following
subchapters different simple combinations with their pros and cons are explained.

If a CI52x module of a daisy chain is powered off, next following modules will
lose connection/ data provided there is no redundancy in the Ethernet network
(e.g. ring and managed switch).

Simple ring topology (smaller systems)
In a simple configuration, CI52x modules can be part of a ring if MRP (or DLR) protocol is used
in the managed switches. Then the CI52x are connected from one to another device (“daisy
chained") through e.g. two network switches. The redundancy protocol detects a closed ring
and opens one port of a managed switch to avoid the ring. The user has to configure the
necessary ring configurations and enable the ring manager for the used ring ports in one switch.

It is recommended that time interval between ETH cable disconnection and
re-connection should be greater than 2-3 seconds.

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2260

Fig. 44: Redundant ring topology with 2 MRP switches (avoids a SPOF (Single Point Of
Failure))

Standard network topology (large systems)
In the standard redundant network, which is often done by third party dedicated telecommunica-
tion companies, managed switches are used for every connection point to this network. It’s the
network's (and operator's) responsibility to repair any failure fast enough so that no influence on
the HA system or its outputs occur.
The network can use other fast redundancy algorithms, also having other than ring structures, if
redundancy links are activated fast enough.

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2261

Fig. 45: Redundant ring topology with independent network (using any fast redundancy mecha-
nism internally in a ring or meshed network)

Parallel network topology (using PRP)
Each CI52x module and PLCs as single ended devices are connected by PRP switches to both
networks. Here the failure of the switch which connects the primary CPU will also lead to a
switchover.

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2262

Fig. 46: Parallel-redundant network, PRP switches to connect each device, CPU and communi-
cation inter- face modules

Redundancy switchover timing should match the settings in the program and communication
interface modules for time-out and freeze periods. The networks for larger systems are often
seen as a separate entity and done by a separate company. Make sure to have the redundancy
status information of the network at least in SCADA, to repair in time. If the I/O field network
responsibility is with the automation/ PLC part, the redundancy status should be also monitored
by the PLC. A warning to initiate repair may be created from the managed switches in the I/O
field network.

● Alarm output(s) wired (e.g. to a CI52x input and related settings of the switch(es)).
● Settings of the switch(es) to send (e.g. SNMP traps, which can be received in PLC

(AC500 SNMP library)).
● Use of “automation switches” which can also communicate their status directly via

Modbus.

Examples

It is also possible to connect switches in ring combination with CI modules
connected to them in daisy chain. User needs to do the relevant setting based
on type of switch and protocol (Ex: MRP, RSTP).

If RSTP ring configuration is used in the system, ring reconfiguration time is
slower than other ring protocols. During this reconfiguration, connection to the
CI modules will be lost.

HA Modbus system without communication interface modules in the network
It is also possible to have a HA Modbus system without connecting any field devices, CI521-
MODTCP / CI522-MODTCP in the network. This system can be used for establishing a redun-
dant PLC system with data synchronization between two AC500 controllers, either without field
IO or with user integration of other protocols to field-IO or “intelligent” IO: CPUs as field devices.

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2263

Secondary will be on hot standby with primary PLC, during a power off/ stop of the primary PLC.
Secondary will take over the control and continue the process. Any user integrated field-IO or
CPUs can establish communication mapped with the primary bit: parallel reading but prevent
parallel writing.
HA without CI modules can be also used during commissioning to check the data sync, OPC
and SCADA related communications without any field devices configured. The user has to set
the global variable 'xNoCiBus' to TRUE defined in the HA_GLOBAL_VARIABLES. This variable
has to be set to TRUE in both PLCs. Note: It is not advised to update this variable during run
time.

Fig. 47: Simple SCADA connection

1.5.8.1.6 Getting started
Quick start list and guidelines

Fig. 48: Engineering workflow using Automation Builder

Simple steps to engineer the HA Modbus system is explained in the following chapters.

Configuration without communication interface modules to establish redundancy
Configuration of the HA system without communication interface modules to establish redun-
dancy is done by the following steps (for details see the example documentations):

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2264

1. Install the hardware Ä Chapter 1.5.8.1.2 “Hardware, requirements and options overview”
on page 2237.

2. Select the CPUs based on the requirements Ä Chapter 1.5.8.1.2.1 “CPU choice, system
size and performance indications” on page 2239.

3. Install Automation Builder including the latest libraries Ä Chapter 1.5.8.1.4 “How to get
and install the AC500 High Availability system package” on page 2252.

4. Create a new project in Automation Builder for the chosen CPUs.
5. Configure the required Modbus and UDP configuration in the Automation Builder device

tree of the CPU.

6. For UDP in AC500 V2 PLC, configure “UDP_no_AC31_header” and set the port number
to value '3000'.

7. Assign the IP addresses in ³ 2 different Ethernet networks:

● SCADA network: SCADA, connected PLC A and PLC B
● Field network: connected CI52x module(s)

8. Configure the mandatory HA_MOD_CONTROL function block for the HA task Ä “HA
program” on page 2256.

9. Add Callback stop function HA_MOD_CALLBACK_STOP and call it in the system event
“stop”.

10. Add optional HA utility function blocks or function block HA_MOD_DATASYNC.

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2265

11. Make the global variable xNoCiBus = TRUE to run the system without communication
interface module configured in the system. Refer to Ä Chapter 1.5.8.1.5.3.4 “HA Modbus
system without communication interface modules in the network” on page 2263.

12. Add the task configuration Ä Chapter 1.5.8.1.5.2 “Task configuration recommendations for
HA system” on page 2258.

13. Activate the runtime license if it is a V3 PLC to enable HA system. Refer to Ä Chapter
1.6.6.2.2.2 “PLC runtime licensing” on page 3665.

14. Compile and download to both PLCs (simplified in V3 via integrated download manager).
15. Create a boot project, restart the complete system and RUN.
16. Operation: Test use cases (e.g. by putting the primary PLC to STOP mode and observe

the switchover). For different use cases and behavior refer to .
17. Runtime error and diagnosis function block can be used to monitor the system . For

details refer to chapter Diagnosis Ä Chapter 1.5.8.1.8 “Diagnosis” on page 2269.

Configuration with communication interface modules and redundancy
For medium or large HA systems the configuration with communication interface modules and
redundancy is done by the following steps. For details see the example documentations:
1. Install the hardware Ä Chapter 1.5.8.1.2 “Hardware, requirements and options overview”

on page 2237.
2. Select the CPUs based on the requirements Ä Chapter 1.5.8.1.2.1 “CPU choice, system

size and performance indications” on page 2239.
3. Install Automation Builder including the latest libraries Ä Chapter 1.5.8.1.2 “Hardware,

requirements and options overview” on page 2237.
4. Install the Bulk Data Manager tool (BDM) Ä Chapter 1.5.8.1.4 “How to get and install the

AC500 High Availability system package” on page 2252.
5. Create a new project in Automation Builder for the chosen CPUs.

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2266

6. Configure the required Modbus and UDP configuration in the Automation Builderdevice
tree of the CPU. UDP settings are only required in AC500 V2 PLCs.

7. For UDP in AC500 V2 PLC, configure “UDP_no_AC31_header” and define the port
number as '3000'.

8. In AC500 V2 PLCs for each CM597-ETH communication module added the “Send
timeout” value has to be changed to 600 ms for the Modbus TCP server.

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2267

9. Assign the IP addresses in ³ 2 different Ethernet networks:

● SCADA network: SCADA, connected PLC A and PLC B.
● Field network: connected CI52x module(s).

10. Configure a network switch in the field network (if managed /redundant) based on network
redundancy required Ä Chapter 1.5.8.1.5.3 “Field I/O network topologies” on page 2260.

11. Run BDM tool to configure CI52x network.
12. Export the files. Refer for details in the document: C:\Users\Public\Documents\Automa-

tionBuilder\Examples\PS5601-HA-MTCP\BulkDataManager\Documentation.
13. Import the Bulk data export files to the Automation Builder project.
14. Add Modbus TCP configuration for the ETH ports.
15. For the system with V3 PLCs, set the Communication Schema to “Onboard Ethernet”

“CPU-Parameters Parameters” for better performance.

16. Add Callback stop function HA_MOD_CALLBACK_STOP and call it in the system event
“stop”.

17. Add optional HA utility function blocks or function block HA_MOD_DATASYNC.

18. Add the task configuration Ä Chapter 1.5.8.1.5.2 “Task configuration recommendations for
HA system” on page 2258.

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2268

19. Activate the runtime license if it is a V3 PLC to enable HA system. Refer to Ä Chapter
1.6.6.2.2.2 “PLC runtime licensing” on page 3665.

20. Compile and download to both PLCs (simplified in V3 via integrated download manager).
21. Create a boot project, restart the complete system and RUN.
22. Operation: Test use cases (e.g. by putting the primary PLC to STOP mode and observe

the switchover).
23. For different use cases and behavior refer to Ä Chapter 1.5.8.1.3.1 “Failures and use

cases” on page 2243.
24. Runtime error and diagnosis function block can be used to monitor the system. For details

refer to Ä Chapter 1.5.8.1.8 “Diagnosis” on page 2269.

1.5.8.1.7 HA-Modbus TCP Limits
HA-Modbus TCP is supported as of Automation Builder 2.0 or higher and the corresponding
AC500 CPUs mentioned previously. AC500 V3 PLC is currently not supporting external ETH
communication modules. Therefore, onboard ETH1, ETH2 (and eventually CAN) ports are to be
used for communication.
3000 sync instances can be used: Either 3000 HA_MOD_DATA_SYNC function block instances
alone or together 3000 instances of HA_MOD_DATA_SYNC inclouding + HA utility function
block can be used. If more than 3000 instances are configured user can see the error at
xHaModDataErr = True and wHaModDataErNo = 16#2022 in HA_GLOBAL_VARIABLES.
The maximum length of sync data at an instance of HA_MOD_DATA_SYNC function block
would be 1412 bytes. The maximum size of sync data which can be synced between PLCA and
PLCB in total can be max. 60 000 bytes.
The HA-Modbus TCP system takes care of the first fault only. This fault must be visualized by
the programmer and overall system (e.g. HMI, SCADA) to the operator, to plan and repair as
soon as possible as redundancy might be lost. If more than one error occurs, system may not
react to second or following faults.
SCADA/ HMI has to be configured/programmed to:
● Only read data from the primary PLC.
● Parameters and control data should be always written to both PLCs or has to be synchron-

ized via the function block.
This is given automatically when using OPC DA, where the CODESYS OPC Server does this
switching for the connected clients according to the primary status. For CP600 HMI a script is
available to switch likewise (connected via the internal AC500 protocol or Modbus). Zenon as a
SCADA also uses the AC500 protocol to automatically switchover.

1.5.8.1.8 Diagnosis
This chapter explains the diagnosis information available to the user in the HA Modbus library
and CI52x library. Diagnosis information is available at the outputs of HA control function block,
HA Diagnosis function block and at the CI52x function block.
Depending on the use case defined in Ä Chapter 1.5.8.1.3 “Functionality” on page 2243 dif-
ferent diagnosis information can be accessed.

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2269

Primary CPU currently can read-out the diagnosis information (CI52x function
block outputs) from communication interface module only once, hence secon-
dary PLC will not be able to read the diagnosis information from the CI52x
module.

So if any change happens in CI52x diagnosis it is not reflected in the secondary
CPU.

This can lead to different diagnosis information of CI52x module in the primary
and the secondary CPU. Hence it is recommended to customers that diagnosis
information should be handled in the application (e.g. SCADA).

Diagnosis in HA-Modbus TCP library
In the HA Modbus library diagnosis information is available at the control block and diagnosis
block.

This output at the HA control block gives the information of system configuration. Each bit of the
word represents a different configuration.

Bit Description
0 Sync is configured via CAN

1 Sync is configured via UDP

2 Lifecom2 is configured via CAN

3 Lifecom2 is configured via UDP

4 Lifecom2 is configured via Modbus TCP

5 Initialization for Ethernet configuration

This output at the HA control block gives the details of error in the configuration. Each bit of the
word represents different configuration errors. It is valid only when Error = TRUE.

Bit Description
0 Communication interface module is not configured properly

1 1< SyncSlot >3. Invalid value at input sync slot

2 1<SecSlot>3. Invalid value at input second slot

3 Value at IpAdrCpuASync is invalid

4 Value at IpAdrCpuBSync is invalid

5 Value at IpAdrCpuALifecom2 is invalid

6 Value at IpAdrCpuBLifecom2 is invalid

7 IpAdrCpuASync = IpAdrCpuBSync or IpAdrCpuALifecom2 = IpAdrCpuBLi-
fecom2
The IP addresses assigned at sync or lifecom2 inputs are wrong

This output at the HA control block gives the details of the error during run time of the system.
Each bit of the word represents different runtime errors. It will not set Error = FALSE.

Output System
Configuration

Output System
Configuration
error

Output Runtime
error

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2270

Bit Description
0 Communication interface modules are lost

1 Other CPU is not active

2 Lifecom1 is lost (part of sync)

3 Lifecom2 is lost. This error will not be TRUE if the PLC is in STOP status. This is
because Modbus is still responding even when PLC is in STOP

4 Synchronization is lost

5 Error in synchronization

6 Ethernet status error

7 Other PLC lost communication to CI52x modules

8 CAN_HEADER function block has error

9 CAN_DATA function block has error

10 fbGetOwnIP function block has error

Outputs at the HA Diagnosis function block, HaModDiag (V3) / HA_MOD_DIAG (V2) provides
the following diagnosis information of the HA system.

Output Description
CpuAPrimary / CPUA_PRIMARY TRUE indicates CPU A is primary

CpuBPrimary / CPUB_PRIMARY TRUE indicates CPU B is primary

CpuARun / CPUA_RUN TRUE means CPU A is in RUN mode

CpuBRun / CPUB_RUN TRUE means CPU B is in RUN mode

CpuACI52xBusActive /
CPUA_CI52x_BUS_ACTIVE

Modbus TCP CI52x bus active on CPU A

CpuBCI52xBusActive /
CPUB_CI52x_BUS_ACTIVE

Modbus TCP CI52x bus active on CPU B

CpuACi52xCfg / CPUA_CI52x_CFG Total number of CI52x configured on CPU A

CpuBCi52xCfg / CPUB_CI52x_CFG Total number of CI52x configured on CPU B

CpuACi52xAct / CPUA_CI52x_ACT Total number of CI52x active on CPU A line

CpuBCi52xAct / CPUB_CI52x_ACT Total number of CI2x active on CPU B line

SyncInstances / SYNC_INSTANCES Number of data sync and utility blocks initial-
ized in the system

SyncDataCheckSum / SYNC_DATA_SUM Checksum of all address pointer blocks in
bytes, indicates total number of bytes getting
synchronized.

Diagnosis func-
tion block

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2271

Output Description
StHACpuStatus / stHA_CPU_STATUS HA own CPU status. It will show the status

details of logged in CPU for the following
parameters:
● HA1: CPU A is primary
● HA2: CPU B is primary
● bit_CI52x_BUS_active: CI52x bus with

one or more communication interface
modules active

● bit_CI52x_BUS_err: CI52x bus one or
more communication interface modules
powered off / connection lost

● RUN: Run status of CI52x
● cnt: Count of data sync communication,

indicates data sync between CPUs is
okay.

StHAotherCpuStatus /
stHA_OTHER_CPU_STATUS

HA other CPU status. It will show the status
details of other CPU for the following parame-
ters:
● HA1: CPU A is primary
● HA2: CPU B is primary
● bit_CI52x_BUS_active: CI52x bus with

one or more communication interface
modules active

● bit_CI52x_BUS_err: CI52x bus one or
more communication interface modules
powered off / connection lost

● RUN: Run status of CI52x
● byETH_ACT_CI52x_Count: CI52x alive

identification count.

Apart from the errors / diagnosis information available in the control and diagnosis block, few
other variables can be monitored too.

Variable Value Description
wHA_ER_NO_SYNC_LINK 16#7487 No sync link between the

PLCs

HA_MOD_INVALID_LENGTH 16#2017 Invalid length at the input of
the data sync block

HA_MOD_ERNO_TBL_OVER
FLOW

16#2022 HA data reference table is full

xHaModDataErr TRUE IF TRUE – HA data sync is in
error state

wHaModDataErNo HA data sync error code

xHaModErr TRUE HA system is in error state

dwHaModServerAlive Life counter incremented by
OPC DA server

Other diagnosis
variables

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2272

Diagnosis in CI52x library
In addition to the diagnosis information in the HA Modbus library, additional diagnosis informa-
tion for each communication interface module can be obtained from the CI52x library.

This output at the CI52x function block gives the details of the configuration error in the CI52x
module. Each bit of the byte represents different configuration errors:

Bit Description
0 Reserved

1 Wrong ETH port is configured at input Config ETH

2 Wrong IP address is configured for communication interface module

RuntimeError (v3) / RUNTIME_ERROR (v2) of the function block CiModCi52x (v3) /
CI_MOD_CI52x (v2). Runtime error is a combination of error bits that are described in the
following:

Runtime Error Description
Bit 0 Indicates communication error i.e., when CPU is not able to

get any response from CI52x module. This error will get reset
when communication is reestablished.

Bit 1 Indicates parameter state is not equal to 2
(PARA_STATE_PARA_DONE). If not true, then system gives
I/O bus error. System resets this error when parameter state is
equal to 2.

Bit 2 Indicates the cluster error 1) in the system, if there is an error
in the diagnosis buffer. ACK input is needed to reset this error.

Bit 3 Indicates the hardware configuration error, mismatch between
configuration and actual hardware detected. System automati-
cally resets this error when the hardware matches.

S-ERR (LED on communica-
tion interface module)

Indicates that there is some issue with channel configuration in
the cluster 1). It is not linked with Runtime Error. User can read
DiagBuffer (v3) / DIAG_BUFFER (v2) from CiModDiag (v3)/
CI_MOD_DIAG (v2) function block to get more information.
This error does not get reset using ACK. It will only reset when
all channel errors are removed.

1) "Cluster" means a combination of one communication interface module and several I/O
modules attached to it.

Runtime error in different scenarios:

System Config-
uration error

Runtime error

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2273

Error Run-
time
error

PLC A: Primary PLC B: Secondary
Bit0 -
comm
error

Bit1 -
I/O bus
error

Bit2 -
cluste
r error

Bit3 -
HW
config
error

Bit0 -
comm
error

Bit1 -
I/O bus
error

Bit2 -
cluster
error

Bit3 -
HW
config
error

Wrong IP
address
configured

16#1 TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

Wrong slot
address
configured
1)

16#0 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Communi-
cation
cable dis-
connected

16#2 TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

Wrong I/O
module
plugged in
the CI
module

16#B BLINK TRUE FALSE TRUE BLINK TRUE FALSE TRUE

Wrong
hotswap
I/O module
plugged at
the start

16#B BLINK TRUE FALSE TRUE BLINK TRUE FALSE TRUE

Wrong
hotswap
I/O module
swapped
online

16#4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Configured
I/O module
not con-
nected at
start 2)

16#B BLINK TRUE FALSE TRUE BLINK TRUE FALSE TRUE

Configured
hotswap
I/O module
not con-
nected at
start 2)

16#B BLINK TRUE FALSE TRUE BLINK TRUE FALSE TRUE

I/O module
powered off
in CI
module 2)

16#4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Hotswap
I/O module
powered off
in CI
module 2)

16#4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Remove
hotswap
I/O module
when
online 2)

16#4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2274

Error Run-
time
error

PLC A: Primary PLC B: Secondary
Bit0 -
comm
error

Bit1 -
I/O bus
error

Bit2 -
cluste
r error

Bit3 -
HW
config
error

Bit0 -
comm
error

Bit1 -
I/O bus
error

Bit2 -
cluster
error

Bit3 -
HW
config
error

CI module
is powered
off

16#2 TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

Mismatch in
Channel
configura-
tion and
wiring 3)

16#0 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Regular I/O
module
mounted on
hotswap
terminal
unit 4)

16#0 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

During an
error stage
if HA
system
changeover
is initiated
5)

16#0 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1) Slot input in the block can be ignored. Similar to ETH input of the ModMast blocks.
2) Error generated only in the primary PLC, to reset ACK input to be used.
3) No runtime error in function block. Module generates S-Err and ZP Blinks.
4) No runtime error in function block. Module generates S-Err.
5) Runtimer Error bit2 gets reset when the PLC is switched over and error won’t be available in
any of the PLC regardless of its Primary status.

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2275

Table 381: Function block CiModDiag (V3) and CI_MOD_DIAG (V2)
Output Description
DevState / DEV_STATE CI521 or CI522 device current status is displayed.

● STATE_PREOP: Device is booting
● STATE_OPERATION: Device is operational, no bus super-

vision is active
● STATE_ERROR: Device detected a bus error, bus supervi-

sion is active
● STATE_IP_ERROR: Device has an IP address error
● STATE_CYLIC_OPERATION: Device is operational, bus

supervision is active
● STATE_NA: Not available

ParaState / PARA_STATE CI521 or CI522 device parameter status.
● PARA_STATE_NO_PARA: Device has no parameters
● PARA_STATE_PARA_ACTIVE: Parameterization process

is running
● PARA_STATE_PARA_DONE: Device used valid parame-

ters and parameterization is done
● PARA_STATE_ERROR: Device has invalid parameters
● PARA_STATE_NA: Not available

DeviceInfo / DEVICE_INFO CI521 or CI522 type and extended module types. This will
give the details of the module configured in the communication
interface module including the I/O modules.
If module is with suffix F, then fast counter is enabled for that
module.

DiagBuffer / DIAG_BUFFER CI521 or CI522 module diagnosis buffer. Refer to Ä Chapter
1.6.5.3.1.2.3.2 “Diagnosis data” on page 3611.

ErClass / ERR_CLASS Communication interface error class. Refer to Ä Chapter 1.7.3
“Diagnosis messages” on page 4062

ErNo / ERR_NO Communication interface error number. Refer to Ä Chapter
1.7.3 “Diagnosis messages” on page 4062

ModMastErr / MOD-
MAST_ERR

Latest 22 Modbus TCP error message status of the Mod-
MastTcp (V2) / COM_MOD_MAST (V2) function block.

ModMastErNo / MOD-
MAST_ERR_NO

Latest 22 Modbus TCP error numbers. Refer to the error
details in Modbus library Ä Chapter 1.5.8.1.8.1 “Diagnosis in
HA-Modbus TCP library” on page 2270.
V3: Refer to the ERROR_ID enumeration in the Modbus TCP
library (in the Library Manager)

1.5.8.1.9 Library overview
CODESYS V3 libraries are described in the Library Manager as an integrated documentation.
Refer to the documentation section within the Library Manager.
The following function blocks are contained in the libraries:

Communication
interface diag-
nosis

Documentation

PLC Automation with V3 CPUs
Libraries and solutions > High Availability Modbus TCP

2022/01/213ADR010583, 3, en_US2276

HA-Modbus TCP
library

PLC Automation with V3 CPUs

Libraries and solutions > High Availability Modbus TCP

2022/01/21 3ADR010583, 3, en_US 2277

1.5.9 Motion Solution Wizard
To be able to use the Motion Solution Wizard and the detailed information pdf, the following
software packages must be installed:
● “Motion Control (PS5611)”
● “Servo Drives”

HA_CI52x
library

Preconditions
for the use of
the “Motion
Solution
Wizard”

PLC Automation with V3 CPUs
Libraries and solutions > Motion Solution Wizard

2022/01/213ADR010583, 3, en_US2278

1. Select “Tools” and “Installation Manager” to open it.
2. Select “Modify”.
3. Mark the mentioned software packages.
4. Click the “Continous” button.

ð The various packages are downloaded and installed.

In the installation process, some operations must be confirmed.

Further detailed information about the “Motion Solution Wizard” and
the “CAM editor” which are both basing on the “Motion control
library” according PLCopen can be found in “AC500_V3_Motion
Control_Wizard&Cam_Editor_Quick_Start_Guide_3ADR010899.pdf”:

C:\Users\Public\Documents\AutomationBuilder\Examples\PS5611-Motion\

Or via the Automation Builder: “Help ➔ Project examples ➔ PS5611-Motion”

Ä Chapter 1.4.1.8.23.1 “Basic Motion” on page 317

Currently the “Motion Solution Wizard” supported only the ABB EtherCAT servo
drives (E180/E190).

PLC Automation with V3 CPUs

Libraries and solutions > Motion Solution Wizard

2022/01/21 3ADR010583, 3, en_US 2279

More information about additional software packages is available here: Ä Chapter 1.3
“Automation Builder installation manager” on page 169

1.5.9.1 Create new project
Select “File” ➔ “New Project”.

After successful download and installation of the missing software packages, the “Motion
Solution Project” icon is showed in the “Templates”.
1. Select the “Motion Solution Project” icon.
2. Enter a project name.
3. Specify the storage location for the new project.
4. Click the [OK] button.

ð A new project is created and can be configured.

1.5.9.2 Select PLC

The Motion Solution Wizard can only be executed in an EtherCAT environment.

PLC Automation with V3 CPUs
Libraries and solutions > Motion Solution Wizard

2022/01/213ADR010583, 3, en_US2280

1. Select the desired PLC device.
2. Click the [Add PLC] button.

ð Along with the PLC added, Motion Solution Wizard and CM579-EtherCAT module also
get added (Slot 1).

1.5.9.3 Select servo drive (motion axis)

After creating the hardware tree, Automation Builder will now pop up “Add Motion Drive”
window. Here it shows all the installed EtherCAT supported ABB Servo drives.
Each servo drive added under the EtherCAT master will be counted as a motion axis in
Automation Builder.

PLC Automation with V3 CPUs

Libraries and solutions > Motion Solution Wizard

2022/01/21 3ADR010583, 3, en_US 2281

1. Delete the check mark of “Close the dialog after each transaction” (Red rectangle in the
figure above).

ð Now several axes can be selected one after the other without closing the window.

2. Click on the motion drive you want to install.
3. Click “Add motion drive”.

ð In the “Devices” tree, the selected axis is displayed.

4. For more axes repeat the procedure.

ð The selected axes are displayed in the “Devices” tree.

5. Click the [Close] button if the required axes have been selected.

1.5.9.4 Configure servo drive (motion axis)
Users need to configure each axis separately as per the application requirement by opening the
motion axis object which is added under the servo drive.
1. Double-click on the axis you want to configure.

ð The “Settings” and the “Mapping” tab are shown.

2. Now select the desired settings.

Depending on the selected axis type, the view and selection of setting options
may change.

PLC Automation with V3 CPUs
Libraries and solutions > Motion Solution Wizard

2022/01/213ADR010583, 3, en_US2282

All settings related to the application and axis specific will be done here and needs to be
carefully updated for each axis. Based on the inputs provided here, wizard will compile and
generated the code.
The following “Settings” are available:

Parameter Value Description
Axis type

 Modulo (rotary) By selecting the Modulo (rotary) the axis
will be configured as a roll-over axis and
the desired modulo range can be configured
later.

 Finite (rotary) Default The axis will be configured as a roll-
over axis where in modulo range it
is non editable by the user and cal-
culated based on the “Unit” selection,
“Inc_Per_R, U_Per_Rev_Nominator and
U_Per_Rev_Denominator setting”.

 Linear (rotary screw) Rotary motor with linear movements (linear
axis).

 Linear (linear motor) Configure if the axis is a linear motor.

 Virtual axis This option is an additional check which user
can do along with the axis type selection
to make the configured axis type (physically
configured) as virtual axis.

Units

 Supported units are: Pulse, mm, µm, nm, degree inch and revolution.
For “Modulo (rotary)” axis the units mm, µm, nm, and inch might lead to inaccuracy.

Feedback device scaling

 Forcer distance between
an A and a B pulse(1)

40000 nm Only available with an “Axis type” “Linear
(linear motor)”.

Pulse per revolution scaling

 Encoder increments per
motor revolution (1)

131072 pulses /
revolution

User can update this parameter with the
actual encoder increments per motor revolu-
tion.
Not available with an “Axis type” “Linear”.

Application gearing

 Application has gearing Based on the actual application require-
ment, here user can check / uncheck the
“Application has gearing” check box. Here
user can also update the required tool travel
distance per motor revolution.
Not available with an “Axis type” “Linear”.

Units per revolution scaling (without gearbox)

 Tool travel distance per
motor revolution (2)

131072 pulses /
revolution

When the user unchecks the check box,
user can update the “Tool travel distance
per motor revolution” as per the application
requirement.
Not available with an “Axis type” “Linear”.

 Number of pulses (pulse)
=

(1)
* Travel distance (in user defined units)

(2)

Settings

PLC Automation with V3 CPUs

Libraries and solutions > Motion Solution Wizard

2022/01/21 3ADR010583, 3, en_US 2283

Parameter Value Description
Units per revolution scaling (with gearbox)

 Tool travel distance per
Gearbox output side rev-
olution

1 mm /revolution When the user checks the check box, user
will be prompted to provide the gear box
details additionally and during the generate
application, the wizard will update the same
accordingly.
Not available with an “Axis type” “Linear”.

 Gearbox output turns:
Tooling side (Numerator
of reducation ratio) (4)

1

 Gearbox input turns:
Motor side (Denuminator
of reducation ratio) (5)

1

 Number of pulses (pulse)
=

(1)*(4)
* Travel distance (in user defined units)

(3)*(5)

Modulo range

 Modulo range (0-value) 131072 pulses User can provide the modulo range here.
Active only when the user selects the axis
type as any of the “rotary” axis.

Software limits

 Enable limits User can configure some of the common
“Software limits” from the wizard itself. By
default, “Software limits” in wizard are not
enabled and user need to enable the same
by enabling the check box.

 Forward limit (axis stop) 1000 pulses

 Reverse limit (axis stop) 0 pulses

 Forward limit (warning) 990 pulses

 Reverse limit (warning) 10 pulses

Direction correction

 Invert direction In some of the application it is neccessary to
change the direction for actual and reference
positions. By default, the check box will be
unchecked, and the direction will be normal.
By selecting the check box “Invert direction”
both actual and reference position will be
inverted.

Position control (cyclic sync mode)

 Control time 100 ms User can configure the parameters related to
position control and supervision. Ä Chapter
1.5.10.4.3 “Axis parameters” on page 2353 Feed forward percentage

(0-100%)
50 %

 Following error per-
centage (0-300%)

150 %

 Delay time velocity check 100 %

 Position lag supervision Activated
(default)

Deactivated

Dynamic limits

 Maximum application
velocity

36000 pulse /sec The units defined for each parameter and
update the same accordingly since each
parameter here is having a separate unit.
Some parameters are depending on the drive
settings and needs to be set correctly to get
the desired result.

 Maximum speed refer-
ence value

13107200 Unit
dependant on
drive settings

 Maximum speed (user
defined)

6000 rpm

PLC Automation with V3 CPUs
Libraries and solutions > Motion Solution Wizard

2022/01/213ADR010583, 3, en_US2284

Parameter Value Description
 It is recommended to keep the same max-

imum speed at the drive and the PLC param-
eter as the same and if user can set the max-
imum application velocity to a desired value
to limit the maximum application speed.

Maximum acceleration 10000 pulses /
sec²

 Maximum deceleration 10000 pulses /
sec²

 Maximum jerk 2000 pulses /
sec²

Drive based limits

 Maximum positiv torque 300 % Define the torque limits in wizard and the
same will be written to the SDO startup
parameter if the user select “Torque limits” in
“Mapping” page. There parameters are cur-
rently not used in the program by default.

 Maximum negative
torque

-300 %

Results (calculated)

 Position resolution 1 Based on the inputs provided, wizard will cal-
culate the results and can be viewed immedi-
ately at the end of the configuration page. Maximum possible

velocity
1.31072E+07
pulses /sec

 Maximum allowed fol-
lowing error

1966080 pulses

Parameter Value Description
Control type

 Cyclic synchronous posi-
tion mode (CSP)

Cyclic synchro-
nous velocity
mode (CSV)

By default, wizard is selected for “Cyclic
synchronous position mode (CSP)”. User can
change the same based on his application
requirement.
CSVL is an ABB specific mode to achieve
load control / profiling. By using this mode
user can use the “MotionControlLoad” library.
Ä Chapter 1.5.10.4.7 “PLC-based motion
control -– Load control / fluid power exten-
sions” on page 2367

Cyclic synchro-
nous velocity
mode for load
control (CSVL)

Additional PDO mapping

 Touch probe 1 pos Most of the applications needs additional
PDO mapping and the wizard helps the user
to add most used PDO mapping just by
selecting the same here.
User can add other PDO mapping which
are not listed here manually by enabling the
expert settings from the axis configuration
page.

 Touch probe 1 neg

 Touch probe 2 pos

 Touch probe 2 neg

 Master encoder

 Following error

 Digital input states

 Digital output force

SDO startup parameter mapping

 Give EtherCAT control By default, two of the SDO startup param-
eters are always checked and it is recom-
mended not to change them. Operating mode

 Torque limits

Mapping tab

PLC Automation with V3 CPUs

Libraries and solutions > Motion Solution Wizard

2022/01/21 3ADR010583, 3, en_US 2285

1.5.9.5 Open Motion Solution Wizard editor page and generate application

Once all the settings have been made, double-click to switch to the “Motion Solution Wizard”
icon in the “Devices” tree.
All existing axes are listed here with their status. In the screenshot above “Not generated”.
1. Set a check mark for the axes that are to be generated under the column “Generate”.
2. Click the button “Generate application”.

ð The application code/s will now be generated.

3. Confirm the “Generation successful” window by cklicking the [OK] button.

1.5.9.6 Check generated application
A new folder has been created in the “Application” - “MotionSolution_Generated”. In this folder
are the folders of the generated axis with the global variables and function block calls. The
added axes are mapped in the “Devices” tree under “Extension_Bus”.

PLC Automation with V3 CPUs
Libraries and solutions > Motion Solution Wizard

2022/01/213ADR010583, 3, en_US2286

These application codes can now be copied as required and integrated into your own PLC
programming.

1.5.9.7 Optional: Add and configure virtual axis for simulation without real axis
Some of the applications needs virtual axis to be configured to fulfill the application requirement.

1. Right click on the “Motion Solution Wizard”.

ð A new window opens.

2. Click “Add object”.

ð A new window opens.

PLC Automation with V3 CPUs

Libraries and solutions > Motion Solution Wizard

2022/01/21 3ADR010583, 3, en_US 2287

3. Mark the “Virtual Axis” object.
4. Click the [Add object] button and the [Close] button.

ð A virtual axis was created.

After adding the virtual axis, user can find the same under “Motion Solution Wizard” object in
Automation Builder. User can double-click on the added virtual axis object to get the settings
page and configure it as per the requirement. Settings here is similar to the motion axis.

1.5.10 Motion control library

● All pertinent state, regional, and local safety regulations must be observed when installing
and using this product. When functions or devices are used for applications with technical
safety requirements, the relevant instructions must be followed.

● Read the complete safety instructions of the user's manuals for the drives you are using,
before installation and commissioning.

● Read all safety instructions of the AC500 PLC. See System description AC500 or chapter
Ä Chapter 1.6.2.4 “Regulations” on page 2406 in the online help.

● Read the Important user Information. See chapter Ä Chapter 1.6.2.1 “Safety instructions”
on page 2395 in the online help.

1.5.10.1 Preconditions for the use of the libraries
The user has to read the following instructions and documents before using the libraries:
The library package has been released for the software and firmware versions listed in the
readme file of Automation Builder only (see “Help ➔ Automation Builder Release Notes”) . In no
event will ABB or its representatives be liable for loss of data, profits, revenue or consequential,
incidental or other damage that may result from the use of other versions of product, software
or firmware versions. The error-free operation of the HA library with other devices, software or
firmware versions should be possible but cannot be guaranteed and may need adaptations e. g.
of example programs.
The first version of Motion Control Library Package PS5611-Motion has been released with
Automation Builder 2.4.0.There after the package is updated with several changes. For details
on all changes please refer PS5611-Motion release note area from Automation Builder release
notes.

Safety
instructions

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2288

The Motion control package contains follows libraries:

Library Automation Builder PLC firmware
ABB_MotionControl_AC500

AB 2.4.0 or higher

AC500 V3 firmware version 3.3.1
or higher
AC500-eCo V3 firmware version
3.4.0 or higher

ABB_Ecat_CiA402_AC500

ABB_MathFunctions_AC500

ABB_MotionContro-
lEco_AC500 (kernel
blocks for Eco V3 PLCs)

ABB_MotionControl-
Load_AC500 AB 2.5.0 or higher AC500 V3 firmware version 3.5.0

or higher

The PS5611-Motion libraries have been tested with the following product / firmware / software
versions:
● AC500 V3 PLC firmware 3.3.1 or higher
● AC500-eCo V3 (PTO & PWM) firmware 3.4.0 or higher
● CM579-ETHCAT EtherCAT Communication Module firmware 4.4.3.21 or higher
● ABB e190 Drive
● CD522 module

In no event will ABB or its representatives be liable for loss of data, profits, revenue or
consequential, incidental or other damage that may result from the use of other versions of
product / software / firmware versions. The error-free operation of the PS5611 - Motion with
other devices / software / firmware versions should be possible but can not be guaranteed and
may need adaptations e. g. of example programs.

CAUTION!
Generally, the user in all applications is fully and alone responsible for checking
all functions carefully, especially for safe and reliable operation.

The function blocks contained in the library can only be executed in RUN mode
of the PLC, but not in simulation mode.

There are limits on the minimum EtherCAT cycle time, user can configure in each PLC type.

Table 382: Details on the limits on the minimum EtherCAT cycle time
PLC type PM5630 PM5650 PM5670
Min. EtherCAT master cycle
time

2 ms 1 ms 0,5 ms

Other than the above limits, there is also limits on configuring the number of synchronized axis
in each PLC type. This limits is based on the EtherCAT master cycle time configured under
EtherCAT master.

Limits on
number of
synchronized
axis

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2289

Table 383: Details on the limits for each PLC type
PLC type PM5630 PM5650 PM5670
Number of synchronized
axis in 1 ms

- 8 16

Number of synchronized
axis in 2 ms

4 16 32

Number of synchronized
axis in 4 ms

8 32 64

“Number of axis” is counted in Automation Builder is based on the number of Kernel function
block instance declared in the IEC application. In this way, it is made sure all real and virtual
axis are counted.

User can increase the EtherCAT cycle time to accommodate more “Number of
axis” in the same PLC type.

User can use the [Statistics] tab from Automation Builder to see how many axis are supported
for the particular PLC type and for the EtherCAT master cycle time configured. Once the axis
is configured user need to update the [Statistics] tab by “Generate Code” to get the updated
information.
Automation Builder allows an additional axis than what is mentioned in the above table to
support one virtual axis additionally.

Please remove any Kernel function block instance which is declared but
not used in the application to get the correct number of axis calculated by
Automation Builder under the [Statistics] tab.

1.5.10.2 Overview
The PS5611-Motion is a Motion Control library for AC500 V3 CPUs, to create Motion Control
applications based on function blocks according to the standard of PLCopen Motion Control.
These function blocks can be used for PLC-based Motion Control and cover a wide range of
possible Motion Control functionalities. Starting from single axis movements to master-follower
axes to perform electronic gearing and CAM functions.

This documentation contains the following chapters:
● Overview

In the subsequent chapters general information are provided for a better understanding of
Motion Control with AC500 PLC and PS5611-Motion. There is also a tabular overview of the
available PLCopen function blocks and their compatibility with PLC-based Motion Control
and the provided drive-based Motion Control axis implementations.

● PLCopen
The principle of the PLCopen Motion Control standard is explained as well as how PLCopen
function blocks can be used to create PLC Motion Control application programs.

● PLC-based Motion Control
This chapter explains how PLC-based Motion Control with AC500 can be realized and how
it can be used in combination with the available PLCopen function blocks.

● PLC-based Motion Control Fluid Power Extension or Load Control
This chapter explains how the PLCopen part 6 Fluid Power - extension also called “Load
Control” can be used to practically realize also a form of Torque control (or -profiling) and
how it can be used in combination with the available PLCopen function blocks and switch
between Torque/Load control and position control.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2290

The detailed functionality of each function block is defined in the integrated
documentation of the library.

1.5.10.2.1 PLC-based motion control
With PS5611-Motion the application program and the profile generator are realized in the
PLC.The implementation of the profile generator is based on a set of function blocks which
are named Central Motion Control (CMC).
The profile generator of many possible axes is centrally placed inside the AC500 PLC. There-
fore multiaxis motion functionalities become easily available and can be accessed by PLCopen
function blocks. As a result, Motion Control functionalities are almost drive independent.

The detailed functionality of each function block is defined in the integrated
documentation of the library.

Available motion control functionalities:
● Simple axis Movements
● Electronic Gearin
● Electronic CAMs
● Position Profiles
● Velocity Profiles
● Acceleration Profiles
● Load control (Torque profilling)
Then the output is a position reference signal which the drive will follow. A new position refer-
ence value will be calculated with every cycle of the PLC and has to be transferred to the
drive, which demands real time capabilities to the PLC and to the communication channel. A
real time fieldbus like EtherCAT is needed. The feedback of the actual position can be used
for supervision purposes during operation and is needed to adjust the value of the position
reference before the drive will be enabled.

Fig. 49: System structure of PLC-based Motion Control with AC500 PLC and PS5611-Motion

With PLC-based Motion Control it is also possible to include the position control loop to the
AC500 PLC. In this case a speed reference signal will be transferred to the drive, which makes
it possible to perform the full range of motion functionalities with standard drives. To close the
position control loop, feedback of the actual position is mandatory.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2291

Fig. 50: PLC-based Motion Control with AC500 PLC and PS5611-Motion, closed position control
loop

With PLC-based Motion Control it is also possible to include the load control loop to the AC500
PLC. In this case a speed reference signal will be transferred to the drive, which makes it
possible to perform the full range of motion functionalities with standard drives. To close the
position control loop, feedback of the actual position is mandatory and to close the load control
loop, feedback of the actual load / torque is mandatory.

Fig. 51: PLC-based Motion Control with AC500 PLC and PS5611-Motion, closed load control
loop

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2292

Fig. 52: Central Motion Control with AC500 PLC and PS5611-Motion, different axis implementa-
tions at the same time

1.5.10.2.2 Overview of PLCopen function blocks
The following tables give an overview of the defined function blocks, divided into administrative
(not driving motion) and motion related sets. They give an overview which function block could
be used for the different possible configurations.
These function blocks are part of the ABB_MotionControl_AC500 and ABB_MotionControl-
Load_AC500 library.
If there are restrictions concerning a certain drive ("XXX") which lead to a different or limited
behavior compared to the standard the respective chapter is supplemented with an additional
paragraph "Notes for XXX".

The “KERNEL” function blocks are available in different variants.
The “CMC_Basic_Kernel” and “CMC_Load_Motion_Kernel” function block is designed to be
used in standard V3 PLCs, and can either work with drives connected to a fieldbus or IOs.
The “OBIO_PTOMotionKernel” or “OBIO_PWMMotionKernel” function blocks (part of
AC500_MotionControlEco) are solely to be used in AC500-eCo V3 CPUs and to make use
of the integrated stepper-IO along with PLCopen function blocks. It connects automatically to
the internal IOs.
For details of the limitations of PTO and PWM outputs in eCo V3 PLCs, refer to Automation
Builder help file.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2293

Table 384: Motion control administrative function blocks
Function block PLC-based Motion Control

CMC_Basic_
Kernel

CMC_Load_Motion
_Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMotion-
Kernel

MC_Power X X X

MC_ReadStatus X X X

MC_ReadAxisError X X X

MC_ReadParameter X X X

MC_ReadBoolParameter X X X

MC_WriteParameter X X X

MC_WriteBoolParameter X X X

MC_Reset X X X

MC_ReadActualPosition X X X

MC_ReadActualVelocity X X X

MC_SetOverride X X X

MC_SetPosition X X X

MC_CamTableSelect X X X

Table 385: Motion control single-axis function blocks
Function block PLC-based motion control

CMC_Basic_K
ernel

CMC_Load_Motion
_Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMo-
tionKernel

MC_MoveAbsolute X X X

MC_MoveRelative X X X

MC_MoveAdditive X X X

MC_MoveSuperimposed X X X

MC_HaltSuperimposed X X X

MC_MoveVelocity X X X

MC_MoveContinuousAbsolute X X X

MC_MoveContinuousRelative X X X

MC_Stop X X X

MC_PositionProfile X X X

MC_VelocityProfile X X X

MC_AccelerationProfile X X X

MC_Halt X X X

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2294

Table 386: Motion control multi-axis function blocks
Function block PLC-based motion control

CMC_Basic_K
ernel

CMC_Load_Motion
_Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMo-
tionKernel

MC_CamIn X X X

MC_CamOut X X X

MC_GearIn X X X

MC_GearInPos X X X

MC_GearOut X X X

MC_PhasingAbsolute X X X

MC_PhasingRelative X X X

MC_CombineAxes X X X

MC_HaltPhasing X X X

Table 387: Motion control homing function blocks
Function block PLC-based motion control

CMC_Basic_
Kernel

CMC_Load_Motion_
Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMo-
tionKernel

MC_StepAbsSwitch X X X

MC_StepLimitSwitch X X X

MC_StepRefPulse X X X

MC_StepDirect X X X

Table 388: Motion control ABB specific function blocks
Function block PLC-based motion control

CMC_Basic_K
ernel

CMC_Load_Motion
_Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMo-
tionKernel

MCA_Cam_Extra X X X

MCA_Indexing X X X

MCA_JogAxis X X X

MCA_MoveByExternalRefer-
ence

X X X

MCA_MoveVelocityContinuous X X X

MCA_Parameter X X X

MCA_ReadParameterList X X X

MCA_WriteParameterList X X X

MCA_SetPositionContinuous X X X

MCA_GearInDirect X X X

MCA_CamInDirect X X X

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2295

Function block PLC-based motion control
CMC_Basic_K
ernel

CMC_Load_Motion
_Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMo-
tionKernel

MCA_SetOperatingMode X X X

MCA_CamInfo X X X

MCA_DriveBasedHome X X X

MCA_MoveRelativeOpto X X X

MCA_PhasingByMaster X X X

Table 389: Motion control fluid power function blocks
Function block PLC-based motion control

CMC_Basic_
Kernel

CMC_Load_Motion_
Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMo-
tionKernel

MC_LimitLoad - X -

MC_LimitMotion - X -

MC_LoadControl - X -

MC_LoadProfile - X -

MC_LoadSuperimposed - X -

MC_TorqueControl - X -

1.5.10.2.3 Overview of libraries
Add the following libraries for the listed applications.

ð In some cases by adding a library, there will be other libraries added automatically.

Application Library to be added manually
PLC-based motion control ABB_MotionControl_AC500.-compiled-library

ABB_MathFunctions_AC500.-compiled-library

PLC-based motion control, optional for
EtherCAT

ABB_Ecat_CiA402_AC500.-library

Motion control with eCo V3 (OBIO_PTOMo-
tionKernel & OBIO_PWMMotionKernel)

ABB_MotionControlEco_AC500.compiled
ibrary

PLC-based motion control - Fluid Power
Extensions

ABB_MotionControlLoad_AC500.compiled
ibrary

The features of the function blocks provided with PS5611-Motion can be used from the PLC
program according to PLCopen standard. Different drives and different Motion Control realiza-
tions could be used and can be combined with each other as well as different fieldbuses.
ABB_Ecat_CiA402_AC500.library is editable and can be adapted based on the drive configura-
tion and drive type.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2296

1.5.10.2.4 Overview of data types
The following data types are used for the Motion Control library. The data types are defined in
the library file ABB_MotionControl_AC500 compiled-library. The corresponding elements can be
used for the function blocks inputs.

Table 390: Structures
Data type Elements Element data type
CMC_AXIS_IO limitSwitchPos BOOL

limitSwitchNeg BOOL

absRefSwitch BOOL

MC_PPROFILE
Ä Chapter 1.5.10.4.6.1
“PositionPositionProfile”
on page 2364

master_position LREAL

interpolation_point LREAL

velocity_ratio LREAL

acceleration_ratio LREAL

MC_TPROFILE
Ä Chapter 1.5.10.4.6.2 “Posi-
tionTimeProfile” on page 2364

interpolation_point LREAL

first_derivative LREAL

second_derivative LREAL

delta_time TIME

Table 391: Enum
Data type Possible values
MC_ABB_iTYPES_ENUM
Ä Chapter 1.5.10.4.6.3 “Inter-
polation types for profiles”
on page 2364

MCA_SPLINE_COMPLETE

MCA_SPLINE_NATURAL

MCA_POLY5

MCA_POLY3

MCA_LINEAR

MC_BUFFERMODE mcABORTING

mcBUFFERED

mcBLENDINGlow

mcBLENDINGprevious

mcBLENDINGnext

mcBLENDINGhigh

MC_DIRECTION DEFAULT

POSITIVE

SHORTEST

NEGATIVE

CURRENT

POSITIVE_STOP

NEGATIVE_STOP

CURRENT_STOP

MC_HOMING_DIRECTION MC_SwitchNegative

MC_SwitchPositive

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2297

Data type Possible values
MC_Positive

MC_Negative

MC_HOMING_EDGE MC_EdgeOn

MC_EdgeOff

MC_On

MC_Off

MC_HOMING_MODE MC_REFPULSE

MC_DIRECT

MC_SOURCE mcActualValue

mcSetValue

ERROR_ID MC_Ok

Wrong_State

Drive_Problem

Parameter_Exceeds_Limit

No_Field_Access

Bus_Problem

Abs_Switch_Error

Timeout

NAK

MC_TimeLimitExceeded

MC_DistanceLimitExceeded

MC_TorqueLimitExceeded

Not_Implemented

ErrorID_POSITION_FOLLOW

ErrorID_POSSW

ErrorID_NEGSW

ErrorID_VELOCITY_FAULT

ErrorID_INTERPOLATION_FAULT

ErrorID_WARNING_VELOCITYLIMIT

ErrorID_WARNING_POSITIONLIMITPOS

ErrorID_WARNING_POSITIONLIMITNEG

ErrorID_WARNING_POSITIONOVERRUN

ErrorID_WARNING_ABORT

ErrorID_WARNING_MOVEMENT_DIRECTION

1.5.10.2.5 Naming of function blocks and data structures
All function blocks and data types named MC_xxx are implemented according to PLCopen defi-
nition and follow the PLCopen documentation. They may have additional inputs but according to
PLCopen rules.

PLCopen

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2298

All function blocks and data types named MCA_xxx are implemented corresponding to
PLCopen rules with adaptations specific to AC500. They are AC500 specific extensions to the
PLCopen library.

All function blocks named CMC_xxx belong to the implementation of PLC-based motion control.
All data types named CMC_xxx belong to the implementation of PLC-based motion control.
All data types named AXIS_xxx exist according to PLCopen definition. The content is ABB
specific and not documented.
All function blocks named zCMC_xxx belong to the implementation of PLC-based motion con-
trol. These are not documented and not intended for customer use.
All function blocks and data types named MC_xxx are implemented according PLCopen defini-
tion and follow the PLCopen documentation.
All function blocks and data types named OBIO_xxx in the ABB_MotionControlEco_AC500
library are intended for use with AC500-eCo V3 PLCs only.
All function blocks named xxx_APP are not write protected and may be modified for adapta-
tions. Editable library is available in the example folder.

Editable library is available in the example folder.

1.5.10.3 PLCopen
Based on application requirements and project specifications engineers are required to use
or select a wide range of Motion Control hardware. In the past this required unique software
to be created for each application even though the functions are the same. PLCopen motion
standard provide a way to have standard application libraries that are reusable for multiple
hardware platforms. This lowers development, maintenance and support costs while eliminating
confusion. In addition, engineering becomes easier, training costs decrease, and the software
is reusable across platforms. Effectively, this standardization is done by defining libraries of
reusable components. In this way the programming is less hardware dependent, the reusability
of the application software increased, the cost involved in training and support reduced, and
the application becomes scalable across different control solutions. Due to the data hiding and
encapsulation, it is usable on different architectures, for instance ranging from centralized to
distributed or integrated to networked control. It is not specifically designed for one application,
but will serve as a basic layer for ongoing definitions in different areas. As such it is open to
existing and future technologies.
ABB is a member of the PLCopen organization. More Information about PLCopen can be read
on the PLCopen website.

Fig. 53: PLCopen Motion Control logo

PLC-based
motion control

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2299

http://www.plcopen.org

Function blocks according to PLCopen are designed for controlling axes via the language
elements consistent with those defined in the IEC 61131-3 standard. It was decided by the task
force that it would not be practical to encapsulate all the aspects of one axis into only one
function block. The retained solution is to provide a set of command-oriented function blocks
that have a reference to the axis, e.g. the abstract data type Axis, which offers flexibility, ease of
use and reusability.

Implementations based on IEC 61131-3 (for instance via function blocks and SFC) will be
focused towards the interface (look-and-feel/proxy) of the function blocks. This specification
does not define the internal operation of the function blocks.
PLCopen Motion Control function blocks can be used in any IEC 61131-3 programming lan-
guage. The following picture shows an example of a function block used in Function Block
Diagram (FBD) language.

Fig. 54: Command for absolute positioning according to PLCopen standard

Application programs which use the manufacturer independent function blocks according to
PLCopen will lead to the following advantages:
● Reusable software structure for different platforms.
● Programming based on function blocks.
● Function blocks can be used in any IEC 61131-3 language.
All function blocks which are defined by PLCopen will have the following qualities independently
to the manufacturer of the motion control system:
● Same inputs/outputs
● Same functional behavior
● Same name
The following parts of the PLCopen motion control definition are completely or partly included in
this product:
● Part 1: Function blocks for motion control
● Part 2: Extensions
● Part 3: User Guidelines
● Part 4: Homing Procedures
● Part 6: Function blocks for motion control – Fluid Power Extensions

1.5.10.3.1 Programming guidelines
This chapter explains some rules on the usage of the libraries and the structure Axis_Ref.
● In general, the kernel function block and the transfer of axis IO data should be processed

in a cyclic task. This task should be as short and real-time as possible to achieve the best
motion control performance. Always make sure Kernel function block is called at the highest
priority task and other applications must be at a lower priority task.

● If Axis_Ref is used as input on a user defined function block or program or function, always
use it as VAR_IN_OUT and never use it as VAR_INPUT or VAR_OUTPUT. The reason is
that this would
– Break the consistency and destroy data.
– Consume a lot of computing power by copying data.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2300

● Any instance of a function block should be called only once per cycle and in only one
specific task.
If the instance is used in several tasks, it has to be checked that is not called several times.
Because this could corrupt the handshake from function block to Axis_Ref to
CMC_Basic_Kernel and vice versa.

● Some PLCopen function blocks are only allowed to be called within the same task as the
CMC_Basic_Kernel function block. This is mentioned in the function block descriptions.

● If PLCopen function blocks are called from a different task, the cycle time should be at least
2 times the cycle time for CMC_Basic_Kernel function block.

Axis data type Axis_Ref
The Axis_Ref is a structure that contains information on the corresponding axis. It is used as
a VAR_IN_OUT in all Motion Control function blocks defined in this document. The content of
this structure is implementation dependent and can ultimately be empty. If there are elements
in this structure, the supplier shall support the access to them, but this is outside of the scope
of this document. The refresh rate of this structure is also implementation dependent. According
to IEC 61131-3 it is allowed to switch the Axis_Ref for an active function block, for instance
from Axis1 to Axis2. However, the behavior of this can vary across different platforms, and is not
encouraged to do.

Axis_Ref data type declaration:
TYPE Axis_Ref : STRUCT
(Content is implementation dependent)
END_STRUCT

TYPE Axis_Ref : STRUCT
AxisNo: UINT; AxisName: STRING (255);
…….
END_STRUCT

Example:

1.5.10.3.2 The single axis state diagram
The following diagram normatively defines the behavior of the axis at a high level when multiple
motion control function blocks are simultaneously activated. This combination of motion profiles
is useful in building a more complicated profile or to handle exceptions within a program. (In
real implementations there may be additional states at a lower level defined). The basic rule is
that motion commands are always taken sequentially, even if the PLC had the capability of real
parallel processing. These commands act on the axis' state diagram.
The axis is always in one of the defined states (see diagram below). Any motion command that
causes a transition changes the state of the axis and, as a consequence, modifies the way the
current motion is computed. The single axis state diagram is an abstraction layer of what the
real state of the axis is, comparable to the image of the I/O points within a cyclic (PLC) program.
A change of state is reflected immediately when issuing the corresponding motion command.

The response time of immediately is system dependent, coupled to the state of
the axis, or an abstraction layer in the software.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2301

The diagram is focused on a single axis. The multiple axis function blocks, MC_CamIn,
MC_GearIn and MC_Phasing, can be looked at, from a single axis state diagram point of view,
as multiple single-axes all in specific states. For instance, the CAM-master can be in the state
Continuous Motion. The corresponding slave is in the state Synchronized Motion. Connecting a
slave axis to a master axis has no influence on the master axis.
The state Disabled describes the initial state of the axis. In this state the movement of the axis
is not influenced by the function blocks. The axis feedback is operational. If the MC_Power
function block is called with Enable=TRUE while being in state Disabled, this either leads to
Standstill if there is no error inside the axis, or to ErrorStop if an error exists.
Calling MC_Power with Enable=FALSE in any state, the axis goes to the state Disabled, either
directly or via any other state. If a motion generating function block controls an axis, while the
MC_Power function block with Enable=FALSE is called, the motion generating function block is
aborted (CommandAborted).
The intention of the state ErrorStop is that the axis goes to a stop, if possible. There are no
further inputs from function blocks accepted until a reset has been done from the ErrorStop
state.
The transition Error refers to errors from the axis and axis control, and not from the function
block instances. These axis errors may also be reflected in the output of the function blocks
instances errors.
Issuing MC_Home in any other state than StandStill will go to ErrorStop, even if MC_Home is
issued from the state Homing itself.
Function blocks which are not listed in the single axis state diagram do not affect the state of the
axis, meaning that whenever they are called the state does not change. They are:
MC_ReadStatus; MC_ReadAxisError; MC_ReadParameter; MC_ReadBoolParameter;
MC_WriteParameter; MC_WriteBoolParameter; MC_ReadActualPosition and MC_CamTable-
Select.
Calling the function block MC_Stop in state StandStill changes the state to Stopping and back
to Standstill when Execute = FALSE. The state Stopping is kept as long as the input Execute is
TRUE. The output Done is set when the stop ramp is finished.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2302

Fig. 55: Function block state behavior

1. In this state ErrorStop or Stopping, all function blocks can be called, although
they will not be executed, except MC_Reset and Error – they will generate the
transition to StandStill or ErrorStop respectively.

2. Power.Enable=TRUE and there is an error in the Axis.

3. Power.Enable=TRUE and there is no error in the Axis.

4. MC_Stop.Done AND NOT MC_Stop.Execute.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2303

1.5.10.3.3 Visualizations
For usage with the PLCopen Library, a set of visualization objects is defined. These visual-
izations use the placeholder concept, which means that they could be used in an actual
visualization several times and be instantiated by replacing the “placeholder” with an effective
data-structure.
Two types of visualizations exist:
● As placeholder, an instance of Axis_Ref should be used. These are named:

MC_VISU_Axis_name. Here the name could be state machine or its actual.
● As placeholder, an instance of the respective PLCopen function block should be used.

These visualizations are named MC_VISU_FB_name where "name" could be MoveAbso-
lute or MoveVelocity, so the complete element is named MC_VISU_FB_MoveAbsolute or
MC_VISU_FB_MoveVelocity.

The background colour and the colour for the title of each element could be changed. The
colours are defined in some global predefined variables in MC_VISU_COLOR_INFORMATION.
By changing these values, different colours will be used.

Below, some existing visualizations are shown.

This shows the state machine of the axis according to PLCopen definition. The active state is
shown green except the ErrorStop which is shown red. Usually, it starts with Disabled. When no
remote connection to the drive is available, it will switch to ErrorStop immediately.
The placeholder of this visualization has to be connected to an instance of the data type
Axis_Ref.

This object shows some actual values.
The Placeholder of this visualization has to be connected to an instance of the data type
Axis_Ref.

MC_VISU_Axis_
StateMachine

MC_VISU_Axis_
actual

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2304

This object shows the error information connected to the PLCopen function blocks. This is NOT
a drive error. If no error occurs in the execution of a function block, just the name is shown. If an
error occurred, it shows the name of the function block as well as the error number and a short
description. In the example below, the MC_Power function block recognized that no fieldbus
connection to the drive was available.
The Placeholder of this visualization has to be connected to an instance of the data type
Axis_Ref.

1.5.10.3.4 Error codes
Besides the diagnosis information of the drive which is described in the respective drive docu-
mentation, there are a number of error codes directly related to the function blocks. These error
codes are displayed at the output “ErrorID” of the function block.

Error Code Mnemonic Explanation
0 MC_Ok No Error

1 WRONG_STATE A function block was activated not according
to the state machine, e.g. tried to start a
movement while in state Disabled.

2 DRIVE_PROBLEM The drive indicates an error, e.g. tripped.

3 PARAM-
ETER_EXCEEDS_LIMIT

A parameter at the function block is outside
the possible range. This does not refer to the
parameter range which is allowed for the drive
but just to the 32-Bit Integer which is used for
internal calculation.

4 NO_FIELD_ACCESS No fieldbus connection to the drive.

5 BUS_PROBLEM Not used

6 ABS_SWITCH_ERROR During Homing, (when done by function
blocks) limit switch not according to moving
direction e.g. the positive switch occurred
when moving in negative direction.

7 TIMEOUT Timeout in block execution.

MC_VISU_Axis_
FB_error

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2305

Error Code Mnemonic Explanation
8 NAK Parameter access not applicable

9 MC_TimeLimitExceeded Used by function blocks with TimeLimit.

10 MC_DistanceLimitEx-
ceeded

Used by function blocks with DistanceLimit.

11 MC_TorqueLimitExceeded Used by function blocks with TorqueLimit.

12 NOT_IMPLEMENTED Functionality not implemented for certain axis
type.

101 ErrorID_POSI-
TION_FOLLOW

Following error, caused by > position error =>
ERRORSTOP. (parameter POS_LAG_PER-
CENTAGE)

102 ErrorID_POSSW Positive software limit switch => ERROR-
STOP. The actual position did exceed
the positive Software limit switch position.
This supervision has to be activated with
MC_WriteParameter.

103 ErrorID_NEGSW Negative software limit switch => ERROR-
STOP. The actual position did exceed
the negative Software limit switch position.
This supervision has to be activated with
MC_WriteParameter.

104 ErrorID_VELOCITY_FAUL
T

The measured velocity and commanded
velocity are > 50% (related to maximum
velocity) apart, for a certain time =>ERROR-
STOP (parameter V_CHECKTIME)

105 ErrorID_INTERPOLA-
TION_FAULT

following error, caused by interpolation
problem =>ERRORSTOP. Position following
error occurred, but reason most likely a
interpo- lation problem, not drive problem (e.g.
CAM Table, position step).

110 ErrorID_WARNING_VELO
CITYLIMIT

Velocity or acceleration/deceleration are in
limitation, set by parameter EnableLimitVe-
locity, MaxVelocityAppl, MaxDecelerationAppl

111 ErrorID_WARNING_POSI-
TIONLIMITPOS

Position is in limitation towards position limit
(SWLimit2DecPos), axis decelerates near
positive software limit switch

112 ErrorID_WARNING_POSI-
TIONLIMITNEG

Position is in limitation towards position limit
(SWLimit2DecNeg)., axis decelerates near
negative software limit switch

113 ErrorID_WARNING_POSI-
TIONOVERRUN

A linear axis created a 32bit position overrun
(> 2147483647 u=>inc) =>configure modulo

114 ErrorID_WARNING_ABOR
T

Axis aborted due to too large position gap due
to velocity limitation

115 ErrorID_WARNING_MOVE
MENT_DIRECTION

Either positive or negative direction blocked
by MC_Power

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2306

1.5.10.3.5 Error handling
All access to the drive/motion control is via function blocks. Internally these function blocks
provide basic error checking on the input data. Exactly, how this is done is implementation
dependent. For instance, if MaxVelocity is set to 6000, and the Velocity input to a function block
is set to 10,000, a basic error report is generated. In the case where an intelligent drive is
coupled via a network to the system, the MaxVelocity parameter is probably stored on the drive.
The function block must take care of the errors generated by the drive internally. With another
implementation, the MaxVelocity value could be stored locally. In this case the function block will
generate the error locally.
Both centralized and decentralized error handling methods are possible when using the motion
control function blocks.
Centralized error handling is used to simplify programming of the function block. Error reaction
is the same independent of the instance in which the error has occurred.

Fig. 56: Function blocks with centralized error handling

Decentralized error handling gives the possibility of different reactions depending on the func-
tion block in which an error occurred.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2307

Fig. 57: function blocks with decentralized error handling

1.5.10.3.6 PLCopen parameter
Additional parameters are available by ReadParameter and WriteParameter function blocks.

Following function blocks can be used for the read and write operation. Func-
tionality of these blocks and its variables are explained in the integrated docu-
mentation

– MC_ReadParameter
– MC_WriteParameter
– MC_ReadBoolParameter
– MC_WriteBoolParameter

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2308

Param-
eter
numbe
r (PN)

Nam
e

Datatype Min. Max. Default R/W Comments

1 Com-
man-
ded-
Positi
on

DINT R Commanded
position.

2 SWLi
mitPo
s

DINT -214748364
7

2147483647 214748
3647

R/W Positive Software
limit switch posi-
tion.

3 SWLi
mitN
eg

DINT -214748364
7

2147483647 -21474
83647

R/W Negative Soft-
ware limit switch
position.

4 Ena-
bleLi-
mitPo
s

BOOL FALSE TRUE FALSE R/W Enable positive
software limit
switch.

5 Ena-
bleLi-
mitN
eg

BOOL FALSE TRUE FALSE R/W Enable negative
software limit
switch.

6 Ena-
ble-
Pos-
LagM
onitor
-ing

BOOL FALSE TRUE TRUE R/W Enable moni-
toring of position
lag (following
error).

7 Max-
Posi-
tionL
ag

DINT 1 2147483647

 R Maximal position
lag.

8 Max-
Veloc
ity-
Syste
m

DINT 32767 R Maximal allowed
velocity of the
axis in the motion
system.

9 Max-
Veloc
ityAp
pl

DINT 0** 32767 32767 R/W Maximal allowed
velocity of the
axis in the appli-
cation.

10 Actua
lVe-
locity

DINT -32767 32767 R Actual velocity.

11 Com-
man-
ded-
Veloc
ity

DINT -32767 32767 R Commanded
velocity.

12 Max-
Accel
era-
tion-
Syste
m

DINT 32767 R Maximal allowed
acceleration of
the axis in the
motion system.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2309

Param-
eter
numbe
r (PN)

Nam
e

Datatype Min. Max. Default R/W Comments

13 Max-
Accel
era-
tio-
nAppl

DINT 10 32767 32767 R/W Maximal allowed
acceleration of
the axis in the
application.

14 Max-
Decel
era-
tion-
Syste
m

DINT 32767 R Maximal allowed
deceleration of
the axis.

15 Max-
Decel
era-
tio-
nAppl

DINT 10 32767 32767 R/W Maximal allowed
deceleration of
the axis.

16 Max-
Jerk

DINT 0* 2147483647 214748
3647

R/W Maximal allowed
jerk of the axis.

2001 MOD
ULO
_NO
MIN-
ATO
R

DINT 1 2147483647 1 R/W ABB specific
parameter. Used
for PLC-based
Motion Control
implementation:
Gearbox modifier
to
MODULO_RANG
E

2002 MOD
ULO
_DE
NOM
INAT
OR

DINT 1 2147483647 1 R/W ABB specific
parameter. Used
for PLC-based
Motion Control
implementation:
Gearbox modifier
to
MODULO_RANG
E

2003 Ena-
ble-
Limit
2Dec
elerat
e

BOOL FALSE TRUE FALSE R/W Enable software
limit switches to
decelerate

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2310

Param-
eter
numbe
r (PN)

Nam
e

Datatype Min. Max. Default R/W Comments

2004 Ena-
bleLi-
mitA-
bort

BOOL FALSE TRUE FALSE R/W Enable that soft-
ware limit
switches will
abort ongoing
movement
FALSE = Limits
position and
velocity, deceler-
ates and shows a
warning until the
position limit is
reached, then
ERROR STOP
TRUE = Switches
off any ongoing
motion and decel-
erates to the
position limit,
then ERROR
STOP

2005 Ena-
ble-
Limt-
Veloc
ity

BOOL FALSE TRUE FALSE R/W If the velocity is
limited the
unmoved position
will be covered
whenever pos-
sible

2006 SWLi
mit2
DecP
os

LREAL -214748364
7

2147483647 214748
3647

R/W Used as end
position for Ena-
bleLimit2Decel-
erate

2007 SWLi
mit2
DecN
eg

LREAL -214748364
7

2147483647 214748
3647

R/W Used as end
position for Ena-
bleLimit2Decel-
erate

2008 Max-
Posi-
tion-
GapL
L

LREAL 0 2147483647
00

0 R/W Used to stop the
ongoing move-
ment if position is
behind

0* means: no limitation of jerk is performed.
**Axis will stay in stop.
***is modified by CMC_Axis_Control_Parameter, the max. Value is calculated in increments,
the value which is delivered by ReadParameter will be given in [u].

In addition to the above parameters certain other operation can be done using the below
parameters from the data type "Axis_Parameter"

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2311

Name Type Initial Comment
paraFilterVariant INT Filter for actual

velocity
0 = PT1
1 = LinearRegression

paraFilterTime INT 10 Time in PLC cycles,
used with paraFilter-
Variant

paraFilterForecast INT 0 Time in PLC cycles,
used with paraFilter-
Variant = 1

paraReverseDirection INT 0 Changes the direction
for actual and refer-
ence positions based
on the mode selected.
0 = normal direction
1 = reverse input posi-
tion
2 = reverse output
position and speed
reference
3 = reverse both

paraEarlyClosedLoop BOOL FALSE TRUE: hold the
position when
Drive_Release is
set (not wait for
Drive_InOperation =
TRUE)

paraLateOpenLoop BOOL FALSE TRUE: hold the posi-
tion until Drive_InOp-
eration = FALSE

1.5.10.3.7 Limits
Table 392: Limitations for the inputs of PLCopen function blocks when used with
CMC_Basic_Kernel
Parameter Min. Max.
Velocity 0 x

Acceleration, Deceleration 0 x

Position -2147483647 2147483647

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2312

1.5.10.3.8 General restrictions
Restrictions for the available function blocks
● As buffered mode, MC_Aborting is realized as a default. This does NOT mean that the axis

stops when another movement is started while an ongoing movement is still active. It means
instead that the new movement will take control immediately and change the velocity to its
own velocity by using its own acceleration or deceleration.

● The buffered mode MC_Buffered could be reached with using the axis state StandStill as
enable signal for the Execute of the next block.

● From the Extended Inputs and Outputs at the function blocks, the following are not realized:
– BufferedMode: The realization just supports the MC_Aborting mode.
– The following Outputs at ReadStatus are not supported: ConstantVelocity, Accelerating

and Decelerating.
– TorqueLimit for Homing function blocks.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2313

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2314

The diagram shows the behavior with BufferMode MC_Aborting, which is the only available
BufferMode. When the second Block is activated, it will take control and will continue on its own
velocity. The velocity is changed by using the acceleration value from the second function block.
The movement will not be stopped in between. The first function block shows CommandAborted
when the second function block is activated.

A behavior according to BufferMode MC_Buffered could be reached by using the Done output
from the first function block to enable the Execute of the second function block.

1.5.10.3.9 Behavior of the function block inputs and outputs
General rules

Table 393: General rules
Output exclusivity The outputs Busy, Done, Error, and CommandAborted are mutually

exclusive:
Only one of them can be TRUE on one function block. If Execute
is TRUE, one of these outputs has to be TRUE. Only one of the out-
puts Active, Error, Done and CommandAborted is set at the same
time.

Output status The outputs Done, InGear, InSync, InVelocity, Error, ErrorID and
CommandAborted are reset with the falling edge of Execute. How-
ever, the falling edge of Execute does not stop or even influence
the execution of the actual function block. It must be guaranteed
that the corresponding outputs are set for at least one cycle if the
situation occurs, even if execute was reset before the function block
completed. If an instance of a function block receives a new exe-
cute before it has finished (as a series of commands on the same
instance), the function block will not return any feedback, like Done
or CommandAborted, for the previous action.

Input parameters The parameters are used with the rising edge of the execute input.
To modify any parameter, it is necessary to change the input param-
eter(s) and to trigger the motion again.

Missing input parame-
ters

According to IEC 61131-3, if any parameter of a function block input
is missing (open) then the value from the previous invocation of
this instance will be used. In the first invocation the initial value is
applied.

Position versus distance Position is a value defined within a coordinate system. Distance is a
relative measure related to technical units. Distance is the difference
between two positions.

Sign rules Velocity, Acceleration, Deceleration and Jerk are always positive
values. Position and Distance can be both positive and negative.

Error Handling Behavior All function blocks have two outputs, which deal with errors that can
occur while executing that function block. These outputs are defined
as follow:

Error Rising edge of Error informs that an error occurred during the
execution of the function block.
ErrorID: Error number

MC_Aborting
Mode

MC_Buffered

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2315

The outputs Done, InVelocity, InGear, and InSync mean successful
completion so these signals are logically exclusive to Error.
Types of errors:
● Function blocks (e.g. parameters out of range, state machine

violation attempted),
● Communication,
● Drive Instance errors do not always result in an axis error

(bringing the axis to StandStill). The error outputs of the relevant
function block are reset with falling edge of Execute.

Function block naming In case of multiple libraries within one system (to support multiple
drive/ motion control systems), the function block naming may be
changed to MC_FunctionBlockName_SupplierID.

Behavior of Done output The outputs Done, InGear, InSync... are set when the commanded
action has been completed successfully. With multiple function
blocks working on the same axis in a sequence, the following
applies:
When one movement on an axis is interrupted with another move-
ment on the same axis without having reached the final goal, Done
of the first function block will not be set.

Behavior of CommandA-
borted output

CommandAborted is set, when a commanded motion is interrupted
by another motion command. The reset-behavior of CommandA-
borted is like that of Done. When CommandAborted occurs, the
other output-signals such as InVelocity are reset.

Inputs exceeding appli-
cation limits

If a function block is commanded with parameters which result in
a violation of application limits, the instance of the function block
generates an error. The consequences of this error for the axis are
application specific and thus should be handled by the application
program.

Behavior of Busy output Every function block can have an output Busy, reflecting that the
function block is not finished. Busy is SET at the rising edge of
Execute and RESET when one of the outputs Done, Aborted, or
Error is set. It is recommended that this function block should be
kept in the active loop of the application program for at least as long
as Busy is true, because the outputs may still change. For one axis,
several function blocks might be busy, but only one can be active at
a time.
Exceptions are MC_SuperImposed and MC_Phasing, where more
than one function block related to one axis can be active.

Output Active The output Active is required on buffered function blocks. This
output is set at the moment the function block takes control of the
motion of the according axis. For un-buffered mode the outputs
Active and Busy can have the same value.

Enable and Valid/Status The input Enable is coupled to output Valid. Enable is level sensi-
tive, and Valid shows that a valid set of outputs is available at the
function block. The output Valid is TRUE as long as an output value
of Valid is available and the input Enable is TRUE. The relevant
output value can be refreshed as long as the input Enable is TRUE.
If there is a function block error, the output is not Valid (Valid set
to FALSE). When the error condition disappears, the values will
reappear and output Valid will be set again.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2316

Fig. 58: Behavior of the Execute/Done style function blocks.

Why is the command input edge sensitive?
The input Execute for the different function blocks described in this document always triggers
the function with its rising edge. The reason for this is that with edge triggered Execute new
input values may be commanded during execution of a previous command. The advantage
of this method is a precise management of the instant a motion command is performed. Com-
bining different function blocks is then easier in both centralized and decentralized models of
axis management. The output Done can be used to trigger the next part of the movement. The
example given below is intended to explain the behavior of the function block execution.
The following figure illustrates the sequence of three function blocks First, Second and Third
controlling the same axis. These three function blocks could be for instance various absolute
or relative move commands. When First is completed the motion its rising output First.Done
triggers Second.Execute. The output Second.Done AND In13 triggers the Third.Execute.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2317

Fig. 59: Function blocks to perform a complex movement

The input ContinuousUpdate
Like described in the previous chapter, the input Execute triggers a new movement. With a
rising edge of this input the values of the other function block inputs are defining the movement.
Until version 1.1 of PLCopen there was the general rule that a later change in these input
parameters does not affect the ongoing motion.
Nevertheless, there are numerous application examples, where a continuous change of the
parameters is needed. The user could retrigger the input Execute of the function block, but this
complicated the application.
Therefore, the input ContinuousUpdate has been introduced. It is an extended input to all
applicable function blocks. If it is TRUE, when the function block is triggered (rising Execute),
it will - as long as it stays TRUE – make the function block use the current values of the input
variables and apply it to the ongoing movement. This does not influence the general behavior
of the function block nor does it impact the single axis state diagram. In other words it only
influences the ongoing movement and its impact ends as soon as the function block is no longer
Busy or the input ContinuousUpdate is set to FALSE.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2318

It can be that certain inputs like BufferMode are not really intended to change
every cycle. However, this has to be dealt with in the application, and is not
forbidden in the specification

If ContinuousUpdate is FALSE with the rising edge of the input Execute, a change in the
input parameters is ignored during the whole movement and the original behavior of previous
versions is applicable. The ContinuousUpdate is not a retriggering of the input Execute of the
function block. A retriggering of a function block which was previously aborted, stopped, or
completed, would regain control on the axis and modify its single axis state diagram. Opposite
to this, the ContinuousUpdate only effects an ongoing movement. Also, a ContinuousUpdate of
relative inputs (e.g. Distance in MC_MoveRelative) always refers to the initial condition (at rising
edge of Execute).

● MC_MoveContinuousRelative is started at Position 0 with Distance 100, Velocity 10 and
ContinuousUpdate set TRUE. Execute is Set and so the movement is started to position
100.

● While the movement is executed (let the drive be at position 50), the input Distance is
changed to 130, Velocity 20.

● The axis will accelerate (to the new Velocity 20) and stop at Position 130 and set the
output Done and does not accept any new values.

Example

1.5.10.3.10 Unit of length
The only specification for physical quantities is made on the unit of length (noted as [u]) that
is to be coherent with its derivatives i.e. (velocity [u/s]; acceleration [u/s2]; jerk [u/s3]). Neverthe-
less, the unit [u] is not specified (manufacturer dependent). Only its relations with others are
specified.

1.5.10.3.11 Aborting versus buffered modes
Some of the function blocks have an input called BufferMode. With this input, the function block
can either work in a Non-buffered mode (default behavior) or in a Buffered mode. The difference
between those modes is when they should start their action:
● A command in a non-buffered mode acts immediately, even if this interrupts another motion,
● A command in a buffered mode waits till the current function block sets its output Done (or

InPosition, InVelocity...).
● The library just supports the mode "aborting" (MCAborting)

The following examples describe the different behavior of these modes:

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2319

Fig. 60: Basic example with two MC_MoveAbsolute on same axis

Example 1:
Standard
behavior of two
following abso-
lute move-
ments

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2320

Fig. 61: Timing diagram for example above without interference between function block 1 and function
block 2

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2321

Example 2:
Aborting
motion

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2322

Fig. 62: Timing diagram for example above with function block 2 interrupting function block 1 (McAborting
Mode)

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2323

If an on-going motion is aborted by another movement, it can occur that the braking distance is
not sufficient due to deceleration limits.
In rotary axis, a modulo can be added. A modulo axis could go to the earliest repetition of the
absolute position specified, in cases where the axis should not change direction and reverse to
attain the target position.
In linear systems, the resulting overshoot can be resolved by reversing, as each position is
unique and therefore there is no need to add a modulo to reach the correct position..

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2324

1.5.10.3.12 PLCopen examples

The following figure shows an example where the function block (MC_MoveVelocity) is used
to control AxisX with three different values of Velocity. In a Sequential Function Chart (SFC)
the velocity 10, 20, and 0 is assigned to V. To trigger the input Execute with a rising edge the
variable E is stepwise set and reset.

Fig. 63: Single function block with SFC

The following timing diagram explains how it works:

Example: A
function block
instance con-
trols different
motions of an
axis

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2325

Fig. 64: Timing diagram for a usage of single function block

The second InVelocity is set for only one cycle because the Execute has gone
low before the ActualVelocity equals CommandedVelocity.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2326

Different instances related to the same axis can control the motions on an axis. Each instance
will then be responsible for one part of the global profile.

Fig. 65: Cascaded function blocks

The timing diagram:

Example: Dif-
ferent function
blocks
instances con-
trol the
motions of an
axis

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2327

Fig. 66: Cascaded function blocks timing diagram

A corresponding solution written in LD looks like:

Fig. 67: Cascaded function blocks with LD

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2328

1.5.10.4 PLC-based motion control
1.5.10.4.1 PLC-based motion control architecture

With PS5611-Motion different motion control system structures are possible. Independent of the
system structure a typical motion control application consists of the following system elements:
● An application program which contains PLCopen function blocks that defines the general

application behavior and logics.
● A profile generator which generates a position profile based on the dynamic specifications of

the application program to guide the axis to the desired positions.
● A position control loop which outputs a speed reference signal to minimize the following

error.
To achieve the best system structure for an application these components can be separated into
different devices. Each type of structure has its own kind of interface and type of signals which
need to be transferred between the interacting devices.

All shown motion control system structures (Central motion control with or
without position control loop) can be combined together in the same application
program for a motion control project.

With the function blocks of motion library a motion control profiler can be used inside the PLC.
As shown in the following figure it is needed to provide the actual position of the drive. The
output can be either a position or a velocity reference signal. The used output signal will then be
used to move the axis in the desired way.

There are 2 possibilities to send a reference value to the drive:
● When the position control loop is closed by the PLC by a CMC_Basic_Kernel function block,

the output Speed_Reference should be connected to the drive. The value of Speed_Refer-
ence can be scaled with the axis parameters Max_Rpm and Ref_Max.

● When the position control loop is closed by the drive, the output Position_Reference should
be connected to the drive. The unit for the output Position_Reference is incremented as well
as the input Drive_ActualPosition.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2329

Fig. 68: Architecture for centralized motion control

In general the programming of a machine consists of two layers as shown in the figure above.
In the application layer function blocks according to PLCopen motion control are used to pro-
gram the application sequences with all necessary types of movements and administrational
commands. Due to the standard PLCopen motion control this can be reused in any other
machine programs that used PLCopen function blocks.
The axis implementation layer is responsible for the execution of the commands from the
application layer and can be programmed for each axis in a different way depending on the
used hardware components.

Table 394: Needed function blocks for an application with PLC-based Motion Control
Library Content
ABB_MotionControl_AC500.library Kernel function block, Parameters function

block, Axis Simulation function block

Data types for AC500 Motion Control

Motion Control function blocks according to
PLCopen

For a central motion axis implementation the use of the function blocks
CMC_Basic_Kernel and CMC_Axis_Control_Parameter are mandatory.

The library design is independent from any bus architecture or any specific drive features.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2330

System Velocity reference Position feedback
System A Output via analog output channel

as voltage or current
From incremental encoder con-
nected to CD522 I/O module

System B Output via EtherCAT network Input via EtherCAT network

System C Output as frequency signal of
CD522 I/O module

From incremental encoder con-
nected to CD522 I/O module

System D Output via PROFINET IO network Input via PROFINET IO network

System E Output via PTO & PWM channel in
eCo V3

Input via either encoder (included
in onboard IO), or the PTO or
PWM pulse count.

Example for a
possible
system archi-
tecture

In case the velocity reference value is used from the kernel function block the position control
loop is closed inside the drive. In this case, it is necessary to adjust the related parameters from
the parameters function block. When the position reference will be used the position control
loop is closed inside the drive. In this case, the internal control loop is just used to monitor the
position and velocity.

When the position reference is used for the drive the following aspects have to
be taken care of:

– It is necessary to use a real time fieldbus, like EtherCAT.
– The PLC cycle has to be synchronized to the fieldbus cycle.
– The task calculation times may not exceed the used cycle time.

The drive’s status should be managed by a specialized function block that supports the used
type of drive as shown in the figure above. The kernel function block is the main function block
which is needed to operate an axis with PLC-based Motion Control. It must be used with the
parameter function block which is the interface to input parameters which are used to setup the
axis.

The drive has to be accessed outside the CMC_Basic_Kernel function block. Actual values and
reference values might be transferred by a synchronized fieldbus or by I/Os. The function block
CMC_Basic_Kernel has to be called every cycle and at least once before any function block MC
or MCA is activated.
The following figure shows an example with an axis simulation. The main data signals are
drawn in bold lines. Here, the drive will receive a speed reference signal which means that the
position control loop is closed inside the PLC by the Central Motion function blocks. The time
behavior of the simulated drive can be set by the parameter T1 at the axis simulation function
block. If the time constant is to slow and the axis parameter Control_Time is too short the
simulation axis will run into instability – like a real drive. Sample values: Ä Chapter 1.5.10.4.2.3
“How to use the axis simulation” on page 2337

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2331

A different option to create a virtual or simulated axis is to engage the Enable_Virtual input at
CMC_Basic_Kernel. This virtual axis will follow the speed reference without additional delay,
whereas the CMC_Axis_Simu creates a first order delay.

The following figure shows an example with a CiA402 drive on an EtherCAT network. The main
data signals are drawn in bold lines. Here, the drive will receive a position reference signal
which means that the position control loop is closed inside the drive.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2332

In the example the main signals are to be transferred via EtherCAT network. The drive control
function block for the Microflex e190 can be found in the ABB_Ecat_CiA402_AC500.library.
If using the eCo V3 PLCs, use the OBIO_PTOMotionKernel function block (separate library
ABB_MotionControlEco_AC500.library) instead of CMC_Basic_Kernel for the PTO functionality.

In the eCo V3 PLC, if PWM is used in the configuration, use the kernel function block
OBIO_PWMMotionKernel function block instead of CMC_Basic_Kernel function block.

Kernel function block
The “KERNEL” function blocks are available in two variants.
The OBIO_PTOMotionKernel / OBIO_PWMMotionKernel function blocks are solely to be used
in eCo V3 CPUs and to make use of the integrated stepper-IO. It connects automatically to the
internal IOs. Use the PTO or PWM specific kernel block based on your configuration Ä Chapter
1.6.3.3.1.1.7.2 “Functionality” on page 2451.
The CMC_Basic_Kernel block is designed to be used in any V3 PLCs and can either work with
drives connected to a fieldbus or IOs.

Topic OBIO_PTOMotion-
Kernel/
OBIO_PWMMotion-
Kernel

CMC_Basic_Kernel

Recommended PLC eCo V3 PLC All V3 PLC`s

Kernel Arith-
metic

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2333

Fig. 69: Velocity reference with different jerk values

The diagram shows the result with different jerk values and the same velocity and acceleration.
The time needed for acceleration with jerk=0 is:
Time1=velocity/acceleration=(20/100)s=0.2s
The additional time with jerk=500 will be:
Time2=acceleration/jerk=(500/100)s = 5s
So the total time is:
Time=Time1 + Time2=0.2s + 5s=5.2s
In the last example with jerk=100, the velocity and acceleration values are not reached.

1.5.10.4.2 Basic functionalities
How to connect a drive

The connection to a drive must be done with the inputs and outputs of the function block
CMC_Basic_Kernel. All inputs and outputs of the kernel function block with the prefix “Drive_”
are intended to be used with a drive, but in some cases not all of them are needed. In all cases
the input Drive_ActualPosition has to be connected with the actual position of the axis. This
value can be received by an I/O module of the PLC or via a fieldbus.
Depending on which device closes the position control loop either the output Speed_Reference
or Position_Reference output has to be used. The value of Speed_Reference can be connected
to an analog output module or be transferred via a fieldbus. The value of Position_Reference
should be exclusively sent via a real-time fieldbus like EtherCAT.

How does the
parameter for
jerk influence
the axis move-
ments

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2334

In the example the position control loop will be closed by the PLC, therefore the input
Drive_ActualPosition and the output Speed_Reference are to be used.
In combination with the I/O module CD522 and the corresponding function block
CD522Encoder32Bit the position of the encoder can be used. For the effective resolution of
the encoder parameter Inc_Per_R of the parameter function block has to be used.
The output Speed_Reference can be written directly to the global variable of an output
channel of an analog module but can also be transferred via a fieldbus. The scaling of this
output value can be done with the parameters Ref_Max and Max_Rpm of the function block
CMC_Axis_Control_Paramter_Real.
The scaling of the Speed_Reference value can be set with the inputs Ref_Max and Max_Rpm
of the parameter function block.

In order to finish a homing sequence which is done by the function block MC_StepRefPulse
the outputs Drive_Set_Ref and Drive_Set_Position from the kernel function block have to be
connected with the inputs EN_RPI and START_VALUE of the CD552 I/O module function
block. Also the output RdyRpi of the CD552 I/O module function block has to be connected
with Drive_Ref_Ok from the kernel function block.
To enable and disable the drive Drive_Release could be connected to a binary output to acti-
vate the drive. Drive_InOperation could be connected to a binary input to get the information
that Drive_Release was successful.

Example 1:
Analog drive -
Motor with
incremental
encoder

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2335

In the example the position control loop will be closed by the drive, therefore the input
Drive_ActualPosition and the output Position_Reference are to be used. The inputs referring to
the position control loop of the parameter function block do not have to be set.
For the effective resolution of the motor’s encoder parameter Inc_Per_R of the parameter
function block has to be adjusted.

To enable and disable the drive Drive_Release and Drive_Inoperation have to be
connected to the control function block ECAT_CiA402_Control_App of the library
ABB_Ecat_CiA402_AC500.library, which controls the status and control word of the drive.
All function blocks from this library are not password protected and free to be changed in order
to be adapted for different drives. The library and the function blocks are marked with the
ending _APP.

Example 2:
Servo Drive -
Microflex e190
via EtherCAT in
continuous
positioning
mode (csp)

How to enable and disable a drive
In order to enable a drive the function block MC_Power has to be used within the applica-
tional layer. The kernel function block will then, if possible, output a rising edge on the output
Drive_Release which can be connected to the drive-control function block which performs the
needed actions on the drives control word to enable the drive. As soon the drive states enabled,
this signal can be connected to the input Drive_In_Operation of the kernel function block. The
axis state according to the single axis state diagram of PLCopen will then switch from Disabled
to Standstill.

MC_Power_inst.enable

Kernel_inst.DRIVE_ENABLE

Application Layer

Axis Implementation Layer

Drive will be enabled

Kernel_inst.DRIVE_IN_OPERATION

0

1

0

1

0

1

Axis State
disabled

standstill

Fig. 70: Enabling sequence of a drive

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2336

As long as the drive is in state Disabled or ErrorStop the input Drive_Actual_Position will be
copied to the output Position_Reference of the kernel function block. The output Speed_Refer-
ence will be zero.
When the axis is in operation, which means it is not in state Disabled or ErrorStop, then
the output Position_Reference will be calculated by the kernel function block and the position
control loop will be closed, which outputs non zero value for the output Speed_Reference in
case of a following error. The input Actual_Position should then follow the position reference.
The difference of both values is the following error and will be supervised by the kernel function
block.
In case of drive problem, Drive_InOperation should be reset. The function block will open the
position control loop and Speed_Reference will be set to zero.
For the most drives the status is control by the drives control word whereas the drives status
word represents its actual status. In order to enable the drive it might be necessary to pass
through several drives states according a defined scheme which depends on the used drive.
Therefore the library ABB_Ecat_CiA402_AC500.library is added to PS5611-Motion package
which contains function blocks to operate with different drives on an EtherCAT network. There is
also the PS5605-DRIVES library package which can be used to control the state of other ABB
drives and other protocols.

How to use the axis simulation
It is possible to use a simulated axis instead of a real drive.
The axis simulation can be used in the following use cases:
● When the real drive is not available the simulation can be used to test all available motion

functionalities to verify the application program.
● The simulation can be used to create a virtual master axis and synchronize other axes to it.
The simulation is realized by the function block CMC_Axis_Simu or input Enable_Virtual =
TRUE can be used at the KERNEL-block.
Homing will be possible if the limit-switches (data type CMC_Axis_IO) are simulated also. This
is not done by CMC_Axis_Simu but could be realized in the PLC program.

Fig. 71: Example for Simulation

The drive velocity is simulated by PT1-Characteristic. The input T1 gives the time constant
for this PT1 as multiple of the cycle time. All other properties are simulated according to the
CMC_Axis_Control_Parameter.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2337

The value of the time behavior from the axis simulation function block set by
the input T1 has to be at least four times smaller than the value of the axis
parameter Control_Time from the parameter function block. If Enable_Virtual =
TRUE is used, no delay will be applied to the simulated drive speed, and it will
not be possible to test the position-control loop, but it will be fine to be used as
virtual axis.

How to perform a homing
The homing of an axis is a procedure which consists of up to two phases. For each phase there
are different function blocks available. The available function blocks are according to PLCopen
and belong to the application layer.

Table 395: Overview of the available homing function blocks
 Phase 1 Phase 2/Finish Homing

MC_StepAbsSwitch X

MC_StepDirect X

MC_StepLimitSwitch X

MC_StepRefPulse X

In order to create a complete homing sequence one function block of each phase can be used.

The used function blocks will change the axis state to Homing and will move the axis to
approach installed limit switches or a dedicated absolute switch in the desired directions. No
manipulation of a position value will be done in this phase. The use of function blocks of this
phase is optional for a homing.
The signals of the installed limit switches have to be written to a variable of the data type
CMC_Axis_IO.

Function blocks from this phase will also change the axis state to Homing if this has not already
happen and will finish the homing. Therefore a new position will be set to the axis. The axis
state will then switch back to Standstill.
The use of a function block of the second phase is mandatory for a homing.
In general with AC500 PLC-based Motion Control there are two position values: One position
value will represent the encoder counts of a drive or the CD522 module which is connected to
the input Drive_ActualPosition of the kernel function block. The other position is a user defined
scaled unit which is used for PLCopen function blocks.
There are different ways to finish the homing by manipulate and adjust a position value. Which
value should be manipulated depends on the used drive or module and its capabilities. See the
following types A, B and C.

The user defined position unit will be changed only. The function block MC_StepDirect must be
used here. This type of homing is less complex than the other types but also less precise.

First phase

Second phase

Type A

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2338

Fig. 72: Homing Type A

The Drive or the CD522 module will change its own position value, the encoder counts.

Fig. 73: Homing Type B

The process will be started by the execution of the function block MC_StepRefPulse.
The axis will start to move.
The output Drive_Set_Ref of the kernel function block will then set the drive to sense for a
digital signal. At the same time the kernel function block outputs a preset value which will
replace the actual encoder count value at the moment the digital signal occurs.
This signal can be a Z-pulse of an incremental encoder but also any other signal from a sensor.
This functionality may require a configuration of the drive or the CD522 module in order to be
used.
In the same cycle when the new position value is set there also has to be a boolean signal
stating a new position value at the input Drive_Ref_Ok of the kernel function block. The user
defined position value will then be shifted accordingly.

Type B

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2339

Example of type B for phase 2: Ä Chapter 1.5.10.4.2.1 “How to connect a drive” on page 2334

The encoder count position value will not be changed but involves registration capabilities of a
drive or the CD522 module.

Fig. 74: Homing Type C

The process will be started by the execution of the function block ECAT_HomingOnTouchP-
robe_APP (ABB_Ecat_CiA402_AC500.library).
The axis will start to move.
The output Drive_Set_Ref of the kernel function block will then command the drive or the
CD522 module to activate the Touch Probe functionality. This will configure the drive to latch
a position at the moment a digital signal occurs. The digital signal can be a Z-pulse of an
incremental encoder but also any other signal from a sensor. This functionality may require a
configuration of the drive or the CD522 module in order to be used.
In combination with the latched position value there is a boolean signal which states that a
new latch value has been received. In case of the module CD522 this encoder count position
value has to be converted from encoder counts to equivalent user scaled units by the use of
the function “CMC_Get_Units_From_Inc” (ABB_MotionControl_AC500.library) before it can be
connected to the function block ECAT_HomingOnTouchProbe_APP.
To manage the Touch Probe objects of a drive within the CiA402 profile (e.g. Microflex e190)
the function block ECAT_HomingOnTouchProbe_APP (ABB_Ecat_CiA402_AC500.library) can
be used. This will also cover the conversion from encoder counts to user scaled units.
At the end of the process the function block ECAT_HomingOnTouchProbe_APP will manipulate
the user scaled position value according to the latched position from the drive and the users
settings.

For further information see: AN00220-001 - AC500 and MicroFlex e190 - EtherCAT Homing
Methods

Type C

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2340

http://www.abbmotion.com/support/SupportMe/ApplicationNotes.asp
http://www.abbmotion.com/support/SupportMe/ApplicationNotes.asp

How to Use a CAM curve
The CAM functionality is only available in combination with the kernel function block
CMC_Basic_Kernel.

From Automation Builder 2.5.0 onwards user can make use of inbuild Cam
Configurator to generate Cam Table. For more details on how to use Cam
Configurator please refer Automation Builder Help file.

It is recommended to use the CAM Editor from Automation Builder for those who are new to
Cam table or to get the structure of the Cam Table. User can create the complete CAM Table
using Cam Editor or can make a copy of CAM Table (IEC Code) and adapt it directly in the IEC
code if needed.
Details on the CAM Table structure and different parameters to be considered while creating the
CAM is described below.

The usage of a CAM function is based on the following elements:
● CAM table defined with the data type MC_PProfile.
● An instance of the function block MC_CamTableSelect
● An instance of the function block MCA_Cam_Extra (optional)
● An instance of function block MC_CamIn
● An instance of function block MC_CamOut

1. Declare a CAM table as an array of the data type MC_PProfile in the program.
2. Write data to this array.
3. Use the address of the CAM table at the input CamTable of the function block MC_Cam-

TableSelect.
4. Execute the function block MC_CamTableSelect to process the data of the CAM table with

the function block’s input parameters
5. Additionally you can execute the function block MCA_Cam_Extra for optional parameters

after the processing of the function block MC_CamTableSelect.
6. Execute the function block MC_CamIn to start the slave axis movement according to the

CAM table data and parameters.

ð The axis will operate in the axis state Synchronized Motion.

7. To leave the axis state you can execute the function block MC_CamOut.

ð The axis state will switch to state Continuous Motion and maintains its last velocity as
long as there is no other command.

8. You can also use any other motion command interrupt the Synchronized Motion.

CAM data is done with one table (two dimensional – describing master and slave positions
together).
The data of the elements (array of data type MC_PProfile) can either be assigned within the
declaration or can be assigned during run time before the execution of the function block
MC_CamTableSelect.
It can be filled with data in the following ways:
● To use a predefined variable list.
● To calculate the values within the program (before using the MC_CamTableSelect).
● To send values by any communication access to the PLC.
In order to use the new data it is necessary to execute the function block MC_CamTableSelect
again. In case the CAM table is executed the function block MC_CamTableSelect may not be
executed.

General usage

The following
steps are neces-
sary to use a
CAM table

CAM table

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2341

Elements of the data type MC_PProfile: Ä Chapter 1.5.10.2.4 “Overview of data types”
on page 2297

The inputs MasterSyncPosition and MasterSyncDistance of the function block MC_CamIn can
be used to define a distance to synchronize the slave axis onto the CAM table during the start.
In case master axis moves with negative velocity the parameter MasterSyncDistance can be
negative. The MasterSyncPosition should always be within the range of the CAM table master
position.
MasterSyncDistance = 0 will deactivate the synchronization. In this case the slave axis should
be moved on the CAM curve before MC_CamIn is executed, otherwise a following error can
occure.

Fig. 75: CAM profile figure

The master position in the CAM table must be strictly monotonic rising.
The length of a CAM table is just restricted by the memory size of the PLC. When long tables
are used, it is recommended to call CamTableSelect in a task with lower priority as it will need a
considerable computing time.
It is possible to hold several CamTables as a pool and to switch from one to another. This has to
be done at matching positions as no means for synchronization are available.
The offset and scaling values (except the time-scale) are transferred continuously. This will
allow to follow a "Moving Target" by adjusting these values.

The parameters at MC_CamTableSelect, MC_CamIn and function and MCA_Cam_Extra also
modify the behavior:

Parameter MC_Cam-
TableSelect

Type Default
value

Comment

MasterAbsolute BOOL FALSE TRUE=Master_position from MC_PProfile
equals the master axis absolute position.
FALSE=CAM is executed relative to the
master axis actual position at start.

SlaveAbsolute BOOL FALSE TRUE=interpolation_point from MC_PProfile
equals the slave axis absolute position.
FALSE=CAM is started from actual slave posi-
tion. The values "interpolation_point" are rela-
tive to the slave axis position at start.

iType MC_ABB_
iTypes_E
NUM

 Interpolationtype.

Number_of_pairs INT Number of points used in TimePosition Array.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2342

Parameter
MC_CamIn

Type Default
value

Comment

MasterOffset LREAL 0 Just used with MasterAbsolute=TRUE,
ignored otherwise.
Used position for cam-table is: Master axis
position-Masteroffset.

SlaveOffset LREAL 0 Just used with SlaveAbsolute=TRUE, ignored
otherwise. Used position is slave axis posi-
tion=interpolation_point+Slaveoffset.

MasterScaling LREAL 1 The position used for interpolation is multiplied
by MasterScaling, e.g MasterScaling=2, the
scaled master will pass the position range with
double velocity and within the half distance
compared to its real velocity and position.

SlaveScaling LREAL 1 Interpolation result is multiplied by Slave-
Scaling, e.g SlaveScaling=2: Slave axis will
run twice the distance.

MasterSyncPosition LREAL 0 Start synchronization at master
axis position=MasterSyncPosition-Master-
StartDistance+MasterOffset, meet the CamT-
able at master axis position=MasterSyncPosi-
tion.
In case of MasterAbsolute=FALSE: start
at "actualPosition+MasterSyncPosition-Mas-
terStartDistance", meet the CamTable at
"actualPosition+MasterSyncPosition"!!! It is
just possible to use the "sync" mechanism
when the axis is in StandStill on start.

MasterStartDistance LREAL 0 A negative value will create a reverse syn-
chronization mode, which means the master
should move in negative direction to syn-
chronize. It is independent from the Reverse-
Bit which indicates how to end the movement.

These 2 parameters are "extras" to be written with the MCA_Cam_Extra function. When the
parameters are used, the MCA_Cam_Extra has to be called after the MC_CamTableSelect.

Periodic BOOL TRUE for
master
“Modulo”,
FALSE for
master
linear axis

CamTable will not reach "EndOfProfile" but
will be repeated periodically. When the master
is a linear axis, it has to move forward and
backward within the CamTable position range,
but even when it leaves this position range,
the CamTable will stay active.

Reverse BOOL FALSE Just necessary when a CamTable is
NOT "periodic" and will run in reverse
direction (master with negative velocity)
Reverse=FALSE, the CamTable is ready when
the master leaves the position range in posi-
tive direction, e.g. when it moves from 359º
to 0º on a rollover axes Reverse=TRUE, the
CamTable is ready when the master leaves
the position range in negative direction.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2343

In the example, the slave will run from 0 to 2000 while the master runs from 0 to 1000. The
slave will start and end with velocity=0, no matter which velocity the master has during start.
The slave will reach the maximum velocity when it is at position 1000 and the master is at
position 500.

Example for
CAM curve

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2344

How to use an external axis
To use multiaxis PLCopen function blocks with an externally sensed axis as master axis the
following structure can be used for the axis implementation:

Fig. 76: Structure synchronization to an external axis

The use of a feed forward filter function block is needed if the slave axis has to follow the
position of the external axis. In this case there will be a time delay between sensing the position
of the external axis and moving the follower axis along the sensed position. The filter function
block will then add a certain distance to the external axis’ position depending of its speed.
The filter function block MATH_LINEAR_REGRESSION from the library ABB_MathFunc-
tions_AC500.library can be used here.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2345

Fig. 77: Filter function block to feed forward an externally sensed position

For an axis which is following the external axis, the value “mcActualValue” (from MC_Source
enumeration) for the input “MasterValueSource” for multi-axis PLCopen function blocks has to
be used.
When the filter function block MATH_LINEAR_REGRESSION is used to process an actual
position, 2 different purposes are fulfilled:
● A jitter or noise can be compensated
● It is possible to calculate a forecast-position to compensate for a delay in position measure-

ment

Process the actual position or any other master axis always before the slave
axis.

Otherwise, an additional one cycle-delay is introduced.

The MATH_LINEAR_REGRESSION function block calculates the progress for a variable which
is captured in equidistant periods of time and is assumed to follow a linear curve. It uses the
Gauss “least squares” -algorithm to do so. The line is calculated in a way that the sum of
squares for the distances from the measured points to the assumed straight line is minimized.
A noise or jitter influence of the value is compensated and a predictive value for the variable
with an adjustable forecast horizon can be calculated.
Linear equation:

Sum of squares:

The gradient and offset for the line are calculated in a way that “sum” is minimized. Then these
2 values are used to calculate the forecast value:

FORECAST=0 would mean: value right now, no future or past considered.
When the ACTUAL value is a modulo value, for example a single turn encoder or a rollover
axis, this has to be considered in the calculation. The 2 input values POSITIVE_LIMIT and
NEGATIVE_LIMIT can be used to configure this. They define the upper and lower limit for
ACTUAL. Also, the NEXT_BINARY will as a result be limited to these borders.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2346

Fig. 78: Next Value_Forecast

Example

How to use an encoder/drive with <> 32-bit position overrun
The incremental position as actual position at the function block CMC_Basic_Kernel is usually
assumed as position with a 32-bit position overrun. As well as it is the reference position which
is sent to the drive.
Any modulo-axis configuration should be done inside the PLC.
Some drives are requested to correct their positions themselves for a non-linear axis which
should constantly run into the same direction.
In this case, the drive has to be configured as a modulo-axis and the function block
CMC_Basic_Kernel needs some additional function blocks to create the 32-bit value Ä Chapter
1.5.10.4.3.4 “Roll-Over axis” on page 2357.

Fig. 79: Kernel

The function block CMC_Modulo2Binary will convert any position with any Modulo_Range to a
32-bit binary position.
The actual_position is assumed to run between 0 to Modulo_Range.
The actual_position should not change > 1/4 Modulo_Range between two scan cycles.
The function block CMC_Modulo2Binary will convert the 32-bit binary position reference from
CMC_Basic_Kernel to a position reference which runs from 0 to Modulo_Range.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2347

How to do position correction “on the fly”
Sometimes it is required to have a position correction "on the fly". For example, it can happen
that a position is wrong due to mechanical slip and that a switch which is passed by during the
movement is used to capture a position value.
In other cases, it is required to synchronize the position to a print mark, so an actual_position
has to be corrected, but not the movement of the printed material.
For both applications, the function block MCA_SetPositionContinuous can be used. It will use
ramps and a limited velocity for the correction, so it will be tolerable to execute it during an
ongoing movement and while the axis is activated in a multi-axis movement.

Fig. 80: MCA_Set_PositionContinuous_V3

The block can be used in any axis state except ERRORSTOP and HOMING.
Two different operation modes are possible:
1. SuperImp=FALSE

● The actual_position will be modified.
● The block will not cause any movement.
● If a PLCopen block in DISCRETE_MOTION (positioning) is active during the execu-

tion, this block will not reach Done as the actual_position is modified.
● If a slave axis is coupled to an axis while MCA_SetPositionContinuous is executed

(with SuperImp=FALSE) it will follow.
● This mode is possible while the axis is in state DISABLED.

2. SuperImp=TRUE
● The actual_position will stay constant.
● A mechanical movement is executed (without changing the axis state machine).
● A slave axis will not follow.
● This behavior is similar to a superimposed movement.
● It is not possible when the axis is in state DISABLED.

The block can just be aborted by another MCA_SetPositionContinuous.

How to limit the movement
It is possible to limit the movement by position (software limit switches) and by velocity. By
default, no software limit switches are activated in PS5611-Motion. It is possible to activate them
by accessing some PLCopen parameter.
The functionality described below is just available with linear axes.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2348

Parameter Data type Minimum Maximum Default R/W Description
2 SWLi-

mitPos
DINT 21474836

47
21474836
47

214748364
7

R/W Positive software
limit switch posi-
tion.

3 SWLi-
mitNeg

DINT 21474836
47

21474836
47

214748364
7

R/W Negative soft-
ware limit switch
position.

4 EnableLi-
mitPos

BOOL FALSE TRUE FALSE R/W Enable positive
software limit
switch.

5 EnableLi-
mitNeg

BOOL FALSE TRUE FALSE R/W Enable negative
software limit
switch.

2003 Enable-
Limit2Dec
elerate

BOOL FALSE TRUE FALSE R/W Enable software
limit switches to
decelerate

2004 EnableLi-
mitAbort

BOOL FALSE TRUE FALSE R/W Enable that soft-
ware limit
switches will
abort ongoing
movement
FALSE = Limits
position and
velocity, deceler-
ates and shows
a warning until
the position limit
is reached, then
ERROR STOP
TRUE =
Switches off any
ongoing motion
and decelerates
to the position
limit, then
ERROR STOP

2005 Enable-
LimtVe-
locity

BOOL FALSE TRUE FALSE R/W If the velocity is
limited the
unmoved posi-
tion will be cov-
ered whenever
possible

2006 SWLimit2
DecPos

LREAL -21474836
47

21474836
47

214748364
7

R/W Used as end
position for Ena-
bleLimit2Decel-
erate

2007 SWLimit2
DecNeg

LREAL -21474836
47

21474836
47

214748364
7

R/W Used as end
position for Ena-
bleLimit2Decel-
erate

2008 MaxPosi-
tionGap

LREAL 0 21474836
4700

0 R/W Used to stop the
ongoing move-
ment if position
is behind

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2349

The following different behavior is possible:
● No limitation at all (default)
● Limit position with ERRORSTOP:

– Limit position between SWLimitNeg to SWLimitPos, axis to state ERRORSTOP in case
the position range is left.

● Limit velocity and acceleration:
– Limit velocity to paraMaxVelocityAppl and acceleration/deceleration to paraMaxDeceler-

ationAppl, create WARNING_VELOCITY, not state changes for axis, abort movement is
optional when MaxPositionGap is reached due to limitation.

● Limit Position with ramp-down:
– In addition, it is possible to limit the position between SWLimit2DecNeg and

SWLimit2DecPos. paraMaxDecelerationAppl is used to ramp down.
When activated with EnableLimitPos or EnableLimitNeg, the reaction will be as follows:
● When the control position reaches the respective limit switch, the axis will go to state

ERRORSTOP, and Drive_Release will be switched off. The actual_position might be behind,
depending on the following error. It is assumed that a drive or application specific braking is
performed. The axis will be stopped behind the limit.

● The axis could be switched on again by MC_Power. A movement in the opposite direction
will be possible.

● The functionality of EnableLimitPos and EnableLimitNegis unchanged.
You can use the limitation of movement to achieve a soft or adjustable braking in advance
before reaching the software limit switch. The limitation is activated by three Boolean parameter
and will calculate a position distance to the limit switch, which depends on the actual velocity
and given deceleration ramp. “paraMaxDecelerationAppl” is used for deceleration. It will decel-
erate the axis by the given deceleration ramp when the calculated position is reached and stop
at the software limit switch. The original behavior is not modified, so if also these software
limit-switches are activated, the axis might be set to state ERRORSTOP.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2350

There are 2 different modes:
● EnableLimitAbort = TRUE

Any ongoing motion will be aborted immediately (when the distance to stop is reached, as
shown in the above diagram), a warning is shown
The axis will be decelerated to reach the software limit switch.

● EnableLimitAbort =FALSE, EnableLimitDecelerate=TRUE
A warning is shown and the velocity is reduced, with respect to the given deceleration and
position limit.
The ongoing motion is not aborted. If it was just a “tight fit”, e.g. in a master slave movement
and the direction is turned soon enough, it might be possible to continue the movement.
As the ongoing movement is not interrupted, an activated movement might not be com-
pleted, for example a MC_MoveAbsolute will never reach its target position. A warning is
shown at function block CMC_Basic_Kernel.

When EnableLimitPos = TRUE or EnableLimitNeg = TRUE, and the values for SWLimitPos or
SWLimitNeg are set, the axis will be set to state ERRORSTOP when these position limits are
reached.
In addition, the function block will allow to limit the velocity. With EnableLimitVelocity = TRUE,
it will monitor the velocity demand from the position reference and limit the position reference,
so the given velocity limit will not be exceeded. A warning will be shown. The velocity used for
limitation is MaxVelocityAppl.

The velocity limitation can be used to prevent short-term velocity peeks. The
limited position will be caught up later, whenever possible. This can result in
not-expected behavior. The WARNING issued by CMC_Basic_Kernel can be
checked and used to stop a movement. The movement will be aborted automat-
ically when the position is by MaxPositionGap behind.

– For a single axis movement, the commanded velocity is limited at the begin-
ning. No position gap will occur.

– In a multi-axis movement, the slave axis follows a master. This can result
in a position gap. A velocity peek from the master axis can be reduced
by using the limitation. If the master is too fast because of the value for
MaxPositionGap, the movement will be aborted.

When EnableLimit2Decelerate or EnableLimitAbort are used, the velocity is limited to MaxVelo-
citySystem with EnableLimitVelocity = FALSE. The function modifies the position reference. This
modified position reference is used to control the drive. Whenever the limitation interferes the
kernel will show a warning or an error. The warning or error message will disappear when the
situation is cleared.

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos TRUE ERRORSTOP when positions
exceed, no previous warning
or deceleration.5 EnableLimitNeg TRUE

2003 EnableLimit2Decelerate FALSE

2004 EnableLimitAbort FALSE

2005 EnableLimtVelocity FALSE

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2351

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos FALSE/TRUE Reduce the velocity when
reaching a position limit within
the deceleration distance cal-
culated by using MaxDeceler-
ationAppl. Display a warning
at CMC_Basic_Kernel. The
underlying movement stays
active. With EnableLimitPos
= TRUE or EnableLimitNeg
= TRUE: When the Position
limit is reached, the axis is
set to mode ERRORSTOP
also if EnableLimitPos or Ena-
bleLimitNeg are used. Other-
wise, just the movement is
limited, without affecting the
state machine. An activated
positioning movement will not
reach its target. Velocity is
limited to MaxVelocitySystem.

5 EnableLimitNeg FALSE/TRUE

2003 EnableLimit2Decelerate TRUE

2004 EnableLimitAbort FALSE

2005 EnableLimtVelocity FALSE

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos FALSE/TRUE Reduce the velocity when
reaching a position limit within
the deceleration distance cal-
culated by using MaxDeceler-
ationAppl. Display a warning
at CMC_Basic_Kernel. The
underlying movement stays
active. With EnableLimitPos
= TRUE or EnableLimitNeg
= TRUE: When the Position
limit is reached, the axis is
set to mode ERRORSTOP
also if EnableLimitPos or Ena-
bleLimitNeg are used. Other-
wise, just the movement is
limited, without affecting the
state machine. An activated
positioning movement will not
reach its target. Velocity is
limited to MaxVelocitySystem.
The active PLCopen function
block is aborted as soon
as the warning is issued.
With EnableLimitPos = TRUE
or EnableLimitNeg = TRUE:
When the Position limit is
reached, the axis is set to
mode ERRORSTOP.

5 EnableLimitNeg FALSE/TRUE

2003 EnableLimit2Decelerate ---

2004 EnableLimitAbort TRUE

2005 EnableLimtVelocity FALSE

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2352

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos --- The velocity is checked and
also limited to the value Max-
VelocityAppl. A warning is
shown. The active movement
is not aborted. This function-
ality works independent from
software limit switches.

5 EnableLimitNeg ---

2003 EnableLimitDecelerate ---

2004 EnableLimitAbort ---

2005 EnableLimtVelocity TRUE

1.5.10.4.3 Axis parameters
The parameters for axis configuration and adjustment are set by the function blocks
CMC_Axis_Control_Parameter.
Depending on the version of the kernel function block the corresponding version of the parame-
ters function block has to be used. The instance will then be connected to the kernel function
block by its instance name.

In the example the control structure is a simple position control loop with just proportional
gain. When the application does not require minimized position following error it should
be used this way as it is simple to adjust, robust and requires minimal performance. The
proportional gain is then adjusted by Control_Time. Just change values at CMC_Axis_Con-
trol_Parameter when the position control loop is open (Drive_Release=FALSE, the axis state
is Disabled). The values are sending to the control loop whit a positive edge at "Enable". The
CMC_Basic_Kernel function block needs to be already enabled.

Example

Supervision
This parameter configures the position window for the supervision of the following error.
The default value is 150[%]. A value of 0[%] will deactivate the supervision function.
The size of the position window depends on the setting of the parameters Control_Time and
Max_Rpm Ä “Control_Time” on page 2354.
Position Window [Increments] = (Inc_Per_R) * (Max_Rpm/60) * (Control_Time/1000)

Pos_Lag_Per-
centage

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2353

Position Window [Units] = (U_Per_Rev_Nominator/ U_Per_Rev_Denominator) * (Max_Rpm/60)
* (Control_Time/1000)

Position Window [Increments] = (10000) * (6000/60) * (50/1000) = 50000 [Increments]
Position Window [Units] = (1/1) * (6000/60) * (50/1000) = 5 [Units]

Example

A value of 100% will result in a position window which corresponds to the expected following
error with the giving Control_Time at Max_Rpm. Therefore it is recommended to use values
higher than 100[%]. In case the parameter FF_Percentage is used smaller values can be used.
If the supervised position window is exceeded the axis state will change to ERRORSTOP.

After the configured time the drive’s actual velocity has to be at least 50 % of the commanded
velocity. This function can also be used in case the Position Reference is transferred to the
drive.
A value of 0 will deactivate this supervision function.
If the supervised velocity window is exceeded the axis state will change to ERRORSTOP.

Position control loop

Profile r

SPEED_REFERENCE

POSITION_REFERENCE

DRIVE_ACTUAL_POSITION

1000

CONTROL_TIME

INTEGRAL_TIME

Kerne l Function Block

FF_PERCENTAGE

Pos ition

Velocity

Drive /
Encoder

HORIZONT

REF_MAX
MAX_RPM

Fig. 81: Basic structure of position control loop

The default value is 100 which leads to a proportional gain of 10.

In case the value of Control Time is too short the position control loop will run
into instability.

In case the position control loop is not used this parameter must not be set to 0.

V_Check_Time

Control_Time

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2354

Fig. 82: Control Time and static following error in case the feed forward of velocity and the
integrational part of the position control loop is not used.

The static following error depends on the axis velocity and can be calculated easily: Control
Time multiplied by the axis velocity (p_error = v * CT).
In general it should be aimed to reach a high position control loop gain with a short Control Time
to achieve a small following error. As the reaction times take account in the possible Control
Time of the complete system (parameters of the drive control loop, PLC cycle time as well as
the communication fieldbus) should be considered.
As a basic rule the Control Time should be at least four times longer than the reaction time
between the output of the Speed Reference and the input of actual position.

When the time Ts and Tt is measured, a control_time of 4 * (Ts + Tt) will result in an aperiodic
damping of the position control loop. It is important to measure the values from inside the PLC
(e.g. Trace) to have the complete reaction times included. Practical values for Control_Time
might be from 50 - 500ms. The PLC cycle time as well as bus cycle times and mechanical
reaction will influence the value.

The default value is 0.
In case a velocity feedforward has to be configured a value of up to 80 is recommended. For
larger values than 80 the parameter Horizon needs to be used as the resulted position will
overshoot otherwise.
A value of 100 adds a velocity to the Speed Reference output which corresponds exactly to the
ongoing Position Reference value.

time

position

velocity

The integral part of the position control loop can be used to eliminate a permanent positioning
error, e.g. in case of hanging loads.
The time value can be regarded as the time the integrator needs to sum up the input value to
reach the same value for its output.

FF_Percentage

Integral_Part

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2355

In case the Integral Part Time is too short the position control loop will run into
instability.

A communication delay of the Speed Reference value to the drive system can cause an over-
shoot during positioning caused by the velocity feedforward gain.
This function will compensate this communication delay to prevent an overshoot by time shifting
the signals Velocity Feed Forward and Position Reference relatively to each other.
The value of Horizon can be approximately assumed to be the time delay of the communication
delay.
The delay time might be caused by the cycle time of the control loop and by any delay in
sending the speed reference, delay in the drive to build up the torque and delay to receive
the actual position. To overcome this delay, a Horizon > 0 might be used. The feed forward
reference will be created in advance, while the proportional gain is applied to the original motion
profile. The delay is then compensated.
This function should not be used if the feed forward parameter FF_Percentage is 0.
A value of 0 will deactivate this function, which is the default value.
While this function is used, it will increase the needed PLC calculation time for this axis.

Fig. 83: Result with Horizon=0

Horizon

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2356

Fig. 84: Result with Horizon>0

PLC cycle time
This parameter represents the cycle time in which the kernel function block of the axis is called.
If the configured cycle time is not correct the resulting acceleration and speed of an axis will be
not correct also.
In case the task execution of the axis is synchronized to a fieldbus (e.g. EtherCAT) the cycle
time of the fieldbus has to be used.

Roll-Over axis
If the Position Reference value is used, the drive must able to perform a position over-run
after 32 bit. If the drive’s position over-run is different, it can be adapted with the func-
tion blocks CMC_Binary2Modulo and CMC_Modulo2Binary from the library ABB_MotionCon-
trol_AC500.library. Incompatibility can cause an axis to trip after hours of operation.
The possible position following error has to be smaller the ½ Modulo_Range. Make sure that the
modulo range is large enough.
Position following error = (100 - FF_Percentage) * Max_Rpm * Inc_Per_R * Con-
trol_Time/6000000. This is the maximum value at constant velocity.

With this parameter the axis can be configured as a roll-over axis.

The modulo range will be defined in drive position counts (DINT). It will result that the scaled
unit position which is used by the PLCopen function blocks will stay within the defined range.

En_Modulo = TRUE
Modulo_Range = 20000
Inc_Per_Rev = 10000
U_Per_Rev_Nominator = 360 (e.g. degree)
U_Per_Rev_Denominator = 1

The scaled unit's position will cover the range from 0 to 720 (degrees).

Example

In some cases it is not suitable to set the modulo range of an application with the DINT value
of the parameter Modulo_Range only. In such cases the parameters 2001 Modulo_Nominator
and 2002 Modulo_Denominator can be used to scale the parameter Modulo_Range to a more
precise value.

Cycle

En_Modulo

Modulo_Range

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2357

These parameters can be used to modify the Modulo_Range in a way that fractions of an
increment could be used for 1 modulo (=rollover) distance
● Default: Modulo_Nominator=1 and Modulo_Denominator=1: the actual position for an axis is

limited between 0 and Modulo_Range increments.
● Limitations: Modulo_Range*Modulo_Nominator < 2147483647. Otherwise: default values

will be used.
● When modifying these parameters, the position control loop should be opened.

En_Modulo = TRUE
Modulo_Range = 1024
Modulo_Nominator = 10
Modulo_Denominator = 3
Inc_Per_R = 1024
U_Per_Rev_Nominator = 80*5*3
U_Per_Rev_Denominator = 10

Motor / Encoder

5mm each tooth

3:10 ra tio

80 tee th Gearbox

1024 counts per revolution

Result of parameters Modulo_Range, Modulo_Nominator and Modulo_Denominator: The
modulo range will cover one revolution of the toothed-belt wheel.
Result of parameters U_Per_Rev_Nominator and U_Per_Rev_Denominator: One scaled unit
corresponds to one mm of the tooth belt.

Example

 Option1 Option2
En_Modulo TRUE TRUE

Modulo_Range 10240 10240

Modulo_Nominator 1 1

Modulo_Denominator 1 1

Inc_Per_R 1024 10240

U_Per_Rev_Nominator 36 360

U_Per_Rev_Denominator 1 1

Max_Rpm 3000 300

The two options above describe exactly the same configuration. The Modulo_Range is equiva-
lent to 10 motor revolutions and is 10240 increments. For the position, 1u means 1° and the
resolution is 360°/10240inc = 0,035°/Inc = 1°/28,44 Inc.

Example:
Gearbox 10.1

Parameter
Modulo_Nomi-
nator and
Modulo_Denom-
inator (sup-
ported with
CMC_Basic_Ker
nel)

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2358

 Option1 Option2
En_Modulo TRUE TRUE

Modulo_Range 1024 10240

Modulo_Nominator 10 1

Modulo_Denominator 3 3

Inc_Per_R 1024 10240

U_Per_Rev_Nominator 108 1080

U_Per_Rev_Denominator 1 1

Max_Rpm 3000 300

The two options above describe exactly the same configuration. The gearbox is 10:3, so the
Modulo_Range is equivalent to 1024*10/3 = 3413 + 1/3 increments. For the first option, the
resulting modulo range is calculated 1024*10/3, for option2, it is 10240*1/3. For the position,
1u means 1° and the resolution is 108°/1024inc = 0,105°/Inc = 1°/9.481 Inc.

Example:
Gearbox 10.3

Scaling of the unit of length
With this parameter the number of the drive position counts each revolution of the motor (DINT)
have to be entered.

With these two parameters the number of units which correspond to one revolution of the motor
have to be entered.
The units of length can be scaled to values like: mm, inch, degree, …
All dynamic parameters of the PLCopen function blocks like velocity, acceleration and jerk are
based on seconds. Velocity [units/s], acceleration [units/s²], jerk [units/s³]

Inc_Per_Rev = 10000
U_Per_Rev_Nominator = 360
U_Per_Rev_Denominator = 1

This will scale one unit to one degrees of the motor shaft. Correspondingly a velocity [units/s]
of 360 will turn the motor shaft one revolution per second.

Example 1

In the example one unit will be scaled to one millimeter of the conveyor.

Motor/Encoder

5 mm each tooth

1:5 ratio

80 teeth Gearbox

1024 counts per revolution

Fig. 85: Scaling units

How many units will pass after one revolution of the motor? (80*5mm) / 5 = 80
Inc_Per_Rev = 1024
U_Per_Rev_Nominator = 80
U_Per_Rev_Denominator = 1

Example 2

Inc_Per_R

U_Per_Rev_Den
ominator &
U_Per_Rev_No
minator

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2359

In the example one unit will be scaled to one millimeter of the conveyor.

Motor/Encoder

5 mm each tooth

1:32 ratio

80 teeth
Gearbox

1024 counts per revolution

Fig. 86: Scaling units

How many units will pass after one revolution of the motor? (80*5mm) / 32 = 12,5 = 125 / 10
Inc_Per_Rev = 1024
U_Per_Rev_Nominator = 125
U_Per_Rev_Denominator = 10

Example 3

Scaling of the speed reference output
These two parameters are used to scale Speed Reference output of the kernel FB in order to
reach the intended velocity by the output value and to limit the highest possible output value.

Highest possible output value of the Speed Reference output. The Speed Reference value that
corresponds to the parameter Max_Rpm should be used.

Maximum speed of the motor in revolutions per minute.

● Analog Drive: 1000 rpm at 2 Volts, 3200 rpm at 6,4 Volts (max.)
● Analog output module: 10 Volts output at digital value 27648
● Ref_Max = 17695 (= 27648 / 10 * 6,4)
● Max_Rpm = 3200

Example

Access and modify parameters

All modifications will be effective immediately. There is no extra plausibility
check and values are not checked for limitations.

Use this functionality with care.

Some parameters are collected inside a structure in Axis_Ref, and can be accessed and
modified immediately. They are the same parameters as used with function blocks MC_Write-
Parameter and MC_ReadParameter Ä Chapter 1.5.10.3.6 “PLCopen parameter” on page 2308.
The differences are:
● Only available with CMC_Basic_Kernel
● The parameter values are LREAL instead of DINT and can be used with decimals.
● The parameters will be effective immediately.
● There is no check for consistency or limits.
● The parameters for position control can be checked and modified by accessing the structure

Axis_Parameter.CMC_Pos_Control in addition.

Ref_Max

Max_Rpm

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2360

Parameter for position con-
trol

Description

KP Proportional gain in positive direction. Used directly to multiply
the following error and create the Reference_Prop.

KF Feed forward in positive direction. Used directly to multiply the
speed reference and create the Reference_FF.

KP_BACK Proportional gain in negative direction. Used directly to multiply
the following error and create the Reference_Prop.

KF_BACK Feed forward in negative direction. Used directly to multiply the
speed reference and create the Reference_FF.

TI Integration time. When parameter is used the position con-
trol loop has an additional integral part. In TI cycle, the Ref-
erence_ITG will reach the value of Reference_Prop, when
KI=100*KP.

KI Proportional gain, used for integral part of position control loop.

KF_100 Value for feed forward gain, if 100% would be used.

Max_Time Delay time used for supervision of velocity. With Max_Time=0,
no supervision is executed.

D_XS_Max Maximum possible velocity in [u/cycle].
The maximum allowed following error is part of the parameter
structure, PLCopen parameter paraMaxPositionLag.

Ref_Max Limit for Speed_Reference.

The element actual represents actual values from inside the position control loop.

Value Description
Position Actual position in [u] to control the axis.

Control_Position Reference position in [u] which is actually used for control
loop.

D_XS Distance in [u] to be moved per cycle.

D_XSS Following error in [u].

Reference_Prop Proportional part for Speed_Reference.

Reference_FF Feed forward part for Speed_Reference.

Reference_ITG Integral part for Speed_Reference.

See parameter KP/KP_BACK and KF/KF_BACK.

From library version 3.1 on, these values are not limited to the 16-bit range of values (32767).
The limit for velocity is calculated by the values given at CMC_Axis_Control_Parameter and the
acceleration is limited such that this velocity can not be reached faster than 1 cycle.

Element actual
of Axis_Ref

Possible to use
different gain
for forward/
backward move-
ment , possible
improvement for
hydraulic axis
or vertical
movement
Limitation for
velocity and
acceleration and
deceleration

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2361

1.5.10.4.4 Programming guidelines
To achieve the best results for Motion Control the actual position has to be transferred in best
possible quality (with minimal jitter) to the PLC. The position feedback is expected to be in
increments as the data type is a DINT.
The kernel function block (CMC_Basic_Kernel or OBIO_PTOMotionKernel or OBIO_PWMMo-
tionKernel) has to be called every cycle and its task requires a fixed cycle time.
A variable of type Axis_Ref is used to connect to the PLCopen function blocks and their kernel
function block.
The function block CMC_Axis_Control_Parameter has to be used for the axis configuration.
Ä Chapter 1.5.10.4.3 “Axis parameters” on page 2353

The signal of the limits switches and the absolute switch should be connected to the elements
of the data type CMC_Axis_IO. The signal of the absolute switch must be TRUE in case the
axis hits the sensor. The signal of a corresponding limit switch has to be true when the axis
leaves the area surrounded by the limit switches. If needed the signal has to be inverted before
it is connected to the elements of the data type.

The kernel function block and the transfer of axis IO data should be processed in a cyclic
task. This task should be as short and real-time as possible to achieve the best motion control
performance. Always make sure Kernel function block is called at the highest priority task and
other applications must be at a lower priority task.
In order to save PLC processing time the most PLCopen function blocks as well as the applica-
tion logic can also be processed in a task which runs on a lower priority than the real-time task
with the axis implementation as shown in the figure below.

All PLCopen function blocks which must be called in the same task than the kernel function
block:
● MC_CombineAxes
● MCA_MoveByExternalReference
In case the position reference is transferred to the drive the task of the axis implementation
should be synchronized to the fieldbus cycle. The following figures show an example for
EtherCAT:

Fig. 87: Task of axis layer

Task configura-
tion

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2362

Fig. 88: Task of application implementation

1.5.10.4.5 Visualization
The structure of the position control loop is also as visualization element
CMC_Visu_FB_Basic_Kernel. included in ABB_MotionControl_AC500.library. As placeholder,
an instance of CMC_Basic_Kernel has to be used. The visualization shows all numbers as they
are really used inside the block, the adjustment for different resolution or cycle times is already
included.

1.5.10.4.6 ABB specific data structures
Not all data structures are defined by PLCopen. Some specific structures are described in the
following chapter. In addition to the data in these arrays, the movement is modified by offset
and scaling values at the respective function block. These offset and scaling values (except the
time-scale) are transferred continuously. This will allow to follow a "Moving Target" by adjusting
these values.

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2363

PositionPositionProfile
The data type MC_PProfile is used for CamTable. An array has to be defined and provided at
MC_CamTableSelect. Several CamTables could be defined and the axis could change between
them on the fly. There is no routine of smooth movement from one table to the next so the
user has to take care just to switch on appropriate positions. Details are described in the
documentation included with the library.

ARRAY[1..3] OF MC_PProfile:=
 (Master_position:= 0 ,interpolation_point :=
0 ,Velocity_ratio:= 0 ,Acceleration_ratio:= 0),
(Master_position:= 50 ,interpolation_point :=
25 ,Velocity_ratio:= 0 ,Acceleration_ratio:= 0),
(Master_position:= 100 ,interpolation_point :=
0 ,Velocity_ratio:= 0 ,Acceleration_ratio:= 0);

Declaration
example
CAM_table

PositionTimeProfile
This structure is used for time based profiles, e.g. MC_PositionProfile:

Interpolation types for profiles
The curves defined by an array of MC_PProfile hold master position points and according
slave positions. When the master position is between 2 points, the according position for
the slave is interpolated. Different types of interpolation are possible. The type is defined in
MC_ABB_iTypes_Enum . The master could be a real axis or some virtual axis which could be
created by just writing values for position and velocity to the Axis_Master variable as shown in
the example. The same interpolation types could be used on MC_TProfile.

Table 396: Overview of different interpolations
Interpolation Types Results in Requires
MCA_LINEAR Linear interpolation

with constant velocity
between interpolation
points.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].interpola-
tion_point

MCA_SPLINE_NAT-
URAL

Cubic spline interpola-
tion without jerk.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].interpola-
tion_point

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2364

Interpolation Types Results in Requires
MCA_SPLINE_COM-
PLETE

Cubic spline interpola-
tion without jerk, start
and end of profile with
velocity=0.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].interpola-
tion_point

MCA_POLY3 Polynomial interpola-
tion with linear velocity
between interpolation
points.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].inter-
polation_point, profile.MC_PPro-
file_Array[x].velocity_ratio

MCA_POLY5 Polynomial interpola-
tion with linear accel-
eration between inter-
polation points.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].inter-
polation_point, profile.MC_PPro-
file_Array[x].velocity_ratio,
profile.MC_PProfile_Array[x].accelera-
tion_ratio

The interpolations allow to run on smooth curves without the need to define a large number
of points. The following chapter shows the results with different interpolation modes for a
sinus-curve with 10 interpolation points. The following table gives the mean deviation.

Interpolation Type Mean deviation [ppm]

MCA_LINEAR 19686 =1.9%

MCA_SPLINE_NATURAL 151=0.0151%

MCA_SPLINE_COMPLETE 25510=2.5%

MCA_POLY3 131=0.0131%

MCA_POLY5 0.37

The original curve is represented by y_sinus for position and v_sinus for velocity. The diagrams
show the result which is achieved by different interpolation types.
MCA_LINEAR

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2365

Fig. 89: Results from linear interpolation

The velocity is constant between the interpolation points.
MCA_POLY3

Fig. 90: Results from polynomial interpolation

The result looks almost identical to the original curve. The mean deviation shows that
MCA_POLY3, MCA_POLY5 and MCA_SPLINE_NATURAL produce results which follow the
original curve really good and are almost identical. The spline interpolation produces a jerk-free
curve without the need of providing velocity values and acceleration values in advance.

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2366

MCA_COMPLETE

Fig. 91: Results from complete spline interpolation

In the beginning and the end, the curve does not follow the original curve. The reason is that it
starts with velocity=0 and produces a jerk free result.
So the favoured result has to be considered in advance to choose the right interpolation
method. With these different methods it is not necessary to provide a large number of interpola-
tion points to get good results and smooth acceleration and deceleration ramps.

1.5.10.4.7 PLC-based motion control -– Load control / fluid power extensions
The ABB_MotionControlLoad_AC500 library is an extension to ABB_MotionControl_AC500
library based on PLCopen part 6 called “fluid power” and basically can be used to implement
load control as a simple form of torque profiling. It can be used together with all other motion
control package libraries. The same structure and general rules are applied and all the above
chapters in this document is relevant for ABB_MotionControlLoad_AC500 library as well. It is
recommended to read through all the above chapters before start using the function blocks from
this library. A difference is that the position control loop has to be closed inside the PLC as it is
to be synchronized with the load control loop which is also realized. The implementation of Load
function blocks is based on the PLCopen part 6 – Fluid power.
Overview of the defined extended function blocks:

Table 397: Overview of the defined function blocks
Administrative Motion
Single axis Multiple axis Single axis Multiple axis
MC_LimitLoad - MC_LoadControl -

MC_LimitMotion - MC_LoadSuperIm-
posed

-

- - MC_LoadProfile -

- - MC_TorqueControl -

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2367

As per PLCopen MC_TorqueControl is a part 1 function block, however due to
its implementation as a wrapper for the load control and limit load blocks this is
added to ABB_MotionControlLoad_AC500 library.

The following state diagram is based on the version as defined in ‘Part 1 – Function Blocks for
Motion Control’, Version 2.0.
This specification adds three load function blocks to the state diagram:
● MC_LoadControl
● MC_LoadSuperImposed
● MC_LoadProfile
MC_TorqueControl function block also follows the same state diagram.
Function blocks not listed in the state diagram do not affect the state diagram, meaning that
whenever they are called the state does not change.
The state diagram shows synchronized motion because the position-axis follows the load, and
the state is related to the position axis.

Note 1: From any state. An error in the axis occurred.
Note 2: From any state. MC_Power.Enable = FALSE and there is no error in the axis
Note 3: MC_Reset and MC_Power.Status = FALSE
Note 4: MC_Reset and MC_Power.Status = TRUE and MC_Power.Enable = TRUE
Note 5: MC_Power.Enable = TRUE and MC_Power.Status = TRUE
Note 6: MC_Stop.Done = TRUE and MC_Stop.Execute = FALSE

The basic block is the CMC_Load_Motion_Kernel. It has to be called every cycle and at least
once before any MC… block is activated. It is used to combine the position and velocity
functionality from CMC_Basic_Kernel with the load control functionality which is utilized by the
MC_Load... blocks.

Kernel function
block - Fluid
power

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2368

The reference which is used by the CMC_Load_Motion_Kernel is equivalent with the
Speed_Reference at CMC_Basic_Kernel, as long as no LOAD-functionality is activated. The
documentation from CMC_Basic_Kernel applies to the identical inputs and outputs. Some
inputs and outputs are added to serve the load control functionality.

The Load_Ref is used instead of Axis_Ref for the MC_Loadxxx blocks. When
the CMC_Load_Motion_Kernel is used, Load_Ref replaces Axis_Ref and user
can use all PLCopen-Blocks.

The actuator (drive) has to be accessed outside the CMC_Load_Motion_Kernel block. Actual
values and reference values might be transferred by a synchronised bus or by I/Os.
● •All inputs and outputs of the function block which are named “DRIVE_xxxx” should be used

to connect to the actuator (drive). It does not matter whether this connection is done by
fieldbus or by conventional IOs.
The Axis-structure is used to connect to the PLCopen blocks

● The Load_Axis structure is used to connect the fluid-power PLCopen blocks

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2369

● The control_parameter-structure is used for configuration of control loop.
● The IO-structure gives a connection to limit- or reference switches.
When the function block will take control (close loop) the output “Drive_Release“ is set. The
PLC-Program should then start the actuator (actuator (drive)) and set “Drive_InOperation =
TRUE” when successful. In case of actuator (actuator (drive)) problem, “Drive_InOperation”
should be reset. The function block will then open the position control loop and Speed_Refer-
ence will be 0.

The homing is done with PLCopen-blocks. As the interface to the actual position is outside the
CompactMotion, the bit “Drive_Set_Ref” is set when the state is reached to evaluate the zero-
track. When the zero-track was found, Drive_ActualPosition has to be set to “Drive_Set_Posi-
tion”, this has to be indicated by “Drive_Ref_Ok”.
The output “Drive Reference” should be send to the actuator (drive). This value is scaled with
Max_Rpm and Max_Reference which means: when “Drive_Reference” equals Max_Reference,
the motor is expected to run with Max_Rpm.

The function block holds a position control loop and a load control loop. The load control loop
is a PIDT1-Block. Both control loops are alternately activated, depending if a MC_Load..block
or a MC_Move… block is active. There is a bumbless transition realized between the different
control loops.
The PIDT1 controller has a proportional, integral and derivative part. The integral and derivative
part can be switched of by using a time value = 0.

All 3 parts of the control loop are added up. The integral or derivative part could be disabled by
setting the respective time constant to 0, so the following structures are possible:
● P
● PDT1
● PI
● PIDT1
The Load_MaxRef and Load_MinRef values will limit the controllers output Y and also apply
to the controller’s internal integral part. I.e the integral part can only hold values between the
high and low limits. If the manipulated variable Y reaches one of the two limits, the controller's
integral part is no longer changed. This prevents the integral part from holding meaningless
values and, in certain circumstances, not returning to the operating range for a long time. This
behavior of a controller is also referred to as a "special anti-reset windup measure".

Load control

Transfer func-
tion

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2370

In the diagram below, an example is explained. SFC is used here to distinguish between a
movement where the MC_LimitLoad functionality has become ‘Active’ or not. In Step 2 there
is a movement like ‘MoveAbsolute’, which is limited by the MC_LimitLoad functionality. If the
absolute position is reached without MC_LimitLoad becoming active, the transition via done to
step 3 is applicable. However, if the MC_LimitLoad becomes ‘Active’, the transition to the ‘Halt’
step is applicable, issuing a MC_Halt.

Fig. 92: MC_LimitLoad used in SFC

MC LimitLoad

The function block is intended to be used in conjunction with a MC_LoadControl or MC_Tor-
queControl having primary control on the axis. The MC_LimitMotion should be enabled by
the ‘Active’ output of the MC_LoadControl / MC_TorqueControl. If motion values on the axis
exceed the given limit, appropriate measures are taken to keep to these limits, implying that
the load/torque will not follow the programmed trajectory but depend on the external load
conditions. However, the ‘Active’ output of the MC_LoadControl/MC_TorqueControl will stay
TRUE in this case, following the modified PLCopen definition “The ‘Active’ output indicates,
that the FB has control on the set-value generation of the axis”. This is despite the fact,
that physically only the load-conditions or the movement of an axis can be controlled. With
actual motion states below programmed limits, the programmed load/torque trajectory will
proceed. Enabling the limiter block with activation of the MC_LoadControl/MC_TorqueControl
ensures that limits are only supervised when the MC_LoadControl/MC_TorqueControl takes
control on the axis for the first time. Disabling the limiter block with de-activation of the
MC_LoadControl/MC_TorqueControl ensures that limits are no more supervised when the
MC_LoadControl/MC_TorqueControl loses control on the axis by ‘CommandAborted’ or ‘Error’.

MC_LimitMo-
tion e.g. force
fitting

Example - Fluid
power exten-
sions

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2371

Possible Application: Actuator: hydraulic cylinder with fluid pressure sensor actuates the
press of plastic injection molding machine in a continuous load operation.
Request: Prior to MC_LoadSuperImposed call, a MC_LoadControl block is ‘Active’ with a
command of 7,500 kPa to press melted plastic into the mold. Once the MC_LoadControl
‘InLoad’ condition is achieved a superimposed pressure of 5,000 kPa is added several times to
cause a hammering effect to relieve stresses in the plastic.
Result: the MC_LoadControl pressure command of 7,500 kPa is superimposed with a dis-
crete pressure command of 5,000 kPa. Once the ‘LoadSuperImposed’ command is active the
system pressure rises to 12,500 kPa.
When the superimposed pressure command has been achieved the MC_LoadSuperImposed
block is done and the original command given by the MC_LoadControl resumes the original
pressure command. The MC_LoadSuperImposed block is executed several times without
affecting the original pressure command given by the MC_LoadControl block.

MC_ LoadSu-
perImposed

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2372

The example (below) opposite signs for ‘Direction’ & ‘Torque’ are used (e. g. Retention or
brake control). (In the function block: +Direction –Torque). It is like an unwinding application
with torque on the material, and a break in the material. When the material breaks, as shown
in the middle of the figure this causes a drop in the real Torque value (in absolute terms): The
velocity will decrease, limited by the fastest “deceleration” limit specified by the ‘Deceleration’
VAR_INPUT down to zero velocity (with no tension there is a risk of having shock breakings,
so we have to limit to the fastest). In this case the torque setpoint might not be achieved.

MC_Torque-
Control

In an unwinding application (derived from this brake control) material tension
is the target, not motor torque. The instantaneous diameter of the roll should
be taken into account to transform the “User tension setpoint”. Also, additional
inertia compensation by modification of the torque setpoint for acceleration /
deceleration is common from instantaneous weight data (weight is commonly
estimated from diameter). Additionally, in unwinding applications, in the case
of loose material (same condition as material break), a negative slow velocity
reference is usually applied to “rewind” the loose material. In this case, this
must be provided by external programming.

1.5.10.4.8 Appendix
List of all PLCopen and ABB specific function blocks in PS552-MC (for V2 PLC) and PS5611-
Motion (for V3)

SNo Funktion block
type

Funktion block name Motion Library
V2 (PS552-MC)

Motion Library
V3

(PS5611-
Motion)

1 PLCopen MC_Power x x

2 PLCopen MC_Home x -

3 PLCopen MC_Stop x x

4 PLCopen MC_Halt x x

5 PLCopen MC_MoveAbsolute x x

6 PLCopen MC_MoveRelative x x

7 PLCopen MC_MoveAdditive x x

8 PLCopen MC_MoveSuperImposed x x

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2373

SNo Funktion block
type

Funktion block name Motion Library
V2 (PS552-MC)

Motion Library
V3

(PS5611-
Motion)

9 PLCopen MC_HaltSuperImposed x x

10 PLCopen MC_MoveVelocity x x

11 PLCopen MC_MoveContinuousAb-
solute

x x

12 PLCopen MC_MoveContinuousRela-
tive

x x

13 PLCopen MC_PositionProfile x x

14 PLCopen MC_VelocityProfile x x

15 PLCopen MC_AccelerationProfile x x

16 PLCopen MC_SetPosition x x

17 PLCopen MC_SetOverride x x

18 PLCopen MC_ReadParameter x x

19 PLCopen MC_ReadBoolParameter x x

20 PLCopen MC_WriteBoolParameter x x

21 PLCopen MC_WriteParameter x x

22 PLCopen MC_ReadActualPosition x x

23 PLCopen MC_ReadActualVelocity x x

24 PLCopen MC_ReadStatus x x

25 PLCopen MC_ReadAxisError x x

26 PLCopen MC_Reset x x

27 PLCopen MC_CamTableSelect x x

28 PLCopen MC_CamIn x x

29 PLCopen MC_CamOut x x

30 PLCopen MC_GearIn x x

31 PLCopen MC_GearOut x x

32 PLCopen MC_GearInPos x x

33 PLCopen MC_PhasingAbsolute x x

34 PLCopen MC_PhasingRelative x x

35 PLCopen MC_HaltPhasing - x

36 PLCopen MC_LoadControl - x

37 PLCopen MC_LimitLoad - x

38 PLCopen MC_LimitMotion - x

39 PLCopen MC_LoadSuperImposed - x

40 PLCopen MC_LoadProfile - x

41 PLCopen MC_TorqueControl - x

42 ABB MCA_CamInDirect x x

43 ABB MCA_CamInfo - x

44 ABB MCA_Cam_Extra x x

45 ABB MCA_DriveBasedHome x x

PLC Automation with V3 CPUs
Libraries and solutions > Motion control library

2022/01/213ADR010583, 3, en_US2374

SNo Funktion block
type

Funktion block name Motion Library
V2 (PS552-MC)

Motion Library
V3

(PS5611-
Motion)

46 ABB MCA_GearInDirect M x x

47 ABB CA_Indexing x x

48 ABB MCA_JogAxis x x

49 ABB MCA_MoveByExternalRe-
ference

x x

50 ABB MCA_MoveVelocityContin-
uous

x x

51 ABB MCA_MoveRelativeOpti x x

52 ABB MCA_Parameter x x

53 ABB MCA_PhasingbyMaster - x

54 ABB MCA_ReadParameterList x x

55 ABB MCA_SetOperatingMode x x

56 ABB MCA_SetPositionContin-
uous

x x

57 ABB MCA_WriteParameterList x x

58 ABB MCA_CamGetInterpola-
tionPosition

- x

59 ABB MCA_Home x -

60 ABB MCA_Power x -

61 ABB ECAT_402Parameter-
Homing_APP

x x

62 ABB ECAT_HomingOnTouchP-
robe_APP

x x

63 ABB ECAT_CiA402_TouchP-
robe_App

x x

PLCopen Part 4 –Coordinated Motion is only available for V2 PLC and not yet available for V3
PLC.

1.5.10.5 Examples
Example projects for the libraries can be found in the folder:
\Users\Public\Documents\AutomationBuilder\Examples\PS5609-Log

PLC Automation with V3 CPUs

Libraries and solutions > Motion control library

2022/01/21 3ADR010583, 3, en_US 2375

1.5.11 MQTT client library

1.5.11.1 Structures and enumerations

Parameter Value Description
MQTT_ERR_NO_ERROR 0 No error.

MQTT_ERR_CONN_
SERVICE_UNAVAIL

16#3001 The Network Connection has been made
but the MQTT service is unavailable on the
specified port.

MQTT_ERR_COMMUNI-
CATION_TIMEOUT

16#3013 The timeout value for the communication
has been exceeded.

MQTT_ERR_REC_PACKE
T_TOO_LONG

16#3017 Received topic is too long.

MQTT_ERR_PING_NO_A
NSWER

16#301A The MQTT broker did not answer the ping.
MQTT client has passed the KeepAlive or
MQTT broker is unreachable.

MQTT_ERR_CONN_CLIE
NT_ID_NOT_ALLOWED

16#301F The Client identifier is correct UTF-8 but
not allowed by the Server.

MQTT_ERR_CONN_
REFUSED_PROTOCOL

16#3020 The Server does not support the level
of the MQTT protocol requested by the
Client.

MQTT_ERR_CONN_REFU
SED_CONNECTION

16#3025 Connection refused, maybe the IP address
is malformed.

MQTT_ERR_UNSPECI-
FIED_ERROR

16#302B Internal library returned an unspecified
error.

MQTT_ERR_NET-
WORK_ERROR

16#302D General network error.

MQTT_ERR_CONN_AUTH
_FAILED

16#3217 Authentication failed: Bad username, pass-
word OR client id.

MQTT_ERR_CONN_TLS_
HANDSHAKE_FAILED

16#3230 Error on TLS handshake.

MQTT_ERR_CONN_SERV
ER_CERT_NOT_VALID

16#3231 Server certificate not valid. Check if PLC
date has been set correctly.

MQTT_ERR_CONN_SERV
ER_CERT_NOT_PEM

16#3232 Server certificate format is not formatted as
PEM.

MQTT_ERR_CONN_SERV
ER_CERT_EXPIRED

16#3233 Server certificate has expired.

MQTT_ERR_CONN_CLIE
NT_CERT_NOT_VALID

16#3234 Client certificate not valid. Check if PLC
date has been set correctly.

MQTT_ERR_CONN_CLIE
NT_CERT_NOT_PEM

16#3235 Client certificate or client key format is not
formatted as PEM.

MQTT_ERR_CONN_CLIE
NT_CERT_EXPIRED

16#3236 Client certificate has expired.

MQTT_ERROR_I
D (Enum)

PLC Automation with V3 CPUs
Libraries and solutions > MQTT client library

2022/01/213ADR010583, 3, en_US2376

Parameter Value Description
MQTT_ERR_INPUT_02_0 16#4020 Function block Input 02 error (error case

0), specific error depends on used function
block:
● MqttConnectWithCertBuffer (FB):

Parameter Conn of function block was
not set.

● MqttConnectWithCertFile (FB): Param-
eter Conn of function block was not
set.

● MqttGetReceivedPacket (FB): Param-
eter Conn of function block was not
set.

● MqttPublish (FB): Parameter Conn of
function block was not set.

● MqttSubscribe (FB): Parameter Conn
of function block was not set.

● MqttUnsubscribe (FB): Parameter
Conn of function block was not set.
MqttPing (FB): Parameter Conn of
function block was not set.

MQTT_ERR_INPUT_03_0 16#4030 Function block Input 03 error (error case
0), specific error depends on used function
block:
● MqttGetReceivedPacket (FB): Pointer

payload not initialized.
● MqttPublish (FB): Publish topic name

must not contain wildcard characters (+
or #).

● MqttSubscribe (FB): Topic is missing.
● MqttUnsubscribe (FB): Topic is

missing.

MQTT_ERR_INPUT_03_1 16#4031 Function block Input 03 error (error case
1), specific error depends on used function
block:
● MqttPublish (FB): Payload is not set in

MQTT_MESSAGE.

MQTT_ERR_INPUT_04_0 16#4040 Function block Input 04 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertBuffer (FB):

Check if Port number has been set cor-
rectly (0 is not accepted).

● MqttConnectWithCertFile (FB): Check
if Port number has been set correctly
(0 is not accepted).

MQTT_ERR_INPUT_06_0 16#4060 Function block Input 06 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertFile (FB): Server

certificate file was not found.

MQTT_ERR_INPUT_07_0 16#4070 Function block Input 07 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertFile (FB): Client

certificate file was not found.

PLC Automation with V3 CPUs

Libraries and solutions > MQTT client library

2022/01/21 3ADR010583, 3, en_US 2377

Parameter Value Description
MQTT_ERR_INPUT_08_0 16#4080 Function block Input 08 error (error case

0), specific error depends on used function
block:
● MqttConnectWithCertFile (FB): Client

key file was not found.

MQTT_ERR_INPUT_12_0 16#4120 Function block Input 12 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertBuffer (FB):

Couldn't initialize Last Will message
because the topic is not set.

● MqttConnectWithCertFile (FB):
Couldn't initialize Last Will message
because the payload is not set.

MQTT_ERR_INPUT_12_1 16#4121 Function block Input 12 error (error case
1), specific error depends on used function
block:
● MqttConnectWithCertBuffer (FB):

Couldn't initialize Last Will message
because the topic is not set.

● MqttConnectWithCertFile (FB):
Couldn't initialize Last Will message
because the payload is not set.

MQTT_ERR_FATAL_ERR
OR

16#5FFFF Fatal error state machine.

Parameter Value Description
QOS_0 - Fire and forget (At most once delivered).

QOS_1 - Simple acknowledgement (At least once delivered).

QOS_2 - Complex acknowledgement (Exactly once delivered).

This structure is used for messages which can be published or used for LastWill on MqttCon-
nect(FB).

Variable name Data type Default
value

Description

sTopic STRING(MQTT_M
AX_TOPIC_LEN)

Empty
string

Topic where this message belongs to.

pbyPayload POINTER TO
BYTE

0 Payload which should be sent.

dwLen DWORD 0 Length of the payload.

eQos MQTT_QOS QOS_0 Quality of Service level.

xRetainFlag BOOL FALSE True = message must be stored by the
server, False = server must not store
this message.

Internal data required by the library to operate. This structure allocates memory and it is used to
identify the MQTT connection you want to work with

MQTT_QOS
(Enum)

MQTT_MES-
SAGE

MQTT_CON-
NECTION

PLC Automation with V3 CPUs
Libraries and solutions > MQTT client library

2022/01/213ADR010583, 3, en_US2378

Parameter Data type Range
abyConn Array MQTT_CLIENT_STRUCT_SIZE

abyTxBuf Array MQTT_TX_BUF_SIZE

abyRxBuf Array MQTT_RX_BUF_SIZE

abyMsgBuf Array MQTT_MSG_BUF_SIZE

1.5.11.2 Global variables

Parameter Datatype Value Description
MQTT_MAX_IP_ADDRESS_L
EN

Word 15 Maximum length of the IP
address.

MQTT_MAX_PEM_KEY_LEN Word 2048 Maximum length of the PEM
key.

MQTT_MAX_PEM_CERT_LE
N

Word 3072 Maximum length of the PEM
certificate.

MQTT_MAX_FILE_PATH_LEN Word 255 Maximum length of the file path
to the certificate files.

MQTT_MAX_CLIENT_ID_LEN Word 250 Maximum length of the client
id.

MQTT_MAX_USER-
NAME_LEN

Word 250 Maximum length of the user-
name.

MQTT_MAX_PASS-
WORD_LEN

Word 250 Maximum length of the pass-
word.

MQTT_MAX_TOPIC_LEN Word 255 Maximum length of the topic.

MQTT_CLIENT_STRUCT_SIZ
E

Word 336 Size of the internal connection
structure representing the con-
nection state.

MQTT_TX_BUF_SIZE Word 1024 Size of the internally used
output buffer.

MQTT_RX_BUF_SIZE Word 1024 Size of the internally used input
buffer.

MQTT_MSG_BUF_SIZE Word 2148 Size of the internally used mes-
sage buffer.

1.5.12 PLCopen libraries
1.5.12.1 Common function block state machine

Most of the V3 function blocks follow the behavior model and style as recommended by PLC
Open.
● Clear separation between “Edge triggered FBs” (“Execute”) or “Level triggered FBs”

(“Enable”)
● Binary status outputs: “Done”, “Busy”, “Error” (exclusive)
● Standardized state machine
● CamelCase naming for function block and all inputs and outputs

MQTT_CON-
STANTS

PLC Automation with V3 CPUs

Libraries and solutions > PLCopen libraries

2022/01/21 3ADR010583, 3, en_US 2379

Example: Edge_Triggerd_Function_Block_EthOwnIP according to PLCopen
Currently the following “function block state machines” are used:
● “Edge Triggered” (Input “Execute”), for example EthOwnIP
● “Level Controlled” (Input “Enable”)
● “Level Controlled Continuous” (Input “Enable”, no “Done” output, for example PID)

In contrast to AC500 V2 POUs, either “Done” or “Error” is set, not both outputs
at the same time in case of an error.

The state machines are explained in the following chapters.

1.5.12.1.1 Edge triggered (AbbETrig)

After a rising edge at the input “Execute” the state goes from “Dormant” to “Busy”. In the first
cycle all inputs are sampled and stored.
When the task is completed successfully the state goes from “Busy” to “Done”.
In case of an error the state goes to “Error”.
The states “Done” or “Error” are stable for minimum one cycle and as long as “Execute” is
“TRUE”. With a falling edge of “Execute”, the state goes via Reset to “Dormant”.

PLC Automation with V3 CPUs
Libraries and solutions > PLCopen libraries

2022/01/213ADR010583, 3, en_US2380

Description of standard inputs and outputs:
● “Execute”

A rising edge starts the operation, the output “Busy” goes to “TRUE”. In the first cycle all
other inputs are read and stored, afterwards they are ignored.
A falling edge does not stop the operation.
After “Done = TRUE” or “Error = TRUE” and “Execute = FALSE” all outputs will be reset.

● “Busy”
Operation is running (while outputs “Done” and “Error” are “FALSE”)

● “Done”
Operation is completed without error (while outputs “Busy” and “Error” are “FALSE”).
This output is “TRUE” for at least one cycle or until “Execute” is set to “FALSE”

● “Error”
Operation is stopped with error (while outputs “Busy” and “Done” are “FALSE”).
This output is “TRUE” for at least one cycle or until “Execute” is set to “FALSE”.
The output “ErrorID” gives more details about the error.

1.5.12.1.2 Level controlled (AbbLCon)

After a rising edge at the input “Enable” the state goes “Dormant” to “Busy”. All inputs are
sampled and considered continuously.
When the task is completed successfully the state goes from “Busy” to “Done”.
In case of an error the state goes to “Error”.
The states “Done” or “Error” are stable for minimum one cycle and as long as “Enable is TRUE”.
With a falling edge of “Enable”, the state goes via Reset to “Dormant”.
The Busy state can be aborted from outside by setting the “Enable” input to “FALSE”.
After Aborting is done the state goes back to “Dormant”.
Description of standard inputs and outputs:
● “Enable”

A rising edge (“Enable = TRUE”) starts the operation, the output “Busy” goes to “TRUE”. All
other inputs are read and considered continuously. A falling edge (“Enable = FALSE”) aborts
the operation.
During Aborting the Busy is still “TRUE”. Afterward all outputs are reset.

● “Busy”
Operation is running (while outputs “Done” and “Error” are “FALSE”)

PLC Automation with V3 CPUs

Libraries and solutions > PLCopen libraries

2022/01/21 3ADR010583, 3, en_US 2381

● “Done”
Operation is completed without error (while outputs “Busy” and “Error” are “FALSE”).
This output is “TRUE” for at least one cycle or until “Enable” is set to “FALSE”

● “Error”
Operation is stopped with error (while outputs “Busy” and “Done” are “FALSE”).
This output is “TRUE” for at least one cycle or until “Enable” is set to “FALSE”.
The output “ErrorID” gives more details about the error.

Level controlled continous (AbbLConC)
This state machine is a special case of “Level Controlled”. Only difference is that this function
block type is never done, for example a PID which never stops.
Therefore these function blocks have no “Done” output.
Description of standard inputs and outputs:
● “Enable”

A rising edge (“Enable = TRUE”) starts the operation, the output “Busy” goes to “TRUE”. All
other inputs are read and considered continuously.
A falling edge (“Enable = FALSE”) aborts the operation.
During Aborting the “Busy” is still “TRUE”. Afterward all outputs are reset.

● “Busy”
Operation is running (while output “Error is FALSE”)

● “Error”
Operation is stopped with error (while output “Busy is FALSE”).
This output is “TRUE” for at least one cycle or until “Enable” is set to “FALSE”.
The output “ErrorID” gives more details about the error.

1.5.12.1.3 Error_ID
Each library contains an enumeration “ERROR_ID”, which is valid for this library but not across
all libraries

Only the following errors are unique:
● 16#5FFF FATAL_ERROR from state machine
● 16#4000 errors are used for input errors, same scheme like in V2:

PLC Automation with V3 CPUs
Libraries and solutions > PLCopen libraries

2022/01/213ADR010583, 3, en_US2382

PLC Automation with V3 CPUs

Libraries and solutions > PLCopen libraries

2022/01/21 3ADR010583, 3, en_US 2383

1.5.12.1.4 Compatibility with V2 function blocks
In order to ensure compatibility with V2 applications a lot of ABB function blocks are delivered
together with a compatible version in classic style:
Names in CAPITAL letters, input “EN” and outputs “DONE”, “ERR” and “ERNO”:

The classic blocks internally use the PLCopen style function blocks. The inputs and outputs are
mapped in the following way:

1.6 PLC integration (hardware)
1.6.1 Product overview and comparison
1.6.1.1 Comparison of AC500 V3 terminal bases

With the latest Automation Builder version the following terminal bases are compatible with the
AC500 V3 processor modules:

The number of slots that are available on a terminal base for connecting communication
modules or AC500-S modules differs within the terminal base range.
Table 398: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

PLC Automation with V3 CPUs
PLC integration (hardware) > Product overview and comparison

2022/01/213ADR010583, 3, en_US2384

Processor module PM5630 PM5650 PM5670 PM5675
TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

The AC500 V3 terminal bases can be equipped with the following supported devices:
Table 399: Comparison: TB56xx
Processor module PM5630 PM5650 PM5670 PM5675
Max. number of variables allowed for each communication module supported

 Input variables 4 kB 4 kB 5 kB 5 kB

 Output variables 4 kB 4 kB 5 kB 5 kB

Type of communication module supported

 CM574-RS/RCOM - serial interface No No No No

 CM582-DP - PROFIBUS DP V0/V1 slave No No No No

 CM592-DP - PROFIBUS DP V0/V1 master 1) 1) 1) 1)

 CM579-ETHCAT - EtherCAT master x x x x

 CM579-PNIO - PROFINET IO RT controller x x x x

 CM589-PNIO - PROFINET IO RT device 1) 1) 1) 1)

 CM589-PNIO-4 - PROFINET IO RT
with 4 devices

1) 1) 1) 1)

 CM597-ETH - Ethernet interface No No No No

 CM588-CN - CAN, CANopen slave No No No No

 CM598-CN - CAN, CANopen master only CAN
2A/2B

only CAN
2A/2B

only CAN
2A/2B

only CAN
2A/2B

Type of AC500-S module supported

 SM560-S - safety module x x x x

 SM560-S-FD-1 - safety module with
F-Device functionality for 1 PROFIsafe net-
work

1) 1) 1) 1)

 SM560-S -FD-4 - safety module with
F-Device functionality for 1 PROFIsafe net-
work

1) 1) 1) 1)

Remarks:
1) in preparation

Supported
devices

PLC Automation with V3 CPUs

PLC integration (hardware) > Product overview and comparison

2022/01/21 3ADR010583, 3, en_US 2385

Table 400: Comparison: PM56xx
Processor module PM5630 PM565

0
PM567
0

PM5675

Total maximum downloadable application size 1) 9 MB 84 MB 176 MB 176 MB

 Thereof user program code
and data (dynamically allo-
cated)

2 MB 8 MB 32 MB 32 MB

 Thereof user webserver data 7 MB 76 MB 144 MB 144 MB

 Remaining for all other
usage (project save, infra-
structure...)

30 MB 285 MB 643 MB 643 MB

Buffered (SRAM) 256 kB 256 kB 1.5 MB 1.5 MB

 Thereof VAR retain persistent 128 kB 128 kB 1024
kB

1024 kB

 Thereof %M memory (e.g.
Modbus register)

128 kB 128 kB 512 kB 512 kB

Expandable memory None None None None

Integrated mass storage memory (FLASH) None None None 8 GB

Slot for pluggable memory card MC502 MC502 MC502 MC502

Processor type TI ARM Cortex-A9 32-bit-RISC

Processor speed 300 MHz 600
MHz

1 GHz 1 GHz

Cycle time for 1 instruction (minimum):

 Binary Min. 0.02
µs

Min.
0.01 µs

Min.
0.002
µs

Min.
0.002 µs

 Word Min. 0.02
µs

Min.
0.01 µs

Min.
0.002
µs

Min.
0.002 µs

 Floating point Min. 0.12
µs

Min.
0.01 µs

Min.
0.002
µs

Min.
0.002 µs

Mathematic co-processor x x x x

Motion capability

 No. synchronized axis per 1
ms on EtherCAT CM typically

- 8* 16* 16*

 No. synchronized axis per 2
ms on EtherCAT CM typically

4* 16* >32 >32

 No. synchronized axis per
4 ms on EtherCAT CM or
CANopen onboard typically

8* >32 >32 >32

 Min. bus cycle time for
EtherCAT using external
CM579

2 ms 1 ms 0,5 ms 0,5 ms

* in addition: 1 virtual axis

Max. number of central inputs and outputs (10 exp. modules):

 Digital inputs 320

 Digital outputs 320

 Analog inputs 160

Memory size
and perform-
ance

PLC Automation with V3 CPUs
PLC integration (hardware) > Product overview and comparison

2022/01/213ADR010583, 3, en_US2386

Processor module PM5630 PM565
0

PM567
0

PM5675

 Analog outputs 160

Number of decentralized inputs and outputs Depends on the used fieldbus

Data backup Battery

Data buffering time at 25 °C Typ. 3 years

Battery low indication via application program

Real-time clock:

 With battery backup x

 Accuracy Typ. ±2 s / day at 25 °C

Program execution:

 Cyclic x

 Time-controlled x

 Multitasking x

 Minimum cycle time configu-
rable for cyclical task

1 ms 1 ms 0,5 ms 0,5 ms

User program protection by password x (user management)

Internal interfaces for communication:

Serial interface COM1:

 Physical link Configurable for RS-232 or RS-485 (9.6
kb/s, 19.2 kb/s, 38.4 kb/s, 57.6 kb/s and
115.2 kb/s)

 Connection Pluggable terminal block, spring con-
nection

 Usage Serial ASCII communication,Modbus
RTU

CAN interface:

 Physical link CAN 2A/2B (from 50 kb/s to 1 Mb/s)

 Connection Pluggable terminal block, spring con-
nection

 Usage CANopen master communication, CAN
2A/2B, J1939 protocol, CAN sync

 Max. number of variables
allowed

 Input variables 2 kB 4 kB 5 kB 5 kB

 Output variables 2 kB 4 kB 5 kB 5 kB

Network interface ETH1, ETH2:

 Usage Ethernet

 Physical link 10/100 base-TX, configurable as
internal switch or independent Inter-
faces

 Connection 2x RJ45 socket, provided on
TB56xx-2ETH

LEDs, LCD display, function keys RUN / STOP, status, diagnosis, settings

Number of timers Unlimited

Number of counters Unlimited

PLC Automation with V3 CPUs

PLC integration (hardware) > Product overview and comparison

2022/01/21 3ADR010583, 3, en_US 2387

Processor module PM5630 PM565
0

PM567
0

PM5675

Programming languages:

 Structured Text ST x

 Instruction list IL x

 Function Block Diagram FBD x

 Ladder Diagram LD x

 Sequential function chart
SFC

x

 Continuous function chart
(CFC)

x

Remarks:
1): The values are for information only and cannot be fulfilled altogether. The available
resources are limited at the end by the maximal downloadable application size for each CPU.

1.6.1.2 Comparison of features and protocols

Table 401: OPC UA server / OPC DA server
Processor module PM5630 PM5650 PM5670 PM5675
OPC UA server x x x x

 Number of free tags
+ additional license for extension 1)

1.000 5.000 30.000 30.000

 Number of connections 10 20 50 50

 Min. sampling rate (limit) 500 ms 100 ms 50 ms 50 ms

OPC DA server AE x x x x

 Number of connections 8 8 8 8

Remarks:
1) in preparation

Table 402: Modbus, Telecontrol
Processor module PM5630 PM5650 PM5670 PM5675
Modbus TCP client / server x x x x

 Number of Modbus clients ModMast
in parallel on a CPU master (server)

30 50 120 120

 Number of Modbus server in parallel
(e.g. for SCADA access)

15 25 50 50

IEC 60870-5-104 telecontrol protocol x x x x

 Number of free tags
+ additional license for extension 1)

1.000 5.000 10.000 10.000

 Control station (number of connec-
tions)

5 10 20 20

Communication
and onboard
protocols

PLC Automation with V3 CPUs
PLC integration (hardware) > Product overview and comparison

2022/01/213ADR010583, 3, en_US2388

Processor module PM5630 PM5650 PM5670 PM5675
 Sub-station (number of connections) 5 10 20 20

Remarks:
1) in preparation

1.6.1.3 Ethernet protocols and ports for AC500 V3 products

Description PM5630
-2ETH

PM5650
-2ETH

PM5670
-2ETH

PM567
5-2ETH

³ CPU
firm-
ware

ABB netConfig x x x x V3.0.0

Online access with driver 3S TCP/IP
BlkDrvTcp

x x x x V3.0.0

Modbus TCP server x x x x V3.0.3

Modbus TCP client with POU
ETHx_MOD_MAST

x x x x V3.0.1

UDP out of user program with library netBa-
seService.lib

x x x x V3.0.0

UDP data exchange, Network variables x x x x V3.0.0

TCP/IP out of user program with library net-
BaseService.lib

x x x x V3.0.0

Web server on PLC with web visualization x x x x V3.0.0

NTP/SNTP ((Simple) Network Time Pro-
tocol) client with 3S licenced store package
SNTPService.package.
Library container: SNTPService

x x x x V3.0.0

IEC60870-5-104 control station incl. 2nd

connection and 2nd port
x x x x V3.0.0

IEC60870-5-104 substation incl. 2nd port x x x x V3.0.0

FTP server
(See Ä Chapter 1.6.6.3.5.1 “Configuration
of FTP server” on page 3917)

x x x x V3.0.0

CODESYS network variables x x x x V3.0.0

OPC DA server x x x x V3.0.0

OPC UA server x x x x V3.0.0

ICMP – ping out of user project with POU
ETHx_ICMP_PING

x x x x V3.0.0

DHCP client x x x x V3.1.0

NTP/SNTP ((Simple) Network Time Pro-
tocol) client system solution
(See Ä Chapter 1.6.6.3.4.2.1 “(S)NTP client
configuration” on page 3913)

x x x x V3.1.0

NTP/SNTP ((Simple) Network Time Pro-
tocol) server system solution
(See Ä Chapter 1.6.6.3.4.2.2 “(S)NTP
server configuration” on page 3916)

x x x x V3.1.0

Supported as of
Automation
Builder V 2.1

PLC Automation with V3 CPUs

PLC integration (hardware) > Product overview and comparison

2022/01/21 3ADR010583, 3, en_US 2389

Description PM5630
-2ETH

PM5650
-2ETH

PM5670
-2ETH

PM567
5-2ETH

³ CPU
firm-
ware

Maximum number of Input/output allowed
variable on Ethernet for the protocol

2 kB /2
kB

4 kB /4
kB

5 kB /5
kB

5 kB /5
kB

V3.4.0

IEC 61850 (MMS server, GOOSE) 2) x x x x V3.1.0

EthernetIP Scanner 1, 2) x x x x AB
2.4.1/
FW

3.4.1

EthernetIP Adapter 1, 2) x x x x AB
2.4.1/
FW

3.4.1

KNX - Building communication 2) x x x x V3.2.x

BACnet-BC - Infrastructure communication
2)

x x x x V3.3.1

HTTPS – secure web server on PLC with
CODESYS web visualization
(See Ä Chapter 1.6.6.3.7.3.2 “Secure web
server” on page 3922)

x x x x V3.1.0

 WebVisu for data visualisation on web
server HTML5

x x x x V3.0.0

FTPS – secure FTP
(See Ä Chapter 1.6.6.3.7.3.3 “Secure FTP”
on page 3923)

x x x x V3.1.0

Secure online access with driver 3S UDP
BlkDrvUdp

x x x x V3.1.0

Secure online access with driver 3S TCP/IP
BlkDrvTcp

x x x x V3.1.0

ICMP – ping out of user project with
POU ETHx_ICMP_PING or EthIcmpPing
(PLCopen style)

x x x x V3.1.0

Modbus TCP client (master) with
POU ETHx_MOD_MAST or ModTcpMast
(PLCopen style)

x x x x V3.1.0

RTV (Remote Target Visualization) x x x x V3.1.0

Remarks:
1): in preparation
2): feature is licensed

1.6.1.3.1 Default open Ethernet ports of PM56xx-2ETH
After startup without a PLC project the PM56xx-2ETH contains the following Ethernet ports and
sockets:

PLC Automation with V3 CPUs
PLC integration (hardware) > Product overview and comparison

2022/01/213ADR010583, 3, en_US2390

Protocol Port

ABB NetConfig 1) UDP 24576

Online access with driver 3S UDP BlkDrvUdp (with scan) UDP 1740

Online access with driver 3S Tcp/Ip BlkDrvTcp (no scan) TCP 11740

OPC UA server 2) TCP 4840

Remarks:
1): The port 24576 for ABB NetConfig protocol can be disabled via PLC configuration by
deleting the protocol node from configuration tree of Ethernet interfaces ETH1 and ETH2.
2): The port 4840 for OPC UA server is closed by default as of SystemFW V3.1.0.

All other ports are closed by default.

1.6.1.3.2 Overview of protocols, sockets and ports

Protocol Port Sockets
ABB netConfig 24576 1 permanent socket per interface

3S gateway client (e.g. CODESYS) to
gateway server

1217 1 permanent socket

Online access with driver 3S UDP
BlkDrvUdp (with scan)

1740 1 socket per connection + 4
listen

Online access with driver 3S block driver
TCP/IP (no scan)

11740 1 socket per connection + 1
listen

Modbus TCP server 502 or config-
urable

1 socket listen + 1 socket per
server connection, number of
server connections is configu-
rable in AB

Modbus TCP client with POU
ETHx_MOD_MAST

Random 1 socket per connection with
POU ETHx_MOD_MAST

UDP out of user program with library
SysLibSockets.lib

1 ... 65535 1 socket per connection

TCP/IP out of user program with library
SysLibSockets.lib

1 ... 65535 1 socket per connection

Web server on PLC with web visualization 80 1 listen and 1 per connection

NTP/SNTP client 123 1 permanent socket

IEC60870-5-104 control station Random 1 per connection

IEC60870-5-104 substation 2404 1 per connection

FTP server
(See Ä Chapter 1.6.6.3.5.1 “Configuration
of FTP server” on page 3917)

Command
port = 21
Data active
mode = 20
Data passive
mode =
random

1 per session, max. 4 allowed

CODESYS network variables 1202 (UDP broadcast)

OPC DA server (default 3S block driver) UDP = 1740
or
TCP/IP
=11740

1 socket per connection

PLC Automation with V3 CPUs

PLC integration (hardware) > Product overview and comparison

2022/01/21 3ADR010583, 3, en_US 2391

Protocol Port Sockets
OPC UA server 4840 1 permanent socket

ICMP – ping out of user project with POU
ETHx_ICMP_PING DHCP

none No socket

DHCP 67 1 socket during startup

NTP/SNTP ((Simple) Network Time Pro-
tocol) client system solution
(See Ä Chapter 1.6.6.3.4.2.1 “(S)NTP
client configuration” on page 3913)

123 1 permanent socket

NTP/SNTP ((Simple) Network Time Pro-
tocol) server system solution
(See Ä Chapter 1.6.6.3.4.2.2 “(S)NTP
server configuration” on page 3916)

123 1 permanent socket

HTTPS – secure web server on PLC with
CODESYS web visualization
(See Ä Chapter 1.6.6.3.7.3.2 “Secure web
server” on page 3922)

443 1 listen and 1 per connection

FTPS – secure FTP
(See Ä Chapter 1.6.6.3.7.3.3 “Secure FTP”
on page 3923)

Command
port = 21
Data active
mode = 20
Data passive
mode =
random

1 per session, max. 4 allowed

Secure online access with driver 3S UDP
BlkDrvUdp

1740 1 socket per connection + 1
listen

Secure online access with driver 3S
TCP/IP BlkDrvTcp

11740 1 socket per connection + 1
listen

ICMP – ping out of user project with
POU ETHx_ICMP_PING or EthIcmpPing
(PLCopen style)

None No socket

Modbus TCP client (master) with
POU ETHx_MOD_MAST or ModTcpMast
(PLCopen style)

Random 1 socket per connection with
POU ETHx_MOD_MAST or
ModTcpMast

1.6.1.3.3 Limitation of connections per protocol

Protocol PM5630
-2ETH

PM565
0-2ETH

PM5670-
2ETH

PM5675-
2ETH

³ CPU
firm-
ware

Modbus TCP server (e.g. for SCADA
access)

30
40
15

100
40
25

100
40
50

100
40
50

3.0.3
3.1.0
3.1.3

Modbus TCP client with POU
ETHx_MOD_MAST

n/a
40
30

100
40
50

n/a
40
120

n/a
40
120

3.0.1
3.1.0
3.1.3

Modbus TCP client with POU
ETHx_MOD_MAST or ModTcpMast
(PLCopen style)

30
30

100
50

100
120

100
120

3.1.0
3.1.3

PLC Automation with V3 CPUs
PLC integration (hardware) > Product overview and comparison

2022/01/213ADR010583, 3, en_US2392

Protocol PM5630
-2ETH

PM565
0-2ETH

PM5670-
2ETH

PM5675-
2ETH

³ CPU
firm-
ware

IEC60870-5-104 control station incl. 2nd

connection and 2nd port
10
5

10
10

10
20

10
20

3.1.0
3.4.0

IEC60870-5-104 substation incl. 2nd port 10
5

10
10

10
20

10
20

3.1.0
3.4.0

IEC60870-5-104: No. of free tags

+ additional license for extension 1)

1.000 5.000 10.000 10.000 3.4.0

FTP server 4 4 4 4 3.1.0

Online access with driver 3S UDP
BlkDrvUdp

n/a
8

4
8

n/a
8

n/a
8

3.0.0
3.1.0

Online access with driver 3S TCP/IP
BlkDrvTcp

n/a
8

4
8

n/a
8

n/a
8

3.0.0
3.1.0

OPC DA server (number of connections) n/a
8

4
8

n/a
8

n/a
8

3.0.0
3.1.0

OPC UA server (number of connections) 50
10

50
20

50
50

50
50

3.1.0
3.4.0

 No. of free tags

+ additional license for extension 1)

1.000 5.000 30.000 30.000 3.4.0

 min sampling rate (limit) 500 ms 100 ms 50 ms 50 ms 3.4.0

Secure online access with driver 3S UDP
BlkDrvUdp

8 8 8 8 3.1.0

Secure online access with driver 3S
TCP/IP BlkDrvTcp

8 8 8 8 3.1.0

FTPS - secure FTP server 4 4 4 4 3.1.0

RTV (Remote Target Visualization) 5 5 5 5 3.1.0

Remarks:
1): in preparation

The PLC types PM5630-2ETH, PM5670-2ETH and PM5675-2ETH are avail-
able as of SystemFW 3.1.0.

PLC Automation with V3 CPUs

PLC integration (hardware) > Product overview and comparison

2022/01/21 3ADR010583, 3, en_US 2393

1.6.1.3.4 Ethernet configuration
Default Ethernet configuration

Module IP Address Netmask Comment
PM5xx2-x-ETH ETH: 192.168.0.10 255.255.255.0

PM5072-T-2ETH ETH1: 192.168.0.10
ETH2: 192.168.1.10

255.255.255.0 The Ethernet ports
must be configured
in different sub net-
works.

PM56xx-2ETH ETH1: 192.168.0.10
ETH2: 192.168.1.10

255.255.255.0 The Ethernet ports
must be configured
in different sub net-
works.

For changing the default addresses or the description of the function keys see:
Ä Chapter 1.6.6.2.2.4.2 “Configuration of the IP settings with the IP configuration tool”
on page 3675

Ä Chapter 1.6.5.1.6.5 “Description of the function keys” on page 3491.

PLC Automation with V3 CPUs
PLC integration (hardware) > Product overview and comparison

2022/01/213ADR010583, 3, en_US2394

1.6.1.3.5 Online access
Preferred driver for online access: 3S UDP block driver BlkDrvUdp. This driver allows to scan
and select the connected PLC’s.
Alternative: 3S TCP/IP block driver. This driver requires at least 2 sockets:
● 1x driver “BlkDrvTcp” on port 11740
● 1x listen on port 11740 if PLC has established online connection

Online access can be established from:

– Automation Builder command 'Login' Ä Chapter 1.4.1.20.3.6.2 “Command
'Login'” on page 1028

– CODESYS OPC DA server
– Panel CP600 series

Each established connection needs one socket. In addition one socket on port 11740 is lis-
tening.
1. Startup the PLC.

ð One socket on port 11740 (listen).

2. Login from Automation Builder via driver “BlKDrvTcp”.

ð 2 sockets on port 11740 (1x online, 1x listen)

3. Additional login out of OPC server with the same driver.

ð 3 sockets on port 11740 (2x online, 1x listen)

4. Additional connect CP600 via driver “BlkDrvTcp”.

ð 4 sockets on port 11740 (3x online, 1x listen)

1.6.2 PLC introduction
1.6.2.1 Safety instructions

The examples and diagrams in this manual are included solely for illustrative purposes.
Because of the many variants and requirements associated with any particular installation, ABB
cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by ABB with respect to use of information, circuits, equipment or
software described in this manual. No liability is assumed for the direct or indirect consequences
of the improper use, improper application or inadequate maintenance of these devices. In no
event will ABB be responsible or liable for indirect or consequential damages resulting from the
use or application of this equipment.

The product family AC500 control system is designed according to EN 61131-2
IEC 61131-2 standards. Data, different from IEC 61131, are caused by the
higher requirements of Maritime Services. Other differences are described in
the technical data description of the devices.

PLC specific
safety notices

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2395

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge, which can
cause internal damage and affect normal operation. Observe the following rules
when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe packaging.

NOTICE!
PLC damage due to operation conditions
Protect the devices from dampness, dirt and damage during transport, storage
and operation!

NOTICE!
PLC damage due to wrong enclosures
Due to their construction (degree of protection IP 20 according to EN 60529)
and their connection technology, the devices are suitable only for operation in
enclosed switchgear cabinets.

Cleaning instruction
Do not use cleaning agent for cleaning the device.

Use a damp cloth instead.

Connection plans and user software must be created so that all technical safety aspects, legal
regulations and standards are observed. In practice, possible shortcircuits and breakages must
not be able to lead to dangerous situations. The extent of resulting errors must be kept to a
minimum.

Do not operate devices outside of the specified, technical data!

Trouble-free functioning cannot be guaranteed outside of the specified data.

NOTICE!
PLC damage due to missing grounding
– Ensure to earth the devices.
– The grounding (switch cabinet grounding, PE) is supplied both by the mains

connection (or 24 V supply voltage) and via DIN rail. The DIN rail must be
connected to the ground before the device is subjected to any power. The
grounding may be removed only if it is certain that no more power is being
supplied to the control system.

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2396

In the description for the devices (operating manual or AC500 system description), reference is
made at several points to grounding, galvanic isolation and EMC measures. One of the EMC
measures consists of discharging interference voltages into the grounding via Y-type capacitors.
Capacitor discharge currents must basically be able to flow off to the grounding (in this respect,
see also VBG 4 and the relevant VDE regulations).

CAUTION!
Do not obstruct the ventilation for cooling!
The ventilation slots on the upper and lower side of the devices must not be
covered.

CAUTION!
Run signal and power wiring separately!
Signal and supply lines (power cables) must be laid out so that no malfunctions
due to capacitive and inductive interference can occur (EMC).

WARNING!
Labels on or inside the device alert people that dangerous voltage may be
present or that surfaces may have dangerous temperatures.

WARNING!
Splaying of strands can cause hazards!
During wiring of terminals with stranded conductors, splaying of strands shall be
avoided.
– Ferrules can be used to prevent splaying.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2397

CAUTION!
Use only ABB approved lithium battery modules!
At the end of the battery’s lifetime, always replace it only with a genuine battery
module.

CAUTION!
Risk of explosion!
Do not open, re-charge or disassemble a lithium battery. Attempts to charge
lithium batteries lead to overheating and possible explosions.
Protect them from heat and fire and store them in a dry place.
Never short-circuit or operate lithium batteries with the polarities reversed. The
batteries are likely to overheat and explode. Avoid chance short circuiting and
therefore do not store batteries in metal containers and do not place them on
metallic surfaces. Escaping lithium is a health hazard.

Environment considerations
Recycle exhausted batteries. Dispose batteries in an environmentally conscious
manner, in accordance to local-authority regulations.

This equipment is intended for use in a Pollution Degree 2 industrial environ-
ment, in overvoltage Category II applications (as defined in IEC publication
60664-1), at altitudes up to 2.000 meters without derating.

This equipment is considered Group 1, Class A industrial equipment according
to IEC/CISPR Publication 11. Without appropriate precautions, there may
be potential difficulties ensuring electromagnetic compatibility in other environ-
ments due to conducted as well as radiated disturbance.

This equipment is supplied as "open type" equipment. It must be mounted
within an enclosure that is suitably designed for those specific environmental
conditions that will be present and appropriately designed to prevent personal
injury resulting from accessibility to live parts. The interior of the enclosure must
be accessible only by the use of a tool. Subsequent sections of this publication
may contain additional information regarding specific enclosure type ratings that
are required to comply with certain product safety certifications.

Refer to NEMA Standards publication 250 and IEC publication 60529, as appli-
cable, for explanations of the degrees of protection provided by different types
of enclosure. Also see the appropriate sections in this manual.

1.6.2.2 Cyber security
This product is designed to be connected to and to communicate information and data via a
network interface. It is your sole responsibility to provide and continuously ensure a secure con-
nection between the product and your network or any other network (as the case may be). You
shall establish and maintain any appropriate measures (such as but not limited to the installation
of firewalls, application of authentication measures, encryption of data, installation of anti-virus
programs, etc.) to protect the product, the network, its system and the interface against any kind
of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data
or information. ABB Ltd and its affiliates are not liable for damages and/or losses related to such
security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data
or information.

Information on
batteries

Environment
and enclosure
information

Cyber security
disclaimer

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2398

Although ABB provides functionality testing on the products and updates that we release,
you should institute your own testing program for any product updates or other major system
updates (to include but not limited to code changes, configuration file changes, third party
software updates or patches, hardware exchanges, etc.) to ensure that the security measures
that you have implemented have not been compromised and system functionality in your envi-
ronment is as expected. This also applies to the operating system. Security measures (such
as but not limited to the installation of latest patches, installation of firewalls, application of
authentication measures, installation of anti-virus programs, etc.) are in your responsibility. You
have to be aware that operating systems provide a considerable number of open ports that
should be monitored carefully for any threats.
It has to be considered that online connections to any devices are not secured. It is your
responsibility to assure that connections are established to the correct device (and e.g. not to an
unknown device pretending to be a known device type). Furthermore you have to take care that
confidential data exchanged with the PLC is either compiled or encrypted.

Security details for industrial automation is provided in a whitepaper on ABB website.

The firmware update files for the AC500 V3 PLC are digitally signed releases by ABB. During
the update process, these signatures are validated by a hardware security component in the
PLC. This way, the AC500 V3 PLC will only update with valid, authentic firmware, signed by
ABB.

As part of the ABB security concept the AC500 V3 PLC comes with minimal services opened
by default. Only the services needed for initial setup and programming are open before any
user application is downloaded Ä Chapter 1.6.1.3 “Ethernet protocols and ports for AC500 V3
products” on page 2389.

Only used services/ports should be enabled (e.g. to enable the functionality of
an FTPS server).

Whenever possible, use an encrypted communication between AC500 V3 devices and third
party devices, such as HMI devices. This is necessary to protect passwords and other data.

The AC500 V3 PLC contains a secure shell service to access core logging data in case of
problems which need a deeper analysis. This service is inactive by default, which means that no
one can access this privileged shell in the normal operating state.
To activate this service, local access to the PLC is necessary and activation is only valid until
the next power cycle of the PLC. Once activated, the service run on TCP port 22. Each PLC
also protects the secure shell access by an individual password.

For more information around cyber security please see our FAQ.

1.6.2.2.1 Defense in depth
The defense in depth approach implements multi-layer IT security measures. Each layer pro-
vides its special security measures. All deployed security mechanisms in the system must be
updated regularly. It is also important to follow the system vendor’s recommendations on how
to configure and use these mechanisms. As a basis, the components must include security
functions such as:

Security related
deployment
guidelines for
industrial
automation
Signed firmware
updates

Open ports and
services

Secure commu-
nication

Secure shell
access for ABB
service

Frequently
asked questions

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2399

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010317&LanguageCode=en&DocumentPartId=&Action=Launch
https://share.library.abb.com/api/v4?cid=Root&q=3ADR010764

● Virus protection
● Firewall protection
● Strong and regularly changed passwords
● User management
● Using VPN tunnels for connections between networks
Additional security components such as routers and switches with integrated firewalls should
be available. A defined user and rights concept managing access to the controllers and their
networks is mandatory. Finally, the manufacturer of the components should be able to quickly
discover weaknesses and provide patches.

Only used services/ports should be enabled (e.g. to enable the functionality of
an FTPS server).

References: CODESYS Security Whitepaper

IT resources vary in the extent to which they can be trusted. A common security architecture is
therefore based on a layered approach that uses zones of trust to provide increasing levels of
security according to increasing security needs. Less-trusted zones contain more-trusted zones
and connections between the zones are only possible through secure interconnections such as
firewallsFig. 93. All resources in the same zone must have the same minimum level of trust. The
inner layers, where communication interaction needs to flow freely between nodes, must have
the highest level of trust. This is the approach described in the IEC 62443 series of standards.
Firewalls, gateways, and proxies are used to control network traffic between zones of different
security levels, and to filter out any undesirable or dangerous material. Traffic that is allowed to
pass between zones should be limited to what is absolutely necessary because each type of
service call or information exchange translates into a possible route that an intruder may be able
to exploit. Different types of services represent different risks. Internet access, incoming e-mail
and instant messaging, for example, represent very high risks.

Fig. 93: Security zones

Fig. 93 shows three security zones, but the number of zones does not have to be as many or as
few as three. The use of multiple zones allows access between zones of different trust levels to
be controlled to protect a trusted resource from attack by a less trusted one.

Security zones

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2400

https://customers.codesys.com/fileadmin/data/customers/security/CODESYS-Security-Whitepaper.pdf

High-security zones should be kept small and independent. They need to be physically pro-
tected, i.e. physical access to computers, network equipment and network cables must be
limited by physical means to authorized persons only. A high-security zone should obviously not
depend on resources in a less secure zone for its security. Therefore, it should form its own
domain that is administered from the inside, and not depend on, e.g., a domain controller in a
less secure network.
Even if a network zone is regarded as trusted, an attack is still possible: by a user or compro-
mised resource that is inside the trusted zone, or by an outside user or resource that succeeds
to penetrate the secure interconnection. Trust therefore depends also upon the types of meas-
ures taken to detect and prevent compromise of resources and violation of the security policy.
References: Security for Industrial Automation and Control Systems

1.6.2.2.2 Secure operation
The controller must be located in a protected environment in order to avoid accidental or
intended access to the controller or the application.
A protected environment can be:
● Locked control cabinets without connection from outside
● No direct internet connection
● Use firewalls and VPN to separate different networks
● Separate different production areas with different access controls
To increase security, physical access protection measures such as fences, turnstiles, cameras
or card readers can be added.
Follow these rules for the protected environment:
● Keep the trusted network as small as possible and independent from other networks.
● Protect the cross-communication of controllers and the communication between controllers

and field devices via standard communication protocols (fieldbus systems) using appro-
priate measures.

● Protect such networks from unauthorized physical access.
● Use fieldbus systems only in protected environments. They are not protected by additional

measures, such as encryption. Open physical or data access to fieldbus systems and their
components is a serious security risk.

● Physically protect all equipment, i.e., ensure that physical access to computers, network
equipment and cables, controllers, I/O systems, power supplies, etc., is limited to authorized
persons

● When connecting a trusted network zone to outer networks, make sure that all connections
are through properly configured secure interconnections only, such as a firewall or a system
of firewalls, which is configured for “deny by default”, i.e., blocks everything except traffic
that is explicitly needed to fulfill operational requirements.

● Allow only authorized users to log on to the system, and enforce strong passwords that are
changed regularly.

● Continuously maintain the definitions of authorized users, user groups, and access rights,
to properly reflect the current authorities and responsibilities of all individuals at all times.
Users should not have more privileges than they need to do their job.

● Do not use the system for e-mail, instant messaging, or internet browsing. Use separate
computers and networks for these functions if they are needed.

● Do not allow installation of any unauthorized software in the system.
● Restrict temporary connection of portable computers, USB memory sticks and other remov-

able data carriers. Computers that can be physically accessed by regular users should have
ports for removable data carriers disabled.

● If portable computers need to be connected, e.g., for service or maintenance purposes, they
should be carefully scanned for viruses immediately before connection.

● All CDs, DVDs, USB memory sticks and other removable data carriers, and files with
software or software updates, should also be checked for viruses before being introduced
into the trusted zone.

● Continuously monitor the system for intrusion attempts.

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2401

https://search.abb.com/library/Download.aspx?DocumentID=3BSE032547&LanguageCode=en&DocumentPartId=&Action=Launch

● Define and maintain plans for incident response, including how to recover from potential
disasters.

● Regularly review the organization as well as technical systems and installations with respect
to compliance with security policies, procedures and practices.

A protected local control cabinet could look like in figure 94, page 2402. This network is not
connected to any external network. Security is primarily a matter of physically protecting the
automation system and preventing unauthorized users from accessing the system and from
connecting or installing unauthorized hardware and software.

Fig. 94: Isolated automation system

Servers and workplaces that are not directly involved in the control and monitoring of the
process should preferably be connected to a subnet that is separated from the automation
system network by means of a router/firewall. This makes it possible to better control the
network load and to limit access to certain servers on the automation system network. Note that
servers and workplaces on this subnet are part of the trusted zone and thus need to be subject
to the same security precautions as the nodes on the automation system network.

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2402

Fig. 95: Plant information network connected to an automation system

For the purposes of process control security, a general-purpose information system (IS) network
should not be considered a trusted network, not the least since such networks are normally
further connected to the Internet or other external networks. The IS network is therefore a
different lower-security zone, and it should be separated from the automation system by means
of a firewall. The IS and automation system networks should form separate domains.

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2403

Fig. 96: Automation system and IS network

1.6.2.2.3 Hardening
System hardening means to eliminate as many security risks as possible. Hardening your
system is an important step to protect your personal data and information. This process intends
to eliminate attacks by patching vulnerabilities and turning off inessential services. Hardening a
system involves several steps to form layers of protection.
Commissioning phase
● Protect the hardware from unauthorized access
● Be sure the hardware is based on a secure environment
● Disable unused software and services (network ports)
● Install firewalls
● Disallow file sharing among programs
● Install virus and spyware protection

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2404

● Use containers or virtual machines
● Create strong passwords by applying a strong password policy
● Create and keep backups
● Use encryption when possible
● Disable weak encryption algorithms
● Separate data and programs
● Enable and use disk quotas
● Strong logical access control
● Adjust default settings, especially passwords
Verification phase
● Verification of antivirus - Check antivirus is active and updated
● Verification of the identification - Check that test and unauthorized accounts are removed
● Verification of intrusion detection systems - Check malicious traffic is blocked
● Verification of audit logging - Check audit log is enabled
● You can use the checklist out of the cyber security white paper

Operation phase
● Keep software up-to-date, especially by applying security patches
● Keep antivirus up and running
● Keep antivirus definitions up-to-date
● Delete unused user accounts
● Lock an active session whenever it is unattended, e.g., lock the screen of the PC or of the

control panel (HMI)
Decommissioning phase
● Delete all credentials stored in the device like certificates and user data Ä Chapter 1.6.4.4.6

“Decommissioning” on page 3351.
References: Hardening in Wikipedia (2021)

1.6.2.2.4 Open Ports and Services
Overview of minimum cyber security requirements for open ports and services settings.

Port Protocol Description
1217 TCP CODESYS Gateway V3

1210 TCP CODESYS Gateway V2

1211 TCP CODESYS Gateway V2

22350 TCP/UDP CodeMeter License Server
(runtime) – license

22352 HTTP CodeMeter License Server
(runtime) – WebAdmin

22353 HTTPS CodeMeter License Server
(runtime) – WebAdmin

11030 HTTP Python editor server

1.6.2.3 License and third party information
Information on Automation Builder licensing and Third Party software can be found in the
"About" window of the Automation Builder Installation Manager.
Further information on licensing.

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2405

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010317&LanguageCode=en&DocumentPartId=&Action=Launch
https://en.wikipedia.org/wiki/Hardening_(computing)
https://library.abb.com/d/3ADR010659

1.6.2.4 Regulations
The following regulations have to be taken into due consideration:
● DIN VDE 0100: "Regulations for the Setting up of Power Installations"
● DIN VDE 0110 Part 1 and Part 2: "The Rating of Creepage Distances and Clearances"
● DIN VDE 0160 and DIN VDE 0660 Part 500: "The Equipment of Power Installations with

Electrical Components"
To ensure project success and proper installation of all systems, customers must be familiar and
proficient with the following standards and must comply with their directives:
● DIN VDE 0113 Part 1 & Part 200: "Working & Process Machinery"
● DIN VDE 0106 Part 100: "Close proximity to dangerous voltages"
● DIN VDE 0160, DIN VDE 0110 Part 1: "Protection against direct contact"
The user has to guarantee that the devices and the components are mounted following these
regulations. For operating the machines and installations, other national and international rele-
vant regulations, concerning prevention of accidents and using technical working means, also
have to be met.
AC500 devices are designed according to IEC 1131 Part 2 under overvoltage category II per
DIN VDE 0110 Part 2.
For direct connection of AC Category III overvoltages provide protection measures for over-
voltage category II according to IEC-Report 664/1980 and DIN VDE 0110 Part 1.
Equivalent standards:
● DIN VDE 0110 Part 1 ↔ IEC 664
● DIN VDE 0113 Part 1 ↔ EN 60204 Part 1
● DIN VDE 0660 Part 500 ↔ EN 60439-1 ↔ IEC 439-1
All rights reserved to change design, size, weight, etc.

Both the control system AC500 and other components in the vicinity are operated with dan-
gerous contact voltages. Touching parts, which are under such voltages, can cause grave
damage to health.
In order to avoid such risks and the occurrence of material damage, persons involved with the
assembly, starting up and servicing must possess pertinent knowledge of the following:
● Automation technology sector
● Dealing with dangerous voltages
● Using standards and regulations, in particular VDE, accident prevention regulations and

regulations concerning special ambient conditions (e.g. areas potentially endangered by
explosive materials, heavy pollution or corrosive influences).

1.6.2.5 Definitions: PLC system start-up

The AC500-eCo V3 does not use a battery for buffering the operand areas
specified below, hence the “cold start” mode does not exist in this product.

● A cold start is performed by switching power OFF/ON if no battery is connected.
● All RAM memory modules are checked and erased (see Ä Chapter 1.4.1.20.3.6.10 “Com-

mand 'Reset Cold'” on page 1038).
● If no user program is stored in the Flash EPROM, the default values (as set on delivery) are

applied to the interfaces.
● If there is a user program stored in the Flash EPROM, it is loaded into RAM.
● The default operating modes set by the PLC configuration are applied.

Appropriate
system setup

Qualified per-
sonnel

Cold start

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2406

● A warm start is performed by switching power OFF/ON with a battery connected.
● All RAM memory modules are checked and erased except of the buffered operand areas

and the RETAIN variables (see Ä Chapter 1.4.1.20.3.6.11 “Command 'Reset Warm'”
on page 1038).

● If there is a user program stored in the Flash EPROM, it is loaded into RAM.
● The default operating modes set by the PLC configuration are applied.

● RUN -> STOP means pressing the RUN function key on the PLC while the PLC is in run
mode (AC500 PLC display "run", AC500-eCo PLC "RUN LED" is ON).

● If a user program is loaded into RAM, execution is stopped.
● All outputs are set to FALSE or 0.
● Variables keep their current values, i.e., they are not initialized.
● The AC500 PLC display changes from "run" to "StoP", AC500-eCo "RUN LED" changes

from ON to OFF.

● START -> STOP means stopping the execution of the user program in the PLC's RAM using
the menu item "Online/Stop" in the programming system.

● All outputs are set to FALSE or 0.
● Variables keep their current values, i.e., they are not initialized.
● The AC500 PLC display changes from "run" to "StoP".

● Performs a START -> STOP process.
● Preparation for program restart, i.e., the variables (VAR) (exception: RETAIN variables) are

set to their initialization values.
● Reset is performed using the menu item "Online/Reset" in the programming system or

pressing the function key RUN for ≥ 5 s in STOP mode.

● Performs a START -> STOP process.
● Preparation for program restart, i.e., the variables (VAR) (also RETAIN variables) are set to

their initialization values.
● Reset (cold) is performed using the menu item "Online/Reset (cold)" in the programming

system.

● Resets the controller to its original state (deletion of Flash, SRAM (%M, area, %R area,
RETAIN, RETAIN PERSISTENT), Communication Module configurations and user pro-
gram!).

● Reset (original) is performed using the menu item "Online/Reset (original)" in the program-
ming system.

● STOP -> RUN means short pressing the RUN function key on the PLC while the PLC is
in STOP mode (AC500 PLC display "StoP", AC500-eCo "RUN LED" is ON). "RUN LED" is
OFF of the toggle switch of an AC500-eCo CPU.

● If a user program is loaded into RAM, execution is continued, i.e., variables will not be set to
their initialization values.

● The AC500 PLC display changes from "StoP" to "run", AC500-eCo "RUN LED" changes
from OFF to ON.

● STOP -> START means continuing the execution of the user program in the PLC's RAM
using the menu item "Online/Start" in the programming system.

● If a user program is loaded into RAM, execution is continued, i.e., variables will not be set to
their initialization values.

● The AC500 PLC display changes from "StoP" to "run", AC500-eCo PLC "RUN LED"
changes from OFF to ON.

Warm start

RUN -> STOP

START -> STOP

Reset

Reset (cold)

Reset (original)

STOP -> RUN

STOP -> START

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2407

● Download means loading the complete user program into the PLC's RAM. This process is
started by selecting the menu item "Online/Download" in the programming system or after
confirming a corresponding system message when switching to online mode (menu item
"Online/Login").

● Execution of the user program is stopped.
● In order to store the user program to the Flash memory, the menu item "Online/Create boot

project" must be called after downloading the program.
● Variables are set to their initialization values according to the initialization table.
● RETAIN variables can have wrong values as they can be allocated to other memory

addresses in the new project!
● A download is forced by the following:

– changed PLC configuration
– changed task configuration
– changed library management
– changed compile-specific settings (segment sizes)
– execution of the commands "Project/Clean all" and "Project/Rebuild All".

● After a project has changed, only these changes are compiled when pressing the key <F11>
or calling the menu item "Project/Build". The changed program parts are marked with a blue
arrow in the block list.

● The term Online Change means loading the changes made in the user program into the
PLC's RAM using the programming system (after confirming a corresponding system mes-
sage when switching to online mode, menu item "Online/Login").

● Execution of the user program is not stopped. After downloading the program changes,
the program is re-organized. During re-organization, no further online change command is
allowed. The storage of the user program to the Flash memory using the command "Online/
Create boot project" cannot be initiated until re-organization is completed.

● Online Change is not possible after:
– changes in the PLC configuration
– changes in the task configuration
– changes in the library management
– changed compile-specific settings (segment sizes)
– performing the commands "Project/Clean all" and "Project/Rebuild All".

● Data buffering, i.e., maintaining data after power ON/OFF, is only possible, if a battery is
connected for AC500 CPU and the buffering will take place in FLASH with AC500-eCo V3
CPU. The following data can be buffered completely or in parts:
– Data in the addressable flag area (%M area)
– RETAIN variable
– PERSISTENT variable (number is limited, no structured variables)
– PERSISTENT area (%R area)

● In order to buffer particular data, the data must be excluded from the initialization
process (see Ä Chapter 1.6.5.1.1 “Handling of remanent variables for AC500 V3 products”
on page 3456).

1.6.2.6 Device lists
1.6.2.6.1 Device list: Terminal bases

Terminal bases for AC500 (Standard):

Download

Online change

Data buffering

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2408

Type Description
TB5600-2ETH
Ä Chapter 1.6.3.2.1
“TB56xx for AC500
V3 products”
on page 2430

TB5600-2ETH, terminal base AC500, slots: 1 processor module,
no communication module, 2 Ethernet RJ45 connector, 1 CAN
connector

TB5600-2ETH-XC
Ä Chapter 1.6.3.2.1
“TB56xx for AC500
V3 products”
on page 2430

TB5600-2ETH-XC, terminal base AC500, slots: 1 processor module,
no communication module, 2 Ethernet RJ45 connector, 1 CAN
connector, XC version

TB5610-2ETH
Ä Chapter 1.6.3.2.1
“TB56xx for AC500
V3 products”
on page 2430

TB5610-2ETH, terminal base AC500, slots: 1 processor module,
1 communication module, 2 Ethernet RJ45 connector, 1 CAN
connector

TB5610-2ETH-XC
Ä Chapter 1.6.3.2.1
“TB56xx for AC500
V3 products”
on page 2430

TB5610-2ETH-XC, terminal base AC500, slots: 1 processor module,
1 communication module, 2 Ethernet RJ45 connector, 1 CAN
connector, XC version

TB5620-2ETH
Ä Chapter 1.6.3.2.1
“TB56xx for AC500
V3 products”
on page 2430

TB5620-2ETH, terminal base AC500, slots: 1 processor module,
2 communication modules, 2 Ethernet RJ45 connector, 1 CAN
connector

TB5620-2ETH-XC
Ä Chapter 1.6.3.2.1
“TB56xx for AC500
V3 products”
on page 2430

TB5620-2ETH-XC, terminal base AC500, slots: 1 processor module,
2 communication modules, 2 Ethernet RJ45 connector, 1 CAN
connector, XC version

TB5640-2ETH
Ä Chapter 1.6.3.2.1
“TB56xx for AC500
V3 products”
on page 2430

TB5640-2ETH, terminal base AC500, slots: 1 processor module,
4 communication modules, 2 Ethernet RJ45 connector, 1 CAN
connector

TB5640-2ETH-XC
Ä Chapter 1.6.3.2.1
“TB56xx for AC500
V3 products”
on page 2430

TB5640-2ETH-XC, terminal base AC500, slots: 1 processor module,
4 communication modules, 2 Ethernet RJ45 connector, 1 CAN
connector, XC version

TB5660-2ETH
Ä Chapter 1.6.3.2.1
“TB56xx for AC500
V3 products”
on page 2430

TB5660-2ETH, terminal base AC500, slots: 1 processor module,
6 communication modules, 2 Ethernet RJ45 connector, 1 CAN
connector

TB5660-2ETH-XC
Ä Chapter 1.6.3.2.1
“TB56xx for AC500
V3 products”
on page 2430

TB5660-2ETH-XC, terminal base AC500, slots: 1 processor module,
6 communication modules, 2 Ethernet RJ45 connector, 1 CAN
connector, XC version

V3 products

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2409

1.6.2.6.2 Device list: Processor modules (CPUs)
Processor modules for AC500-eCo

Type Description
PM5012-T-ETH
Ä Chapter
1.6.3.3.1.1 “PM50xx”
on page 2440

PM5012-T-ETH, processor module, programmable logic controller
1 MB, 6DI/4DO-Transistor, Ethernet, 24 V DC, option slot

PM5012-R-ETH
Ä Chapter
1.6.3.3.1.1 “PM50xx”
on page 2440

PM5012-R-ETH, processor module, programmable logic controller
1 MB, 6DI/4DO-Relay, Ethernet, 24 V DC, option slot

PM5032-T-ETH
Ä Chapter
1.6.3.3.1.1 “PM50xx”
on page 2440

PM5032-T-ETH, processor module, programmable logic controller
2 MB, 12DI/8DO-Transistor/2DC, Ethernet, 24 V DC, 2 option slots

PM5032-R-ETH
Ä Chapter
1.6.3.3.1.1 “PM50xx”
on page 2440

PM5032-R-ETH, processor module, programmable logic controller
2 MB, 12DI/6DO-Relay/2DC, Ethernet, 24 V DC, 2 option slots

PM5052-T-ETH
Ä Chapter
1.6.3.3.1.1 “PM50xx”
on page 2440

PM5052-T-ETH, processor module, programmable logic controller
4 MB, 12DI/8DO-Transistor/2DC, Ethernet, 24 V DC, 3 option slots

PM5052-R-ETH
Ä Chapter
1.6.3.3.1.1 “PM50xx”
on page 2440

PM5052-R-ETH, processor module, programmable logic controller
4 MB, 12DI/6DO-Relay/2DC, Ethernet, 24 V DC, 3 option slots

PM5072-T-2ETH
Ä Chapter
1.6.3.3.1.1 “PM50xx”
on page 2440

PM5072-T-2ETH, processor module, programmable logic controller
8 MB, 12DI/8DO-Transistor/2DC, 2 Ethernet, 24 V DC, 3 option slots

PM5072-T-2ETHW
Ä Chapter
1.6.3.3.1.1 “PM50xx”
on page 2440

PM5072-T-2ETHW, processor module, programmable logic controller
8 MB, 12DI/8DO-Transistor/2DC, 2 Ethernet, 24 V DC, 3 option slots,
wide temperature

Option boards for AC500-eCo V3 processor modules

Type Description
TA5101-4DI Ä Chapter
1.6.3.3.1.2.1
“TA5101-4DI -
Option board for dig-
ital I/O extension”
on page 2478

TA5101-4DI: AC500-eCo V3, option board for digital I/O extension,
4DI 24 V DC, spring/cable front terminal 3.50 mm pitch

TA5105-4DOT
Ä Chapter
1.6.3.3.1.2.2
“TA5105-4DOT -
Option board for dig-
ital I/O extension”
on page 2484

TA5105-4DOT: AC500-eCo V3, option board for digital I/O extension,
4DO-T 24 V DC / 0.5 A, spring/cable front terminal 3.50 mm pitch

V3 products

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2410

Type Description
TA5110-2DI2DOT
Ä Chapter
1.6.3.3.1.2.3
“TA5110-2DI2DOT -
Option board for dig-
ital I/O extension”
on page 2490

TA5110-2DI2DOT: AC500-eCo V3, option board for digital I/O exten-
sion, 2DI 24 V DC, 2DO-T 24 V DC / 0.5 A, spring/cable front ter-
minal 3.50 mm pitch

TA5130-KNXP
Ä Chapter
1.6.3.3.1.2.4 “TA5130-
KNXPB - Option board
KNX adress push
button” on page 2498

TA5130-KNXPB: AC500-eCo V3, option board KNX adress push
button

TA5131-RTC
Ä Chapter
1.6.3.3.1.2.5 “TA5131-
RTC - Option board
for real-time clock”
on page 2500

TA5131-RTC:AC500-eCo V3, real-time clock without battery, option
board for AC500-eCo V3 Basic CPU only

TA5141-RS232I
Ä Chapter
1.6.3.3.1.2.6 “TA5141-
RS232I - Option
board for COMx
serial communication”
on page 2502

TA5141-RS232I: AC500-eCo V3, option board for COMx serial com-
munication, spring/cable front terminal 3.50 mm pitch

TA5142-RS485I
Ä Chapter
1.6.3.3.1.2.7 “TA5142-
RS485I - Option
board for COMx
serial communication”
on page 2504

TA5142-RS485I: AC500-eCo V3, option board for COMx serial com-
munication, spring/cable front terminal 3.50 mm pitch

TA5142-RS485
Ä Chapter
1.6.3.3.1.2.8 “TA5142-
RS485 - Option
board for COMx
serial communication”
on page 2510

TA5142-RS485: AC500-eCo V3, option board for COMx serial com-
munication, spring/cable front terminal 3.50 mm pitch

Processor modules for AC500 (Standard)

Type Description
PM5630-2ETH
Ä Chapter 1.6.3.3.2.1
“PM56xx-2ETH for
AC500 V3 products”
on page 2516

PM5630-2ETH, processor module, memory 8 MB, 24 V DC,
memory card slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet TCP/IP interfaces with
Modbus TCP, web server, IEC60870-5-104 or selectable Ethernet
based protocols

PM5630-2ETH-XC
Ä Chapter 1.6.3.3.2.1
“PM56xx-2ETH for
AC500 V3 products”
on page 2516

PM5630-2ETH-XC, processor module, memory 8 MB,
24 V DC, memory card slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet TCP/IP interfaces with
Modbus TCP, web server, IEC60870-5-104 or selectable Ethernet
based protocols, XC version

V3 products

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2411

Type Description
PM5650-2ETH
Ä Chapter 1.6.3.3.2.1
“PM56xx-2ETH for
AC500 V3 products”
on page 2516

PM5650-2ETH, processor module, memory 80 MB, 24 V DC,
memory card slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet TCP/IP interfaces with
Modbus TCP, web server, IEC60870-5-104 or selectable Ethernet
based protocols

PM5650-2ETH-XC
Ä Chapter 1.6.3.3.2.1
“PM56xx-2ETH for
AC500 V3 products”
on page 2516

PM5650-2ETH-XC, processor module, memory 80 MB,
24 V DC, memory card slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet TCP/IP interfaces with
Modbus TCP, web server, IEC60870-5-104 or selectable Ethernet
based protocols, XC version

PM5670-2ETH
Ä Chapter 1.6.3.3.2.1
“PM56xx-2ETH for
AC500 V3 products”
on page 2516

PM5670-2ETH, processor module, memory 160 MB, 24 V DC,
memory card slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet TCP/IP interfaces with
Modbus TCP, web server, IEC60870-5-104 or selectable Ethernet
based protocols

PM5670-2ETH-XC
Ä Chapter 1.6.3.3.2.1
“PM56xx-2ETH for
AC500 V3 products”
on page 2516

PM5670-2ETH-XC, processor module, memory 160 MB,
24 V DC, memory card slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet TCP/IP interfaces with
Modbus TCP, web server, IEC60870-5-104 or selectable Ethernet
based protocols, XC version

PM5675-2ETH
Ä Chapter 1.6.3.3.2.1
“PM56xx-2ETH for
AC500 V3 products”
on page 2516

PM5675-2ETH, processor module, memory 160 MB, 8 GB flash disk,
24 V DC, memory card slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet TCP/IP interfaces with
Modbus TCP, web server, IEC60870-5-104 or selectable Ethernet
based protocols

PM5675-2ETH-XC
Ä Chapter 1.6.3.3.2.1
“PM56xx-2ETH for
AC500 V3 products”
on page 2516

PM5675-2ETH-XC, processor module, memory 160 MB,
8 GB flash disk, 24 V DC, memory card slot, interface 1 RS-232/485,
display, 2 RJ45 independent onboard Ethernet TCP/IP interfaces
with Modbus TCP, web server, IEC60870-5-104 or selectable
Ethernet based protocols, XC version

1.6.2.6.3 Device list: Communication modules

Type Description
CM579-ETHCAT
Ä Chapter 1.6.3.4.4.1
“CM579-ETHCAT -
EtherCAT master”
on page 2539

CM579-ETHCAT, EtherCAT communication module

CM579-PNIO
Ä Chapter 1.6.3.4.5.1
“CM579-PNIO -
PROFINET IO RT con-
troller” on page 2543

CM579-PNIO, PROFINET communication module

CM579-PNIO-XC
Ä Chapter 1.6.3.4.5.1
“CM579-PNIO -
PROFINET IO RT con-
troller” on page 2543

CM579-PNIO-XC, PROFINET communication module, XC version

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2412

Type Description
CM598-CN Ä Chapter
1.6.3.4.3.1 “CM598-CN
- CANopen master”
on page 2532

CM598-CN, communication module, CANopen master

CM598-CN-XC
Ä Chapter 1.6.3.4.3.1
“CM598-CN - CANopen
master” on page 2532

CM598-CN-XC, communication module, CANopen master,
XC version

1.6.2.6.4 Device list: Terminal units

Type Description
TU507-ETH Ä Chapter
1.6.3.5.1 “TU507-ETH
and TU508-ETH for
Ethernet communica-
tion interface modules”
on page 2549

TU507-ETH, Ethernet terminal unit, 24 V DC, screw terminals

TU508-ETH Ä Chapter
1.6.3.5.1 “TU507-ETH
and TU508-ETH for
Ethernet communica-
tion interface modules”
on page 2549

TU508-ETH, Ethernet terminal unit, 24 V DC, spring terminals

TU508-ETH-XC
Ä Chapter 1.6.3.5.1
“TU507-ETH and
TU508-ETH for
Ethernet communica-
tion interface modules”
on page 2549

TU508-ETH-XC, Ethernet terminal unit, 24 V DC, spring terminals,
XC version

TU515 Ä Chapter
1.6.3.5.2 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 2553

TU515, I/O terminal unit, 24 V DC, screw terminals

TU516 Ä Chapter
1.6.3.5.2 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 2553

TU516, I/O terminal unit, 24 V DC, spring terminals

TU516-XC Ä Chapter
1.6.3.5.2 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 2553

TU516-XC, I/O terminal unit, 24 V DC, spring terminals, XC version

TU516-H Ä Chapter
1.6.3.5.2 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 2553

TU516-H, I/O terminal unit, hot swap, 24 V DC, spring terminals

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2413

Type Description
TU516-H-XC
Ä Chapter 1.6.3.5.2
“TU515, TU516,
TU541 and TU542
for I/O modules”
on page 2553

TU516-H-XC, I/O terminal unit, hot swap, 24 V DC, spring terminals,
XC version

TU517 Ä Chapter
1.6.3.5.3 “TU517 and
TU518 for communica-
tion interface modules”
on page 2559

TU517, terminal unit for communication interface modules, 24 V DC,
screw terminals

TU518 Ä Chapter
1.6.3.5.3 “TU517 and
TU518 for communica-
tion interface modules”
on page 2559

TU518, terminal unit for communication interface modules, 24 V DC,
spring terminals

TU518-XC Ä Chapter
1.6.3.5.3 “TU517 and
TU518 for communica-
tion interface modules”
on page 2559

TU518-XC, terminal unit for communication interface modules,
24 V DC, spring terminals, XC version

TU531 Ä Chapter
1.6.3.5.4 “TU531 and
TU532 for I/O modules”
on page 2562

TU531, I/O terminal unit, 230 V AC, relays, screw terminals

TU532 Ä Chapter
1.6.3.5.4 “TU531 and
TU532 for I/O modules”
on page 2562

TU532, I/O terminal unit, 230 V AC, relays, spring terminals

TU532-XC Ä Chapter
1.6.3.5.4 “TU531 and
TU532 for I/O modules”
on page 2562

TU532-XC, I/O terminal unit, 230 V AC, relays, spring terminals,
XC version

TU532-H Ä Chapter
1.6.3.5.4 “TU531 and
TU532 for I/O modules”
on page 2562

TU532-H, I/O terminal unit, hot swap, 230 V AC, relays, spring
terminals

TU532-H-XC
Ä Chapter 1.6.3.5.4
“TU531 and TU532
for I/O modules”
on page 2562

TU532-H-XC, I/O terminal unit, hot swap, 230 V AC, relays, spring
terminals, XC version

TU541 Ä Chapter
1.6.3.5.2 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 2553

TU541, I/O terminal unit, 24 V DC, screw terminals

TU542 Ä Chapter
1.6.3.5.2 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 2553

TU542, I/O terminal unit, 24 V DC, spring terminals

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2414

Type Description
TU542-XC Ä Chapter
1.6.3.5.2 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 2553

TU542-XC, I/O terminal unit, 24 V DC, spring terminals, XC version

TU542-H Ä Chapter
1.6.3.5.2 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 2553

TU542-H, I/O terminal unit, hot swap, 24 V DC, spring terminals

TU542-H-XC
Ä Chapter 1.6.3.5.2
“TU515, TU516,
TU541 and TU542
for I/O modules”
on page 2553

TU542-H-XC, I/O terminal unit, hot swap, 24 V DC, spring terminals,
XC version

1.6.2.6.5 Device list: S500-eCo I/O modules

Type Description
AI561 Ä Chapter
1.6.3.6.2.1.1 “AI561 -
Analog input module”
on page 2776

AI561, analog input module, 4 AI, U/I

AI562 Ä Chapter
1.6.3.6.2.1.2 “AI562 -
Analog input module”
on page 2787

AI562, analog input module, 2 AI, RTD

AI563 Ä Chapter
1.6.3.6.2.1.3 “AI563 -
Analog input module”
on page 2798

AI563, analog input module, 4 AI, thermocouple

AO561 Ä Chapter
1.6.3.6.2.1.4 “AO561 -
Analog output module”
on page 2810

AO561, analog output module, 2 AO, U/I

AX561 Ä Chapter
1.6.3.6.2.1.5 “AX561
- Analog input/output
module” on page 2819

AX561, analog input/output module, 4 AI, 2AO, U/I

DC561 Ä Chapter
1.6.3.6.1.1.1 “DC561
- Digital input/output
module” on page 2569

DC561, digital input/output module, 16 configurable inputs/outputs,
transistor output, interfast connection

DC562 Ä Chapter
1.6.3.6.1.1.2 “DC562
- Digital input/output
module” on page 2577

DC562, digital input/output module, 16 configurable inputs/outputs

DI561 Ä Chapter
1.6.3.6.1.1.3 “DI561 -
Digital input module”
on page 2588

DI561, digital input module, 8 DI, 24 V DC

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2415

Type Description
DI562 Ä Chapter
1.6.3.6.1.1.4 “DI562 -
Digital input module”
on page 2594

DI562, digital input module, 16 DI, 24 V DC

DI571 Ä Chapter
1.6.3.6.1.1.5 “DI571 -
Digital input module”
on page 2603

DI571, digital input module, 8 DI, 120 V AC...240 V AC

DI572 Ä Chapter
1.6.3.6.1.1.6 “DI572 -
Digital input module”
on page 2611

DI572, digital input module, 16 DI, 100 V AC...240 V AC

DO561 Ä Chapter
1.6.3.6.1.1.7 “DO561 -
Digital output module”
on page 2620

DO561, digital output module, 8 DO, transistor output

DO562 Ä Chapter
1.6.3.6.1.1.8 “DO562 -
Digital output module”
on page 2629

DO562, digital output module, 16 DO, transistor output

DO571 Ä Chapter
1.6.3.6.1.1.9 “DO571 -
Digital output module”
on page 2638

DO571, digital output module, 8 DO, relay output

DO572 Ä Chapter
1.6.3.6.1.1.10 “DO572 -
Digital output module”
on page 2648

DO572, digital output module, 8 DO, triac output

DO573 Ä Chapter
1.6.3.6.1.1.11 “DO573 -
Digital output module”
on page 2658

DO573, digital output module, 16 DO, relay output

DX561 Ä Chapter
1.6.3.6.1.1.12 “DX561
- Digital input/output
module” on page 2670

DX561, digital input/output module, 8 DI 24 V DC, 8 DO 24 V DC,
transistor output

DX571 Ä Chapter
1.6.3.6.1.1.13 “DX571
- Digital input/output
module” on page 2682

DX571, digital input/output module, 8 DI 24 V DC, 8 DO, relay output

1.6.2.6.6 Device list: S500 I/O modules

Type Description
AI523 Ä Chapter
1.6.3.6.2.2.2 “AI523 -
Analog input module”
on page 2858

AI523, analog input module, 16 AI, U/I/Pt100, 12 bits + sign, 2-wires

AI523-XC Ä Chapter
1.6.3.6.2.2.2 “AI523 -
Analog input module”
on page 2858

AI523-XC, analog input module, 16 AI, U/I/Pt100, 12 bits + sign,
2-wires, XC version

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2416

Type Description
AI531 Ä Chapter
1.6.3.6.2.2.3 “AI531 -
Analog input module”
on page 2880

AI531, analog input module, 8 AI, U/I/Pt100, TC, 15 bits + sign,
4-wires

AI531-XC Ä Chapter
1.6.3.6.2.2.3 “AI531 -
Analog input module”
on page 2880

AI531-XC, analog input module, 8 AI, U/I/Pt100, TC, 15 bits + sign,
4-wires, XC version

AO523 Ä Chapter
1.6.3.6.2.2.4 “AO523 -
Analog output module”
on page 2912

AO523, analog output module, 16 AO, U/I, 12 bits + sign, 2-wires

AO523-XC Ä Chapter
1.6.3.6.2.2.4 “AO523 -
Analog output module”
on page 2912

AO523-XC, analog output module, 16 AO, U/I, 12 bits + sign,
2-wires, XC version

AX521 Ä Chapter
1.6.3.6.2.2.5 “AX521
- Analog input/output
module” on page 2927

AX521, analog input/output module, 4 AI, 4 AO, U/I/Pt100,
12 bits + sign, 2-wires

AX521-XC Ä Chapter
1.6.3.6.2.2.5 “AX521
- Analog input/output
module” on page 2927

AX521-XC, analog input/output module, 4 AI, 4 AO, U/I/Pt100,
12 bits + sign, 2-wires, XC version

AX522 Ä Chapter
1.6.3.6.2.2.6 “AX522
- Analog input/output
module” on page 2950

AX522, analog input/output module, 8 AI, 8 AO, U/I/Pt100,
12 bits + sign, 2-wires

AX522-XC Ä Chapter
1.6.3.6.2.2.6 “AX522
- Analog input/output
module” on page 2950

AX522-XC, analog input/output module, 8 AI, 8 AO, U/I/Pt100,
12 bits + sign, 2-wires, XC version

DA501 Ä Chapter
1.6.3.6.3.1.1 “DA501
- Digital/Analog
input/output module”
on page 2975

DA501, digital/analog input/output module, 16 DI, 8 DC, 4 AI, 2 AO

DA501-XC Ä Chapter
1.6.3.6.3.1.1 “DA501
- Digital/Analog
input/output module”
on page 2975

DA501-XC, digital/analog input/output module, 16 DI, 8 DC, 4 AI,
2 AO, XC version

DA502 Ä Chapter
1.6.3.6.3.1.2 “DA502
- Digital/Analog
input/output module”
on page 3010

DA502, digital/analog input/output module, 16 DO, 8 DC, 4 AI, 2 AO

DA502-XC Ä Chapter
1.6.3.6.3.1.2 “DA502
- Digital/Analog
input/output module”
on page 3010

DA502-XC, digital/analog input/output module, 16 DO, 8 DC, 4 AI,
2 AO, XC version

DC522 Ä Chapter
1.6.3.6.1.2.1 “DC522
- Digital input/output
module” on page 2696

DC522, digital input/output module, 16 DC, 24 V DC / 0.5 A, 2-wires

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2417

Type Description
DC522-XC Ä Chapter
1.6.3.6.1.2.1 “DC522
- Digital input/output
module” on page 2696

DC522-XC, digital input/output module, 16 DC, 24 V DC / 0.5 A,
2-wires, XC version

DC523 Ä Chapter
1.6.3.6.1.2.2 “DC523
- Digital input/output
module” on page 2706

DC523, digital input/output module, 24 DC, 24 V DC / 0.5 A, 1-wire

DC523-XC Ä Chapter
1.6.3.6.1.2.2 “DC523
- Digital input/output
module” on page 2706

DC523-XC, digital input/output module, 24 DC, 24 V DC / 0.5 A,
1-wire, XC version

DC532 Ä Chapter
1.6.3.6.1.2.3 “DC532
- Digital input/output
module” on page 2717

DC532, digital input/output module, 16 DI, 16 DC, 24 V DC / 0.5 A,
1-wire

DC532-XC Ä Chapter
1.6.3.6.1.2.3 “DC532
- Digital input/output
module” on page 2717

DC532-XC, digital input/output module, 16 DI, 16 DC,
24 V DC / 0.5 A, 1-wire, XC version

DI524 Ä Chapter
1.6.3.6.1.2.4 “DI524 -
Digital input module”
on page 2729

DI524, digital input module, 32 DI, 24 V DC, 1-wire

DI524-XC Ä Chapter
1.6.3.6.1.2.4 “DI524 -
Digital input module”
on page 2729

DI524-XC, digital input module, 32 DI, 24 V DC, 1-wire, XC version

DO524 Ä Chapter
1.6.3.6.1.2.5 “DO524 -
Digital output module”
on page 2737

DO524, digital output module, 32 DO, 24 V DC / 0.5 A, 1-wire

DO524-XC Ä Chapter
1.6.3.6.1.2.5 “DO524 -
Digital output module”
on page 2737

DO524-XC, digital output module, 32 DO, 24 V DC / 0.5 A, 1-wire,
XC version

DO526 Ä Chapter
1.6.3.6.1.2.6 “DO526 -
Digital output module”
on page 2745

DO526, digital output module, 8 DO, 24 V DC / 2 A, 1-wire

DO526-XC Ä Chapter
1.6.3.6.1.2.6 “DO526 -
Digital output module”
on page 2745

DO526-XC, digital output module, 8 DO, 24 V DC / 2 A, 1-wire,
XC version

DX522 Ä Chapter
1.6.3.6.1.2.7 “DX522
- Digital input/output
module” on page 2754

DX522, digital input/output module, 8 DI, 24 V DC, 8 DO relays

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2418

Type Description
DX522-XC Ä Chapter
1.6.3.6.1.2.7 “DX522
- Digital input/output
module” on page 2754

DX522-XC, digital input/output module, 8 DI, 24 V DC, 8 DO relays,
XC version

DX531 Ä Chapter
1.6.3.6.1.2.8 “DX531
- Digital input/output
module” on page 2766

DX531, digital input/output module, 8 DI, 230 V AC, 4 DO relay,
2-wires

1.6.2.6.7 Device list: Communication interface modules
Table 403: CANopen
Type Description
CI581-CN Ä Chapter
1.6.3.7.2.2 “CI581-CN”
on page 3046

CI581-CN, CANopen communication interface module, 8 DI, 8 DO,
4 AI and 2 AO

CI581-CN-XC
Ä Chapter
1.6.3.7.2.2 “CI581-CN”
on page 3046

CI581-CN-XC, CANopen communication interface module, 8 DI,
8 DO, 4 AI and 2 AO, XC version

CI582-CN Ä Chapter
1.6.3.7.2.3 “CI582-CN”
on page 3084

CI582-CN, CANopen communication interface module, 8 DI, 8 DO
and 8 DC

CI582-CN-XC
Ä Chapter
1.6.3.7.2.3 “CI582-CN”
on page 3084

CI582-CN-XC, CANopen communication interface module, 8 DI,
8 DO and 8 DC, XC version

Table 404: EtherCAT
Type Description
CI511-ETHCAT
Ä Chapter 1.6.3.7.3.1
“CI511-ETHCAT”
on page 3106

CI511-ETHCAT, EtherCAT communucation interface module, 8 DI,
8 DO, 4 AI and 2 AO

CI512-ETHCAT
Ä Chapter 1.6.3.7.3.2
“CI512-ETHCAT”
on page 3138

CI512-ETHCAT, EtherCAT communucation interface module, 8 DI,
8 DO and 8 DC

Table 405: Modbus
Type Description
CI521-MODTCP
Ä Chapter 1.6.3.7.4.1
“CI521-MODTCP”
on page 3156

CI521-MODTCP, Modbus TCP communucation interface module,
4 AI, 2 AO, 8 DI and 8 DO

CI521-MODTCP-XC
Ä Chapter 1.6.3.7.4.1
“CI521-MODTCP”
on page 3156

CI521-MODTCP-XC,
Modbus TCP communucation interface module, 4 AI, 2 AO, 8 DI and
8 DO, XC version

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2419

Type Description
CI522-MODTCP
Ä Chapter 1.6.3.7.4.2
“CI522-MODTCP”
on page 3196

CI522-MODTCP, Modbus TCP communucation interface module,
8 DC, 8 DI and 8 DO

CI522-MODTCP-XC
Ä Chapter 1.6.3.7.4.2
“CI522-MODTCP”
on page 3196

CI522-MODTCP-XC,
Modbus TCP communucation interface module, 8 DC, 8 DI and
8 DO, XC version

Table 406: PROFINET
Type Description
CI501-PNIO (V3)
Ä Chapter
1.6.3.7.5.2 “CI501-
PNIO” on page 3224

CI501-PNIO (V3), PROFINET communucation interface module,
8 DI, 8 DO, 4 AI and 2 AO

CI501-PNIO-XC (V3)
Ä Chapter
1.6.3.7.5.2 “CI501-
PNIO” on page 3224

CI501-PNIO-XC (V3), PROFINET communucation interface module,
8 DI, 8 DO, 4 AI and 2 AO, XC version

CI502-PNIO Ä Chapter
1.6.3.7.5.3 “CI502-
PNIO” on page 3263

CI502-PNIO, PROFINET communucation interface module, 8 DI,
8 DO and 8 DC

CI502-PNIO-XC
Ä Chapter
1.6.3.7.5.3 “CI502-
PNIO” on page 3263

CI502-PNIO-XC, PROFINET communucation interface module, 8 DI,
8 DO and 8 DC, XC version

1.6.2.6.8 Device list: Accessories

Type Description
Automation Builder DM-TOOL, Automation Builder software suite, programming software

(multilanguage)
www.abb.com/automationbuilder

MC502 Ä Chapter
1.6.3.8.2.1 “MC502
- Memory card”
on page 3311

MC502, memory card

MC5102 Ä Chapter
1.6.3.8.1.1 “MC5102
- Micro memory
card with micro
memory card adapter”
on page 3288

MC5102, micro memory card with micro memory card adapter

MC5141 Ä Chapter
1.6.3.8.2.3 “MC5141
- Memory card”
on page 3320

MC5141, memory card

TA521 Ä Chapter
1.6.3.8.2.4 “TA521 -
Battery” on page 3324

TA521, lithium battery

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2420

http://www.abb.com/automationbuilder

Type Description
TA523 Ä Chapter
1.6.3.8.3.1 “TA523
- Pluggable
label mounting”
on page 3329

TA523, pluggable label mounting (10 pcs)

TA524 Ä Chapter
1.6.3.8.2.5 “TA524 -
Dummy communication
module” on page 3328

TA524, dummy communication module

TA525 Ä Chapter
1.6.3.8.3.2 “TA525
- Plastic labels”
on page 3331

TA525, set of 10 white plastic markers

TA526 Ä Chapter
1.6.3.8.2.6 “TA526 -
Wall mounting acces-
sory” on page 3329

TA526, wall mounting accessory, 10 pcs

TA535 Ä Chapter
1.6.3.8.3.4 “TA535 -
Protective caps for XC
devices” on page 3333

TA535, protective caps for XC devices

TA543 Ä Chapter
1.6.4.5.5.5 “TA543 -
Screw mounting acces-
sory” on page 3396

TA543, screw mounting accessory for AC500-eCo V3 processor
modules PM50xx without DIN rail

TA566 Ä “Mounting I/O
modules on a metal
plate” on page 3367

TA566, wall mounting accessory for S500-eCo I/O modules without
DIN rail

TA5400-SIM Ä Chapter
1.6.3.8.1.4 “TA5400-
SIM - Input simulator”
on page 3307

TA5400-SIM, input simulator for PM50xx

1.6.2.7 PLC system description
1.6.2.7.1 AC500 product family

The AC500 (Standard), AC500-eCo, AC500-S and AC500-XC scalable PLC ranges provide
solutions for small, middle and high-end applications. Our AC500 platform offers different per-
formance levels and is the ideal choice for high availability, extreme environments or safety
solutions. Our AC500 PLC platform offers interoperability and compatibility in hardware and
software from compact PLCs up to high-end and safety PLCs.
Due to the flexible combinations of AC500 devices and components, AC500 PLCs can be used
for controlling a wide variety of applications to fulfill your automation needs.
Features of AC500 PLCs
● Scalable and consistently expandable system
● Different performance classes of processor modules (CPUs) available
● Several field busses available
● Parallel connection to several field busses which can be combined arbitrarily

The AC500 product family consists of the product groups:

AC500 program-
mable logic con-
trollers (PLCs)

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2421

● AC500 (standard):
AC500 standard PLCs offer a wide range of performance levels and scalability. The PLCs
are highly capable of communication and extension for flexible application.

● AC500-eCo:
AC500-eCo PLCs are cost-effective, high-performance compact PLCs that offer total inter-
operability with the core AC500 range and provide battery-free data buffering. All I/O
modules can be freely connected in a simple, stable and reliable manner.

● AC500-S:
AC500-S PLCs are designed for safety applications involved in factory, process or machi-
nery automation area.

● AC500-XC:
AC500 (standard) and AC500-S provide devices with -XC extension as a product variant.
These variants operate according to their product group and can, in addition, be operated
under extreme conditions. AC500-XC PLCs can be used at high altitudes, extended oper-
ating temperature and in humid condition. Further, the devices provide immunity to vibration
and hazardous gases. The AC500-XC series is consistent with standard devices in the
overall dimensions, control function and software compatibility. Ä Chapter 1.6.4.7.1 “System
data AC500-XC” on page 3450.

The AC500 product family is characterized by functional modularity. As the complete AC500
product family shares the same hardware platform and programming software tool, the devices
of the AC500 product groups can be flexibly combined.
S500 devices represent the I/O modules of the product group AC500 (standard), whereas
S500-eCo devices represent the I/O modules of the product group AC500-eCo. Both S500 and
S500-eCo devices can be combined with devices of the AC500 product family in a flexible way.

AC500 devices support different protocols and technologies (e.g. Ethernet, PROFIBUS etc.)
in variable number. AC500 devices with onboard interfaces for support of a certain protocol
or technology can be identified easily by the extension in the product name of the AC500
device. For example the AC500 Communication Module PM592-DP provides onboard support
for PROFIBUS DP, the AC500 processor module PM595-4ETH provides onboard support for
four provided Ethernet interfaces.
Further extensions in AC500 device names:
● -ETH: Ethernet
● -ARC: ARCNET
● -DP: PROFIBUS DP
● -CAN: CAN/CANopen
● -ETHCAT: EtherCAT
● -PNIO: PROFINET
● -RCOM: RCOM/RCOM+
● -RS: Serial interface

1.6.2.7.2 AC500/S500 system structure
The AC500 product family provides a variety of modules and pluggable components for
expanding the capabilities of the CPU with additional I/Os or other communication protocols.
Depending on the features and functions of the processor module (CPU) compatible compo-
nents can be added to a complete AC500 PLC system.
Example of an AC500 PLC system:

Extensions in
the product
name

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2422

1 Plug-in communication module
2 Processor module
3 Plug-in I/O module
4 Plug-in function module (AC500-eCo)
- Plug-in communication module (AC500-S), not displayed
- Plug-in I/O module (AC500-S), not displayed

Fig. 97: S500 I/O modules directly connected to a processor module

Centralized I/O
extension

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2423

Fig. 98: S500 I/O modules connected via communication interface module

1.6.2.7.3 AC500/S500: Short description hardware

AC500 processor modules contains the CPU with the core component of the PLC. The CPU is
connected with the user memory, input and output module, communication port and other units
via system bus and performs tasks by means of system programs preset in the system memory.
The CPU adopts the function preset by the system program to command the PLC for operation.
Its functions include:
● To receive user program and data entered
● To diagnose work faults of the power supply and PLC circuit as well as syntax error in

programming
● To receive the state or data of the site via the input interface and save it into the shadow

register or data register
● To read the user program in the memory one by one and execute it after interpretation
● To update the state of related flag bits and output shadow register contents according to

execution results and realize output control by means of output unit.
Processor modules are available in different performance classes. Only one processor module
is required for a valid system architecture.
There are different types of processor module available that differ in the features and functions
they provide, e.g. performance, LED display etc.
If required, processor modules are also available with an integrated Ethernet communication
module (TCP/IP).

Decentralized
I/O extension

Processor
modules

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2424

AC500 communication modules are required for
● a connection to standard field bus systems and
● for integration into existing networks.
AC500 communication modules
● enable communication on different field buses.
● are mounted on the left side of the processor module on the same terminal base.
● are directly powered via the internal communication module bus of the terminal base.

A separate voltage source is not required.

Communication
modules

I/O modules

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2425

The I/O modules are the input / output unit which connects the PLC with the industrial produc-
tion site. The PLC can detect controlled object data via the input interface and the data is taken
as the basis for PLC control on the controlled object. In addition, the PLC sends processing
results via the output interface to the controlled object to realize the control purpose.
External input equipment and output equipment need various signal levels while the information
processed by the CPU in the PLC only can be the standard level. In order to realize such
conversion, the I/O interface generally shall perform optical isolation and filtering to improve
interference immunity of the PLC. In addition, the I/O interface generally can indicate the
working state to facilitate maintenance.
The PLC provides multiple I/O interface for operation level and drive capability to users for
selection such as digital input, digital output, analog input, analog output, etc. I/O interfaces of
the PLC have the number of input / output signals taken as the number of PLC I/O points. The
number of I/O points is an important basis for PLC selection. If the system is insufficient in the
I/O points, it can be expanded via the I/O extension interface of the PLC.
The I/O modules for digital and/or analog inputs and outputs are available in different versions
and allow flexible use thanks to configurable channels.
The modules can be simply plugged onto a terminal unit for a centralized I/O extension or for a
decentralized I/O extension via communication interface modules.

Function modules extend the PLC system to perform special task control. Those modules often
provide independent components such as a CPU, system programs, memory and interfaces
connected with the PLC system bus.
It is connected with the PLC via the I/O bus to exchange data and independently work under
cooperative management of the PLC.

Communication interface modules enable a decentralized I/O station. It contains embedded
digital I/Os and a fieldbus interface.
Communication interface modules act as I/O slave devices within a master-slave-arrangement.

Function
modules

Communication
interface
modules

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2426

On a terminal base the processor module and the communication modules are plugged.

For AC500-eCo processor modules and special AC500 (Standard) processor
modules the terminal base cannot be removed.

On a terminal unit the I/O modules are plugged.
Terminal units enable simple prewiring without electronics and are available for 24 V DC and
230 V AC, optionally for spring or screw-type terminals.

In the PLC, the memory is mainly used for saving system programs, user programs and work
data. The following memory types can be distinguished:
● Volatile memory:

All saved data will be lost after power failure of the memory but the memory can provide
high access rate and unlimited programming cycles. Common volatile memories mainly
include SRAM and DRAM (including common memories such as SDRAM).

● Nonvolatile memory:
All saved data will not be lost after power failure of the memory, but the memory is subject to
low read-write rate and limited rewrite cycles. Common nonvolatile memories mainly include
NORflash, NANDflash, EEPROM, memory card, etc.

AC500 PLCs store all user programs in the nonvolatile memory to get protected from power
failure. The programs are exported to the volatile memory under operation of the PLC to ensure
high-speed and efficient operation. If user program debugging is finished, the programs can
be fixed in the nonvolatile memory when they need no change. The work data is subject to
frequent change and access in the PLC operation. It is saved in the volatile memory to meet the
requirements for random access.
The work data memory of PLC has the memory area for input and output relay, auxiliary
relay, timer, counter and other logic devices. The state of these devices depends on initial
setting and operation of the user programs. Some data maintains existing state by using built-in
supercapacitors or backup batteries in case of power failure. The memory area for data saving
in case of power failure is called the data retention area.

Terminal bases

Terminal units

Memory

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2427

The PLC is equipped with a switch power supply for internal circuit. Compared with ordinary
power supply, the PLC power supply has the higher stability and interference immunity. A
number of PLC products provide 24 V DC stabilized voltage supply to meet external sensors.

1.6.2.7.4 Short description software
Configuration and programming of all AC500 control systems (CPUs) is done by using
Automation Builder software.
Features:
● Standardized programming according to IEC 61131-3 - five programming languages (Struc-

tured Text (ST), Function Block Diagram (FBD), Instruction List (IL), Ladder Diagram (LD),
Sequential Function Chart (SFC)), free graphical function chart (CFC), debugging functions
for program test

● Application programming in C/C++
● Online diagnosis
● Debugging functions for the program test: Single step, Single cycle, Breakpoint
● Offline simulation - simulate commands without PLC being connected
● Sampling trace - timing diagrams for process variables
● Recipe management and watch lists
● Visualization
● Configuration of the communication interface modules (for PROFINET, EtherCAT,

CANopen, Ethernet, Modbus)
● Programming - serial or via Ethernet networks
● Comprehensive libraries
● Export and import interfaces for devices, signals, applications, visualization, etc.
● Multi-user support and project compare
● Project scripting

IEC 61131-3 commands can be simulated without a PLC being connected, including the rele-
vant malfunctions. After the program test, the application can be downloaded to the control
system.

Timing diagrams for process variables and storage of data in a ring buffer with event trigger.

Power supply

Configuration
and program-
ming

Offline simula-
tion

Sampling trace

PLC Automation with V3 CPUs
PLC integration (hardware) > PLC introduction

2022/01/213ADR010583, 3, en_US2428

Values of selected variables are displayed. Pre-defined values can be assigned to variables
which can then be downloaded to the control system all at once ("Write recipe"). Actual values
from the control system can also be pre-assigned for reading into the Watch and Recipe Man-
ager, and stored in memory there ("Read recipe). These functions are also helpful, for example,
for setting and entering control parameters.

Includes color change, moving elements, bitmaps, text display, allows input of setpoint values
and display of process variables read from the PLC, dynamic bar diagrams, alarm and event
management, function keys and ActiveX elements.

Serial or via Ethernet networks.

Provides access from the programming system to an external project database in which the
program source code of one or several automation projects is managed. Optionally, a version
control system, such as Visual Source Safe, can be used in order to ensure data consistency of
the program code for several different users and projects.

1.6.2.7.5 CP600 control panels (HMI)
ABB control panels offer a wide range of features and functionalities for maximum operability.
The panels are distinguished by their robustness and easy usability, providing all the relevant
information from production plants and machines at a single touch.

HMI - human control and operation of machines and processes.
Individual solutions for each application - this enables an operator at any time to have an
overview on a profitable production and intervene manually if necessary.
Control panels with TFT graphical display and touch screen.
Available in various resolutions.

1.6.2.8 AC500-S

The AC500-S safety user manual must be read and understood before using safety configura-
tion and programming tools of Automation Builder / PS501 Control Builder Plus. Only qualified
personnel shall be allowed to work with AC500-S safety PLCs.
In order to have always the latest version and due to a different lifecycle compared to
Automation Builder help, the AC500-S safety user manual is only available on our website.

Recipe manage-
ment and watch
lists

Visualization

Programming

Engineering
interface

PLC Automation with V3 CPUs

PLC integration (hardware) > PLC introduction

2022/01/21 3ADR010583, 3, en_US 2429

https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=en&DocumentPartId=&Action=Launch

The AC500-S safety PLC includes the following safety-relevant hardware components.
● SM560-S / SM560-S-FD-1 / SM560-S-FD-4
● DI581-S
● DX581-S
● AI581-S
● TU582-S

1.6.2.9 Converting an AC500 V2 project to an AC500 V3 project
A project that has been configured for an AC500 V2 PLC can be converted to a project for an
AC500 V3 PLC.
Essentially, the conversion is done in Automation Builder, however, some additional actions
have to be executed manually. The complete procedure is described in the application example
Instructions on how to convert a V2 project to a V3 project and differences between V2 and V3.

1.6.3 Device specifications
1.6.3.1 Status LEDs, display and control elements

Depending on the device type, various operating elements provided on the front panel can be
used to control the devices of the PLC system and/or to change the operating mode.
Operating elements:
● Status LEDs:

Indicates the availability of devices/components such as communication modules, commu-
nication interface modules or function modules. Functionality and diagnosis of the status
LEDs depends on the specific module and is described in the device description of the
appropriate module. Possible status: on/off/blinking

● I/O LEDs:
Displays the status of the the inputs and outputs.

● LED display:
Available for some processor modules. It can be used for simple configurations and for
reading out diagnosis information.
Ä Chapter 1.6.5.1.6 “LEDs, display and function keys on the front panel” on page 3486
Ä Chapter 1.7.1.2 “Diagnosis in CPU display” on page 4013

● Function keys and switches:
Allows to change the current operating modes/status manually Ä Chapter 1.6.5.1.6.5
“Description of the function keys” on page 3491.

1.6.3.2 Terminal bases (AC500 standard)

AC500-eCo V3 processor modules do not have a separate terminal base

1.6.3.2.1 TB56xx for AC500 V3 products
● TB5600-2ETH: 1 processor module, with network interface 2 Ethernet RJ45, 1 CAN and 1

COM1
● TB5610-2ETH: 1 processor module, 1 communication module, with network interface 2

Ethernet RJ45, 1 CAN and 1 COM1

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2430

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010397&LanguageCode=en&DocumentPartId=&Action=Launch

● TB5620-2ETH: 1 processor module, 2 communication modules, with network interface 2
Ethernet RJ45, 1 CAN and 1 COM1

● TB5640-2ETH: 1 processor module, 4 communication modules, with network interface 2
Ethernet RJ45, 1 CAN and 1 COM1

● TB5660-2ETH: 1 processor module, 6 communication modules, with network interface 2
Ethernet RJ45, 1 CAN and 1 COM1

● XC version for use in extreme ambient conditions available

Terminal bases TB56xx-2ETH can only be used with processor modules
PM56xx-2ETH.

Table 407: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

The following figure shows the TB5620-2ETH as example.

1 I/O bus (10-pin, female) to connect the I/O terminal units
2 One available slot for the processor module
3 Slots for communication modules
4 Interface for CAN (5-pin terminal block, removable)
5 Power supply (5-pin terminal block, removable)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2431

6 Serial interface COM1 (9-pin terminal block, removable)
7 RJ45 female connector for Ethernet connection
8 Holes for screw mounting

XC = eXtreme Conditions

Extreme conditions
Terminal bases for use in extreme ambient conditions have no sign for
XC version.

The figure 3 in the Part no. 1SAP3... (label) identifies the XC version.

Short description
Terminal bases TB56xx are used as sockets for processor modules PM56xx and
communication modules.
Up to 10 I/O terminal units for I/O expansion modules can be added to these terminal bases.
The terminal bases have slots for one processor module and for communication modules as
well as terminals and interfaces for power supply, expansion and networking.
Table 408: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

NOTICE!
Risk of malfunctions!
Unused slots for communication modules are not protected against accidental
physical contact.
– Unused slots for communication modules must be covered with dummy

communication modules to achieve IP20 rating Ä Chapter 1.6.3.8.2.5
“TA524 - Dummy communication module” on page 3328.

– I/O bus connectors must not be touched during operation.

XC version

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2432

Connections
I/O bus

The I/O bus is the I/O data bus for the I/O modules. Through this bus, I/O and diagnosis data
are transferred between the processor module and the I/O modules. Up to 10 I/O modules
can be added (see description for I/O bus in the system asembly chapter Ä Chapter 1.6.4.4.1
“Serial I/O bus” on page 3338).

Power supply
The supply voltage of 24 V DC is connected to a removable 5-pin terminal block. L+/M exist
twice. It is therefore possible to feed e.g. external sensors (up to 8 A max. with 1.5 mm2

conductor) via these terminals, when the ambient temperature never exceeds 60 °C.

Pin Assignment Label Function Description

Terminal block
removed

Terminal block
inserted

L+ +24 V DC Positive pin of the
power supply voltage

L+ +24 V DC Positive pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

FE Functional earth

NOTICE!
Risk of damaging the processor module and terminal base!
Exceeding the maximum voltage could lead to unrecoverable damage to the
system.
The system might be destroyed.

NOTICE!
Risk of malfunction!
To ensure reliability and proper functionality of processor modules below index
C0, the supply voltage must ramp-up from 0 V to 24 V within max. 2.5 s.

NOTICE!
Risk of damaging the terminal base and power supply!
Short circuits might damage the terminal base and power supply.
Make sure that the four clamps L+ and M (two of each) are not wrongly
connected (e. g. +/- of power supply is connected to both L+/L+ or both M/M).

Pin assignment

Faulty wiring on
power supply
terminals

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2433

NOTICE!
Risk of damaging the terminal base!
Terminal base can be damaged by connecting the power supply terminal block
(L+/M) to COM1.
Make sure that the COM1 terminal block is always connected to the terminal
base even if you do not use COM1 to prevent this.

NOTICE!
Risk of damaging the terminal base!
Excessive current might damage the clamp and terminal base.
Make sure that the current flowing through the removable clamps never
exceeds 8 A (with 1.5 mm2 conductor).

NOTICE!
For applications using XC versions!
To ensure reliability and proper function, make sure the ambient temperature
never exceeds 60 °C when the current flowing through the removable clamps is
8 A (with 1.5 mm2 conductor).

Serial interface COM1
The serial interface COM1 is connected to a removable 9-pin terminal block.
From firmware version V3.1 it is configurable for RS-232 or RS-485 (V3.0 RS-232 only).

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2434

 Pin Signal Interface Description

Terminal
block
removed

Terminal
block
inserted

1 Terminator P RS-485 Terminator P

2 RxD/TxD-P RS-485 Receive/Transmit,
positive

3 RxD/TxD-N RS-485 Receive/Transmit,
negative

4 Terminator N RS-485 Terminator N

5 RTS RS-232 Request to send
(output)

6 TxD RS-232 Transmit data
(output)

7 SGND Signal Ground Signal Ground

8 RxD RS-232 Receive data
(input)

9 CTS RS-232 Clear to send
(input)

NOTICE!
Unused connector!
Make sure that the terminal block is always connected to the terminal base or
communication module, even if you do not use the interface.

For further information on connection and wiring please refer to .

Ethernet interface
This interface is the connection to a processor module with onboard Ethernet e.g.
PM56xx-2ETH.

TB56xx-2ETH for processor modules PM56xx-2ETH provide 2 independent
Ethernet interfaces.

The two Ethernet interfaces can be configured as independent interfaces or with
switch functionality.

In case of two independent interfaces they must be configured to different
subnets.

For structured Ethernet cabling only use cables according to TIA/EIA-568-A,
ISO/IEC 11801 or EN 50173.

Pin assignment
(RS-485 /
RS-232)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2435

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NU Not used

5 NU Not used

6 RxD- Receive data -

7 NU Not used

8 NU Not used

Shield Cable shield Functional earth

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.3.8.3.4 “TA535 - Protective caps for XC devices”
on page 3333

See supported protocols and used Ethernet ports for AC500 V3 products: Ä Chapter 1.6.1.3
“Ethernet protocols and ports for AC500 V3 products” on page 2389.
See communication via Modbus for AC500 V3 products: Ä Chapter 1.6.5.1.11 “Communication
with Modbus TCP/IP” on page 3558.
See communication via Modbus for AC500 V3 products: Ä Chapter 1.6.5.1.10 “Communication
with Modbus RTU” on page 3542.

CAN interface
This interface is the connection to a processor module with onboard CAN e.g. PM56xx-2ETH.

Interface socket COMBICON, 5-pin, female, removable plug with spring terminals

Transmission standard ISO 11898, potential-free

Transmission protocol CANopen (CAN), 1 Mbaud max.

Transfer rate (transmis-
sion rate)

50 kbit/s, 100 kbit/s, 125 kbit/s, 250 kbit/s, 500 kbit/s, 800 kbit/s
and 1 Mbit/s,

Pin assignment

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2436

Interface PIN Signal Description

Terminal block
removed

Terminal block
inserted

1 CAN_GND CAN reference potential

2 CAN_L Bus line, receive/transmit line,
LOW

3 CAN_SHLD Shield of the bus line

4 CAN_H Bus line, receive/transmit line,
HIGH

5 NC Not connected

NOTICE!
Unused connector!
Make sure that the terminal block is always connected to the terminal base or
communication module, even if you do not use the interface.

The maximum possible bus length of a CAN network depends on bit rate (transmission rate)
and cable type. The sum of all bus segments must not exceed the maximum bus length

Bit Rate (speed) Bus Length
1 Mbit/s 40 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

50 kbit/s 1000 m

Only bus cables with characteristics as recommended in ISO 11898 are to be used. The
requirements for the bus cables depend on the length of the bus segment. See Ä Chapter
1.6.4.6.4.6 “CANopen field bus” on page 3422.

Both ends of the CAN bus have to be terminated with a 120 Ω (≥ 1/4 W, ≤ 5 %) bus termi-
nating resistor, to minimize signal reflection. The bus terminating resistor should be connected
directly at the bus connector between the CAN signals (CAN_H and CAN_L). See Ä Chapter
1.6.4.6.4.6 “CANopen field bus” on page 3422.

Technical data

The system data of AC500 and S500 are applicable to the standard version. Ä Chapter
1.6.4.6.1 “System data AC500” on page 3398

The system data of AC500-XC are applicable to the XC version. Ä Chapter 1.6.4.7.1 “System
data AC500-XC” on page 3450

Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Pin assignment

Bus length

Types of bus
cables

Bus terminating
resistors

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2437

Parameter Value
Connection of the supply voltage 24 V
DC at the terminal base of the processor
module

Removable 5-pin terminal block spring type

Max. current consumption from 24 V DC TB5600: 0.25 A 1)

TB5610: 0.35 A 1)

TB5620: 0.4 A 1)

TB5640: 0.6 A 1)

TB5660: 0.8 A 1)

Melting integral of a fuse at 24 V DC Min. 1 A²s 2)

Peak inrush current from 24 V DC 55 A 2)

Number of slots for processor modules 1 (on all terminal bases)

Processor module interfaces at TB56xx I/O bus, ETH1, ETH2, CAN, COM1

Net weight (terminal base without pro-
cessor module)

TB5600: 155 g
TB5610: 180 g
TB5620: 210 g
TB5640: 260 g
TB5660: 310 g

Mounting position Horizontal or vertical

1) Including processor modules, communication modules and communication interface modules
2) The inrush current and the melting integral depends on the internal power supply of the
processor module and the number and type of communication modules and I/O modules
connected to the I/O bus.
Table 409: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2438

Ordering data

Part no. Description Product life cycle phase *)
1SAP 110 300 R0278 TB5600-2ETH, terminal base AC500,

slots: 1 processor module, 2 Ethernet
RJ45, 1 CAN connector

Active

1SAP 310 300 R0278 TB5600-2ETH-XC, terminal base
AC500, slots: 1 processor module,
2 Ethernet RJ45, 1 CAN connector,
XC version

Active

1SAP 111 300 R0278 TB5610-2ETH, terminal base AC500,
slots: 1 processor module,
1 communication module, 2 Ethernet
RJ45, 1 CAN connector

Active

1SAP 311 300 R0278 TB5610-2ETH-XC, terminal base
AC500, slots: 1 processor module,
1 communication module, 2 Ethernet
RJ45, 1 CAN connector, XC version

Active

1SAP 112 300 R0278 TB5620-2ETH, terminal base AC500,
slots: 1 processor module,
2 communication modules, 2 Ethernet
RJ45, 1 CAN connector

Active

1SAP 312 300 R0278 TB5620-2ETH-XC, terminal base
AC500, slots: 1 processor module,
2 communication modules, 2 Ethernet
RJ45, 1 CAN connector, XC version

Active

1SAP 114 300 R0278 TB5640-2ETH, terminal base AC500,
slots: 1 processor module,
4 communication modules, 2 Ethernet
RJ45, 1 CAN connector

Active

1SAP 314 300 R0278 TB5640-2ETH-XC, terminal base
AC500, slots: 1 processor module,
4 communication modules, 2 Ethernet
RJ45, 1 CAN connector, XC version

Active

1SAP 116 300 R0278 TB5660-2ETH, terminal base AC500,
slots: 1 processor module,
6 communication modules, 2 Ethernet
RJ45, 1 CAN connector

Active

1SAP 316 300 R0278 TB5660-2ETH-XC, terminal base
AC500, slots: 1 processor module,
6 communication modules, 2 Ethernet
RJ45, 1 CAN connector, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Table 410: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2439

Processor module PM5630 PM5650 PM5670 PM5675
TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

Table 411: Accessories
Part no. Description
1SAP 180 800
R0001

TA526, wall mounting accessory

1.6.3.3 Processor modules
The AC500 product family consists of the product groups:
● AC500 (standard):

AC500 standard PLCs offer a wide range of performance levels and scalability. The PLCs
are highly capable of communication and extension for flexible application.

● AC500-eCo:
AC500-eCo PLCs are cost-effective, high-performance compact PLCs that offer total inter-
operability with the core AC500 range and provide battery-free data buffering. All I/O
modules can be freely connected in a simple, stable and reliable manner.

● AC500-S:
AC500-S PLCs are designed for safety applications involved in factory, process or machi-
nery automation area.

● AC500-XC:
AC500 (standard) and AC500-S provide devices with -XC extension as a product variant.
These variants operate according to their product group and can, in addition, be operated
under extreme conditions. AC500-XC PLCs can be used at high altitudes, extended oper-
ating temperature and in humid condition. Further, the devices provide immunity to vibration
and hazardous gases. The AC500-XC series is consistent with standard devices in the
overall dimensions, control function and software compatibility. Ä Chapter 1.6.4.7.1 “System
data AC500-XC” on page 3450.

The AC500 product family is characterized by functional modularity. As the complete AC500
product family shares the same hardware platform and programming software tool, the devices
of the AC500 product groups can be flexibly combined.
S500 devices represent the I/O modules of the product group AC500 (standard), whereas
S500-eCo devices represent the I/O modules of the product group AC500-eCo. Both S500 and
S500-eCo devices can be combined with devices of the AC500 product family in a flexible way.

1.6.3.3.1 AC500-eCo
PM50xx

The following table lists all AC500-eCo V3 CPUs with their most important properties.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2440

Processor
modules

Global user
memory

Configurable
input/output

Digital
inputs

Digital out-
puts

Power
supply

Ethernet
interfaces

Option
board
slots

Basic CPUs
PM5012-T-ETH 1 MB

thereof
256 kB for
user pro-
gram code
and data
dynamically
allocated

- 6 4 (Tran-
sistor)

24 V DC 1 1

PM5012-R-ETH 1 MB
thereof
256 kB for
user pro-
gram code
and data
dynamically
allocated

- 6 4 (Relay) 24 V DC 1 1

Standard CPUs
PM5032-T-ETH 2 MB

thereof
512 kB for
user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 8 (Tran-
sistor)

24 V DC 1 2

PM5032-R-ETH 2 MB
thereof
512 kB for
user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 6 (Relay) 24 V DC 1 2

PM5052-T-ETH 4 MB
thereof
768 kB for
user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 8 (Tran-
sistor)

24 V DC 1 3

PM5052-R-ETH 4 MB
thereof
768 kB for
user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 6 (Relay) 24 V DC 1 3

Pro CPUs

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2441

Processor
modules

Global user
memory

Configurable
input/output

Digital
inputs

Digital out-
puts

Power
supply

Ethernet
interfaces

Option
board
slots

PM5072-T-2ETH 8 MB
thereof 1 MB
for user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 8 (Tran-
sistor)

24 V DC 2 3

PM5072-
T-2ETHW *)

8 MB
thereof 1 MB
for user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 8 (Tran-
sistor)

24 V DC 2 3

*) W = wide temperature

Fig. 99: Example: PM5072-T-2ETH

1 Micro memory card slot
2 5 LEDs to display the states of the processor module (Power, Error, Run, MC, MOD1)
3 RUN button
4 RJ45 female connector for Ethernet1 connection
5 RJ45 female connector for Ethernet2 connection (available for PM5072-T-2ETH(W))
6 3-pin terminal block for power supply 24 V DC
7 2 holes for screw mounting
8 Option board slot cover for option board slot (the number of available slots varies according

to the CPU type)
9 Cable fixing

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2442

10 13-pin terminal block for onboard I/Os
11 12-pin terminal block for onboard I/Os (not available on PM5012-x-ETH)
12 12 LEDs to display the states of the signals
13 10 LEDs to display the states of the signals
14 Cable fixing accessory TA5301-CFA on the top of the housing (optional)

The processor module is shown with pluggable terminal blocks. These terminal
blocks must be ordered separately.

The cable fixing accessory on the top of the housing is optional.

Please use TA5301-CFA cable fixing accessory to provide strain relief.

It can also be used for AC500-eCo I/O modules.

The PM50x2 processor modules are supplied with option board slot covers as
standard.

There are various TA51xx option boards for the processor modules that can be
ordered separately.

Which and how many option boards can be plugged, depends on the respective
processor module.

Short description
The processor modules PM50xx series are the central units of AC500-eCo V3 PLC. Their main
characteristics are:
● Power supply 24 V DC
● I/O bus (not for PM5012-x-ETH)
● Real-time clock (PM5012-x-ETH needs additional RTC option board)
● Option board slots for extension on the CPU (1 for PM5012-x-ETH, 2 for PM5032-x-ETH, 3

for PM5052-x-ETH and PM5072-T-2ETH)
● 6 digital inputs (PM5012-x-ETH), 12 digital inputs (PM5032-x-ETH, PM5052-x-ETH,

PM5072-T-2ETH)
● 4 transistor outputs (PM5012-T-ETH), 8 transistor outputs (PM5032-T-ETH, PM5052-T-ETH,

PM5072-T-2ETH)
● 4 relay outputs (PM5012-R-ETH), 6 relay outputs (PM5032-R-ETH, PM5052-R-ETH)
● 2 configurable digital inputs/outputs (not for PM5012-x-ETH)
The various processor module variants differ in the following characteristics:
● Type of the digital outputs (transistor or relays)
● Ethernet interface one or two independent interfaces
All processor module variants include a micro memory card slot.
Details and technical data are provided in the technical data section Ä Chapter 1.6.3.3.1.1.8
“Technical data” on page 2472.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2443

Assortment

Processor
module

Total
max-
imu
m

dow
nloa
dabl

e
appli
catio

n
size

Allocated
global
user

memory
for user
program
code and

data

Cycle
time for

1000
instructio

ns [ns]

Numer
digital
inputs

Number
digital

outputs

Type of
digital

outputs

Config-
urable
digital
inputs/
outputs

Number
of option

board
slots

Max.
number

of I/O
modules

on I/O
bus

PM5012-T-
ETH

1 MB 256 kB Binary: 20
Word: 50
Floating:

600

6 4 Tran-
sistor

- 1 -

PM5012-
R-ETH

1 MB 256 kB 6 4 Relay - 1 -

PM5032-T-
ETH

2 MB 512 kB 12 8 Tran-
sistor

2 2 10 with
max. 128

Bytes
inputs/

128
Bytes

outputs
variables

PM5032-
R-ETH

2 MB 512 kB 12 6 Relay 2 2 10 with
max. 128

Bytes
inputs/

128
Bytes

outputs
variables

PM5052-T-
ETH

4 MB 768 kB 12 8 Tran-
sistor

2 3 10

PM5052-
R-ETH

4 MB 768 kB 12 6 Relay 2 3 10

PM5072-
T-2ETH

8 MB 1 MB 12 8 Tran-
sistor

2 3 10

PM5072-
T-2ETHW

8 MB 1 MB 12 8 Tran-
sistor

2 3 10

Connections and interfaces

The I/O bus is not available for PM5012-T-ETH and PM5012-R-ETH. I/O
channel extension using option board slot only.

The I/O bus is the I/O data bus for the I/O modules. Through this bus, I/O and diagnosis data
are transferred between the processor module and the I/O modules. Up to 10 I/O modules for
PM5032-x-ETH (but with a limit of 128 Bytes input/ 128 Bytes output variables) and 10 I/O
modules for PM5052-x-ETH and PM5072-T-2ETH can be added.

I/O bus

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2444

Depending on the processor module variants, an additional option board can be connected to
the option board slot to extend the feature of the processor module Ä Chapter 1.6.2.6.2.1.1
“Option boards for AC500-eCo V3 processor modules” on page 2410 .

RS-232 communication interface is available by using option board:
● TA5141-RS232I (isolated)
Ä Chapter 1.6.3.3.1.2.6 “TA5141-RS232I - Option board for COMx serial communication”
on page 2502

RS-485 communication interface is available by using option boards:
● TA5142-RS485I (isolated)
Ä Chapter 1.6.3.3.1.2.7 “TA5142-RS485I - Option board for COMx serial communication”
on page 2504

● TA5142-RS485 (non isolated)
Ä Chapter 1.6.3.3.1.2.8 “TA5142-RS485 - Option board for COMx serial communication”
on page 2510

The Ethernet interface is carried out via a RJ45 jack.
Table 412: Pin assignment of the Ethernet interface
Interface Pin Description

1 Tx+ Transmit data +

2 Tx- Transmit data -

3 Rx+ Receive data +

4 NC Not connected

5 NC Not connected

6 Rx- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

Power supply
The processor modules PM50x2 can be connected to the 24 V DC supply voltage via a remov-
able 3-pin spring terminal block or a 3-pin screw terminal block.

Table 413: Removable terminal block for the supply voltage 24 V DC
3-pin spring terminal block 3-pin screw terminal block

The terminal block is available as a set for AC500-eCo V3 processor modules.

Option board
slot interface

Serial interface

Ethernet inter-
face

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2445

Basic CPU (PM5012) Standard CPUs (PM5032, PM5052) and
Pro CPUs (PM5072)

Spring type Screw type Spring type Screw type
TA5211-TSPF-B TA5211-TSCL-B TA5212-TSPF TA5212-TSCL

Further information on the terminal blocks concerning power supply and onboard inputs/out-
puts are provided under pluggable connectors for screw and spring connection Ä Chapter
1.6.3.8.1.2 “TA52xx(-x) - Terminal block sets” on page 3293.

Pin Assignment Pin Label Function Description

Terminal block
inserted

1 FE Functional earth

2 L+ +24 V DC Positive pin of the
power supply voltage

3 M 0 V Negative pin of the
power supply voltage

CAUTION!
Risk of damaging the AC500-eCo V3 processor module and the connected
modules!
Voltages > 30 V DC might damage the processor module and the connected
modules.
Make sure that the supply voltage never exceeds 30 V DC.

State LEDs and operating elements
The processor modules, PM50xx series, have a RUN/STOP button. By pressing the RUN/STOP
button, the processer modules switch between RUN mode and STOP mode. By long-pressing
RUN/STOP button during the processor module power on phase, the processor module will be
in MOD1.

The processor modules PM50xx indicate their states of operation via 5 LEDs located on the
upper left side of the processor module.

LED State Color LED = ON LED = OFF LED flashing
PWR Power supply Green Power supply

present
Power supply
missing

-

MC Micro memory
card indication

Yellow Micro memory
card is in the
socket

Micro memory
card is not in the
socket

Micro memory
card is in read/
write state: any
file on card is
opened, means
activity on card

Pin assignment

Faulty wiring on
power supply
terminals

RUN/STOP
button

State LEDs

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2446

LED State Color LED = ON LED = OFF LED flashing
ERR Error indication Red An error occurred No errors or only

warnings
encountered (E4
errors).
The LED
behavior for the
error classes 2 to
4 is configurable.

Fast flashing (4
Hz) displays
together with the
RUN LED a cur-
rently running
firmware-upgrade
or writing data to
the Flash-
EPROM. Slow
flashing (1 Hz)
alone displays
shutdown of
Request To
Send. Medium
flashing (2 Hz)
alone displays at
start of PLC if
reboot after
watchdog.

MOD1 Mode 1 indication Yellow Processor
module is in
mode 1 state

Processor
module is not in
mode 1 state

-

RUN RUN/STOP state Green Processor
module is in state
RUN

Processor
module is in state
STOP

Fast flashing (4
Hz):
The processor
module is
reading/writing
data from/to the
memory card.
If the ERR-LED
is also flashing,
data is being
written to the
Flash-EPROM.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2447

LED State Color LED = ON LED = OFF LED flashing
Slow flashing (1
Hz):
The firmware
update from the
memory card has
been completed
successfully
or
Boot project is
being updated.
Slow flashing
(0.5 Hz) together
with
MOD1 LED ON:
Mode1: Boot
project is not
loaded.

Two LEDs below
“ERR” and
“MOD1”

Configurable Yellow Configurable Configurable Additional two
LEDs are
reserved and can
be controlled
from IEC user
code with FB
PmLedSet

The AC500-eCo V3 processor module also provides 2 LEDs below the state LEDs which can be
used by user and driven by an application.
The LEDs can be used into a project and controlled using special function blocks which are
contained in the PM AC500 library. The POU is PmLedSet located in folder LED control.

The processor module provides up to 10 LEDs (PM5012-x-ETH), 20 LEDs (PM5032-R-ETH,
PM5052-R-ETH), or 22 LEDs (PM5032-T-ETH, PM5052-T-ETH, PM5072-T-2ETH) to display
the states of the inputs and outputs.

Processor
module

LED State Color LED = ON LED = OFF

PM5012-x-ETH I0..I5 Digital input Yellow Input is ON Input is OFF

O0..O3 Transistor
output

Yellow Output is ON Output is OFF

NO0..NO3 Relay output Yellow Output is ON Output is OFF

PM5032-x-ETH
PM5052-x-ETH

I0..I11 Digital input Yellow Input is ON Input is OFF

O0..O7 Transistor
output

Yellow Output is ON Output is OFF

NO0..NO5 Relay output Yellow Output is ON Output is OFF

C12, C13 Digital configu-
rable input/
output

Yellow Input/Output
is ON

Input/Output is
OFF

PM5072-T-2ETH I0..I11 Digital input Yellow Input is ON Input is OFF

User configu-
rable LEDs

I/O LEDs

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2448

Processor
module

LED State Color LED = ON LED = OFF

PM5072-
T-2ETHW

O0..O7 Transistor
output

Yellow Output is ON Output is OFF

C12, C13 Digital configu-
rable input/
output

Yellow Input/Output
is ON

Input/Output is
OFF

Table 414: State LEDs at Ethernet connector
LED Color OFF ON Flashing
Activity Yellow No activity --- Activity

Link Green No link Link ---

Diagnosis
The AC500 processor module can display various errors according to the error classes. The
following error classes are possible. The reaction of the processor module is different for each
type of error.

Error class Type Description Example
E1
ERR-LED is ON

Fatal error A safe function of the operating
system is no longer guaranteed.

Checksum error in the system
Flash or RAM error

E2
ERR-LED is ON

Severe error The operating system is func-
tioning without problems, but the
error-free processing of the user
program is no longer guaranteed.

Checksum error in the user
Flash, independent of the task
duration

E3
ERR-LED is ON/OFF
*)

Light error It depends on the application
if the user program should be
stopped by the operating system
or not. The user should deter-
mine which reaction is necessary.

Flash could not be pro-
grammed, I/O module has
failed

E4
ERR-LED is ON/OFF
*)

Warning Error in the periphery (e.g. I/O)
which may show an impact in
the future. The user should deter-
mine which reaction is necessary.

Short-circuit at an I/O module,
the battery is run down or not
inserted

*) The behaviour if the ERR-LED lights up at error classes E3 or E4 is configurable.

Occurred errors can be displayed with the commands diagshow all in the PLC-Browser of
Automation Builder software.

Onboard I/Os
The AC500-eCo V3 processor modules have onboard I/Os which provide several functionalities.
According to the CPU type, the number or the functionality of the onboard I/Os can be different.

Ethernet state
LEDs

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2449

Intended purpose
Table 415: Numbers and types of the onboard I/Os
Processor module No. and type of dig-

ital inputs
No. and type of dig-
ital outputs

No. and type of con-
figurable inputs/out-
puts

PM5012-T-ETH 6
24 V DC
(one isolation group)

4
0.5 A max., transistor
(one isolation group)

None

PM5012-R-ETH 6
24 V DC
(one isolation group)

4
2 A max., relay
(two isolation groups)

None

PM5032-T-ETH 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5032-R-ETH 12
24 V DC
(one isolation group)

6
2 A max., relay
(two isolation groups)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5052-T-ETH 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5052-R-ETH 12
24 V DC
(one isolation group)

6
2 A max., relay
(two isolation groups)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5072-T-2ETH 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5072-T-2ETHW 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2450

Functionality

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)

PM5032-R-ETH
PM5052-R-ETH

Digital inputs 6 12

Functionality of
digital inputs
(encoder, fast
counter, counter,
interrupt)

6 DI fast input 24 V DC (max. 5
kHz)
usable as
● 6 DI 24 V DC standard
● 2 channel 5 kHz encoder with

frequency measurement or
● 2 channel 5 kHz encoder with

frequency measurement and
with touch/reset using standard
DI or

● 2 fast counter (5 kHz)
● 4 DI as interrupt input with

1 dedicated interrupt task and
input information

4 DI fast input 24 V DC (max. 200
kHz)
usable as
● 4 DI 24 V DC standard or
● 4 fast counter (100 kHz) or
● 2 A/B encoder (200 kHz) with

frequency measurement or
● 2 full A/B encoders 0 and 1 (200

kHz) with frequency measure-
ment and with touch/reset using
standard highspeed (5 kHz) DI

● 1 full A/B encoder 0 (200 kHz)
with frequency measurement
and optional with touch/reset
using 2 touch/sync inputs with
A/B encoder 0

4 DI fast input 24 V DC (5 kHz)
usable as
● 4 DI 24 V DC standard or
● 4 DI as interrupt input with

1 dedicated interrupt task and
input information

● 4 touch/sync inputs with A/B
encoder 0 or 1

4 standard DI 24 V DC
Digital outputs 4 8 6

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2451

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)

PM5032-R-ETH
PM5052-R-ETH

Functionality of
digital outputs

4 fast output
DO-T
24 V DC/0.5 A
(max. 5 kHz)
usable as
● 4 DO-T

24 V DC/0.5 A
or

● 4 PWM
Note: The
speed must
be limited
below 100
Hz. The low
speed PWM
can be used
for heating
control.

● 4 limit switch

4 DO-R
24 V DC / 240 V
AC 2A in 2
groups

4 fast output
DO-T
24 V DC (100
kHz)
usable as
● 4 DO-T 24 V

DC/0.5 A
● 4 limit/ switch

outputs for
encoder/
counter or

● 4 PWM (30
kHz, 2 µs
accuracy and
maximum
duty 95 %) or

● 2 PTO (200
kHz)
CW/CCW or
Pulse/Direc-
tion

● 4 PTO
(PWM) 100
kHz Pulse/
Direction
using
standard
output

6 DO-R
24 V DC / 240 V
AC 2A in 2
groups

4 fast output
DO-T
24 V DC/0.5 A (5
kHz) (max. 5
kHz)
usable as
● 4 DO-T 24 V

DC/0.5 A
● 4 limit/ switch

outputs for
encoder/
counter or

● 4 PWM
Note: The
speed must
be limited
below 100
Hz. The low
speed PWM
can be used
for heating
control.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2452

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)

PM5032-R-ETH
PM5052-R-ETH

Digital inputs/
outputs,
configurable

- - 2 2

Functionality of
digital inputs/
outputs,
configurable

- - 2 DC 24 V DC
● 2 standard

I/Os
configurable

2 DC 24 V DC
usable as
● 2 DC

standard (DI
24 V DC or
DO-T) or

● 2 PWM (30
kHz) or

● 1 PTO (200
kHz) as
Pulse/Direc-
tion or
CW/CCW

LED displays For signal states

Internal power
supply

Via processor module

External power
supply

Via UP and ZP terminal

Connections

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2453

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

When replacing a processor module, it is recommended to mark each wire
connected to the onboard I/O terminal block before disconnecting it. This should
make sure that the wires can be reconnected in the same order.

The connection is carried out by using removable 12-pin and 13-pin terminal blocks.

Table 416: Assignment of the terminals for PM5012-T-ETH:
Terminal Signal Description
1 COM 0..5 Input common for digital input signals I0 to I5

2 I0 Digital input signal I0 (5 kHz)

3 I1 Digital input signal I1 (5 kHz)

4 I2 Digital input signal I2 (5 kHz)

5 I3 Digital input signal I3 (5 kHz)

6 I4 Digital input signal I4 (5 kHz)

7 I5 Digital input signal I5 (5 kHz)

8 O0 Digital output signal O0 (5 kHz)

9 O1 Digital output signal O1 (5 kHz)

10 O2 Digital output signal O2 (5 kHz)

11 O3 Digital output signal O3 (5 kHz)

12 UP Process supply voltage UP +24 V DC

13 ZP Process supply voltage ZP 0 V DC

Table 417: Assignment of the terminals for PM5012-R-ETH:
Terminal Signal Description
1 COM 0..5 Input common for digital input signals I0 to I5

2 I0 Digital input signal I0 (5 kHz)

3 I1 Digital input signal I1 (5 kHz)

4 I2 Digital input signal I2 (5 kHz)

5 I3 Digital input signal I3 (5 kHz)

6 I4 Digital input signal I4 (5 kHz)

7 I5 Digital input signal I5 (5 kHz)

8 NO0 Normally-open relay contact of the output NO0

9 NO1 Normally-open relay contact of the output NO1

10 R0..1 Output common for signals NO0 to NO1

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2454

Terminal Signal Description
11 NO2 Normally-open relay contact of the output NO2

12 NO3 Normally-open relay contact of the output NO3

13 R2..3 Output common for signals NO2 to NO3

Table 418: Assignment of the terminals for PM5032-T-ETH, PM5052-T-ETH and PM5072-
T-2ETH(W):
Terminal Signal Description
1 COM 0..11 Input common for digital input signals I0 to I11

2 I0 Digital input signal I0 (max. 5 kHz)

3 I1 Digital input signal I1 (max. 5 kHz)

4 I2 Digital input signal I2 (max. 5 kHz)

5 I3 Digital input signal I3 (max. 5 kHz)

6 I4 Digital input signal I4
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

7 I5 Digital input signal I5 (100 kHz)
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

8 I6 Digital input signal I6 (100 kHz)
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

9 I7 Digital input signal I7 (100 kHz)
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

10 I8 Digital input signal I8

11 I9 Digital input signal I9

12 I10 Digital input signal I10

13 I11 Digital input signal I11

14 O0 Digital output signal O0 (max. 5 kHz)

15 O1 Digital output signal O1 (max. 5 kHz)

16 O2 Digital output signal O2 (max. 5 kHz)

17 O3 Digital output signal O3 (max. 5 kHz)

18 O4 Digital output signal O4
PWM (max. 100 kHz), PTO (max. 200 kHz)

19 O5 Digital output signal O5
PWM (max. 100 kHz), PTO (max. 200 kHz)

20 O6 Digital output signal O6
PWM (max. 100 kHz), PTO (max. 200 kHz)

21 O7 Digital output signal O7
PWM (max. 100 kHz), PTO (max. 200 kHz)

22 C12 Digital input/output signal configurable C12

23 C13 Digital input/output signal configurable C13

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2455

Terminal Signal Description
24 UP Process supply voltage UP +24 V DC

25 ZP Process supply voltage ZP 0 V DC

Table 419: Assignment of the terminals for PM5032-R-ETH and PM5052-R-ETH:
Terminal Signal Description
1 COM 0..11 Input common for digital input signals I0 to I11

2 I0 Digital input signal I0 (max. 5 kHz)

3 I1 Digital input signal I1 (max. 5 kHz)

4 I2 Digital input signal I2 (max. 5 kHz)

5 I3 Digital input signal I3 (max. 5 kHz)

6 I4 Digital input signal I4
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

7 I5 Digital input signal I5
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

8 I6 Digital input signal I6
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

9 I7 Digital input signal I7
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

10 I8 Digital input signal I8

11 I9 Digital input signal I9

12 I10 Digital input signal I10

13 I11 Digital input signal I11

14 NO0 Normally-open relay contact of the output NO0

15 NO1 Normally-open relay contact of the output NO1

16 NO2 Normally-open relay contact of the output NO2

17 R0..2 Output common for signals NO0 to NO2

18 NO3 Normally-open relay contact of the output NO3

19 NO4 Normally-open relay contact of the output NO4

20 NO5 Normally-open relay contact of the output NO5

21 R3..5 Output common for signals NO3 to NO5

22 C12 Digital input/output signal configurable C12
PWM (max. 100 kHz), PTO (max. 200 kHz)

23 C13 Digital input/output signal configurable C13
PWM (max. 100 kHz), PTO (max. 200 kHz)

24 UP Process supply voltage UP +24 V DC

25 ZP Process supply voltage ZP 0 V DC

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2456

The following block diagram shows the internal structure of the onboard I/Os.

PM5012-T-ETH PM5012-R-ETH PM5032-ETH
PM5052-T-ETH

PM5072-T-2ETH(W)

PM5032-R-ETH
PM5052-R-ETH

Block diagrams

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2457

Connection of the digital inputs
The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

The following figure shows the connection of the digital inputs to the PM50x2 processor
modules:

Connection of digital inputs (sink inputs) Connection digital inputs (source inputs)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2458

Connection of the digital transistor outputs (PM50xx-T-ETH only)

Fig. 100: Connection of digital transistor outputs and configurable digital inputs/outputs

C12 used as configurable digital input
C13 used as configurable digital transistor output

CAUTION!
Risk of damaging the processor module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external fuse for the outputs.

Connection of the digital relay outputs (PM50xx-R-ETH only)
The following figures show the connection of the digital relay outputs to the processor modules:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2459

Fig. 101: Connection of digital relay outputs and configurable digital inputs/outputs

C12 used as configurable digital input
C13 used as configurable digital transistor output

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

CAUTION!
Risk of damaging the processor module!
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be fed from the same

phase.
– Use an external fuse to protect the outputs.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2460

I/O configuration
The configuration data of the onboard I/Os is stored in the processor modules PM50x2. See
PLC configuration: Ä Chapter 1.6.6.2.5 “Configure the onboard I/O channel” on page 3700

Parameterization
For information about parameterization, refer to the description for onboard I/Os for processor
modules PM50x2. See PLC configuration: Ä “PM5012-x-ETH Basic CPU” on page 3702 and
Ä “PM5032-x-ETH, PM5052-x-ETH Standard CPU” on page 3703

Diagnosis
No diagnosis is generated for the onboard I/O.
There is only an error message if the configuration does not work. A log entry is generated.
The Automation Builder already prevents faulty values from being entered in the configuration.
If the configuration does not work, there is a system error, if e.g. faulty software or wrong
versions are installed.
Otherwise there are error messages from the blocks for the individual functions.

Displays
Table 420: States of the I/Os
LED Status Color LED = ON LED = OFF
I Digital input yellow Input is ON Input is OFF

O Digital transistor output yellow Output is ON Output is OFF

NO Digital relay output yellow Relay contact is
closed

Relay contact is
open

C Digital configurable
input/output

yellow Configured input/
output is ON

Configured input/
output is OFF

Technical data
Technical data of the digital inputs

Parameter Value
Number of channels per module 12

Distribution of the channels into groups 1 group of 12 channels

Galvanic isolation Yes, per group

Connections of the channels I0 to I11 Terminals 2 to 13

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2461

Parameter Value
Reference potential for the channels I0 to I11 Terminal 1

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1)
and the module's logic is in operation

Input type according to EN 61131-2 Type 1 source Type 1 sink

Input signal voltage -24 V DC +24 V DC

 Signal 0 -5 V...+3 V -3 V...+5 V

 Undefined signal -15 V...- 5 V +5 V...+15 V

 Signal 1 -30 V...-15 V +15 V...+30 V

Ripple with signal 0 Within -5 V...+3 V Within -3 V...+5 V

Ripple with signal 1 Within -30 V...-15 V Within +15 V...+30
V

Input current per channel

 Input voltage +24 V Typ. 4.6 mA

 Input voltage +5 V Typ. 0.8 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire prox-
imity switches)

1 mA

Input delay (0->1 or 1->0) On request

Max. cable length *)

 Shielded On request

 Unshielded On request

*) For fast inputs and fast outputs including PTO and PWM, a shielded cable must be used and
the max. cable length is 50 m.

Technical data of the fast counter inputs

For AC500 devices the function "fast counter" is available in S500 I/O modules
as of firmware version V1.3.

For AC500-eCo V3 devices the function "fast counter" is available in onboard
I/Os of PM50xx.

The AC500-eCo V3 processor modules with onboard I/Os provide some special functionality on
the digital inputs or digital outputs. Fast counter, encoder inputs, interrupt inputs or PWM/PTO
outputs are available depending on the device used.
The fast counter functionality can be activated within the onboard I/O configuration.
The fast counter can work in pulse/direction mode or A/B track counter mode.
The pulse/direction counter detects the rising edge of the counter input. It will increase or
decrease the count value (depending on the direction input) at every rising edge.
The A/B track counter is used to count the signal from an encoder.
The counter can count with quad phases. In the following the behavior of the A/B track counter
is described.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2462

Further information:
Operating modes of the fast counter: Ä Chapter 1.6.6.2.13.9.1.2 “Operating
modes” on page 3781

Configurarion of the fast counter: Ä Chapter 1.6.6.2.7.2 “Fast counters in the
onboard I/Os” on page 3710

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

Fast counter

 Useable inputs 2 2 4 4

Fast input
max. 5 kHz

DI4 ... DI5 DI4 ... DI5 - -

Fast input,
max. 100 kHz

- - DI4 … DI7 DI4 … DI7

Technical data of the interrupt inputs

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

Interrupt

 Useable inputs 4 4 4 4

Fast input
max. 5 kHz

DI0 ... DI3 DI0 ... DI3 DI0 ... DI3 DI0 ... DI3

Technical data of the Touch/Reset inputs

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

Touch/Reset

 Useable inputs - - 4
together with
dedicated
encoder

4
together with
dedicated
encoder

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2463

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

Fast input
max. 5 kHz

- - DI0 ... DI3 DI0 ... DI3

Fast input,
max. 100 kHz

- - DI6 ... DI7
When using the
A/B encoder on
DI04...DI05 and
the Touch/
Reset inputs on
fast inputs

DI6 ... DI7
When using the
A/B encoder on
DI04...DI05 and
the Touch/
Reset inputs on
fast inputs

Technical data of the digital transistor outputs
Table 421: PM5012-T-ETH
Parameter Value
Number of channels per module 4

Distribution of the channels into groups 1 group of 4 channels

Galvanic isolation Yes, per group

Connection of the channels O0 to O3 Terminals 8 to 11

Common power supply voltage Terminals 12 (+24 V DC, signal name UP)

Reference potential for the channels O0 to O7 Terminal 13 (0 V DC, negative pole of the
process voltage, signal name ZP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)

Way of operation Non-latching type

Min. output voltage at signal 1 UP - 0.1 V

Output delay (max. at rated load)

 0 to 1 On request

 1 to 0 On request

Rated protection fuse (per group) On request

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC (resistance, general
use and pilot duty)

 Rated current per group (max.) 2 A

 Rated current (all channels together, max.) 2 A

Max. leakage current with signal 0 On request

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads On request

Short-circuit-proof / Overload-proof No

Overload message No

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2464

Parameter Value
Output current limitation No

Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Max. cable length *)

 Shielded On request

 Unshielded On request

*) For fast inputs and fast outputs including PTO and PWM, a shielded cable must be used and
the max. cable length is 50 m.
Table 422: PM5032-T-ETH, PM5072-T-2ETH and PM5072-T-2ETHW
Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Galvanic isolation Yes, per group

Connection of the channels O0 to O7 Terminals 14 to 21

Common power supply voltage Terminals 24 (+24 V DC, signal name UP)

Reference potential for the channels O0 to O7 Terminal 25 (0 V DC, negative pole of the
process voltage, signal name ZP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)

Way of operation Non-latching type

Min. output voltage at signal 1 UP - 0.1 V

Output delay (max. at rated load)

 0 to 1 On request

 1 to 0 On request

Rated protection fuse (per group) On request

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC (resistance, general
use and pilot duty)

 Rated current per group (max.) 4 A

 Rated current (all channels together, max.) 4 A

Max. leakage current with signal 0 0.5 mA

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads On request

Short-circuit-proof / Overload-proof No

Overload message No

Output current limitation No

Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Max. cable length *)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2465

Parameter Value
 Shielded On request

 Unshielded On request

*) For fast inputs and fast outputs including PTO and PWM, a shielded cable must be used and
the max. cable length is 50 m.

Technical data of the digital relay outputs
Table 423: PM5012-R-ETH
Parameter Value
Number of channels per module 4 normally-open relay outputs

Distribution of the channels into groups 2 groups for 2 channels

Galvanic isolation Yes, per group

Connection of the channels NO0 to NO1 Terminals 8 to 9

Connection of the channels NO2 to NO3 Terminals 11 to 12

Reference potential R0..1 for the channels NO0
to NO1

Terminal 10

Reference potential R2..3 for the channels NO2
to NO3

Terminal 13

Relay output voltage

 Rated value 24 V DC or
100 V AC...240 V AC
50 Hz/60 Hz

Range 5 V DC...30 V DC
or
5 V AC...250 V AC

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)

Way of operation Non-latching type

Output delay

 0 to 1 Typ. 10 ms

1 to 0 Typ. 10 ms

Rated protection fuse On request

Output current

 Rated current per channel (max.) 2.0 A (24 V DC resistance and general use,
100 V AC...240 V AC, resistance, general
use and pilot duty)

Rated current per group (max.) 6 A

Rated current (all channels together, max.) 12 A

Demagnetization when inductive loads are
switched off

External demagnetization measures must be
implemented when switching inductive loads.

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching frequencies

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2466

Parameter Value
 With resistive loads Max. 1 Hz

With inductive loads On request

With lamp loads On request

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

Rated protection fuse (for each channel) On request

Overload message No

Output current limitation No

Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100,000 at rated load

Max. cable length *)

 Shielded On request

Unshielded On request

*) For fast inputs and fast outputs including PTO and PWM, a shielded cable must be used and
the max. cable length is 50 m.
Table 424: PM5032-R-ETH and PM5052-R-ETH
Parameter Value
Number of channels per module 6 normally-open relay outputs

Distribution of the channels into groups 2 groups for 3 channels

Galvanic isolation Yes, per group

Connection of the channels NO0 to NO2 Terminals 14 to 16

Connection of the channels NO3 to NO5 Terminals 18 to 20

Reference potential R0..2 for the channels NO0
to NO2

Terminal 17

Reference potential R3..5 for the channels NO3
to NO5

Terminal 21

Relay output voltage

 Rated value 24 V DC or
100 V AC...240 V AC
50 Hz/60 Hz

Range 5 V DC...30 V DC
or
5 V AC...250 V AC

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1) and
the module is powered through the I/O bus

Way of operation Non-latching type

Output delay

 0 to 1 Typ. 10 ms

1 to 0 Typ. 10 ms

Rated protection fuse On request

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2467

Parameter Value
Output current

 Rated current per channel (max.) 2.0 A (24 V DC resistance and general use,
100 V AC...240 V AC, resistance, general
use and pilot duty)

Rated current per group (max.) 6 A

Rated current (all channels together, max.) 12 A

Demagnetization when inductive loads are
switched off

External demagnetization measures must be
implemented when switching inductive loads.

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching frequencies

 With resistive loads Max. 1 Hz

With inductive loads On request

With lamp loads On request

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

Rated protection fuse (for each channel) On request

Overload message No

Output current limitation No

Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100,000 at rated load

Max. cable length *)

 Shielded On request

Unshielded On request

*) For fast inputs and fast outputs including PTO and PWM, a shielded cable must be used and
the max. cable length is 50 m.

Technical data of the limit switch outputs

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

Limit switch

 Useable outputs 4 - 8 2

Fast output
max. 5 kHz

DO0 ... DO3 - DO0 … DO3 -

Fast output,
max. 100 kHz

- - DO4 … DO7 DC12 … DC13

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2468

Technical data of the PTO outputs

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

PTO

 Useable outputs - - 4 1
pair of output

Fast output,
max. 100 kHz

- - DO4 … DO7
For 2 PTO 200
kHz *) Pulse/
Direction or
CC/Ccw modes
as pair of out-
puts

DC12 … DC13

DO4 … DO7
as 4 PTO 100
kHz Pulse out-
puts / Direction
using fast
output 5kHz
DO0...DO3

*) If the load is less than 100 mA it is strongly recommended to connect an additional load
resistor (240 Ω/5 W or 270 Ω/5 W) to the output to improve the pulse signal.

Technical data of the PWM outputs

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

PWM

 Useable outputs 4 - 8 2

Fast output
max. 5 kHz

DO0 ... DO3 - DO0 … DO3 -

Fast output,
max. 100 kHz

- - DO4 … DO7 DC12 … DC13

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2469

Ordering data
Table 425: Processor modules for AC500-eCo V3
Part no. Description Product life cycle phase *)
1SAP 122 600 R0072 Basic CPU PM5012-T-ETH, AC500-

eCo V3 processor module,
programmable logic controller
1 MB, 6DI/4DO-Transistor, Ethernet,
24 V DC, 1 option board slot

Active

1SAP 122 700 R0072 Basic CPU PM5012-R-ETH, AC500-
eCo V3 processor module, pro-
grammable logic controller 1 MB,
6DI/4DO-Relay, Ethernet, 24 V DC, 1
option board slot

Active

1SAP 123 400 R0072 Standard CPU PM5032-T-ETH,
AC500-eCo V3 processor module,
programmable logic controller 2 MB,
12DI/8DO-Transistor/2DC, Ethernet,
24 V DC, 2 option board slots

Active

1SAP 123 500 R0072 Standard CPU PM5032-R-ETH,
AC500-eCo V3 processor module,
programmable logic controller 2 MB,
12DI/6DO-Relay/2DC, Ethernet,
24 V DC, 2 option board slots

Active

1SAP 124 000 R0072 Standard CPU PM5052-T-ETH,
AC500-eCo V3 processor module,
programmable logic controller 4 MB,
12DI/8DO-Transistor/2DC, Ethernet,
24 V DC, 3 option board slots

Active

1SAP 124 100 R0072 Standard CPU PM5052-R-ETH,
AC500-eCo V3 processor module,
programmable logic controller 4 MB,
12DI/6DO-Relay/2DC, Ethernet,
24 V DC, 3 option board slots

Active

1SAP 124 500 R0073 Pro CPU PM5072-T-2ETH, AC500-
eCo V3 processor module, pro-
grammable logic controller 8 MB,
12DI/8DO-Transistor/2DC, 2 Ethernet,
24 V DC, 3 option board slots

Active

1SAP 124 400 R0073 Pro CPU PM5072-T-2ETHW, AC500-
eCo V3 processor module, pro-
grammable logic controller 8 MB,
12DI/8DO-Transistor/2DC, 2 Ethernet,
24 V DC, 3 option board slots, wide
temperature

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2470

Table 426: Accessories for AC500-eCo V3
Part no. Description
1SAP 187 000 R0001 TA5101-4DI: AC500, option board for digital I/O extension, 4DI 24 V

DC, spring/cable front terminal 3.50 mm pitch

1SAP 187 000 R0002 TA5105-4DOT: AC500, option board for digital I/O extension, 4DO-T
24 V DC / 0.5 A, spring/cable front terminal 3.50 mm pitch

1SAP 187 000 R0003 TA5110-2DI2DOT: AC500, option board for digital I/O extension, 2DI
24 V DC, 2DO-T 24 V DC / 0.5 A, spring/cable front terminal 3.50
mm pitch

1SAP 187 200 R0001 TA5130-KNXPB: AC500, option board KNX adress push button

1SAP 187 200 R0002 TA5131-RTC:AC500, real-time clock without battery, option board
for AC500-eCo V3 Basic CPU

1SAP 187 300 R0001 TA5141-RS232I: AC500, option board for COMx serial communica-
tion, spring/cable front terminal 3.50 mm pitch

1SAP 187 300 R0002 TA5142-RS485I: AC500, option board for COMx serial communica-
tion, spring/cable front terminal 3.50 mm pitch

1SAP 187 300 R0003 TA5142-RS485: AC500, option board for COMx serial communica-
tion, spring/cable front terminal 3.50 mm pitch

1SAP 187 400 R0001 TA5211-TSCL-B: screw terminal block set for AC500-eCo V3 CPU
Basic
screw front, cable side 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors

1SAP 187 400 R0002 TA5211-TSPF-B: spring terminal block set for AC500-eCo V3 CPU
Basic
spring front, cable front 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors

1SAP 187 400 R0004 TA5212-TSCL: screw terminal block set for AC500-eCo V3 Standard
and Pro CPU
screw front, cable side 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors
● 1 removable 12-pin terminal block for I/O connectors

1SAP 187 400 R0005 TA5212-TSPF: spring terminal block set for AC500-eCo V3
Standard and Pro CPU
spring front, cable front 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors
● 1 removable 12-pin terminal block for I/O connectors

1SAP 187 600 R0001 TA5400-SIM: input simulator (for CPU testing), 6 switches

1SAP 180 100 R0002 MC5102 - Micro memory card with memory card adapter

1SAP 182 800 R0001 TA543: screw mounting accessory, 20 pieces per packing unit

1SAP 187 500 R0003 TA5301-CFA: cable fixing part accessory, 20 pieces per packing unit

Spare parts

1SAP 187 400 R0012 TA5220-SPF5: spring terminal block, removable, 5-pin, spring front,
cable front, 6 pieces per packing unit

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2471

Part no. Description
1SAP 187 400 R0013 TA5220-SPF6: spring terminal block, removable, 6-pin, spring front,

cable front, 6 pieces per packing unit

1SAP 187 400 R0014 TA5220-SPF7: spring terminal block, removable, 7-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 400 R0015 TA5220-SPF8: spring terminal block, removable, 8-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 500 R0001 TA5300-CVR: option board slot cover, removable plastic part, 6
pieces per packing unit

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
PM5012 PM5032 PM5052 PM5072

Power supply 24 V DC

Connection of power supply Via removable 3-pin terminal

Current consumption from power supply (max.)

 Transistor version 200 mA 340 mA 400 mA 420 mA

Relay version 200 mA 340 mA 400 mA -

Inrush current at nominal voltage On request

Required fuse On request

Max. power dissipation within the processor module

 Transistor version On
request

On
request

On
request

On
request

Relay version On
request

On
request

On
request

-

Processor module interfaces RS485/RS232 (optional), Ethernet

- I/O bus

Weight

 Transistor version 300 g 400 g 400 g 400 g

 Relay version 400 g 400 g 400 g 400 g

Mounting position Horizontal or vertical

Parameter Value
 PM5012 PM5032 PM5052 PM5072
Total maximum downloadable application
size 1)

1 MB 5 MB 7 MB 9 MB

 Thereof user program code / data
memory dynamically allocated

256 kB 512 kB 768 kB 1 MB

General data

Detailed data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2472

Parameter Value
 PM5012 PM5032 PM5052 PM5072

Thereof user web server memory for
web visualization max.

no web 1.5 MB 3.2 MB 7 MB

User data memory saved in FLASH 8 kB 32 kB 100 kB

VAR_RETAIN persistent 4 kB 16 kB 36 kB

%MB data 4 kB 16 kB 64 kB

Data buffering FRAM memory without battery

Real-time clock (RTC)
(no battery, supercap)

Optional
with
TA5131-
RTC

Built in

Min. retention time for RTC / accuracy in
s/day

On
request

On request On
request

On request

Programming languages ● Instruction List (IL)
● Function Block Diagram (FBD)
● Ladder Diagram (LD)
● Sequential Function Chart (SFC)
● Structured Text (ST)
● Continuous Function Chart (CFC)

Cycle time per instructions (minimum) PM5012 PM5032 PM5052 PM5072

 Binary 20 ns

Word 50 ns

Floating point 600 ns

Program execution PM5012 PM5032 PM5052 PM5072

 Cyclic min. configurable 10 ms 5 ms 2 ms 1 ms

Time-controlled Yes

Multitasking Yes

Interruption Yes

LEDs Power, Error, Run, MC, MOD1, States of I/Os

RUN/STOP button Yes

Protection of the user program by password On request

Usable accessories On request

Remarks:
1): The values are for information only and cannot be fulfilled altogether. The available
resources are limited at the end by the maximal downloadable application size for each CPU.

Data of I/Os PM5012-x-ETH PM5032-x-ETH PM5052-x-ETH PM5072-T-2ETH
Onboard digital inputs

Channels 6
(incl. 2 counter
inputs 5 kHz and
4 interrupts)

12
(incl. 4 fast counter/encoder inputs (100 kHz/200 kHz),
4 counter inputs (5 kHz), 4 standard inputs)

Signal voltage 24 V DC type 1

Onboard digital outputs

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2473

Data of I/Os PM5012-x-ETH PM5032-x-ETH PM5052-x-ETH PM5072-T-2ETH
Type of digital
outputs

PM5012-T-ETH:
Transistor

PM5032-T-ETH:
Transistor

PM5052-T-ETH:
Transistor

PM5072-T-2ETH:
Transistor

PM5012-R-ETH:
Relay

PM5032-R-ETH:
Relay

PM5052-R-ETH:
Relay

-

Channels for
transistor version

4
(5 kHz standard
and PWM)

8
(incl. 4 fast outputs for standard or 4 PWM/2 PTO
(100 kHz/200 kHz), 4 standard outputs (5 kHz))

Channels digital
input/output con-
figurable
(valid for both
PLC version
relais or tran-
sistor)

- 2
Relay version:
The DC channels can be used as
1 PTO/2 PWM (100 kHz) or standard
digital inputs/outputs
Transistor version:
The DC channels can only be used
as standard digital inputs/outputs

2
Transistor ver-
sion:
The DC channels
can only be used
as standard dig-
ital inputs/outputs

Rated voltage
transistor

24 V DC

Nominal current
per transistor
channel

0.5 A resistive

Channels for
relay version

4 6 -

Rated voltage
relay

100 V AC...240 V AC
or
24 V DC

-

Nominal current
per relay channel

2 A resistive -

Analog inputs Optional

Analog outputs Optional

Number of option
board slots

1 2 3 3

Usage of option
board

Each slot can be used for all type of existing option boards, same option
board for serial interface or digital/analog I/O extension can be used on
several slot per CPU.
Note: RTC option board is only for PM5012 possible.

KNX address
switch

No TA5130-KNXPB
only on 1 slot

Real-time clock
(RTC)

TA5131-RTC No

Serial interface TA5141-RS232I, TA5142-RS485/TA5142-RS485I

Digital in/out
channels

TA5101-4DI, TA5105-4DOT, TA5110-2DI2DOT

Analog in/out
channels

TA5120-2AI-UI, TA5122-2AI-TC, TA5123-2AI-RTD, TA5126-2AO-UI

Max. number of
I/O modules on
I/O bus

0 10

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2474

Data of I/Os PM5012-x-ETH PM5032-x-ETH PM5052-x-ETH PM5072-T-2ETH
Digital inputs Onboard I/O only 128 B 1 kB

Digital outputs 128 B 1 kB

Number of
decentralized
inputs and out-
puts

Depending on the fieldbus used

Internal interfaces

Serial COMx Optional, use a
dedicated serial
interface option
board (up to 1)

Optional, use a
dedicated serial
interface option
board (up to 2)

Optional, use a dedicated serial
interface option board (up to 3)

Modbus RTU Master/Slave, ASCII

Ethernet inter-
face RJ45

1 2
Independent with
switch function-
ality

Ethernet func-
tions

Programming, TCP/IP, UDP/IP, DHCP, PING, network variables, and other
listed below

Modbus TCP/IP
client/server

Yes
8 / 3

Yes
13 / 8

Yes
20 / 10

Yes
30 / 15

SNTP client/
server

No Yes

HTTPs and Web-
Visu
number of con-
nections

No Yes
1

Yes
2

Yes
4

FTPs
number of con-
nections

No Yes
1

Yes
2

OPC UA server
number of free
tags

No Yes
125

Yes
250

Yes
1000

MQTT and JSON
library

No Yes

OPC DA server Yes

IEC 60870-5-104
telecontrol pro-
tocol

No Yes
Substation only,
5 connections
max., only 1
Ethernet sup-
ported

Licensed protocols (runtime protocol per CPU)

BACnet IP B-BC
Ä Chapter 1.5.5
“BACnet-BC”
on page 2209

No Yes (max. 1000
object variables)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2475

Data of I/Os PM5012-x-ETH PM5032-x-ETH PM5052-x-ETH PM5072-T-2ETH
KNXIP
Ä Chapter
1.6.6.3.8 “KNX
configurator”
on page 3924

No Yes (max. 1000
object variables)

IEC 61850 MMS
server/goose
pub/sub

No Yes (max. 1000
data attributes)

EtherNet/IP
adapter/scanner

No Yes (in preparation)

Ordering Data
Table 427: Processor modules for AC500-eCo V3
Part no. Description Product life cycle phase *)
1SAP 122 600 R0072 Basic CPU PM5012-T-ETH, AC500-

eCo V3 processor module,
programmable logic controller
1 MB, 6DI/4DO-Transistor, Ethernet,
24 V DC, 1 option board slot

Active

1SAP 122 700 R0072 Basic CPU PM5012-R-ETH, AC500-
eCo V3 processor module, pro-
grammable logic controller 1 MB,
6DI/4DO-Relay, Ethernet, 24 V DC, 1
option board slot

Active

1SAP 123 400 R0072 Standard CPU PM5032-T-ETH,
AC500-eCo V3 processor module,
programmable logic controller 2 MB,
12DI/8DO-Transistor/2DC, Ethernet,
24 V DC, 2 option board slots

Active

1SAP 123 500 R0072 Standard CPU PM5032-R-ETH,
AC500-eCo V3 processor module,
programmable logic controller 2 MB,
12DI/6DO-Relay/2DC, Ethernet,
24 V DC, 2 option board slots

Active

1SAP 124 000 R0072 Standard CPU PM5052-T-ETH,
AC500-eCo V3 processor module,
programmable logic controller 4 MB,
12DI/8DO-Transistor/2DC, Ethernet,
24 V DC, 3 option board slots

Active

1SAP 124 100 R0072 Standard CPU PM5052-R-ETH,
AC500-eCo V3 processor module,
programmable logic controller 4 MB,
12DI/6DO-Relay/2DC, Ethernet,
24 V DC, 3 option board slots

Active

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2476

Part no. Description Product life cycle phase *)
1SAP 124 500 R0073 Pro CPU PM5072-T-2ETH, AC500-

eCo V3 processor module, pro-
grammable logic controller 8 MB,
12DI/8DO-Transistor/2DC, 2 Ethernet,
24 V DC, 3 option board slots

Active

1SAP 124 400 R0073 Pro CPU PM5072-T-2ETHW, AC500-
eCo V3 processor module, pro-
grammable logic controller 8 MB,
12DI/8DO-Transistor/2DC, 2 Ethernet,
24 V DC, 3 option board slots, wide
temperature

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Table 428: Accessories for AC500-eCo V3
Part no. Description
1SAP 187 000 R0001 TA5101-4DI: AC500, option board for digital I/O extension, 4DI 24 V

DC, spring/cable front terminal 3.50 mm pitch

1SAP 187 000 R0002 TA5105-4DOT: AC500, option board for digital I/O extension, 4DO-T
24 V DC / 0.5 A, spring/cable front terminal 3.50 mm pitch

1SAP 187 000 R0003 TA5110-2DI2DOT: AC500, option board for digital I/O extension, 2DI
24 V DC, 2DO-T 24 V DC / 0.5 A, spring/cable front terminal 3.50
mm pitch

1SAP 187 200 R0001 TA5130-KNXPB: AC500, option board KNX adress push button

1SAP 187 200 R0002 TA5131-RTC:AC500, real-time clock without battery, option board
for AC500-eCo V3 Basic CPU

1SAP 187 300 R0001 TA5141-RS232I: AC500, option board for COMx serial communica-
tion, spring/cable front terminal 3.50 mm pitch

1SAP 187 300 R0002 TA5142-RS485I: AC500, option board for COMx serial communica-
tion, spring/cable front terminal 3.50 mm pitch

1SAP 187 300 R0003 TA5142-RS485: AC500, option board for COMx serial communica-
tion, spring/cable front terminal 3.50 mm pitch

1SAP 187 400 R0001 TA5211-TSCL-B: screw terminal block set for AC500-eCo V3 CPU
Basic
screw front, cable side 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors

1SAP 187 400 R0002 TA5211-TSPF-B: spring terminal block set for AC500-eCo V3 CPU
Basic
spring front, cable front 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2477

Part no. Description
1SAP 187 400 R0004 TA5212-TSCL: screw terminal block set for AC500-eCo V3 Standard

and Pro CPU
screw front, cable side 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors
● 1 removable 12-pin terminal block for I/O connectors

1SAP 187 400 R0005 TA5212-TSPF: spring terminal block set for AC500-eCo V3
Standard and Pro CPU
spring front, cable front 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors
● 1 removable 12-pin terminal block for I/O connectors

1SAP 187 600 R0001 TA5400-SIM: input simulator (for CPU testing), 6 switches

1SAP 180 100 R0002 MC5102 - Micro memory card with memory card adapter

1SAP 182 800 R0001 TA543: screw mounting accessory, 20 pieces per packing unit

1SAP 187 500 R0003 TA5301-CFA: cable fixing part accessory, 20 pieces per packing unit

Spare parts

1SAP 187 400 R0012 TA5220-SPF5: spring terminal block, removable, 5-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 400 R0013 TA5220-SPF6: spring terminal block, removable, 6-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 400 R0014 TA5220-SPF7: spring terminal block, removable, 7-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 400 R0015 TA5220-SPF8: spring terminal block, removable, 8-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 500 R0001 TA5300-CVR: option board slot cover, removable plastic part, 6
pieces per packing unit

Option boards
TA5101-4DI - Option board for digital I/O extension

● 4 digital inputs 24 V DC (I0 to I3) in 1 group
● Module-wise galvanically isolated

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2478

1 4 yellow LEDs to display the signal states of the inputs I0 to I3
2 Allocation of signal name
3 5-pin terminal block for input signals

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

"NC"). Reserved terminals may carry internal voltages.

The device is used as an optional I/O extension module for AC500-eCo V3 CPUs (PM50x2).
The inputs/outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs/outputs.

Parameter Value
LED displays For signal states

Internal power supply Via internal CPU connection

External power supply Not necessary

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the system assembly chapter.

The connection is carried out by using a removable 5-pin terminal block. For more information,
please refer to the chapter terminal blocks for AC500-eCo V3 system. The terminal blocks are
included in the module's scope of delivery and additional terminal blocks as spare parts can be
ordered separately.
The following block diagram shows the internal construction of the digital inputs:

Intended pur-
pose

Functionality

Connections

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2479

Table 429: Assignment of the terminals:
Terminal Signal Description
1 COM 0..3 Input common for signals I0 to I3

2 I0 Input signal I0

3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

The internal power supply voltage for the module's circuitry is carried out via the connection to
CPU. Thus, the current consumption from 24 V DC power supply at the terminals L+ and M of
the CPU module increases by 10 mA per TA5101-4DI.
An external power supply connection is not needed.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

"NC"). Reserved terminals may carry internal voltages.

The digital inputs can be used as source inputs or as sink inputs.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2480

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

The following figure shows the connection of the option board for digital I/O extension
TA5101-4DI:

Sink inputs of TA5101-4DI Source inputs of TA5101-4DI

The module provides several diagnosis functions, see Diagnosis Ä “Diagnosis” on page 2482.
The meaning of the LEDs is described in the section State LEDs Ä “State LEDs” on page 2482.

The module itself does not store configuration data. It receives its parameterization data from
the CPU module during power-up of the system.
Hence, replacing optional modules is possible without any re-parameterization via software.

The arrangement of the parameter data is performed with Automation Builder software.

1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

I/O configura-
tion

Parameteriza-
tion

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2481

1. In the device tree, double-click the desired option board.
2. Select the “Diagnosis” tab to view the diagnosis messages of the desired option board.

Table 430: Diagnosis messages
Device Severity Error

code
Description
Error Message Remedy

TA5101-4DI 11 1 Wrong or no board
plugged

Replace with correct func-
tional board

TA5101-4DI 11 2 Board defective Replace with correct func-
tional board

TA5101-4DI 11 3 Failed to set direction Replace with correct func-
tional board

TA5101-4DI 11 4 Parameter wrong Verify setting of parameter
“Run on config fault”

LED State Color LED = OFF LED = ON
Inputs I0...I3 Digital input Yellow Input is OFF Input is ON

The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the input group and the rest of

the module

 Isolated groups 1 (4 channels per group)

Current consumption from 24 V DC power
supply at the L+ and M terminals of the CPU

Ca. 10 mA

Max. power dissipation within the module 0.8 W

Weight 15 g

Diagnosis

State LEDs

Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2482

Parameter Value
Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Table 431: Technical data of the digital inputs
Parameter Value
Number of channels per module 4 inputs 24 V DC

Distribution of the channels into
groups

1 (4 channels per group)

Connections of the channels I0 to I3 Terminals 2 to 5

Reference potential for the channels
I0 to I3

Terminal 1 (plus or negative pole of the process supply
voltage, signal name COM 0..3)

Indication of the input signals 1 yellow LED per channel; the LED is ON when the
input signal is high (signal 1). The module is powered
through the CPU connection.

Monitoring point of input indicator LED

Input type according to EN 61131-2 Type 1 source Type 1 sink

Input signal range -24 V DC +24 V DC

 Signal 0 -5 V...+3 V -3 V...+5 V

 Undefined signal -15 V...-5 V +5 V...+15 V

 Signal 1 -30 V...-15 V +15 V...+30 V

Input current per channel

 Input voltage 24 V Typ. 5 mA

 Input voltage 5 V Typ. 1 mA

 Input voltage 14 V

 Input voltage 15 V < 3 mA

 Input voltage 27 V

 Input voltage 30 V < 7 mA

Max. permissible leakage current (at
2-wire proximity switches)

1 mA

Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded On request

 Unshielded On request

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2483

Part no. Description Product life cycle phase *)
1SAP 187 000 R0001 TA5101-4DI: AC500, option board for

digital I/O extension, 4DI 24 V DC,
spring/cable front terminal 3.50 mm
pitch

Active

Spare parts

1SAP 187 400 R0012
**)

TA5220-SPF5: spring terminal block,
removable, 5-pin, spring front, cable
front, 6 pieces per packing unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5105-4DOT - Option board for digital I/O extension
● 4 digital outputs 24 V DC (O0 to O3) in 1 group
● Module-wise galvanically isolated

1 4 yellow LEDs to display the signal states of the inputs O0 to O3
2 Allocation of signal name
3 7-pin terminal block for output signals

Ordering data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2484

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

"NC"). Reserved terminals may carry internal voltages.

The device is used as an optional I/O extension module for AC500-eCo V3 CPUs (PM50x2).
The inputs/outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs/outputs.

Parameter Value
LED displays For signal states

Internal power supply Via internal CPU connection

External power supply Via the terminals ZP and UP (process supply
voltage 24 V DC)

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the system assembly chapter.

The connection is carried out by using a removable 7-pin terminal block. For more information,
please refer to the chapter terminal blocks for AC500-eCo V3 system. The terminal blocks are
included in the module's scope of delivery and additional terminal blocks as spare parts can be
ordered separately.
The following block diagram shows the internal construction of the digital outputs:

Table 432: Assignment of the terminals:
Terminal Signal Description
1 NC Not connected

2 O0 Output signal O0

3 O1 Output signal O1

Intended pur-
pose

Functionality

Connections

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2485

Terminal Signal Description
4 O2 Output signal O2

5 O3 Output signal O3

6 UP Process supply voltage UP +24 V DC

7 ZP Process supply voltage ZP 0 V DC

The internal power supply voltage for the module's circuitry is carried out via the connection to
CPU. Thus, the current consumption from 24 V DC power supply at the terminals L+ and M of
the CPU module increases by 10 mA per TA5105-4DOT.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

"NC"). Reserved terminals may carry internal voltages.

The following figure shows the connection of the option board for digital I/O extension
TA5105-4DOT:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2486

NOTICE!
Risk of malfunctions in the plant!
Only if L+/M of the CPU is available and the outputs are already configured in
the AB program, the outputs will switch on as soon as the UP/ZP is available.
This must be considered in the application planning.

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external fuse for the outputs.

The module provides several diagnosis functions, see Diagnosis Ä “Diagnosis” on page 2488.
The meaning of the LEDs is described in the section State LEDs Ä “State LEDs” on page 2488.

The module itself does not store configuration data. It receives its parameterization data from
the CPU module during power-up of the system.
Hence, replacing optional modules is possible without any re-parameterization via software.

The arrangement of the parameter data is performed with Automation Builder software.

1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

I/O configura-
tion

Parameteriza-
tion

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2487

1. In the device tree, double-click the desired option board.
2. Select the “Diagnosis” tab to view the diagnosis messages of the desired option board.

Table 433: Diagnosis messages
Device Severity Error

code
Description
Error Message Remedy

TA5105-4DOT 11 1 Wrong or no board
plugged

Replace with correct func-
tional board

TA5105-4DOT 11 2 Board defective Replace with correct func-
tional board

TA5105-4DOT 11 3 Failed to set direction Replace with correct func-
tional board

TA5105-4DOT 11 4 Parameter wrong Verify setting of parameter
“Run on config fault”

LED State Color LED = OFF LED = ON
Outputs O0...O3 Digital output Yellow Output is OFF Output is ON

(The output
voltage (normally
24 V DC) is
only displayed if
UP/ZP and L+/M
(supply voltages
for the module) are
switched ON)

The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 6 for UP (+24 V DC) and terminal 7
for ZP (0 V DC)

Diagnosis

State LEDs

Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2488

Parameter Value
 Rated value 24 V DC

 Current consumption via UP terminal 5 mA + max. 0.5 A per output

 Max. ripple 5 %

 Inrush current 0.000002 A2s

 Protection against reversed voltage Yes

 Rated protection fuse for UP On request

Current consumption from 24 V DC power
supply at the L+/M terminals of the CPU

Ca. 10 mA

Galvanic isolation Yes, between the output group and the rest of
the module

Isolated groups 1 (4 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 0.5 W

Weight 16 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Table 434: Technical data of the digital outputs
Parameter Value
Number of channels per module 4 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 (4 channels per group)

Connection of the channels O0 to O3 Terminals 2 to 5

Common power supply voltage Terminal 6 (positive pole of the process voltage,
signal name UP)

Reference potential for the channels O0 to
O3

Terminal 7 (negative pole of the process voltage,
signal name ZP)

Indication of the output signals 1 yellow LED per channel; the LED is on when
the output signal is high (signal 1).
Only internal logic is powered from CPU.
Outputs are powered from UP/ZP terminals.

Way of operation Non-latching type

Min. output voltage at signal 1 UP - 0.1 V

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC (resistance, general use
and pilot duty)

 Rated current per group (max.) 2 A (4 channels * 0.5 A)

Max. leakage current with signal 0 0.5 mA

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2489

Parameter Value
Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) On request

Demagnetization when inductive loads are
switched off

Must be performed externally according to driven
load specification

Switching Frequencies

 With inductive loads On request

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V
DC

No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded On request

 Unshielded On request

Part no. Description Product life cycle phase *)
1SAP 187 000 R0002 TA5105-4DOT: AC500, option board

for digital I/O extension, 4DO-T 24 V
DC / 0.5 A, spring/cable front terminal
3.50 mm pitch

Active

Spare parts

1SAP 187 400 R0014
**)

TA5220-SPF7: spring terminal block,
removable, 7-pin, spring front, cable
front, 6 pieces per packing unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5110-2DI2DOT - Option board for digital I/O extension
● 2 digital inputs 24 V DC (I0 to I1) in 1 group
● 2 digital transistor outputs 24 V DC (O0 to O1) in 1 group
● Group-wise galvanically isolated

Ordering data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2490

1 2 yellow LEDs to display the signal states of the outputs O0 to O1
2 2 yellow LEDs to display the signal states of the inputs I0 to I1
3 Allocation of signal name
4 7-pin terminal block for input/output signals

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

"NC"). Reserved terminals may carry internal voltages.

The device is used as an optional I/O extension module for AC500-eCo V3 CPUs (PM50x2).
The inputs/outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs/outputs.

Parameter Value
LED displays For signal states

Internal power supply Via internal CPU connection

External power supply Via the terminals ZP and UP (process supply
voltage 24 V DC)

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the system assembly chapter.

The connection is carried out by using a removable 7-pin terminal block. For more information,
please refer to the chapter terminal blocks for AC500-eCo V3 system. The terminal blocks are
included in the module's scope of delivery and additional terminal blocks as spare parts can be
ordered separately.
The following block diagram shows the internal construction of the digital inputs and outputs:

Intended pur-
pose

Functionality

Connections

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2491

Table 435: Assignment of the terminals:
Terminal Signal Description
1 COM 0..1 Input common for signals I0 to I1

2 I0 Input signal I0

3 I1 Input signal I1

4 O0 Output signal O0

5 O1 Output signal O1

6 UP Process supply voltage UP +24 V DC

7 ZP Process supply voltage ZP 0 V DC

The internal power supply voltage for the module's circuitry is carried out via the connection to
CPU. Thus, the current consumption from 24 V DC power supply at the terminals L+ and M of
the CPU module increases by 10 mA per TA5110-2DI2DOT.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2492

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

"NC"). Reserved terminals may carry internal voltages.

The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

The following figure shows the connection for inputs of the option board for digital I/O extension
TA5110-2DI2DOT:

Sink inputs of TA5110-2DI2DOT Source inputs of TA5110-2DI2DOT

The following figure shows the connection for outputs of the option board for digital I/O exten-
sion TA5110-2DI2DOT:

NOTICE!
Risk of malfunctions in the plant!
Only if L+/M of the CPU is available and the outputs are already configured in
the AB program, the outputs will switch on as soon as the UP/ZP is available.
This must be considered in the application planning.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2493

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external fuse for the outputs.

The module provides several diagnosis functions, see Diagnosis Ä “Diagnosis” on page 2494.
The meaning of the LEDs is described in the section State LEDs Ä “State LEDs” on page 2495.

The module itself does not store configuration data. It receives its parameterization data from
the CPU module during power-up of the system.
Hence, replacing optional modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

The arrangement of the parameter data is performed with Automation Builder software.

1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

I/O configura-
tion

Parameteriza-
tion

Diagnosis

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2494

1. In the device tree, double-click the desired option board.
2. Select the “Diagnosis” tab to view the diagnosis messages of the desired option board.

Table 436: Diagnosis messages
Device Severity Error

code
Description
Error Message Remedy

TA5110-2DI2DOT 11 1 Wrong or no board
plugged

Replace with correct func-
tional board

TA5110-2DI2DOT 11 2 Board defective Replace with correct func-
tional board

TA5110-2DI2DOT 11 3 Failed to set direction Replace with correct func-
tional board

TA5110-2DI2DOT 11 4 Parameter wrong Verify setting of parameter
“Run on config fault”

LED State Color LED = OFF LED = ON
Inputs I0...I1 Digital input Yellow Input is OFF Input is ON

Outputs O0...O1 Digital output Yellow Output is OFF Output is ON

The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 6 for UP (+24 V DC) and ter-
minal 7 for ZP (0 V DC)

 Rated value 24 V DC

 Current consumption via UP terminal 5 mA + max. 0.5 A per output

 Max. ripple 5 %

 Inrush current 0.000002 A²s

 Protection against reversed voltage Yes

 Rated protection fuse for UP On request

Current consumption from 24 V DC power supply
at the L+/M terminals of the CPU

Ca. 10 mA

Galvanic isolation Yes, between the input group and the
output group and the rest of the module

Isolated groups 2 groups (1 group for 2 input channels, 1
group for 2 output channels)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 0.7 W

Weight 15 g

State LEDs

Technical data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2495

Parameter Value
Mounting position Horizontal or vertical

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switchgear cabinet.

Table 437: Technical data of the digital inputs
Parameter Value
Number of channels per module 2

Distribution of the channels into groups 1 group for 2 channels

Connections of the channels I0 to I1 Terminals 2 to 3

Reference potential for the channels I0 to I1 Terminal 1

Indication of the input signals 1 yellow LED per channel; the
LED is ON when the input signal
is high (signal 1)

Monitoring point of input indicator LED
It is not part of input circuit (its
controlled by processor side, not
process side)

Input type according to EN 61131-2 Type 1 source Type 1 sink

Input signal range -24 V DC +24 V DC

Signal 0 -5 V...+3 V -3 V...+5 V

Undefined signal -15 V...+ 5 V +5 V...+15 V

Signal 1 -30 V...-15 V +15 V...+30 V

Ripple with signal 0 -5 V...+3 V -3 V...+5 V

Ripple with signal 1 -30 V...-15 V +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V < 3 mA

 Input voltage +30 V < 7 mA

Max. permissible leakage current (at 2-wire proximity
switches)

1 mA

Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded On request

 Unshielded On request

Table 438: Technical data of the digital outputs
Parameter Value
Number of channels per module 2 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 group of 2 channels

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2496

Parameter Value
Connection of the channels O0 to O1 Terminals 4 to 5

Reference potential for the channels O0 to O17 Terminal 7 (negative pole of the process
voltage, name ZP)

Common power supply voltage Terminal 6 (positive pole of the process
voltage, name UP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)
and the module is powered via the I/O bus

Monitoring point of output indicator Controlled together with transistor

Way of operation Non-latching type

Min. output voltage at signal 1 UP - 0.1 V

Output delay

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC (resistance, general
use and pilot duty)

 Rated current per group (max.) 1 A

 Rated current (all channels together,
max.)

1 A

 Max. leakage current with signal 0 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) On request

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads On request

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded On request

 Unshielded On request

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2497

Part no. Description Product life cycle phase *)
1SAP 187 000 R0003 TA5110-2DI2DOT: AC500, option

board for digital I/O extension, 2DI 24
V DC, 2DO-T 24 V DC / 0.5 A, spring/
cable front terminal 3.50 mm pitch

Active

Spare parts

1SAP 187 400 R0014
**)

TA5220-SPF7: spring terminal block,
removable, 7-pin, spring front, cable
front, 6 pieces per packing unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5130-KNXPB - Option board KNX adress push button

1 State LED
2 Allocation of signal name
3 Connector

For more information about TA5130-KNXPB, please refer to the Automation
Builder online help.

Ordering data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2498

This option board is only intended to be used with PM5072-T-2ETH(W).

This option board can only be used once on one slot at a time!

The option board is not supported by other AC500-eCo V3 PLCs.

Information can be found in the chapter system technology: see Ä Chapter
1.6.5.1.9 “KNX IP integration” on page 3527

Information can be found in the chapter system technology: see Ä Chapter
1.6.5.1.9 “KNX IP integration” on page 3527

Information about the integration of the PLC in KNX can be found here:
Ä “AC500-eCo V3 via TA5130-KNXPB” on page 3540

The arrangement of the parameter data is performed with Automation Builder software.

1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

Signal Color State Description
PRG Red ON Programming state

The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Usable CPUs PM5072-T-2ETH(W)

Internal power supply Via internal CPU connection

Additional current consumption from 24 V DC
power supply at CPU

Max. 25 mA

Weight 14 g

Intended pur-
pose

Functionality

Parameteriza-
tion

State LEDs

Technical data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2499

Part no. Description Product life cycle phase *)
1SAP 187 200 R0001 TA5130-KNXPB: AC500, option board

KNX adress push button
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA5131-RTC - Option board for real-time clock

1 TA5131-RTC option board

This option board is only for the basic CPUs PM5012-T-ETH and PM5012-R-
ETH.

All other AC500-eCo V3 CPUs have the real-time clock already integrated.

Information can be found in the chapter system technology: see Ä Chapter
1.6.5.1.4 “Real-time clock and battery” on page 3478

Information can be found in the chapter system technology: see Ä Chapter
1.6.5.1.4 “Real-time clock and battery” on page 3478

Ordering data

Intended pur-
pose

Functionality

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2500

The arrangement of the parameter data is performed with Automation Builder software.

1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Buffering time 7 days at room temperature

Usable CPUs PM5012

Internal power supply Via internal CPU connection

Additional current consumption from 24 V DC
power supply at CPU

Max. 25 mA

Weight 16 g

Part no. Description Product life cycle phase *)
1SAP 187 200 R0002 TA5131-RTC:AC500, real-time clock

without battery, option board for
AC500-eCo V3 Basic CPU

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Parameteriza-
tion

Technical data

Ordering data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2501

TA5141-RS232I - Option board for COMx serial communication

1 2 LEDs for communication state display (TxD and RxD)
2 Allocation of signal name
3 5-pin terminal block for communication interface

Option board for COMx serial communication TA5141-RS232I is equipped with 1 RS-232 serial
interface with handshake.

NOTICE!
Damage to the serial communication interface by using 5-pin terminal
block of the TA5101-4DI!
If the 5-pin terminal block of the TA5101-4DI option board is plugged into a
option board for COMx serial communication TA5141-RS232I, TA5142-RS485I
or TA5142-RS485, the communication interface will be damaged by the 24 V.
Please do not confuse the 5-pin terminal block of the TA5101-4DI with the 5-pin
terminal block for serial communication interface of TA5141-RS232I, TA5142-
RS485I or TA5142-RS485.

Table 439: TA5141-RS232I
Serial interface Pin Signal Description

1 RTS Request To Send
DCE is ready to accept data from the DTE

2 TxD Transmit data (output)

3 GND Common Ground

4 RxD Receive data (input)

5 CTS Clear To Send (input)
DCE is ready to accept data from the DTE

Intended pur-
pose

Connections

Serial interfaces

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2502

The maximum possible cable length of a serial connection subnet within a segment depends on
the transmission rate.
RS-232 for point-to-point connection:

Parameter Value
Transmission rate 9.6 kBit/s to 115.2 kBit/s

Maximum cable length On request

The arrangement of the parameter data is performed with Automation Builder software.

1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

Signal Color State Description
TxD Yellow ON (blinking) Transmitting

RxD Yellow ON (blinking) Receiving

The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Protocol Programmable with Automation Builder e.g.

Modbus RTU / CAA SerialCom via serial inter-
faces

Interface Serial interface

Serial interface standard EIA RS-232

Potential separation Yes, from the CPU, 500 V DC

Serial interface parameters Configurable via software

Modes of operation Data exchange

Transmission rate 9.6 kbit/s to 115.2 kbit/s

Protocol Programmable

Interface connector 5-pin terminal block, male

Usable CPUs PM50x2

Cable length

Parameteriza-
tion

State LEDs

Technical data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2503

Parameter Value
Internal power supply Via internal CPU connection

Additional current consumption from 24 V DC
power supply at CPU

Max. 25 mA

Weight Ca. 15 g

Part no. Description Product life cycle phase *)
1SAP 187 300 R0001 TA5141-RS232I: AC500, RS-232

option board for COMx serial commu-
nication, spring/cable front terminal,
3.50 mm pitch

Active

Spare parts

1SAP 187 400 R0012
**)

TA5220-SPF5: spring terminal block,
removable, 5-pin, spring front, cable
front, 3.5 mm pitch, 6 pieces per
packing unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5142-RS485I - Option board for COMx serial communication

1 2 LEDs for communication state display (TxD and RxD)
2 2 LEDs for termination state display
3 Allocation of signal name
4 5-pin terminal block for communication interface

Ordering data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2504

Option board for COMx serial communication TA5142-RS485(I) is equipped with 1 RS-485
(2-wire half-duplex) serial interface which can be used for communication via Modbus RTU or
CAA SerialCom.
Bus terminations are built-in and configurable.

NOTICE!
Damage to the serial communication interface by using 5-pin terminal
block of the TA5101-4DI!
If the 5-pin terminal block of the TA5101-4DI option board is plugged into a
option board for COMx serial communication TA5141-RS232I, TA5142-RS485I
or TA5142-RS485, the communication interface will be damaged by the 24 V.
Please do not confuse the 5-pin terminal block of the TA5101-4DI with the 5-pin
terminal block for serial communication interface of TA5141-RS232I, TA5142-
RS485I or TA5142-RS485.

Table 440: TA5142-RS485(I)
Serial interface Pin Signal

1 A1
internally connected to A2

2 B1
internally connected to B2

3 GND

4 A2
internally connected to A1

5 B2
internally connected to B1

No. Protocol Description
1 Modbus Modbus RTU, master or slave

2 CAA SerialCom Support for blocks contained in the CAA_SerialCom.lib library

Bus line
Construction 2 cores, twisted, with common shield

Conductor cross section > 0.22 mm² (24 AWG)

Twisting rate > 10 per meter (symmetrically twisted)

Core insulation Polyethylene (PE)

Resistance per core < 100 Ω/km

Characteristic impedance ca. 120 Ω (100 Ω...150 Ω)

Capacitance between the cores < 55 nF/km (if higher, the max. bus length must be reduced)

Terminating resistors 120 Ω ¼ W at both line ends

Intended pur-
pose

Connections

Serial interfaces

Protocols

Bus cable

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2505

Bus line
Remarks Commonly used telephone cables with PE insulation and a

core diameter of > 0.8 mm are usually sufficient.

Cables with PVC core insulation and core diameter of
0.8 mm can be used up to a length of approx. 250 m. In
this case, the bus terminating resistor is approx. 100 Ω.

The maximum possible cable length of a serial connection subnet within a segment depends on
the transmission rate.
RS-485 for point-to-point or bus connection:

Parameter Value
Transmission rate 9.6 kbit/s to 115.2 kbit/s

Maximum cable length On request

The line ends of the bus segment must be equipped with bus terminating resistors. These
resistors are integrated in the module TA5142-RS485I. The pull-up and pull-down settings must
also be made on the circuit board of the module.

1 Termination resistance settings
2 Pull-up and pull-down settings

Cable length

Bus termination

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2506

Table 441: Configuration
Settings on the module State of

LEDs
Internal wiring

diagram
Description

Master at the bus line
end, pull-up and pull-down
activated, bus termination
120 Ω

Master within the bus
line, pull-up and pull-down
activated

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2507

Settings on the module State of
LEDs

Internal wiring
diagram

Description

Slave at the bus line end,
bus termination 120 Ω

Slave within the bus line

The arrangement of the parameter data is performed with Automation Builder software.Parameteriza-
tion

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2508

1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

 Signal Color State Description
TxD Yellow ON (blinking) Transmitting

RxD Yellow ON (blinking) Receiving

120R Yellow ON Bus termination

PUD Yellow ON Pull-up / Pull-down

The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Table 442: TA5142-RS485I
Parameter Value
Protocol Programmable with Automation Builder e.g.

Modbus RTU / CAA_SerialCom via serial
interfaces

Interface Serial interface

Serial interface standard EIA RS-485

Potential separation Yes, from the CPU, 500 V DC

Serial interface parameters Configurable via software

Modes of operation Data exchange

Transmission rate 9.6 kbit/s to 115.2 kbit/s

Protocol Programmable

Interface connector 5-pin terminal block, male

Usable CPUs PM50x2

Internal power supply Via internal CPU connection

Additional current consumption from 24 V DC
power supply at CPU

Max. 25 mA

Weight Ca. 16 g

State LEDs

Technical data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2509

Part no. Description Product life cycle phase *)
1SAP 187 300 R0002 TA5142-RS485I: AC500, RS-485

serial adapter isolated option board,
spring/cable front terminal, 3.50 mm
pitch

Active

Spare parts

1SAP 187 400 R0012
**)

TA5220-SPF5: spring terminal block,
removable, 5-pin, spring front, cable
front, 3.5 mm pitch, 6 pieces per
packing unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5142-RS485 - Option board for COMx serial communication

1 2 LEDs for communication state display (TxD and RxD)
2 2 LEDs for termination state display
3 Allocation of signal name
4 5-pin terminal block for communication interface

Option board for COMx serial communication TA5142-RS485(I) is equipped with 1 RS-485
(2-wire half-duplex) serial interface which can be used for communication via Modbus RTU or
CAA SerialCom.
Bus terminations are built-in and configurable.

Ordering data

Intended pur-
pose

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2510

NOTICE!
Damage to the serial communication interface by using 5-pin terminal
block of the TA5101-4DI!
If the 5-pin terminal block of the TA5101-4DI option board is plugged into a
option board for COMx serial communication TA5141-RS232I, TA5142-RS485I
or TA5142-RS485, the communication interface will be damaged by the 24 V.
Please do not confuse the 5-pin terminal block of the TA5101-4DI with the 5-pin
terminal block for serial communication interface of TA5141-RS232I, TA5142-
RS485I or TA5142-RS485.

Table 443: TA5142-RS485(I)
Serial interface Pin Signal

1 A1
internally connected to A2

2 B1
internally connected to B2

3 GND

4 A2
internally connected to A1

5 B2
internally connected to B1

No. Protocol Description
1 Modbus Modbus RTU, master or slave

2 CAA SerialCom Support for blocks contained in the CAA_SerialCom.lib library

Bus line
Construction 2 cores, twisted, with common shield

Conductor cross section > 0.22 mm² (24 AWG)

Twisting rate > 10 per meter (symmetrically twisted)

Core insulation Polyethylene (PE)

Resistance per core < 100 Ω/km

Characteristic impedance ca. 120 Ω (100 Ω...150 Ω)

Capacitance between the cores < 55 nF/km (if higher, the max. bus length must be reduced)

Terminating resistors 120 Ω ¼ W at both line ends

Remarks Commonly used telephone cables with PE insulation and a
core diameter of > 0.8 mm are usually sufficient.

Cables with PVC core insulation and core diameter of
0.8 mm can be used up to a length of approx. 250 m. In
this case, the bus terminating resistor is approx. 100 Ω.

Connections

Serial interfaces

Protocols

Bus cable

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2511

The maximum possible cable length of a serial connection subnet within a segment depends on
the transmission rate.
RS-485 for point-to-point or bus connection:

Parameter Value
Transmission rate 9.6 kbit/s to 115.2 kbit/s

Maximum cable length On request

The line ends of the bus segment must be equipped with bus terminating resistors. These
resistors are integrated in the module TA5142-RS485. The pull-up and pull-down settings must
also be made on the circuit board of the module.

1 Termination resistance settings
2 Pull-up and pull-down settings

Cable length

Bus termination

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2512

Table 444: Configuration
Settings on the module State of

LEDs
Internal wiring

diagram
Description

Master at the bus line
end, pull-up and pull-down
activated, bus termination
120 Ω

Master within the bus
line, pull-up and pull-down
activated

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2513

Settings on the module State of
LEDs

Internal wiring
diagram

Description

Slave at the bus line end,
bus termination 120 Ω

Slave within the bus line

The arrangement of the parameter data is performed with Automation Builder software.Parameteriza-
tion

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2514

1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

 Signal Color State Description
TxD Yellow ON (blinking) Transmitting

RxD Yellow ON (blinking) Receiving

120R Yellow ON Bus termination

PUD Yellow ON Pull-up / Pull-down

The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Table 445: TA5142-RS485
Parameter Value
Protocol Programmable with Automation Builder e.g.

Modbus RTU / CAA_SerialCom via serial
interfaces

Interface Serial interface

Serial interface standard EIA RS-485

Potential separation No

Serial interface parameters Configurable via software

Modes of operation Programming or data exchange

Transmission rate 9.6 kbit/s to 115.2 kbit/s

Protocol Programmable

Interface connector 5-pin terminal block, male

Usable CPUs PM50x2

Internal power supply Via internal CPU connection

Additional current consumption from 24 V DC
power supply at CPU

Max. 25 mA

Weight Ca. 15 g

State LEDs

Technical data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2515

Part no. Description Product life cycle phase *)
1SAP 187 300 R0003 TA5142-RS485: AC500, RS-485

option board for COMx serial commu-
nication, spring/cable front terminal,
3.50 mm pitch

Active

Spare parts

1SAP 187 400 R0012
**)

TA5220-SPF5: spring terminal block,
removable, 5-pin, spring front, cable
front, 3.5 mm pitch, 6 pieces per
packing unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

1.6.3.3.2 AC500 (standard)
PM56xx-2ETH for AC500 V3 products

Processor modules with onboard interfaces:
● PM5630-2ETH: processor module, memory 8 MB, with Ethernet support (onboard Ethernet)

– 2 network interfaces RJ45, CAN and COM1 on the terminal base.
● PM5650-2ETH: processor module, memory 80 MB, with Ethernet support (onboard

Ethernet) – 2 network interfaces RJ45, CAN and COM1 on the terminal base.
● PM5670-2ETH: processor module, memory 160 MB, with Ethernet support (onboard

Ethernet) – 2 network interfaces RJ45, CAN and COM1 on the terminal base.
● PM5675-2ETH: processor module, 160 MB, 8 GB flash disk, with Ethernet support (onboard

Ethernet) – 2 network interfaces RJ45, CAN and COM1 on the terminal base.
● XC version for use in extreme ambient conditions available

Ordering data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2516

1 6 7-segment state displays with backlight
2 "Triangle" displays for "item"
3 "Square" displays for "state"
4 3 state LEDs
5 8 function keys
6 Slot for memory card
7 Label
8 Compartment for lithium battery TA521
9 Lithium battery TA521
10 Memory card
11 I/O bus for connection of I/O modules
12 Slot for processor module (processor module

mounted on terminal base)

13 Slots for communication modules (multiple,
depending on terminal base; unused slots must be
covered with TA524)

14 Interface for CAN (5-pin terminal block, removable)
15 Power supply (5-pin terminal block, removable)
16 Serial interface COM1 (9-pin terminal block, remov-

able)
17 RJ45 female connector for ETHERNET1 connection
18 RJ45 female connector for ETHERNET2 connection
19 DIN rail

Sign for XC version

Short description
The processor modules are the central units of the control system AC500. The types differ in
their performance (memory size, speed etc.). Each processor module must be mounted on a
suitable terminal base.
The terminal base type (TB56xx) depends on the number of communication modules which are
used together with the processor module.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2517

Table 446: Comparison: TB56xx
Processor module PM5630 PM5650 PM5670 PM5675
Max. number of variables allowed for each communication module supported

 Input variables 4 kB 4 kB 5 kB 5 kB

 Output variables 4 kB 4 kB 5 kB 5 kB

Type of communication module supported

 CM574-RS/RCOM - serial interface No No No No

 CM582-DP - PROFIBUS DP V0/V1 slave No No No No

 CM592-DP - PROFIBUS DP V0/V1 master 1) 1) 1) 1)

 CM579-ETHCAT - EtherCAT master x x x x

 CM579-PNIO - PROFINET IO RT controller x x x x

 CM589-PNIO - PROFINET IO RT device 1) 1) 1) 1)

 CM589-PNIO-4 - PROFINET IO RT
with 4 devices

1) 1) 1) 1)

 CM597-ETH - Ethernet interface No No No No

 CM588-CN - CAN, CANopen slave No No No No

 CM598-CN - CAN, CANopen master only CAN
2A/2B

only CAN
2A/2B

only CAN
2A/2B

only CAN
2A/2B

Type of AC500-S module supported

 SM560-S - safety module x x x x

 SM560-S-FD-1 - safety module with
F-Device functionality for 1 PROFIsafe net-
work

1) 1) 1) 1)

 SM560-S -FD-4 - safety module with
F-Device functionality for 1 PROFIsafe net-
work

1) 1) 1) 1)

Remarks:
1) in preparation

All terminal bases (TB56xx) provide the same communication interfaces (ETH1, ETH2, CAN
and COM1). Ä Chapter 1.6.3.2.1.3 “Technical data” on page 2437

All other V3 processor modules can operate multiple communication modules via their commu-
nication module interface.
The communication modules are mounted on the left side of the processor module on the same
terminal base.
On the right side of the processor module, up to 10 digital or analog I/O expansion modules can
be connected to the I/O bus. Each I/O module requires a suitable terminal unit depending on the
module type.
Terminal bases, terminal units, I/O modules, communication modules and accessories have
their own technical descriptions.
Each processor module can be used as:
● Stand-alone processor module
● Stand-alone processor module with local I/Os
● Remote IO server
● Remote IO client
The processor modules are powered with 24 V DC.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2518

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

Connections
All terminals for connection are available on the terminal base. For information on connection
and available interfaces see the descriptions for
● Ä Chapter 1.6.3.2.1 “TB56xx for AC500 V3 products” on page 2430.

Processor modules PM56xx-2ETH can only be used with TB56xx-2ETH ter-
minal bases.

Table 447: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

Storage elements

The processor modules are supplied without lithium battery. It must be ordered separately. The
TA521 lithium battery is used for data (SRAM) and RTC buffering while the processor module is
not powered.
See system technology - AC500 battery. Ä Chapter 1.6.5.1.4.2 “AC500 battery” on page 3479

Lithium battery

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2519

The CPU monitors the discharge degree of the battery. A warning is issued before the battery
condition becomes critical (about 2 weeks before). Once the warning message appears, the
battery should be replaced as soon as possible.

The technical data, handling instructions and the insertion/replacement of the battery is
described in detail in the chapter TA521 lithium battery Ä Chapter 1.6.3.8.2.4 “TA521 - Battery”
on page 3324.

AC500 processor modules are supplied without memory card. It must be ordered separately.
The memory card can be used
● to read and write user files
● to download a user program
● for firmware updates
Detailed information can be found in the system technology chapter. Ä Chapter 1.6.5.1.2
“System processing” on page 3463

AC500 processor modules can be operated with and without memory cards. The processor
module uses a standard file system (FAT). This allows standard card readers to read and write
the memory cards.

Only genuine MC502 memory cards are supported.

For more information on the technical data, handling instructions and the insertion/replacement
of the memory card, please refer to the chapter memory card MC502. Ä Chapter 1.6.3.8.2.1
“MC502 - Memory card” on page 3311

LEDs, display and function keys on the front panel

Memory card

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2520

Detailed information on using the LEDs, display and the function keys such as
startup procedure and error coding is described in the system technology sec-
tion Ä Chapter 1.6.5.1.6 “LEDs, display and function keys on the front panel”
on page 3486.

Technical data
The system data of AC500 and S500 are applicable to the standard version. Ä Chapter
1.6.4.6.1 “System data AC500” on page 3398

The system data of AC500-XC are applicable to the XC version. Ä Chapter 1.6.4.7.1 “System
data AC500-XC” on page 3450

Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Connection of the supply voltage 24 V
DC at the terminal base of the processor
module

Removable 5-pin terminal block with spring con-
nection

Current consumption on 24 V DC

Min. typ. (module alone) PM5630-2ETH: 110 mA
PM5650-2ETH: 120 mA
PM5670-2ETH: 130 mA
PM5675-2ETH: 140 mA

Max. typ. (all communication modules
and I/Os)

PM5630-2ETH: 850 mA
PM5650-2ETH: 900 mA
PM5670-2ETH: 950 mA
PM5675-2ETH: 950 mA

Number of slots for processor modules 1 (on all terminal bases)

Processor module interfaces at the ter-
minal bases TB56xx

I/O bus, ETH1, ETH2, CAN, COM1

Connection system See Ä Chapter 1.6.4.6.4 “Connection and wiring”
on page 3416

Weight (processor module without ter-
minal base)

135 g

Mounting position Horizontal or vertical

Table 448: Comparison: PM56xx
Processor module PM5630 PM565

0
PM567
0

PM5675

Total maximum downloadable application size 1) 9 MB 84 MB 176 MB 176 MB

 Thereof user program code
and data (dynamically allo-
cated)

2 MB 8 MB 32 MB 32 MB

 Thereof user webserver data 7 MB 76 MB 144 MB 144 MB

Processor
module and
terminal base

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2521

Processor module PM5630 PM565
0

PM567
0

PM5675

 Remaining for all other
usage (project save, infra-
structure...)

30 MB 285 MB 643 MB 643 MB

Buffered (SRAM) 256 kB 256 kB 1.5 MB 1.5 MB

 Thereof VAR retain persistent 128 kB 128 kB 1024
kB

1024 kB

 Thereof %M memory (e.g.
Modbus register)

128 kB 128 kB 512 kB 512 kB

Expandable memory None None None None

Integrated mass storage memory (FLASH) None None None 8 GB

Slot for pluggable memory card MC502 MC502 MC502 MC502

Processor type TI ARM Cortex-A9 32-bit-RISC

Processor speed 300 MHz 600
MHz

1 GHz 1 GHz

Cycle time for 1 instruction (minimum):

 Binary Min. 0.02
µs

Min.
0.01 µs

Min.
0.002
µs

Min.
0.002 µs

 Word Min. 0.02
µs

Min.
0.01 µs

Min.
0.002
µs

Min.
0.002 µs

 Floating point Min. 0.12
µs

Min.
0.01 µs

Min.
0.002
µs

Min.
0.002 µs

Mathematic co-processor x x x x

Motion capability

 No. synchronized axis per 1
ms on EtherCAT CM typically

- 8* 16* 16*

 No. synchronized axis per 2
ms on EtherCAT CM typically

4* 16* >32 >32

 No. synchronized axis per
4 ms on EtherCAT CM or
CANopen onboard typically

8* >32 >32 >32

 Min. bus cycle time for
EtherCAT using external
CM579

2 ms 1 ms 0,5 ms 0,5 ms

* in addition: 1 virtual axis

Max. number of central inputs and outputs (10 exp. modules):

 Digital inputs 320

 Digital outputs 320

 Analog inputs 160

 Analog outputs 160

Number of decentralized inputs and outputs Depends on the used fieldbus

Data backup Battery

Data buffering time at 25 °C Typ. 3 years

Battery low indication via application program

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2522

Processor module PM5630 PM565
0

PM567
0

PM5675

Real-time clock:

 With battery backup x

 Accuracy Typ. ±2 s / day at 25 °C

Program execution:

 Cyclic x

 Time-controlled x

 Multitasking x

 Minimum cycle time configu-
rable for cyclical task

1 ms 1 ms 0,5 ms 0,5 ms

User program protection by password x (user management)

Internal interfaces for communication:

Serial interface COM1:

 Physical link Configurable for RS-232 or RS-485 (9.6
kb/s, 19.2 kb/s, 38.4 kb/s, 57.6 kb/s and
115.2 kb/s)

 Connection Pluggable terminal block, spring con-
nection

 Usage Serial ASCII communication,Modbus
RTU

CAN interface:

 Physical link CAN 2A/2B (from 50 kb/s to 1 Mb/s)

 Connection Pluggable terminal block, spring con-
nection

 Usage CANopen master communication, CAN
2A/2B, J1939 protocol, CAN sync

 Max. number of variables
allowed

 Input variables 2 kB 4 kB 5 kB 5 kB

 Output variables 2 kB 4 kB 5 kB 5 kB

Network interface ETH1, ETH2:

 Usage Ethernet

 Physical link 10/100 base-TX, configurable as
internal switch or independent Inter-
faces

 Connection 2x RJ45 socket, provided on
TB56xx-2ETH

LEDs, LCD display, function keys RUN / STOP, status, diagnosis, settings

Number of timers Unlimited

Number of counters Unlimited

Programming languages:

 Structured Text ST x

 Instruction list IL x

 Function Block Diagram FBD x

 Ladder Diagram LD x

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2523

Processor module PM5630 PM565
0

PM567
0

PM5675

 Sequential function chart
SFC

x

 Continuous function chart
(CFC)

x

Remarks:
1): The values are for information only and cannot be fulfilled altogether. The available
resources are limited at the end by the maximal downloadable application size for each CPU.

Table 449: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

Table 450: Comparison: TB56xx
Processor module PM5630 PM5650 PM5670 PM5675
Max. number of variables allowed for each communication module supported

 Input variables 4 kB 4 kB 5 kB 5 kB

 Output variables 4 kB 4 kB 5 kB 5 kB

Type of communication module supported

 CM574-RS/RCOM - serial interface No No No No

 CM582-DP - PROFIBUS DP V0/V1 slave No No No No

 CM592-DP - PROFIBUS DP V0/V1 master 1) 1) 1) 1)

 CM579-ETHCAT - EtherCAT master x x x x

 CM579-PNIO - PROFINET IO RT controller x x x x

 CM589-PNIO - PROFINET IO RT device 1) 1) 1) 1)

 CM589-PNIO-4 - PROFINET IO RT
with 4 devices

1) 1) 1) 1)

 CM597-ETH - Ethernet interface No No No No

 CM588-CN - CAN, CANopen slave No No No No

 CM598-CN - CAN, CANopen master only CAN
2A/2B

only CAN
2A/2B

only CAN
2A/2B

only CAN
2A/2B

Type of AC500-S module supported

 SM560-S - safety module x x x x

 SM560-S-FD-1 - safety module with
F-Device functionality for 1 PROFIsafe net-
work

1) 1) 1) 1)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2524

Processor module PM5630 PM5650 PM5670 PM5675
 SM560-S -FD-4 - safety module with

F-Device functionality for 1 PROFIsafe net-
work

1) 1) 1) 1)

Remarks:
1) in preparation

Table 451: OPC UA server / OPC DA server
Processor module PM5630 PM5650 PM5670 PM5675
OPC UA server x x x x

 Number of free tags
+ additional license for extension 1)

1.000 5.000 30.000 30.000

 Number of connections 10 20 50 50

 Min. sampling rate (limit) 500 ms 100 ms 50 ms 50 ms

OPC DA server AE x x x x

 Number of connections 8 8 8 8

Remarks:
1) in preparation

Table 452: Modbus, Telecontrol
Processor module PM5630 PM5650 PM5670 PM5675
Modbus TCP client / server x x x x

 Number of Modbus clients ModMast
in parallel on a CPU master (server)

30 50 120 120

 Number of Modbus server in parallel
(e.g. for SCADA access)

15 25 50 50

IEC 60870-5-104 telecontrol protocol x x x x

 Number of free tags
+ additional license for extension 1)

1.000 5.000 10.000 10.000

 Control station (number of connec-
tions)

5 10 20 20

 Sub-station (number of connections) 5 10 20 20

Remarks:
1) in preparation

Communication
and onboard
protocols

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2525

Ordering data

Part no. Description Product life cycle phase *)
1SAP 131 000 R0278 PM5630-2ETH, processor module,

memory 8 MB, 24 V DC, memory card
slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet
TCP/IP interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols

Active

1SAP 331 000 R0278 PM5630-2ETH-XC, processor module,
memory 8 MB, 24 V DC, memory card
slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet
TCP/IP interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols,
XC version

Active

1SAP 141 000 R0278 PM5650-2ETH, processor module,
memory 80 MB, 24 V DC, memory
card slot, interface 1 RS-232/485,
display, 2 RJ45 independent
onboard Ethernet TCP/IP interfaces
with Modbus TCP, web server,
IEC60870-5-104 or selectable
Ethernet based protocols

Active

1SAP 341 000 R0278 PM5650-2ETH-XC, processor module,
memory 80 MB, 24 V DC, memory
card slot, interface 1 RS-232/485,
display, 2 RJ45 independent
onboard Ethernet TCP/IP interfaces
with Modbus TCP, web server,
IEC60870-5-104 or selectable
Ethernet based protocols, XC version

Active

1SAP 151 000 R0278 PM5670-2ETH, processor module,
memory 160 MB, 24 V DC,
memory card slot, interface
1 RS-232/485, display, 2 RJ45
independent onboard Ethernet TCP/IP
interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols

Active

1SAP 351 000 R0278 PM5670-2ETH-XC, processor module,
memory 160 MB, 24 V DC,
memory card slot, interface
1 RS-232/485, display, 2 RJ45
independent onboard Ethernet TCP/IP
interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols,
XC version

Active

Processor
modules for
AC500
(Standard) V3
products

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2526

Part no. Description Product life cycle phase *)
1SAP 151 500 R0278 PM5675-2ETH, processor module,

memory 160 MB, 8 GB flash disk,
24 V DC, memory card slot,
interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet
TCP/IP interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols

Active

1SAP 351 500 R0278 PM5675-2ETH-XC, processor module,
memory 160 MB, 8 GB flash disk,
24 V DC, memory card slot,
interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet
TCP/IP interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Table 453: Accessories
Part no. Description
1SAP 180 300 R0001 TA521, lithium battery

1SAP 180 100 R0001 MC502, memory card

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2527

1.6.3.4 Communication modules (AC500 standard)
1.6.3.4.1 Overview

AC500 communication modules are required for
● a connection to standard field bus systems and
● for integration into existing networks.
AC500 communication modules
● enable communication on different field buses.
● are mounted on the left side of the processor module on the same terminal base.
● are directly powered via the internal communication module bus of the terminal base.

A separate voltage source is not required.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2528

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

For information on mounting and demounting, please refer to the chapter
mounting and demounting the communication modules Ä Chapter 1.6.4.6.3.5
“Mounting/Demounting the communication modules” on page 3414.

The communication between the processor module and the communication modules takes
place via the communication module bus, which is integrated in the terminal base. Depending
on the used terminal base up to 6 communication modules can be connected.
● Ä Chapter 1.6.3.2.1 “TB56xx for AC500 V3 products” on page 2430

There are no restrictions concerning which communication modules can be arranged for a
processor module.
Within the AC500 control system, the communication modules can be used as
● bus master or
● slave.
It depends on the
● selected protocol,
● the functionality of the communication module and
● the several field buses and networks.
The following name extensions of the device names describe the supported field bus/protocol:
● CMxyz-ETH: Ethernet
● CMxyz-DP: PROFIBUS
● CMxyz-PNIO: PROFINET
● CMxyz-ETHCAT: EtherCAT
● CMxyz-CN: CANopen
● CMxyz-RCOM: RCOM/RCOM+ protocol (and 2 serial interfaces)
● CMxyz-RS: 2 serial interfaces (COM1/COM2)
If a XC version of the device is available, for use in extreme ambient conditions (e.g. wider
temperature and humidity range), this is indicated with a snowflake sign.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2529

Compatibility of communication modules and communication interface modules
Table 454: Modbus TCP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard
Ethernet inter-
face

CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

Table 455: PROFINET IO RT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x x x remote I/O,
safety I/O

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x -- -- hot swap I/O

Table 456: CANopen
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard CAN
interface

CI581-CN
CI582-CN

-- -- -- remote I/O

Table 457: EtherCAT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-ETHCAT
master

CI511-ETHCAT
CI512-ETHCAT

x x -- remote I/O

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2530

Technical data (Overview)

Com-
muni-
cation
modul
e

Field
bus

Trans-
mis-
sion
rate

Field
bus
con-
nector

Pro-
cessor

Com-
muni-
cation
modul
e inter-
face

Cur-
rent
con-
sump-
tion
from
24 V
DC
power
supply
at the
ter-
minal
base of
the
CPU

Interna
l RAM
memor
y

External
RAM
memory

External
flash
memory

CM579
-
ETHCA
T

EtherC
AT

10 or
100
MBit/s

2 x
RJ45

Hilsche
r NETX
100

Dual-
port
memor
y, 16
kB

Typ. 85
mA

128 kB 8 MB 4 or 8
MB

CM598
-CN

CANop
en

10 ... 1
MBit/s

COM-
BICON
2x 5-
pin,
bended

Hilsche
r NETX
100

Dual-
port
memor
y, 16
kB

Typ. 65
mA

128 kB 8 MB 8 MB

CM579
-PNIO

PROFI
NET

100
MBit/s

2 x
RJ45

Hilsche
r NETX
100

Dual-
port
memor
y, 16
kB

Typ. 85
mA

128 kB 8 MB 4 or 8
MB

1.6.3.4.2 Compatibility of communication modules and communication interface modules
Table 458: Modbus TCP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard
Ethernet inter-
face

CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

Table 459: PROFINET IO RT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x x x remote I/O,
safety I/O

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x -- -- hot swap I/O

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2531

Table 460: CANopen
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard CAN
interface

CI581-CN
CI582-CN

-- -- -- remote I/O

Table 461: EtherCAT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-ETHCAT
master

CI511-ETHCAT
CI512-ETHCAT

x x -- remote I/O

1.6.3.4.3 CANopen
CM598-CN - CANopen master

● CANopen master 1 Mbit/s
● XC version for use in extreme ambient conditions available

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2532

1 5 LEDs for state display
2 Label
3 Communication interface, 5-pin, Combicon, male, removable plug with spring terminals

Sign for XC version

Purpose
Communication module CM598-CN enables communication over the CANopen field bus.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

The AC500 V3 CPUs only support CAN 2A/2B protocol on the communication
module CM598-CAN Ä Chapter 1.6.6.2.11.1.1.2 “Configuration of the protocols
CAN 2.0 A / CAN 2.0 B” on page 3740.

Support of CANopen protocol is in preparation.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2533

Connections
Field bus interface

Interface socket 5-pin COMBICON

Transmission standard ISO 11898, potential-free

Transmission protocol CANopen (CAN), 1 Mbaud max.

Transfer rate (transmis-
sion rate)

10 kbit/s, 20 kbit/s, 50 kbit/s, 100 kbit/s, 125 kbit/s, 250 kbit/s, 500
kbit/s, 800 kbit/s and 1 Mbit/s,

The CANopen connector has the following pin assignment:

Interface PIN Signal Description

Terminal block
removed

Terminal block
inserted

1 CAN_GND CAN reference potential

2 CAN_L Bus line, receive/transmit line,
LOW

3 CAN_SHLD Shield of the bus line

4 CAN_H Bus line, receive/transmit line,
HIGH

5 NC Not connected

NOTICE!
Unused connector!
Make sure that the terminal block is always connected to the terminal base or
communication module, even if you do not use the interface.

The maximum possible bus length of a CAN network depends on bit rate (transmission rate)
and cable type. The sum of all bus segments must not exceed the maximum bus length

Bit Rate (speed) Bus Length
1 Mbit/s 40 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

50 kbit/s 1000 m

For CANopen, only bus cables with characteristics as recommended in ISO 11898 are to be
used. The requirements for the bus cables depend on the length of the bus segment. Regarding
this, the following recommendations are given by ISO 11898:

Pin assignment

Bus length

Types of bus
cables

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2534

Length of seg-
ment [m]

Bus cable (shielded, twisted pair) Max. transmis-
sion rate [kbit/s]

 Conductor
cross section
[mm²]

Line resistance
[W/km]

Wave impe-
dance [W]

0...40 0.25...0.34 /
AWG23, AWG22

70 120 1000 at 40 m

40...300 0.34...0.60 /
AWG22, AWG20

< 60 120 < 500 at 100 m

300...600 0.50...0.60 /
AWG20

< 40 120 < 100 at 500 m

600...1000 0.75...0.80 /
AWG18

< 26 120 < 50 at 1000 m

The ends of the data lines have to be terminated with a 120 W bus terminating resistor. The bus
terminating resistor is usually installed directly at the bus connector.

1
2

4

3
1
2

4

3
1
2

4

3

6 6 6

12
0

12
0

Node 1 Node 2 Node N5 5

Fig. 102: CANopen interface, bus terminating resistors connected to the line ends

1 CAN_GND

2 CAN_L

3 Shield

4 CAN_H

5 Data line, shielded twisted pair

6 COMBICON connection, CANopen interface

Bus terminating
resistors

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2535

12
0

12
0

4

 2

3

1

4

2

3

1

+24 V

0 V
5

6

7

9

11

5

7

12

13

8

10

Fig. 103: DeviceNet interface, bus terminating resistors connected to the line ends

6 DeviceNet power supply

7 COMBICON connection, DeviceNet interface

8 Data lines, twisted pair cables

9 red

10 black

11 white

12 blue

13 bare

The grounding of the shield should take place at the switchgear. Please refer to
Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2536

State LEDs
Table 462: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green ON (light) Power supply available

OFF (dark) Power supply not available or defective
hardware

RDY Yellow ON Boot procedure

Blinking Boot failure

OFF ---

RUN Green ON Communication module is operational

Blinking ---

OFF Communication module is not operational

CAN-RUN Green ON Operational: Device is in the
OPERATIONAL state

Single Flash Stopped: Device is in STOPPED state

Blinking Pre-operational: Device is in the
PREOPERATIONAL state

OFF No communication or no power supply

CAN-ERR Red ON CANopen bus is off

Single flash Warning limit reached: At least one of the
error counters of the CAN controller has
reached or exceeded the warning level
(too many error frames)

Double flash Error control event: A guard event (NMT
Slave or NMTmaster) or a heartbeat event
(Heartbeat consumer) has occurred

OFF No Error: Device is in working condition

CAN-RUN Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.CAN-ERR Yellow

LED state
during
firmware
update

CAN-RUN Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.CAN-ERR Red

CAN-RUN Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

CAN-ERR Red

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2537

Parameter Value
Protocol CANopen master (in preparation), CAN2A,

CAN2B

Transmission rate 10 kbit/s to 1 Mbit/s

Ambient temperature see:
System data AC500 Ä Chapter 1.6.4.6.1
“System data AC500” on page 3398

System Data AC500 XC Ä Chapter 1.6.4.7.1
“System data AC500-XC” on page 3450

Usable terminal bases All TB5xx

Field bus connector Pluggable connector COMBICON, 5-pin

Technology Hilscher NETX 100

Indicators 5 LEDs

Internal power supply Via the communication module interface of the
terminal base

Current consumption from 24 V DC power
supply at the Terminal Base of the CPU

Typ. 65 mA

Number of Slaves Max. 126

Number of receive/transmit PDOs Max. 512 (respectively for receive and
transmit)

Total quantity of input and output data Max. 3584 byte (respectively for input and
output)

Weight Ca. 150 g

Ordering data

Part no. Description Product life cycle phase *)
1SAP 173 800 R0001 CM598-CN, communication module

CANopen master
Active

1SAP 373 800 R0001 CM598-CN-XC, communication
module CANopen master, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2538

1.6.3.4.4 EtherCAT
CM579-ETHCAT - EtherCAT master

1 5 LEDs for state display
2 2 rotary switches for address setting (not used)
3 Label
4 2 communication interfaces RJ45 (ETHCAT1 and ETHCAT2)

Intended purpose
Communication module CM579-ETHCAT is for EtherCAT communication.
The comunication module is configured via the dual-port memory by means of a system config-
urator. The configuration is saved on a non-volatile Flash EPROM memory.
Ä Chapter 1.7.3.4.1 “CM579-ETHCAT” on page 4074

Connections
Field bus interfaces

The EtherCAT communication module provides 2 RJ45 interfaces with the following pin assign-
ment. The pin assignment is used for the EtherCAT slaves (communication interface modules
CI5xy-ETHCAT) as well.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2539

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.4.6.4.7 “Ethernet connection details” on page 3424.

The EtherCAT network differentiates between input-connectors (IN) and output-
connectors (OUT):

At the EtherCAT slaves (communication interface modules), the ETH1-con-
nector is IN and the ETH2-connector is OUT.

At the EtherCAT master (communication module), the ETHCAT1 connector has
to be used. The ETHCAT2 connector is reserved for future extensions.

Pin assignment

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2540

State LEDs
The EtherCAT state is shown by the EtherCAT communication module's LEDs. Some LEDs are
two-colored.

Table 463: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green On Power supply available

Blinking ---

Off Power supply not available or defective
hardware

RDY Yellow On Boot procedure

Blinking Boot failure

Off ---

RUN Green On Communication module is operational

Blinking ---

Off Communication module is not operational

STA1 Green On No bus error, communication running

Blinking Establishing communication

Off System error

STA2 Red On Configuration error

Blinking ---

Off No error

STA1 Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.STA2 Yellow

LED state
during
firmware
update

STA1 Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.STA2 Red

STA1 Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

STA2 Red

The RJ45 Ethernet connector contains two LEDs showing the current Ethernet port connection
state.

Table 464: Meaning of the diagnosis LEDs
LED Color State Description

ETHCAT1 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

ETHCAT1 LED "RX/TX" Yellow On Device sends/receives frames

Off No Ethernet connection

ETHCAT2 LED "Link" Green Connector ETHCAT2 is not used

ETHCAT2 LED "RX/TX" Yellow

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2541

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Internal Supply Via the communication module interface of the

terminal base

Protocol EtherCAT

Field bus connector 2 x RJ45 (ETHCAT1 and ETHCAT2)

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Bus length (segment length max.) 100 m at 100 Mbit/s

Indicators 5 LEDs

Usable CPUs PM56xx Ä Chapter 1.6.3.3.2.1
“PM56xx-2ETH for AC500 V3 products”
on page 2516

Usable terminal bases All TB56xx (not TB5600) Ä Chapter
1.6.3.2.1 “TB56xx for AC500 V3 products”
on page 2430

Ambient temperature System data AC500 Ä Chapter 1.6.4.6.1
“System data AC500” on page 3398

System Data AC500 XC Ä Chapter 1.6.4.7.1
“System data AC500-XC” on page 3450

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 85 mA

Internal supply Via the communication module interface of the
terminal base

Number of slaves Limited to 200

Quantity of input and output data for a single
slave

Max. 5760 bytes (respectively for input and
output)

Total quantity of input and output data Max. 5760 bytes (only valid for asynchro-
nous operation, for synchronous operation the
reachable values depends on the additional
load of SoE, CoE and EoE, typical reachable
values are 1024 bytes).

Supported protocols RTC - Real-time cyclic protocol, class 1
RTA - Real-time acyclic protocol

Acyclic services ● CoE upload
● CoE download (1500 bytes max.)
● Emergency

Min. bus cycle 1 ms

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2542

Parameter Value
Max. size of the bus configuration file 2 MB

Weight Ca. 170 g

Ordering data

Part no. Description Product life cycle phase *)
1SAP 170 902 R0101 CM579-ETHCAT, EtherCAT

communication module
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.3.4.5 PROFINET
CM579-PNIO - PROFINET IO RT controller

● PROFINET IO controller
● Integrated 2-port switch
● XC version for use in extreme ambient conditions available

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2543

1 5 LEDs for state display
2 2 rotary switches for address setting (not used)
3 Label
4 2 communication interfaces RJ45 (PNIO1 and PNIO2)

Sign for XC version

Intended purpose
The communication module is for PROFINET RT communication.
The PROFINET communication module includes an internal Ethernet switch. The connection to
the Ethernet can be established directly to the communication module. An additional switch is
not necessary.
The communication module is configured via the dual-port memory by means of a system
configurator. The configuration is saved on a non-volatile Flash EPROM memory.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2544

Functionality

Parameter Value
Protocol PROFINET IO RT

Usable CPUs PM57x, PM58x, PM59x
Ä Chapter 1.6.3.3.2.1 “PM56xx-2ETH for
AC500 V3 products” on page 2516

Usable terminal bases All TB56xx (not TB5600) Ä Chapter
1.6.3.2.1 “TB56xx for AC500 V3 products”
on page 2430

Field bus connector 2 RJ45 (PNIO1 and PNIO2), with integrated
2-port switch

Internal supply Via the communication module interface of the
terminal base

Connections
Field bus interfaces

The communication module provides 2 RJ45 interfaces.

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.4.6.4.7 “Ethernet connection details” on page 3424.

Pin assignment

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2545

State LEDs
The PROFINET state is shown by the state LEDs.

Table 465: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green On Power supply available

Blinking ---

Off Power supply not available or defective
hardware

RDY Yellow On Boot procedure

Blinking Boot failure

Off ---

RUN Green On Communication module is operational

Blinking ---

Off Communication module is not operational

STA1 Red On Diagnosis alarm reported. At least one
device is having a diagnosis alarm. In
incorporation with STA2 PNIO: License
fault.

Blinking System error

Off No system error

STA2 Red On No connection; in incorporation with STA1
PNIO: license fault

Blinking Configuration fault: some configured I/O
modules are not connected

Off No bus error, communication is running

STA1 Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.STA2 Yellow

LED state
during
firmware
update

STA1 Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.STA2 Red

STA1 Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

STA2 Red

The RJ45 Ethernet connector contains two LEDs showing the current Ethernet port connection
state.

Table 466: Meaning of the diagnosis LEDs
LED Color State Description

PNIO1 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

PNIO1 LED "RX/TX" Yellow On ---

Blinking PROFINET device sends/receives
frames

Off ---

PNIO2 LED "Link" Green On Ethernet connection established

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2546

LED Color State Description
Off No Ethernet connection

PNIO2 LED "RX/TX" Yellow On ---

Blinking PROFINET device sends/receives
frames

Off ---

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Protocol PROFINET IO RT

Bus connection 2 RJ45 (PNIO1 and PNIO2), with integrated 2-
port switch

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Bus length (segment length max.) 100 m

Indicators 5 LEDs

Usable terminal bases All TB5xx
All TB56xx (not TB5600) Ä Chapter 1.6.3.2.1
“TB56xx for AC500 V3 products” on page 2430

Supported alarm types Process alarm, diagnostic alarm, return of Sub-
Module, plug alarm, pull alarm

Alarm processing Requires handling in application program

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 85 mA

Internal supply Via the communication module interface of the
terminal base

Weight Ca. 170 g

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2547

Parameter Value
Supported protocols RTC - real-time cyclic protocol, class 1

RTA - real-time acyclic protocol
DCP - discovery and configuration protocol *)
CL-RPC - connectionless remote procedure call
Since revision FW 2.4.8.0 additionally
LLDP - link layer discovery protocol
SNMP - simply network management protocol
(SNMP v1)

Acyclic services PNIO read / write (max. 1392 bytes per telegram,
max. 4096 bytes per service request)

Total quantity of input and output data

 CM579-PNIO < FW 2.4.8.0 1024 bytes per I/O module
3072 bytes in total

 CM579-PNIO = FW 2.4.8.0 1024 bytes per I/O module
4096 bytes in total

 CM579-PNIO > FW 2.4.8.0 1440 bytes per I/O module
PM5630, PM5650: 4096 bytes in total
PM567x: 5120 bytes in total

Min. bus cycle 1 ms

Conformance class CC A

*) CM579-PNIO does not allow setting "Station name" by using PROFINET service "DCP SET
NameOfStation".

Ordering data

Part no. Description Product life cycle phase *)
1SAP 170 901 R0101 CM579-PNIO, PROFINET

communication module
Active

1SAP 370 901 R0101 CM579-PNIO-XC, PROFINET
communication module, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2548

1.6.3.5 Terminal units (AC500 standard)

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

Conditions for hot swapping
– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltages (SELV/PELV) are switched off.
– Modules are completely plugged on the terminal unit with both snap fit

engaged before switching on loads or input/output voltage.

Hot swap
Further information about hot swap: Ä Chapter 1.6.5.1.8 “Hot swap”
on page 3523.

1.6.3.5.1 TU507-ETH and TU508-ETH for Ethernet communication interface modules
● TU507-ETH, Ethernet terminal unit, 24 V DC, screw terminals
● TU508-ETH, Ethernet terminal unit, 24 V DC, spring terminals
● TU508-ETH-XC, Ethernet terminal unit, 24 V DC, spring terminals, XC version

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2549

1 I/O bus (10 pins, female) to connect the first terminal unit
2a Plug (2x 25 pins) to connect the inserted Ethernet communication interface module
2b Plug (3x 19 pins) to connect the inserted Ethernet communication interface module
3 With a screwdriver, inserted in this place, the terminal unit and the adjacent terminal unit can

be shoved from each other
4 2 holes for wall mounting
5 2 RJ45 interfaces with indication LEDs for connection with the Ethernet network
6 30 terminals for signals and process supply voltages (UP and UP3)
7 DIN rail

The Ethernet communication interface modules plug into the Ethernet terminal unit. When
properly seated, they are secured with two mechanical locks. All the connections are made
through the Ethernet terminal unit, which allows removal and replacement of the Ethernet
communication interface modules without disturbing the wiring at the Ethernet terminal unit.
The Ethernet terminal units TU507-ETH and TU508-ETH are specifically designed for use with
AC500/S500 Ethernet communication interface modules (e. g. CI501-PNIO).

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2550

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

– For information about wiring specifications see the description of the
terminal units Ä Chapter 1.6.4.6.4.3 “Terminals at the terminal unit”
on page 3417.

– For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly, Construction and Con-
nection chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

– For information about mechanical dimensions, please refer to the Mechan-
ical dimensions S500 chapter Ä Chapter 1.6.4.6.2.3 “Mechanical dimen-
sions S500” on page 3406

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

The assignment of the other terminals is dependent on the inserted communication interface
module.

XC version

Terminals

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2551

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.3.8.3.4 “TA535 - Protective caps for XC devices”
on page 3333

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Number of I/O channels per module Max. 24 (depending on the inserted communi-

cation interface module)

Distribution of the channels into groups 3 groups of max. 8 channels each (1.0...1.7,
2.0...2.7, 3.0...3.7), the allocation of the chan-
nels is given by the inserted Ethernet bus
module

Network interface connector 2 RJ45, 8-pole

Rated voltage 24 V DC

Max. permitted total current 10 A via the supply terminals (UP, UP3 and
ZP)

Ethernet 10/100 base-TX or 100 base-TX (depending
on CI5xx module plugged in), 2 RJ45 socket

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring-type terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2552

Ordering data

Part no. Description Product life cycle phase *)
1SAP 214 200 R0001 TU507-ETH, Ethernet terminal unit,

24 V DC, screw terminals
Active

1SAP 214 000 R0001 TU508-ETH, Ethernet terminal unit,
24 V DC, spring terminals

Active

1SAP 414 000 R0001 TU508-ETH-XC, Ethernet terminal
unit, 24 V DC, spring terminals,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.3.5.2 TU515, TU516, TU541 and TU542 for I/O modules
● TU515, I/O terminal unit, 24 V DC, screw terminals
● TU516, I/O terminal unit, 24 V DC, spring terminals
● TU516-XC, I/O terminal unit, 24 V DC, spring terminals, XC version
● TU516-H, I/O terminal unit, hot swap, 24 V DC, spring terminals
● TU516-H-XC, I/O terminal unit, hot swap, 24 V DC, spring terminals, XC version
● TU541, I/O terminal unit, 24 V DC, screw terminals
● TU542, I/O terminal unit, 24 V DC, spring terminals
● TU542-XC, I/O terminal unit, 24 V DC, spring terminals, XC version
● TU542-H, I/O terminal unit, hot swap, 24 V DC, spring terminals
● TU542-H-XC, I/O terminal unit, hot swap, 24 V DC, spring terminals, XC version
The input/output modules plug into the I/O terminal unit. When properly seated, they are
secured with two mechanical locks. All the connections are established via the terminal unit,
which allows removal and replacement of the I/O modules without disturbing the wiring at the
terminal unit.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2553

1 I/O bus (10 pins, male) to connect the previous terminal unit, the CPU terminal base or the
communication interface module to the terminal unit

2 I/O bus (10 pins, female) to connect other terminal units
3a Plug (2 x 25 pins) to connect the inserted I/O modules
3b Plug (2 x 19 pins) to connect the inserted I/O modules
4 With a screwdriver inserted in this place, the terminal unit and the adjacent terminal unit can

be shoved from each other
5 Holes for screw mounting
6 40 terminals for signals and process supply voltage
7 DIN rail
8 White border signifies hot swap capability of the terminal unit

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

Hot swap

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2554

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

Hot swap is not supported by AC500-eCo V3 CPU!

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2555

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC561 B2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2556

Device Min. required device index for I/O module as of
FW Version 3.0.14

DI572 A1

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for XC
version.

The figure 4 in the Part no. 1SAP4... (lable) identifies the XC version.

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

XC version

Terminals

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2557

– For information about wiring specifications see the description of the
terminal units Ä Chapter 1.6.4.6.4.3 “Terminals at the terminal unit”
on page 3417.

– For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly, Construction and Con-
nection chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

– For information about mechanical dimensions, please refer to the Mechan-
ical dimensions S500 chapter Ä Chapter 1.6.4.6.2.3 “Mechanical dimen-
sions S500” on page 3406

The following terminals are used for connection of the process supply voltage.

 Terminals
Type 1.8 2.8 3.8 4.8 1.9 2.9 3.9 4.9

TU515,
TU516
and
TU516-H

These terminals are internally connected
with assignment: process supply voltage
UP = +24 V DC

These terminals are internally connected
with assignment: process supply voltage
ZP = 0 V

TU541,
TU542
and
TU542-H

These terminals
are internally con-
nected with assign-
ment: process
voltage UP = +24 V
DC

Separate
process
supply
voltage
UP3 =
+24 V
DC

Separate
process
supply
voltage
UP4 =
+24 V
DC

These terminals
are internally con-
nected with assign-
ment: process
supply voltage ZP =
0 V

Separate
process
supply
voltage
ZP = 0 V

Separate
process
supply
voltage
ZP = 0 V

The assignment of the other terminals depends on the inserted communication interface module
(see the description of the respective module used).

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Number of channels per module Max. 32

Distribution of the channels into groups 4 groups of 8 channels each (1.0...1.7,
2.0...2.7, 3.0...3.7, 4.0...4.7), the allocation of
the channels is given by the inserted I/O
module

Rated voltage 24 V DC

Max. permitted total current 10 A, per separated process voltage terminal
or for internal connection of process voltages

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2558

Parameter Value
Screw terminals Front terminal, conductor connection vertically

with respect to the printed circuit board

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

Ordering data

Part no. Description Product life cycle phase *)
1SAP 212 200 R0001 TU515, I/O terminal unit, 24 V DC,

screw terminals
Active

1SAP 212 000 R0001 TU516, I/O terminal unit, 24 V DC,
spring terminals

Active

1SAP 412 000 R0001 TU516-XC, I/O terminal unit, 24 V DC,
spring terminals, XC version

Active

1SAP 215 000 R0001 TU516-H, I/O terminal unit, hot swap,
24 V DC, spring terminals, XC version

Active

1SAP 415 000 R0001 TU516-H-XC, I/O terminal unit,
hot swap, 24 V DC, spring terminals

Active

1SAP 213 000 R0001 TU541, I/O terminal unit, 24 V DC,
screw terminals

Active

1SAP 213 200 R0001 TU542, I/O terminal unit, 24 V DC,
spring terminals

Active

1SAP 413 200 R0001 TU542-XC, I/O terminal unit, 24 V DC,
spring terminals, XC version

Active

1SAP 215 200 R0001 TU542-H, I/O terminal unit, hot swap,
24 V DC, spring terminals

Active

1SAP 415 200 R0001 TU542-H-XC, I/O terminal unit,
hot swap, 24 V DC, spring terminals,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.3.5.3 TU517 and TU518 for communication interface modules
● TU517, terminal unit, 24 V DC, screw terminals
● TU518, terminal unit, 24 V DC, spring terminals
● TU518-XC, terminal unit, 24 V DC, spring terminals, XC version

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2559

1 I/O bus (10 pins, female) to connect the first terminal unit
2a Plug (2 25 pins) to connect the inserted communication interface module
2b Plug (2 19 pins) to connect the inserted communication interface module
3 With a screwdriver, inserted in this place, the terminal unit and the adjacent I/O terminal unit

can be shoved from each other
4 2 holes for wall mounting
5 10 terminals for connection with the bus system
6 30 terminals for signals and process supply voltages (UP and UP3)
7 DIN rail

The communication interface modules plug into the terminal unit. When properly plugged-in,
they are secured with two mechanical locks. All the connections are established via the terminal
unit, which allows removal and replacement of the communication interface modules without
disturbing the wiring at the terminal unit.
The terminal units TU517 and TU518 are specifically designed for use with AC500/S500 com-
munication interface modules (e. g. CI581-CN, CI541-DP):
● CANopen communication interface modules
● DeviceNet modules
● PROFIBUS DP communication interface modules

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2560

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

– For information about wiring specifications see the description of the
terminal units Ä Chapter 1.6.4.6.4.3 “Terminals at the terminal unit”
on page 3417.

– For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly, Construction and Con-
nection chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

– For information about mechanical dimensions, please refer to the Mechan-
ical dimensions S500 chapter Ä Chapter 1.6.4.6.2.3 “Mechanical dimen-
sions S500” on page 3406

The terminals 2.8, 3.8, 2.9, 3.9 and 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted communication interface
module:
● Terminals 2.8 and 3.8: process supply voltage UP = +24 V DC
● Terminal 4.8: process supply voltage UP3 = +24 V DC
● Terminals 2.9, 3.9 and 4.9: process supply voltage ZP = 0 V
The assignment of the other terminals depends on the inserted communication interface module
(see communication interface modules for CANopen and PROFIBUS).

XC version

Terminals

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2561

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Number of I/O channels per module Max. 24 (depending on the inserted communi-

cation interface module)

Distribution of the channels into groups 3 groups of max. 8 channels each (2.0...2.7,
3.0...3.7, 4.0...4.7), the allocation of the chan-
nels is given by the inserted communication
interface module

Network interface connector 10 screw or spring terminals (1.0...1.9)

Rated voltage 24 V DC

Max. permitted total current 10 A via the supply terminals (UP, UP3 and
ZP)

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

Ordering data

Part no. Description Product life cycle phase *)
1SAP 211 400 R0001 TU517, terminal unit, 24 V DC, screw

terminals
Active

1SAP 211 200 R0001 TU518, terminal unit, 24 V DC, spring
terminals

Active

1SAP 411 200 R0001 TU518-XC, terminal unit, 24 V DC,
spring terminals, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.3.5.4 TU531 and TU532 for I/O modules
● TU531, I/O terminal unit, 230 V AC, screw terminals
● TU532, I/O terminal unit, 230 V AC, spring terminals
● TU532-XC, I/O terminal unit, 230 V AC, spring terminals, XC version

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2562

● TU532-H, I/O terminal unit, hot swap, 230 V AC, spring terminals
● TU532-H-XC, I/O terminal unit, hot swap, 230 V AC, spring terminals, XC version

1 I/O bus (10 pins, male) to connect the previous terminal unit, the CPU terminal base or the
communication interface module to the terminal unit

2 I/O bus (10 pins, female) to connect other terminal units
3a Plug (2 x 25 pins) to connect the inserted I/O modules
3b Plug (3 x 19 pins) to connect the inserted I/O modules
4 With a screwdriver inserted in this place, the terminal unit and the adjacent I/O terminal unit

can be shoved from each other
5 Holes for screw mounting
6 40 terminals for signals and process supply voltage
7 DIN rail
8 White border signifies hot swap capability of the terminal unit

The input/output modules (I/O modules) plug into the I/O terminal unit. When properly plugged-
in, they are secured with two mechanical locks. All the connections are established via the
terminal unit, which allows removal and replacement of the I/O modules without disturbing the
wiring at the terminal unit.
The terminal units TU531 and TU532 are specifically designed for use with AC500/S500 I/O
modules that incorporate 115-230 V AC inputs and/or 230 V AC relay outputs.

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

Hot swap

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2563

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

Hot swap is not supported by AC500-eCo V3 CPU!

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2564

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC561 B2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2565

Device Min. required device index for I/O module as of
FW Version 3.0.14

DI572 A1

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

XC version

Terminals

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2566

– For information about wiring specifications see the description of the
terminal units Ä Chapter 1.6.4.6.4.3 “Terminals at the terminal unit”
on page 3417.

– For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly, Construction and Con-
nection chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

– For information about mechanical dimensions, please refer to the Mechan-
ical dimensions S500 chapter Ä Chapter 1.6.4.6.2.3 “Mechanical dimen-
sions S500” on page 3406

The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, independent of the inserted module:
● Terminals 1.8 to 4.8: process supply voltage UP = +24 V DC
● Terminals 1.9 to 4.9: process supply voltage ZP = 0 V
The assignment of the other terminals depends on the inserted communication interface module
(see the description of the respective module used).
The supply voltage of 24 V DC for the module's circuitry comes from the I/O expansion bus (I/O
bus).

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2567

Parameter Value
Number of channels per module 32

Distribution of the channels into groups 4 groups of 8 channels each (1.0...1.7,
2.0...2.7, 3.0...3.7, 4.0...4.7), the allocation of
the channels is given by the inserted I/O
module

Terminals 1.8...4.8 and 1.9...4.9

 Max. voltage 30 V DC

 Max. permitted total current 10 A

Terminals 1.0...1.7, 2.0...2.7, 3.0...3.7, 4.0...4.7

 Max. voltage 300 V AC 1)

 Max. permitted current 3 A 2)

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

1) Only when the voltage is not limited by the specification of the I/O channel or the supply input
which is internally connected to the terminal.
2) The terminals are connected to the electronic module via internal connectors (X22 (or 3b),
X23 (or 3b), X32, X33 and X34). The current per terminal is limited by the permitted current of
these connectors.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 217 200
R0001

TU531, terminal unit, 230 V AC,
relays, screw terminals

Active

1SAP 217 000
R0001

TU532, terminal unit, 230 V AC,
relays, spring terminals

Active

1SAP 417 000
R0001

TU532-XC, terminal unit, 230 V AC,
relays, spring terminals, XC version

Active

1SAP 215 100
R0001

TU532-H, terminal unit, hot swap,
230 V AC, relays, spring terminals

Active

1SAP 415 100
R0001

TU532-H-XC, terminal unit, hot swap,
230 V AC, relays, spring terminals, XC
version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2568

1.6.3.6 I/O modules

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

Conditions for hot swapping
– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltages (SELV/PELV) are switched off.
– Modules are completely plugged on the terminal unit with both snap fit

engaged before switching on loads or input/output voltage.

Hot swap
Further information about hot swap: Ä Chapter 1.6.5.1.8 “Hot swap”
on page 3523.

1.6.3.6.1 Digital I/O modules
S500-eCo
DC561 - Digital input/output module

● 16 configurable digital inputs/outputs 24 V DC,
● Connection via Interfast
● Module-wise galvanically isolated

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2569

1 I/O bus
2 16 yellow LEDs to display the states of the inputs/outputs C0 to C15
3 Terminal number
4 Allocation of signal name
5 Interfast connector (20-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The digital I/O module DC561 can be connected to the following devices via the I/O bus
connector:
● S500 communication interface modules (e. g. CI501-PNIO, CI541-DP, CI581-CN)
● AC500 CPUs
● other AC500 I/O modules

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

The module contains 16 digital channels in 1 group, each channel can be used as a digital 24 V
DC input or 24 V DC output.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2570

The inputs/outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs/outputs.

Functionality

Parameter Value
Digital inputs Max. 16 (24 V DC), can be used as sink inputs

Digital outputs Max. 16 (transistor outputs 24 V DC, max. 0.1 A)

LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process voltage 24 V
DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is established out by using the 20-pin Interfast connector. For further informa-
tion, refer to the Interfast documentation.
The assignment of the terminals:
Table 467: Assignment of the terminals for DC561
 PIN Signal Description

1 C0 Input/output signal C0

2 C1 Input/output signal C1

3 C2 Input/output signal C2

4 C3 Input/output signal C3

5 C4 Input/output signal C4

6 C5 Input/output signal C5

7 C6 Input/output signal C6

8 C7 Input/output signal C7

9 C8 Input/output signal C8

10 C9 Input/output signal C9

11 C10 Input/output signal C10

12 C11 Input/output signal C11

13 C12 Input/output signal C12

14 C13 Input/output signal C13

15 C14 Input/output signal C14

16 C15 Input/output signal C15

17 UP Process voltage UP +24 V DC

18 ZP Process voltage ZP 0 V DC

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2571

 PIN Signal Description
19 UP Process voltage UP +24 V DC

20 ZP Process voltage ZP 0 V DC

The arrow located next to the Interfast connector marks terminal 1.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DC561.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Process supply voltage must be connected to UP/ZP of the module. The inputs
and UP/ZP must use the same power supply.

If DC561 with index A0 is used, the process supply voltage must stem from the
same source as the power supply voltage of the CPU. The index consists of 1
letter, followed by 1 digit, and can be found on the type plate of the module next
to the type designator "DC561".

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2572

The module provides several diagnosis functions Ä Chapter 1.6.3.6.1.1.1.6 “Diagnosis”
on page 2574.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.3.6.1.1.1.7
“State LEDs” on page 2574.

I/O Configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6100 1) WORD 6100
0x17D4

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

Remarks:

1) With CS31 and addresses smaller than 70, the value is increased by 1
2) The module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0x25, 0x17, 0x00;

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2573

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DI571

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module
1...10, ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs/outputs
C0...C15

Digital input
or
digital output

Yellow Input/output
is OFF

Input/output is ON
(the LEDs are only
operating if the
module's circuitry is
supplied via the
I/O bus)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2574

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process voltage UP

 Connections Terminals 17 and 19 for UP (+24 V DC); termi-
nals 18 and 20 for ZP (0 V)

 Rated value 24 V DC

 Current consumption via UP terminal 10 mA + 0.1 A per output (max.)

 Max. ripple 5 %

 Inrush current 0.000001 A2s

 Protection against reversed voltage Yes

 Protection fuse on UP Recommended; the outputs must be protected
by an 1 A fast-acting fuse

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Galvanic isolation Yes, between the input/output group and the
rest of the module

Isolated groups 1 group for 16 channels

Surge voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module On request

Input data length 2 bytes

Output data length 2 bytes

Weight Ca. 115 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 16 configurable inputs (24 V DC)

Distribution of the channels into groups 1 (16 channels per group)

Connections of the channels C0 to C15 Terminals 1 to 16

Reference potential for the channels C0 to
C15

Terminals 18 and 20 (negative pole of the
process voltage, name ZP)

No effects of
multiple over-
loads

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2575

Parameter Value
Indication of the input signals 1 yellow LED per channel; the LED is ON when

the input signal is high (signal 1). The module is
powered via the I/O bus.

Input type according to EN 61131-2 Type 1 sink

Input signal range +24 V DC

 Signal 0 -3 V...+5 V

 Undefined signal +5 V...+15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 -3 V...+5 V

Ripple with signal 1 +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire
proximity switches)

1 mA

Input delay (0->1 or 1->0) Typ. 8 ms

Max. cable length

 Shielded 500 m

 Unshielded 300 m

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 16 configurable transistor outputs

Distribution of the channels into groups 1 (16 channels per group)

Connections of the channels C0 to C15 Terminals 1 to 16

Reference potential for the channels C0 to
C15

Terminals 18 and 20 (negative pole of the
process voltage, signal name ZP)

Common power supply voltage Terminals 17 and 19 (positive pole of the
process voltage, signal name UP)

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1). The
module is powered via the I/O bus.

Way of operation Non-latching type

Output voltage at signal 1 UP -0.3 V at max. current

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output current

 Rated current per channel (max.) 0.1 A at UP 24 V DC

 Rated current per group (max.) 1.6 A

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2576

Parameter Value
 Rated current (all channels together,

max.)
1.6 A

 Lamp load (max.) Not applicable

 Max. leakage current with signal 0 < 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 1 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to
load specification

Switching frequency

 With inductive loads Max. 0.5 Hz

Short-circuit-proof / overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V DC
signals

Yes

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2001 DC561, digital input/output module,

16 configurable inputs/outputs,
transistor output, interfast connector

Classic

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DC562 - Digital input/output module
● 16 configurable digital inputs/outputs in 1 group, 24 V DC
● Module-wise galvanically isolated

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2577

1 I/O bus
2 16 yellow LEDs to display the states of the inputs/outputs C0 to C15
3 Terminal number
4 Allocation of signal name
5 Terminal block for input and output signals (9-pin)
6 Terminal block for input and output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs/outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs/outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2578

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process voltage 24 V
DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
The following block diagram shows the internal construction of the digital inputs and outputs:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2579

--- 1

C0 2

C1 3

C2 4

C3 5

C4 6

C5 7

C6 8

C7 9

--- 10

C8 11

C9 12

C10 13

C11 14

C12 15

C13 16

C14 17

C15 18

UP 19

ZP 20

Table 468: Assignment of the terminals:
Terminal Signal Description
1 --- Reserved

2 C0 Input/output signal C0

3 C1 Input/output signal C1

4 C2 Input/output signal C2

5 C3 Input/output signal C3

6 C4 Input/output signal C4

7 C5 Input/output signal C5

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2580

Terminal Signal Description
8 C6 Input/output signal C6

9 C7 Input/output signal C7

10 --- Reserved

11 C8 Input/output signal C8

12 C9 Input/output signal C9

13 C10 Input/output signal C10

14 C11 Input/output signal C11

15 C12 Input/output signal C12

16 C13 Input/output signal C13

17 C14 Input/output signal C14

18 C15 Input/output signal C15

19 UP Process voltage UP +24 V DC

20 ZP Process voltage ZP 0 V DC

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DC562.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2581

Process supply voltage must be connected to UP/ZP of the module. The inputs
and UP/ZP must use the same power supply.

The following figure shows the connection of the digital input/output module DC562:

1

2

--

C0

4 C2

24 VDC
-
+

3 C1

5 C3

6 C4

7 C5

8 C6

9 C7

10

11

C8

13 C10

12 C9

14 C11

15 C12

16 C13

17 C14

18 C15

19 UP

20 ZP

In this connection example, the inputs/outputs C0...C7 are connected as inputs and the inputs/
outputs C8...C15 are connected as outputs.
The module provides several diagnosis functions Ä Chapter 1.6.3.6.1.1.2.6 “Diagnosis”
on page 2584.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.3.6.1.1.2.7
“State LEDs” on page 2584.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2582

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6155 1) WORD 6155
0x180B

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

1) with CS31 and addresses less than 70, the value is increased by 1
2) the module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x06
0x18, 0x0C, 0x00, 0x02, 0x00, 0x00;

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2583

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Inter-
face

Device Module Channel Error-
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DC562

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = Module itself, 1...10 = expansion module 1...10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (4 = DC); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs/outputs
C0...C15

Digital input
or
digital output

Yellow Input/output
is OFF

Input/output is ON
(the LEDs are only
operating if the
module's circuitry is
supplied via the
I/O bus)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2584

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal 20
for ZP (0 V)

 Rated value 24 V DC

 Current consumption via UP terminal 90 mA + 0.5 A per output (max.)

 Max. ripple 5 %

 Inrush current 0.000001 A2s

 Protection against reversed voltage Yes

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Galvanic isolation Yes, between the input/output group and the
rest of the module

 Isolated groups 1 group for 16 channels

Surge voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 4.8 W

Input data length 2 bytes

Output data length 2 bytes

Weight Ca. 125 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 16 configurable inputs (24 V DC)

Distribution of the channels into groups 1 (16 channels per group)

Connections of the channels C0 to C15 Terminals 1 to 16

Reference potential for the channels C0 to
C15

Terminal 20 (negative pole of the process
voltage, name ZP)

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1). The
module is powered through the I/O bus.

Input type according to EN 61131-2 Type 1 sink

No effects of
multiple over-
loads

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2585

Parameter Value
Input signal range +24 V DC

 Signal 0 -3 V...+5 V

 Undefined signal +5 V...+15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 -3 V...+5 V

Ripple with signal 1 +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire
proximity switches)

1 mA

Input delay (0->1 or 1->0) Typ. 8 ms

Max. cable length

 Shielded 500 m

 Unshielded 300 m

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 16 configurable transistor outputs

Distribution of the channels into groups 1 (16 channels per group)

Connections of the channels C0 to C15 Terminals 1 to 16

Reference potential for the channels C0 to
C15

Terminal 20 (negative pole of the process
voltage, signal name ZP)

Common power supply voltage Terminal 19 (positive pole of the process
voltage, signal name UP)

Indication of the input signals 1 yellow LED per channel; the LED is ON when
the input signal is high (signal 1). The module
is powered through the I/O bus.

Way of operation Non-latching type

Output voltage at signal 1 UP -0.3 V at max. current

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 8 A

 Rated current (all channels together,
max.)

8 A

 Lamp load (max.) 5 W

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2586

Parameter Value
 Max. leakage current with signal 0 < 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 3 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching frequency

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V DC
signals

Yes

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Ordering data

Part no. Description Product life cycle phase *)
1SAP 231 900 R0000 DC562, digital input/output module,

16 configurable inputs/outputs,
transistor output

Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2587

DI561 - Digital input module
● 8 digital inputs 24 V DC / 24 V AC (I0 to I7) in 1 group
● Module-wise galvanically isolated

1 I/O bus
2 8 yellow LEDs to display the signal states of the inputs I0 to I7
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2588

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using a removable 9-pin terminal block. These terminal blocks
differ in their connection system (spring terminals or screw terminals, cable mounting from the
front or from the side). The terminal blocks are not included in the module's scope of delivery
and must be ordered separately.

The following block diagram shows the internal construction of the digital inputs:

I0 2

I1 3

I2 4

I3 5

I4 6

I5 7

I6 8

I7 9

C0..7 1

Table 469: Assignment of the terminals:
Terminal Signal Description
1 C0...7 Input common for signals I0 to

I7

2 I0 Input signal I0

3 I1 Input signal I1

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2589

Terminal Signal Description
4 I2 Input signal I2

5 I3 Input signal I3

6 I4 Input signal I4

7 I5 Input signal I5

8 I6 Input signal I6

9 I7 Input signal I7

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DI561.
An external power supply connection is not needed.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

The following figure shows the connection of the digital input module DI561:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2590

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

24 V
DC/AC

+ / ~

– / ~

24 V
DC/AC

+ / ~

– / ~

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

Connection of DI561 - sink inputs Connection of DI561 - source inputs

The module provides several diagnosis functions Ä Chapter 1.6.3.6.1.1.3.6 “Diagnosis”
on page 2592.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.3.6.1.1.3.7
“State LEDs” on page 2593.

I/O Configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6105 1) WORD 6105
0x17D9

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No (0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

1) with CS31 and addresses smaller than 70, the value is increased by 1

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2591

2) the module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xDA, 0x17, 0x00;

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2592

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I7 Digital input Yellow Input is OFF Input is ON

In the undefined signal range, the state LED for the inputs can be ON although
the input state detected by the module is OFF.

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the input group and the rest of

the module

 Isolated groups 1 (8 channels per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module 1.6 W

Weight Ca. 110 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8 inputs (24 V DC / 24 V AC)

Distribution of the channels into
groups

1 (8 channels per group)

Connections of the channels I0 to I7 Terminals 2 to 9

Reference potential for the channels
I0 to I7

Terminal 1 (plus or negative pole of the process supply
voltage, signal name C0..7)

Indication of the input signals 1 yellow LED per channel; the LED is ON when the
input signal is high (signal 1). The module is powered
through the I/O bus.

Monitoring point of input indicator LED is part of the input circuitry

Input type according to EN 61131-2 Type 1 source Type 1 sink Type 1 AC 1)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2593

Parameter Value
Input signal range -24 V DC +24 V DC 24 V AC 50/60 Hz

 Signal 0 -5 V...+3 V -3 V...+5 V 0 V AC...5 V AC

 Undefined signal -15 V...-5 V +5 V...+15 V 5 V AC...14 V AC

 Signal 1 -30 V...-15 V +15 V...+30 V 14 V AC...27 V AC

Input current per channel

 Input voltage 24 V Typ. 5 mA Typ. 5 mA r.m.s.

 Input voltage 5 V Typ. 1 mA Typ. 1 mA r.m.s.

 Input voltage 14 V Typ. 2.7 mA r.m.s.

 Input voltage 15 V > 2.5 mA

 Input voltage 27 V Typ. 5.5 mA r.m.s.

 Input voltage 30 V < 8 mA

Max. permissible leakage current (at
2-wire proximity switches)

1 mA Typ. 1 mA r.m.s.

Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded 500 m

 Unshielded 300 m

1) When inputs are used with 24 V AC, external surge limiting filters are required.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2101 DI561, digital input module, 8 DI,

24 V DC / 24 V AC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DI562 - Digital input module
● 16 digital inputs 24 V DC / 24 V AC (I0 to I15) in 2 groups
● Group-wise galvanically isolated

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2594

1 I/O bus
2 16 yellow LEDs to display the signal states of the inputs I0 to I15
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
The other electronic circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2595

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw-type terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
The following block diagram shows the internal construction of the digital inputs:

I0 2

I1 3

I2 4

I3 5

I4 6

I5 7

I6 8

I7 9

C0..7 1

I8 11

I9 12

I10 13

I11 14

I12 15

I13 16

I14 17

I15 18

C8..15 10

−−− 19

−−− 20

The assignment of the terminals:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2596

Terminal Signal Description
1 C0...7 Input common for signals I0 to I7

2 I0 Input signal I0

3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

6 I4 Input signal I4

7 I5 Input signal I5

8 I6 Input signal I6

9 I7 Input signal I7

10 C8...15 Input common for signals I8 to I15

11 I8 Input signal I8

12 I9 Input signal I9

13 I10 Input signal I10

14 I11 Input signal I11

15 I12 Input signal I12

16 I13 Input signal I13

17 I14 Input signal I14

18 I15 Input signal I15

19 --- Reserved

20 --- Reserved

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DI562.
An external power supply connection is not needed.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2597

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 1.6.3.6.1.1.4.6 “Diagnosis”
on page 2600.
The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

The following figure shows the connection of the digital input module DI562:

1

2

C0..7

I0

4 I2

3 I1

5 I3

6 I4

7 I5

8 I6

9 I7

10

11

C8..15

I8

13 I10

12 I9

14 I11

15 I12

16 I13

17 I14

18 I15

19 ---

20 ---

24 V
DC/AC

+ / ~

– / ~

1

2

C0..7

I0

4 I2

3 I1

5 I3

6 I4

7 I5

8 I6

9 I7

10

11

C8..15

I8

13 I10

12 I9

14 I11

15 I12

16 I13

17 I14

18 I15

19 ---

20 ---

24 V
DC/AC

+ / ~

– / ~

Connection of DI562 - sink inputs Connection of DI562 - source inputs

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2598

The meaning of the LEDs is described in section State LEDs Ä Chapter 1.6.3.6.1.1.4.7 “State
LEDs” on page 2600.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6110 1) WORD 6110
0x17DE

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No (0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

Remarks:

1) With CS31 and addresses less than 70, the value is increased by 1
2) The module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xDF, 0x17, 0x00;

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2599

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DI562

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I15 Digital input Yellow Input is OFF Input is ON

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2600

In the undefined signal range, the state LED for the inputs can be ON although
the input state detected by the module is OFF.

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the input groups and the rest of

the module

 Isolated groups 2 (8 channels per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module 3.2 W

Weight Ca. 115 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Technical data of the digital inputs

Parameter Value
Number of channels per module 16 inputs (24 V DC / 24 V AC)

Distribution of the channels into groups 2 (8 channels per group)

Connections of the channels I0 to I7 Terminals 2 to 9

Connections of the channels I8 to I15 Terminals 11 to 18

Reference potential for the channels I0
to I7

Terminal 1 (positive or negative pole of the process
supply voltage, signal name C0..7)

Reference potential for the channels I8
to I15

Terminal 10 (positive or negative pole of the process
supply voltage, signal name C8..15)

Indication of the input signals 1 yellow LED per channel; the LED is ON when the
input signal is high (signal 1). The module is pow-
ered through the I/O bus.

Monitoring point of input indicator LED is part of the input circuitry

Input type according to EN 61131-2 Type 1 source Type 1 sink Type 1 AC 1)

Input signal range -24 V DC +24 V DC 24 V AC 50/60 Hz

 Signal 0 -5 V...+3 V -3 V...+5 V 0 V AC...5 V AC

 Undefined signal -15 V...-5 V +5 V...+15 V 5 V AC...14 V AC

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2601

Parameter Value
 Signal 1 -30 V...-15 V +15 V...+30 V 14 V AC...27 V

AC

Input current per channel

 Input voltage 24 V Typ. 5 mA Typ. 5 mA r.m.s.

 Input voltage 5 V Typ. 1 mA Typ. 1 mA r.m.s.

 Input voltage 14 V Typ. 2.7 mA r.m.s.

 Input voltage 15 V > 2.5 mA

 Input voltage 27 V Typ. 5.5 mA r.m.s.

 Input voltage 30 V < 8 mA

Max. permissible leakage current (at 2-
wire proximity switches)

1 mA Typ. 1 mA r.m.s.

Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 2 bytes

Max. cable length

 Shielded 500 m

 Unshielded 300 m

1) When inputs are used with 24 V AC, external surge limiting filters are required.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2102 DI562, digital input module, 16 DI,

24 V DC / 24 V AC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2602

DI571 - Digital input module
● 8 digital inputs 100-240 V AC (I0 to I7) in 8 groups
● Module-wise galvanically isolated

1 I/O bus
2 8 yellow LEDs to display the signal states of the inputs I0 to I7
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2603

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

The following block diagram shows the internal construction of the digital inputs:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2604

N0 2

I0 1

N1 4

I1 3

N2 6

I2 5

N3 8

I3 7

N4 11

I4 10

N5 13

I5 12

N6 15

I6 14

N7 17

I7 16

−−− 9

−−− 18

−−− 19

−−− 20

Table 470: Assignment of the terminals:
Terminal Signal Description
1 I0 Input signal I0

2 N0 Neutral conductor for the input signal I0

3 I1 Input signal I1

4 N1 Neutral conductor for the input signal I1

5 I2 Input signal I2

6 N2 Neutral conductor for the input signal I2

7 I3 Input signal I3

8 N3 Neutral conductor for the input signal I3

9 --- Reserved

10 I4 Input signal I4

11 N4 Neutral conductor for the input signal I4

12 I5 Input signal I5

13 N5 Neutral conductor for the input signal I5

14 I6 Input signal I6

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2605

Terminal Signal Description
15 N6 Neutral conductor for the input signal I6

16 I7 Input signal I7

17 N7 Neutral conductor for the input signal I7

18 --- Reserved

19 --- Reserved

20 --- Reserved

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DI571.
An external power supply connection is not needed.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the digital input module DI571:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2606

1

2

I0

N0

4 N1

3 I1

5 I2

6 N2

7 I3

8 N3

9 −−−

10

11

I4

N4

13 N5

12 I5

14 I6

15 N6

16 I7

17 N7

18 −−−

19 −−−

20 −−−

L

N

L

N

L

N

L

N

L

N

L

N

L

N

L

N

L0
N0

L7
N7

NOTICE!
Risk of damaging the PLC modules!
The PLC modules will be irreparably damaged if a voltage > 240 V is con-
nected.
Make sure that all inputs are fed from the same phase. The module must not be
connected to a 400 V voltage.

The module provides several diagnosis functions Ä Chapter 1.6.3.6.1.1.5.7 “Diagnosis”
on page 2609.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.3.6.1.1.5.8
“State LEDs” on page 2609.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2607

Internal data exchange

Parameter Value
Digital inputs (bytes) 1

Digital outputs (bytes) 0

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of the modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6115 1) WORD 6115
0x17E3

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No (0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

1) with CS31 and addresses less than 70, the value is increased by 1
2) the module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xDF, 0x17, 0x00;

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2608

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module
1...10, ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I7 Digital input Yellow Input is OFF Input is ON

(the input voltage is
only displayed if the
supply voltage of the
module is ON)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2609

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the channels and the rest of the

module

 Isolated groups 8 (1 channel per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module On request

Weight Ca. 135 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8 AC inputs (100-240 V AC)

Distribution of the channels into groups 8 (1 channel per group)

Input voltage range 0 V AC..264 V AC (47 Hz...63 Hz)

Input current per channel (typically at 25 °C) <5 mA (at 40 V AC)
>6 mA (at 159 V AC, 50 Hz)
>7 mA (at 159 V AC, 60 Hz)

Connections of the channels I0 to I7 Terminals 1, 3, 5, 7, 10, 12, 14, 16

Reference potential for the channels I0 to I7 Terminals 2, 4, 6, 8, 11, 13, 15, 17

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1)

Input type according to EN 61131-2 Type 1

Input signal range

 Signal 0 (max.) 20 V AC

 Undefined signal 20 V AC < U < 79 V AC

 Signal 1 (min.) 79 V AC

Input delay

 Signal 0 -> 1 Typ. 15 ms

 Signal 1 -> 0 Typ. 30 ms

Input data length 1 byte

Max. permissible leakage current (at 2-wire
proximity switches)

1 mA

Max. cable length

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2610

Parameter Value
 Shielded 500 m

 Unshielded 300 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2103 DI571, digital input module, 8 DI,

100 V AC...240 V AC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DI572 - Digital input module
● 16 digital inputs 100-240 V AC (I0 to I15) in 2 groups
● Module-wise galvanically isolated

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2611

1 I/O bus
2 16 yellow LEDs to display the signal states of the inputs I0 to I15
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2612

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

I1 2

I0 1

I3 4

I2 3

I5 6

I4 5

I7 8

I6 7

I9 11

I8 10

LI11 13

I10 12

I13 15

I12 14

I15 17

I14 16

N0..7 9

N8..15 18

--- 19

--- 20

Fig. 104: Block diagram for the internal construction of the digital inputs.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2613

Table 471: Assignment of the terminals
Terminal Signal Description
1 I0 Input signal I0

2 I1 Input signal I1

3 I2 Input signal I2

4 I3 Input signal I3

5 I4 Input signal I4

6 I5 Input signal I5

7 I6 Input signal I6

8 I7 Input signal I7

9 N0...7 Neutral conductor for the input signals I0...I7

10 I8 Input signal I8

11 I9 Input signal I9

12 I10 Input signal I10

13 I11 Input signal I11

14 I12 Input signal I12

15 I13 Input signal I13

16 I14 Input signal I14

17 I15 Input signal I15

18 N8...15 Neutral conductor for the input signals I8...I15

19 --- Reserved

20 --- Reserved

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DI572.
An external power supply connection is not needed.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2614

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2615

1

2

I0

I1

4 I3

3 I2

5 I4

6 I5

7 I6

8 I7

9 N0..7

10

11

I8

I9

13 I11

12 I10

14 I12

15 I13

16 I14

17 I15

18 N8..15

19 ---

20 ---

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

N

N

NOTICE!
Risk of damaging the PLC modules!
The PLC modules will be irreparably damaged if a voltage > 240 V is con-
nected.
Make sure that all inputs are fed from the same phase. The module must not be
connected to a 400 V voltage.

The module provides several diagnosis functions Ä Chapter 1.6.3.6.1.1.6.6 “Diagnosis”
on page 2618.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2616

Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Param-
eter
name

Value Internal
value

Data type
of
internal
value

Default
value

Min. Max. EDS Slot
Index

Module ID Internal 6160 1) WORD 6160
0x1810

0 65535 xx01 2)

Ignore
module

No 0 BYTE No
0x00

- - -

Yes 1

Parameter
length

Internal 3 BYTE 3 0 255 xx02 2)

Input
delay

20 ms 0 BYTE 20 ms
0x00

0 1 -

100 ms 1

1) With CS31 and addresses less than 70, the value is increased by 1.
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n).
GSD file:

Ext_Module_Prm_Data_Len = 7

Ext_User_Prm_Data_Const(0) = 0x18, 0x11, 0x00, 0x03, 0x00, 0x00, 0x00;

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2617

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

Param-
eter

Remark

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e.g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I15 Digital input Yellow Input is OFF Input is ON

(the input voltage is
only displayed if the
supply voltage of the
module is ON)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2618

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the input groups and the rest of

the module

Isolated groups 2 (8 channels per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module 6 W

Weight Ca. 222 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Technical data of the digital inputs

Parameter Value
Number of channels per module 16 AC inputs (100-240 V AC)

Distribution of the channels into groups 2 (8 channels per group)

Input voltage range 0 V AC...264 V AC (47 Hz...63 Hz)

Input current per channel (typically at 25 °C) < 3 mA (at 40 V AC)
> 6 mA (at 164 V AC)
> 8 mA (at 240 V AC)

Connections of the channels I0..I7 Terminals 1...8

Connections of the channels I8...I15 Terminals 10...17

Reference potential for the channels I0...I7 Terminal 9

Reference potential for the channels I8...I15 Terminal 18

Indication of the input signals 1 yellow LED per channel. The LED is on
when the input signal is high (signal 1).

Input type according to EN 61131-2 Type 1

Input signal range

 Signal 0 (max.) 40 V AC

 Undefined signal 40 V AC < U < 79 V AC

 Signal 1 (min.) 79 V AC

Input delay

 Signal 0 -> 1 Typ. 24 ms

 Signal 1 -> 0 Typ. 24 ms

Input data length 2 bytes

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2619

Parameter Value
Max. permissible leakage current (at 2-wire prox-
imity switches)

1 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Ordering data

Part no. Description Product life cycle phase *)
1SAP 230 500 R0000 DI572, digital input module, 16 DI,

100 V AC...240 V AC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO561 - Digital output module
● 8 digital outputs 24 V DC (O0 to O7) in 1 group
● Module-wise galvanically isolated

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2620

1 I/O bus
2 8 yellow LEDs to display the signal states of the outputs O0 to O7
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (11-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2621

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process supply voltage
24 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

The following block diagram shows the internal construction of the digital outputs:

O0 11

O1 12

O2 13

O3 14

O4 15

O5 16

O6 17

O7 18

−−− 10

UP 19

ZP 20

Table 472: Assignment of the terminals:
Terminals Signal Description
10 --- Reserved

11 O0 Output signal O0

12 O1 Output signal O1

13 O2 Output signal O2

14 O3 Output signal O3

15 O4 Output signal O4

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2622

Terminals Signal Description
16 O5 Output signal O5

17 O6 Output signal O6

18 O7 Output signal O7

19 UP Process supply voltage
UP +24 V DC

20 ZP Process supply voltage
ZP 0 V

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DO561.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the digital output module DO561:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2623

10

11

−−−

O0

13 O2

12 O1

14 O3

15 O4

16 O5

17 O6

18 O7

19 UP

20 ZP

24 VDC
−
+

NOTICE!
Risk of malfunctions in the plant!
The outputs may switch on for a period of 10 to 50 µs if the process supply
voltage UP/ZP is switched on.
This must be considered in the planning of the application.

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external 3 A fast-protection fuse for the outputs.

The module provides several diagnosis functions (see Diagnosis Ä Chapter 1.6.3.6.1.1.7.6
“Diagnosis” on page 2625).
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.3.6.1.1.7.7
“State LEDs” on page 2626.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2624

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6120 1) WORD 6120
0x17E8

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xE9, 0x17, 0x00;

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DO561
3 14 1...10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1...10

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2625

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DO561
3 14 1...10 31 31 43 Internal error in the

module
Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module
1...10, ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Outputs
O0...O7

Digital output Yellow Output is
OFF

Output is ON
(the output voltage is
only displayed if the
supply voltage of the
module is ON)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2626

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal
20 for ZP (0 V DC)

 Rated value 24 V DC

 Current consumption via UP terminal 5 mA + max. 0.5 A per output

 Max. ripple 5 %

 Inrush current 0.000002 A2s

 Protection against reversed voltage Yes

 Rated protection fuse for UP Recommended; the outputs must be pro-
tected by an 3 A fast-acting fuse

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 10 mA

Galvanic isolation Yes, between the output group and the rest of
the module

Isolated groups 1 (8 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Power dissipation within the module (max.) 1.6 W

Weight Ca. 115 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 (8 channels per group)

Connection of the channels O0 to O7 Terminals 11 to 18

Common power supply voltage Terminal 19 (positive pole of the process
voltage, signal name UP)

Reference potential for the channels O0 to O7 Terminal 20 (negative pole of the process
voltage, signal name ZP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1) and
the module is powered via the I/O bus

No effects of
multiple over-
loads

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2627

Parameter Value
Way of operation Non-latching type

Min. output voltage at signal 1 20 V DC at max. current consumption

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 4 A

 Lamp load (max.) 5 W

Max. leakage current with signal 0 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 3 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V
DC

No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2201 DO561, digital output module, 8 DO,

transistor output
Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2628

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO562 - Digital output module
● 16 digital outputs 24 V DC (O0 to O15) in 1 group
● Module-wise galvanically isolated

1 I/O bus
2 16 yellow LEDs to display the signal states of the outputs O0 to O15
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (9-pin)
6 Terminal block for output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2629

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process supply voltage
24 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

The following block diagram shows the internal construction of the digital outputs:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2630

O8 11

O9 12

O10 13

O11 14

O12 15

O13 16

O14 17

O15 18

--- 10

UP 19

ZP 20

--- 1

O0 2

O1 3

O2 4

O3 5

O4 6

O5 7

O6 8

O7 9

Table 473: Assignment of the terminals:
Terminal Signal Description
1 --- Reserved

2 O0 Output signal O0

3 O1 Output signal O1

4 O2 Output signal O2

5 O3 Output signal O3

6 O4 Output signal O4

7 O5 Output signal O5

8 O6 Output signal O6

9 O7 Output signal O7

10 --- Reserved

11 O8 Output signal O8

12 O9 Output signal O9

13 O10 Output signal O10

14 O11 Output signal O11

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2631

Terminal Signal Description
15 O12 Output signal O12

16 O13 Output signal O13

17 O14 Output signal O14

18 O15 Output signal O15

19 UP Process voltage UP (24 V DC)

20 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DO562.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the digital output module DO562:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2632

10

11

O8

13 O10

12 O9

14 O11

15 O12

16 O13

17 O14

18 O15

19 UP

20 ZP

24 VDC
-
+

1

2

O0

4 O2

3 O1

5 O3

6 O4

7 O5

8 O6

9 O7

NOTICE!
Risk of malfunctions in the plant!
The outputs may switch on for a period of 10 to 50 µs if the process supply
voltage UP/ZP is switched on.
This must be considered in the planning of the application.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2633

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external 3 A fast-protection fuse for the outputs.

The module provides several diagnosis functions (see Diagnosis Ä Chapter 1.6.3.6.1.1.8.6
“Diagnosis” on page 2635).
The meaning of the LEDs is described in the section Status LEDs Ä Chapter 1.6.3.6.1.1.8.7
“State LEDs” on page 2635.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6145 1) WORD 6145
0x1801

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x06
0x18, 0x02, 0x00, 0x02, 0x00, 0x00;

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2634

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Inter- face Device Module Channel Error-
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or PNIO: 31 = Module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Outputs
O0...O15

Digital output Yellow Output is
OFF

Output is ON
(the output voltage is
only displayed if the
supply voltage of the
module is ON)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2635

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal 20
for ZP (0 V DC)

 Rated value 24 V DC

 Current consumption via UP terminal 20 mA + max. 0.5 A per output

 Max. ripple 5 %

 Inrush current 0.000002 A2s

 Protection against reversed voltage Yes

 Rated protection fuse for UP Recommended; the outputs must be protected
by an 3 A fast-acting fuse

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Galvanic isolation Yes, between the output group and the rest of
the module

Isolated groups 1 (16 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 1.4 W

Weight Ca. 125 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 16 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 (16 channels per group)

Connection of the channels O0 to O7 Terminals 1 to 9

Connection of the channels O8 to O15 Terminals 11 to 18

Common power supply voltage Terminal 19 (positive pole of the process voltage,
signal name UP)

Reference potential for the channels O0 to
O15

Terminal 20 (negative pole of the process
voltage, signal name ZP)

No effects of
multiple over-
loads

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2636

Parameter Value
Indication of the output signals 1 yellow LED per channel; the LED is on when

the output signal is high (signal 1) and the
module is powered via the I/O bus

Way of operation Non-latching type

Min. output voltage at signal 1 UP -0.3 V at max. current consumption

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 2 bytes

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 8 A

 Lamp load (max.) 5 W

Max. leakage current with signal 0 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 3 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to driven
load specification

Switching Frequencies

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V
DC

No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Ordering data

Part no. Description Product life cycle phase *)
1SAP 230 900 R0000 DO562, digital output module, 16 DO,

transistor output
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2637

Part no. Description Product life cycle phase *)
1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw

front, cable front, 6 pieces per unit
Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO571 - Digital output module
● 8 digital normally open relay outputs 24 V DC / 24 V AC or 100-240 V AC, 2 A max.

(NO0 to NO7) in 2 groups
● Group-wise galvanically isolated

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2638

1 I/O bus
2 8 yellow LEDs to display the signal states of the outputs O0 to O7
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (11-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2639

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminal L+ (process voltage 24 V DC). The negative
pole is provided by the I/O bus.

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

The following block diagram shows the internal construction of the digital outputs:

NO212

NO111

R0..314

NO313

NO617

NO516

R4..719

NO718

NO010

NO415

L+20

Table 474: Assignment of the terminals:
Terminal Signal Description
10 NO0 Normally-open contact of the output NO0

11 NO1 Normally-open contact of the output NO1

12 NO2 Normally-open contact of the output NO2

13 NO3 Normally-open contact of the output NO3

14 R0..3 Output common for signals NO0 to NO3

15 NO4 Normally-open contact of the output NO4

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2640

Terminal Signal Description
16 NO5 Normally-open contact of the output NO5

17 NO6 Normally-open contact of the output NO6

18 NO7 Normally-open contact of the output NO7

19 R4..7 Output common for signals NO4 to NO7

20 L+ Process voltage L+ +24 V DC

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per DO571.
The external power supply connection is carried out via the L+ (+24 V DC) terminal. The
negative pole of the external power supply is realized via the I/O bus. Therefore, the CPU/
communication interface module and the DO571 must have a common power supply.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For screw-type terminals only:

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2641

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overload.
Make sure that the total current of each output common terminal (R0..3 and
R4..7) does not exceed 8 A.
Never connect total currents > 8 A per group.
If the group fuse protection is not sufficient, then individual fuse protection of the
outputs should be used.

The following figure shows the connection of the module:

10

11

NO0

NO1

13 NO3

12 NO2

14 R0...3

15 NO4

16 NO5

17 NO6

18 NO7

19 R4...7

20 L+

24 VDC
-
+

24 VDC
-
+

Fig. 105: Connection of 24 V DC actuators

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2642

10

11

NO0

NO1

13 NO3

12 NO2

14 R0...3

15 NO4

16 NO5

17 NO6

18 NO7

19 R4...7

20 L+

120 VAC/
240 VAC

 24 VAC/
~

~

L

N

L

N
120 VAC/
240 VAC

 24 VAC/

Fig. 106: Connection of 24 V AC or 100-240 V AC actuators

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be supplied from the

same phase.
– Use an external 5 A fast protection fuse for the outputs.

24 VDC

– +

CPU or
Bus Module

DO571

20

L+ / UP

I/O-Bus

M / ZP

L+

Fig. 107: Power supply - the negative connection is realized via the I/O bus

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2643

The L+ connection of the DO571 and the 24 V supply of the CPU/communica-
tion interface module must be connected to the same 24 V power supply.

The module provides several diagnosis functions (see Diagnosis Ä Chapter 1.6.3.6.1.1.9.6
“Diagnosis” on page 2645).
The meaning of the LEDs is described in the section Status LEDs Ä Chapter 1.6.3.6.1.1.9.7
“State LEDs” on page 2646.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6125 1) WORD 6125
0x17ED

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

Check
supply

Off
On

0
1

BYTE On
0x01

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2644

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x04
0xEF, 0x17, 0x00,\
0x01;

Diagnosis

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in

the I/O module
Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

4 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module
1...10, ADR = Hardware address (e. g. of the DC551-CS31)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2645

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2:
1..10 = expansion 1..10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Outputs
O0...O7

Digital output Yellow Output is
OFF

Output is ON
(the output voltage is
only displayed if the
supply voltage of the
module is ON)

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 20 for L+ (+24 V DC). The negative
pole is provided by the I/O bus.

 Rated value 24 V DC

 Current consumption via L+ 50 mA

 Inrush current (at power-up) 0.0035 A²s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for UP Recommended; the outputs must be pro-
tected by a 3 A fast-acting fuse

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 5 mA

Galvanic isolation Yes, between the output group and the rest
of the module

Isolated groups 2 (4 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.0 W

Weight Ca. 150 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2646

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 normally-open relay outputs

Distribution of the channels into groups 2 (4 channels per group)

Connection of the channels O0 to O3 Terminals 10 to 13

Connection of the channels O4 to O7 Terminals 15 to 18

Reference potential for the channels O0 to O3 Terminal 14 (signal name R0..3)

Reference potential for the channels O4 to O7 Terminal 19 (signal name R4..7)

Relay coil power supply Terminal 20 (positive pole of the process
supply voltage, signal name L+). The nega-
tive pole is provided by the I/O bus.

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)
and the module is powered via the I/O bus

Way of operation Non-latching type

Relay output voltage

 Rated value 24 V DC / 24 V AC or 120/240 V AC

Output delay

 Switching 0 to 1 (max.) Typ. 10 ms

 Switching 1 to 0 (max.) Typ. 10 ms

Output data length 1 byte

Output current

 Rated current per channel (max.) 2.0 A (24 V DC / 24 V AC / 48 V AC /
120 V AC / 240 V AC, only resistive loads)
2.0 A (24 V AC / 48 V AC / 120 V AC, only
pilot duty)
1.5 A (240 V AC, only pilot duty)

 Rated current per group (max.) 8 A

 Lamp load (max.) 200 W (230 V AC), 30 W (24 V DC)

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching Frequencies

 With resistive loads Max. 1 Hz

 With inductive loads On Request

 With lamp loads Max. 1 Hz

Output type Non-protected

Protection type External fuse 1)

Rated protection fuse 5 A fast

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

 Overload message No

No effects of
multiple over-
loads

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2647

Parameter Value
 Output current limitation No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100.000 at rated load

Max. cable length

 Shielded 500 m

 Unshielded 150 m

1) Per group in case of group fuse protection. For each channel in case of channel-by-channel
fuse protection. The maximum current per group must not be exceeded.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2202 DO571, digital output module, 8 DO,

relay output
Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO572 - Digital output module
● 8 digital triac outputs (O0 to O7) in 8 groups
● 240 V AC
● Module-wise galvanically isolated

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2648

1 I/O bus
2 8 yellow LEDs to display the signal states of the outputs O0 to O7
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (9-pin)
6 Terminal block for output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2649

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

The following block diagram shows the internal construction of the digital outputs:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2650

N02

O01

N14

O13

N27

O26

N39

O38

N412

O411

N514

O513

N617

O616

N719

O718

−−−5

−−−10

−−−15

−−−20

Table 475: Assignment of the terminals:
Terminal Signal Description
1 O0 Output signal O0

2 N0 Neutral conductor for the
output signal O0

3 O1 Output signal O1

4 N1 Neutral conductor for the
output signal O1

5 --- Reserved

6 O2 Output signal O2

7 N2 Neutral conductor for the
output signal O2

8 O3 Output signal O3

9 N3 Neutral conductor for the
output signal O3

10 --- Reserved

11 O4 Output signal O4

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2651

Terminal Signal Description
12 N4 Neutral conductor for the

output signal O4

13 O5 Output signal O5

14 N5 Neutral conductor for the
output signal O5

15 --- Reserved

16 O6 Output signal O6

17 N6 Neutral conductor for the
output signal O6

18 O7 Output signal O7

19 N7 Neutral conductor for the
output signal O7

20 --- Reserved

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DO572.
An external power supply connection is not needed.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2652

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the module:

1

2

O0

N0

4 N1

3 O1

5 −−−

6 O2

7 N2

8 O3

9 N3

10

11

−−−

O4

13 O5

12 N4

14 N5

15 −−−

16 O6

17 N6

18 O7

19 N7

20 −−−

L

N

L

N

L

N

L

N

L

N

L

N

L

N

L

N

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2653

NOTICE!
Risk of damaging the PLC modules!
The PLC modules will be irreparably damaged if a voltage > 240 V is con-
nected.
Make sure that all inputs are fed from the same phase. The module must not be
connected to a 400 V voltage.

The module provides several diagnosis functions (see chapter Diagnosis Ä Chapter
1.6.3.6.1.1.10.6 “Diagnosis” on page 2655).
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.3.6.1.1.10.7
“State LEDs” on page 2656.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6130 1) WORD 6130
0x17F2

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

1) With CS31 and addresses smaller than 70, the value is increased by 1
2) The module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)

GSD file:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2654

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xF3, 0x17, 0x00;

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

4 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2655

State LEDs

LED State Color LED = OFF LED = ON
Outputs
O0...O7

Digital output Yellow Output is
OFF

Output is ON

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the channels and the rest of the

module

Isolated groups 8 (1 channel per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module On Request

Weight ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 triac outputs

Distribution of the channels into groups 8 groups (1 channel per group)

Connection of the channels O0 to O7 Terminals 1, 3, 5, 7, 10, 12, 14, 16

Reference potential for the channels O0 to O7 Terminals 2, 4, 6, 8, 11, 13, 15, 17

Output voltage for signal 1 On Request

Max. leakage current with signal 0 1.1 mA root mean square at 132 V AC and
1.8 mA root mean square at 264 V AC

Output voltage

 Rated value 120 V AC or 240 V AC

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1) and
the module is powered via the I/O bus

No effects of
multiple over-
loads

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2656

Parameter Value
Way of operation Non-latching type

Output delay On Request

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.3 A

 Rated current per group (max.) 0.3 A

Surge current (max.) On request

Lamp load (max.) On request

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching Frequencies

 With resistive loads Max. 10 Hz

 With inductive loads Not applicable

 With lamp loads Max. 10 Hz

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse 2 A fast

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

 Overload message No

 Output current limitation No

Resistance to feedback against 230 V AC No

Connection of 2 outputs in parallel Not applicable

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2203 DO572, digital output module, 8 DO,

triac output
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2657

Part no. Description Product life cycle phase *)
1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring

front, cable front, 6 pieces per unit
Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO573 - Digital output module
● 16 digital normally open relay outputs 24 V DC or 100-240 V AC (NO0 to NO15) in 2

groups, 2 A max.
● Group-wise galvanically isolated

1 I/O bus
2 16 yellow LEDs to display the signal states of the outputs O0 to O15
3 Terminal number

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2658

4 Allocation of signal name
5 Terminal block for output signals (9-pin)
6 Terminal block for output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals L+ (process voltage 24 V DC) and M (0 V
DC); the M terminal is connected to the M terminal of the CPU
via the I/O bus

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

The following block diagram shows the internal construction of the digital outputs:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2659

NO1012

NO911

NO1214

NO1113

NO1517

NO1416

L+19

R8..1518

NO810

NO1315

M20

NO01

NO23

NO12

NO56

NO45

NO78

NO67

NO34

R0..79

Table 476: Assignment of the terminals:
Terminal Signal Description
1 NO0 Normally-open contact of the output NO0

2 NO1 Normally-open contact of the output NO1

3 NO2 Normally-open contact of the output NO2

4 NO3 Normally-open contact of the output NO3

5 NO4 Normally-open contact of the output NO4

6 NO5 Normally-open contact of the output NO5

7 NO6 Normally-open contact of the output NO6

8 NO7 Normally-open contact of the output NO7

9 R0..7 Output common for signals NO0 to NO7

10 NO8 Normally-open contact of the output NO8

11 NO9 Normally-open contact of the output NO9

12 NO10 Normally-open contact of the output NO10

13 NO11 Normally-open contact of the output NO11

14 NO12 Normally-open contact of the output NO12

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2660

Terminal Signal Description
15 NO13 Normally-open contact of the output NO13

16 NO14 Normally-open contact of the output NO14

17 NO15 Normally-open contact of the output NO15

18 R8..15 Output common for signals NO8 to NO15

19 L+ Process voltage L+ (24 V DC)

20 M Process voltage M (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per DO573.
The external power supply connection is carried out via the L+ (+24 V DC) and the M (0 V
DC) terminals. The M terminal is electrically interconnected to the M/ZP terminal of the CPU/
communication interface module.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For screw-type terminals only:

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2661

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be supplied from the

same phase.
– Use an external 5 A fast protection fuse for the outputs.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overload.
Make sure that the total current of each output common terminal (R0..7 and
R8..15) does not exceed 10 A.
Never connect total currents > 10 A per group.
If the group fuse protection is not sufficient, then individual fuse protection of the
outputs should be used.

The following figure shows the connection of the module:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2662

10

11

NO8

NO9

13 NO11

12 NO10

14 NO12

15 NO13

16 NO14

17 NO15

18 R8..15

19 L+

20 M

24 V DC
-
+

1

2

NO0

NO1

4 NO3

3 NO2

5 NO4

6 NO5

7 NO6

8 NO7

9 R0..7

24 V DC
-
+

24 V DC -
+

Fig. 108: Connection of 24 V DC actuators

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2663

10

11

NO8

NO9

13 NO11

12 NO10

14 NO12

15 NO13

16 NO14

17 NO15

18 R8..15

19 L+

20 M

1

2

NO0

NO1

4 NO3

3 NO2

5 NO4

6 NO5

7 NO6

8 NO7

9 R0..7

24 V DC -
+

120 V AC/
240 V AC ~

L

N

120 V AC/
240 V AC ~

L

N

Fig. 109: Connection of 100-240 V AC actuators

The module provides several diagnosis functions (see section Diagnosis Ä Chapter
1.6.3.6.1.1.11.6 “Diagnosis” on page 2666).
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.3.6.1.1.10.7
“State LEDs” on page 2656.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2664

CPU /

Bus Module

24 V DC

− +

L+ / UPM / ZP

I/O−Bus DO573

L+M

Fig. 110: Power supply - the negative connection is realized via the I/O bus

The L+ connection of the DO573 and the 24 V supply of the CPU/communica-
tion interface module must be connected to the same 24 V power supply .

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2665

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6150 1) WORD 6150
0x1806

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

Check
supply

Off
On

0
1

BYTE On
0x01

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x07 0x18, 0x07, 0x00, 0x03, 0x01, 0x00,
0x00;

Diagnosis

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in

the I/O module
Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

4 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2666

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 11 Process voltage too

low
Check
process
voltage11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = Module itself, 1...10 = decentralized communication interface module 1...10,
ADR = Hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Outputs
NO0...NO15

Digital output Yellow Output is
OFF

Output is ON
(the output voltage is
only displayed if the
supply voltage of the
module is ON)

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2667

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminals 19 for L+ (+24 V DC) and 20
for M (0 V DC)

 Rated value 24 V DC

 Current consumption via L+ 50 mA

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for L+ Recommended; the outputs must be
protected by an 5 A fast-acting fuse

Current consumption from 24 V DC power supply at
the L+/UP and M/ZP terminals of the CPU/communi-
cation interface module

Ca. 5 mA

Galvanic isolation Yes, between the output groups and the
rest of the module

Isolated groups 2 (8 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.0 W

Weight Ca. 160 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not
be hindered by cable ducts or other
parts in the switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 16 normally-open relay outputs

Distribution of the channels into groups 2 (8 channels per group)

Connection of the channels NO0 to NO7 Terminals 1 to 8

Connection of the channels NO8 to NO15 Terminals 10 to 17

Reference potential for the channels NO0 to
NO7

Terminal 9 (signal name R0..7)

Reference potential for the channels NO8 to
NO15

Terminal 18 (signal name R8..15)

Relay coil power supply Terminals 19 and 20 (signal names L+ and
M)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1) and
the module is powered via the I/O bus

Way of operation Non-latching type

No effects of
multiple over-
loads

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2668

Parameter Value
Relay output voltage

 Rated value 24 V DC or 120/240 V AC

Output delay

 Switching 0 to 1 (max.) Typ. 10 ms

 Switching 1 to 0 (max.) Typ. 10 ms

Output data length 2 bytes

Output current

 Rated current per channel (max.) 2.0 A (24 V DC / 24 V AC / 48 V AC /
120 V AC / 240 V AC, only resistive loads)
2.0 A (24 V AC / 48 V AC / 120 V AC, only
pilot duty)
1.5 A (240 V AC, only pilot duty)

 Rated current per group (max.) 10 A

Lamp load (max.) 200 W (230 V AC), 30 W (24 V DC)

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching Frequencies

 With resistive loads Max. 1 Hz

 With inductive loads On Request

 With lamp loads Max. 1 Hz

Output type Non-protected

Protection type External fuse 1)

Rated protection fuse 5 A fast

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

 Overload message No

 Output current limitation No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100.000 at rated load

Max. cable length

 Shielded 500 m

 Unshielded 150 m

1) Per group in case of group fuse protection. For each channel in case of channel-by-channel
fuse protection. The maximum current per group must not be exceeded.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 231 300 R0000 DO573, digital output module, 16 DO,

relay output
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2669

Part no. Description Product life cycle phase *)
1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,

screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DX561 - Digital input/output module
● 8 digital inputs 24 V DC (I0 to I7) in 1 group
● 8 digital transistor outputs 24 V DC (O0 to O7) in 1 group
● Group-wise galvanically isolated

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2670

1 I/O bus
2 8 yellow LEDs to display the signal states of the inputs I0 to I7
3 8 yellow LEDs to display the signal states of the outputs O0 to O7
4 Terminal number
5 Allocation of signal name
6 Terminal block for input signals (9-pin)
7 Terminal block for output signals (11-pin)
8 2 holes for wall-mounting with screws
9 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs and outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2671

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process voltage 24 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

The following block diagram shows the internal construction of the digital inputs and outputs:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2672

O0 11

O1 12

O2 13

O3 14

O4 15

O5 16

O6 17

O7 18

−−− 10

UP 19

ZP 20

I0 2

I1 3

I2 4

I3 5

I4 6

I5 7

I6 8

I7 9

C0..7 1

Table 477: Assignment of the terminals:
Terminal Signal Description
1 C0...7 Input common for signals I0 to

I7

2 I0 Input signal I0

3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

6 I4 Input signal I4

7 I5 Input signal I5

8 I6 Input signal I6

9 I7 Input signal I7

10 --- Reserved

11 O0 Output signal O0

12 O1 Output signal O1

13 O2 Output signal O2

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2673

Terminal Signal Description
14 O3 Output signal O3

15 O4 Output signal O4

16 O5 Output signal O5

17 O6 Output signal O6

18 O7 Output signal O7

19 UP Process voltage UP +24 V DC

20 ZP Process voltage ZP 0 V DC

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DX561.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2674

The following figure shows the connection of the inputs to the digital input/output module
DX561:

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

24 V
DC/AC

+ / ~

– / ~

Fig. 111: Connection of inputs - sink inputs

24 V
DC/AC

+ / ~

– / ~

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

Fig. 112: Connection of inputs - source inputs

The following figure shows the connection of the outputs to the module:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2675

10

11

−−−

O0

13 O2

12 O1

14 O3

15 O4

16 O5

17 O6

18 O7

19 UP

20 ZP

24 VDC
−
+

Fig. 113

NOTICE!
Risk of malfunctions in the plant!
The outputs may switch on for a period of 10 to 50 µs if the process supply
voltage UP/ZP is switched on.
This must be considered in the planning of the application.

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external 3 A fast-protection fuse for the outputs.

The module provides several diagnosis functions (see chapter Diagnosis Ä Chapter
1.6.3.6.1.1.12.6 “Diagnosis” on page 2678).
The meaning of the LEDs is described in the Displays section Ä Chapter 1.6.3.6.1.1.12.7 “State
LEDs” on page 2679 chapter.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2676

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6135 1) WORD 6135
0x17F7

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =
(0) =

0x03
0xF8, 0x17, 0x00,\
0x01;

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2677

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

4 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2678

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I7 Digital input Yellow Input is OFF Input is ON

Outputs
O0...O7

Digital output Yellow Output is
OFF

Output is ON

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and ter-
minal 20 for ZP (0 V DC)

 Rated value 24 V DC

 Current consumption via UP terminal 5 mA + max. 0.5 A per output

 Max. ripple 5 %

 Inrush current 0.000002 A²s

 Protection against reversed voltage Yes

 Rated protection fuse for UP Recommended; the outputs must be pro-
tected by an 3 A fast-acting fuse

Current consumption from 24 V DC power supply
at the L+/UP and M/ZP terminals of the CPU/com-
munication interface module

Ca. 10 mA

Galvanic isolation Yes, between the input group and the
output group and the rest of the module

Isolated groups 2 groups (1 group for 8 input channels, 1
group for 8 output channels)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.3 W

Weight ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

No effects of
multiple over-
loads

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2679

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group for 8 channels

Connections of the channels I0 to I7 Terminals 2 to 9

Reference potential for the channels I0 to I7 Terminal 1

Indication of the input signals 1 yellow LED per channel; the
LED is ON when the input signal
is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type according to EN 61131-2 Type 1 source Type 1 sink

Input signal range -24 V DC +24 V DC

Signal 0 -5 V...+3 V -3 V...+5 V

Undefined signal -15 V...+ 5 V +5 V...+15 V

Signal 1 -30 V...-15 V +15 V...+30 V

Ripple with signal 0 -5 V...+3 V -3 V...+5 V

Ripple with signal 1 -30 V...-15 V +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire proximity
switches)

1 mA

Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded 500 m

 Unshielded 300 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 group of 8 channels

Connection of the channels O0 to O7 Terminals 11 to 18

Reference potential for the channels O0 to O7 Terminal 20 (negative pole of the process
voltage, name ZP)

Common power supply voltage Terminal 19 (positive pole of the process
voltage, name UP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)
and the module is powered via the I/O bus

Monitoring point of output indicator Controlled together with transistor

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2680

Parameter Value
Way of operation Non-latching type

Max. output voltage at signal 1 20 V DC at max. current consumption

Output delay

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 4 A

 Rated current (all channels together,
max.)

4 A

 Lamp load (max.) 5 W

 Max. leakage current with signal 0 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 3 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2301 DX561, digital input/output module,

8 DI 24 V DC, 8 DO 24 V DC,
transistor output

Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2681

Part no. Description Product life cycle phase *)
1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,

screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DX571 - Digital input/output module
● 8 digital inputs 24 V DC / 24 V AC (I0 to I7) in 1 group
● 8 digital normally open relay outputs 24 V DC / 24 V AC or 100-240 V AC, 2 A max.

(NO0 to NO7) in 2 groups
● Group-wise galvanically isolated

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2682

1 I/O bus
2 8 yellow LEDs to display the signal states of the inputs I0 to I7
3 8 yellow LEDs to display the signal states of the outputs NO0 to NO7
4 Terminal number
5 Allocation of signal name
6 Terminal block for input signals (9-pin)
7 Terminal block for output signals (11-pin)
8 2 holes for wall-mounting with screws
9 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs and outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2683

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminal L+ (process voltage 24 V DC). The negative
pole is provided by the I/O bus.

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

The following block diagram shows the internal construction of the digital inputs and outputs:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2684

NO212

NO111

R0..314

NO313

NO617

NO516

R4..719

NO718

NO010

NO415

L+20

I0 2

I1 3

I2 4

I3 5

I4 6

I5 7

I6 8

I7 9

C0..7 1

Table 478: Assignment of the terminals:
Terminal Signal Description
1 C0...7 Input common for signals I0 to

I7

2 I0 Input signal I0

3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

6 I4 Input signal I4

7 I5 Input signal I5

8 I6 Input signal I6

9 I7 Input signal I7

10 NO0 Normally-open contact of the
output 0

11 NO1 Normally-open contact of the
output 1

12 NO2 Normally-open contact of the
output 2

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2685

Terminal Signal Description
13 NO3 Normally-open contact of the

output 3

14 R0...3 Output common for signals
O0 to O3

15 NO4 Normally-open contact of the
output 4

16 NO5 Normally-open contact of the
output 5

17 NO6 Normally-open contact of the
output 6

18 NO7 Normally-open contact of the
output 7

19 R4...7 Output common for signals
O4 to O7

20 L+ Process voltage +24 V DC

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per DX571.
The external power supply connection is carried out via the L+ (+24 V DC) terminal. The
negative pole of the external power supply is realized via the I/O bus. Therefore, the CPU/
communication interface module and the DX571 must have a common power supply.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2686

NOTICE!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overload.
Make sure that the total current of each output common terminal (R0..3 and
R4..7) does not exceed 8 A.
Never connect total currents > 8 A per group.
If the group fuse protection is not sufficient, then individual fuse protection of the
outputs should be used.

The module provides several diagnosis functions (see Diagnosis Ä Chapter 1.6.3.6.1.1.13.6
“Diagnosis” on page 2691).
The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

The following figures show the connection of the inputs to the digital input/output module
DX571:

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

24 V
DC/AC

+ / ~

– / ~

Fig. 114: Connection of inputs - sink inputs

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2687

24 V
DC/AC

+ / ~

– / ~

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

Fig. 115: Connection of inputs - source inputs

The following figures show the connection of the outputs to the module:

10

11

NO0

NO1

13 NO3

12 NO2

14 R0...3

15 NO4

16 NO5

17 NO6

18 NO7

19 R4...7

20 L+

24 VDC
-
+

24 VDC
-
+

Fig. 116: Connection of 24 V DC actuators

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2688

10

11

NO0

NO1

13 NO3

12 NO2

14 R0...3

15 NO4

16 NO5

17 NO6

18 NO7

19 R4...7

20 L+

120 VAC/
240 VAC

 24 VAC/
~

~

L

N

L

N
120 VAC/
240 VAC

 24 VAC/

Fig. 117: Connection of 24 V AC or 100-240 V AC actuators

The L+ connection of the DX571 and the 24 V supply of the CPU/communica-
tion interface module must be connected to the same 24 V power supply.

CPU or
Bus Module

DX571

20

L+ / UP

I/O-Bus

M / ZP

L+

24 VDC

– +

Fig. 118: Power supply - the minus connection is realized via the I/O bus

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For screw-type terminals only:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2689

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be supplied from the

same phase.
– Use an external 5 A fast protection fuse for the outputs.

The meaning of the LEDs is described in the Displays section Ä Chapter 1.6.3.6.1.1.13.7 “State
LEDs” on page 2692.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6140 1) WORD 6140
0x17FC

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2690

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Check
supply

Off
On

0
1

BYTE On
0x01

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =
(0) =

0x04
0xFD, 0x17, 0x00,\
0x01;

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC

Browser
Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis

block
Class Inter face Device Module Channel Error

Identifier
Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in the

I/O module
Replace

I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

4 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Remarks:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2691

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = Module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = Module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus or PNIO = Module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I7 Digital input Yellow Input is OFF Input is ON

Outputs
NO0...NO7

Digital output Yellow Output is
OFF

Output is ON

In the undefined signal range, the state LED for the inputs can be ON although
the input state detected by the module is OFF.

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 20 for L+ (+24 V DC). The neg-
ative pole is provided by the I/O bus.

 Rated value 24 V DC

 Current consumption via L+ 50 mA

 Inrush current (at power-up) 0.0035 A²s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for L+ Recommended; the outputs must be pro-
tected by a 3 A fast-acting fuse

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2692

Parameter Value
Current consumption from 24 V DC power supply at
the L+/UP and M/ZP terminals of the CPU/commu-
nication interface module

Ca. 5 mA

Galvanic isolation Yes, between the input group and the
output group and the rest of the module

Isolated groups 3 groups (1 group for 8 input channels, 2
groups for 8 output channels)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.3 W

Weight Ca. 150 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into
groups

1 group for 8 channels

Connections of the channels I0 to I7 Terminals 2 to 9

Reference potential for the channels
I0 to I7

Terminal 1

Indication of the input signals 1 yellow LED per channel; the LED is ON when the
input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type according to EN 61131-2 Type 1 source Type 1 sink Type 1 AC 1)

Input signal range -24 V DC +24 V DC 24 V AC 50/60 Hz

Signal 0 -5 V...+3 V -3 V...+5 V 0 V AC...5 V AC

Undefined signal -15 V...+ 5 V +5 V...+15 V 5 V AC...14 V AC

Signal 1 -30 V...-15 V +15 V...+30 V 14 V AC...27 V AC

Input current per channel

 Input voltage 24 V Typ. 5 mA Typ. 5 mA r.m.s.

 Input voltage 5 V Typ. 1 mA Typ. 1 mA r.m.s.

 Input voltage 14 V Typ. 2.7 mA r.m.s.

 Input voltage 15 V > 2.5 mA

 Input voltage 27 V Typ. 5.5 mA r.m.s.

 Input voltage 30 V < 8 mA

Max. permissible leakage current (at
2-wire proximity switches)

1 mA Typ. 1 mA r.m.s.

No effects of
multiple over-
loads

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2693

Parameter Value
Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded 500 m

 Unshielded 300 m

1) When inputs are used with 24 V AC, external surge limiting filters are required.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 normally-open relay outputs

Distribution of the channels into groups 2 (4 channels per group)

Connection of the channels O0 to O3 Terminals 10 to 13

Connection of the channels O4 to O7 Terminals 15 to 18

Reference potential for the channels
O0 to O3

Terminal 14 (signal name R0..3)

Reference potential for the channels
O4 to O7

Terminal 19 (signal name R4..7)

Relay coil power supply Terminal 20 (positive pole of the process supply
voltage, signal name L+). The negative pole is pro-
vided by the I/O bus.

Indication of the output signals 1 yellow LED per channel; the LED is on when the
output signal is high (signal 1) and the module is
powered through the I/O bus

Monitoring point of output indicator Controlled together with relay

Way of operation Non-latching type

Relay output voltage

 Rated value 24 V DC / 24 V AC or 120/240 V AC

Output delay

 Switching 0 to 1 (max.) Typ. 10 ms

 Switching 1 to 0 (max.) Typ. 10 ms

Output data length 1 byte

Output current

 Rated current per channel (max.) 2.0 A (24 V DC / 24 V AC / 48 V AC / 120 V AC /
240 V AC, only resistive loads)
2.0 A (24 V AC / 48 V AC / 120 V AC, only pilot duty)
1.5 A (240 V AC, only pilot duty)

 Rated current per group (max.) 8 A

Lamp load (max.) 200 W (230 V AC), 30 W (24 V DC)

Spark suppression with inductive AC
loads

Must be performed externally according to driven
load specification

Switching Frequencies

 With resistive loads Max. 1 Hz

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2694

Parameter Value
 With inductive loads On Request

 With lamp loads Max. 1 Hz

Output type Non-protected

Protection type External fuse 1)

Rated protection fuse 5 A fast

Short-circuit-proof / Overload-proof No, should be provided by an external fuse or circuit
breaker

 Overload message No

 Output current limitation No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100.000 at rated load

Max. cable length

 Shielded 500 m

 Unshielded 150 m

1) Per group in case of group fuse protection. For each channel in case of channel-by-channel
fuse protection. The maximum current per group must not be exceeded.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2302 DX571, digital input/output module,

8 DI 24 V DC / 24 V AC, 8 DO, relay
output

Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2695

S500
DC522 - Digital input/output module

● 16 configurable digital inputs/outputs
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 Sensor power supply 24 V DC / 0.5 A
4 16 yellow LEDs to display the signal states at the digital inputs/outputs (C0 - C15)
5 1 green LED to display the state of the process supply voltage UP
6 4 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2696

Digital configurable input/output unit.
● 2 sensor supply voltages 24 V DC, 0.5 A, with short-circuit and overload protection
● 16 digital configurable inputs/outputs 24 V DC (C0 to C15) in 1 group (2.0...2.7 and

4.0...4.7), each of which can be used
– as an input,
– as a transistor output with short-circuit and overload protection, 0.5 A rated current or
– as a re-readable output (combined input/output) with the technical data of the digital

inputs and outputs.
● Optional with fast counter

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating

modes (only with AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

The device is plugged on a terminal unit Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541 and
TU542 for I/O modules” on page 2553. Position the module properly and press until it locks in
place. The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting
accessory” on page 3329).

Connections

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V DC

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2697

1 I/O bus
2 4.0 - 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 Switchgear cabinet earth
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.3 +24 V 4 x sensor power supply sources (loadable with 0.5

A in total)

1.4 to 1.7 0 V 0 V (reference potential)

2.0 to 2.7 C0 to C7 8 digital inputs/outputs

3.0 to 3.3 +24 V 4 x sensor power supply sources (loadable with 0.5
A in total)

3.4 to 3.7 0 V 0 V (reference potential)

4.0 to 4.7 C8 to C15 8 digital inputs/outputs

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2698

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DC522.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DC522.
Connect a 470 W / 1 W resistor in series to inputs C8/C9 if they are used as fast
counter inputs to avoid any influences.

The modules provide several diagnosis functions Ä Chapter 1.7.3.3 “S500 I/O modules diag-
nosis” on page 4065.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2699

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 2 4

Digital outputs (bytes) 2 4

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O Configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Module ID Internal 1220
1)

Word 1220
0x04C4

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length

Internal 7 Byte 7-CPU
6-FBP

0 255 0x0Y02

Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2700

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

Fast
counter
4)

0
:

10 3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Short-cir-
cuit detec-
tion of
output or
sensor
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y05

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y06

Substitute
value at
outputs
Bit 15 =
Output 15
Bit 0 =
Output 0

0...
65535

0...
0xffff

Word 0
0x0000

0 65535 0x0Y07

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 1.6.3.6.1.2.9 “Fast counter” on page 2776
4) With FBP or CS31 without the parameter Fast Counter

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

9
0x04, 0xc5, 0x06, \
0x01, 0x02, 0x01, 0x00, 0x00, 0x00;

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2701

LED State Color LED = OFF LED = ON LED flashes
Inputs/
outputs
C0...C15

Digital input
or digital
output

Yellow Input/output
= OFF

Input/output =
ON 1)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
Error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 2) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the L+/UP
and M/ZP terminals of the CPU/commu-
nication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

0.15 A + max. 0.5 A per output

 Inrush current from UP (at power up) 0.005 A²s

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2702

Parameter Value
Max. power dissipation within the module 6 W (outputs unloaded)

Sensor power supply

 Connections Terminals 1.0...1.3 = +24 V, 1.4...1.7 = 0 V
Terminals 3.0...3.3 = +24 V, 3.4...3.7 = 0 V

 Voltage 24 V DC with short-circuit and overload protec-
tion

 Loadability Terminals 1.0...1.3, in total max. 0.5 A
Terminals 3.0...3.3, in total max. 0.5 A

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 16 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group of 16 channels

If the channels are used as inputs

 Channels C0...C7 Terminals 2.0...2.7

 Channels C8...C15 Terminals 4.0...4.7

If the channels are used as outputs

 Channels C0...C7 Terminals 2.0...2.7

 Channels C8 C15 Terminals 4.0...4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON
when the input/output signal is high (signal 1)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2703

Parameter Value
Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation From the rest of the module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module Max. 16 digital inputs

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name
ZP)

Galvanic isolation From the rest of the module

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V *)

 Undefined signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module Max. 16 transistor outputs

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name
ZP)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2704

Parameter Value
Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8

(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together) 8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

UPx (+24 V)

Digital input/output

ZPx (0 V)

for demagnitization when inductive
loads are switched off

Fig. 119: Digital input/output (circuit diagram)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2705

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs C8 / C9

Used outputs C10

Counting frequency Max. 50 kHz

Ä Chapter 1.6.5.1.12 “Fast counters” on page 3570

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 600 R0001 DC522, digital input/output module,

16 DC, 24 V DC / 0.5 A, 2-wires
Active

1SAP 440 600 R0001 DC522-XC, digital input/output
module, 16 DC, 24 V DC / 0.5 A,
2-wires, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DC523 - Digital input/output module
● 24 configurable digital inputs/outputs
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2706

1 I/O bus
2 Allocation between terminal number and signal name
3 Sensor power supply 24 V DC / 0.5 A
4 24 yellow LEDs to display the signal states at the digital inputs/outputs (C0 - C23)
5 1 green LED to display the status of the process supply voltage UP
6 4 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2707

Digital configurable input/output unit.
● 1 sensor supply voltage 24 V DC, 0.5 A, with short circuit and overload protection
● 24 digital configurable inputs/outputs 24 V DC (C0 to C23) in 1 group (2.0...2.7, 3.0...3.7 and

4.0...4.7), of which each can be used
– as an input,
– as a transistor output with short circuit and overload protection, 0.5 A rated current or
– as a re-readable output (combined input/output) with the technical data of the digital

inputs and outputs.
● Optional with fast counter

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating

modes (only with AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

The device is plugged on a terminal unit Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541 and
TU542 for I/O modules” on page 2553. Position the module properly and press until it locks in
place. The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting
accessory” on page 3329).

Connections
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2708

Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V DC

1 I/O bus
2 4.0 - 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 Switchgear cabinet earth
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.3 +24 V 4 x sensor power supply sources (loadable

with 0.5 A in total)

1.4 to 1.7 0 V 0 V (reference potential)

2.0 to 2.7 C0 to C7 8 digital inputs/outputs

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2709

Terminals Signal Description
3.0 to 3.7 C8 to C15 8 digital inputs/outputs

4.0 to 4.7 C16 to C23 8 digital inputs/outputs

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DC523.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DC523.
Connect a 470 W / 1 W resistor in series to inputs C16/C17 if they are used as
fast counter inputs to avoid any influences.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2710

The modules provide several diagnosis functions Ä Chapter 1.7.3.3 “S500 I/O modules diag-
nosis” on page 4065.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 3 5

Digital outputs (bytes) 3 5

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Module ID Internal 1215
1)

Word 1215
0x04BF

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length

Internal 9 Byte 9-CPU
8-FBP

0 255 0x0Y02

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2711

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Check
supply

Off
on

0
1

Byte On
0x01

0 1 0x=Y03

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

Fast
counter
4)

0
:
10
3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Short cir-
cuit detec-
tion of
output or
sensor
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y05

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y06

Substitute
value at
outputs
B23 =
Output 23
Bit 0 =
Output 0

0...
16777215

0...
0x00ff-ffff

DWord 0
0x0000
-0000

0 224−1 0x0Y07

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 1.6.3.6.1.2.9 “Fast counter” on page 2776
4) With FBP or CS31 without the parameter Fast Counter

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

11
0x04, 0xc0, 0x08, \
0x01, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00,
0x00;

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2712

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs/
outputs
C0...C23

Digital input
or digital
output

Yellow Input/output
= OFF

Input/output =
ON 1)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 2) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP) as
well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2713

Parameter Value
 From 24 V DC power supply at the

terminals UP/L+ and ZP/M of the CPU/
communication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

0.1 A + max. 0.5 A per output

 Inrush current from UP (at power up) 0.008 A²s

Max. power dissipation within the module 6 W (outputs unloaded)

Sensor power supply

 Connections Terminals 1.0...1.3 = +24 V, 1.4...1.7 = 0 V

 Voltage 24 V DC with short circuit and overload protec-
tion

 Loadability Terminals 1.0...1.3, in total max. 0.5 A

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the switch-
gear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 24 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group of 24 channels

If the channels are used as inputs

 Channels C0...C7 Terminals 2.0...2.7

 Channels C8...C15 Terminals 3.0...3.7

 Channels C16...C23 Terminals 4.0...4.7

If the channels are used as outputs

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2714

Parameter Value
 Channels C0...C7 Terminals 2.0...2.7

 Channels C8 C15 Terminals 3.0...3.7

 Channels C16...C23 Terminals 4.0...4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation From the rest of the module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module Max. 24 digital inputs

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name
ZP)

Galvanic isolation From the rest of the module

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V *)

 Undefined signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2715

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module Max. 24 transistor outputs

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together) 8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

UPx (+24 V)

Digital input/output

ZPx (0 V)

for demagnitization when inductive
loads are switched off

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2716

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs C16 / C17

Used outputs C18

Counting frequency Max. 50 kHz

Ä Chapter 1.6.5.1.12 “Fast counters” on page 3570

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 500 R0001 DC523, digital input/output module,

24 DC, 24 V DC / 0.5 A, 1-wire
Active

1SAP 440 500 R0001 DC523-XC, digital input/output
module, 24 DC, 24 V DC / 0.5 A,
1-wire, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DC532 - Digital input/output module
● 16 digital inputs 24 V DC, 16 configurable digital inputs/outputs
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2717

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states at the digital inputs (I0 - I15)
4 16 yellow LEDs to display the signal states at the digital inputs/outputs (C16 - C31)
5 1 green LED to display the state of the process supply voltage UP
6 4 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2718

Digital configurable input / output unit.
● 16 digital inputs 24 V DC in 2 groups (1.0...1.7 and 2.0...2.7)
● 16 digital configurable inputs/outputs 24 V DC (C16 to C31) in 1 group (3.0...3.7 and

4.0...4.7), of which each can be used
– as an input,
– as a transistor output with short circuit and overload protection, 0.5 A rated current or
– as a re-readable output (combined input/output) with the technical data of the digital

inputs and outputs.
● Optional with fast counter

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Digital inputs 16 (24 V DC)

Digital inputs/outputs 16 (24 V DC)

Fast counter Integrated, many configurable operating
modes (only with AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

The device is plugged on a terminal unit Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541 and
TU542 for I/O modules” on page 2553. Position the module properly and press until it locks in
place. The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting
accessory” on page 3329).

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2719

Connections
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V DC

1 I/O bus
2 4.0 - 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 switchgear cabinet earth
The assignment of the other terminals:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2720

Terminals Signal Description
1.0 to 1.7 I0 to I7 8 digital inputs

2.0 to 2.7 I8 to I15 8 digital inputs

3.0 to 3.7 C16 to C23 8 digital inputs/outputs

4.0 to 4.7 C24 to C31 8 digital inputs/outputs

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DC532.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2721

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DC532.
Connect a 470 W / 1 W resistor in series to inputs C24/C25 if using them as fast
counter inputs to avoid any influences.

The module provides several diagnosis functions Ä Chapter 1.7.3.3 “S500 I/O modules diag-
nosis” on page 4065.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 4 6

Digital outputs (bytes) 2 4

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2722

Name Value Internal
value

Internal
value,
type

Default Min. Max.

Module ID Internal 1200
1)

Word 1200
0x04B0

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length

Internal 7 Byte 7-CPU
6-FBP

0 255 0x0Y02

Check
supply

Off
on

0
1

Byte On
0x01

0 1 0x0Y03

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

Fast
counter
4)

0
:
10
3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Output
short cir-
cuit detec-
tion

Off
On

0
1

Byte On
0x01

0 1 0x0Y05

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y06

Substitute
value at
outputs
Bit 15 =
Output 15
Bit 0 =
Output 0

0...
65535

0...
0xffff

Word 0
0x0000

0 65535 0x0Y07

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 1.6.3.6.1.2.9 “Fast counter” on page 2776
4) With FBP or CS31 without the parameter Fast Counter

GSD file:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2723

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

9
0x04, 0xb1, 0x06, \
0x01, 0x02, 0x01, 0x00, 0x00, 0x00;

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I15

Digital input Yellow Input = OFF Input = ON 1) --

Inputs/ out-
puts
C16...C31

Digital input/
output

Yellow Input/output
= OFF

Input/output =
ON 1)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
Error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 2) Module Error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2724

Parameter Value
 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the ter-
minals UP/L+ and ZP/M of the CPU/com-
munication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

0.15 A + max. 0.5 A per output

 Inrush current from UP (at power up) 0.007 A²s

Max. power dissipation within the module 6 W (outputs unloaded)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 16

Distribution of the channels into groups 1 group of 16 channels

Terminals of the channels I0 to I7 1.0 to 1.7

Terminals of the channels I8 to I15 2.0 to 2.7

Reference potential for all inputs Terminals 1.9, 2.8, 3.8 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Galvanic isolation From the rest of the module (I/O bus)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2725

Parameter Value
Monitoring point of input indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined signal > +5 V...< +15 V
Parameter

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 16 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group of 16 channels

If the channels are used as inputs

 Channels I16...I23 Terminals 3.0...3.7

 Channels I24...I31 Terminals 4.0...4.7

If the channels are used as outputs

 Channels Q16...Q23 Terminals 3.0...3.7

 Channels Q24...Q31 Terminals 4.0...4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation From the rest of the module

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2726

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module Max. 16 digital inputs

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Input current, per channel See Technical Data of the Digital Inputs
Ä Chapter 1.6.3.6.1.2.3.8.1 “Technical data of
the digital inputs” on page 2725

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

Signal 0 -3 V...+5 V *)

undefined signal > +5 V...< +15 V

Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module Max. 16 transistor outputs

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together) 8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2727

Parameter Value
 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

UPx (+24 V)

Digital input/output

ZPx (0 V)

for demagnitization when inductive
loads are switched off

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs C24 / C25

Used outputs C26

Counting frequency Max. 50 kHz

Ä Chapter 1.6.5.1.12 “Fast counters” on page 3570

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2728

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 100 R0001 DC532, digital input/output module,

16 DI, 16 DC, 24 V DC / 0.5 A, 1-wire
Active

1SAP 440 100 R0001 DC532-XC, digital input/output
module, 16 DI, 16 DC,
24 V DC / 0.5 A, 1-wire, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DI524 - Digital input module
● 32 digital inputs 24 V DC in 4 groups (1.0...1.7, 2.0...2.7, 3.0...3.7 and 4.0...4.7)
● Fast counter
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2729

3 32 yellow LEDs to display the signal states at the digital inputs (I0 - I31)
4 1 green LED to display the state of the process supply voltage UP
5 4 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating modes (only

with AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal units TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

Effect of incorrect input terminal con-
nection

Wrong or no signal detected, no damage up to 35 V

The device is plugged on a terminal unit Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541 and
TU542 for I/O modules” on page 2553. Position the module properly and press until it locks in
place. The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting
accessory” on page 3329).

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2730

The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and have always the same assignment, irrespective of the inserted module:
Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V DC

Table 479: Assignment of the other terminals:
Terminals Signal Description
1.0 to 1.7 I0 to I7 8 digital inputs

2.0 to 2.7 I8 to I15 8 digital inputs

3.0 to 3.7 I16 to I23 8 digital inputs

4.0 to 4.7 I24 to I31 8 digital inputs

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DI524.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2731

1 I/O bus
2 switchgear cabinet earth

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The module provides several diagnosis functions Ä Chapter 1.7.3.3 “S500 I/O modules diag-
nosis” on page 4065.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 4 6

Digital outputs (bytes) 0 2

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2732

 Without the fast counter With the fast counter (only
with AC500)

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1000
1)

Word 1000
0x03E8

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

3 Param-
eter
length

Internal 3-CPU
2-FBP

Byte 3
2

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2733

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

5 Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

6 Fast
counter
4)

0
:
10
3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 1.6.3.6.1.2.9 “Fast counter” on page 2776
4) With FBP or CS31 without the parameter Fast counter

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

5
0x03, 0xe9, 0x02, \
0x01, 0x02;

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I31

Digital input Yellow Input = OFF Input = ON 1) --

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2734

LED State Color LED = OFF LED = ON LED flashes
CH-ERR1 Channel

error, error
messages in
groups (dig-
ital inputs
combined
into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 2) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the
terminals UP/L+ and ZP/M of the CPU/
communication interface module

ca. 2 mA

 From UP at normal operation 0.15 A

 Inrush current from UP (at power up) 0.008 A²s

Weight (without terminal unit) ca. 105 g

Mounting position Horizontal or vertical with derating (output
load reduced to 50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2735

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the digital inputs

Parameter Value
Number of channels per module 32

Distribution of the channels into groups 1 group of 32 channels

Terminals of the channels I0 to I7 1.0 to 1.7

Terminals of the channels I8 to I15 2.0 to 2.7

Terminals of the channels I16 to I23 3.0 to 3.7

Terminals of the channels I24 to I31 4.0 to 4.7

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name
ZP)

Galvanic isolation From the rest of the module (I/O bus)

Indication of the input signals One yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0 -> 1 or 1 -> 0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2736

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs I24 / I25

Used outputs None

Counting frequency Max. 50 kHz

Ä Chapter 1.6.5.1.12 “Fast counters” on page 3570

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 000 R0001 DI524, digital input module, 32 DI,

24 V DC, 1-wire
Active

1SAP 440 000 R0001 DI524-XC, digital input module, 32 DI,
24 V DC, 1-wire, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO524 - Digital output module
● 32 digital outputs 24 V DC / 0.5 A in 4 groups (1.0...4.7) with short circuit and overload

protection
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2737

1 I/O bus
2 Allocation between terminal number and signal name
3 32 yellow LEDs to display the signal states at the digital outputs (O0 - O31)
4 1 green LED to display the state of the process supply voltage UP
5 4 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are galvanically isolated from all other circuitry of the module. There is no potential
separation between the channels.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2738

Functionality

Parameter Value
LED displays For signal states, errors and supply voltage

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

The device is plugged on a terminal unit Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541 and
TU542 for I/O modules” on page 2553. Position the module properly and press until it locks in
place. The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting
accessory” on page 3329).

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and have always the same assignment, independent of the inserted module:
Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 O0 to O7 8 digital outputs

2.0 to 2.7 O8 to O15 8 digital outputs

3.0 to 3.7 O16 to O23 8 digital outputs

4.0 to 4.7 O24 to O31 8 digital outputs

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DO524.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2739

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following block diagram shows the internal construction of the digital outputs:
4.0 O 24

4.1 O 25

4.2 O 26

4.3 O 27

4.4 O 28

4.5 O 29

4.6 O 30

4.7 O 31

4.9

4.8

1.0 O 0

1.1 O 1

1.2 O 2

1.3 O 3

1.4 O 4

1.5 O 5

1.6 O 6

1.7 O 7

1.9

1.8

ZP 0 V

UP +24 V

2.0 O 8

2.1 O 9

2.2 O 10

2.3 O 11

2.4 O 12

2.5 O 13

2.6 O 14

2.7 O 15

2.9

2.8

3.0 O 16

3.1 O 17

3.2 O 18

3.3 O 19

3.4 O 20

3.5 O 21

3.6 O 22

3.7 O 23

3.9

3.8

The module provides several diagnosis functions Ä Chapter 1.7.3.3 “S500 I/O modules diag-
nosis” on page 4065.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2740

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 4

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
value

Internal
value,
type

Default Min. Max. Max.

Module ID Internal 1101
1)

WORD 1101
0x044D

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

BYTE No
0x00

 not for
FBP

Parameter
length

Internal 7 BYTE 7-CPU
7-FBP

0 255 0x0Y02

Check
supply

Off
on

0
1

BYTE On
0x01

0 1 0x0Y03

Output
short cir-
cuit detec-
tion

Off
On

0
1

BYTE On
0x01

0 1 0x0Y04

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2741

Name Value Internal
value

Internal
value,
type

Default Min. Max. Max.

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

BYTE Off
0x00

0 2 0x0Y05

Substitute
value at
outputs
Bit 31 =
Output 31
Bit 0 =
Output 0

0...
42949672
95

0...
0xffffffff

DWORD 0
0x000000
00

0 42949672
95

0x0Y06

1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1
2) Not with FBP
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

10
0x04, 0x4d, 0x07, \
0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00;

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Outputs
O0...O31

Digital output Yellow Output =
OFF

Output = ON --

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital outputs
combined
into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) All of the LEDs CH-ERR1 to CH-ERR4 light up together

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2742

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the ter-
minals UP/L+ and ZP/M of the CPU/com-
munication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

0.10 A + max. 0.5 A per output

 Inrush current from UP (at power up) 0.005 A2s

Max. power dissipation within the module 6 W (outputs unloaded)

Weight (without terminal unit) Ca. 100 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2743

Technical data of the digital outputs

Parameter Value
Number of channels per module 32 outputs (with transistors)

Distribution of the channels into groups 1 group of 32 channels

Connection of the channels

 O0 to O7 Terminals 1.0 to 1.7

 O8 to O15 Terminals 2.0 to 2.7

 O16 to O23 Terminals 3.0 to 3.7

 O24 to O31 Terminals 4.0 to 4.7

Indication of the output signals 1 yellow LED per channel, the LED is ON if the
output signal is high (signal 1)

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0 -> 1 or 1 -> 0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (channels O0 to O15) 4 A

 Maximum value (channels O16 to O31) 4 A

 Maximum value (all channels together) 8 A

Max. leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit proof / overload proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short-cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital output with the varistors for demagnetiza-
tion when inductive loads are switched off.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2744

UPx (+24 V)

Digital output

ZPx (0 V)

for demagnetization when inductive
loads are switched off

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 700 R0001 DO524, digital output module, 32 DO,

24 V DC / 0.5 A, 1-wire
Active

1SAP 440 700 R0001 DO524-XC, digital output module,
32 DO, 24 V DC / 0.5 A, 1-wire,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO526 - Digital output module
● 8 digital outputs 24 V DC (O0 to O7) in 2 groups without short circuit and without overload

protection.
● Module and group-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2745

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the outputs O0 to O7
4 3 green LEDs to display the states of the process supply voltage UP, UP3 and UP4
5 2 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN-rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.
Potential separation between the channel groups.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2746

Functionality

Parameter Value
LED displays For signal states, errors and supply voltages

Internal power supply Via I/O bus

External power supply Via the terminals ZP, ZP3, ZP4, UP, UP3 and UP4
(process voltage 24 V DC)

Required terminal unit TU542 Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 2553

The output module is plugged on the terminal unit TU542. Properly position the module and
press until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting
accessory” on page 3329).

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 2.8 and 1.9 to 2.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:

Terminals 1.8 to 2.8: Process voltage UP = +24 V DC

Terminals 1.9 to 2.9: Process voltage ZP = 0 V

Terminal 3.8: Process voltage UP3 = +24 V DC

Terminal 3.9: Process voltage ZP3 = 0 V

Terminal 4.8: Process voltage UP4 = +24 V DC

Terminal 4.9: Process voltage ZP4 = 0 V

Terminals Signal Description
3.0, 3.1, 3.4, 3.5 O0 to O3 4 digital outputs

4.0, 4.1, 4.4, 4.5 O4 to O7 4 digital outputs

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DO526.
The external power supply connection is carried out via the UP, UP3, UP4 (+24 V DC) and the
ZP, ZP3, ZP4 (0 V DC) terminals.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2747

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following block diagram shows the internal construction of the digital outputs:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2748

1 I/O bus
2 4.0 - 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 Switchgear cabinet earth

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The module provides several diagnosis functions Ä Chapter 1.7.3.3 “S500 I/O modules diag-
nosis” on page 4065.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2749

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 1

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software, versions
≥ 1.2.3.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...7

Name Value Internal
value

Internal
value,
type

Default Min. Max. Max.

Module ID Internal 1105
1)

WORD 1105
0x0451

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

BYTE No
0x00

 not for
FBP

Parameter
length

Internal 6 BYTE 6-CPU
6-FBP

0 6 0x0Y02

Check
supply

Off
on

0
1

BYTE On
0x01

0 1 0x0Y03

Reserve 0...255 0...0xff BYTE On
0x01

0 1 0x0Y04

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

BYTE Off
0x00

0 2 0x0Y05

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2750

Name Value Internal
value

Internal
value,
type

Default Min. Max. Max.

Substitute
value at
outputs
Bit 7 =
Output 7
Bit 0 =
Output 0

0...255 0...0xff BYTE 0x00 0 255 0x0Y06

Reserve 0...255 0...0xff BYTE 0x00 0 255 0x0Y07

Reserve 0...255 0...0xff BYTE 0x00 0 255 0x0Y08
1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len = 10

Ext_User_Prm_Data_Const(0) = 0x04, 0x51, 0x00, 0x06, 0x01, 0x01, 0x00,
0x00, 0x00, 0x00

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Outputs
O0...O7

Digital output Yellow Output =
OFF

Output = ON
2)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

UP3 Process
supply
voltage out-
puts 0...3
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

UP4 Process
supply
voltage out-
puts 4...7
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2751

LED State Color LED = OFF LED = ON LED flashes
CH-ERR3 Channel

Error, error
messages in
groups (dig-
ital outputs
combined
into the
groups 3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on in the
corresponding
groupCH-ERR4 Red

CH-ERR 1) Module Error Red -- Internal error --
1) All of the LEDs CH-ERR3 to CH-ERR4 light up together
2) The state of the LEDs corresponds to the logic state of the output. In case
of missing or low process supply voltage UP3 or UP4, the signal on the output
terminal is off even though the LED is on.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP, UP3 and UP4

 Connections Terminals 1.8 and 2.8 for +24 V (UP) as well as
1.9 and 2.9 0 V (ZP)
Terminals 3.8 for +24 V (UP3) as well as 3.9 for
0 V (ZP3)
Terminals 4.8 for +24 V (UP4) as well as 4.9 for
0 V (ZP4)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP, UP3 and
UP4

10 A fast (for each process supply voltage)

 Galvanic isolation Yes, per module and per output channel groups

Current consumption

 From 24 V DC power supply at the ter-
minals UP/L+ and ZP/M of the CPU/com-
munication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

Ca. 20 mA + 1.5 mA per output

 From UP3 or UP4 at normal operation /
with outputs

Ca. 0.01 A + max. 2 A per output

 Inrush current from UP (at power up) 0.015 A²s

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2752

Parameter Value
 Inrush current from UP3 or UP4 (at

power up)
0.005 A²s (without output load)

Max. power dissipation within the module 6 W

Weight (without terminal unit) Ca. 135 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply and continuous overvoltage up to 30 V DC.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 outputs (with transistors, non-latching type)

Distribution of the channels into groups 2 groups of 4 channels

Connection of the channels

 O0 to O3 Terminals 3.0, 3.1, 3.4, 3.5

 O4 to O7 Terminals 4.0, 4.1, 4.4, 4.5

Indication of the output signals 1 yellow LED per channel, the LED is ON if the
output signal is high (signal 1)

Power supply voltage for the module Terminals 1.8 and 2.8 (positive pole of the
process supply voltage, signal name UP)

Reference potential for module power supply Terminals 1.9 and 2.9 (negative pole of the
process supply voltage, signal name ZP)

Power supply voltage for the outputs O0 to
O3

Terminal 3.8 (positive pole of the process
supply voltage, signal name UP3)

Reference potential for the outputs O0 to O3 Terminal 3.9 (negative pole of the process
supply voltage, signal name ZP3)

Power supply voltage for the outputs O4 to
O7

Terminal 4.8 (positive pole of the process
supply voltage, signal name UP4)

Reference potential for the outputs O4 to O7 Terminal 4.9 (negative pole of the process
supply voltage, signal name ZP4)

Output voltage for signal 1 UP (-0.4 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 2 A at UP3 or UP4 = 24 V

No effects of
multiple over-
loads

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2753

Parameter Value
 Maximum value (channels O0 to O3) 8 A

 Maximum value (channels O4 to O7) 8 A

Leakage current with signal 0 < 0.1 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With clamp diode in output high side driver

Switching frequency

 With resistive load On request

 With inductive loads Max. 2 Hz

 With lamp loads Max. 11 Hz with max. 48 W

Short-circuit proof / overload proof No (should be done externally)

Overload message No

Output current limitation No (should be done externally)

Resistance to feedback against 24 V signals Yes to UP3 or UP4. No to outputs in same
group.

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 800 R0001 DO526, digital output module, 8 DO,

24 V DC / 2 A, 1-wire
Active

1SAP 440 800 R0001 DO526-XC, digital output module,
8 DO, 24 V DC / 2 A, 1-wire,
XC version

Active

1SAP 213 200 R0001 TU542, I/O terminal unit, 24 V DC,
spring terminals

Active

1SAP 413 200 R0001 TU542-XC, I/O terminal unit, 24 V DC,
spring terminals, XC version

Active

DX522 - Digital input/output module
● 8 digital inputs 24 V DC, module-wise galvanically isolated
● 8 relay outputs
● Fast counter
● XC version for use in extreme ambient conditions available

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2754

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states at the digital inputs (I0 - I7)
4 8 yellow LEDs to display the signal states at the digital relay outputs (R0 - R7)
5 1 green LED to display the state of the process supply voltage UP
6 2 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Digital configurable input/output unit.
● 8 digital inputs 24 V DC in 1 group (1.0...1.7)
● 8 digital relay outputs with one change-over contact each (R0...R7). All output channels are

galvanically isolated from each other.
● Fast counter

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2755

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating modes (only with

AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process supply voltage
24 V DC)

Required terminal units TU531 or TU532 Ä Chapter 1.6.3.5.4 “TU531 and TU532
for I/O modules” on page 2562

The device is plugged on a terminal unit Ä Chapter 1.6.3.5.4 “TU531 and TU532 for I/O
modules” on page 2562. Position the module properly and press until it locks in place. The
terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting accessory”
on page 3329).

Connections

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and have always the same assignment, irrespective of the inserted module:
● Terminals 1.8 to 4.8: process supply voltage UP = +24 V DC
● Terminals 1.9 to 4.9: process supply voltage ZP = 0 V DC

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2756

Table 480: Assignment of the other terminals:
Terminals Signal Description
1.0 to 1.7 I0 to I7 Input signals of the 8 digital

inputs

1.8 to 4.8 UP Process supply voltage +24 V
DC

1.9 to 4.9 ZP Reference potential for the 8
digital inputs and the process
supply voltage

2.0 R0 Common contact of the first
relay output

3.0 NO 0 Normally-open contact of the
first relay output

4.0 NC 0 Normally-closed contact of the
first relay output

2.1 R1 Common contact of the
second relay output

3.1 NO 1 Normally-open contact of the
second relay output

4.1 NC 1 Normally-closed contact of the
second relay output

: : :

2.7 R7 Common contact of the eighth
relay output

3.7 NO 7 Normally-open contact of the
eighth relay output

4.7 NC 7 Normally-closed contact of the
eighth relay output

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DX522.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2757

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions (see Diagnosis and State LEDs Ä Chapter
1.7.3.3 “S500 I/O modules diagnosis” on page 4065).
The following figure shows the connection of the digital input/output module DX522.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2758

Fig. 120: Connection of the module

1 I/O bus
2 Switchgear cabinet earth

NOTICE!
– If the relay outputs have to switch inductive DC loads, free-wheeling diodes

must be circuited in parallel to these loads.
– If the relay outputs have to switch inductive AC loads, spark suppressors

are required.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2759

NOTICE!
Risk of damaging the PLC module!
The following has to be considered when connecting input and output voltages
to the module:
– All 230 V AC feeds must be single-phase from the same supply system.
– Connection of 2 or more relay contacts in series is possible; however, vol-

tages above 230 V AC and 3-phase loads are not allowed.
– The 8 change-over contacts of the relays are galvanically isolated from

channel to channel. This allows to connect loads of 24 V DC and 230 V AC
to relay outputs of the same module. In such cases it is necessary that both
supply voltages are grounded to prevent unsafe floating grounds.

NOTICE!
Risk of damaging the PLC module!
There is no internal short-circuit or overload protection for the relay outputs.
Protect the relay contacts by back-up fuses of 6 A max. (characteristic gG/gL).
Depending on the application, fuses can be used for single channels or module-
wise.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 1 3

Digital outputs (bytes) 1 3

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2760

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Module ID Internal 1210
1)

Word 1210
0x04BA

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length

Internal 5 Byte 5-CPU
4-FBP

0 255 0x0Y02

Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

Fast
Counter
4)

0
:
10
3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

Substitute
value at
outputs)
Bit 7 =
Output 7
Bit 0 =
Output 0

0...
255

0...
0xff

Byte 0
0x00

0 255 0x0Y06

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 1.6.3.6.1.2.9 “Fast counter” on page 2776
4) With FBP and without the parameter Fast Counter

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2761

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const
(0) =

7
0x04, 0xbb, 0x04, \
0x01, 0x02, 0x00, 0x00;

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I7

Digital input Yellow Input = OFF Input = ON 1) --

Outputs
R0...R7
(relays)

Digital output Yellow Relay output
= OFF

Relay output =
ON

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
Error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1 and
2)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group

CH-ERR2 Red

CH-ERR 2) Module Error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR2 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2762

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the
terminals UP/L+ and ZP/M of the CPU/
communication interface module

ca. 2 mA

 From UP at normal operation / with out-
puts

0.05 A + output loads

 Inrush current from UP (at power up) 0.010 A²s

Max. power dissipation within the module 6 W (outputs OFF)

Weight (without terminal unit) ca. 300 g

Mounting position Horizontal or vertical with derating (output
load reduced to 50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels I0 to I7 1.0 to 1.7

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Galvanic isolation From the rest of the module (I/O bus)

Indication of the input signals One yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

No effects of
multiple over-
loads

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2763

Parameter Value
Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

Signal 0 -3 V...+5 V

Undefined signal > +5 V...< +15 V

Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the relay outputs

Parameter Value
Number of channels per module 8 relay outputs

Distribution of channels into groups 8 groups of 1 channel each

Connection of the channel R0 Terminal 2.0 (common), 3.0 (NO) and 4.0 (NC)

Connection of the channel R1 Terminal 2.1 (common), 3.1 (NO) and 4.1 (NC)

Connection of the channel R6 Terminal 2.6 (common), 3.6 (NO) and 4.6 (NC)

Connection of the channel R7 Terminal 2.7 (common), 3.7 (NO) and 4.7 (NC)

Galvanic isolation Between the channels and from the rest of the module

Indication of the output signals One yellow LED per channel, the LED is ON when the
relay coil is energized

Monitoring point of output indicator LED is controlled by process CPU

Way of operation Non-latching type

Output delay (0->1 or 1->0) On request

Relay power supply By UP process supply voltage

Relay outputs

 Output short circuit protection Should be provided externally with a fuse or circuit
breaker

Rated protection fuse 6 A gL/gG per channel

Min. switching current 10 mA

Output switching capacity

 Resistive load, max. 3 A; 3 A (230 V AC), 2 A (24 V DC)

 Inductive load, max. 1.5 A; 1.5 A (230 V AC), 1.5 A (24 V DC)

 Lamp load 60 W (230 V AC), 10 W (24 V DC)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2764

Parameter Value
Output switching capacity (XC ver-
sion above 60 °C)

On request

Lifetime (cycles) Mechanical: 300 000;
Under load: 300 000 (24 V DC at 2 A), 200 000 (120 V
AC at 2 A), 100 000 (230 V AC at 3 A)

Spark suppression with inductive AC
load

Must be performed externally according to driven load
specifications

Demagnetization with inductive DC
load

A free-wheeling diode must be circuited in parallel to
the inductive load

Switching frequency

 With resistive load Max. 10 Hz

 With inductive load Max. 2 Hz

 With lamp load On request

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs I0 / I1

Used outputs None

Counting frequency 50 kHz max.

Detailed description See Ä Chapter 1.6.5.1.12 “Fast counters”
on page 3570

Ordering data

Part no. Description Product life cycle phase *)
1SAP 245 200 R0001 DX522, digital input/output module,

8 DI, 24 V DC, 8 DO relays
Active

1SAP 445 200 R0001 DX522-XC, digital input/output
module, 8 DI, 24 V DC, 8 DO relays,
XC version

Active

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2765

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DX531 - Digital input/output module
● 8 digital inputs 120/230 V AC
● 4 relay outputs with one change-over contacts each
● Module-wise galvanically isolated

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states at the digital inputs (I0 - I7)
4 4 yellow LEDs to display the signal states at the digital relay outputs (R0 - R3)
5 1 green LED to display the state of the process supply voltage UP
6 2 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2766

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Digital configurable input / output unit.
● 8 digital inputs 120/230 V AC in 1 group (2.0...2.3 and 3.0...3.3)
● 4 digital relay outputs with one change-over contact each (R0...R3). All output channels are

galvanically isolated from each other.

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process supply voltage
24 V DC)

Required terminal units TU531 or TU532 Ä Chapter 1.6.3.5.4 “TU531 and
TU532 for I/O modules” on page 2562

The device is plugged on a terminal unit Ä Chapter 1.6.3.5.4 “TU531 and TU532 for I/O
modules” on page 2562. Position the module properly and press until it locks in place. The
terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting accessory”
on page 3329).

Connections

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2767

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:
● Terminals 1.8 to 4.8: process supply voltage UP = +24 V DC
● Terminals 1.9 to 4.9: process supply voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 unused

2.0 and 3.0 I0 and I1 Input signals for the digital
inputs I0 and I1

4.0 N01 Neutral conductor for the dig-
ital inputs I0 and I1

2.1 and 3.1 I2 and I3 Input signals for the digital
inputs I2 and I3

4.1 N23 Neutral conductor for the dig-
ital inputs I2 and I3

2.2 and 3.2 I4 and I5 Input signals for the digital
inputs I4 and I5

4.2 N45 Neutral conductor for the dig-
ital inputs I4 and I5

2.3 and 3.3 I6 and I7 Input signals for the digital
inputs I6 and I7

4.3 N67 Neutral conductor for the dig-
ital inputs I6 and I7

2.4 R0 Common contact of the first
relay output

3.4 and 4.4 NO0 and NC0 NO and NC contacts of the
first relay output

2.5 R1 Common contact of the
second relay output

3.5 and 4.5 NO1 and NC1 NO and NC contacts of the
second relay output

2.6 R2 Common contact of the third
relay output

3.6 and 4.6 NO2 and NC2 NO and NC contacts of the
third relay output

2.7 R3 Common contact of the fourth
relay output

3.7 and 4.7 NO3 and NC3 NO and NC contacts of the
fourth relay output

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2768

Fig. 121: Internal construction

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DX531. The external power supply connection is carried out via
the UP (+24 V DC) and the ZP (0 V DC) terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2769

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the module:

1 I/O bus
2 Switchgear cabinet earth

NOTICE!
– If the relay outputs have to switch inductive DC loads, free-wheeling diodes

must be circuited in parallel to these loads.
– If the relay outputs have to switch inductive AC loads, spark suppressors

are required.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2770

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

NOTICE!
Risk of damaging the PLC module!
The following has to be considered when connecting input and output voltages
to the module:
– All 230 V AC feeds must be single phase from the same supply system.
– Connection of 2 or more relay contacts in series is possible; however, vol-

tages above 230 V AC and 3-phase loads are not allowed.
– The 4 change-over contacts of the relays are galvanically isolated from

channel to channel. This allows to connect loads of 24 V DC and 230 V AC
to relay outputs of the same module. In such cases it is necessary that both
supply voltages are grounded to prevent unsafe floating grounds.

– All input signals must come from the same phase of the same supply
system (together with the used neutral conductor). The module is designed
for 120/230 V AC max., not for 400 V AC, not even between two input
terminals.

– All neutral conductor connections must be common to the same supply
system, since the terminals 4.0 to 4.3 are interconnected within the module.
Otherwise, accidental energization could occur.

NOTICE!
Risk of damaging the PLC module!
There is no internal short-circuit or overload protection for the relay outputs.
Protect the relay contacts by back-up fuses of 6 A max. (characteristic gG/gL).
Depending on the application, fuses can be used for single channels or module-
wise.

The module provides several diagnosis functions (see chapter Diagnosis and State LEDs
Ä Chapter 1.7.3.3 “S500 I/O modules diagnosis” on page 4065).

Internal data exchange

Digital inputs (bytes) 1

Digital outputs (bytes) 1

Counter input data (words) 0

Counter output data (words) 0

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2771

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

Module ID Internal 1205
1)

Word 1205
0x04B5

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 not for
FBP

Parameter
length

Internal 4 Byte 4-CPU
4-FBP

0 255 0x0Y02

Check
supply

Off
on

0
1

Byte On
0x01

0 1 0x0Y03

Input
delay

20 ms
100 ms

0
1

Byte 20 ms
0x00

0 1 0x0Y04

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

Substitute
value at
outputs
Bit 3 =
Output 3
Bit 0 =
Output 0

0...15 0...
0x0f

Byte 0
0x00

0 15 0x0Y06

1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2772

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const
(0) =

7
0x04, 0xb6, 0x04, \
0x01, 0x00, 0x00, 0x00;

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I7

Digital input Yellow Input = OFF Input = ON --

Outputs
R0...R3
(relays)

Digital output Yellow Relay output
= OFF

Relay output =
ON

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR2 Channel
error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 2 and
3)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group

CH-ERR3 Red

CH-ERR *) Module Error Red -- Internal error --

*) All of the LEDs CH-ERR2 to CH-ERR3 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for
+24 V DC (UP) as well as 1.9, 2.9,
3.9 and 4.9 for 0 V DC (ZP)

 Rated value 24 V DC

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2773

Parameter Value
 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the terminals
UP/L+ and ZP/M of the CPU/communication inter-
face module

ca. 2 mA

 From UP at normal operation / with outputs 0.15 A + output loads

Inrush current from UP (at power up) 0.004 A2s

Max. power dissipation within the module 6 W (outputs OFF)

Weight (without terminal unit) Ca. 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40
°C per group)

Cooling The natural convection cooling
must not be hindered by cable
ducts or other parts in the switch-
gear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 4 groups of 2 channels each

Terminals of the channels I0 to I7 Ä Chapter 1.6.3.6.1.2.8.3 “Connections”
on page 2767

Galvanic isolation 2500 V AC from the rest of the module (I/O
bus)

Indication of the input signals 1 yellow LED per channel
The LEDs are only operating if the module is
initialized

Monitoring point of input indicator LED is controlled by process CPU

Input type acc. to EN 61131-2 Type 2

Input delay (0->1 or 1->0) Typ. 20 ms

Input signal voltage 230 V AC or 120 V AC

No effects of
multiple over-
loads

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2774

Parameter Value
Input signal range 0 V AC...265 V AC

Input signal frequency 47 Hz...63 Hz

Input characteristic According EN 61132-2 Type 2

Signal 0 0 V AC...40 V AC

Undefined signal > 40 V AC...< 74 V AC

Signal 1 74 V AC...265 V AC

Input current per channel

 Input voltage = 159 V AC > 7 mA

 Input voltage = 40 V AC < 5 mA

Overvoltage protection Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the relay outputs

Parameter Value
Number of channels per module 4 relay outputs

Distribution of channels into groups 4 groups of 1 channel each

Connection of the four relays Ä Chapter 1.6.3.6.1.2.8.3 “Connections”
on page 2767

Galvanic isolation Between the channels and from the rest of the
module

Indication of the output signals 1 yellow LED per channel, the LED is ON when
the relay coil is energized

Monitoring point of output indicator LED is controlled by process CPU

Way of operation Non-latching type

Output delay (0->1 or 1->0) On request

Relay power supply By UP process supply voltage

Relay outputs

 Output short circuit protection Must be provided externally with a fuse or cir-
cuit breaker

 Rated protection fuse 6 A gL/gG per channel

Output switching capacity

 Resistive load, max. 3 A; 3 A (230 V AC), 2 A (24 V DC)

 Inductive load, max. 1.5 A; 1.5 A (230 V AC), 1.5 A (24 V DC)

 Lamp load 60 W (230 V AC), 10 W (24 V DC)

Lifetime (cycles) Mechanical: 300 000;
Under load: 300 000 (24 V DC at 2 A), 200 000
(120 V AC at 2 A), 100 000 (230 V AC at 3 A)

Spark suppression with inductive AC load Must be performed externally according to
driven load specifications

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2775

Parameter Value
Demagnetization with inductive DC load A free-wheeling diode must be circuited in par-

allel to the inductive load

Switching frequency

 With resistive load Max. 10 Hz

 With inductive load Max. 2 Hz

 With lamp load On request

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Ordering data

Part no. Description Product life cycle phase *)
1SAP 245 000 R0001 DX531, digital input/output module,

8 DI, 230 V AC, 4 DO relays, 2-wires
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Fast counter
More information can be found in the Automation Builder chapter, “Fast counters in AC500
devices”.
Ä Chapter 1.6.5.1.12 “Fast counters” on page 3570

1.6.3.6.2 Analog I/O modules
S500-eCo
AI561 - Analog input module

● 4 configurable analog inputs (I0 to I3) in 1 group
● Resolution: 11 bits plus sign or 12 bits

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2776

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are not galvanically isolated from each other.
All other circuitry of the module is not galvanically isolated from the inputs or from the I/O bus.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2777

Functionality
4 analog inputs, individually configurable for
● Not used (default setting)
● -2.5 V...+2.5 V
● -5 V...+5 V
● 0 V...+5 V
● 0 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

Parameter Value
Resolution of the analog channels

 Voltage bipolar (-2.5 V...+2.5 V; -5 V...+5 V) 11 bits plus sign

 Voltage unipolar (0 V...5 V; 0 V...10 V) 12 bits

 Current (0 mA...20 mA; 4 mA...20 mA) 12 bits

LED displays 2 LEDs for process voltage and error mes-
sages

Internal supply Via I/O bus

External supply Via the terminals L+ (process voltage 24
V DC) and M (0 V DC); the M terminal is
connected to the M terminal of the CPU via
the I/O bus

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
The following block diagram shows the internal construction of the analog inputs:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2778

I0+ 2

I0− 3

R0 1

+
−

I1+ 5

I1− 6

R1 4

+
−

I2+ 8

I2− 9

R2 7

+
−

I3+ 11

I3− 12

R3 10

+
−

−−− 13

−−− 14

−−− 16

−−− 17

−−− 15

L+ 19

M 20

SG 18

The assignment of the terminals:

Terminal Signal Description
1 R0 Burden resistor for input

signal 0 for current sensing

2 I0+ Positive pole of input signal 0

3 I0- Negative pole of input signal 0

4 R1 Burden resistor for input
signal 1 for current sensing

5 I1+ Positive pole of input signal 1

6 I1- Negative pole of input signal 1

7 R2 Burden resistor for input
signal 2 for current sensing

8 I2+ Positive pole of input signal 2

9 I2- Negative pole of input signal 2

10 R3 Burden resistor for input
signal 3 for current sensing

11 I3+ Positive pole of input signal 3

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2779

Terminal Signal Description
12 I3- Negative pole of input signal 3

13 --- Reserved

14 --- Reserved

15 --- Reserved

16 --- Reserved

17 --- Reserved

18 SG Shield grounding

19 L+ Process voltage L+ (24 V DC)

20 M Process voltage M (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per AI561.
The external power supply connection is carried out via the L+ (+24 V DC) and the M (0 V DC)
terminals. The M terminal is interconnected to the M/ZP terminal of the CPU/communication
interface module.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 1.6.3.6.2.1.1.6 “Diagnosis”
on page 2783.
The following figure is an example of the internal construction of the analog input AI0. The
analog inputs AI1...AI3 are designed in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2780

250 Ω
R0
I0+
I0−

CAUTION!
Risk of damaging the analog input!
The 250 Ω input resistor can be damaged by overcurrent.
Make sure that the current through the resistor never exceeds 30 mA.

The following figures are an example of the connection of analog sensors (voltage) to the input
I0 of the analog input module AI561. Proceed with the inputs I1 to I3 in the same way.

24 VDC
-
+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

+

-
UIN

-2.5 ... +2.5 V
-5 ... +5 V
0 ... 5 V
0 ... 10 V

24 VDC

-+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

-2.5 ... +2.5 V
-5 ... +5 V
0 ... 5 V
0 ... 10 V

Connection of active-type analog sensors
(voltage)

Connection of passive-type analog sensors
(voltage)

The following figures are an example of the connection of analog sensors (current) to the input
I0 of the analog input module AI561. Proceed with the inputs I1 to I3 in the same way.

24 VDC
−
+

1

2

R0

I0+

3 I0–

18 SG

19 L+

20 M

+

−

UIN 4 ... 20 mA
0 ... 20 mA

24 VDC
−
+

1

2

R0

I0+

3 I0–

18 SG

19 L+

20 M

−

+
4 ... 20 mA

Connection of active-type analog sensors
(current)

Connection of passive-type analog sensors
(current)

The meaning of the LEDs is described in the Displays section Ä Chapter 1.6.3.6.2.1.1.7 “State
LEDs” on page 2784.

I/O configuration
The analog input module AI561 does not store configuration data itself.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2781

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 6500 1) WORD 0x1964 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Internal 6 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0
1

BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

 255

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1...n)

GSD file: Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0
) =

0x09
0x65, 0x19, 0x06, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00;

Input channel (4x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00

0 65535

Table 481: Channel configuration 2)
Internal value Operating modes for the analog inputs, individu-

ally configurable
0 Not used (default)

1 0 V...10 V

3 0 mA...20 mA

4 4 mA...20 mA

6 0 V...5 V

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2782

Internal value Operating modes for the analog inputs, individu-
ally configurable

7 -5 V...+5 V

20 -2,5 V...+2,5 V

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Channel error

4 14 1...10 1 0...3 48 Analog value overflow
at an analog input

Check
input value
or terminal11 / 12 ADR 1...0

4 14 1...10 1 0...3 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...0

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware
address (e. g. of the DC551-CS31)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2783

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (1 = AI); COM1/COM2:
1...10 = expansion 1..10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Measuring ranges

Risk of invalid analog input values!
The analog input values may be invalid if the measuring range of the inputs is
exceeded.

Make sure that the analog signal at the connection terminals is always within
the signal range.

Range -2.5 ...
+2.5 V

-5 ... +5
V

0 ... 5 V 0 ... 10 V 0 ... 20
mA

4 ... 20
mA

Digital value

 Decimal Hex.
Overflow >2.9397 >5.8795 >5.8795 >11.758

9
>23.517
8

>22.814
2

32767 7FFF

Meas-
ured
value too
high

2.9397
:
2.5014

5.8795
:
5.0029

5.8795
:
:
:
5.0015

11.7589
:
:
:
10.0029

23.5178
:
:
:
20.0058

22.8142
:
:
20.0058

32511
:
27664
27658
27656

7EFF
:
6C10
6C0A
6C08

Normal
range

2.5000
:
0.0014

5.0000
:
0.0029

5.0000
:
:
:
0.0015

10.0000
:
:
:
0.0029

20.0000
:
:
:
0.0058

20.0000
:
:
4.0058

27648
:
16
10
8

6C00
:
0010
000A
0008

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2784

Range -2.5 ...
+2.5 V

-5 ... +5
V

0 ... 5 V 0 ... 10 V 0 ... 20
mA

4 ... 20
mA

Digital value

 Decimal Hex.
Normal
range or
meas-
ured
value too
low

0.0000 0.0000 0.0000 0.0000 0 4 0 0000

:
-0.0014
:
:
:
-2.5000

:
-0.0029
:
:
:
-5.0000

 3.9942
:
:
0

-10
-16
-4864
-6912
:
-27648

FFF6
FFF0
ED00
E500
:
9400

Meas-
ured
value too
low

-2.5014
:
-2.9398

-5.0029
:
-5.8795

 -27664
:
-32512

93F0
:
8100

Under-
flow

<-2.9398 <-5.8795 <-0.0300 <-0.0600 <-0.1200 <-0.1200 -32768 8000

The represented resolution corresponds to 12 bits respectively 11 bits plus sign.

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 19 for L+ (+24 V DC) and terminal 20
for M (0 V)

 Rated value 24 V DC

 Current consumption via L+ terminal 0.1 A

 Inrush current (at power up) 0.05 A2s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Protection fuse for L+ Recommended

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of the
CPU/communication interface module

Ca. 10 mA

Galvanic isolation No

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.7 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2785

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 4 individually configurable voltage or current

inputs

Distribution of channels into groups 1 (4 channels per group)

Resolution

 Unipolar Voltage: 0 V...+5 V; 0 V...+10 V: 12 bits
Current 0 mA...20 mA; 4 mA...20 mA: 12 bits

 Bipolar Voltage -2.5 V...+2.5 V; -5 V...+5 V: 11 bits plus
sign

Connection of the signals I0- to I3- Terminals 3, 6, 9, 12

Connection of the signals I0+ to I3+ Terminals 2, 5, 8, 11

Input type Differential

Galvanic isolation No galvanic isolation between the inputs and
the I/O bus

Common mode input range Signal voltage plus common mode voltage
must be within ±12 V

Indication of the input signals No

Channel input resistance Voltage: > 1 MW

Current: ca. 250 W

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ±0.5 % of full scale (voltage)
±0.5 % of full scale (current 0
mA...20 mA)
±0.7 % of full scale (current 4
mA...20 mA)
at 25 °C

Max. ±2 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Time constant of the input filter Voltage: 300 µs
Current: 300 µs

Relationship between input signal and hex
code

Ä Chapter 1.6.3.6.2.1.1.8 “Measuring ranges”
on page 2784

Analog to digital conversion time Typ. 500 µs per channel

Unused inputs Can be left open and should be configured as
"unused"

Input data length 8 bytes

Overvoltage protection Yes, up to 30 V DC only for voltage input

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2786

Parameter Value
Max. cable length (conductor cross section
> 0,14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1101 AI561, analog input module, 4 AI, U/I Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AI562 - Analog input module
● 2 configurable analog resistance temperature detector (RTD) inputs (I0 and I1) in 1 group
● Resolution: 15 bits plus sign

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2787

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (11-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are not galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2788

Functionality
2 analog RTD-inputs, individually configurable for
● Not used (default)
● Pt100, -50 °C...+400 °C, 2-wire
● Pt100, -50 °C...+400 °C, 3-wire
● Pt1000, -50 °C...+400 °C, 2-wire
● Pt1000, -50 °C...+400 °C, 3-wire
● Ni1000, -50 °C...+150 °C, 2-wire
● Ni1000, -50 °C...+150 °C, 3-wire
● Ni100, -50 °C...+150 °C, 2-wire
● Ni100, -50 °C...+150 °C, 3-wire
● Analog input resistance 0 W...150 W
● Analog input resistance 0 W...300 W

Parameter Value
Resolution of the analog channels

 Temperature 0.1 °C

LED displays 2 LEDs for process voltage and error messages

Internal supply Via I/O bus

External supply Via the terminals UP (process voltage 24 V DC) and
ZP (0 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
The following block diagram shows the internal construction of the analog inputs:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2789

I0 1

I0 2

O0+ 10

O1+ 13

I1+ 14

−−− 16

SG 17

I1− 15

UP 19

ZP 20

SG 18

+ 1

− 1

+
−

+
−

The assignment of the terminals:

Terminal Signal Description
10 O0+ Current source of channel 0

11 I0+ Sense input of channel 0

12 I0- Return input of channel 0

13 O1+ Current source of channel 1

14 I1+ Sense input of channel 1

15 I1- Return input of channel 1

16 --- Reserved

17 SG Shield grounding

18 SG Shield grounding

19 UP Process voltage UP (24 V DC)

20 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per AI562.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2790

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 1.6.3.6.2.1.2.6 “Diagnosis”
on page 2793.
The following figures show the connection of RTDs to the inputs of the analog input module
AI562.

24 VDC
-
+

10

11

O0+

I0+

13 O1+

12 I0-

14 I1+

15 I1-

16 ---

17 SG

18 SG

19 UP

20 ZP

24 VDC
-
+

10

11

O0+

I0+

13 O1+

12 I0-

14 I1+

15 I1-

16 ---

17 SG

18 SG

19 UP

20 ZP

2-wires input 3-wires input

With 2-wires connection, the resistance of the connection wires influences the
accuracy of the measured value. Use 3-wires connection to achieve the guaran-
teed measuring accuracy.

The meaning of the LEDs is described in the Displays section Ä Chapter 1.6.3.6.2.1.2.7 “State
LEDs” on page 2794.

I/O configuration
The analog input module AI562 does not store configuration data itself.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2791

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 6505 1) WORD 0x1969 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Intern 4 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0
1

BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

 255

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x07
0x6A, 0x19, 0x04, \
0x01, 0x00, \
0x00, 0x00;

Input channel (2x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00 see
table 3)

0 65535

Table 482: Channel configuration 2)
Internal value Operating modes for the analog inputs,

individually configurable
0 Not used (default)

3)

8 2-wire Pt100 -50 °C...+400 °C

9 3-wire Pt100 -50 °C...+400 °C

16 2-wire Pt1000, -50 °C...+400 °C

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2792

Internal value Operating modes for the analog inputs,
individually configurable

17 3-wire Pt1000, -50 °C...+400 °C

18 2-wire Ni1000 -50 °C...+150 °C

19 3-wire Ni1000 -50 °C...+150 °C

22 2-wire Ni100, -50 °C...+150 °C

23 3-wire Ni100, -50 °C...+150 °C

32 Analog input resistor 0 W...150 W

33 Analog input resistor 0 W...300 W

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Channel error

4 14 1...10 1 0...1 48 Analog value overflow
at an analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 0...1 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

Remarks:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2793

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (1 = AI); COM1/COM2: 1...10
= expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Measuring ranges

Risk of invalid analog input values!
The analog input values may be invalid if the measuring range of the inputs is
exceeded.

Make sure that the analog signal at the connection terminals is always within
the signal range.

Resistance temperature detectors

Range Pt100 / Pt1000
-50 ... +400 °C

Ni1000 / Ni100
-50 ... +150 °C

Digital value

 Decimal Hex.
Overflow > 450.0 °C > 160.0 °C 32767 7FFF

Measured value
too high

450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2794

Range Pt100 / Pt1000
-50 ... +400 °C

Ni1000 / Ni100
-50 ... +150 °C

Digital value

 Decimal Hex.
 160.0 °C

:
150.1 °C

1600
:
1501

0640
:
05DD

Normal range 400.0 °C
:
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

4000
2000
1500
700
:
1

0FA0
07D0
05DC
02BC
:
1

0,0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500
-2000

FFFF
:
FE0C
F830

Measured value
too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C -32768 8000

Resistances

Range Resistance 0 ...
150 W

Resistance 0 ...
300 W

Digital value

 Decimal Hex.
Overflow >176.383 >352.767 32767 7FFF

Measured value
too high

176.383
150.005

352.767
300.011

32511
27649

7EFF
6C01

Normal range 150.000
:
0.005

300.000
:
0.011

27648
:
1

6C00
:
0001

0 0 0 0000

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2795

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal 20
for ZP (0 V)

 Rated value 24 V DC

 Current consumption 0.04 A

 Inrush current (at power-up) 0.05 A2s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Protection fuse for UP Recommended

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of
the CPU/communication interface module

Ca. 5 mA

Galvanic isolation Yes, between the input group and the rest of the
module

 Isolated groups 1 (2 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 1.1 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 2 configurable RTD (resistance temperature detector)

inputs

Distribution of channels into groups 1 (2 channels per group)

Resolution

 RTD 0.1 °C / 0.1 °F

 Resistance 15 bits + sign

Connection of the signals O0+ and
O1+

Terminals 10 and 13

Connection of the signals I0- and I1- Terminals 11 and 14

Connection of the signals I0+ and I1+ Terminals 12 and 15

Input type Module ground referenced RTD for 2-wire and 3-wire
resistance temperature detectors

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2796

Parameter Value
Galvanic isolation Against internal power supply and other modules

Input ranges Pt100, Pt1000, Ni100, Ni1000

150 W, 300 W

Indication of the input signals No

Module update time All channels: < 1 s

Channel input resistance > 100 kW

Input filter attenuation -3 dB at 3.6 kHz

Conversion error of the analog values
caused by non-linearity, adjustment
error at factory and resolution within
the normal range

Typ. Depending on RTD max. ±0.6 % of full scale
(guaranteed for 3-wires connection only)
at 25 °C

Max. ±2 % of full scale (guaranteed for 3-wires
connection only)
at 0 °C...60 °C or EMC disturbances

Measuring range Ä Chapter 1.6.3.6.2.1.2.8 “Measuring ranges”
on page 2794

Analog to digital conversion time Typ. 140 ms per channel

Unused inputs Can be left open and should be configured as
"unused"

Input data length 4 bytes

Power dissipation inside the sensor
(max.)

1 mW

Suppression of interference On request

Maximum input voltage 30 V DC (sense), 5 V DC (source)

Basic error (resistance) 0.1 % of full-scale

Repeatability 0.05 % of full-scale

Overvoltage protection Yes, up to 30 V DC

Wire loop resistance < 20 W

Max. cable length (conductor cross
section > 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1102 AI562, analog input module, 2 AI, RTD Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2797

Part no. Description Product life cycle phase *)
1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,

screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AI563 - Analog input module
● 4 configurable thermocouple (TC) / -80 mV...+80 mV inputs (I0 to I3) in 1 group
● Resolution: 15 bits plus sign

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2798

4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
The other electronic circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality
4 analog TC inputs, individually configurable for
● Not used (default)
● Voltage -80 mV ... + 80 mV
● Thermocouple J-type -210 °C...+1200 °C
● Thermocouple K-type -270 °C...+1372 °C
● Thermocouple R-type -50 °C...+1768 °C
● Thermocouple S-type -50 °C...+1768 °C
● Thermocouple T-type -270 °C...+400 °C
● Thermocouple E-type -270 °C...+1000 °C
● Thermocouple N-type -270 °C...+1300 °C

Parameter Value
Resolution of the analog channels

 Temperature 0.1 °C

LED displays 2 LEDs for process voltage and error mes-
sages

Internal supply Via I/O bus

External supply Via the terminals UP (process voltage 24 V
DC) and ZP (0 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2799

After powering up the system, input channels, which are configured will have
undefined values /diagnosis message for typically 45 seconds, if the wires of all
configured channels are broken.

If the AI563 is connected to a PROFINET communication interface module, the
firmware version of PROFINET communication interface module must be 1.2 or
above.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
The following block diagram shows the internal construction of the analog inputs:

−−− 11

−−− 12

−−− 10

−−− 13

−−− 14

SG 16

SG 17

SG 15

UP 19

ZP 20

SG 18

I2− 6

I3+ 7

I2+ 5

+
−

I3− 8

−−− 9

I0− 2

I1+ 3

I0+ 1 +
−

I1− 4

+
−

+
−

The assignment of the terminals:

Terminal Signal Description
1 I0+ Positive pole of channel 0

2 I0- Negative pole of channel 0

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2800

Terminal Signal Description
3 I1+ Positive pole of channel 1

4 I1- Negative pole of channel 1

5 I2+ Positive pole of channel 2

6 I2- Negative pole of channel 2

7 I3+ Positive pole of channel 3

8 I3- Negative pole of channel 3

9 --- Reserved

10 --- Reserved

11 --- Reserved

12 --- Reserved

13 --- Reserved

14 --- Reserved

15 SG Shield grounding

16 SG Shield grounding

17 SG Shield grounding

18 SG Shield grounding

19 UP Process voltage UP (24 V DC)

20 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals UP/L+ and ZP/M of the CPU/communication interface
module increases by 5 mA per AI563.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2801

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 1.6.3.6.2.1.3.6 “Diagnosis”
on page 2804.
The following figure shows the connection of thermocouples to the inputs of the module:

1

2

I0+

I0-

4 I1-

24 VDC
-
+

3 I1+

5 I2+

6 I2-

7 I3+

8 I3-

9 ---

10

11

13 ---

12 ---

14 ---

15 SG

16 SG

17 SG

18 SG

19 UP

20 ZP

The meaning of the LEDs is described in Displays Ä Chapter 1.6.3.6.2.1.3.7 “State LEDs”
on page 2805 chapter.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2802

I/O configuration
The analog input module AI563 does not store configuration data itself.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 6510 1) WORD 0x196E 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Intern 6 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0
1

BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

 255

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x09
0x6F, 0x19, 0x06, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00;

Input channel (4x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00 see
table 2)

0 65535

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2803

Table 483: Channel configuration 2)
Internal value Operating modes for the analog inputs, individually configurable
0 Not used (default)

21 Voltage -80 mV...+80 mV

24 Thermocouple J-type -210 °C...+1200 °C

25 Thermocouple K-type -270 °C...+1372 °C

26 Thermocouple R-type -50 °C...+1768 °C

27 Thermocouple S-type -50 °C...+1768 °C

28 Thermocouple T-type -270 °C...+400 °C

29 Thermocouple E-type -270 °C...+1000 °C

30 Thermocouple N-type -270 °C...+1300 °C

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Channel error

4 14 1...10 1 0...3 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 0...3 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

Remarks:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2804

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hard-
ware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies dependent of the
master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2:
1...10 = expansion 1...10
Channel error: I/O bus or PNIO = module type (1 = AI); COM1/
COM2: 1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Measuring ranges

AI563 needs typ. 6 to 8 seconds for initialization after applying the process
supply voltage to clamp UP/ZP. During this time, the accuracy of the measure-
ment values is not within specification. After that, valid measurement values are
provided by the module. After that, valid measurement values are provided by
the module.

After an interruption of the process supply voltage > 10 ms, a re-initialization is
performed by AI563.

Risk of invalid analog input values!
The analog input values may be invalid if the measuring range of the inputs is
exceeded.

Make sure that the analog signal at the connection terminals is always within
the signal range.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2805

When a wire break occurs on a sensor wire, the temperature measurement
value of the corresponding channel changes to Overflow (Hexadecimal 7FFF).

Range Type J
-210 ...
+1200 °C

Type K
-270 ...
+1372 °C

Type N
-270 ...
+1300 °C

Type T
-270 ...
+400 °C

Digital value

 Decimal Hex.
Overflow > 1200.0 °C > 1372.0 °C > 1300.0 °C > 400.0 °C 32767 7FFF

Normal
range

 17680 4510

 1372.0 °C 13720 3598

 : 1300.0 °C 13000 32C8

1200.0 °C : : 12000 2EE0

: : : 400.0 °C 4000 0FA0

: : : : : :

0.1 °C 0.1 °C 0.1 °C 0.1 °C 1 1

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C -0.1 °C -0.1 °C -0.1 °C -1 FFFF

: : : : : :

: : : : -500 FE0C

-210.0 °C : : : -2100 F7CC

 -270.0 °C -270.0 °C -270.0 °C -2700 F574

Underflow < -210.0 °C < -270.0 °C < -270.0 °C < -270.0 °C -32768 8000

Range -80 mV ... +80
mV

Type E
-270 ... +1000
°C

Types R, S
-50 ... +1768
°C

Digital value

 Decimal Hex.
Overflow > +90 mV > 1000.0 °C > 1768.0 °C 32767 7FFF

Normal range +80 mV 27648 6C00

 1768.0 °C 17680 4510

 1000.0 °C 10000 2710

 9000 2328

: : : : :

3 µV 0.1 °C 0.1 °C 1 1

0 µV 0.0 °C 0.0 °C 0 0000

-3 µV -0.1 °C -0.1 °C -1 FFFF

: : : : :

: : -50.0 °C -500 FE0C

: -270.0 °C -2700 F574

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2806

Range -80 mV ... +80
mV

Type E
-270 ... +1000
°C

Types R, S
-50 ... +1768
°C

Digital value

 Decimal Hex.
-80 mV -27648 9400

Underflow < -90 mV < -270.0 °C < -50.0 °C -32768 8000

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal 20
for ZP (0 V)

 Rated value 24 V DC

 Current consumption 0.10 A

 Inrush current (at power-up) 0.07 A²s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for UP Not necessary

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of
the CPU/communication interface module

Ca. 5 mA

Galvanic isolation Yes, between the channels and the rest of the
module

 Isolated groups 1 (4 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.6 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2807

Technical data of the analog inputs

Parameter Value
Number of channels per module 4 configurable thermocouple (TC) inputs

Distribution of channels into groups 1 (4 channels per group)

Resolution

 Temperature 0.1 °C

 Voltage 15 bits plus sign

Connection of the signals I0+ to I3+ Terminals 1, 3, 5 and 7

Connection of the signals I0- to I3- Terminals 2, 4, 6 and 8

Input type Floating thermocouple

Galvanic isolation Against internal power supply and other modules

Common mode rejection > 120 dB at 120 V AC

Indication of the input signals No

Module update time All channels: < 1.6 s

Channel input resistance On request

Input filter attenuation -3 dB at 15 kHz

Cold junction error ±1.5 °C

Conversion error of the analog values
caused by non-linearity, adjustment
error at factory and resolution within
the normal range

Typ. 0.1 % of full-scale (voltage)
Depending on thermocouple, see table
Ä Chapter 1.6.3.6.2.1.3.9.1.1 “Accuracy of
thermocouple ranges at 25 °C (with cold junc-
tion compensation)” on page 2809

at 25 °C

Max. ±2 % of full scale (T-Type: ±3 % for -240
°C...-270 °C)
at 0 °C...60 °C

Relationship between input signal
and hex code

Ä Chapter 1.6.3.6.2.1.3.8 “Measuring ranges”
on page 2805

Analog to digital conversion time 400 ms per channel

Unused inputs Can be left open and should be configured as "unused"

Input data length 8 bytes

Overvoltage protection Yes, up to 30 V DC

Repeatability On request

Wire loop resistance < 100 W

Max. cable length (conductor cross
section > 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2808

Accuracy of thermocouple ranges at 25 °C (with cold junction compensation)

Thermocouple Type Range Accuracy
E -270 °C...-220 °C

-220 °C...+1000 °C
±2 %
±0.6 %

J -210 °C...+1200 °C ±0.6 %

K -270 °C...-220 °C
-220 °C...+1372 °C

±1.5 %
±0.6 %

N -270 °C...-150 °C
-150 °C...+1300 °C

±2 %
±0.6 %

R -50 °C...+150 °C
+150 °C...+1768 °C

±1.5 %
±0.6 %

S -50 °C...+150 °C
+150 °C...+1768 °C

±1.5 %
±0.6 %

T -270 °C...-240 °C
-240 °C...-0 °C
0 °C...+400 °C

±3 %
±2 %
±0.6 %

These accuracy values are valid only for stable module temperatures.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1103 AI563, analog input module, 4 AI,

thermocouple
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2809

AO561 - Analog output module
● 2 configurable analog outputs (O0 and O1) in 1 group
● Resolution: 11 bits plus sign or 12 bit

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (11-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are not galvanically isolated from each other.
The other electronic circuitry of the module is not galvanically isolated from the outputs or from
the I/O bus.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2810

The I/O module must not be used as communication interface module at CI590-
CS31-HA bus modules.

Functionality
2 analog outputs, individually configurable for
● Not used (default setting)
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

Parameter Value
Resolution of the analog channels

 Voltage bipolar (-10 V...+10 V) 11 bits plus sign

 Current (0 mA...20 mA; 4 mA...20 mA) 12 bits

LED displays 2 LEDs for process voltage and error messages

Internal supply Via I/O bus

External supply Via the terminals L+ (process voltage 24 V DC)
and M (0 V DC); the M terminal is connected to
the M terminal of the CPU via the I/O bus

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

If the output is configured as not used, the voltage and current output signals
are undefined and must not be connected.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
The following block diagram shows the internal construction of the analog outputs:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2811

−−− 11

−−− 12

−−− 10

O0U+ 13

O0I+ 14

O1I+ 16

O01− 17

O1U+ 15

L+ 19

M 20

SG 18

+

+

−

−

The assignment of the terminals:

Terminal Signal Description
10 --- Reserved

11 --- Reserved

12 --- Reserved

13 O0U+ Voltage output of channel 0

14 O0I+ Current output of channel 0

15 O1U+ Voltage output of channel 1

16 O1I+ Current output of channel 1

17 O01- Negative pole of channels O0 and O1

18 SG Shield grounding

19 L+ Process voltage L+ (24 V DC)

20 M Process voltage M (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals UP/L+ and ZP/M of the CPU/communication interface
module increases by 5 mA per AO561.
The external power supply connection is carried out via the L+ (+24 V DC) and the M (0 V
DC) terminals. The M terminal is electrically interconnected to the M/ZP terminal of the CPU/
communication interface module.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2812

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 1.6.3.6.2.1.4.6 “Diagnosis”
on page 2815.
The following figures show the connection of analog actuators to the analog output module
AO561.

U

24 VDC
-
+

10

11

13 O0U+

12 ---

14 O0I+

15 O1U+

16 O1I+

17 O01-

18 SG

19 L+

20 M

U

24 VDC
-
+

10

11

13 O0U+

12 ---

14 O0I+

15 O1U+

16 O1I+

17 O01-

18 SG

19 L+

20 M

I

I

Connection of analog voltage actuators Connection of analog current actuators

The output signal is undefined if the supply voltage at the L+ terminal is below
10 V. This can, for example, occur if the supply voltage has a slow ramp-up /
ramp-down behavior and must be foreseen when planning the installation.

If the output is configured in current mode, the voltage output signal is unde-
fined and must not be connected.

If the output is configured in voltage mode, the current output signal is unde-
fined and must not be connected.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2813

I/O configuration
The analog output module AO561 does not store configuration data itself.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 6515 1) WORD 0x1973 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Intern 4 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0
1

BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

 255

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x07
0x74, 0x19, 0x04, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00;

Output channel (2x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00 see
table 2)

0 65535

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2814

Table 484: Channel configuration 2)
Internal value Operating modes for the analog outputs, individually configu-

rable
0 Not used (default)

128 -10 V...+10 V

129 0 mA...20 mA

130 4 mA...20 mA

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Channel error

4 14 1...10 3 0...1 48 Analog value overflow
at an analog output

Check
output
value or
terminal

11 / 12 ADR 1...10

4 14 1...10 3 0...1 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1...10

Remarks:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2815

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (3 = AO); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Output ranges

Range -10 ... +10 V 0 ... 20 mA 4 ... 20 mA Digital value
 Decimal Hex.
Overflow >11.7589 >23.5178 >22.8142 32767 7FFF

Value too high 11.7589
:
10.0058
:
:

23.5178
:
:
:
20.0058

22.8142
:
:
20.0058
:

32511
:
27664
27658
27656

7EFF
:
6C10
6C0A
6C08

Normal range
Normal range
or value too
low

10.0000
:
0.0058
:
:

20.0000
:
:
:
0.0058

20.0000
:
:
4.0058

27648
:
16
10
8

6C00
:
0010
000A
0008

0.0000 0 4 0 0000

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2816

Range -10 ... +10 V 0 ... 20 mA 4 ... 20 mA Digital value
 Decimal Hex.

:
-0.0058
:
:
:
-10.0000

 3.9942
:
:
0

-10
-16
-4864
-6912
:
-27648

FFF6
FFF0
ED00
E500
:
9400

Value too low -10.0058
:
-11.7589

 -27664
:
-32512

93F0
:
8100

Underflow <-11.7589 <0.0000 -32768 8000

The represented resolution corresponds to 12 bit respectively 11 bit plus sign.

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 19 for L+ (+24 V DC) and terminal 20
for M (0 V)

 Rated value 24 V DC

 Current consumption 0.1 A + output load

 Inrush current (at power-up) 0.05 A²s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Protection fuse for L+ Recommended

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of
the CPU/communication interface module

Ca. 5 mA

Galvanic isolation No

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 3.1 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2817

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog outputs

Parameter Value
Number of channels per module 2 configurable voltage or current outputs

Distribution of channels into groups 1 (2 channels per group)

Connection of the signals O0U- and O1U+ Terminals 13 and 15

Connection of the signals O0I+ and O1I+ Terminals 14 and 16

Output type Bipolar with voltage, unipolar with current

Resolution 12 bits or 11 bits plus sign

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±2 % of full scale
at 0 °C...+60 °C or EMC disturbances

Indication of the output signals No

Output Resistance (load) as current output 0 W...500 W

Output load ability as voltage output ±2 mA max.

Output data length 4 bytes

Relationship between output signal and hex
code

Ä Chapter 1.6.3.6.2.1.4.8 “Output ranges”
on page 2816

Unused outputs Must not be connected and must be configured
as "unused"

Overvoltage protection Yes, up to 30 V DC

Max. cable length (conductor cross section
> 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1201 AO561, analog output module, 2 AO,

U/I
Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2818

Part no. Description Product life cycle phase *)
1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,

screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AX561 - Analog input/output module
● 4 configurable analog inputs (I0 to I3) in 1 group
● 2 configurable analog outputs (O0 and O1) in 1 group
● Resolution: 11 bits plus sign or 12 bits

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2819

3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are not galvanically isolated from each other.
The outputs are not galvanically isolated from each other.
All other circuitry of the module is not galvanically isolated from the inputs/outputs or from the
I/O bus.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality
4 analog inputs, individually configurable for
● Not used (default)
● -2.5 V...+2.5 V
● -5 V...+ 5 V
● 0 V...+5 V
● 0 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA
2 analog outputs, individually configurable for
● Not used (default)
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

Parameter Value
Resolution of the analog channels

 Voltage bipolar (-2.5 V...+2.5 V; -5 V...+5 V) 11 bits plus sign

 Voltage unipolar (0 V...5 V; 0 V...10 V) 12 bits

 Current (0 mA...20 mA; 4 mA...20 mA) 12 bits

LED displays 2 LEDs for process voltage and error mes-
sages

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2820

Parameter Value
Internal supply Via I/O bus

External supply Via the terminals L+ (process voltage 24 V
DC) and M (0 V DC); the M terminal is con-
nected to the M terminal of the CPU via the
I/O bus

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

If the output is configured as not used, the voltage and current output signals
are undefined and must not be connected.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
The following block diagram shows the internal construction of the analog inputs and outputs:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2821

I0+ 2

I0− 3

R0 1

+
−

I1+ 5

I1− 6

R1 4

+
−

I2+ 8

I2− 9

R2 7

+
−

I3+ 11

I3− 12

R3 10

+
−

O0U+ 13

O0I+ 14

O1I+ 16

O01− 17

O1U+ 15

L+ 19

M 20

SG 18

+

+

−

−

The assignment of the terminals:

Terminal Signal Description
1 R0 Burden resistor for input signal 0 for current sensing

2 I0+ Positive pole of input signal 0

3 I0- Negative pole of input signal 0

4 R1 Burden resistor for input signal 1 for current sensing

5 I1+ Positive pole of input signal 1

6 I1- Negative pole of input signal 1

7 R2 Burden resistor for input signal 2 for current sensing

8 I2+ Positive pole of input signal 2

9 I2- Negative pole of input signal 2

10 R3 Burden resistor for input signal 3 for current sensing

11 I3+ Positive pole of input signal 3

12 I3- Negative pole of input signal 3

13 O0U+ Voltage output of channel 0

14 O0I+ Current output of channel 0

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2822

Terminal Signal Description
15 O1U+ Voltage output of channel 1

16 O1I+ Current output of channel 1

17 O01- Negative pole of channels O0 and O1

18 SG Shield grounding

19 L+ Process voltage L+ (24 V DC)

20 M Process voltage M (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals UP/L+ and ZP/M of the CPU/communication interface
module increases by 5 mA per AX561.
The external power supply connection is carried out via the L+ (+24 V DC) and the M (0 V DC)
terminals. The M terminal is interconnected to the M/ZP terminal of the CPU/communication
interface module.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2823

The module provides several diagnosis functions Ä Chapter 1.6.3.6.2.1.5.6 “Diagnosis”
on page 2827.
The following figure is an example of the internal construction of the analog input AI0. The
analog inputs AI1...AI3 are designed in the same way.

250 Ω
R0
I0+
I0−

CAUTION!
Risk of damaging the analog input!
The 250 W input resistor can be damaged by overcurrent.

Make sure that the current through the resistor never exceeds 30 mA.

The following figures are an example of the connection of analog sensors (voltage) to the input
I0 of the analog input/output module AX561. Proceed with the inputs I1 to I3 in the same way.

24 VDC
-
+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

+

-
UIN

-2.5 ... +2.5 V
-5 ... +5 V
0 ... 5 V
0 ... 10 V

24 VDC

-+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

-2.5 ... +2.5 V
-5 ... +5 V
0 ... 5 V
0 ... 10 V

Connection of active-type analog sensors
(voltage)

Connection of passive-type analog sensors
(voltage)

The following figures are an example of the connection of analog sensors (current) to the input
I0 of the analog input/output module AX561. Proceed with the inputs I1 to I3 in the same way.

24 VDC
−
+

1

2

R0

I0+

3 I0–

18 SG

19 L+

20 M

+

−

UIN 4 ... 20 mA
0 ... 20 mA

24 VDC
−
+

1

2

R0

I0+

3 I0–

18 SG

19 L+

20 M

−

+
4 ... 20 mA

Connection of active-type analog sensors
(current)

Connection of passive-type analog sensors
(current)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2824

The following figures are an example of the connection of analog actuators to the analog input/
output module AX561.

24 V DC
-
+

10

11

R3

I3+

13 O0U+

12 I3-

14 O0I+

15 O1U+

16 O1I+

17 O01-

18 SG

19 L+

20 M

U

U

24 V DC
-
+

10

11

R3

I3+

13 O0U+

12 I3-

14 O0I+

15 O1U+

16 O1I+

17 O01-

18 SG

19 L+

20 M

I

I

Connection of analog voltage actuators Connection of analog current actuators

The output signal is undefined if the supply voltage at the L+ terminal is below
10 V. This can, for example, occur if the supply voltage has a slow ramp-up /
ramp-down behavior and must be foreseen when planning the installation.

If the output is configured in current mode, the voltage output signal is unde-
fined and must not be connected.

If the output is configured in voltage mode, the current output signal is unde-
fined and must not be connected.

The meaning of the LEDs is described in the displays chapter Ä Chapter 1.6.3.6.2.1.5.7 “State
LEDs” on page 2828.

I/O configuration
The I/O module does not store configuration data itself.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2825

Name Value Internal
Value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6520 1) WORD 0x1978 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Internal 8 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0 1 BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

1) With CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x0B
0x79, 0x19, 0x08, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00;

Input channel (4x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00 see
table 2)

0 65535

Table 485: Channel configuration 2)
Internal value Operating modes for the analog inputs, individually configu-

rable
0 Not used (default)

1 0 V...+10 V

3 0 mA...20 mA

4 4 mA...20 mA

6 0 V...+5 V

7 -5 V...+5 V

20 -2.5 V...+2.5 V

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2826

Output channel (2x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see see
table 2)

see see
table 2)

BYTE 0
0x00 see
table 2)

0 65535

Table 486: Channel configuration 2)
Internal value Operating modes for the analog outputs, individually configurable
0 Not used (default)

128 -10 V...+ 10 V

129 0 mA...20 mA

130 4 mA...20 mA

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Channel error

4 14 1...10 1 0...3 48 Analog value overflow
at an analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 0...3 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2827

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 3 0...1 48 Analog value overflow
at an analog output

Check
output
value or
terminal

11 / 12 ADR 1...10

4 14 1...10 3 0...1 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (1 = AI, 3 = AO); COM1/
COM2: 1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2828

Measuring ranges

CAUTION!
Risk of wrong analog input values!
The analog input values may be wrong if the measuring range of the inputs are
exceeded.
Make sure that the analog signal at the connection terminals is always within
the signal range.

Range -2.5 ...
+2.5 V

-5 ... +5
V

0 ... 5 V 0 ... 10 V 0 ... 20
mA

4 ... 20
mA

Digital value

 Decimal Hex.
Overflow >2.9397 >5.8795 >5.8795 >11.758

9
>23.517
8

>22.814
2

32767 7FFF

Meas-
ured
value too
high

2.9397
:
2.5014

5.8795
:
5.0029

5.8795
:
:
:
5.0015

11.7589
:
:
:
10.0029

23.5178
:
:
:
20.0058

22.8142
:
:
20.0058

32511
:
27664
27658
27656

7EFF
:
6C10
6C0A
6C08

Normal
range
Normal
range or
meas-
ured
value too
low

2.5000
:
0.0014

5.0000
:
0.0029

5.0000
:
:
:
0.0015

10.0000
:
:
:
0.0029

20.0000
:
:
:
0.0058

20.0000
:
:
4.0058

27648
:
16
10
8

6C00
:
0010
000A
0008

0.0000 0.0000 0.0000 0.0000 0 4 0 0000

:
-0.0014
:
:
:
-2.5000

:
-0.0029
:
:
:
-5.0000

 3.9942
:
:
0

-10
-16
-4864
-6912
:
-27648

FFF6
FFF0
ED00
E500
:
9400

Meas-
ured
value too
low

-2.5014
:
-2.9398

-5.0029
:
-5.8795

 -27664
:
-32512

93F0
:
8100

Under-
flow

<-2.9398 <-5.8795 <-0.0300 <-0.0600 <-0.1200 <-0.1200 -32768 8000

The represented resolution corresponds to 12 bits respectively 11 bits plus sign.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2829

Output ranges

Range -10 ... +10 V 0 ... 20 mA 4 ... 20 mA Digital value
 Decimal Hex.
Overflow > 11.7589 > 23.5178 > 22.8142 32767 7FFF

Output value
too high

11.7589
:
10.0058
:
:

23.5178
:
:
:
20.0058

22.8142
:
:
20.0058
:

32511
:
27664
27658
27656

7EFF
:
6C10
6C0A
6C08

Normal range
Normal range
or output
value too low

10.0000
:
0.0058
:
:

20,0000
:
:
:
0.0058

20.0000
:
:
4.0058

27648
:
16
10
8

6C00
:
0010
000A
0008

0.0000 0 4 0 0000

:
-0.0058
:
:
:
-10.0000

 3.9942
:
:
0

-10
-16
-4864
-6912
:
-27648

FFF6
FFF0
ED00
E500
:
9400

Output value
too low

-10.0058
:
-11.7589

 -27664
:
-32512

93F0
:
8100

Underflow < -11.7589 <0.0000 -32768 8000

The represented resolution corresponds to 12 bits respectively 11 bits plus sign.

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 19 for L+ (+24 V DC) and terminal 20
for M (0 V)

 Rated value 24 V DC

 Current consumption via L+ terminal 0.14 A + output load

 Inrush current (at power-up) 0.05 A

 Max. ripple 5 %

 Protection against reversed voltage Yes

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2830

Parameter Value
 Protection fuse for L+ Recommended

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of
the CPU/communication interface module

Ca. 5 mA

Galvanic isolation No

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 4.9 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the switch-
gear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per
module

4 individually configurable voltage or current inputs

Distribution of channels into
groups

1 (4 channels per group)

Resolution

 Unipolar Voltage: 0 V...+5 V; 0 V...+10 V: 12 bits
Current 0 mA...20 mA; 4 mA...20 mA: 12 bits

 Bipolar Voltage -2.5 V...+2.5 V; -5 V...+5 V: 11 bits plus sign

Connection of the signals I0- to
I3-

Terminals 3, 6, 9, 12

Connection of the signals I0+ to
I3+

Terminals 2, 5, 8, 11

Input type Differential

Galvanic isolation No galvanic isolation between the inputs and the I/O bus

Common mode input range Signal voltage plus common mode voltage must be within
±12 V

Indication of the input signals No

Channel input resistance Voltage: >1 MW

Current: ca. 250 W

Conversion error of the analog
values caused by non-linearity,
adjustment error at factory and
resolution within the normal
range

Typ. ±0.5 % of full scale (voltage)
±0.5 % of full scale (current 0 mA...20 mA)
±0.7 % of full scale (current 4 mA...20 mA)
at 25 °C

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2831

Parameter Value
Max. ±2 % of full scale (all ranges)

at 0 °C...60 °C or EMC disturbance

Time constant of the input filter Voltage: 300 µs
Current: 300 µs

Relationship between input
signal and hex code

Ä Table on page 2829

Analog to digital conversion
time

Typ. 500 µs per channel

Unused inputs Can be left open and should be configured as "unused"

Input data length 8 bytes

Overvoltage protection Yes, up to 30 V DC only for voltage input

Max. cable length (conductor
cross section > 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Technical data of the analog outputs

Parameter Value
Number of channels per module 2 configurable voltage or current outputs

Distribution of channels into groups 1 (2 channels per group)

Connection of the signals O0U- and O1U+ Terminals 13 and 15

Connection of the signals O0I+ and O1I+ Terminals 14 and 16

Output type Bipolar with voltage, unipolar with current

Resolution 12 bits or 11 bits plus sign

Indication of the output signals No

Output resistance (load) as current output 0 W...500 W

Output load ability as voltage output 2 mA max.

Relationship between input signal and hex code Table Output Ranges Ä Table
on page 2830

Conversion error of the analog values caused
by non-linearity, adjustment error at factory and
resolution within the normal range

Typ. ±0.5 % of full scale (voltage)
±0.5 % of full scale (current 0
mA...20 mA)
±0.7 % of full scale (current 4
mA...20 mA)
at 25°C

Max. ±2 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Unused outputs Can be left open and should be configured
as "unused"

Output data length 4 bytes

Overvoltage protection Yes, up to 30 V DC

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2832

Parameter Value
Max. cable length (conductor cross section
> 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1301 AX561, analog input/output module,

4 AI, 2 AO, U/I
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

S500
AC522 - Analog input/output module

● 8 configurable analog inputs/outputs in one group (2.0...2.7 and 3.0...3.7)
● Resolution 12 bits plus sign
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2833

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states at the analog inputs/outputs (C0 - C7)
4 1 green LED to display the state of the process supply voltage UP
5 1 red LED to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The configuration is performed by software. The modules are supplied with a process voltage of
24 V DC.
The inputs and outputs are galvanically isolated from all other circuitry of the module.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2834

Functionality
8 analog inputs (I0...I7), individually configurable for
● Unused (default setting)
● 0 V...10 V
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA
● Pt100, -50 °C...+400 °C (2-wire)
● Pt100, -50 °C...+400 °C (3-wire), requires 2 channels
● Pt100, -50 °C...+70 °C (2-wire)
● Pt100, -50 °C...+70 °C (3-wire), requires 2 channels
● Pt1000, -50 °C...+400 °C (2-wire)
● Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels
● Ni1000, -50 °C...+150 °C (2-wire)
● Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels
● 0 V...10 V with differential inputs, requires 2 channels
● -10 V...+10 V with differential inputs, requires 2 channels
● Digital signals (digital input)
4 analog outputs (O0...O3), individually configurable for
● Unused (default setting)
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA
4 analog outputs (O4...O7), individually configurable for
● Unused (default setting)
● -10 V...+10 V

Parameter Value
Resolution of the analog channels

 Voltage -10 V...+10 V 12 bits plus sign

 Voltage 0 V...10 V 12 bits

 Current 0 mA...20 mA, 4 mA...20 mA 12 bits

 Temperature 0.1 °C

LED displays 10 LEDs for signals and error messages

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2835

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The modules are plugged on an I/O terminal unit Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 2553. Properly position the modules and press until they
lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting accessory”
on page 3329).
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8, 2.8, 3.8 and 4.8 as well as 1.9, 2.9, 3.9 and 4.9 are electrically intercon-
nected within the I/O terminal units and always have the same assignment, independent of the
inserted module:
Terminals 1.8, 2.8, 3.8 and 4.8: process voltage UP = +24 V DC
Terminals 1.9, 2.9, 3.9 and 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 Unused Unused

2.0 to 2.7 C0- to C7- Negative poles of the 8 analog
inputs/outputs

3.0 to 3.7 C0+ to C7+ Positive poles of the analog
inputs/outputs

4.0 to 4.7 Unused Unused

The negative poles of the analog inputs are connected to each other to form an
"Analog Ground" signal for the module.

The negative poles of the analog outputs are connected to each other to form
an "Analog Ground" signal for the module.

There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2836

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per I/O module. The external power supply connection is carried out
via the UP (+24 V DC) and the ZP (0 V DC) terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figure shows the connection of the I/O module.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2837

1 4 analog I/O channels
as inputs for 0 V...10 V, -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA, Pt100/Pt1000/Ni1000
digital signals
as outputs for -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA

2 4 analog I/O channels
as inputs for 0 V...10 V, -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA, Pt100/Pt1000/Ni1000
digital signals
as outputs for -10 V...+10 V

The process voltage must be included in the grounding concept of the control
system (e.g. grounding the negative pole).

By installing equipotential bonding conductors between the different parts of the
system, it must be made ensured that the potential difference between ZP and
AGND never exeeds 1 V.

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the 8 analog channels.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2838

Pt100 -50 °C...+70 °C 2-wire configuration, one
channel used

Pt100 -50 °C...+400 °C 2-wire configuration, one
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, one
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, one
channel used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the max. 8 (depending on the
configuration) analog channels.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2839

1 Return line
2 Twisted pair within the cable

If several measuring points are adjacent to each other, only one return line is
necessary. This saves wiring costs.

With the 3-wire configuration, two adjacent analog channels belong together (e.g. the channels
0 and 1). In this case, both channels are configured according to the desired operating mode.
The lower address must be the even address (channel 0), the next higher address must be the
odd address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e.g. C1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Pt100 -50 °C...+70 °C 3-wire configuration, two
channels used

Pt100 -50 °C...+400 °C 3-wire configuration, two
channels used

Pt1000 -50 °C...+400 °C 3-wire configuration, two
channels used

Ni1000 -50 °C...+150 °C 3-wire configuration, two
channels used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2840

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

By connecting the sensor's negative pole of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

By connecting to AGND the galvanically isolated voltage source of the sensor is referred to ZP.
The following measuring ranges can be configured:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2841

The following measuring ranges can be configured:

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1V, not even in case of long lines (see figure Terminal Assignment).

If AGND does not get connected to ZP, the sensor current flows to ZP via the
AGND line. The measuring signal is distorted, as a very small current flows
through the voltage line. The total current through the PTC should not exceed
50 mA. This measuring method is therefore only suitable for short lines and
small sensor currents. If there are bigger distances, the difference measuring
method should be applied.

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V *) 1 channel used

*) if the sensor can provide this signal range

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2842

Connection of passive-type analog sensors (Current)

Current 4 mA...20 mA 1 channel used

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA for
more than 1 second to an analog input, this input is switched off by the module
(input protection). In such cases, it is recommended to protect the analog input
by a 10-volt Zener diode (in parallel to I+ and I-). But, in general, sensors with
fast initialization or without current peaks higher than 25 mA are preferrable.

Unused input channels can be left open-circuited because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The use of differential inputs helps to considerably increase the measuring accuracy and to
avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
The ground potential at the sensors must not have too large a potential
difference with respect to ZP (max. ±1 V within the full signal range). Other-
wise, problems may occur concerning the common-mode input voltages of the
involved analog inputs.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2843

The negative pole of the sensor must be grounded next to the sensor.

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2844

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

Connection of analog output loads (Voltage, current)

Voltage -10 V...+10 V Load max. ±10 mA 1 channel used

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

Only the channels 0...3 can be configured as current output (0 mA...20 mA or 4 mA...20 mA).
Unused analog outputs can be left open-circuited.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2845

Internal data exchange

Analog inputs (words) 8

Analog outputs (words) 8

I/O configuration
The module does not store configuration data itself. The 8 configurable analog channels are
defined as inputs or outputs by the configuration, i.e. each of the configurable channels can
used as input or output (or re-readable output in case of voltage input/output).
When a channel is used as input, the corresponding output must be configured unused.
When a channel is used as output, the corresponding input must be configured unused.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1520
1)

Word 1520
0x05f0

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 not for
FBP

3 Param-
eter
length in
bytes

Internal 37 Byte 37-CPU
37-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Behav-
iour of
outputs
at com-
munica-
tion
errors

Off
Last
value
Substi-
tute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2846

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

7 Channel
configu-
ration
Input
channel
0

see table
Channel configura-
tion

Byte Default
0x00

0 19 0x0Y06

8 Channel
moni-
toring
Input
channel
0

see table
Channel monitoring

Byte Default
0x00

0 3 0x0Y07

9
to
22

Channel
configu-
ration
and
channel
moni-
toring of
the input
channels
1 to 7

see tables
channel configura-
tion and channel
monitoring

Byte
Byte

Default
0x00
0x00

0
0

19
3

0x0Y08
to
0x0Y15

23 Channel
configu-
ration
Output
channel
0

see table
Channel configura-
tion

Byte Default
0x00

0 130 0x0Y16

24 Channel
moni-
toring
Output
channel
0

see table
Channel monitoring

Byte Default
0x00

0 3 0x0Y17

25 Substi-
tute
value
Output
channel
0

only
valid for
output
channel
0

0...0xffff Word Default
0x0000

0 65535 0x0Y18

26 to 31 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
1 to 3

see tables
channel configura-
tion and channel
monitoring

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y19
to
0x0Y1E

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2847

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

32 Channel
configu-
ration
Output
channel
4

see table
Channel configura-
tion

Byte Default
0x00

0 128 0x0Y1F

33 Channel
moni-
toring
Output
channel
4

see table
Channel monitoring

Byte Default
0x00

0 3 0x0Y20

34
to
39

Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
5 to 7

see tables
channel configura-
tion and channel
monitoring

Byte
Byte

Default
0x00
0x00

0
0

128
3

0x0Y21
to
0x0Y26

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

40
0x05, 0xf1, 0x25, \
0x01, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00;

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2848

Table 487: Input channel (8x)
No. Name Internal value, type Default
1 Channel configuration

see table 2)

Byte 0

0x00 see table 2)

2 Channel monitoring

see table 3)

Byte 0

0x00 see table 3)

Table 488: Channel configuration 2)
Internal value Operating modes of the analog inputs, individually configurable
0 Unused (default)

1 Analog input 0 V...10 V

2 Digital input

3 Analog input 0 mA...20 mA

4 Analog input 4 mA...20 mA

5 Analog input -10 V...+10 V

8 Analog input Pt100, -50 °C...+400 °C (2-wire)

9 Analog input Pt100, -50 °C...+400 °C (3-wire), requires 2 channels *)

10 Analog input 0...10 V via differential inputs, requires 2 channels *)

11 Analog input -10 V...+10 V via differential inputs, requires 2 channels *)

14 Analog input Pt100, -50 °C...+70 °C (2-wire)

15 Analog input Pt100, -50 °C...+70 °C (3-wire), requires 2 channels *)

16 Analog input Pt1000, -50 °C...+400 °C (2-wire)

17 Analog input Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels *)

18 Analog input Ni1000, -50 °C...+150 °C (2-wire)

19 Analog input Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels *)

 *) In the operating modes with 3-wire configuration or with differential inputs,
two adjacent analog inputs belong together (e.g. the channels 0 and 1). In
these cases, both channels are configured in the desired operating mode. The
lower address must be the even address (channel 0). The next higher address
must be the odd address (channel 1). The converted analog value is available
at the higher address (channel 1).

Table 489: Channel monitoring 3)
Internal value Monitoring
0 Plausibility, open-circuit (broken wire) and short circuit

1 Open-circuit and short-circuit

2 Plausibility

3 No monitoring

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2849

Table 490: Output channel 0 (1 channel)
No. Name Value Internal value Internal

value, type
Default

1 Channel con-
figuration

see table 4) see table 4) Byte see table 4)

2 Channel mon-
itoring

see table 5) see table 5) Byte see table 5)

3 Substitute
value

see table 6)

0...65535 0...
0xffff

Word 0

Table 491: Output channels 1...7 (7x)
No. Name Internal value, type Default
1 Channel configura-

tion

see table 4)

Byte see table 4)

2 Channel monitoring

see table 5)

Byte see table 5)

Table 492: Channel configuration 4)
Internal value Operating modes of the analog outputs, individually configurable
0 Unused (default)

128 Analog output -10 V...+10 V

129 Analog output 0 mA...20 mA (not with the channels 4...7)

130 Analog output 4 mA...20 mA (not with the channels 4...7)

Table 493: Channel monitoring 5)
Internal value Monitoring
0 Plausibility, open circuit (broken wire) and short circuit (default)

1 Open-circuit (broken wire) and short-circuit

2 Plausibility

3 No monitoring

Table 494: Substitute value 6)
Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value Last value 0

Substitute value Off or last value 1...65535

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2850

Diagnosis
Table 495: Possible diagnosis of I/O channels
Output range Condition

Output value in the PLC
underflow

Output value in the PLC overflow

0..20 mA Error identifier = 7 Error identifier = 4

4..20 mA

-10..+10 V

Input range Condition
Short circuit Wire break Input value under-

flow
Input value over-
flow

0..20 mA no diagnosis possible no diagnosis possible no diagnosis possible Error identifier = 48

4..20 mA Error identifier = 7 Error identifier = 7 Error identifier = 7 Error identifier = 48

-10..+10 V no diagnosis possible Error identifier = 48 Error identifier = 7 Error identifier = 48

Table 496: Content of diagnosis messages
E1...E4 d1 d2 d3 d4 Identifier

000...063
AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in
the I/O module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firm-
ware versions in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data
exchange failure

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2851

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage
ON11 / 12 ADR 1...10

Channel error

 AX521 AX522

4 14 1...10 1 0...3 0...7 48 Analog value over-
flow or broken wire
at an analog input

Check
input
value or
terminal

11 / 12 ADR 1...10

4 14 1...10 1 0...3 0...7 7 Analog value under-
flow at an analog
input

Check
input
value11 / 12 ADR 1...10

4 14 1...10 1 0...3 0...7 47 Short circuit at an
analog input

Check
terminal11 / 12 ADR 1...10

4 14 1...10 3 4...7 8...15 4 Analog value over-
flow at an analog
output

Check
output
value11 / 12 ADR 1...10

4 14 1...10 3 4...7 8...15 7 Analog value under-
flow at an analog
output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware address
(e.g. of the DC551)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2852

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10
Channel error: I/O bus or FBP = module type (1 = AI, 3 = AO); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs/
outputs
00...07

Analog input/
output

Yellow Input/output
is OFF

Input/output is
ON (bright-
ness depends
on the value
of the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR3 Channel
error, error
messages
combined
into group 3

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
group

Measuring ranges
Input ranges of voltage, current and digital input

The represented resolution corresponds to 16 bits.

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

ON 27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 OFF 0 0000

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2853

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
-0.0004
-1.7593

-0.0004
:
:
:
-10.0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow <0.0000 <-11.7589 <0.0000 <0.0000 -32768 8000

Input ranges resistance temperature detector

Range Pt100 / Pt
1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured
value too high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

Normal range :
:
70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

:
150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2854

Output ranges voltage and current
The represented resolution corresponds to 16 bits.

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Value too high 11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too low -10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

Technical data
The System Data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
Only additional details are therefore documented below.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for 0
V (ZP)

 Rated value 24 VDC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 VDC power supply at the terminals
UP/L+ and ZP/M of the CPU/bus module

Ca. 2 mA

 From UP at normal operation 0.10 A + output loads

Inrush current from UP (at power up) 0.040 A2s

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2855

Parameter Value
Max. length of analog cables, conductor cross sec-
tion > 0.14 mm²

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switch-gear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 8

Distribution of channels into groups 1 group of 8 channels

Connections of the channels C0- to C7- Terminals 2.0 to 2.7

Connections of the channels C0+ to C7+ Terminals 3.0 to 3.7

Input type Bipolar (not with current or Pt100/Pt1000/Ni1000)

Galvanic isolation Against internal supply and other modules

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA,
4 mA...20 mA, Pt100/1000, Ni1000 (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals One LED per channel

Conversion cycle 2 ms (for 8 inputs + 8 outputs), with Pt/Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Relationship between input signal and hex
code

See table Ä Chapter 1.6.3.6.2.2.1.9.1 “Input
ranges of voltage, current and digital input”
on page 2853

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2856

Parameter Value
Unused inputs Must be configured as "unused".

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 8

Distribution of channels into groups 1 group of 8 channels

Connections of the channels C0+ to C7+ Terminals 3.0 to 3.7

Reference potential for the inputs Terminals 1.9 to 4.9 (ZP)

Input signal delay Typ. 8 ms, configurable from 0.1 to 32 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 VDC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 4.3 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 8, all channels for voltage, the first 4 channels

also for current

Distribution of channels into groups 1 group of 8 channels

 Channels C0-...C7- Terminals 2.0...2.7

 Channels C0+...C7+ Terminals 3.0...3.7

Output type Bipolar with voltage, unipolar with current

Galvanic isolation Against internal supply and other modules

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA
(each output can be configured individually),
current outputs only channels 0...3

Output resistance (load), as current output 0 W...500 W

Output loadability, as voltage output Max. ±10 mA

Indication of the output signals One LED per channel

Resolution 12 bits (+ sign)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2857

Parameter Value
Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Relationship between output signal and hex
code

See table Ä Chapter 1.6.3.6.2.2.1.9.3 “Output
ranges voltage and current” on page 2855

Unused outputs Must be configured as "unused".

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 500 R0001 AC522, analog input/output module,

8 AC, U/I/RTD, 12 bits + sign, 2-wires
Active

1SAP 450 500 R0001 AC522-XC, analog input/output
module, 8 AC, U/I/RTD, 12 bits + sign,
2-wires, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AI523 - Analog input module
● 16 configurable analog inputs (I0 to I15) in 2 groups (1.0...2.7 and 3.0...4.7)

Resolution 12 bits plus sign
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2858

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states at the analog inputs (I0 - I15)
4 1 green LED to display the state of the process supply voltage UP
5 2 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
16 analog inputs, individually configurable for
● Unused (default setting)
● 0 V...10 V
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2859

● Pt100, -50 °C...+400 °C (2-wire)
● Pt100, -50 °C...+400 °C (3-wire), requires 2 channels
● Pt100, -50 °C...+70 °C (2-wire)
● Pt100, -50 °C...+70 °C (3-wire), requires 2 channels
● Pt1000, -50 °C...+400 °C (2-wire)
● Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels
● Ni1000, -50 °C...+150 °C (2-wire)
● Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels
● 0 V...10 V with differential inputs, requires 2 channels
● -10 V...+10 V with differential inputs, requires 2 channels
● Digital signals (digital input)

Parameter Value
Resolution of the analog channels

 Voltage -10 V... +10 V 12 bits plus sign

 Voltage 0 V...10 V 12 bits

 Current 0 mA...20 mA, 4 mA...20 mA 12 bits

 Temperature 0.1 °C

LED displays 19 LEDs for signals and error messages

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

Connections
The modules are plugged on an I/O terminal unit Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 2553. Properly position the modules and press until they
lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting accessory”
on page 3329).
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal
units and have always the same assignment, independent of the inserted module:
Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V
The assignment of the other terminals:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2860

Terminals Signal Description
1.0 to 1.7 I0- to I7- Negative poles of the first 8

analog inputs

2.0 to 2.7 I0+ to I7+ Positive poles of the first 8
analog inputs

3.0 to 3.7 I8- to I15- Negative poles of the fol-
lowing 8 analog inputs

4.0 to 4.7 I8+ to I15+ Positive poles of the following
8 analog inputs

CAUTION!
The negative poles of the analog inputs are galvanically connected to each
other. They form an "Analog Ground" signal for the module. The negative poles
of the analog outputs are also galvanically connected to each other to form an
"Analog Ground" signal.

CAUTION!
There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

CAUTION!
Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per AI523.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2861

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figure shows the connection of the module:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2862

Fig. 122: 16 analog inputs in two groups, individually configurable Ä Chapter 1.6.3.6.2.2.2.2
“Functionality” on page 2859

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The modules provide several diagnosis functions Ä Chapter 1.6.3.6.2.2.2.7 “Diagnosis”
on page 2874.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2863

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module AI523
provides a constant current source which is multiplexed over the 8 analog channels.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 123: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.2.6 “Parameteriza-
tion” on page 2871.

Pt100 -50 °C...+70 °C 2-wire configuration, one
channel used

Pt100 -50 °C...+400 °C 2-wire configuration, one
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, one
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, one
channel used

The function of the LEDs is described under Displays Ä Chapter 1.6.3.6.2.2.2.7 “Diagnosis”
on page 2874.
The module AI523 performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module AI523
provides a constant current source which is multiplexed over the max. 8 (depending on the
configuration) analog channels.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2864

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 124: Connection example

If several measuring points are adjacent to each other, the return line is neces-
sary only once. This saves wiring costs.

With 3-wire configuration, two adjacent analog channels belong together (e.g. the channels 0
and 1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e.g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.2.6 “Parameteriza-
tion” on page 2871

Pt100 -50 °C...+70 °C 3-wire configuration, two
channels used

Pt100 -50 °C...+400 °C 3-wire configuration, two
channels used

Pt1000 -50 °C...+400 °C 3-wire configuration, two
channels used

Ni1000 -50 °C...+150 °C 3-wire configuration, two
channels used

The function of the LEDs is described under Displays Ä Chapter 1.6.3.6.2.2.2.7 “Diagnosis”
on page 2874.
The module AI523 performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2865

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V
-10 ... +10 V

+

-
UIN

AGND

Fig. 125: Connection example

By connecting the sensor's negative pole of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.2.6 “Parameteriza-
tion” on page 2871 Ä Chapter 1.6.3.6.2.2.2.9 “Measuring ranges” on page 2876

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Displays Ä Chapter 1.6.3.6.2.2.2.7 “Diagnosis”
on page 2874.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2866

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Fig. 126: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.2.6 “Parameteriza-
tion” on page 2871 Ä Chapter 1.6.3.6.2.2.2.9 “Measuring ranges” on page 2876

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Displays Ä Chapter 1.6.3.6.2.2.2.7 “Diagnosis”
on page 2874.
Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V

AGND

Fig. 127: Connection example

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2867

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1 V, not even in case of long lines .

If AGND does not get connected to ZP, the sensor current flows to ZP via
the AGND line. The measuring signal is distorted, as a very low current flows
over the voltage line. The total current through the PTC should not exceed 50
mA. This measuring method is therefore only suitable for short lines and small
sensor currents. If there are bigger distances, the difference measuring method
has to be preferred.

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.2.9 “Measuring
ranges” on page 2876

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V *) 1 channel used

*) if the sensor can provide this signal range

The function of the LEDs is described under Displays Ä Chapter 1.6.3.6.2.2.2.7 “Diagnosis”
on page 2874.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of passive-type analog sensors (Current)

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

4 ... 20 mA

-

+

Fig. 128: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.2.6 “Parameteriza-
tion” on page 2871 Ä Chapter 1.6.3.6.2.2.2.9 “Measuring ranges” on page 2876

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Displays Ä Chapter 1.6.3.6.2.2.2.7 “Diagnosis”
on page 2874.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2868

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA
for more than 1 second into an analog input, this input is switched off by the
module (input protection). In such cases, it is recommended to protect the
analog input by a 10 volt Zener diode (in parallel to I+ and I-). But, in general, it
is a better solution to use sensors with fast initialization or without current peaks
higher than 25 mA.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful if analog sensors which are remotely non-isolated (e.g. the
negative terminal is remotely grounded) are used.
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
The ground potential at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V within the full signal range). Otherwise problems
can occur concerning the common-mode input voltages of the involved analog
inputs.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V
-10 ... +10 V

+

-
UIN

Fig. 129: Connection example

The negative pole of the sensor must be grounded next to the sensor.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2869

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.2.6 “Parameteriza-
tion” on page 2871 Ä Chapter 1.6.3.6.2.2.2.9 “Measuring ranges” on page 2876:

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

The function of the LEDs is described under Displays Ä Chapter 1.6.3.6.2.2.2.7 “Diagnosis”
on page 2874.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

UP

ZP

Fig. 130: Connection example

The following operating mode can be configured Ä Chapter 1.6.3.6.2.2.2.6 “Parameterization”
on page 2871 Ä Chapter 1.6.3.6.2.2.2.9 “Measuring ranges” on page 2876

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

The function of the LEDs is described under Displays.

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Counter input data (words) 16

Counter output data (words) 0

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2870

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
That means replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1515
1)

Word 1515
0x05eb

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 not for
FBP

3 Param-
eter
length in
bytes

Internal 34 Byte 34-CPU
34-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Channel
configu-
ration
Input
channel
0

See
Ä Table 497 “Chan
nel configuration 2)”
on page 2873

Byte Default
0x00

0 19 0x0Y05

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2871

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

7 Channel
moni-
toring
Input
channel
0

See
Ä Table 498 “Chan
nel monitoring 4)”
on page 2873

Byte Default
0x00

0 3 0x0Y06

8
to
35

Channel
configu-
ration
and
channel
moni-
toring of
the input
channels
1 to 14

See
Ä Table 497 “Chan
nel configuration 2)”
on page 2873

and
Ä Table 498 “Chan
nel monitoring 4)”
on page 2873

Byte
Byte

Default
0x00
0x00

0
0

19
3

0x0Y07
to
0x0Y22

36 Channel
configu-
ration
Input
channel
15

See
Ä Table 497 “Chan
nel configuration 2)”
on page 2873

Byte Default
0x00

0 19 0x0Y23

37 Channel
moni-
toring
Input
channel
15

See
Ä Table 498 “Chan
nel monitoring 4)”
on page 2873

Byte Default
0x00

0 3 0x0Y24

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

37
0x05, 0xec, 0x22, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00;

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2872

No. Name Value Internal value Internal
value, type

Default

1 Channel con-
figuration

see table 2) see table 2) Byte 0

0x00 see 3)

2 Channel mon-
itoring

see table 4) see table 4) Byte 0

0x00 see 5)

Table 497: Channel configuration 2)
Interna
l value

Operating modes of the analog inputs, individually configurable

0 Unused (default)
3)

1 Analog input 0 V...10 V

2 Digital input

3 Analog input 0 mA...20 mA

4 Analog input 4 mA...20 mA

5 Analog input -10 V...+10 V

8 Analog input Pt100, -50 °C...+400 °C (2-wire)

9 Analog input Pt100, -50 °C...+400 °C (3-wire), requires 2 channels *)

10 Analog input 0...10 V via differential inputs, requires 2 channels *)

11 Analog input -10 V...+10 V via differential inputs, requires 2 channels *)

14 Analog input Pt100, -50 °C...+70 °C (2-wire)

15 Analog input Pt100, -50 °C...+70 °C (3-wire), requires 2 channels *)

16 Analog input Pt1000, -50 °C...+400 °C (2-wire)

17 Analog input Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels *)

18 Analog input Ni1000, -50 °C...+150 °C (2-wire)

19 Analog input Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels *)

 *) In the operating modes with 3-wire configuration or with differential inputs, two
adjacent analog inputs belong together (e.g. the channels 0 and 1). In these cases,
both channels are configured in the desired operating mode. The lower address must
be the even address (channel 0). The next higher address must be the odd address
(channel 1). The converted analog value is available at the higher address (channel
1).

Table 498: Channel monitoring 4)
Intern
al
value

Monitoring

0 Plausibility, open-circuit (broken wire) and short circuit
5)

1 Open-circuit and short circuit

2 Plausibility

3 No monitoring

Input channel
(16 x with AI523)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2873

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON ->
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error

4 14 1...10 1 0...15 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 0...15 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

4 14 1...10 1 0...15 47 Short circuit at an
analog input

Check ter-
minal11 / 12 ADR 1...10

Remarks:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2874

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1..10 = expansion module 1...10, ADR = hardware address
(e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1..10 =
expansion 1...10
Channel error: I/O bus or FBP = module type (1 = AI); COM1/COM2: 1..10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I7 and
I8...I15

Analog input Yellow Input is OFF Input is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, error
messages in
groups
(analog
inputs or out-
puts com-
bined into the
groups 2 and
4)

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) Both LEDs (CH-ERR2 and CH-ERR4) light up together

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2875

Measuring ranges
Input ranges of voltage, current and digital input

Range 0...10
V

-10...+10
V

0...20
mA

4...20
mA

Digital
input

Digital value

 Decimal Hex.
Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

ON

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 OFF 0 0000

-0.0004
-1.7593

-0.0004
:
:
:
-10.0000

 3.9994 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow < -1.7593 <-11.7589 <0.0000 <1.1858 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector
The resolution corresponds to 16 bits.

Range Pt100 / Pt
1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured
value too high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2876

Range Pt100 / Pt
1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Normal
range

:
:
70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

:
150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24
V (UP) as well as 1.9, 2.9, 3.9 and 4.9
for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the terminals
UP/L+ and ZP/M of the CPU/communication
interface module

Ca. 2 mA

 From UP at normal operation / with outputs 0.15 A + output loads

Inrush current from UP (at power up) 0.050 A2s

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2877

Parameter Value
Max. length of analog cables, conductor cross section
> 0.14 mm2

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40 °C
per group)

Cooling The natural convection cooling must
not be hindered by cable ducts or
other parts in the switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 16

Distribution of channels into groups 2 groups of 8 channels each

Connections of the channels I0- to I7-
Connections of the channels I0+ to I7+

Terminals 1.0 to 1.7
Terminals 2.0 to 2.7

Connections of the channels I8- to I15-
Connections of the channels I8+ to I15+

Terminals 3.0 to 3.7 Terminals 4.0 to 4.7

Input type Bipolar (not with current or Pt100/ Pt1000/
Ni1000)

Galvanic isolation Against internal supply and other modules

Configurability 0 V...10 V, -10 V...+10 V, 0/4 mA...20 mA,
Pt100/1000, Ni1000 (each input can be config-
ured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel

Conversion cycle 2 ms (for 16 inputs), with Pt/Ni... 1 s

Resolution Range 0 V...10 V: 12 bits

Range -10 V...+10 V: 12 bits + sign

Range 0 mA...20 mA: 12 bits

Range 4 mA...20 mA: 12 bits

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ±0.5 % of full scale
at 25 °C

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2878

Parameter Value
Max. ±1 % of full scale (all ranges)

at 0 °C...60 °C or EMC disturbance

Relationship between input signal and hex
code

Ä Chapter 1.6.3.6.2.2.2.9.1 “Input ranges of
voltage, current and digital input” on page 2876

Ä Chapter 1.6.3.6.2.2.2.9.2 “Input ranges
resistance temperature detector” on page 2876

Unused voltage inputs Are configured as "unused"

Unused current inputs Have a low resistance, can be left open-
circuited

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 16

Distribution of channels into groups 2 groups of 8 channels each

Connections of the channels I0+ to I7+
Connections of the channels I8+ to I15+

Terminals 2.0 to 2.7
Terminals 4.0 to 4.7

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Input signal delay Typ. 8 ms, configurable from 0.1 to 32 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 4.3 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 300 R0001 AI523, analog input module, 16 AI,

U/I/Pt100, 12 bits + sign, 2-wires
Active

1SAP 450 300 R0001 AI523-XC, analog input module, 16 AI,
U/I/Pt100, 12 bits + sign, 2-wires,
XC version

Active

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2879

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AI531 - Analog input module
● 8 configurable analog inputs (I0 to I7) in 2 groups (1.0...1.7 and 2.0...2.7 as well as 3.0...3.7

and 4.0...4.7)
Resolution 15 bits plus sign

● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal names
3 4 yellow LEDs to display the states at the inputs I0 to I3
4 4 yellow LEDs to display the states at the inputs I4 to I7
5 1 green LED to display the process supply voltage UP
6 2 red LEDs to display errors (CH-ERR2 and CH-ERR4)
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2880

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
8 analog inputs, individually configurable for
● Unused (default setting)
● 0 V...5 V, 0 V...10 V
● -50 mV...+50 mV, -500 mV...+500 mV
● -1 V...+1 V, -5 V...+5 V, -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA
● -20 mA...20 mA
● Pt100, -50 °C...+70 °C or 400 °C (2-, 3- and 4-wire)
● Pt100, -200 °C...+850 °C (2-, 3- and 4-wire)
● Pt1000, -50 °C...+400 °C (2-, 3- and 4-wire)
● Ni1000, -50 °C...+150 °C (2-, 3- and 4-wire)
● Cu50 (1.426): -50 °C...+200 °C (2-, 3- and 4-wire)
● Cu50 (1.428): -200 °C...+200 °C (2-, 3- and 4-wire)
● 0 Ω...50 kΩ
● Thermocouples of types J, K, T, N, S
● Resistance measuring bridge
● Digital signals (digital input)

Parameter Value
Resolution of the analog channels

 Voltage and current, bipolar 15 bits plus sign

 Voltage and current, unipolar 15 bits

 Temperature 0.1 °C (0,01°C at Pt100 -50 °C...+70 °C)

LED displays 11 LEDs for signals and error messages

Internal power supply through the I/O bus interface (I/O bus)

External power supply via terminals (process voltage UP = 24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2881

The modules are plugged on an I/O terminal unit Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 2553. Properly position the modules and press until they
lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting accessory”
on page 3329).
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8, 2.8, 3.8, 4.8, 1.9, 2.9, 3.9 and 4.9 are electrically interconnected within the
I/O terminal units and always have the same assignment, independent of the inserted module:
Terminals 1.8, 2.8, 3.8 and 4.8: process voltage UP = +24 V DC
Terminals 1.9, 2.9, 3.9 and 4.9: process voltage ZP = 0 V
The assignment of the other terminals:

Terminals Signal Description
2.0, 2.2, 2.4, 2.6 I0+ to I3+ Positive poles of the first 4

analog inputs

1.0, 1.2, 1.4, 1.6 I0- to I3- Negative poles of the first 4
analog inputs

2.1, 2.3, 2.5, 2.7 I0A to I3A Connections A (supply) of the
first 4 analog inputs

1.1, 1.3, 1.5, 1.7 I0B to I3B Connections B (analog
ground) of the first 4 analog
inputs

4.0, 4.2, 4.4, 4.6 I4+ to I7+ Positive poles of the following
4 analog inputs

3.0, 3.2, 3.4, 3.6 I4- to I7- Negative poles of the fol-
lowing 4 analog inputs

4.1, 4.3, 4.5, 4.7 I4A to I7A Connections A (supply) of the
following 4 analog inputs

3.1, 3.3, 3.5, 3.7 I4B to I7B Connections B (analog
ground) of the following 4
analog inputs

CAUTION!
Analog sensors must be galvanically isolated against the ground. In order to
avoid inaccuracy with the measuring results, the analog sensors should also be
isolated against the power supply.

The "IxB" clamps (x=0..7) of the analog inputs are galvanically connected to
each other. They form an "Analog Ground Signal" (AGND) for the module.

The negative poles of the analog inputs Ix- may accept a potential difference
up to ±20 V DC with regard to the common reference potential IxB (AGND,
ZP). Observing this maximum voltage difference, analog current inputs of one
module can be switched in series to each other and also with current inputs of
other modules.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2882

For the open-circuit detection (cut wire), each positive analog input channel Ix+
is pulled up to "plus" by a high-resistance resistor and each negative analog
input channel Ix- is pulled down to "minus" by a resistor. If cut wire occurs, a
maximum voltage (overflow or underflow) will be read in then.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per AI531.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2883

Fig. 131: 8 analog inputs in two groups, individually configurable Ä Chapter 1.6.3.6.2.2.3.2
“Functionality” on page 2881

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The module provides several diagnosis functions Ä Chapter 1.6.3.6.2.2.3.7 “Diagnosis”
on page 2902.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2884

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZP

-50 ... +50 mV
-500 ... +500 mV
-1 ... +1 V
-5 ... +5 V
-10 ... +10 V
-50 ... +50 mV
0 ... +5 V
0 ... +10 V

+

-
UIN

Fig. 132: Connection example

The measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameterization”
on page 2899:

Voltage -50 mV...+50 mV 1 channel used

Voltage -500 mV...+500 mV 1 channel used

Voltage -1 V...+1 V 1 channel used

Voltage -5 V...+5 V 1 channel used

Voltage -10 V...+10 V 1 channel used

Voltage 0 V...+5 V 1 channel used

Voltage 0 V...+10 V 1 channel used

Fig. 133: Connection example

The measuring range can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameterization”
on page 2899:

Standard ranges

Common mode
range (+/-20 V)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2885

Voltage Common mode voltage 1 channel used

The function of the LEDs is described under Diagnosis and displays / displays Ä Chapter
1.6.3.6.2.2.3.7 “Diagnosis” on page 2902.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

Fig. 134: Connection example

CAUTION!
If GND is not directly connected to ZP at the sensor, the supply current flows
via the GND line to ZP. Measuring errors can only occur caused by voltage
differences higher than ±20 V DC between GND and ZP.

The measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameterization”
on page 2899 :

Voltage -50 mV...+50 mV 1 channel used

Voltage -500 mV...+500 mV 1 channel used

Voltage -1 V...+1 V 1 channel used

Voltage -5 V...+5 V 1 channel used

Voltage -10 V...+10 V 1 channel used

Voltage 0 V...+5 V 1 channel used

Voltage 0 V...+10 V 1 channel used

Standard ranges

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2886

Fig. 135: Connection example

CAUTION!
If GND is not directly connected to ZP at the sensor, the supply current flows
via the GND line to ZP. Measuring errors can only occur caused by voltage
differences higher than ±20 V DC between GND and ZP.

The measuring range can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameterization”
on page 2899:

Voltage Common mode voltage 1 channel used

The function of the LEDs is described under Diagnosis and displays / displays Ä Chapter
1.6.3.6.2.2.3.7 “Diagnosis” on page 2902.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Fig. 136: Connection example

Common mode
range (+/-20 V)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2887

Figure:
The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameteriza-
tion” on page 2899:

Current -20 mA...20 mA 1 channel used

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / displays Ä Chapter
1.6.3.6.2.2.3.7 “Diagnosis” on page 2902.
Unused input channels can be left open, because they are of low resistance.

Connection of active-type analog sensors (Current) with galvanically isolated power supply and series-
connection of an additional input

ZP

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZP

-20 ... +20 mA
0 ... +20 mA

+4 ... +20 mA

+

-

UP

+

-

1

Fig. 137: Connection example

1 Analog input of the second device

If series-connection of an additional input is used, the input resistance of the
module (ca. 330 Ω) must be added to the input resistance of the second device.
Make sure that the maximum permitted load resistance of the analog sensor is
not exceeded (see the data sheet of the analog sensor).

The input of the module is not related to ZP. If the input of the second device is
related to ZP, the order of sequence in the series-connection must be observed
by all means (from the sensor to the module and then to the input of the second
device).

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameteriza-
tion” on page 2899:

Current -20 mA...20 mA 1 channel used

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2888

For a description of the functions of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.3.6.2.2.3.7 “Diagnosis” on page 2902.
Unused input channels can be left open, because they are of low resistance.

Connection of passive-type analog sensors (Current)

Fig. 138: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameteriza-
tion” on page 2899:

Current -20 mA... 20 mA *) 1 channel used

Current 0 mA... 20 mA *) 1 channel used

Current 4 mA... 20 mA 1 channel used

*) This setting is not applicable with passive-type analog sensors (current).

The function of the LEDs is described under Diagnosis and displays / displays Ä Chapter
1.6.3.6.2.2.3.7 “Diagnosis” on page 2902.
Unused input channels can be left open, because they are of low resistance.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2889

Connection of passive-type analog sensors (Current) and series-connection of an additional analog sensor

ZP

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZP

+4 ... +20 mA

-

+

UP

+

-

1

Fig. 139: Connection example

1 Analog input of the second device

If series-connection of an additional input is used, the input resistance of the
module (ca. 330 Ω) must be added to the input resistance of the second device.
Make sure that the maximum permitted load resistance of the analog sensor is
not exceeded (see the data sheet of the analog sensor).

The input of the module is not related to ZP. If the input of the second device is
related to ZP, the order of sequence in the series-connection must be observed
by all means (from the sensor to the module and then to the input of the second
device).

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameteriza-
tion” on page 2899:

Current -20 mA...20 mA *) 1 channel used

Current 0 mA...20 mA *) 1 channel used

Current 4 mA...20 mA 1 channel used

*) This setting is not applicable with passive-type analog sensors (current).

The function of the LEDs is described under Diagnosis and displays / displays Ä Chapter
1.6.3.6.2.2.3.7 “Diagnosis” on page 2902.
Unused input channels can be left open, because they are of low resistance.

Connection of digital signal sources at analog inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2890

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZP

UP

ZP

Fig. 140: Connection example

The following operating mode can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameterization”
on page 2899 :

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.3.6.2.2.3.7 “Diagnosis” on page 2902.

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000, Cu50) are used, a constant current
must flow through them to build the necessary voltage drop for the evaluation. For this, the
module AI531 provides a constant current source which is multiplexed over the 4 analog chan-
nels.

Fig. 141: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameteriza-
tion” on page 2899:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2891

Pt100 -50 °C...+70 °C / +400 °C;
-200 °C...+850 °C

1 channel used

Pt1000 -50 °C...+400 °C 1 channel used

Ni1000 -50 °C...+150 °C 1 channel used

Cu50 -50 °C...+200 °C (1.426); -200
°C...+200 °C (1.428)

1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.3.6.2.2.3.7 “Diagnosis” on page 2902.
The module linearizes the resistance thermometer characteristics.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000, Cu50) are used, a constant current
must flow through them to build the necessary voltage drop for the evaluation. For this, the
module AI531 provides a constant current source which is multiplexed over the 4 analog chan-
nels.

Fig. 142: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameteriza-
tion” on page 2899:

Pt100 -50 °C...+70 °C / +400 °C;
-200 °C ... +850 °C

1 channel used

Pt1000 -50 °C...+400 °C 1 channel used

Ni1000 -50 °C...+150 °C 1 channel used

Cu50 -50 °C...+200 °C (1.426); -200
°C...+200 °C (1.428)

1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.3.6.2.2.3.7 “Diagnosis” on page 2902.
The module linearizes the resistance thermometer characteristics. In order to keep measuring
errors as small as possible, it is necessary by all means to have all the involved conductors in
the same cable. All the conductors must have the same cross section.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2892

In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 4-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000, Cu50) are used, a constant current
must flow through them to build the necessary voltage drop for the evaluation. For this, the
module AI531 provides a constant current source which is multiplexed over the 4 analog chan-
nels.

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZPZP

UP

Pt100
Pt1000
Ni1000
Cu50

Fig. 143: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameteriza-
tion” on page 2899:

Pt100 -50 °C...+70 °C / +400 °C;
-200 °C...+850 °C

1 channel used

Pt1000 -50 °C...+400 °C 1 channel used

Ni1000 -50 °C...+150 °C 1 channel used

Cu50 -50 °C...+200 °C (1.426); -200
°C...+200 °C (1.428)

1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.3.6.2.2.3.7 “Diagnosis” on page 2902.
The module linearizes the resistance thermometer characteristics. In order to keep measuring
errors as small as possible, it is necessary by all means, to have all the involved conductors in
the same cable.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistors in 2-wire configuration
For evaluating resistors, a constant current must flow through them to build the necessary
voltage drop. For this, the module AI531 provides a constant current source which is multi-
plexed over the 4 analog channels.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2893

Fig. 144: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameteriza-
tion” on page 2899 :

Resistor 50 kΩ 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.3.6.2.2.3.7 “Diagnosis” on page 2902.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of a resistance measuring bridge with internal supply
When resistance measuring bridges are connected, the short-circuit-proof voltage output
(internal supply) at pin I0A (or I2A, I4A, I6A) must be used. This supply voltage is activated
as soon as "Voltage Measurement" is configured for the relevant channel.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2894

Fig. 145: Connection example

1 Internal supply
All voltage measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameterization”
on page 2899.
The calculation of the resistor deviation must be performed via the bridge voltage by the PLC
user program.

Connection of a resistance measuring bridge with external supply
With the connection of a resistance measuring bridge with external supply, the supply voltage is
provided separately.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2895

UP

ZP

1.2
I1-
1.3
I1B

1.8
UP
1.9
ZP

1.0
I0-
1.1
I0B

PTC

2.2
I1+
2.3
I1A

2.8
UP
2.9
ZP

2.0
I0+
2.1
I0A

-50 ... +50 mV
-500 ... +500 mV
-1 ... +1 V
-5 ... +5 V
-10 ... +10 V
0 ... +5 V
0 ... +10 V

1)

-50 ... +50 mV
-500 ... +500 mV
-1 ... +1 V
-5 ... +5 V
-10 ... +10 V
0 ... +5 V
0 ... +10 V

0 V

<= 10 V

Fig. 146: Connection example

1 Bridge to IxB necessary with galvanically isolated supply
All voltage measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameterization”
on page 2899 .
The calculation of the resistor deviation must be performed via the bridge voltage by the PLC
user program.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2896

Connection of thermocouples

Fig. 147: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.3.6 “Parameteriza-
tion” on page 2899 :

J type -210 °C...1200 °C Fe-CuNi 1 channel used

K type -270 °C...1372 °C Ni-CrNi 1 channel used

N type -270 °C...1300 °C NiCrSi-NiSi 1 channel used

S type -50 °C...1768 °C Pt10Rh-Pt 1 channel used

T type -270 °C...400 °C Cu-CuNi 1 channel used

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2897

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.3.6.2.2.3.7 “Diagnosis” on page 2902.
The module linearizes the thermocouple characteristics. It supports the following possibilities of
temperature compensation and handling with cold junctions:

Internal compensation
An internal temperature sensor which is located next to the terminal unit is used to detect the
temperature of the cold junction. So the compensating cables must be connected directly to the
terminal unit, where the cold junction is located.
The setting "Internal compensation (default)" for the parameter "Compensation channel" should
be selected.

To get more precise temperature measurements, the use of an external com-
pensation method is recommended.

External compensation with temperature input
The temperature for the cold junction can be determinated externally.
A measured or known temperature value (e.g. ambient temperature in the cabinet) is transferred
to the module via the output data word to all required channels. The possible temperature range
is from -25 °C to +60 °C and is monitored by the AI531.
The setting "External with temperature value" for the parameter "Compensation channel" should
be selected.

External compensation with compensation box
A compensation box balances the temperature difference between the cold junction and the
reference temperature by generating a bridge voltage. The reference temperature is transferred
via the output data word.
The compensation box must fit to the type of thermocouple and is located at the end of the
compensating cables, where the cold junction is located. The cabling to the AI531 can be
carried out with normal cables. The operating manual of the compensation box also has to be
considered.
The setting "External with temperature value" for the parameter "Compensation channel" should
be selected.

External compensation with flanking channel
A flanking channel of the same input group can be used for compensation, e. g. for channel
3, the channels 0, 1 and 2 can be selected as reference channels. The type of sensor for the
reference channel can be selected in the parameters for the flanking channel. For example, a
RTD sensor which is located next to the thermocouple terminal can be used as reference point
for other channels.
The setting "Channel x" for the parameter "Compensation channel" should be selected. Refer to
Channel configuration Ä Chapter 1.6.3.6.2.2.3.6 “Parameterization” on page 2899 for possible
settings.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2898

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Analog inputs (words) 8

Analog outputs (words) 1

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
This means that replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot/
Index

Module ID Internal 1535
1)

Word 1535
0x05ff

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length in
bytes

Internal 36 Byte 36 0 255 0x0Y02

Check
supply

Off
On

0
1

Byte On
0x01

 0x0Y03

Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2899

2) Not with FBP
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

39
0x05, 0xff, 0x24, \
0x01, 0x00, 0x00, 0x00 \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00;

No. Name Value Internal
value

Internal
value, Type

Default EDS Slot
Index

1 Channel
configura-
tion

see
Ä Table 49
9 “Channel
configura-
tion”
on page 2900

see
Ä Table 49
9 “Channel
configura-
tion”
on page 2900

Byte 0
0x00

0x0Y07

2 Channel
monitoring

see
Ä Table 50
0 “Channel
monitoring”
on page 2902

see
Ä Table 50
0 “Channel
monitoring”
on page 2902

Byte 0
0x03

3 Line fre-
quency sup-
pression

see Ä Fur-
ther infor-
mation
on page 2902

see Ä Fur-
ther infor-
mation
on page 2902

Byte 0
0x00

4 Compensa-
tion channel

see Ä Fur-
ther infor-
mation
on page 2902

see Ä Fur-
ther infor-
mation
on page 2902

Byte 0
0x00

Table 499: Channel configuration
Internal
value

Operating modes for the analog inputs, individually configurable

0 Unused (default)

2 Digital input

34 Analog input -50 mV...+50 mV

35 Analog input -500 mV...+500 mV

36 Analog input -1 V...+1 V

7 Analog input -5 V...+5 V

5 Analog input -10 V...+10 V

6 Analog input 0 V...+5 V

Input channel
(8x)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2900

Internal
value

Operating modes for the analog inputs, individually configurable

1 Analog input 0 V...+10 V

37 Analog input -20 mA...+20 mA

3 Analog input 0 mA...20 mA

4 Analog input 4 mA...20 mA

14 Analog input Pt100 (2-wire), -50 °C...+70 °C

15 Analog input Pt100 (3-wire), -50 °C...+70 °C

48 Analog input Pt100 (4-wire), -50 °C...+70 °C

57 Analog input Pt100 (2-wire), -50 °C...+70 °C (resolution: 0,01 K)

58 Analog input Pt100 (3-wire), -50 °C...+70 °C (resolution: 0,01 K)

59 Analog input Pt100 (4-wire), -50 °C...+70 °C (resolution: 0,01 K)

8 Analog input Pt100 (2-wire), -50 °C...+400 °C

9 Analog input Pt100 (3-wire), -50 °C...+400 °C

49 Analog input Pt100 (4-wire), -50 °C...+400 °C

45 Analog input Pt100 (2-wire), -200 °C...+850 °C

46 Analog input Pt100 (3-wire), -200 °C...+850 °C

47 Analog input Pt100 (4-wire), -200 °C...+850 °C

16 Analog input Pt1000 (2-wire), -50 °C...+400 °C

17 Analog input Pt1000 (3-wire), -50 °C...+400 °C

50 Analog input Pt1000 (4-wire), -50 °C...+400 °C

18 Analog input Ni1000 (2-wire), -50 °C...+150 °C

19 Analog input Ni1000 (3-wire), -50 °C...+150 °C

51 Analog input Ni1000 (4-wire), -50 °C...+150 °C

39 Analog input Cu50 1.426 (2-wire) -50 °C...+200 °C

40 Analog input Cu50 1.426 (3-wire) -50 °C...+200 °C

41 Analog input Cu50 1.426 (4-wire) -50 °C...+200 °C

42 Analog input Cu50 1.428 (2-wire) -200 °C...+200 °C

43 Analog input Cu50 1.428 (3-wire) -200 °C...+200 °C

44 Analog input Cu50 1.428 (4-wire) -200 °C...+200 °C

24 Analog input J-type thermocouple -210 °C...+1200 °C

25 Analog input K-type thermocouple -270 °C...+1372 °C

30 Analog input N-type thermocouple -270 °C...+1300 °C

27 Analog input S-type thermocouple -50 °C...+1768 °C

28 Analog input T-type thermocouple -270 °C...+400 °C

38 Analog input resistor 50 kW

52 Temperature-internal reference point

53 Common mode voltage

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2901

Table 500: Channel monitoring
Internal
value

Monitoring

0 Plausibility, open-circuit (cut wire) and short circuit (default)

3 No monitoring

Table 501: Line frequency suppression
Internal
value

Line frequency suppression

0 50 Hz

1 60 Hz

2 No line frequency suppression

Table 502: Compensation channel
Internal
value

Compensation channel

0 Internal compensation (default)

1 Channel 0 (possible with channels 1, 2, 3)

2 Channel 1 (possible with channels 0, 2, 3)

3 Channel 2 (possible with channels 0, 1, 3)

4 Channel 3 (possible with channels 0, 1, 2)

5 Channel 4 (possible with channels 5, 6, 7)

6 Channel 5 (possible with channels 4, 6, 7)

7 Channel 6 (possible with channels 4, 5, 7)

8 Channel 7 (possible with channels 4, 5, 6)

9 External with temperature value

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2902

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module, e.g. internal
analog voltage is not
correct

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched OFF (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error

4 14 1...10 1 0...7 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 0...7 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

4 14 1...10 1 0...7 47 Short circuit at an
analog input

Check ter-
minal11 / 12 ADR 1...10

4 14 1...10 1 0...7 1 Possibly wrong meas-
ured value caused
by inadmissible temper-
ature of the compensa-
tion channel

Check the
tempera-
ture com-
pensation
channel

11 / 12 ADR 1...10

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2903

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 1 0...7 2 Invalid measured value
of the channel caused
by overly high voltage
difference

Check
voltage dif-
ference;
install
equalizing
conductors
if neces-
sary

11 / 12 ADR 1...10

4 14 1...10 1 0...7 11 Output voltage 10 V
faulty

Check
output load11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 expansion module 1...10, ADR = hardware
address (e.g. of the DC551)

3) With "Module" the following allocation applies dependent of the master:

Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or FBP = module type (1 = AI); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.
States of the LEDs (see also section Diagnosis LEDs in the S500 system data):

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2904

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I3 and
I4...I7

Analog input Yellow Input is OFF Input is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, mes-
sages in
groups
(analog
inputs com-
bined into the
groups 2 and
4)

Red No error, or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) Both LEDs CH-ERR2 and CH-ERR4 light up together

Measuring ranges
Voltage input ranges
Bipolar voltage input range, measuring bridge

The represented resolution corresponds to 16 bits.

Range -50 ...
+50 mV

-500 ...
+500
mV

-1 ... +1
V

-5 ... +5
V

-10 ...
+10 V

Commo
n Mode
Voltage

Digital value
Decimal Hex.

Over-
flow

>
58.7945

>
587.944
9

>
1.17589

> 5.8794 >
11.7589

>
20.0000

32767 7FFF

Meas-
ured
value
too high

58.7945
:
50.0018

587.944
9
:
500.018
1

1.17589
:
1.00004

5.8794
:
5.0002

11.7589
:
10.0004

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
Meas-
ured
value
too low

50.0000
:
0.0018

500.000
0
:
0.0181

1.00000
:
0.00004

5.0000
:
0.0002

10.0000
:
0.0004

20.0000
:
0.0008

27648
:
1

6C00
:
0001

0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0 0000

-0.0018
:
-50.0000

-0.0181
:
-500.000
0

-0.00004
:
-1.00000

-0.0002
:
-5.0000

-0.004
:
-10.0000

-0.0008
:
-20.0000

-1
:
-27648

FFFF
:
9400

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2905

Range -50 ...
+50 mV

-500 ...
+500
mV

-1 ... +1
V

-5 ... +5
V

-10 ...
+10 V

Commo
n Mode
Voltage

Digital value
Decimal Hex.

Meas-
ured
value
too low

-50.0018
:
-58.7945

-500.018
1
:
-587.944
9

-1.00004
:
-1.17589

-5.0002
:
-5.8794

-10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Under-
flow

<
-58.7945

<
-587.944
9

<
-1.17589

<
-5.8794

<
-11.7589

<
-20.0000

-32768 8000

Unipolar voltage input range, measuring bridge, digital input

Range 0 ... +5 V 0 ... +10 V Digital
input

Digital value
Decimal Hex.

Measured
value too
high

 5.8794
:
5.0002

11.7589
:
10.0004

 32511
:
27649

7EFF
:
6C01

Normal
range

 5.0000
:
0.0002

10.0000
:
0.0004

ON

27648
:
1

6C00
:
0001

 0.0000 0.0000 OFF 0 0000

Measured
value too
low

 -0.0002
:
-0.8794

-0.0004
:
-1.1759

 -1
:
-4864

FFFF
:
ED00

Underflow < -0.8794 < -1.1759 -32768 8000

Current input ranges

Range -20 ... +20
mA

0 ... +20 mA 4 ... 20 mA Digital value
Decimal Hex.

Overflow > 23.5178 > 23.5178 > 22.8142 32767 7FFF

Measured
value too
high

23.5178
:
20.0007

23.5178
:
20.0007

22.8142
:
20.0006

32511
:
27649

7EFF
:
6C01

Normal
range

20.0000
:
0.0007

20.0000
:
0.0007

20.0000
:
4.0006

27648
:
1

6C00
:
0001

0.0000 0.0000 4.0000 0 0000

-0.0007
:
-20.0000

 -1
:
-27648

FFFF
:
9400

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2906

Range -20 ... +20
mA

0 ... +20 mA 4 ... 20 mA Digital value
Decimal Hex.

Measured
value too low

 -0.0007
:
-3.5178

3.9994
:
1.1852

-1
:
-4864

FFFF
:
ED00

-20.0007
:
-23.5178

 -27649
:
-32512

93FF
:
8100

Underflow < -23.5178 < -3.5178 < 1.1852 -32768 8000

Resistance thermometer input ranges
The represented resolution corresponds to 16 bits.

Range Pt100
-50 ...
+70 °C 1)

Pt100 /
Pt1000
-50 ...
+400 °C

Pt100
-200 ...
+850 °C

Ni1000
-50 ...
+150 °C

Cu50
-200 ...
+200 °C

Digital value
Decimal Hex.

Overflow > 80.0 °C > 450.0
°C

> 850 °C > 160.0
°C

> 200 °C 32767 7FFF

Measured
value too
high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

 1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

Normal
range

:
:
:
:
70.0 °C
:
0.1 °C

:
400.0 °C
:
:
:
:
0.1 °C

850.0 °C
:
:
:
:
:
0.1 °C

:
:
:
150.0 °C
:
:
0.1 °C

:
:
200.0 °C
:
:
:
0.1 °C

8500
4000
2000
1500
700
:
1

2134
0FA0
07D0
05DC
02BC
:
1

0.0 °C 0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
:
-200 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C
2)
-200.0 °C
2)

-1
:
-500
-2000

FFFF
:
FE0C
F830

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2907

Range Pt100
-50 ...
+70 °C 1)

Pt100 /
Pt1000
-50 ...
+400 °C

Pt100
-200 ...
+850 °C

Ni1000
-50 ...
+150 °C

Cu50
-200 ...
+200 °C

Digital value
Decimal Hex.

Measured
value too
low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

 -50.1 °C
:
-60.0 °C

 -501
:
-600

FE0B
:
FDA8

Under-
flow

< -60.0
°C

< -60.0
°C

< -200 °C < -60.0
°C

< -200 °C
2)

-32768 8000

1) also possible with resolution 0.01 K
2) if Cu50 with 1.426, -50 °C is valid; if Cu50 with 1.428, -200.0 °C is valid

Resistor input range
The represented resolution corresponds to 16 bits.

Range Resistor [W] Digital value
Decimal Hex.

Overflow > 55000 32767 7FFF

Measured value
too high

55000
:
50001

30413
:
27649

76CD
:
6C01

Normal range 50000
:
2
1
0

27648
:
1
1
0

6C00
:
0001
0001
0000

Thermocouple input ranges
The represented resolution corresponds to 16 bits.

Range Typ J
-210 ...
+1200 °C

Typ K
-270 ...
+1372 °C

Typ N
-270 ...
+1300 °C

Typ S
-50 ...
+1768 °C

Typ T
-270 ...
+400 °C

Digital value
Decimal Hex.

Overflow > 1200.0
°C

> 1372.0
°C

> 1300.0
°C

> 1768.0
°C

> 400.0
°C

32767 7FFF

Normal
range

 1768.0 °C 17680 4510

 1372.0 °C : 13720 3598

 : 1300.0 °C : 13000 32C8

1200.0 °C : : : 12000 2EE0

: : : : 400.0 °C 4000 0FA0

: : : : : : :

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2908

Range Typ J
-210 ...
+1200 °C

Typ K
-270 ...
+1372 °C

Typ N
-270 ...
+1300 °C

Typ S
-50 ...
+1768 °C

Typ T
-270 ...
+400 °C

Digital value
Decimal Hex.

0.1 °C 0.1 °C 0.1 °C 0.1 °C 0.1 °C 1 1

0.0 °C 0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C -0.1 °C -0.1 °C -0.1 °C -0.1 °C -1 FFFF

: : : : : : :

: : : -50.0 °C : -500 FE0C

-210.0 °C : : : : -2100 F7CC

 -270.0 °C -270.0 °C -270.0 °C -2700 F574

Under-
flow

< -210.0
°C

< -270.0
°C

< -270.0
°C

< -50.0
°C

< -270.0
°C

-32768 8000

Temperature-internal reference point ranges

Range Value Digital value
Decimal Hex.

Overflow > +85 °C 32767 7FFF

Normal range +85 °C 850 0352

0 °C 0 0000

-40 °C -400 FE70

Underflow < -40 °C -32768 8000

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for 0 V
(ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2909

Parameter Value
 From 24 V DC power supply at the termi-

nals UP/L+ and ZP/M of the CPU/communi-
cation interface module

Ca. 2 mA

 Current consumption from UP in normal
operation

130 mA

 Inrush current from UP (at power up) 0.056 A2s

Max. length of analog cables, conductor cross
section > 0.14 mm²

100 m

Weight 130 g

Mounting position Horizontal or vertical with derating (max.
temperature 40 °C)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 8

Distribution of channels into groups 2 groups of 4 channels each

Connections of the channels I0 to I3 Terminals 1.0 to 1.7 and terminals 2.0 to
2.7

Connections of the channels I4 to I7 Terminals 3.0 to 3.7 and terminals 4.0 to
4.7

Input type Bipolar (not with current or Pt100/
Pt1000/ Ni1000/ Cu50/ resistor)

Galvanic isolation Against internal supply and other
modules

Common mode input range ±20 V DC plus signal voltage

Configurability Digital input, -50 mV...+50 mV,
-500mV...+500 mV, -1 V...+1 V,
-5 V...+5 V, -10 V...+10 V, 0 V...+5 V,
0 V...+10 V, -20 mA...+20 mA,
0 mA...20 mA, 4 mA...20 mA, Pt100,
Pt1000, Ni1000, Cu50, resistor, thermo-
couple types J, K, N, S, T (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW, current: ca. 330 W

Time constant of the input filter Line-frequency suppression 50 Hz, 60
Hz, none

Indication of the input signals 1 yellow LED per channel, the bright-
ness depends on the value of the
analog signal

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2910

Parameter Value
Conversion time 1 ms (none),

100 ms (50 Hz / 60 Hz) per channel

Resolution Ran
ge

unipolar 15 bits

bipolar 15 bits + sign

Conversion error of the analog values caused by
non-linearity, adjustment error at factory and resolu-
tion within the normal range

Typ. ±0.1 % (voltage)
±0.3 % (current, resistor)
at 25 °C

Max
.

±0.7 % (voltage)
±0.9 % (current, resistor)
±0.5 % (thermocouple type J, N,
S, T; thermocouple type K > -220
°C)
1.0 K (resistance temperature
detectors)
at 0 °C...60 °C or EMC disturb-
ance

Maximum permanent allowed overload (no damage)

 Current input When the input current exceeds the
overflow value of the measurement
range, the input impedance is switched
to high impedance for protection. The
maximum allowed overload is then 30
V. The digital value corresponds to the
overflow value. Periodically, the input
impedance is switched to the normal
value and the input current is measured.
If the input current is within the meas-
urement range, the input impedance
remains at the normal level and the dig-
ital value corresponds to the measured
current.

 Voltage input 30 V

Relationship between input signal and hex code Ä Table 500 “Channel monitoring”
on page 2902

Unused voltage inputs Are configured as "unused"

Unused current inputs Have a low resistance, can be left open-
circuited

Overvoltage protection Yes

Technical data of the analog inputs if used as digital inputs

Parameter Value
Number of channels per module Max. 8

Distribution of channels into groups 2 groups of 4 channels each

Connections of the channels I0+ to I3+
Connections of the channels I4+ to I7+

Terminals 2.0, 2.2, 2.4, 2.6
Terminals 4.0, 4.2, 4.4, 4.6

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2911

Parameter Value
Input delay Typ. 2 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V Typ. 3.1 mA

 Input voltage +30 V < 7 mA

Input resistance Ca. 4.8 kW

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 600 R0001 AI531, analog input module, 8 AI,

U/I/Pt100, TC, 15 bits + sign, 4-wires
Active

1SAP 450 600 R0001 AI531-XC, analog input module, 8 AI,
U/I/Pt100, TC, 15 bits + sign, 4-wires,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AO523 - Analog output module
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2912

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states at the analog outputs (O0 - O15)
4 1 green LED to display the state of the process supply voltage UP
5 2 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
● 16 analog outputs in two groups:

– 8 channels configurable for voltage or currrent output (O0...O3 / O8...O11)
– 8 channels for voltage output (O4...O7 / O12...O15)
Resolution 12 bits plus sign

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2913

Parameter Value
Resolution of the analog channels

 Voltage -10 V...+10 V 12 bits plus sign

 Current 0 mA...20 mA, 4 mA...20 mA 12 bits

LED displays 19 LEDs for signals and error messages

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The modules are plugged on an I/O terminal unit Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 2553. Properly position the modules and press until they
lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting accessory”
on page 3329).
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal
units and have always the same assignment, independent of the inserted module:
Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 O0- to O7- Negative poles of the first 8

analog outputs

2.0 to 2.7 O0+ to O7+ Positive poles of the first 8
analog outputs

3.0 to 3.7 O8- to O15- Negative poles of the fol-
lowing 8 analog outputs

4.0 to 4.7 O8+ to O15+ Positive poles of the following
8 analog outputs

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2914

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per AO523.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figure shows the connection of the module:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2915

Fig. 148: 16 analog outputs in two groups Ä Chapter 1.6.3.6.2.2.4.2 “Functionality”
on page 2913

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The modules provide several diagnosis functions Ä Chapter 1.6.3.6.2.2.4.7 “Diagnosis”
on page 2922.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2916

Connection of analog output loads (Voltage, current)

UP

ZP

1.0
O0-
1.1
O1-

1.8
UP
1.9
ZP

PTC

2.0
O0+
2.1
O1+

2.8
UP
2.9
ZP

-10 ... +10 V

0 ... 20 mA
4 ... 20 mA

Fig. 149: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.3.6.2.2.4.6 “Parameteriza-
tion” on page 2918:

Voltage -10 V...+10 V Load max. ±10 mA 1 channel used

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4...20 mA Load 0 W...500 W 1 channel used

Only the channels 0...3 and 8...11 can be configured as current output (0 mA...20 mA or 4
mA...20 mA).
The function of the LEDs is described under Displays.
Unused analog outputs can be left open-circuited.

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Counter input data (words) 0

Counter output data (words) 16

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
That means replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2917

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1510
1)

Word 1510
0x05e6

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

3 Param-
eter
length in
bytes

Internal 39 Byte 39-CPU
39-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Behav-
iour of
outputs
at com-
munica-
tion
errors

Off
Last
value
Substi-
tute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

7 Channel
con-
figura
tion
Output
channel
0

See
Ä Table 503 “Chan
nel configuration 3)”
on page 2921

Byte Default
0x00

0 130 0x0Y06

8 Channel
moni-
toring
Output
channel
0

See
Ä Table 504 “Chan
nel monitoring 4)”
on page 2921

Byte Default
0x00

0 3 0x0Y07

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2918

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

9 Substi-
tute
value
Output
channel
0

Output
channel
0!

0...0xffff Word Default
0x0000

0 65535 0x0Y08

10 to 15 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
1 to 3

See
Ä Table 503 “Chan
nel configuration 3)”
on page 2921

and
Ä Table 504 “Chan
nel monitoring 4)”
on page 2921

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y09
to
0x0Y0E

16 to 23 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
4 to 7

See
Ä Table 503 “Chan
nel configuration 3)”
on page 2921

and
Ä Table 504 “Chan
nel monitoring 4)”
on page 2921

Byte
Byte

Default
0x00
0x00

0
0

128
3

0x0Y0F
to
0x0Y16

24 Channel
con-
figura
tion
Output
channel
8

See
Ä Table 503 “Chan
nel configuration 3)”
on page 2921

Byte Default
0x00

0 130 0x0Y17

25 Channel
moni-
toring
Output
channel
8

See
Ä Table 504 “Chan
nel monitoring 4)”
on page 2921

Byte Default
0x00

0 3 0x0Y18

26 Substi-
tute
value
Output
channel
8

Output
channel
8!

0...0xffff Word Default
0x0000

0 65535 0x0Y19

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2919

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

27
to
32

Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
9 to 11

See
Ä Table 503 “Chan
nel configuration 3)”
on page 2921

and
Ä Table 504 “Chan
nel monitoring 4)”
on page 2921

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y1A
to
0x0Y1F

33
to
40

Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
12 to 15

See
Ä Table 503 “Chan
nel configuration 3)”
on page 2921

and
Ä Table 504 “Chan
nel monitoring 4)”
on page 2921

Byte
Byte

Default
0x00
0x00

0
0

128
3

0x0Y20
to
0x0Y27

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

42
0x05, 0xe7, 0x27, \
0x01, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00;

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2920

No. Name Value Internal value Internal
value, type

Default

1 Channel con-
figuration

see below
Ä Table 503 “
Channel con-
figuration 3)”
on page 2921

see below
Ä Table 503 “
Channel con-
figuration 3)”
on page 2921

Byte see below
Ä Table 503 “
Channel con-
figuration 3)”
on page 2921

2 Channel mon-
itoring

see below
Ä Table 504 “
Channel mon-
itoring 4)”
on page 2921

see below
Ä Table 504 “
Channel mon-
itoring 4)”
on page 2921
*8)

Byte see below
Ä Table 504 “
Channel mon-
itoring 4)”
on page 2921

3 Substitute
value
Ä Table 505 “
Substitute
value”
on page 2922

0...65535 0...
0xffff

Word 0

No. Name Internal value, type
1 Channel configuration

see table 3)

Byte

2 Channel monitoring

see table 4)

Byte

Table 503: Channel configuration 3)
Internal value Operating modes of the analog outputs,

individually configurable
0 Unused (default)

128 Analog output -10 V...+10 V

129 Analog output 0 mA...20 mA (not with the
channels 4...7 and 12...15)

130 Analog output 4 mA...20 mA (not with the
channels 4...7 and 12...15)

Table 504: Channel monitoring 4)
Internal value Monitoring
0 Plausibility, open-circuit (broken wire) and

short circuit (default)

1 Open-circuit (broken wire) and short circuit

2 Plausibility

3 No monitoring

Output channels
0 and 8 (2 chan-
nels, AO523)

Output channels
1...7 and 9...15
(14 channels,
AO523)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2921

Table 505: Substitute value
Intended behavior of
channel 0 when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF OFF 0

Last value Last value 0

Substitute value OFF or Last value 1...65535

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON ->
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error

4 14 1...10 3 0...15 48 Analog value overflow
at an analog output

Check
output
value

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2922

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

11 / 12 ADR 1...10

4 14 1...10 3 0...15 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware
address (e.g. of the DC551)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or FBP = module type (3 = AO); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2923

LED State Color LED = OFF LED = ON LED flashes
Outputs
O0...O7
and
O8...O15

Analog
output

Yellow Output is
OFF

Output is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, error
messages in
groups
(analog
inputs or out-
puts com-
bined into the
groups 2 and
4)

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) Both LEDs (CH-ERR2 and CH-ERR4) light up together

Output ranges
Output ranges voltage and current

The represented resolution corresponds to 16 bits.

Range -10...+10 V 0...20 mA 4...20 mA Digital value
Decimal Hex.

Overflow > 11.7589 V > 23.5178
mA

> 22.8142
mA

> 32511 > 7EFF

Value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal
range

10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too
low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2924

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for
0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the terminals
UP/L+ and ZP/M of the CPU/communication
interface module

Ca. 2 mA

 Current consumption from UP at normal oper-
ation

0.15 A + output loads

 Inrush current from UP (at power up) 0.040 A2s

Max. length of analog cables, conductor cross sec-
tion > 0.14 mm2

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other
parts in the switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2925

Technical data of the analog outputs

Parameter Value
Number of channels per module 16, of which channnels O0...O3 and O8...O11

for voltage and current, and channels O4...7 and
O12...15 only for voltage

Distribution of channels into groups 2 groups of 8 channels each

 Channels O0-...O7-
Channels O0+...O7+

Terminals 1.0...1.7
Terminals 2.0...2.7

 Channels O8-...O15-
Channels O8+...O15+

Terminals 3.0...3.7
Terminals 4.0...4.7

Output type Bipolar with voltage, unipolar with current

Galvanic isolation Against internal supply and other modules

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA (each
output can be configured individually), current out-
puts only channels 0...3 and 8...11

Output resistance (load), as current
output

0 W...500 W

Output loadability, as voltage output Max. ±10 mA

Indication of the output signals One LED per channel

Resolution 12 bits (+ sign)

Settling time for full range change (resis-
tive load, output signal within specified
tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the
normal range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Relationship between output signal and
hex code

Ä Chapter 1.6.3.6.2.2.4.9 “Output ranges”
on page 2924

Unused outputs Can be left open-circuited

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 200 R0001 AO523, analog output module, 16 AO,

U/I, 12 bits + sign, 2-wires
Active

1SAP 450 200 R0001 AO523-XC, analog output module,
16 AO, U/I, 12 bits + sign, 2-wires,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2926

AX521 - Analog input/output module
● 4 configurable analog inputs (I0 to I3) in 1 group (1.0...2.3)

Resolution 12 bits plus sign
● 4 configurable analog outputs (O0 to O3) in 1 group (3.0...4.3)

Resolution 12 bits plus sign
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 4 yellow LEDs to display the signal states at the analog inputs (I0 - I3)
4 4 yellow LEDs to display the signal states at the analog outputs (O0 - O3)
5 1 green LED to display the state of the process supply voltage UP
6 2 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2927

Functionality
4 analog inputs (I0...I3), individually configurable for
● Unused (default setting)
● 0 V...10 V
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA
● Pt100, -50 °C...+400 °C (2-wire)
● Pt100, -50 °C...+400 °C (3-wire), requires 2 channels
● Pt100, -50 °C...+70 °C (2-wire)
● Pt100, -50 °C...+70 °C (3-wire), requires 2 channels
● Pt1000, -50 °C...+400 °C (2-wire)
● Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels
● Ni1000, -50 °C...+150 °C (2-wire)
● Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels
● 0 V...10 V with differential inputs, requires 2 channels
● -10 V...+10 V with differential inputs, requires 2 channels
● Digital signals (digital input)
4 analog outputs (O0...O3), individually configurable for
● Unused (default setting)
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

Parameter Value
Resolution of the analog channels

 Voltage -10 V... +10 V 12 bits plus sign

 Voltage 0 V...10 V 12 bits

 Current 0 mA...20 mA, 4 mA...20 mA 12 bits

 Temperature 0.1 °C

LED displays 11 LEDs for signals and error messages

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

AX521

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2928

The modules are plugged on an I/O terminal unit Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 2553. Properly position the modules and press until they
lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting accessory”
on page 3329).
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8, 2.8, 3.8 and 4.8 as well as 1.9, 2.9, 3.9 and 4.9 are electrically intercon-
nected within the I/O terminal units and have always the same assignment, irrespective of the
inserted module:
Terminals 1.8, 2.8, 3.8 and 4.8: process voltage UP = +24 V DC
Terminals 1.9, 2.9, 3.9 and 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.3 I0- to I3- Negative poles of the 4 analog

inputs

2.0 to 2.3 I0+ to I3+ Positive poles of the 4 analog
inputs

3.0 to 3.3 O0- to O3- Negative poles of the 4 analog
outputs

4.0 to 4.3 O0+ to O3+ Positive poles of the 4 analog
outputs

The negative poles of the analog inputs are connected to each other to form an
"Analog Ground" signal for the module.

The negative poles of the analog outputs are connected to each other to form
an "Analog Ground" signal for the module.

There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2929

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per I/O module.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figure shows the connection of the I/O module.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2930

Fig. 150: 4 analog inputs and 4 analog outputs, individually configurable Ä Chapter
1.6.3.6.2.2.5.2 “Functionality” on page 2928

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the 8 analog channels.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 151: Connection example

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2931

Pt100 -50 °C...+70 °C 2-wire configuration, one
channel used

Pt100 -50 °C...+400 °C 2-wire configuration, one
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, one
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, one
channel used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the max. 8 (depending on the
configuration) analog channels.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 152: Connection example

If several measuring points are adjacent to each other, only one return line is
necessary. This saves wiring costs.

With the 3-wire configuration, two adjacent analog channels belong together (e.g. the channels
0 and 1). In this case, both channels are configured according to the desired operating mode.
The lower address must be the even address (channel 0), the next higher address must be the
odd address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e.g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2932

Pt100 -50 °C...+70 °C 3-wire configuration, two
channels used

Pt100 -50 °C...+400 °C 3-wire configuration, two
channels used

Pt1000 -50 °C...+400 °C 3-wire configuration, two
channels used

Ni1000 -50 °C...+150 °C 3-wire configuration, two
channels used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V
-10 ... +10 V

+

-
UIN

AGND

Fig. 153: Connection example

By connecting the sensor's negative pole of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

The following measuring ranges can be configured for AX521 Ä Chapter 1.6.3.6.2.2.5.6
“Parameterization” on page 2938 and for AX522 Ä Chapter 1.6.3.6.2.2.6.6 “Parameterization”
on page 2963:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2933

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Fig. 154: Connection example

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V

AGND

Fig. 155: Connection example

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1V, not even in case of long lines (see figure Terminal Assignment).

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2934

If AGND does not get connected to ZP, the sensor current flows to ZP via the
AGND line. The measuring signal is distorted, as a very small current flows
through the voltage line. The total current through the PTC should not exceed
50 mA. This measuring method is therefore only suitable for short lines and
small sensor currents. If there are bigger distances, the difference measuring
method should be applied.

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V *) 1 channel used

*) if the sensor can provide this signal range
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of passive-type analog sensors (Current)

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

4 ... 20 mA

-

+

Fig. 156: Connection example

Current 4 mA...20 mA 1 channel used

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA for
more than 1 second to an analog input, this input is switched off by the module
(input protection). In such cases, it is recommended to protect the analog input
by a 10-volt Zener diode (in parallel to I+ and I-). But, in general, sensors with
fast initialization or without current peaks higher than 25 mA are preferrable.

Unused input channels can be left open-circuited because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2935

The use of differential inputs helps to considerably increase the measuring accuracy and to
avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
The ground potential at the sensors must not have too large a potential
difference with respect to ZP (max. ±1 V within the full signal range). Other-
wise, problems may occur concerning the common-mode input voltages of the
involved analog inputs.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V
-10 ... +10 V

+

-
UIN

Fig. 157: Connection example

The negative pole of the sensor must be grounded next to the sensor.

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2936

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

UP

ZP

Fig. 158: Connection example

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

Connection of analog output loads (Voltage, current)

UP

ZP

3.0
O0-
3.1
O1-

3.8
UP
3.9
ZP

PTC

4.0
O0+
4.1
O1+

4.8
UP
4.9
ZP

-10 ... +10 V

0 ... 20 mA
4 ... 20 mA

Fig. 159: Connection example

Voltage -10 V...+10 V Load max. ±10 mA 1 channel used

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

Only the channels 0...3 can be configured as current output (0 mA...20 mA or 4 mA...20 mA).
Unused analog outputs can be left open-circuited.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2937

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Counter input data (words) 4

Counter output data (words) 4

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1505
1)

Word 1505
0x05E1

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

3 Param-
eter
length in
bytes

Internal 21 Byte 21-CPU
21-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Behav-
iour of
outputs
at com-
munica-
tion
errors

Off
Last
value
Substi-
tute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2938

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

7 Channel
configu-
ration
Input
channel
0

See table
Ä Table 507 “Chan
nel configuration 2)”
on page 2940

Byte Default
0x00

0 19 0x0Y06

8 Channel
moni-
toring
Input
channel
0

See table
Ä Table 508 “Chan
nel monitoring 3)”
on page 2941

Byte Default
0x00

0 3 0x0Y07

9
to
14

Channel
configu-
ration
and
channel
moni-
toring of
the input
channels
1 to 3

See tables
Ä Table 507 “Chan
nel configuration 2)”
on page 2940 and
Ä Table 508 “Chan
nel monitoring 3)”
on page 2941

Byte
Byte

Default
0x00
0x00

0
0

19
3

0x0Y08
to
0x0Y0D

15 Channel
configu-
ration
Output
channel
0

See table
Ä Table 507 “Chan
nel configuration 2)”
on page 2940

Byte Default
0x00

0 130 0x0Y0E

16 Channel
moni-
toring
Output
channel
0

See table
Ä Table 508 “Chan
nel monitoring 3)”
on page 2941

Byte Default
0x00

0 3 0x0Y0F

17 Substi-
tute
value
Output
channel
0

only
valid for
output
channel
0

0...0xffff Word Default
0x0000

0 65535 0x0Y10

18 to 21 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
1 to 2

See tables
Ä Table 507 “Chan
nel configuration 2)”
on page 2940 and
Ä Table 508 “Chan
nel monitoring 3)”
on page 2941

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y11
to
0x0Y14

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2939

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

22 Channel
configu-
ration
Output
channel
3

See table
Ä Table 507 “Chan
nel configuration 2)”
on page 2940

Byte Default
0x00

0 130 0x0Y15

23 Channel
moni-
toring
Output
channel
3

See table
Ä Table 508 “Chan
nel monitoring 3)”
on page 2941

Byte Default
0x00

0 3 0x0Y16

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

24
0x05, 0xe2, 0x15, \
0x01, 0x00, 0x00 \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00;

Table 506: Input channel (4x)
No. Name Internal value, type Default
1 Channel configuration

see table 2)

Byte 0

0x00 see table 2)

2 Channel monitoring

see table 3)

Byte 0

0x00 see table 3)

Table 507: Channel configuration 2)
Internal value Operating modes of the analog inputs, individually configurable
0 Unused (default)

1 Analog input 0 V...10 V

2 Digital input

3 Analog input 0 mA...20 mA

4 Analog input 4 mA...20 mA

5 Analog input -10 V...+10 V

8 Analog input Pt100, -50 °C...+400 °C (2-wire)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2940

Internal value Operating modes of the analog inputs, individually configurable
9 Analog input Pt100, -50 °C...+400 °C (3-wire), requires 2 channels *)

10 Analog input 0...10 V via differential inputs, requires 2 channels *)

11 Analog input -10 V...+10 V via differential inputs, requires 2 channels *)

14 Analog input Pt100, -50 °C...+70 °C (2-wire)

15 Analog input Pt100, -50 °C...+70 °C (3-wire), requires 2 channels *)

16 Analog input Pt1000, -50 °C...+400 °C (2-wire)

17 Analog input Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels *)

18 Analog input Ni1000, -50 °C...+150 °C (2-wire)

19 Analog input Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels *)

 *) In the operating modes with 3-wire configuration or with differential inputs,
two adjacent analog inputs belong together (e.g. the channels 0 and 1). In
these cases, both channels are configured in the desired operating mode. The
lower address must be the even address (channel 0). The next higher address
must be the odd address (channel 1). The converted analog value is available
at the higher address (channel 1).

Table 508: Channel monitoring 3)
Internal value Monitoring
0 Plausibility, open-circuit (broken wire) and short circuit

3 No monitoring

Table 509: Output channel 0 (1 channel)
No. Name Value Internal value Internal

value, type
Default

1 Channel con-
figuration

see table 4) see table 4) Byte see table 4)

2 Channel mon-
itoring

see table 5) see table 5) Byte see table 5)

3 Substitute
value

see table 6)

0...65535 0...
0xffff

Word 0

Table 510: Output channels 1...3 (3x)
No. Name Internal value, type
1 Channel configuration

see table 4)

Byte

2 Channel monitoring

see table 6)

Byte

Table 511: Channel configuration 4)
Internal value Operating modes of the analog outputs, individually configurable
0 Unused (default)

128 Analog output -10 V...+10 V

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2941

Internal value Operating modes of the analog outputs, individually configurable
129 Analog output 0 mA...20 mA (not with the channels 4...7 and 12...15)

130 Analog output 4 mA...20 mA (not with the channels 4...7 and 12...15)

Table 512: Channel monitoring 5)
Internal value Monitoring
0 Plausibility, open circuit (broken wire) and short circuit (default)

3 No monitoring

Table 513: Substitute value 6)
Intended behaviour of
output channel when the
control system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Diagnosis
Table 514: Possible diagnosis of I/O channels
Output range Condition

Output value in the PLC
underflow

Output value in the PLC overflow

0..20 mA Error identifier = 7 Error identifier = 4

4..20 mA

-10..+10 V

Input range Condition
Short circuit Wire break Input value under-

flow
Input value over-
flow

0..20 mA no diagnosis possible no diagnosis possible no diagnosis possible Error identifier = 48

4..20 mA Error identifier = 7 Error identifier = 7 Error identifier = 7 Error identifier = 48

-10..+10 V no diagnosis possible Error identifier = 48 Error identifier = 7 Error identifier = 48

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2942

Table 515: Content of diagnosis messages
E1...E4 d1 d2 d3 d4 Identifier

000...063
AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in
the I/O module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firm-
ware versions in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data
exchange failure

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage
ON11 / 12 ADR 1...10

Channel error

 AX521 AX522

4 14 1...10 1 0...3 0...7 48 Analog value over-
flow or broken wire
at an analog input

Check
input
value or
terminal

11 / 12 ADR 1...10

4 14 1...10 1 0...3 0...7 7 Analog value under-
flow at an analog
input

Check
input
value11 / 12 ADR 1...10

4 14 1...10 1 0...3 0...7 47 Short circuit at an
analog input

Check
terminal11 / 12 ADR 1...10

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2943

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 3 4...7 8...15 4 Analog value over-
flow at an analog
output

Check
output
value11 / 12 ADR 1...10

4 14 1...10 3 4...7 8...15 7 Analog value under-
flow at an analog
output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware address
(e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10
Channel error: I/O bus or FBP = module type (1 = AI, 3 = AO); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2944

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I3

Analog input Yellow Input is OFF Input is ON
(brightness
depends on
the value of
the analog
signal)

--

Outputs
O0...O3

Analog
output

Yellow Output is
OFF

Output is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, error
messages in
groups
(analog
inputs or out-
puts com-
bined into the
groups 2 and
4)

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) Both LEDs (CH-ERR2 and CH-ERR4) light up together

Measuring ranges
Input ranges of voltage, current and digital input

The represented resolution corresponds to 16 bits.

Range 0...10 V -10...+10
V

0...20
mA

4...20
mA

Digital
input

Digital value
Decimal Hex.

Overflow >11.7589 >11.758
9

>23.517
8

>22.814
2

 32767 7FFF

Meas-
ured
value too
high

11.7589
.
.
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
meas-
ured
value too
low

10.0000
.
.
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

ON 27648
:
1

6C00
:
0001

0.0000 0 4 OFF 0 0000

0.0000 -0.0004
:
:

 3.9994 -1
-4864
-6912

FFFF
ED00
E500

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2945

Range 0...10 V -10...+10
V

0...20
mA

4...20
mA

Digital
input

Digital value
Decimal Hex.

-0.0004
-1.7593

:
-10.0000

:
-27648

:
9400

Meas-
ured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Under-
flow

<-1.7593 <-11.758
9

<0.0000 <1.1858 -32768 8000

Input ranges resistance temperature detector

Range Pt100 / Pt
1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value
Decimal Hex.

Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured
value too
high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

Normal
range

:
:
70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

:
150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current
The represented resolution corresponds to 16 bits.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2946

Range -10...+10 V 0...20 mA 4...20 mA Digital value
Decimal Hex.

Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal
range

10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too
low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for 0
V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the termi-
nals UP/L+ and ZP/M of the CPU/communi-
cation interface module

Ca. 2 mA

 From UP at normal operation 0.15 A + output loads

Inrush current from UP (at power up) 0.020 A2s

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2947

Parameter Value
Max. length of analog cables, conductor cross sec-
tion > 0.14 mm²

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels I0- to I3- Terminals 1.0 to 1.3

Connections of the channels I0+ to I3+ Terminals 2.0 to 2.3

Input type Bipolar (not with current or Pt100/Pt1000/Ni1000)

Galvanic isolation Against internal supply and other modules

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA,
4 mA...20 mA, Pt100/1000, Ni1000 (each input can
be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals One LED per channel

Conversion cycle 2 ms (for 8 inputs + 8 outputs), with Pt/Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits

Conversion error of the analog values
caused by non-linearity, adjustment
error at factory and resolution within
the normal range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Relationship between input signal and
hex code

See tables Ä Chapter 1.6.3.6.2.2.5.9.1 “Input ranges
of voltage, current and digital input” on page 2945

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2948

Parameter Value
Unused voltage inputs Are configured as "unused"

Unused current inputs Have a low resistance, can be left open-circuited

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels I0+ to I3+ Terminals 2.0 to 2.3

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Input signal delay Typ. 8 ms, configurable from 0.1 to 32 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 4.3 mA

 Input voltage +30 V < 9 mA

Input resistance ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 4, all channels for voltage and current

Distribution of channels into groups 1 group of 4 channels

 Channels O0-...O3- Terminals 3.0...3.3

 Channels O0+...O3+ Terminals 4.0...4.3

Output type Bipolar with voltage, unipolar with current

Galvanic isolation Against internal supply and other modules

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA (each
output can be configured individually), current out-
puts only channels 0...3

Output resistance (load), as current
output

0 W...500 W

Output loadability, as voltage output Max. ±10 mA

Indication of the output signals One LED per channel

Resolution 12 bits (+ sign)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2949

Parameter Value
Settling time for full range change
(resistive load, output signal within
specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment
error at factory and resolution within
the normal range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Relationship between output signal and
hex code

See table Ä Chapter 1.6.3.6.2.2.5.9.3 “Output ranges
voltage and current” on page 2946

Unused outputs Can be left open-circuited

Ordering Data

Part no. Description Product life cycle phase *)
1SAP 250 100 R0001 AX521, analog input/output module,

4 AI, 4 AO, U/I/Pt100, 12 bits + sign,
2-wires

Active

1SAP 450 100 R0001 AX521-XC, analog input/output
module, 4 AI, 4 AO, U/I/Pt100,
12 bits + sign, 2-wires, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AX522 - Analog input/output module
● 8 configurable analog inputs (I0 to I7) in 1 group (1.0...2.7)

Resolution 12 bits plus sign
● 8 configurable analog outputs (O0 to O7) in 1 group (3.0...4.7)

Resolution 12 bits plus sign
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2950

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states at the analog inputs (I0 - I7)
4 8 yellow LEDs to display the signal states at the analog outputs (O0 - O7)
5 1 green LED to display the state of the process supply voltage UP
6 2 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
8 analog inputs (I0...I7), individually configurable for
● Unused (default setting)
● 0 V...10 V
● -10 V...+10 V
● 0 mA...20 mA

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2951

● 4 mA...20 mA
● Pt100, -50 °C...+400 °C (2-wire)
● Pt100, -50 °C...+400 °C (3-wire), requires 2 channels
● Pt100, -50 °C...+70 °C (2-wire)
● Pt100, -50 °C...+70 °C (3-wire), requires 2 channels
● Pt1000, -50 °C...+400 °C (2-wire)
● Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels
● Ni1000, -50 °C...+150 °C (2-wire)
● Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels
● 0 V...10 V with differential inputs, requires 2 channels
● -10 V...+10 V with differential inputs, requires 2 channels
● Digital signals (digital input)
4 analog outputs (O0...O3), individually configurable for
● Unused (default setting)
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA
4 analog outputs (O4...O7), individually configurable for
● Unused (default setting)
● -10 V...+10 V

Parameter Value
Resolution of the analog channels

 Voltage -10 V...+10 V 12 bits plus sign

 Voltage 0 V...10 V 12 bits

 Current 0 mA...20 mA, 4 mA...20 mA 12 bits

 Temperature 0.1 °C

LED displays 19 LEDs for signals and error messages

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The modules are plugged on an I/O terminal unit Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 2553. Properly position the modules and press until they
lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting accessory”
on page 3329).

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2952

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8, 2.8, 3.8 and 4.8 as well as 1.9, 2.9,3.9 and 4.9 are electrically interconnected
within the I/O terminal units and always have the same assignment, independent of the inserted
module:
Terminals 1.8, 2.8, 3.8 and 4.8: process voltage UP = +24 V DC
Terminals 1.9, 2.9, 3.9 and 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 I0- to I7- Negative poles of the 8 analog

inputs

2.0 to 2.7 I0+ to I7+ Positive poles of the 8 analog
inputs

3.0 to 3.7 O0- to O7- Negative poles of the 8 analog
outputs

4.0 to 4.7 O0+ to O7+ Positive poles of the 8 analog
outputs

The negative poles of the analog inputs are connected to each other to form an
"Analog Ground" signal for the module.

The negative poles of the analog outputs are connected to each other to form
an "Analog Ground" signal for the module.

There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per I/O module.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2953

The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figure shows the connection of the I/O module.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2954

Fig. 160: 8 analog inputs and 8 analog outputs, individually configurable Ä Chapter
1.6.3.6.2.2.6.2 “Functionality” on page 2951

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the 8 analog channels.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2955

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 161: Connection example

Pt100 -50 °C...+70 °C 2-wire configuration, one
channel used

Pt100 -50 °C...+400 °C 2-wire configuration, one
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, one
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, one
channel used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the max. 8 (depending on the
configuration) analog channels.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 162: Connection example

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2956

If several measuring points are adjacent to each other, only one return line is
necessary. This saves wiring costs.

With the 3-wire configuration, two adjacent analog channels belong together (e.g. the channels
0 and 1). In this case, both channels are configured according to the desired operating mode.
The lower address must be the even address (channel 0), the next higher address must be the
odd address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e.g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Pt100 -50 °C...+70 °C 3-wire configuration, two
channels used

Pt100 -50 °C...+400 °C 3-wire configuration, two
channels used

Pt1000 -50 °C...+400 °C 3-wire configuration, two
channels used

Ni1000 -50 °C...+150 °C 3-wire configuration, two
channels used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V
-10 ... +10 V

+

-
UIN

AGND

Fig. 163: Connection example

By connecting the sensor's negative pole of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2957

The following measuring ranges can be configured for AX521 Ä Chapter 1.6.3.6.2.2.5.6
“Parameterization” on page 2938 and for AX522 Ä Chapter 1.6.3.6.2.2.6.6 “Parameterization”
on page 2963:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Fig. 164: Connection example

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

Unused input channels can be left open-circuited, because they are of low resistance.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2958

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V

AGND

Fig. 165: Connection example

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1V, not even in case of long lines (see figure Terminal Assignment).

If AGND does not get connected to ZP, the sensor current flows to ZP via the
AGND line. The measuring signal is distorted, as a very small current flows
through the voltage line. The total current through the PTC should not exceed
50 mA. This measuring method is therefore only suitable for short lines and
small sensor currents. If there are bigger distances, the difference measuring
method should be applied.

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V *) 1 channel used

*) if the sensor can provide this signal range
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2959

Connection of passive-type analog sensors (Current)

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

4 ... 20 mA

-

+

Fig. 166: Connection example

Current 4 mA...20 mA 1 channel used

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA for
more than 1 second to an analog input, this input is switched off by the module
(input protection). In such cases, it is recommended to protect the analog input
by a 10-volt Zener diode (in parallel to I+ and I-). But, in general, sensors with
fast initialization or without current peaks higher than 25 mA are preferrable.

Unused input channels can be left open-circuited because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The use of differential inputs helps to considerably increase the measuring accuracy and to
avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
The ground potential at the sensors must not have too large a potential
difference with respect to ZP (max. ±1 V within the full signal range). Other-
wise, problems may occur concerning the common-mode input voltages of the
involved analog inputs.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2960

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V
-10 ... +10 V

+

-
UIN

Fig. 167: Connection example

The negative pole of the sensor must be grounded next to the sensor.

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

UP

ZP

Fig. 168: Connection example

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2961

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

Connection of analog output loads (Voltage, current)

UP

ZP

3.0
O0-
3.1
O1-

3.8
UP
3.9
ZP

PTC

4.0
O0+
4.1
O1+

4.8
UP
4.9
ZP

-10 ... +10 V

0 ... 20 mA
4 ... 20 mA

Fig. 169: Connection example

Voltage -10 V...+10 V Load max. ±10 mA 1 channel used

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

Only the channels 0...3 can be configured as current output (0 mA...20 mA or 4 mA...20 mA).
Unused analog outputs can be left open-circuited.

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Counter input data (words) 8

Counter output data (words) 8

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2962

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module slot address: Y = 1...7

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1500
1)

Word 1500
0x05dc

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 not for
FBP

3 Param-
eter
length in
bytes

Internal 37 Byte 37-CPU
37-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Behav-
iour of
outputs
at com-
munica-
tion
errors

Off
Last
value
Substi-
tute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

7 Channel
configu-
ration
Input
channel
0

See
Ä Table 517 “Chan
nel configuration 2)”
on page 2965

Byte Default
0x00

0 19 0x0Y06

8 Channel
moni-
toring
Input
channel
0

See
Ä Table 518 “Chan
nel monitoring 3)”
on page 2966

Byte Default
0x00

0 3 0x0Y07

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2963

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

9
to
22

Channel
configu-
ration
and
channel
moni-
toring of
the input
channels
1 to 7

See
Ä Table 517 “Chan
nel configuration 2)”
on page 2965

and
Ä Table 518 “Chan
nel monitoring 3)”
on page 2966

Byte
Byte

Default
0x00
0x00

0
0

19
3

0x0Y08
to
0x0Y15

23 Channel
configu-
ration
Output
channel
0

See
Ä Table 517 “Chan
nel configuration 2)”
on page 2965

Byte Default
0x00

0 130 0x0Y16

24 Channel
moni-
toring
Output
channel
0

See
Ä Table 518 “Chan
nel monitoring 3)”
on page 2966

Byte Default
0x00

0 3 0x0Y17

25 Substi-
tute
value
Output
channel
0

only
valid for
output
channel
0

0...0xffff Word Default
0x0000

0 65535 0x0Y18

26 to 31 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
1 to 3

See
Ä Table 517 “Chan
nel configuration 2)”
on page 2965

and
Ä Table 518 “Chan
nel monitoring 3)”
on page 2966

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y19
to
0x0Y1E

32 Channel
configu-
ration
Output
channel
4

See
Ä Table 517 “Chan
nel configuration 2)”
on page 2965

Byte Default
0x00

0 128 0x0Y1F

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2964

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

33 Channel
moni-
toring
Output
channel
4

See
Ä Table 518 “Chan
nel monitoring 3)”
on page 2966

Byte Default
0x00

0 3 0x0Y20

34
to
39

Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
5 to 7

See
Ä Table 517 “Chan
nel configuration 2)”
on page 2965

and
Ä Table 518 “Chan
nel monitoring 3)”
on page 2966

Byte
Byte

Default
0x00
0x00

0
0

128
3

0x0Y21
to
0x0Y26

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

24
0x05, 0xe2, 0x15, \
0x01, 0x00, 0x00 \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00;

Table 516: Input channel (4x)
No. Name Internal value, type Default
1 Channel configuration

see table 2)

Byte 0

0x00 see table 2)

2 Channel monitoring

see table 3)

Byte 0

0x00 see table 3)

Table 517: Channel configuration 2)
Internal value Operating modes of the analog inputs, individually configurable
0 Unused (default)

1 Analog input 0 V...10 V

2 Digital input

3 Analog input 0 mA...20 mA

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2965

Internal value Operating modes of the analog inputs, individually configurable
4 Analog input 4 mA...20 mA

5 Analog input -10 V...+10 V

8 Analog input Pt100, -50 °C...+400 °C (2-wire)

9 Analog input Pt100, -50 °C...+400 °C (3-wire), requires 2 channels *)

10 Analog input 0...10 V via differential inputs, requires 2 channels *)

11 Analog input -10 V...+10 V via differential inputs, requires 2 channels *)

14 Analog input Pt100, -50 °C...+70 °C (2-wire)

15 Analog input Pt100, -50 °C...+70 °C (3-wire), requires 2 channels *)

16 Analog input Pt1000, -50 °C...+400 °C (2-wire)

17 Analog input Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels *)

18 Analog input Ni1000, -50 °C...+150 °C (2-wire)

19 Analog input Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels *)

 *) In the operating modes with 3-wire configuration or with differential inputs,
two adjacent analog inputs belong together (e.g. the channels 0 and 1). In
these cases, both channels are configured in the desired operating mode. The
lower address must be the even address (channel 0). The next higher address
must be the odd address (channel 1). The converted analog value is available
at the higher address (channel 1).

Table 518: Channel monitoring 3)
Internal value Monitoring
0 Plausibility, open-circuit (broken wire) and short circuit

3 No monitoring

Table 519: Output channel 0 (1 channel)
No. Name Value Internal value Internal

value, type
Default

1 Channel con-
figuration

see table 4) see table 4) Byte see table 4)

2 Channel mon-
itoring

see table 5) see table 5) Byte see table 5)

3 Substitute
value

see table 6)

0...65535 0...
0xffff

Word 0

Table 520: Output channels 1...3 (3x)
No. Name Internal value, type
1 Channel configuration

see table 4)

Byte

2 Channel monitoring

see table 6)

Byte

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2966

Table 521: Channel configuration 4)
Internal value Operating modes of the analog outputs, individually configurable
0 Unused (default)

128 Analog output -10 V...+10 V

129 Analog output 0 mA...20 mA (not with the channels 4...7 and 12...15)

130 Analog output 4 mA...20 mA (not with the channels 4...7 and 12...15)

Table 522: Channel monitoring 5)
Internal value Monitoring
0 Plausibility, open circuit (broken wire) and short circuit (default)

3 No monitoring

Table 523: Substitute value 6)
Intended behaviour of
output channel when the
control system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Diagnosis
Table 524: Possible diagnosis of I/O channels
Output range Condition

Output value in the PLC
underflow

Output value in the PLC overflow

0..20 mA Error identifier = 7 Error identifier = 4

4..20 mA

-10..+10 V

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2967

Input range Condition
Short circuit Wire break Input value under-

flow
Input value over-
flow

0..20 mA no diagnosis possible no diagnosis possible no diagnosis possible Error identifier = 48

4..20 mA Error identifier = 7 Error identifier = 7 Error identifier = 7 Error identifier = 48

-10..+10 V no diagnosis possible Error identifier = 48 Error identifier = 7 Error identifier = 48

Table 525: Content of diagnosis messages
E1...E4 d1 d2 d3 d4 Identifier

000...063
AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in
the I/O module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firm-
ware versions in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data
exchange failure

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage
ON11 / 12 ADR 1...10

Channel error

 AX521 AX522

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2968

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 1 0...3 0...7 48 Analog value over-
flow or broken wire
at an analog input

Check
input
value or
terminal

11 / 12 ADR 1...10

4 14 1...10 1 0...3 0...7 7 Analog value under-
flow at an analog
input

Check
input
value11 / 12 ADR 1...10

4 14 1...10 1 0...3 0...7 47 Short circuit at an
analog input

Check
terminal11 / 12 ADR 1...10

4 14 1...10 3 4...7 8...15 4 Analog value over-
flow at an analog
output

Check
output
value11 / 12 ADR 1...10

4 14 1...10 3 4...7 8...15 7 Analog value under-
flow at an analog
output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware address
(e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10
Channel error: I/O bus or FBP = module type (1 = AI, 3 = AO); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2969

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I7

Analog input Yellow Input is OFF Input is ON
(brightness
depends on
the value of
the analog
signal)

--

Outputs
O0...O7

Analog
output

Yellow Output is
OFF

Output is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, error
messages in
groups
(analog
inputs or out-
puts com-
bined into the
groups 2 and
4)

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) Both LEDs (CH-ERR2 and CH-ERR4) light up together

Measuring ranges
Input ranges of voltage, current and digital input

The represented resolution corresponds to 16 bits.

Range 0...10 V -10...+10
V

0...20
mA

4...20
mA

Digital
input

Digital value
Decimal Hex.

Overflow >11.7589 >11.758
9

>23.517
8

>22.814
2

 32767 7FFF

Meas-
ured
value too
high

11.7589
.
.
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
meas-
ured
value too
low

10.0000
.
.
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

ON 27648
:
1

6C00
:
0001

0.0000 0 4 OFF 0 0000

0.0000 -0.0004
:
:

 3.9994 -1
-4864
-6912

FFFF
ED00
E500

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2970

Range 0...10 V -10...+10
V

0...20
mA

4...20
mA

Digital
input

Digital value
Decimal Hex.

-0.0004
-1.7593

:
-10.0000

:
-27648

:
9400

Meas-
ured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Under-
flow

<-1.7593 <-11.758
9

<0.0000 <1.1858 -32768 8000

Input ranges resistance temperature detector

Range Pt100 / Pt
1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value
Decimal Hex.

Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured
value too
high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

Normal
range

:
:
70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

:
150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current
The represented resolution corresponds to 16 bits.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2971

Range -10...+10 V 0...20 mA 4...20 mA Digital value
Decimal Hex.

Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal
range

10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too
low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for 0
V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the termi-
nals UP/L+ and ZP/M of the CPU/communi-
cation interface module

Ca. 2 mA

 From UP at normal operation 0.15 A + output loads

Inrush current from UP (at power up) 0.020 A2s

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2972

Parameter Value
Max. length of analog cables, conductor cross sec-
tion > 0.14 mm²

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 8

Distribution of channels into groups 1 group of 8 channels

Connections of the channels I0- to I7- Terminals 1.0 to 1.7

Connections of the channels I0+ to I7+ Terminals 2.0 to 2.3

Input type Bipolar (not with current or Pt100/Pt1000/Ni1000)

Galvanic isolation Against internal supply and other modules

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA,
4 mA...20 mA, Pt100/1000, Ni1000 (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
current: 100 µs

Indication of the input signals One LED per channel

Conversion cycle 2 ms (for 8 inputs + 8 outputs), with Pt/Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Unused voltage inputs Are configured as "unused"

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2973

Parameter Value
Unused current inputs Have a low resistance, can be left open-circuited

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital Inputs

Parameter Value
Number of channels per module Max. 8

Distribution of channels into groups 1 group of 8 channels

Connections of the channels I0+ to I7+ Terminals 2.0 to 2.7

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Input signal delay Typ. 8 ms, configurable from 0.1 to 32 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 4.3 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 8, all channels for voltage, the first 4 channels

also for current

Distribution of channels into groups 1 group of 8 channels

 Channels O0-...O7- Terminals 3.0...3.7

 Channels O0+...O7+ Terminals 4.0...4.7

Output type Bipolar with voltage, unipolar with current

Galvanic isolation Against internal supply and other modules

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA
(each output can be configured individually),
current outputs only channels 0...3

Output resistance (load), as current output 0 W...500 W

Output loadability, as voltage output Max. ±10 mA

Indication of the output signals One LED per channel

Resolution 12 bits (+ sign)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2974

Parameter Value
Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Relationship between output signal and hex
code

See table, Ä Chapter 1.6.3.6.2.2.6.9.3
“Output ranges voltage and current”
on page 2971

Unused outputs Can be left open-circuited

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 000 R0001 AX522, analog input/output module,

8 AI, 8 AO, U/I/Pt100, 12 bits + sign,
2-wires

Active

1SAP 450 000 R0001 AX522-XC, analog input/output
module, 8 AI, 8 AO, U/I/Pt100,
12 bits + sign, 2-wires, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.3.6.3 Digital/Analog I/O modules
S500
DA501 - Digital/Analog input/output module

● 16 digital inputs 24 V DC
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● 4 analog inputs, voltage, current and RTD.

Resolution 12 bits plus sign
● 2 analog outputs, voltage and current

Resolution 12 bits plus sign
● Fast counter

● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2975

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states of the digital inputs DI0 to DI15
4 4 yellow LEDs to display the signal states of the analog inputs AI0 to AI3
5 2 yellow LEDs to display the signal states of the analog outputs AO0 to AO1
6 8 yellow LEDs to display the signal state of the configurable digital inputs/outputs DC16 to

DC23
7 1 green LED to display the state of the process supply voltage UP
8 4 red LEDs to display errors
9 Label
10 Terminal unit
11 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
● 16 digital inputs 24 V DC
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2976

● 4 analog inputs, voltage, current and RTD.
Resolution 12 bits plus sign

● 2 analog outputs, voltage and current
Resolution 12 bits plus sign

● Fast counter

Parameter Value
Fast Counter Integrated, many configurable operating

modes

Power supply From the process supply voltage UP

LED displays For system displays, signal states, errors and
power supply

Internal supply voltage Via the I/O bus interface (I/O bus)

External supply voltage Via terminals UP and ZP (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The connection is carried out by using the 40 terminals of the terminal unit TU515/TU516
Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541 and TU542 for I/O modules” on page 2553.
The assignment of the terminals:

Terminal Signal Description
1.0 DI0 Signal of the digital input DI0

1.1 DI1 Signal of the digital input DI1

1.2 DI2 Signal of the digital input DI2

1.3 DI3 Signal of the digital input DI3

1.4 DI4 Signal of the digital input DI4

1.5 DI5 Signal of the digital input DI5

1.6 DI6 Signal of the digital input DI6

1.7 DI7 Signal of the digital input DI7

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DI8 Signal of the digital input DI8

2.1 DI9 Signal of the digital input DI9

2.2 DI10 Signal of the digital input DI10

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2977

Terminal Signal Description
2.3 DI11 Signal of the digital input DI11

2.4 DI12 Signal of the digital input DI12

2.5 DI13 Signal of the digital input DI13

2.6 DI14 Signal of the digital input DI14

2.7 DI15 Signal of the digital input DI15

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 AI0+ Positive pole of analog input signal 0

3.1 AI1+ Positive pole of analog input signal 1

3.2 AI2+ Positive pole of analog input signal 2

3.3 AI3+ Positive pole of analog input signal 3

3.4 AI- Negative pole of analog input signals 0 to 3

3.5 AO0+ Positive pole of analog output signal 0

3.6 AO1+ Positive pole of analog output signal 1

3.7 AO- Negative pole of analog output signals 0
and 1

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 C16 Signal of the configurable digital input/
output C16

4.1 C17 Signal of the configurable digital input/
output C17

4.2 C18 Signal of the configurable digital input/
output C18

4.3 C19 Signal of the configurable digital input/
output C19

4.4 C20 Signal of the configurable digital input/
output C20

4.5 C21 Signal of the configurable digital input/
output C21

4.6 C22 Signal of the configurable digital input/
output C22

4.7 C23 Signal of the configurable digital input/
output C23

4.8 UP Process voltage UP (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DA501.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2978

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

CAUTION!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalization of a
low resistance to avoid high potential differences between different parts of the
plant.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2979

DI0 1.0

DI1 1.1

DI2 1.2

DI3 1.3

DI4 1.4

DI5 1.5

DI6 1.6

DI7 1.7

DI8 2.0

DI9 2.1

DI10 2.2

DI11 2.3

DI12 2.4

DI13 2.5

DI14 2.6

DI15 2.7

+-AI0 3.0

+-AI1 3.1

+-AI2 3.2

+-AI3 3.3

AO03.5

AO13.7

AI- 3.4

AO-3.8

DC164.0

DC174.1

DC184.2

DC194.3

DC204.4

DC214.5

DC224.6

DC234.7

PTCPTC

1.8
3.82.8

4.8UP +24 V DC

1.9
3.92.9

4.9ZP 0 V

+-

+-

Fig. 170: Terminal assignment of the module

The module provides several diagnosis functions Ä Chapter 1.6.3.6.3.1.1.7 “Diagnosis”
on page 2996.

Connection of the digital inputs
The following figure shows the connection of the digital input DI0. Proceed with the digital inputs
DI1 to DI15 in the same way.

Fig. 171: Connection of the module

The meaning of the LEDs is described in the Displays Ä Chapter 1.6.3.6.3.1.1.8 “State LEDs”
on page 2999 chapter.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2980

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC16 and
DC17. DC16 is connected as an input and DC17 is connected as an output. Proceed with the
configurable digital inputs/outputs DC18 to DC23 in the same way.

Fig. 172: Connection of configurable digital inputs/outputs to the module

CAUTION!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DA501.
If the inputs are used as fast counter inputs, connect a 470 W / 1 W resistor in
series to inputs DC16/DC17.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module DA501
provides a constant current source which is multiplexed over the max. 4 analog input channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration to
the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2981

Fig. 173: Connection of resistance thermometers in 2-wire configuration to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.1.6 “Parameteriza-
tion” on page 2992:

Pt100 -50 °C...+400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, 1
channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.6.3.1.1.8 “State LEDs” on page 2999.
The module DA501 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module DA501
provides a constant current source which is multiplexed over the max. 4 analog input channels.
0
The following figure shows the connection of resistance thermometers in 3-wire configuration to
the analog inputs AI0 and AI1. Proceed with the analog inputs AI2 and AI3 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2982

Fig. 174: Connection of resistance thermometers in 3-wire configuration to the analog inputs

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.1.6 “Parameteriza-
tion” on page 2992:

Pt100 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C...+150 °C 3-wire configuration, 2 chan-
nels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.6.3.1.1.7 “Diagnosis” on page 2996.
0
The module DA501 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2983

Fig. 175: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.1.6 “Parameteriza-
tion” on page 2992:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.6.3.1.1.8 “State LEDs” on page 2999.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2984

Fig. 176: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.1.6 “Parameteriza-
tion” on page 2992:

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.6.3.1.1.8 “State LEDs” on page 2999.
Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to
AI3 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2985

Fig. 177: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V within the full signal range).
Make sure that the potential difference never exceeds ±1 V.

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.1.6 “Parameteriza-
tion” on page 2992:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 1.6.3.6.3.1.1.8 “State LEDs” on page 2999.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2986

Fig. 178: Connection of passive-type analog sensors (current) to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.1.6 “Parameteriza-
tion” on page 2992:

Current 4 mA...20 mA 1 channel used

For a description of function of the LEDs, please refer to the Diagnosis and displays / Displays
chapter Ä Chapter 1.6.3.6.3.1.1.8 “State LEDs” on page 2999.

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Only use sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt Zener diode in parallel to I+ and I-.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful if analog sensors which are remotely non-isolated (e.g. the
negative terminal is remotely grounded) are used.
Using differential inputs helps to considerably increase the measuring accuracy and to avoid
ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2987

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too large a potential difference
with respect to ZP (max. ±1 V within the full signal range).
Make sure that the potential difference never exceeds ±1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

Fig. 179: Connection of active-type analog sensors (voltage) to differential analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.1.6 “Parameteriza-
tion” on page 2992:

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 1.6.3.6.3.1.1.8 “State LEDs” on page 2999.
To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.
The following figure shows the connection of digital sensors to the analog input AI0. Proceed
with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2988

Fig. 180: Use of analog inputs as digital inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.1.6 “Parameteriza-
tion” on page 2992:

Digital input 24 V 1 channel used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 1.6.3.6.3.1.1.8 “State LEDs” on page 2999.

Connection of analog output loads (Voltage)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2989

Fig. 181: Connection of analog output loads (voltage)

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.1.6 “Parameteriza-
tion” on page 2992 :

Voltage -10 V...+10 V Load ±10 mA max. 1 channel used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 1.6.3.6.3.1.1.8 “State LEDs” on page 2999.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2990

Fig. 182: Connection of analog output loads (current)

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.1.6 “Parameteriza-
tion” on page 2992:
0

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 1.6.3.6.3.1.1.8 “State LEDs” on page 2999.
Unused analog outputs can be left open-circuited.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 3 5

Digital outputs (bytes) 1 3

Analog inputs (words) 4 4

Digital outputs (words) 2 2

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2991

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Module ID
1)

Internal 1810 WORD 1810 0x0Y01

Ignore module

see table 2)

Internal Yes
No

BYTE No not for FBP

Parameter
length

Internal 8 BYTE 8 0xY02

Check supply off 0 BYTE 1 0xY03

on 1

Fast counter
3)

0
:
10
4)

0
:
10

BYTE 0 not for FBP

Behavior out-
puts at comm.
error
5)

Off Last value
Last value 5
sec Last value
10 sec Substi-
tute value
Substitute
value 5 sec
Substitute
value 10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

0x0Y07

2) Setting Description

 On Error LED lights up at errors of all error classes, Failsafe
mode off

 Off by E4 Error LED lights up at errors of error classes E1, E2 and E3,
Failsafe mode off

 Off by E3 Error LED lights up at errors of error classes E1 and E2,
Failsafe mode off

 On +Failsafe Error LED lights up at errors of all error classes, Failsafe
mode on *)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2992

2) Setting Description

 Off by E4 + Failsafe Error LED lights up at errors of error classes E1, E2 and E3,
Failsafe mode on *)

 Off by E3 + Failsafe Error LED lights up at errors of error classes E1 and E2,
Failsafe mode on *)

Remarks:
1) With a faulty ID, the Modules reports a "parameter error" and does not perform cyclic process
data transmission
2) Not for FBP
3) With FBP or CS31 without the parameter "Fast Counter"

The fast counter of the module does not work if the module is connected to an
FBP interface module or CS31 bus module.

4) For counter operating modes, please refer to the description of the fast counter Ä Chapter
1.6.3.6.1.2.9 “Fast counter” on page 2776
5) The parameter Behavior outputs at comm. error is only analyzed if the Failsafe-mode is ON.

Group parameters for the digital part

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

0x0Y05

Detect short
circuit at out-
puts

Off
On

0
1

BYTE On
0x01

0x0Y06

Substitute
value at
output

0...255 00h...FFh BYTE 0
0x0000

0x0Y08

*) The parameters Behavior DO at comm. error is only analyzed if the Failsafe mode is ON.

Group parameters for the analog part

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Analog data
format

Standard
Reserved

0
255

BYTE 0 0x0Y04

*) The parameter Behavior AO at comm. error is only analyzed if the Failsafe mode is ON.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2993

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input 0,
Channel con-
figuration

see
Ä Table 526 “
Channel con-
figuration”
on page 2994

see
Ä Table 526 “
Channel con-
figuration”
on page 2994

BYTE 0 0x0Y09

Input 0,
Check
channel

see
Ä Table 527 “
Channel mon-
itoring”
on page 2995

see
Ä Table 527 “
Channel mon-
itoring”
on page 2995

BYTE 0 0x0Y0A

: : : : :

: : : : :

Input 3,
Channel con-
figuration

see
Ä Table 526 “
Channel con-
figuration”
on page 2994

see
Ä Table 526 “
Channel con-
figuration”
on page 2994

BYTE 0 0x0Y0F

Input 3,
Check
channel

see
Ä Table 527 “
Channel mon-
itoring”
on page 2995

see
Ä Table 527 “
Channel mon-
itoring”
on page 2995

BYTE 0 0x0Y10

Table 526: Channel configuration
Internal value Operating modes of the analog inputs, individually configurable
0 (default) Not used

1 0 V...10 V

2 Digital input

3 0 mA...20 mA

4 4 mA...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50 °C...+400 °C

9 3-wire Pt100 -50 °C...+400 °C *)

10 0 V...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C...+70 °C

15 3-wire Pt100 -50 °C...+70 °C *)

16 2-wire Pt1000 -50 °C...+400 °C

17 3-wire Pt1000 -50 °C...+400 °C *)

18 2-wire Ni1000 -50 °C...+150 °C

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2994

Internal value Operating modes of the analog inputs, individually configurable
19 3-wire Ni1000 -50 °C...+150 °C *)

 *) In the operating modes with 3-wire configuration or with differ-
ential inputs, two adjacent analog inputs belong together (e.g. the
channels 0 and 1). In these cases, both channels are configured in
the desired operating mode. The lower address must be the even
address (channel 0). The next higher address must be the odd
address (channel 1). The converted analog value is available at the
higher address (channel 1).

Table 527: Channel monitoring
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

0
Output 0,
Channel con-
figuration

see
Ä Table 528 “
Channel con-
figuration”
on page 2996

see
Ä Table 528 “
Channel con-
figuration”
on page 2996

BYTE 0 0x0Y11

Output 0,
Check
channel

see
Ä Table 529 “
Channel mon-
itoring”
on page 2996

see
Ä Table 529 “
Channel mon-
itoring”
on page 2996

BYTE 0 0x0Y12

Output 0,
Substitute
value

see
Ä Table 530 “
Substitute
value”
on page 2996

see
Ä Table 530 “
Substitute
value”
on page 2996

WORD 0 0x0Y13

Output 1,
Channel con-
figuration

see
Ä Table 528 “
Channel con-
figuration”
on page 2996

see
Ä Table 528 “
Channel con-
figuration”
on page 2996

BYTE 0 0x0Y14

Output 1,
Check
channel

see
Ä Table 529 “
Channel mon-
itoring”
on page 2996

see
Ä Table 529 “
Channel mon-
itoring”
on page 2996

BYTE 0 0x0Y15

Output 1,
Substitute
value

see
Ä Table 530 “
Substitute
value”
on page 2996

see
Ä Table 530 “
Substitute
value”
on page 2996

WORD 0 0x0Y16

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2995

Table 528: Channel configuration
Internal value Operating modes of the analog outputs, individually configurable
0 (default) Not used

128 -10 V...+10 V

129 0 mA...20 mA

130 4 mA...20 mA

Table 529: Channel monitoring
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 530: Substitute value
Intended behavior of output
channel when the control
system stops

Required setting of
the module parameter
"Behavior of outputs in
case of a communication
error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The module performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2996

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

0
3

14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error DA501

4 14 1...10 2 22...29 5) 47 Short circuit at a digital
output

Check
connection11 / 12 ADR 1...10

Channel error DA501

4 14 1...10 1 16...19 6) 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 16...19 6) 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

4 14 1...10 1 16...19 6) 47 Short circuit at an
analog input

Check ter-
minal11 / 12 ADR 1...10

4 14 1...10 3 20...21 7) 4 Analog value overflow
at an analog output

Check
output
value11 / 12 ADR 1...10

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2997

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 3 20...21 7) 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = communication interface module 1...10,
ADR = hardware address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10
Channel error: I/O bus or FBP = module type (1 = AI, 3 = AO, 4 = DC); COM1/
COM2: 1...10 = expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.
5) Ch = 22...29 indicates the digital inputs/outputs DC16...DC23
6) Ch = 16...19 indicates the analog inputs AI0...AI3
7) Ch = 20...21 indicates the analog outputs AO0...AO1

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US2998

State LEDs

LED State Color LED = OFF LED = ON LED flashes
DI0 to DI15 Digital input Yellow Input is OFF Input is ON 1) --

DC16 to
DC23

Digital input/
output

Yellow Input/output
is OFF

Input/output is
ON 1)

--

AI0 to AI3 Analog input Yellow Input is OFF Input is ON 2) --

AO0 to
AO1

Analog
output

Yellow Output is
OFF

Output is ON
2)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Severe error
within the cor-
responding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 3) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) Brightness depends on the value of the analog signal
3) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10 V 0...20 mA 4...20 mA Digital input
Overflow > 11.7589 > 11.7589 > 23.5178 > 22.8142

Measured
value too high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

Normal range
Normal range
or measured
value too low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

on

0.0000 0.0000 0 4 off

-0.0004
-1.7593

-0.0004
:
:
:
-10.0000

 3.9994
:
0

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 2999

Range 0...10 V -10...+10 V 0...20 mA 4...20 mA Digital input
Measured
value too low

 -10.0004
:
-11.7589

Underflow < 0.0000 < -11.7589 < 0.0000 < 0.0000

Range Digital value
 Decimal Hex.
Overflow 32767 7FFF

Measured value too high 32511
:
27649

7EFF
:
6C01

Normal range Normal range
or measured value too low

27648
:
1

6C00
:
0001

0 0000

-1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured value too low -27649
:
-32512

93FF
:
8100

Underflow -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50...70 °C

Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Overflow > 80.0 °C > 450.0 °C > 160.0 °C

Measured value too high 450.0 °C
:
400.1 °C

 160.0 °C
:
150.1 °C

80.0 °C
:
70.1 °C

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3000

Range Pt100 / Pt1000
-50...70 °C

Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Normal range :
:
70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

0.0 °C 0.0 °C 0.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

Measured value too low -50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

Underflow < -60.0 °C < -60.0 °C < -60.0 °C

Range Digital value
 Decimal Hex.
Overflow 32767 7FFF

Measured value too high 4500
:
4001

1194
:
0FA1

1600
:
1501

0640
:
05DD

800
:
701

0320
:
02BD

Normal range 4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0 0000

-1
:
-500

FFFF
:
FE0C

Measured value too low -501
:
-600

FE0B
:
FDA8

Underflow -32768 8000

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3001

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA
Overflow >11.7589 V >23.5178 mA >22.8142 mA

Value too high 11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

0.0000 V 0.0000 mA 4.0000 mA

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

Value too low -10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

Underflow 0 V 0 mA 0 mA

Range Digital value
 Decimal Hex.
Overflow > 32511 > 7EFF

Value too high 32511
:
27649

7EFF
:
6C01

Normal range 27648
:
1

6C00
:
0001

0 0000

-1
-6912
-27648

FFFF
E500
9400

Value too low -27649
:
-32512

93FF
:
8100

Underflow < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
Technical data of the module

The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3002

The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for UP (+24
V DC) and 1.9, 2.9, 3.9 and 4.9 for ZP (0 V
DC)

 Protection against reverse voltage yes

 Rated protection fuse at UP 10 A fast

 Rated value 24 V DC

 Max. ripple 5 %

Current consumption

 From UP 0.07 A + max. 0.5 A per output

 From 24 V DC power supply at the terminals
UP/L+ and ZP/M of the CPU/communication
interface module

ca. 2 mA

 Inrush current from UP (at power-up) 0.04 A2s

Galvanic isolation Yes, per module

Max. power dissipation within the module 6 W (outputs unloaded)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal mounting or vertical with
derating (output load reduced to 50 % at
40 °C)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3003

Technical data of the digital inputs

Parameter Value
Number of channels per module 16

Distribution of the channels into groups 2 groups of 8 channels

Terminals of the channels DI0 to DI7 Terminals 1.0 to 1.7

Terminals of the channels DI8 to DI15 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the configurable digital inputs/outputs
Each of the configurable digital I/O channels can be defined as input or output by the user
program. This is done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC16...DC23 Terminals 4.0...4.7

If the channels are used as outputs

 Channels DC16...DC23 Terminals 4.0...4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3004

Parameter Value
Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation Yes, per module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC16 to DC23 Terminals 4.0 to 4.7

Reference potential for all inputs Terminals 1.9...4.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 shielded 1000 m

 unshielded 600 m

* Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC16 to DC23 Terminals 4.0 to 4.7

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3005

Parameter Value
Reference potential for all outputs Terminals 1.9...4.9 (negative pole of the

supply voltage, signal name ZP)

Common power supply voltage For all outputs terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the supply voltage, signal
name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 rated value per channel 500 mA at UP = 24 V

 max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Fuse for UP 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 183: Digital input/output (circuit diagram)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3006

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to an
FBP interface module or CS31 bus module.

Parameter Value
Used inputs DC16 / DC17

Used outputs DC18

Counting frequency Max. 50 kHz

Ä Chapter 1.6.5.1.12 “Fast counters” on page 3570

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 3.0 to 3.3

Reference potential for AI0+ to AI3+ Terminal 3.4 (AI-) for voltage and RTD
measurement
Terminal 1.9, 2.9, 3.9 and 4.9 for current
measurement

Input type

 Unipolar Voltage 0 V...10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V...+10 V

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA,
4 mA...20 mA, Pt100/1000, Ni1000 (each
input can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on
the value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs
Pt/Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1
°C

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3007

Parameter Value
Conversion error of the analog values caused
by non-linearity, adjustment error at factory and
resolution within the normal range

Typ. 0.5 %, max. 1 %
For XC version below 0 °C and above 60 °C:
on request

Relationship between input signal and hex code Ä Chapter 1.6.3.6.3.1.1.9.1 “Input ranges
voltage, current and digital input”
on page 2999

Ä Chapter 1.6.3.6.3.1.1.9.2 “Input
ranges resistance temperature detector”
on page 3000

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 3.0 to 3.3

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 3.5 and 3.6

Reference potential for AO0+ to AO1+ Terminal 3.7 (AO-) for voltage output
Terminals 1.9, 2.9, 3.9 and 4.9 for current
output

Output type

 Unipolar Current

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3008

Parameter Value
 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA
(each output can be configured individually)

Output resistance (load) as current output 0 W...500 W

Output loadability as voltage output ±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Ä Chapter 1.6.3.6.3.1.1.9.3 “Output ranges
voltage and current” on page 3002

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 3 5

Digital outputs (bytes) 1 3

Analog inputs (words) 4 4

Analog outputs (words) 2 2

Counter input data (words) 0 4

Counter output data (words) 0 8

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 700 R0001 DA501, digital/analog input/output

module, 16 DI, 8 DC, 4 AI, 2 AO
Active

1SAP 450 700 R0001 DA501-XC, digital/analog input/output
module, 16 DI, 8 DC, 4 AI, 2 AO,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3009

DA502 - Digital/Analog input/output module
● 16 digital outputs, 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● 4 analog inputs, voltage, current and RTD, resolution 12 bits plus sign
● 2 analog outputs, voltage and current, resolution 12 bits plus sign
● Fast counter
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states of the digital outputs DO0 to DO15
4 4 yellow LEDs to display the signal states of the analog inputs AI0 to AI3
5 2 yellow LEDs to display the signal states of the analog outputs AO0 to AO1
6 8 yellow LEDs to display the signal states of the configurable digital inputs/outputs DC16 to

DC23
7 1 green LED to display the state of the process supply voltage UP
8 4 red LEDs to display errors
9 Label
10 Terminal unit
11 DIN rail

Sign for XC version

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3010

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating

modes

Power supply From the process supply voltage UP

LED displays For system displays, signal states, errors and
power supply

Internal supply voltage Via the I/O bus interface (I/O bus)

External supply voltage Via terminals UP and ZP (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU515 or TU516 Ä Chapter 1.6.3.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 2553

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The connection is carried out by using the 40 terminals of the terminal unit TU515/TU516
Ä Chapter 1.6.3.5.2 “TU515, TU516, TU541 and TU542 for I/O modules” on page 2553.
The assignment of the terminals:

Terminal Signal Description
1.0 DO0 Signal of the digital output DO0

1.1 DO1 Signal of the digital output DO1

1.2 DO2 Signal of the digital output DO2

1.3 DO3 Signal of the digital output DO3

1.4 DO4 Signal of the digital output DO4

1.5 DO5 Signal of the digital output DO5

1.6 DO6 Signal of the digital output DO6

1.7 DO7 Signal of the digital output DO7

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DO8 Signal of the digital output DO8

2.1 DO9 Signal of the digital output DO9

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3011

Terminal Signal Description
2.2 DO10 Signal of the digital output DO10

2.3 DO11 Signal of the digital output DO11

2.4 DO12 Signal of the digital output DO12

2.5 DO13 Signal of the digital output DO13

2.6 DO14 Signal of the digital output DO14

2.7 DO15 Signal of the digital output DO15

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 AI0+ Positive pole of analog input signal 0

3.1 AI1+ Positive pole of analog input signal 1

3.2 AI2+ Positive pole of analog input signal 2

3.3 AI3+ Positive pole of analog input signal 3

3.4 AI- Negative pole of analog input signals 0 to 3

3.5 AO0+ Positive pole of analog output signal 0

3.6 AO1+ Positive pole of analog output signal 1

3.7 AO- Negative pole of analog output signals 0 and 1

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DC16 Signal of the configurable digital input/output
DC16

4.1 DC17 Signal of the configurable digital input/output
DC17

4.2 DC18 Signal of the configurable digital input/output
DC18

4.3 DC19 Signal of the configurable digital input/output
DC19

4.4 DC20 Signal of the configurable digital input/output
DC20

4.5 DC21 Signal of the configurable digital input/output
DC21

4.6 DC22 Signal of the configurable digital input/output
DC22

4.7 DC23 Signal of the configurable digital input/output
DC23

4.8 UP Process voltage UP (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DA502.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3012

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.3.6 “I/O modules” on page 2569.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

CAUTION!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalization of a
low resistance to avoid high potential differences between different parts of the
plant.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3013

+-AI0 3.0

+-AI1 3.1

+-AI2 3.2

+-AI3 3.3

AO03.5

AO13.6

AI- 3.4

AO-3.7

PTCPTC

1.8
3.82.8

UP +24 V DC

1.9
3.92.9

ZP 0 V

+-

+-

DC164.0

DC174.1

DC184.2

DC194.3

DC204.4

DC214.5

DC224.6

DC234.7

4.8

4.9

D001.0

D011.1

DO21.2

DO31.3

DO41.4

DO51.5

DO61.6

DO71.7

D082.0

D092.1

DO102.2

DO112.3

DO122.4

DO132.5

DO142.6

DO152.7

Fig. 184: Terminal assignment of the module

The module provides several diagnosis functions Ä Chapter 1.6.3.6.3.1.2.7 “Diagnosis”
on page 3030.

Connection of the digital outputs
The following figure shows the connection of the digital output DO0. Proceed with the digital
outputs DO1 to DO15 in the same way.

For a description of the meaning of the LEDs, please refer to the Displays chapter Ä Chapter
1.6.3.6.3.1.2.8 “State LEDs” on page 3033.

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC16 and
DC17. DC16 is connected as an input and DC17 is connected as an output. Proceed with the
configurable digital inputs/outputs DC18 to DC23 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3014

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DA502.
Connect a 470 W / 1 W resistor in series to inputs DC16/DC17 if they are used
as fast counter inputs to avoid any influences.

For a description of tthe meaning of the LEDs, please refer to the Displays Ä Chapter
1.6.3.6.3.1.2.8 “State LEDs” on page 3033 chapter.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module DA502
provides a constant current source which is multiplexed over max. 4 analog input channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration to
the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3015

Fig. 185: Connection of resistance thermometers in 2-wire configuration to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.2.6 “Parameteriza-
tion” on page 3026 Ä Chapter 1.6.3.6.3.1.2.9 “Measuring ranges” on page 3033:

Pt100 -50 °C...+400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, 1
channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.3.6.3.1.2.8 “State LEDs” on page 3033.
The module DA502 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module DA502
provides a constant current source which is multiplexed over max. 4 analog input channels.
The following figure shows the connection of resistance thermometers in 3-wire configuration to
the analog inputs AI0 and AI1. Proceed with the analog inputs AI2 and AI3 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3016

Fig. 186: Connection of resistance thermometers in 3-wire configuration to the analog inputs

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.2.6 “Parameteriza-
tion” on page 3026 Ä Chapter 1.6.3.6.3.1.2.9 “Measuring ranges” on page 3033:

Pt100 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C...+150 °C 3-wire configuration, 2 chan-
nels used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.3.6.3.1.2.8 “State LEDs” on page 3033.
The module DA502 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3017

Fig. 187: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.2.6 “Parameteriza-
tion” on page 3026 Ä Chapter 1.6.3.6.3.1.2.9 “Measuring ranges” on page 3033:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.3.6.3.1.2.8 “State LEDs” on page 3033.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3018

Fig. 188: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.2.6 “Parameteriza-
tion” on page 3026 Ä Chapter 1.6.3.6.3.1.2.9 “Measuring ranges” on page 3033:

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.3.6.3.1.2.8 “State LEDs” on page 3033.
Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to
AI3 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3019

Fig. 189: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too large a potential difference
with respect to ZP (max. ±1 V within the full signal range).
Make sure that the potential difference never exceeds ±1 V.

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.2.6 “Parameteriza-
tion” on page 3026 Ä Chapter 1.6.3.6.3.1.2.9 “Measuring ranges” on page 3033:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.3.6.3.1.2.8 “State LEDs” on page 3033.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3020

Fig. 190: Connection of passive-type analog sensors (current) to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.2.6 “Parameteriza-
tion” on page 3026 Ä Chapter 1.6.3.6.3.1.2.9 “Measuring ranges” on page 3033:

Current 4 mA...20 mA 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.3.6.3.1.2.8 “State LEDs” on page 3033.

NOTICE!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Use only sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt Zener diode in parallel to I+ and I-.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful if analog sensors which are remotely non-isolated (e.g. the
negative terminal is remotely grounded) are used.
Using differential inputs helps to considerably increase the measuring accuracy and to avoid
ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3021

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too large a potential difference
with respect to ZP (max. ±1 V within the full signal range).
Make sure that the potential difference never exceeds ±1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

Fig. 191: Connection of active-type analog sensors (voltage) to differential analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.2.6 “Parameteriza-
tion” on page 3026 Ä Chapter 1.6.3.6.3.1.2.9 “Measuring ranges” on page 3033:

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.3.6.3.1.2.8 “State LEDs” on page 3033.
To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.
The following figure shows the connection of digital sensors to the analog input AI0. Proceed
with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3022

Fig. 192: Use of analog inputs as digital inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.2.6 “Parameteriza-
tion” on page 3026 Ä Chapter 1.6.3.6.3.1.2.9 “Measuring ranges” on page 3033 :

Digital input 24 V 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.3.6.3.1.2.8 “State LEDs” on page 3033.

Connection of analog output loads (Voltage)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3023

Fig. 193: Connection of analog output loads (voltage)

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.2.6 “Parameteriza-
tion” on page 3026 Ä Chapter 1.6.3.6.3.1.2.9 “Measuring ranges” on page 3033:

Voltage -10 V...+10 V Load ±10 mA max. 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.3.6.3.1.2.8 “State LEDs” on page 3033.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3024

Fig. 194: Connection of analog output loads (current)

The following measuring ranges can be configured Ä Chapter 1.6.3.6.3.1.2.6 “Parameteriza-
tion” on page 3026Ä Chapter 1.6.3.6.3.1.2.9 “Measuring ranges” on page 3033:

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.3.6.3.1.2.8 “State LEDs” on page 3033.
Unused analog outputs can be left open-circuited.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 1 1

Digital outputs (bytes) 3 3

Analog inputs (words) 4 4

Analog outputs (words) 2 2

Counter input data (words) 0 5

Counter output data (words) 0 9

I/O configuration
The module itself does not store configuration data. It draws its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3025

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Module ID 1) Internal 1815 WORD 1815 0x0Y01

Ignore module Internal Yes
No

BYTE No

Parameter
length

Internal 8 BYTE 8 0xY02

Check supply off 0 BYTE 1 0xY03

on 1

Fast counter
3)

0
:

10 2)

0
:
10

BYTE 0 Not for FBP

Behavior out-
puts at comm.
error 5)

Off Last value
Last value 5 s
Last value 10
s Substitute
value
Substitute
value 5 s
Substitute
value 10 s

0
1 6
11
2
7
12

BYTE Off
0x00

0x0Y07

2) Setting Description

 On Error LED lights up at errors of all error
classes, Failsafe mode off

 Off by E4 Error LED lights up at errors of error
classes E1, E2 and E3, Failsafe mode off

 Off by E3 Error LED lights up at errors of error
classes E1 and E2, Failsafe mode off

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3026

2) Setting Description

 On +Failsafe Error LED lights up at errors of all error
classes, Failsafe mode on *)

 Off by E4 + Failsafe Error LED lights up at errors of error
classes E1, E2 and E3, Failsafe mode on
*)

 Off by E3 + Failsafe Error LED lights up at errors of error
classes E1 and E2, Failsafe mode on *)

1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission
2) For a description of the counter operating modes, please refer to the 'Fast Counter' section
Ä Chapter 1.6.3.6.1.2.9 “Fast counter” on page 2776
3) With CS31 without the parameter "Fast Counter"

The fast counter of the module does not work if the module is connected to a
CS31 bus module.

5) The parameter Behavior outputs at comm. error is only analyzed if the Failsafe mode is ON.

Group parameters for the digital part

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

0x0Y05

Detect short
circuit at out-
puts

Off
On

0
1

BYTE On
0x01

0x0Y06

Substitute
value at
output

0...255 00h...FFh BYTE 0
0x0000

0x0Y08

*) The parameters Behavior DO at comm. error is only analyzed if the Failsafe mode is ON.

Group parameters for the analog part

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Analog data
format

Standard
Reserved

0
255

BYTE 0 0x0Y04

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe mode is ON.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3027

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input 0,
Channel con-
figuration

see
Ä Table 531 “
Channel con-
figuration”
on page 3028

see
Ä Table 531 “
Channel con-
figuration”
on page 3028

BYTE 0 0x0Y09

Input 0,
Check
channel

see
Ä Table 532 “
Channel mon-
itoring”
on page 3029

see
Ä Table 532 “
Channel mon-
itoring”
on page 3029

BYTE 0 0x0Y0A

: : : : :

: : : : :

Input 3,
Channel con-
figuration

see
Ä Table 531 “
Channel con-
figuration”
on page 3028

see
Ä Table 531 “
Channel con-
figuration”
on page 3028

BYTE 0 0x0Y0F

Input 3,
Check
channel

see
Ä Table 532 “
Channel mon-
itoring”
on page 3029

see
Ä Table 532 “
Channel mon-
itoring”
on page 3029

BYTE 0 0x0Y10

Table 531: Channel configuration
Internal value Operating modes of the analog inputs, individually configu-

rable
0 (default) Not used

1 0 V...10 V

2 Digital input

3 0 mA...20 mA

4 4 mA...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50 °C...+400 °C

9 3-wire Pt100 -50 °C...+400 °C *)

10 0 V...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C...+70 °C

15 3-wire Pt100 -50 °C...+70 °C *)

16 2-wire Pt1000 -50 °C...+400 °C

17 3-wire Pt1000 -50 °C...+400 °C *)

18 2-wire Ni1000 -50 °C...+150 °C

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3028

Internal value Operating modes of the analog inputs, individually configu-
rable

19 3-wire Ni1000 -50 °C...+150 °C *)

 *) In the operating modes with 3-wire configuration or with differen-
tial inputs, two adjacent analog inputs belong together (e.g. the
channels 0 and 1). In these cases, both channels are configured in
the desired operating mode. The lower address must be the even
address (channel 0). The next higher address must be the odd
address (channel 1). The converted analog value is available at
the higher address (channel 1).

Table 532: Channel monitoring
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

0
Output 0,
Channel con-
figuration

see
Ä Table 533 “
Channel con-
figuration”
on page 3030

see
Ä Table 533 “
Channel con-
figuration”
on page 3030

BYTE 0 0x0Y11

Output 0,
Check
channel

see
Ä Table 534 “
Channel mon-
itoring”
on page 3030

see
Ä Table 534 “
Channel mon-
itoring”
on page 3030

BYTE 0 0x0Y12

Output 0,
Substitute
value

see
Ä Table 535 “
Substitute
value”
on page 3030

see
Ä Table 535 “
Substitute
value”
on page 3030

WORD 0 0x0Y13

Output 1,
Channel con-
figuration

see
Ä Table 533 “
Channel con-
figuration”
on page 3030

see
Ä Table 533 “
Channel con-
figuration”
on page 3030

BYTE 0 0x0Y14

Output 1,
Check
channel

see
Ä Table 534 “
Channel mon-
itoring”
on page 3030

see
Ä Table 534 “
Channel mon-
itoring”
on page 3030

BYTE 0 0x0Y15

Output 1,
Substitute
value

see
Ä Table 535 “
Substitute
value”
on page 3030

see
Ä Table 535 “
Substitute
value”
on page 3030

WORD 0 0x0Y16

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3029

Table 533: Channel configuration
Internal value Operating modes of the analog outputs, individually configu-

rable
0 (default) Not used

128 -10 V...+10 V

129 0 mA...20 mA

130 4 mA...20 mA

Table 534: Channel monitoring
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 535: Substitute value
Intended behavior of output
channel when the control
system stops

Required setting of
the module parameter
"Behavior of outputs in
case of a communication
error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 s 0

Last value for 10 s and then
turn off

Last value 10 s 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 s Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 s Depending on configuration

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The module performs
reactivation automatically. Thus, an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3030

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error DA502

4 14 1...10 2 0...15

22...29 5)

47 Short-circuit at a digital
output

Check
connection11 / 12 ADR 1...10

Channel error DA502

4 14 1...10 1 16...19 6) 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 16...19 6) 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

4 14 1...10 1 16...19 6) 47 Short circuit at an
analog input

Check ter-
minal11 / 12 ADR 1...10

4 14 1...10 3 20...21 7) 4 Analog value overflow
at an analog output

Check
output
value11 / 12 ADR 1...10

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3031

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 3 20...21 7) 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = communication interface module 1...10,
ADR = hardware address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus: 31 = Module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus = module type (1 = AI, 3 = AO, 4 = DC); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.
5) Ch = 22...29 indicate the digital inputs/outputs DC16...DC23
6) Ch = 16...19 indicates the analog inputs AI0...AI3
7) Ch = 20...21 indicates the analog outputs AO0...AO1

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3032

State LEDs

LED State Color LED = OFF LED = ON LED flashes
DO0 to
DO15

Digital output Yellow Output is
OFF

Output is ON --

DC16 to
DC23

Digital input/
output

Yellow Input/output
is OFF

Input/output is
ON 1)

--

AI0 to AI3 Analog input Yellow Input is OFF Input is ON 2) --

AO0 to
AO1

Analog
output

Yellow Output is
OFF

Output is ON
2)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Severe error
within the cor-
responding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 3) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) Brightness depends on the value of the analog signal
3) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Overflow > 11.7589 > 11.7589 > 23.5178 > 22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

On 27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3033

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
-0.0004
-1.7593

-0.0004
:
:
:
-10,0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow < 0.0000 <
-11.7589

< 0.0000 < 0.0000 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 /
Pt1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured value too
high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

Normal range :
:
70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50,0 °C

-1
:
-500

FFFF
:
FE0C

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3034

Range Pt100 /
Pt1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Measured value too
low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Value too high 11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too low -10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
Technical data of the module

The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3035

Parameter Value
Process supply voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for UP (+24
V DC) and 1.9, 2.9, 3.9 and 4.9 for ZP (0
V)

 Protection against reverse voltage yes

 Rated protection fuse at UP 10 A fast

 Rated value 24 V DC

 Max. ripple 5 %

Current consumption

 From UP 0.07 A + max. 0.5 A per output

 From 24 V DC power supply at the termi-
nals UP/L+ and ZP/M of the CPU/communi-
cation interface module

ca. 2 mA

 Inrush current from UP (at power-up) 0.04 A2s

Galvanic isolation Yes, per module

Max. power dissipation within the module 6 W (outputs unloaded)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal mounting or vertical with
derating (output load reduced to 50% at 40
°C)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in
the switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital outputs

Parameter Value
Number of channels per module 16 outputs (with transistors)

Distribution of the channels into groups 1 group of 16 channels

Connection of the channels

 DO0 to DO7 Terminals 1.0 to 1.7

 DO8 to DO15 Terminals 2.0 to 2.7

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3036

Parameter Value
Indication of the output signals 1 yellow LED per channel, the LED is ON if the

output signal is high (signal 1)

Monitoring point of output indicator LED is controlled by process CPU

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (channels O0 to O15) 4 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the configurable digital inputs/outputs
Each of the configurable digital I/O channels can be defined as input or output by the user
program. This is done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC16...DC23 Terminals 4.0...4.7

If the channels are used as outputs

 Channels DC16...DC23 Terminals 4.0...4.7

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3037

Parameter Value
Indication of the input/output signals 1 yellow LED per channel, the LED is ON

when the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation Yes, per module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC16 to DC23 Terminals 4.0 to 4.7

Reference potential for all inputs Terminals 1.9...4.9 (Negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

* Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3038

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC16 to DC23 Terminals 4.0 to 4.7

Reference potential for all outputs Terminals 1.9...4.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the supply voltage, signal name
UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 rated value per channel 500 mA at UP = 24 V

 max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Fuse for UP 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 195: Digital input/output (circuit diagram)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3039

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a
CS31 bus module.

Parameter Value
Counting frequency Max. 50 kHz

Ä Chapter 1.6.5.1.12 “Fast counters” on page 3570

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 3.0 to 3.3

Reference potential for AI0+ to AI3+ Terminal 3.4 (AI-) for voltage and RTD meas-
urement
Terminal 1.9, 2.9, 3.9 and 4.9 for current
measurement

Input type

 Unipolar Voltage 0 V...10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V...+10 V

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA,
4 mA...20 mA, Pt100/1000, Ni1000 (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. 0.5 %, max. 1 %
For XC version below 0 °C and above 60 °C:
on request

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3040

Parameter Value
Relationship between input signal and hex
code

Ä Chapter 1.6.3.6.3.1.2.9.1 “Input ranges
voltage, current and digital input”
on page 3033

Ä Chapter 1.6.3.6.3.1.2.9.2 “Input
ranges resistance temperature detector”
on page 3034

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 3.0 to 3.3

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 3.5 and 3.6

Reference potential for AO0+ to AO1+ Terminal 3.7 (AO-) for voltage output
Terminals 1.9, 2.9, 3.9 and 4.9 for current
output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3041

Parameter Value
Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA

(each output can be configured individually)

Output resistance (load),
as current output

0 W...500 W

Output loadability,
as voltage output

±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on
the value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Ä Chapter 1.6.3.6.3.1.2.9.3 “Output ranges
voltage and current” on page 3035

Unused outputs Are configured as "unused" (default value)
and can be left open-circuited

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 800 R0001 DA502, digital/analog input/output

module, 16 DO, 8 DC, 4 AI, 2 AO
Active

1SAP 450 800 R0001 DA502-XC, digital/analog input/output
module, 16 DO, 8 DC, 4 AI, 2 AO,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3042

1.6.3.7 Communication interface modules (S500)

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

Conditions for hot swapping
– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltages (SELV/PELV) are switched off.
– Modules are completely plugged on the terminal unit with both snap fit

engaged before switching on loads or input/output voltage.

Hot swap
Further information about hot swap: Ä Chapter 1.6.5.1.8 “Hot swap”
on page 3523.

1.6.3.7.1 Compatibility of communication modules and communication interface modules
Table 536: Modbus TCP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard
Ethernet inter-
face

CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3043

Table 537: PROFINET IO RT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x x x remote I/O,
safety I/O

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x -- -- hot swap I/O

Table 538: CANopen
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard CAN
interface

CI581-CN
CI582-CN

-- -- -- remote I/O

Table 539: EtherCAT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-ETHCAT
master

CI511-ETHCAT
CI512-ETHCAT

x x -- remote I/O

1.6.3.7.2 CANopen
Comparison CI581 and CI582

Parameter Value
Interface CAN

Protocol CANopen

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the CANopen Node ID for configura-
tion purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Transmission rates 10 / 20 / 50 / 125 / 250 / 500 / 800 kbit/s 1
Mbit/s Auto transmission rate detection is sup-
ported

Bus connection Depending on used terminal unit TU510: 9-pin
D-sub connector TU518: 10-pin terminal block

CI581/CI582:
Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3044

Parameter Value
Processor Hilscher NETX 100

Expandability CI58x can only be used on onboard CAN inter-
face and without any I/O expansion module
Ä Table 538 “CANopen” on page 3044.

State display Module state: PWR/RUN, CN-RUN, CN-ERR,
E-ERR, I/O bus

Adjusting elements 2 rotary switches for generation of the node
address

Ambient temperature System data AC500 Ä Chapter 1.6.4.6.1
“System data AC500” on page 3398

System data AC500 XC Ä Chapter 1.6.4.7.1
“System data AC500-XC” on page 3450

Current consumption UP: 0.2 A UP3: 0.06 A + 0.5 A max. per output

Weight (without terminal unit) Ca. 125 g

Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation CANopen interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the CANopen Node ID identifier With 2 rotary switches at the front side of the
module

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518
Ä Chapter 1.6.3.5.3 “TU517 and TU518
for communication interface modules”
on page 2559

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3045

All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

The difference of those devices can be found in their input and output characteristics.

Parameter Value
Inputs and outputs 8 digital inputs (24 V DC; delay time configu-

rable via software)
8 digital transistor outputs (24 V DC, 0.5 A
max.)
4 analog inputs, configurable as:
● -10 V...+10 V
● 0 V...+10 V
● -10 V...+10 V (differential voltage)
● 0 mA...20 mA
● 4 mA...20 mA
● Pt100 , Pt1000, Ni1000 (for each 2-wire

and 3-wire)
● 24 V digital input function
2 analog outputs, configurable as:
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

Resolution of the analog channels 12 bits

Fast counter Integrated, configurable operating modes

Parameter Value
Inputs and outputs 8 digital inputs (24 V DC)

8 digital transistor outputs (24 V DC, 0.5 A
max.)
8 configurable digital inputs/outputs (24 V DC,
0.5 A max.)

CI581-CN
● 4 analog inputs (resolution 12 bits plus sign)
● 2 analog outputs (resolution 12 bits plus sign)
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

CI581-CN: Input/
Output charac-
teristics

CI582-CN: Input/
Output charac-
teristics

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3046

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

CI581

CH-ERR1 CH-ERR3CH-ERR2

2.4

2.0 AI0+

2.2 AI2+

2.7 AO-

2.9 ZP

2.3 AI3+

2.1 AI1+

AI -

2.5 AO0+

2.6 AO1+

2.8 UP

4.0 DO0

4.2 DO2

4.4 DO4

4.6 DO6

4.9 ZP

4.1 DO1

4.3 DO3

4.5 DO5

4.7 DO7

4.8 UP33.8 UP

3.9 ZP

3.0 DI0

3.2 DI2

3.3 DI3

3.5 DI5

3.6 DI6

3.4 DI4

3.7 DI7

3.1 DI1

UP 24VDC 100W CANopen Slave
4AI 2AO 8DI 8DO

Input 24VDC/Output 24VDC 0.5A

PWR/
RUN

ADDR x01H

ADDR x10H

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

1.8GND

1.9GND

1.0 CAN+

1.2 CAN-

1.3 CAN-

1.5 Term+

1.6 Term-

1.4 Term+

1.7 Term-

1.1 CAN+ CN-
RUN
CN-

ERR
S-

ERR
I/O-
Bus

12 3 4 5

6
7

8

9

10

12

13

11

1 I/O bus
2 Allocation between terminal No. and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 - AI3, AO0 -

AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 - DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 - DO7)
6 2 green LEDs to display the supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 System LEDs: PWR/RUN, CN-RUN, CN-ERR, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the CANopen Node ID
11 10 terminals to connect the CANopen bus signals
12 Terminal unit
13 DIN rail

Sign for XC version

Intended purpose
The CANopen communication interface module CI581-CN is used as decentralized I/O module
in CANopen networks. Depending on the used terminal unit the network connection is per-
formed either via 9-pin female D-sub or via 10 terminals (screw or spring terminals) which are
integrated in the terminal unit. The communication interface module contains 22 I/O channels
with the following properties:
● 4 analog inputs (2.0...2.3)
● 2 analog outputs (2.5...2.6)
● 8 digital inputs 24 V DC in 1 group (3.0...3.7)
● 8 digital outputs 24 V DC in 1 group (4.0...4.7)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3047

The inputs/outputs are galvanically isolated from the CANopen network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Interface CAN

Protocol CANopen

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the CANopen Node ID for configura-
tion purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Transmission rates 10 / 20 / 50 / 125 / 250 / 500 / 800 kbit/s 1
Mbit/s Auto transmission rate detection is sup-
ported

Bus connection Depending on used terminal unit TU510: 9-pin
D-sub connector TU518: 10-pin terminal block

Processor Hilscher NETX 100

Expandability CI58x can only be used on onboard CAN inter-
face and without any I/O expansion module
Ä Table 538 “CANopen” on page 3044.

State display Module state: PWR/RUN, CN-RUN, CN-ERR,
E-ERR, I/O bus

Adjusting elements 2 rotary switches for generation of the node
address

Ambient temperature System data AC500 Ä Chapter 1.6.4.6.1
“System data AC500” on page 3398

System data AC500 XC Ä Chapter 1.6.4.7.1
“System data AC500-XC” on page 3450

Current consumption UP: 0.2 A UP3: 0.06 A + 0.5 A max. per output

Weight (without terminal unit) Ca. 125 g

Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation CANopen interface against the rest of the
module

 Inrush current from UP (at power up) On request

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3048

Parameter Value
 Current consumption via UP (normal

operation)
0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the CANopen Node ID identifier With 2 rotary switches at the front side of the
module

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518
Ä Chapter 1.6.3.5.3 “TU517 and TU518
for communication interface modules”
on page 2559

All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3049

Parameter Value
Inputs and outputs 8 digital inputs (24 V DC; delay time configu-

rable via software)
8 digital transistor outputs (24 V DC, 0.5 A
max.)
4 analog inputs, configurable as:
● -10 V...+10 V
● 0 V...+10 V
● -10 V...+10 V (differential voltage)
● 0 mA...20 mA
● 4 mA...20 mA
● Pt100 , Pt1000, Ni1000 (for each 2-wire

and 3-wire)
● 24 V digital input function
2 analog outputs, configurable as:
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

Resolution of the analog channels 12 bits

Fast counter Integrated, configurable operating modes

Connections
The CANopen communication interface module is plugged on the I/O terminal units TU517
Ä Chapter 1.6.3.5.3 “TU517 and TU518 for communication interface modules” on page 2559
or TU518 Ä Chapter 1.6.3.5.3 “TU517 and TU518 for communication interface modules”
on page 2559 and accordingly TU509 or TU510. Properly position the module and press until it
locks in place.
The connection of the I/O channels is established using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 2.8, 3.8, 2.9, 3.9 and 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 2.8 and 3.8: process supply voltage UP = +24 V DC
Terminal 4.8: process supply voltage UP3 = +24 V DC
Terminals 2.9, 3.9 and 4.9: process supply voltage ZP = 0 V

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

CI581-CN: Input/
Output charac-
teristics

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3050

Do not connect any voltages externally to the digital outputs!

Reason: External voltages at an output or several outputs may cause other
outputs to be supplied via that voltage instead of voltage UP3 (reverse voltage).
This ist not the intended use.

CAUTION!
Risk of malfunctions by unintended use!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is connected at the outputs
DO0..DO7 and DC0..DC7.

Possibilities of connection
The assignment of the 9-pin female D-sub for the CANopen signals

1

5

6

9

1 --- Reserved

2 CAN- Inverted signal of the CAN bus

3 CAN_GND Ground potential of the CAN bus

4 --- Reserved

5 --- Reserved

6 --- Reserved

7 CAN+ Non-inverted signal of the CAN bus

8 --- Reserved

9 --- Reserved

Shield Cable shield Functional earth

The ends of the data lines have to be terminated with a 120 W bus terminating resistor. The bus
terminating resistor is usually installed directly at the bus connector.

1
2

4

3
1
2

4

3
1
2

4

3

6 6 6

12
0

12
0

Node 1 Node 2 Node N5 5

Fig. 196: CANopen interface, bus terminating resistors connected to the line ends

Mounting on ter-
minal units
TU509 or TU510

Bus terminating
resistors

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3051

1 CAN_GND

2 CAN_L

3 Shield

4 CAN_H

5 Data line, shielded twisted pair

6 COMBICON connection, CANopen interface

12
0

12
0

4

 2

3

1

4

2

3

1

+24 V

0 V
5

6

7

9

11

5

7

12

13

8

10

Fig. 197: DeviceNet interface, bus terminating resistors connected to the line ends

6 DeviceNet power supply

7 COMBICON connection, DeviceNet interface

8 Data lines, twisted pair cables

9 red

10 black

11 white

12 blue

13 bare

The grounding of the shield should take place at the switchgear. Please refer to
Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3052

Table 540: Assignment of the terminals
Terminal Signal Description
1.0 CAN+ Non-inverted signal of the CAN bus

1.1 CAN+ Non-inverted signal of the CAN bus

1.2 CAN- Inverted signal of the CAN bus

1.3 CAN- Inverted signal of the CAN bus

1.4 Term+ CAN bus termination for CAN+ (for bus termination,
Term+ must be connected with CAN+)

1.5 Term+ CAN bus termination for CAN+ (connecting alterna-
tive for terminal 1.4)

1.6 Term- CAN bus termination for CAN- (for bus termination,
Term- must be connected with CAN-)

1.7 Term- CAN bus termination for CAN- (connecting alterna-
tive for terminal 1.6)

1.8 CAN-GND Ground potential of the CAN bus

1.9 CAN-GND Ground potential of the CAN bus

At the line ends of a bus segment, terminating resistors must be connected. If TU517 or TU518
is used, the bus terminating resistors can be enabled by connecting the terminals Term+ and
Term- to the data lines CAN+ and CAN- (no external terminating resistors are required, see
figure below).
The following figures show the different connection options for the CANopen communication
interface module:

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CANopen in

CANopen out

Mounting on ter-
minal units
TU517 or TU518

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3053

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CANopen end

In the case of TU517/TU518, the terminating resistors are not located inside
the TU but inside the communication interface module CI581-CN. Hence, when
removing the device from the TU, the bus terminating resistors are no longer
connected to the bus. The bus itself will not be disconnected if a device is
removed.

The grounding of the shield should take place at the switchgear cabinet. Please
refer to the AC500 System-Data Ä Chapter 1.6.4.6.1 “System data AC500”
on page 3398.

Table 541: Assignment of the other terminals
Terminal Signal Description
2.0 AI0+ Positive pole of analog input signal 0

2.1 AI1+ Positive pole of analog input signal 1

2.2 AI2+ Positive pole of analog input signal 2

2.3 AI3+ Positive pole of analog input signal 3

2.4 AI- Negative pole of analog input signals 0 to 3

2.5 AO0+ Positive pole of analog output signal 0

2.6 AO1+ Positive pole of analog output signal 1

2.7 AI- Negative pole of analog output signals 0 and 1

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DI0 Signal of the digital input DI0

3.1 DI1 Signal of the digital input DI1

3.2 DI2 Signal of the digital input DI2

3.3 DI3 Signal of the digital input DI3

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3054

Terminal Signal Description
3.4 DI4 Signal of the digital input DI4

3.5 DI5 Signal of the digital input DI5

3.6 DI6 Signal of the digital input DI6

3.7 DI7 Signal of the digital input DI7

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DO0 Signal of the digital output DO0

4.1 DO1 Signal of the digital output DO1

4.2 DO2 Signal of the digital output DO2

4.3 DO3 Signal of the digital output DO3

4.4 DO4 Signal of the digital output DO4

4.5 DO5 Signal of the digital output DO5

4.6 DO6 Signal of the digital output DO6

4.7 DO7 Signal of the digital output DO7

4.8 UP3 Process voltage UP3 (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3055

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

Connection of CANopen communication interface module CI581-CN:

+
-

+
-

+
-

+
-

+
-

+
-

PTC

AI0+

AI1+

AI2+

AI3+
AI-

2.0

2.1

2.2

2.3
2.4

PTC

2.5

2.6
2.7

AO0+

AO1+
AO-

4.0 DO0

4.1 DO1

4.2 DO2

4.3 DO3

4.4 DO4

4.5 DO5

4.6 DO6

4.7 DO7

DI0 3.0

DI1 3.1

DI2 3.2

DI3 3.3

DI4 3.4

DI5 3.5

DI6 3.6

DI7 3.7

2.8

2.9

UP +24 V

ZP 0 V

3.8

3.9 3.9

3.8
UP3 +24 V

ZP 0 V

Fig. 198: Connection of the communication interface module CI581-CN

The module provides several diagnosis functions Ä Chapter 1.6.3.7.2.2.8 “Diagnosis”
on page 3072.
For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.3.7.2.2.10 “Measuring ranges” on page 3077 and Parameterization
Ä Chapter 1.6.3.7.2.2.7 “Parameterization” on page 3067.
The meaning of the LEDs is described in the section for the state LEDs Ä Chapter 1.6.3.7.2.2.9
“State LEDs” on page 3075.

The maximum possible bus length of a CAN network depends on bit rate (transmission rate)
and cable type. The sum of all bus segments must not exceed the maximum bus length

Bus length

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3056

Bit Rate (speed) Bus Length
1 Mbit/s 40 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

50 kbit/s 1000 m

Connection of the digital inputs
The following figure shows the connection of the digital input DI0. Proceed with the digital inputs
DI1 to DI7 in the same way.

2.0
DI0
2.1
DI1
2.2
DI2
2.3
DI3
2.4
DI4
2.5
DI5
2.6
DI6
2.7
DI7
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 199: Connection of the digital inputs to the module CI581-CN

Connection of the digital outputs
The following figure shows the connection of the digital output DO0. Proceed with the digital
outputs DO1 - DO7 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3057

4.0
DO0
4.1
DO1
4.2
DO2
4.3
DO3
4.4
DO4
4.5
DO5
4.6
DO6
4.7
DO7
4.8
UP3
4.9
ZP

24 V DC
-
+

Fig. 200: Connection of configurable digital inputs/outputs to the module CI581-CN

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
to build the necessary voltage drop for the evaluation. For this, the module CI581-CN provides a
constant current source which is multiplexed over the max. 4 analog input channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration to
the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
3.9
ZP

24 V DC
-
+

Pt100
Pt1000
Ni1000

Fig. 201: Connection of resistance thermometers in 2-wire configuration to the analog inputs

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3058

Pt100 2-wire configuration, 1 channel used

Pt1000 2-wire configuration, 1 channel used

Ni1000 2-wire configuration, 1 channel used

For the measuring ranges that can be configured, please refer to sections Measuring Ranges
Ä Chapter 1.6.3.7.2.2.10 “Measuring ranges” on page 3077 and Parameterization Ä Chapter
1.6.3.7.2.2.7 “Parameterization” on page 3067.
The module CI581-CN performs a linearization of the resistance characteristic.
To avoid error messages, configure unused analog input channels as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI581-CN provides a constant current source which is multiplexed over the max. 4 analog input
channels.
The following figure shows the connection of resistance thermometers in 3-wire configuration to
the analog inputs AI0 and AI1. Proceed with the analog inputs AI2 and AI3 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Pt100
Pt1000
Ni1000

Fig. 202: Connection of resistance thermometers in 3-wire configuration to the analog inputs

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3059

Pt100 3-wire configuration, 2 channels used

Pt1000 3-wire configuration, 2 channels used

Ni1000 3-wire configuration, 2 channels used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.3.7.2.2.10 “Measuring ranges” on page 3077 and Parameterization
Ä Chapter 1.6.3.7.2.2.7 “Parameterization” on page 3067.
The module CI581-CN performs a linearization of the resistance characteristic.
To avoid error messages, configure unused analog input channels as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-10 ... +10 V
0 ... +10 V

+

-
UIN

Fig. 203: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.3.7.2.2.10 “Measuring ranges” on page 3077 and Parameterization
Ä Chapter 1.6.3.7.2.2.7 “Parameterization” on page 3067.
To avoid error messages, configure unused analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3060

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

+

-

0 ... +20 mA
+4 ... +20 mA

UIN

Fig. 204: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs

Current 0...20 mA 1 channel used

Current 4...20 mA 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.3.7.2.2.10 “Measuring ranges” on page 3077 and Parameterization
Ä Chapter 1.6.3.7.2.2.7 “Parameterization” on page 3067.
Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to
AI3 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3061

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-10 ... +10 V
0 ... +10 V

Fig. 205: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

For the measuring ranges that can be configured, plese refer to the sections Measuring Ranges
Ä Chapter 1.6.3.7.2.2.10 “Measuring ranges” on page 3077 and Parameterization Ä Chapter
1.6.3.7.2.2.7 “Parameterization” on page 3067.
To avoid error messages, configure unused analog input channels as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3062

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-

+

+4 ... +20 mA

Fig. 206: Connection of passive-type analog sensors (current) to the analog inputs

Current 4...20 mA 1 channel used

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Only use sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt Zener diode in parallel to I+ and I-.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful if analog sensors which are remotely non-isolated (e.g. the
negative terminal is remotely grounded) are used.
Using differential inputs helps to considerably increase the measuring accuracy and to avoid
ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3063

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

+

-
UIN

Fig. 207: Connection of active-type analog sensors (voltage) to differential analog inputs

Voltage 0...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.3.7.2.2.10 “Measuring ranges” on page 3077 and Parameterization
Ä Chapter 1.6.3.7.2.2.7 “Parameterization” on page 3067.
To avoid error messages, configure unused analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.
The following figure shows the connection of digital sensors to the analog input AI0. Proceed
with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3064

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 208: Use of analog inputs as digital inputs

Digital input 24 V 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.3.7.2.2.10 “Measuring ranges” on page 3077 and Parameterization
Ä Chapter 1.6.3.7.2.2.7 “Parameterization” on page 3067.

Connection of analog output loads (Voltage)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 209: Connection of analog output loads (voltage)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3065

Voltage -10 V...+10 V Load ± 10 mA max. 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.3.7.2.2.10 “Measuring ranges” on page 3077 and Parameterization
Ä Chapter 1.6.3.7.2.2.7 “Parameterization” on page 3067.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 210: Connection of analog output loads (current)

Current 0...20 mA Load 0...500 W 1 channel used

Current 4...20 mA Load 0...500 W 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.3.7.2.2.10 “Measuring ranges” on page 3077 and Parameterization
Ä Chapter 1.6.3.7.2.2.7 “Parameterization” on page 3067.
Unused analog outputs can be left open-circuited.

Internal data exchange

Parameter Value
Digital inputs (bytes) 3

Digital outputs (bytes) 3

Analog inputs (words) 4

Analog outputs (words) 2

Counter input data (words) 4

Counter output data (words) 8

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3066

Addressing
A detailed description concerning addressing can be found in the documentation of ABB Control
Builder Plus Software.

The CANopen communication interface module reads the position of the rotary
switches only during power-up, i. e. changes of the switch position during oper-
ation will have no effect until the next module initialization.

The range of permitted CANopen slave addresses is 1 to 127. Setting a higher
address (> 128) does not lead to an error response, but results in a special
mode (DS401). In this special mode, the device creates the node address by
subtracting the value 128 from the address switch's value.

I/O configuration
The CI582-CN CANopen bus configuration is handled by CANopen master with the exception of
the slave node ID (via rotary switches) and the transmision rate (automatic detection).
The digital I/O channels and the fast counter are configured via software.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 0x1C84 WORD 0x1C84

Parameter length Internal 54 BYTE 54

Error LED / Fail-
safe function
(table error LED /
Failsafe function
Ä Further infor-
mation
on page 3067)

On 0 BYTE 0

Off by E4 1

Off by E3 2

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

18

Reserved 0 0 ARRAY of 24
BYTES

Check supply
(UP and UP3)

On 0 BYTE

Off 1 1

Fast counter 0 0 BYTE 0

: :

10 2) 10

1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission
2) For a description of the counter operating modes, please refer to the fast counter section
Ä Chapter 1.6.3.6.1.2.9 “Fast counter” on page 2776.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3067

Table 542: Settings "Error LED / Failsafe function"
Setting Description
On Error LED (S-ERR) lights up at errors of all error classes, failsafe

mode off

Off by E4 Error LED (S-ERR) lights up at errors of error classes E1, E2 and E3,
failsafe mode off

Off by E3 Error LED (S-ERR) lights up at errors of error classes E1 and E2,
failsafe mode off

On +Failsafe Error LED (S-ERR) lights up at errors of all error classes, failsafe
mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error classes E1, E2 and E3,
failsafe mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error classes E1 and E2,
failsafe mode on *)

*) The parameters Behaviour analog outputs at communication error and Behaviour digital
outputs at communication error are only evaluated if the failsafe function is enabled.

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard
Reserved

0
255

BYTE 0

Behavior analog
outputs at com-
munication error
*)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behavior analog outputs at communication error is only analyzed if the
failsafe mode is ON.

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, Channel
configuration

Operation modes
of analog inputs

Operation modes
of analog inputs

BYTE 0

Input 0, Check
channel

Settings channel
monitoring

Settings channel
monitoring

BYTE 0

: : : : :

: : : : :

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3068

Name Value Internal value Internal value,
type

Default

Input 3, Channel
configuration

Operation modes
of analog inputs

Operation modes
of analog inputs

BYTE 0

Input 3, Check
channel

Settings channel
monitoring

Settings channel
monitoring

BYTE 0

Table 543: Channel configuration - Operating modes of the analog inputs
Internal Value Operating Modes (individually configu-

rable)
0 (default) Not used

1 0...10 V

2 Digital input

3 0...20 mA

4 4...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50...+400 °C

9 3-wire Pt100 -50...+400 °C *)

10 0...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50...+70 °C

15 3-wire Pt100 -50...+70 °C *)

16 2-wire Pt1000 -50...+400 °C

17 3-wire Pt1000 -50...+400 °C *)

18 2-wire Ni1000 -50...+150 °C

19 3-wire Ni1000 -50...+150 °C *)

*) In the operating modes with 3-wire configuration or with differential inputs, two adjacent
analog inputs belong together (e.g. the channels 0 and 1). In these cases, both channels
are configured in the desired operating mode. The lower address must be the even address
(channel 0). The next higher address must be the odd address (channel 1). The converted
analog value is available at the higher address (channel 1).

Table 544: Channel monitoring
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3069

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
Channel configu-
ration

Operation modes
of analog outputs

Operation modes
of analog outputs

BYTE 0

Output 0, Check
channel

Channel moni-
toring

Channel moni-
toring

BYTE 0

Output 0, Substi-
tute value

Substitute value Substitute value WORD 0

Output 1,
Channel configu-
ration

Operation modes
of analog outputs

Operation modes
of analog outputs

BYTE 0

Output 1, Check
channel

Channel moni-
toring

Channel moni-
toring

BYTE 0

Output 1, Substi-
tute value

Substitute value Substitute value WORD 0

Table 545: Channel configuration - Operating modes of the analog outputs
Internal value Operating Modes (individually configu-

rable)
0 (default) Not used

128 -10 V...+10 V

129 0...20 mA

130 4...20 mA

Table 546: Channel monitoring
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 547: Substitute value
Intended Behavior of Output
Channel when the Control
System Stops

Required Setting of
the Module Parameter
"Behavior of Outputs in
Case of a Communication
Error"

Required Setting of the
Channel Parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3070

Intended Behavior of Output
Channel when the Control
System Stops

Required Setting of
the Module Parameter
"Behavior of Outputs in
Case of a Communication
Error"

Required Setting of the
Channel Parameter "Substi-
tute value"

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behavior digital
outputs at com-
muncation error
1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 255 00h ... FFh BYTE 0
0x00

Detect voltage
overflow at out-
puts 2)

Off
On

0
1

BYTE Off
0x00

1) The parameter Behavior digital outputs at communcation error is only analyzed if the failsafe
mode is ON.

2) The state "externally voltage detected" appears if the output of a channel DC0..DC7 is to
be switched on while an external voltage is connected Ä Chapter 1.6.3.7.2.2.3 “Connections”
on page 3050. In this case, the start-up is disabled as long as the external voltage is con-
nected. The monitoring of this state and the resulting diagnosis message can be disabled by
setting the parameters to "OFF".

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3071

Diagnosis

Byte Number Description Possible Values
1 Diagnosis byte, slot number 31 = CI581-CN (e. g. error at integrated 8 DI /

8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis byte, module
number

According to the I/O bus specification passed
on by modules to the fieldbus master

3 Diagnosis byte, channel According to the I/O bus specification passed
on by modules to the fieldbus master

4 Diagnosis byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The module performs
reactivation automatically. Thus, an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3072

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
Master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs 4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3073

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 0...7 46 Voltage feedback
on deactivated dig-
ital output 6)

Check
terminals

4 - 31 2 0...7 47 Short circuit at dig-
ital output 7)

Check
terminals

Channel error analog

4 - 31 1 0..3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0..3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0..3 47 Short circuit at an
analog input

Check
terminals

4 - 31 3 0..1 4 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0..1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3074

1) In AC500, the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = position of the
communication module;14 = I/O bus; 31 = module itself
The identifier is not contained in the CI541-DP diagnosis block.

2) With "Device" the following allocation applies: 31 = module itself; 1..10 = decen-
tralized communication interface module

3) With "Module" the following allocation applies:
31 = module itself
Channel error: module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears if external voltages at one or more terminals DO0..DO7
cause other digital outputs to be fed by that voltage (voltage feedback, descrip-
tion in 'Connections' Ä Chapter 1.6.3.7.2.2.3 “Connections” on page 3050). All
outputs of the digital output groups will be turned off for 5 seconds. The diag-
nosis message appears for the whole output group.

5) The voltage on digital outputs DO0..DO7 has overrun the process supply
voltage UP3 (description in 'Connections' Ä Chapter 1.6.3.7.2.2.3 “Connections”
on page 3050). Diagnosis message appears for the whole module.

6) This message appears if the output of a channel DO0..DO7 is to be switched
on while an external voltage is connected. In this case, start-up is disabled while
the external voltage is connected. Otherwise, this could produce reverse voltage
flowing from this output to other digital outputs. This diagnosis message appears
for each channel.

7) Short circuit: After a short circuit has been detected, the output is deactivated for
100ms seconds. Subsequently, a new start-up will be executed. This diagnosis
message appears for each channel.

State LEDs
The state LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, CN-RUN, CN-ERR, S-ERR and I/O bus) show the operation

states of the module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O controller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

States of the 5
system LEDs

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3075

LED Color OFF ON Flashing
CN-RUN Green --- Device config-

ured, CANopen
bus in OPERA-
TIONAL state
and cyclic data
exchange run-
ning

Flashing:
CANopen bus in
PRE-OPERA-
TIONAL state
and slave is
being configured
Single flash:
CANopen bus in
STOPPED state.
Flickering: Auto-
detect is active

CN-ERR Red No system error CANopen Bus is
OFF

Flashing: Config-
uration error
Single flash: error
counter overflow
due to too many
error frames
Double flash: A
node-guard or a
heartbeat event
occurred
Flickering: Auto-
detect is active

S-ERR Red No error Internal error --

I/O bus Green No decentralized
I/O modules con-
nected or com-
munication error

Decentralized I/O
modules con-
nected and
operational

LED Color OFF ON Flashing
AI0 to AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 to AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 to DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 toDO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

States of the 27
process LEDs:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3076

LED Color OFF ON Flashing
UP3 Green Process supply

voltage missing
Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
: 6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
:
-10,0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
: 8100

Underflow <0.0000 <-11.7589 <0.0000 <0.0000 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 450.0 °C > 160.0 °C 32767 7FFF

Measured value
too high

450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3077

Range Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
 160.0 °C

:
150.1 °C

1600
:
1501

0640
:
05DD

 800
:
701

0320
:
02BD

Normal range 400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50,0 °C

-1
:
-500

FFFF
:
FE0C

Measured value
too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Measured
value too high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0,0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3078

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 3.0 to 3.7

Reference potential for all inputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

Signal 0 -3 V...+5 V

Undefined signal > +5 V...< +15 V

Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

Input voltage +24 V Typ. 5 mA

Input voltage +5 V > 1 mA

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3079

Parameter Value
Input voltage +15 V > 2 mA

Input voltage +30 V < 8 mA

Max. cable length

Shielded 1000 m

Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 4.0 to 4.7

Reference potential for all outputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 4.8 (positive pole of
the supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

Rated value per channel 500 mA at UP3 = 24 V

Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

With resistive load On request

With inductive loads Max. 0.5 Hz

With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

Shielded 1000 m

Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3080

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 211: Digital input/output (circuit diagram)

1 Digital output

2 Varistors for demagnetization when inductive loads are turned off

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 2.0 to2.3

Reference potential for AI0+ to AI3+ Terminal 2.4 (AI-) for voltage and RTD meas-
urement
Terminal 2.9, 3.9 and 4.9 for current measure-
ment

Input type

 Unipolar Voltage 0...10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10...+10 V

Galvanic isolation Against CANopen Bus

Configurability 0...10 V, -10...+10 V, 0/4...20 mA, Pt100/1000,
Ni1000 (each input can be configured individu-
ally)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0...10 V: 12 bits
Range -10...+10 V: 12 bits + sign
Range 0...20 mA: 12 bits
Range 4...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3081

Parameter Value
Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Tables Input Ranges Voltage, Current
Ä Chapter 1.6.3.7.2.2.10.1 “Input ranges
voltage, current and digital input” on page 3077
and Digital Input and IInput range resist-
ance temperature detector Ä Chapter
1.6.3.7.2.2.10.2 “Input ranges resistance tem-
perature detector” on page 3077

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 2.0 to 2.3

Reference potential for the inputs Terminals 2.9, 3.9 and 4.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 VDC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+15 V

 Signal 1 +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 1.5...1.6

Reference potential for AO0+ to AO1+ Terminal 2.7 (AO-) for voltage output
Terminal 2.9, 3.9 and 4.9 for current output

Output type

 Unipolar Current

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3082

Parameter Value
 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10...+10 V, 0...20 mA, 4...20 mA (each output
can be configured individually)

Output resistance (load), as current output 0...500 W

Output loadability, as voltage output ±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

See Ä Chapter 1.6.3.7.2.2.10.3 “Output ranges
voltage and current” on page 3078

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Technical data of the fast counter

Parameter Value
Used inputs Terminal 3.0 (DI0), 3.1 (DI1)

Used outputs Terminal 4.0 (DO0)

Counting frequency Depending on operation mode:
Mode 1 - 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Detailed description Fast Counter Ä Chapter 1.6.3.6.1.2.9 “Fast
counter” on page 2776

Operating modes Operating modes Ä Chapter 1.6.3.6.1.2.9
“Fast counter” on page 2776

Ordering data

Part no. Description Product life cycle phase *)
1SAP 228 100
R0001

CI581-CN, CANopen
communication interface module with
8 DI, 8 DO, 4 AI and 2 AO

Active

1SAP 428 100
R0001

CI581-CN-XC, CANopen
communication interface module with
8 DI, 8 DO, 4 AI and 2 AO, XC version

Active

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3083

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CI582-CN
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

CI582

CH-ERR1 CH-ERR3CH-ERR2

UP 24VDC 100W CANopen Slave
4AI 2AO 8DI 8DO

Input 24VDC/Output 24VDC 0.5A

PWR/
RUN

ADDR x01H

ADDR x10H

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

1.8GND

1.9GND

1.0 CAN+

1.2 CAN-

1.3 CAN-

1.5 Term+

1.6 Term-

1.4 Term+

1.7 Term-

1.1 CAN+ CN-
RUN
CN-

ERR
S-

ERR
I/O-
Bus

2.0 DC0

2.2 DC2

2.9 ZP

2.3 DC3

2.1 DC1

2.5 DC5

2.6 DC6

2.8 UP

2.7 DC7

2.4 DC4

3.8 UP

3.9 ZP

3.0 DI8

3.2 DI10

3.3 DI11

3.5 DI13

3.6 DI14

3.4 DI12

3.7 DI15

3.1 DI9

4.0 DO8

4.2 DO10

4.4 DO12

4.6 DO14

4.9 ZP

4.1 DO9

4.3 DO11

4.5 DO13

4.7 DO15

4.8 UP3

12 3 4 5

6
7

8

9

10

12

13

11

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the configurable digital inputs/outputs (DC0 -

DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI8 - DI15)
5 8 yellow LEDs to display the signal states of the digital outputs (DO8 - DO15)
6 2 green LEDs to display the supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 System LEDs: PWR/RUN, CN-RUN, CN-ERR, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the CANopen node ID

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3084

11 10 terminals to connect the CANopen bus signals
12 Terminal unit
13 DIN rail

Sign for XC version

Intended purpose
The CANopen communication interface module CI582-CN is used as decentralized I/O module
in CANopen networks. Depending on the terminal unit used, the network connection is per-
formed either via a female 9-pin D-sub connector or via 10 terminals (screw or spring terminals)
which are integrated in the terminal unit. The communication interface module contains 24 I/O
channels with the following properties:
● 8 digital configurable inputs/outputs in 1 group (1.0...1.7)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)

The inputs/outputs are galvanically isolated from the CANopen network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Interface CAN

Protocol CANopen

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the CANopen Node ID for configura-
tion purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Transmission rates 10 / 20 / 50 / 125 / 250 / 500 / 800 kbit/s 1
Mbit/s Auto transmission rate detection is sup-
ported

Bus connection Depending on used terminal unit TU510: 9-pin
D-sub connector TU518: 10-pin terminal block

Processor Hilscher NETX 100

Expandability CI58x can only be used on onboard CAN inter-
face and without any I/O expansion module
Ä Table 538 “CANopen” on page 3044.

State display Module state: PWR/RUN, CN-RUN, CN-ERR,
E-ERR, I/O bus

Adjusting elements 2 rotary switches for generation of the node
address

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3085

Parameter Value
Ambient temperature System data AC500 Ä Chapter 1.6.4.6.1

“System data AC500” on page 3398

System data AC500 XC Ä Chapter 1.6.4.7.1
“System data AC500-XC” on page 3450

Current consumption UP: 0.2 A UP3: 0.06 A + 0.5 A max. per output

Weight (without terminal unit) Ca. 125 g

Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation CANopen interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the CANopen Node ID identifier With 2 rotary switches at the front side of the
module

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518
Ä Chapter 1.6.3.5.3 “TU517 and TU518
for communication interface modules”
on page 2559

All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3086

Parameter Value
Inputs and outputs 8 digital inputs (24 V DC)

8 digital transistor outputs (24 V DC, 0.5 A
max.)
8 configurable digital inputs/outputs (24 V DC,
0.5 A max.)

Connections
The CANopen communication interface module is plugged on the I/O terminal units TU517
Ä Chapter 1.6.3.5.3 “TU517 and TU518 for communication interface modules” on page 2559
or TU518 Ä Chapter 1.6.3.5.3 “TU517 and TU518 for communication interface modules”
on page 2559 and accordingly TU509 or TU510. Properly position the module and press until it
locks in place.
The connection of the I/O channels is established using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 2.8, 3.8, 2.9, 3.9 and 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 2.8 and 3.8: process supply voltage UP = +24 V DC
Terminal 4.8: process supply voltage UP3 = +24 V DC
Terminals 2.9, 3.9 and 4.9: process supply voltage ZP = 0 V

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Possibilities of connection
The assignment of the 9-pin female D-sub for the CANopen signals

1

5

6

9

1 --- Reserved

2 CAN- Inverted signal of the CAN bus

3 CAN_GND Ground potential of the CAN bus

4 --- Reserved

5 --- Reserved

6 --- Reserved

7 CAN+ Non-inverted signal of the CAN bus

8 --- Reserved

CI582-CN: Input/
Output charac-
teristics

Mounting on ter-
minal units
TU509 or TU510

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3087

9 --- Reserved

Shield Cable shield Functional earth

The ends of the data lines have to be terminated with a 120 W bus terminating resistor. The bus
terminating resistor is usually installed directly at the bus connector.

1
2

4

3
1
2

4

3
1
2

4

3

6 6 6

12
0

12
0

Node 1 Node 2 Node N5 5

Fig. 212: CANopen interface, bus terminating resistors connected to the line ends

1 CAN_GND

2 CAN_L

3 Shield

4 CAN_H

5 Data line, shielded twisted pair

6 COMBICON connection, CANopen interface

12
0

12
0

4

 2

3

1

4

2

3

1

+24 V

0 V
5

6

7

9

11

5

7

12

13

8

10

Fig. 213: DeviceNet interface, bus terminating resistors connected to the line ends

Bus terminating
resistors

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3088

6 DeviceNet power supply

7 COMBICON connection, DeviceNet interface

8 Data lines, twisted pair cables

9 red

10 black

11 white

12 blue

13 bare

The grounding of the shield should take place at the switchgear. Please refer to
Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398.

Table 548: Assignment of the terminals
Terminal Signal Description
1.0 CAN+ Non-inverted signal of the CAN bus

1.1 CAN+ Non-inverted signal of the CAN bus

1.2 CAN- Inverted signal of the CAN bus

1.3 CAN- Inverted signal of the CAN bus

1.4 Term+ CAN bus termination for CAN+ (for bus termination,
Term+ must be connected with CAN+)

1.5 Term+ CAN bus termination for CAN+ (connecting alterna-
tive for terminal 1.4)

1.6 Term- CAN bus termination for CAN- (for bus termination,
Term- must be connected with CAN-)

1.7 Term- CAN bus termination for CAN- (connecting alterna-
tive for terminal 1.6)

1.8 CAN-GND Ground potential of the CAN bus

1.9 CAN-GND Ground potential of the CAN bus

At the line ends of a bus segment, terminating resistors must be connected. If TU517 or TU518
is used, the bus terminating resistors can be enabled by connecting the terminals Term+ and
Term- to the data lines CAN+ and CAN- (no external terminating resistors are required, see
figure below).
The following figures show the different connection options for the CANopen communication
interface module:

Mounting on ter-
minal units
TU517 or TU518

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3089

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CANopen in

CANopen out

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CANopen end

In the case of TU517/TU518, the terminating resistors are not located inside
the TU but inside the communication interface module CI581-CN. Hence, when
removing the device from the TU, the bus terminating resistors are no longer
connected to the bus. The bus itself will not be disconnected if a device is
removed.

The grounding of the shield should take place at the switchgear cabinet. Please
refer to the AC500 System-Data Ä Chapter 1.6.4.6.1 “System data AC500”
on page 3398.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3090

Table 549: Assignment of the other terminals
Terminal Signal Description
2.0 DC0 Signal of the configurable digital input/output DC0

2.1 DC1 Signal of the configurable digital input/output DC1

2.2 DC2 Signal of the configurable digital input/output DC2

2.3 DC3 Signal of the configurable digital input/output DC3

2.4 DC4 Signal of the configurable digital input/output DC4

2.5 DC5 Signal of the configurable digital input/output DC5

2.6 DC6 Signal of the configurable digital input/output DC6

2.7 DC7 Signal of the configurable digital input/output DC7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DI8 Signal of the digital input DI8

3.1 DI9 Signal of the digital input DI9

3.2 DI10 Signal of the digital input DI10

3.3 DI11 Signal of the digital input DI11

3.4 DI12 Signal of the digital input DI12

3.5 DI13 Signal of the digital input DI13

3.6 DI14 Signal of the digital input DI14

3.7 DI15 Signal of the digital input DI15

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DO8 Signal of the digital output DO8

4.1 DO9 Signal of the digital output DO9

4.2 DO10 Signal of the digital output DO10

4.3 DO11 Signal of the digital output DO11

4.4 DO12 Signal of the digital output DO12

4.5 DO13 Signal of the digital output DO13

4.6 DO14 Signal of the digital output DO14

4.7 DO15 Signal of the digital output DO15

4.8 UP3 Process voltage UP3 (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3091

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Connection of CANopen communication interface module CI582-CN:

4.0 DO8

4.1 DO9

4.2 DO10

4.3 DO11

4.4 DO12

4.5 DO13

4.6 DO14

4.7 DO15

DI8 3.0

DI9 3.1

DI10 3.2

DI11 3.3

DI12 3.4

DI13 3.5

DI14 3.6

DI15 3.7

2.8

2.9

UP +24 V

ZP 0 V

3.8

3.9 4.9

4.8
UP3 +24 V

ZP 0 V

DC0 2.0

DC1 2.1

DC2 2.2

DC3 2.3

DC4 2.4

DC5 2.5

DC6 2.6

DC7 2.7

Fig. 214: Connection of the communication interface module CI582-CN

For a description of the meaning of the LEDs, please refer to the section for the state LEDs
Ä Chapter 1.6.3.7.2.3.9 “State LEDs” on page 3101.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3092

The maximum possible bus length of a CAN network depends on bit rate (transmission rate)
and cable type. The sum of all bus segments must not exceed the maximum bus length

Bit Rate (speed) Bus Length
1 Mbit/s 40 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

50 kbit/s 1000 m

Connection of the digital inputs
The following figure shows the connection of the digital input DI8. Proceed with the digital inputs
DI9 to DI15 in the same way.

3.0
DI8
3.1
DI9
3.2
DI10
3.3
DI11
3.4
DI12
3.5
DI13
3.6
DI14
3.7
DI15
3.8
UP
3.9
ZP

24 V DC
-
+

Fig. 215: Connection of the digital inputs to the module CI582-CN

Connection of the digital outputs
The following figure shows the connection of the digital output DO8. Proceed with the digital
outputs DO9 - DO15 in the same way.

Bus length

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3093

4.0
DO8
4.1
DO9
4.2
DO10
4.3
DO11
4.4
DO12
4.5
DO13
4.6
DO14
4.7
DO15
4.8
UP
4.9
ZP

24 V DC
-
+

Fig. 216: Connection of configurable digital inputs/outputs to the module CI582-CN

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC0 and
DC1. DC0 is connected as an input and DC1 is connected as an output. Proceed with the
configurable digital inputs/outputs DC2 to DC7 in the same way.

2.0
DC0
2.1
DC1
2.2
DC2
2.3
DC3
2.4
DC4
2.5
DC5
2.6
DC6
2.7
DC7
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 217: Connection of configurable digital inputs/outputs to the module CI582-CN

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3094

Internal data exchange

Parameter Value
Digital inputs (bytes) 5

Digital outputs (bytes) 5

Counter input data (words) 4

Counter output data (words) 8

Addressing
A detailed description concerning addressing can be found in the documentation of ABB Control
Builder Plus Software.

The CANopen communication interface module reads the position of the rotary
switches only during power-up, i. e. changes of the switch position during oper-
ation will have no effect until the next module initialization.

The range of permitted CANopen slave addresses is 1 to 127. Setting a higher
address (> 128) does not lead to an error response, but results in a special
mode (DS401). In this special mode, the device creates the node address by
subtracting the value 128 from the address switch's value.

I/O configuration
The CI582-CN CANopen bus configuration is handled by CANopen master with the exception of
the slave node ID (via rotary switches) and the transmision rate (automatic detection).
The digital I/O channels and the fast counter are configured via software.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 0x1C89 WORD 0x1C89

Parameter length Internal 38 BYTE 38

Error LED / fail-
safe function
table error LED /
failsafe function
Ä Table 550 “Err
or LED / Failsafe
function”
on page 3096)

On 0 BYTE 0

Off by E4 1

Off by E3 2

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

18

Reserved 0 0 ARRAY of 24
BYTES

Check supply On 0 BYTE

Off 1 1

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3095

Name Value Internal value Internal value,
type

Default

Fast counter 0 0 BYTE 0

: :

10 2) 10

1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission.
2) For a description of the counter operating modes, please refer to the 'Fast Counter' section
Ä Chapter 1.6.3.6.1.2.9 “Fast counter” on page 2776.

Table 550: Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, failsafe mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, failsafe mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, failsafe mode off

On + Failsafe Error LED (S-ERR) lights up at errors of all
error classes, failsafe mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, failsafe mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, failsafe mode on *)

*) The parameter Behavior DO at comm. error is only analyzed if the failsafe mode is ON.

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behavior DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3096

Name Value Internal value Internal value,
type

Default

Substitute value
at output

0 ... 65535 0000h ... FFFFh WORD 0
0x0000

Preventive
voltage feedback
monitoring for
DC0..DC7 2)

Off
On

0
1

BYTE Off
0x00

Detect voltage
overflow at out-
puts 3)

Off
On

0
1

BYTE Off
0x00

Remarks:

1) The parameter Behavior DO at comm. error is applied to DC and DO
channels and only analyzed if the failsafe mode is ON.

2) The state "externally voltage detected" appears if the output of a channel
DC0..DC7 is to be switched on while an external voltage is connected.
In this case, start-up is disabled while the externally voltage is con-
nected. The monitoring of this state and the resulting diagnosis message
can be disabled by setting the parameters to "OFF".

3) The error state "voltage overflow at outputs" appears if external voltage
at digital outputs DC0..DC7 and DO0..DO7 has exceeded the process
supply voltage UP3 (see 'Connections' Ä Chapter 1.6.3.7.2.3.3 “Con-
nections” on page 3087). The according diagnosis message "Voltage
overflow on outputs " can be disabled by setting the parameters to
"OFF". This parameter should only be disabled in exceptional cases as
voltage overflow may produce reverse voltage.

Diagnosis

Byte Number Description Possible Values
1 Diagnosis byte, slot number 31 = CI582-CN (e. g. error at integrated 8 DI /

8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis byte, module
number

According to the I/O bus specification passed
on by modules to the fieldbus master

3 Diagnosis byte, channel According to the I/O bus specification passed
on by modules to the fieldbus master

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3097

Byte Number Description Possible Values
4 Diagnosis byte, error code According to the I/O bus specification

Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to Bit 5, coded error description

5 Diagnosis byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The module performs
reactivation automatically. Thus, an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
Master

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3098

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs 4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3099

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 8...15 46 Externally voltage
detected at digital
output DO0..DO7 6)

Check
terminals

4 - 31 4 0...7 46 Externally voltage
detected at digital
output DC0..DC7 6)

Check
terminals

4 - 31 4 0...7 47 Short circuit at
digital output
DC0..DC77)

Check
terminals

4 - 31 2 8...15 47 Short circuit at
digital output
DO0..DO77)

Check
terminals

Remarks:

1) In AC500, the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = position of the
communication module;14 = I/O bus; 31 = module itself
The identifier is not contained in the CI542-DP diagnosis block.

2) With "Device" the following allocation applies: 31 = module itself, 1..10 =
expansion module

3) With "Module" the following allocation applies depending on the master:
Module error: 31 = module itself
Channel error: module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears if external voltages at one or more terminals DC0..DC7
or DO0..DO7 cause other digital outputs to be supplied by that voltage
(voltage feedback, see 'Connections' Ä Chapter 1.6.3.7.2.3.3 “Connections”
on page 3087). All outputs of the digital output groups will be turned off for 5
seconds. The diagnosis message appears for the whole output group.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3100

5) The voltage at digital outputs DC0..DC7 and DO0..DO7 has exceeded the
process supply voltage UP3 (see 'Connections' Ä Chapter 1.6.3.7.2.3.3 “Con-
nections” on page 3087). A diagnosis message appears for the whole module.

6) This message appears if the output of a channel DC0..DC7 or DO0..DO7
should be switched on while an external voltage is connected. In this case
the start-up is disabled while the external voltage is connected. Otherwise, this
could produce reverse voltage flowing from this output to other digital outputs.
This diagnosis message appears for each channel.

7) Short circuit: After a short circuit has been detected, the output is deactivated
for 100ms. Subsequently, a new start-up will be executed. This diagnosis mes-
sage appears for each channel.

State LEDs
The LEDs are located at the front of the module. There are 2 different groups:
● The 5 system LEDs (PWR, CN-RUN, CN-ERR, S-ERR and I/O bus) show the operation

states of the module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O controller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

CN-RUN Green --- Device config-
ured, CANopen
bus in OPERA-
TIONAL state
and cyclic data
exchange run-
ning

Flashing:
CANopen bus in
PRE-OPERA-
TIONAL state
and slave is
being configured
Single flash:
CANopen bus in
STOPPED state.
Flickering: Auto-
detect is active

CN-ERR Red No system error CANopen Bus is
OFF

Flashing: Config-
uration error
Single flash: error
counter overflow
due to too many
error frames
Double flash: A
node-guard or a
heartbeat event
occurred
Flickering: Auto-
detect is active

States of the 5
system LEDs

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3101

LED Color OFF ON Flashing
S-ERR Red No error Internal error --

I/O bus Green No decentralized
I/O modules con-
nected or com-
munication error

Decentralized I/O
modules con-
nected and
operational

LED Color OFF ON Flashing
DC0 to DC7 Yellow Input/output is OFF Input/output is ON --

DI8 to DI15 Yellow Input is OFF Input is ON (the input
voltage is even dis-
played if the supply
voltage is OFF)

--

DO8 to DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and initi-
alization finished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to
CH-ERR3

Red No error or process
supply voltage
missing

Internal error Error on one channel
of the corresponding
group

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 3.0 to 3.7

Reference potential for all inputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

States of the 29
process LEDs

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3102

Parameter Value
Indication of the input signals 1 yellow LED per channel, the LED is ON

when the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

Signal 0 -3 V...+5 V

Undefined signal > +5 V...< +15 V

Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

Input voltage +24 V Typ. 5 mA

Input voltage +5 V > 1 mA

Input voltage +15 V > 2 mA

Input voltage +30 V < 8 mA

Max. cable length

Shielded 1000 m

Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 4.0 to 4.7

Reference potential for all outputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 4.8 (positive pole of
the supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

Rated value per channel 500 mA at UP3 = 24 V

Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

With resistive load On request

With inductive loads Max. 0.5 Hz

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3103

Parameter Value
With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

Shielded 1000 m

Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 218: Digital input/output (circuit diagram)

1 Digital output

2 Varistors for demagnetization when inductive loads are turned off

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

Channels DC0...DC07 Terminals 2.0...2.7

If the channels are used as outputs

Channels DC0...DC07 Terminals 2.0...2.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON
when the input/output signal is high (signal 1)

Galvanic isolation From the CANopen network

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3104

Please refer to the Technical Data of the Digital Inputs Ä Chapter 1.6.3.7.2.3.10 “Technical
data” on page 3102. Deviation:
Terminals of the channels DC0 to DC7: Terminals 2.0 to 2.7
Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input. This is why the difference between UPx and the input signal must not exceed the clamp
voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V. Consequently, the
input voltage must range from -12 V to +30 V when UPx = 24 V and from -6 V to +30 V when
UPx = 30 V.

Please refer to the Technical Data of the Digital Outputs Ä Chapter 1.6.3.7.2.3.10 “Technical
data” on page 3102. Deviation:
Terminals of the channels DC0 to DC7: Terminals 2.0 to 2.7
The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 219: Digital input/output (circuit diagram)

1 Digital input/output

2 For demagnetization when inductive loads are turned off

Technical data of the fast counter

Parameter Value
Used inputs Terminal 3.0 (DI8), 3.1 (DI9)

Used outputs Terminal 4.0 (DO8)

Counting frequency Depending on operation mode:
Mode 1 - 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Detailed description Fast Counter Ä Chapter 1.6.3.6.1.2.9 “Fast
counter” on page 2776

Operating modes Operating modes Ä Chapter 1.6.3.6.1.2.9
“Fast counter” on page 2776

Technical data
of the digital
inputs/outputs if
used as inputs

Technical data
of the digital
inputs/outputs if
used as outputs

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3105

Ordering data

Part no. Description Product life cycle phase *)
1SAP 228 200 R0001 CI582-CN, CANopen

communication interface module with
8 DI, 8 DO and 8 DC

Active

1SAP 428 200 R0001 CI582-CN-XC, CANopen
communication interface module with
8 DI, 8 DO and 8 DC, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.3.7.3 EtherCAT
CI511-ETHCAT

● 4 analog inputs (resolution 12 bits plus sign)
● 2 analog outputs (resolution 12 bits plus sign)
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● Cam switch functionality (see also Extended Cam Switch Library)
● Extended Cam switch functionality *) (see also Extended Cam Switch Library)
● Module-wise galvanically isolated - Expandability with up to 10 S500 I/O Modules *)
*) Applicable for device index C0 and above.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3106

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

ETH1

ETH2

CI511

CH−ERR1 CH−ERR3CH−ERR2

1.4

1.0 AI0+

1.2 AI2+

1.7 AO−

1.9 ZP

1.3 AI3+

1.1 AI1+

AI −

1.5 AO0+

1.6 AO1+

1.8 UP

3.0 DO0

3.2 DO2

3.4 DO4

3.6 DO6

3.9 ZP

3.1 DO1

3.3 DO3

3.5 DO5

3.7 DO7

3.8 UP32.8 UP

2.9 ZP

2.0 DI0

2.2 DI2

2.3 DI3

2.5 DI5

2.6 DI6

2.4 DI4

2.7 DI7

2.1 DI1

UP 24VDC 100W 4AI 2AO 8DI 8DO
Analog Input / Output

Digital Input / Output 24VDC 0.5A

S−ERR

I/O−Bus

STA2 ETH

STA1 ETH

PWR/RUN

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5
ADDR

x10H

x01H

ADDR

12 3 4 5

6
7

8

9

10

11 12

13

1 I/O bus
2 Allocation between terminal number and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 - AI3, AO0 -

AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 - DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 - DO7)
6 2 green LEDs to display the supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, NET, DC, S-ERR, I/O-Bus
9 2 rotary switches (reserved for future extensions)
10 Label
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Intended purpose
The EtherCAT communication interface module CI511-ETHCAT is used as decentralized I/O
module in EtherCAT networks. The network connection is performed via 2 RJ45 connectors
which are integrated in the terminal unit. The communication interface module contains 22 I/O
channels with the following properties:
● 4 analog inputs (1.0...1.3)
● 2 analog outputs (1.5...1.6)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3107

● 8 digital outputs 24 V DC in 1 group (3.0...3.7)
● Cam switch functionality
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.

Functionality

Parameter Value
Interface Ethernet

Protocol EtherCAT

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches Not used; reserved for future extensions

Analog inputs 4 (configurable via software)

Analog outputs 2 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU507 or TU508 Ä Chapter 1.6.3.5.1 “TU507-
ETH and TU508-ETH for Ethernet communica-
tion interface modules” on page 2549

Connections
The Ethernet communication interface module CI511-ETHCAT is plugged on the I/O terminal
unit TU507-ETH or TU508-ETH. Properly seat the module and press until it locks in place. The
terminal unit is mounted on a DIN rail or with 2 screws plus the additional accessory for wall
mounting (TA526).

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3108

Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

The assignment of the other terminals:

Terminal Signal Description
1.0 to 1.3 AI0 to AI3 Positive pole of the 4 analog

inputs

1.4 AI- Negative pole of the analog
inputs

1.5 to 1.6 AO0 to AO1 Positive pole of the 2 analog
outputs

1.7 AO- Negative pole of the analog
outputs

2.0 to 2.7 DI0 to DI7 8 digital inputs

3.0 to 3.7 DO0 to DO7 8 digital outputs

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

CAUTION!
There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

CAUTION!
Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3109

For the open-circuit detection (cut wire), each channel is pulled up to "plus" by
a high-resistance resistor. If nothing is connected, the maximum voltage will be
read in then.

Analog signals are always laid in shielded cables. The cable shields are grounded at both ends
of the cables. In order to avoid unacceptable potential differences between different parts of the
installation, low resistance equipotential bonding conductors must be laid.
For simple applications (low disturbances, no high requirement on precision), the shielding can
also be omitted.
The following figures show the connection of the Ethernet communication interface module
CI511-ETHCAT.

+
−

+
−

+
−

+
−

+
−

+
−

PTC

AI 0+

AI 1+

AI 2+

AI 3+
AI −

AGND

1.0

1.1

1.2

1.3
1.4

PTC

1.5

1.6
1.7

AO 0+

AO 1+
AO −

3.0 DO 0

3.1 DO 1

3.2 DO 2

3.3 DO 3

3.4 DO 4

3.5 DO 5

3.6 DO 6

3.7 DO 7

DI 0 2.0

DI 1 2.1

DI 2 2.2

DI 3 2.3

DI 4 2.4

DI 5 2.5

DI 6 2.6

DI 7 2.7

1.8

1.9

UP +24 V

ZP 0 V

2.8

2.9 3.9

3.8
UP3 +24 V

ZP 0 V

1

2

3 4

Fig. 220: Connection of the communication interface module CI511-ETHCAT

1 4 analog inputs, configurable for 0...10 V, -10...+10 V, 0/4...20 mA, Pt100/Pt1000, Ni1000
and digital signals

2 2 analog outputs, configurable for -10...+10 V, 0/4...20 mA
3 8 digital inputs 24 V DC
4 8 digital outputs 24 V DC, 0.5 A max.

In case of voltage feedback, 2 cases are distinguished:

1. The outputs are already active

The output group will be switched off. A diagnosis message will appear. After 5
seconds, the module tries automatic reactivation.

2. The outputs are not active

Only the output with voltage feedback will not be set to active. A diagnosis
message will appear.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3110

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

CAUTION!
 The process supply voltage must be included within the grounding concept of
the plant (e. g. grounding of the negative pole).

The module provide several diagnosis functions Ä Chapter 1.6.3.7.3.1.8 “Diagnosis”
on page 3127.
The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.3.7.3.1.7
“Parameterization” on page 3121 Ä Chapter 1.6.3.7.3.1.10 “Measuring ranges” on page 3130.
The function of the LEDs is described in the section State LEDs Ä Chapter 1.6.3.7.3.1.8
“Diagnosis” on page 3127.

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI511-ETHCAT provides a constant current source which is multiplexed over the max. 4 analog
input channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration.

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

1

Fig. 221: Connection of resistance thermometers in 2-wire configuration

1 Pt100 (2-wire), Pt1000 (2-wire), Ni1000 (2-wire); 1 analog sensor requires 1 channel

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3111

Pt100 -50 °C...+400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, 1
channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.3.7.3.1.7
“Parameterization” on page 3121 Ä Chapter 1.6.3.7.3.1.10 “Measuring ranges” on page 3130.
The module CI511-ETHCAT performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI511-ETHCAT provides a constant current source which is multiplexed over the max. 4 analog
input channels.
The following figure shows the connection of resistance thermometers in 3-wire configuration.

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

2

3

1

Fig. 222: Connection of resistance thermometers in 3-wire configuration

1 Pt100 (3-wire), Pt1000 (3-wire), Ni1000 (3-wire); 1 analog sensor requires 2 channels
2 Twisted pair within the cable
3 Return line: The return line is only needed once if measuring points are adjacent to each

other. This saves wiring costs.
With 3-wire configuration, two adjacent analog channels belong together (e. g. the channels 0
and 1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3112

The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary, to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Pt100 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C...+150 °C 3-wire configuration, 2 chan-
nels used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.3.7.3.1.7
“Parameterization” on page 3121 Ä Chapter 1.6.3.7.3.1.10 “Measuring ranges” on page 3130.
The module CI511-ETHCAT performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

+

–

0...10 V
–10 V...+10 V

AGND

2

1

3

Fig. 223: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply

1 1 analog sensor requires 1 channel
2 By connecting to AI-, the galvanically isolated voltage source of the sensor is referred to ZP
3 Galvanically isolated power supply for the analog sensor

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3113

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.3.7.3.1.7
“Parameterization” on page 3121 Ä Chapter 1.6.3.7.3.1.10 “Measuring ranges” on page 3130.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply
The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply.

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–1

2
+

–

0...20 mA
4...20 mA

Fig. 224: Connection of active-type analog sensors (current) with galvanically isolated power
supply

1 1 analog sensor requires 1 channel
2 Galvanically isolated power supply for the analog sensor

Current 0...20 mA 1 channel used

Current 4...20 mA 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.3.7.3.1.7
“Parameterization” on page 3121 Ä Chapter 1.6.3.7.3.1.10 “Measuring ranges” on page 3130.
Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
The following figure shows the connection of active-type sensors (voltage) with no galvanically
isolated power supply.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3114

0...10 V

AGND

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

UP (remote)

ZP (remote)

1

2

3

Fig. 225: Connection of active-type sensors (voltage) with no galvanically isolated power supply

1 1 analog sensor requires 1 channel
2 Power supply not galvanically isolated
3 The connection between the negative pole of the sensor and ZP has to be performed
4 Long cable

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V *) 1 channel used

*) if the sensor can provide this signal range
The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.3.7.3.1.7
“Parameterization” on page 3121 Ä Chapter 1.6.3.7.3.1.10 “Measuring ranges” on page 3130.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of passive-type analog sensors (Current)
The following figure shows the connection of passive-type analog sensors (current).

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3115

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

1

4...20 mA

–

+

Fig. 226: Connection of passive-type analog sensors (current)

1 1 analog sensor requires 1 channel

Current 4...20 mA 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.3.7.3.1.7
“Parameterization” on page 3121 Ä Chapter 1.6.3.7.3.1.10 “Measuring ranges” on page 3130.

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA
for more than 1 second into an analog input, this input is switched off by the
module (input protection). In such cases, it is recommended, to protect the
analog input by a 10-volt zener diode (in parallel to I+ and I-). But, in general,
it is a better solution to prefer sensors with fast initialization or without current
peaks higher than 25 mA.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful, if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3116

Important: The ground potential at the sensors must not have a too big potential difference with
respect to ZP (max. ±1 V within the full signal range). Otherwise problems can occur concerning
the common-mode input voltages of the involved analog inputs
The following figure shows the connection of active-type analog sensors (voltage) to differential
inputs.

+

–

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

3

1
2

0...10 V
–10 V...+10 V

4

Fig. 227: Connection of active-type analog sensors (voltage) to differential inputs

1 1 analog sensor requires 2 channels
2 Galvanically isolated power supply for the analog sensor
3 Grounding at the sensor
4 0 V...10 V / -10 V...+10 V connected to differential inputs

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.3.7.3.1.7
“Parameterization” on page 3121 Ä Chapter 1.6.3.7.3.1.10 “Measuring ranges” on page 3130.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital input. The inputs are not galvanically
isolated against the other analog channels.
The following figure shows the use of analog inputs as digital inputs.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3117

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

1

Fig. 228: Use of analog inputs as digital inputs

1 1 digital signal requires 1 channel

Digital input 24 V 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.3.7.3.1.7
“Parameterization” on page 3121 Ä Chapter 1.6.3.7.3.1.10 “Measuring ranges” on page 3130.

Connection of analog output loads (Voltage, current)
The following figure shows the connection of analog output loads (voltage, current).

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3118

1.8

1.9

UP

ZP

UP

ZP

1.5

1.7

1.6
AO1+

AO0+

AO–

–10 V...+10 V

0...20 mA
4...20 mA

1

1.9
ZP

1.7
AO–

PTC 2

Fig. 229: Connection of analog output loads (voltage, current)

1 1 analog load requires 1 channel

Voltage -10 V...+10 V Load ±10 mA max. 1 channel used

Current 0...20 mA Load 0...500 Ω 1 channel used

Current 4...20 mA Load 0...500 Ω 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.3.7.3.1.7
“Parameterization” on page 3121 Ä Chapter 1.6.3.7.3.1.10 “Measuring ranges” on page 3130.
Unused analog outputs can be left open-circuited.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment. The pin assignment is used for the EtherCAT master (communica-
tion module CM5xy-ETHCAT) as well.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3119

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.4.6.4.7 “Ethernet connection details” on page 3424.

The EtherCAT network differentiates between input-connectors (IN) and output-
connectors (OUT):

At the EtherCAT slaves (communication interface modules), the ETH1-con-
nector is IN and the ETH2-connector is OUT.

At the EtherCAT master (communication module), the ETHCAT1 connector has
to be used. The ETHCAT2 connector is reserved for future extensions.

Internal data exchange

Parameter Value
Digital inputs (bytes) 1

Digital outputs (bytes) 1

Analog inputs (words) 4

Analog outputs (words) 2

Addressing
The Ethernet bus module CI511-ETHCAT does not consider the position of the rotary switches
at the front side of the module. The function of the rotary switches is reserved for future
expansions.

Pin assignment

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3120

I/O configuration

In order to be able to use the CI51X-ETHCAT with device index C0 or above
properly, please download the corresponding device description (.xml-)files
from http://www.abb.com/plc and install them to the device repository of your
Automation Builder. This will allow you to use up to 10 Expandable S500 I/O
modules as well as the Extended Cam Switch Library with your CI51X-ETHCAT
device.

The CI511-ETHCAT does not store configuration data itself.
The analog I/O channels are configured via software.

Parameterization
Module parameter

Name Value Internal value Internal value,
type

Default

Module ID Internal 48155 WORD 48155

Parameter length Internal 28 BYTE 28

Error LED / Fail-
safe function 1)

On
Off by E4
Off by E3 On +
failsafe Off by E4
+ failsafe Off by
E3 + failsafe

0
1
3
16
17
19

BYTE 0

Check Supply Off
On

0
1

BYTE 1

Table 551: Error LED / Failsafe function 1)
Setting Description
On Error LED lights up at errors of all error classes, Failsafemode off

Off by E4 Error LED lights up at errors of error classes E1, E2 and E3, Failsa-
femode off

Off by E3 Error LED lights up at errors of error classes E1 and E2 auf, Failsa-
femode off

On + failsafe Error LED lights up at errors of all error classes, Failsafemode on *)

Off by E4 + failsafe Error LED lights up at errors of error classes E1, E2 and E3, Failsa-
femode on *)

Off by E3 + failsafe Error LED lights up at errors of error classes E1 and E2, Failsafe-
mode on *)

*) The parameters behaviourAOatCommunicationFault and behaviourDOatCommunicationFault
are only analyzed if the Failsafe-mode is ON.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3121

http://www.abb.com/plc

Group parameters of the cam switch

Name Value Internal value Internal value,
type

Default

numOfUsed-
Cams 1)

0 ... 32
128...160

0 ... 32
218...160

WORD 0

resolution 2) 0 ... 2
-1

0 ... 2
-1

DWORD 36000

zeroShift 3) 0 ... 2
-1

0 ... 2
-1

DWORD 0

EncoderBitReso-
lution 4)

8 ... 32 8 ... 32 WORD 18

Reserve - - WORD -

1) The parameter numOfUsedCams defines the interrupt cycle time (Therefore, it takes effect to
the accuracy of the track) and the behavior of the module if the DC information is lost.

Parameter setting
for numOfUsed-
Cams

Number of cams
used

Interrupt cycle time Behavior if DC infor-
mation is lost

0 0 50 µs Module changes
to "safe-operational"
state; the outputs are
activated trough the
user program

1...8 1...8 80 µs

9...16 9...16 100 µs

17...32 17...32 200 µs

128 0 50 µs Module keeps in
"operational" state;
the outputs are acti-
vated trough the user
program

129...136 1...8 80 µs Module keeps in
"operational" state;
the cam switch out-
puts are activated
according to an inter-
polated timing infor-
mation

137...144 9...16 100 µs

145...170 17...32 200 µs

2) The parameter resolution defines the angle resolution of the track. The value gives the
number of increments related to 360°; e. g. the value 36,000 corresponds to an angle resolution
of 0.01°.
3) The parameter zeroShift defines the zero shift. With it the encoder can be adjusted to the
mounting position. The value of zeroShift is set in encoder-increments. It is not assigned to the
parameter resolution of the cam switch.
4) The parameter EncoderBitResolution defines the resolution of the used encoder (in bits), e. g.
with the default setting 18 bits the encoder has 196,608 divisions.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3122

Channel parameters for the cam switch (max. 32x)

Name Value Internal value Internal value,
type

Default

camToTrack0 *) Digital Output
0 ... 7, none

0 ... 7, FF BYTE FF

: : : : :

camToTrack31 Digital Output
0 .. .7, none

0 ... 7, FF BYTE FF

*) The value of the parameter camToTrack# defines which DO (digital output) is assigned to the
track. camToTrack0 = 3 for example means that track 0 is assigned to the digital output 3. If the
value FFh is set to a track, no digital output is assigned to it.

Name Value Referred FB from
extended Cam Switch
Library 2)

Internal
value

Internal
value, type

Default

cam-
Type[0]
1)
...

Common
Pulsed
Timed
Comfort
Cam shift
Binary shift
Multiturn cam
Time timed
Reference
Multiturn timed

MCX_CamSwitchSimple_c
MCX_CamSwitchSimple_dc
MCX_PulseSwitch_dc
MCX_CamSwitchTimed_dc
MCX_CamSwitchCom-
fort_dc
MCX_CamShift_dc
MCX_BinaryShift_dc
MCX_CamSwitchMulti_dc
MCX_SwitchTimeTimed_dc
MCX_BinaryReference_dc
MCX_CamSwitchMulti-
Timed_dc

0

1
2
3
4
5
6
7
8
9

BYTE 0

1) camType additionally to camToTrack identifies the type of each cam switch and enables the
use of a specific function block from the Extended Cam Switch Library.
2) camType parameters and the Extended Camswitch Library are only available for CI511-
ETHCAT and CI512-ETHCAT with device index C0 and above.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3123

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard 0 BYTE 0

Behaviour AO at
comm. error *)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe-mode is ON.

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, channel
configuration

see 1) see 1) BYTE 0

Input 0, check
channel

see 2) see 2) BYTE 0

: : : : :

: : : : :

Input 3, channel
configuration

see 1) see 1) BYTE 0

Input 3, channel
configuration

see 2) see 2) BYTE 0

Internal value Operating modes of the analog inputs, individually configurable
0 (default) Not used

1 0...10 V

2 Digital input

3 0...20 mA

4 4...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50...+400 °C

9 3-wire Pt100 -50...+400 °C *)

10 0 V...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50...+70 °C

15 3-wire Pt100 -50...+70 °C *)

Channel config-
uration 1)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3124

Internal value Operating modes of the analog inputs, individually configurable
16 2-wire Pt1000 -50...+400 °C

17 3-wire Pt1000 -50...+400 °C *)

18 2-wire Ni1000 -50...+150 °C

19 3-wire Ni1000 -50...+150 °C *)

 *) In the operating modes with 3-wire configuration or with differential inputs,
two adjacent analog inputs belong together (e.g. the channels 0 and 1). In
these cases, both channels are configured in the desired operating mode.
The lower address must be the even address (channel 0). The next higher
address must be the odd address (channel 1). The converted analog value is
available at the higher address (channel 1).

Table 552: Channel monitoring 2)
Internal Value Check channel
0 Plausib(ility), cut wire, short circuit

3 not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
channel configu-
ration

see 3) see 3) BYTE 0

Output 0, check
channel

see 4) see 4) BYTE 0

Output 0, substi-
tute value

see 5) see 5) WORD 0

Output 1,
channel configu-
ration

see 3) see 3) BYTE 0

Output 1, check
channel

see 4) see 4) BYTE 0

Output 1, substi-
tute value

see 5) see 5) WORD 0

Table 553: Channel configuration 3)
Internal value Operating modes of the analog outputs, individually configu-

rable
0 Not used (default)

128 -10 V...+10 V

129 0...20 mA

130 4...20 mA

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3125

Table 554: Channel monitoring 4)
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 555: Substitute value 5)
Intended behavior of
output channel when the
control system stops

Required setting of the module
parameter "Behaviour of outputs
in case of a communication
error"

Required setting of
the channel parameter
"Substitute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s Last value 5 s 0

Last value for 10 s Last value 10 s 0

Substitute value infinite Substitute value Depending on configura-
tion

Substitute value for 5 s Substitute value 5 s Depending on configura-
tion

Substitute value for 10 s Substitute value 10 s Depending on configura-
tion

Group parameters for the digital part

Name Value Internal value Internal
value, type

Default

Input delay 0.01 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.01 ms
0x00

Detect short circuits at
outputs

Off
On

0
1

BYTE On
0x01

Behaviour DO at comm.
error *)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute 5 sec
Substitute 10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value at
output

0 ... 255 00h ... FFh BYTE 0
0x0000

*) The parameter behaviourDOatCommunicationFault is only analyzed if the Failsafe-mode is
ON.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3126

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6..7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0..5

ETHCAT
Diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 20 Slave-to-Slave mal-
function

Check
configu-
ration

3 - 31 31 31 41 Distributed Clock
malfunction

Check
configu-
ration

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage
UP

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

4 - 31 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3127

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6..7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0..5

ETHCAT
Diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs
4)

Check
terminals

Channel error digital

4 - 31 2 0..7 46 Voltage feedback
on deactivated dig-
ital output
5)

Check
terminals

4 - 31 2 0..7 47 Short circuit at dig-
ital output

Check
terminals

Channel error analog

4 - 31 1 0..3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0..3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0..3 47 Short circuit at an
analog input

Check
terminals

4 - 31 3 0..1 48 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0..1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI511-ETHCAT diagnosis block.

2) With "Device" the following allocation applies:
31 = Module itself or ADR = Hardware address (e. g. of the DC551)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3128

3) With "Module" the following allocation applies dependent of the master:
31 = Module itself (Module error) or Module type (1=AI, 2=DO, 3=AO; channel
error)

4) Diagnosis message appears for the whole output group and not per channel.
The message occurs if the output channel is already active.

5) Diagnosis message appears per channel. The message occurs if the output
channel is not active.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, NET, DC, S-ERR and I/O-Bus) show the operation state of the

module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 556: States of the 5 system LEDs
LED Color Off On Flashing 1x Flash 2x Flash
PWR/RUN Green Error in the

internal
supply
voltage or
process
voltage
missing

Internal
supply
voltage OK

Module is
not config-
ured

-- --

Yellow -- -- -- -- --

NET Green Init Operational Pre-opera-
tional

Safe-opera-
tional

--

Red No error PDI
Watchdog
Timeout

Invalid Con-
figuration

Unsolicited
State
Change

Application
time out

DC *) Green Distributed
Clock not
active

Distributed
Clock active

-- -- --

Red -- -- -- -- --

S-ERR Red No error Internal
error

-- -- --

I/O-Bus Green No commu-
nication
interface
modules
connected
or commu-
nication
error

--- --- -- --

ETH1 Green No
EtherCAT
connection

Link OK
No data
transfer

Link OK
Data
transfer OK

-- --

Yellow -- -- -- -- --

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3129

LED Color Off On Flashing 1x Flash 2x Flash
ETH2 Green No

EtherCAT
connection

Link OK
No data
transfer

Link OK
Data
transfer OK

-- --

Yellow -- -- -- -- --

*) The state of this LED is only significant if the cam switch functionality is enabled

Table 557: States of the 27 process LEDs
LED Color OFF ON Flashing
AI0 to AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 to AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 to DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 toDO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3130

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
:
-10,0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow <0.0000 <-11.7589 <0.0000 <0.0000 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 450.0 °C > 160.0 °C 32767 7FFF

Measured value
too high

450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

 800
:
701

0320
:
02BD

Normal range 400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50,0 °C

-1
:
-500

FFFF
:
FE0C

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3131

Range Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Measured value
too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Measured
value too high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0,0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Bus connection 2 x RJ45

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3132

Parameter Value
Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability (S500 I/O modules) Up to 10 S500 I/O modules (Index C0 and
above), not available (Index below C0)

Indicators 5 LEDs for state indication

Adjusting elements 2 rotary switches (used for future topology
extensions)

Quantity of input/output data CI512-ETHCAT: 10 bytes input and 14 bytes
output
CI511-ETHCAT: 18 bytes input and 18 bytes
output

Limit of data for input and output 144 byte

Acyclic services SDO (1500 bytes max.)
Emergency ECAT_SLV_DIAG

Protective functions (according to
CODESYS)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation to network

Technical data of the module

Parameter Value
Process supply voltage UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of analog inputs 4

Number of analog outputs 2

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3133

Parameter Value
Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Diagnosis See Diagnosis and Displays Ä Chapter
1.6.3.7.3.1.8 “Diagnosis” on page 3127

Operation and error displays 32 LEDs (totally)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 1.9...3.9 (Negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3134

Parameter Value
 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 3.0 to 3.7

Reference potential for all outputs Terminals 1.9...3.9 (Negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3135

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 230: Digital input/output (circuit diagram)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 1.0 to 1.3

Reference potential for AI0+ to AI3+ Terminal 1.4 (AI-) for voltage and RTD meas-
urement
Terminals 1.9, 2.9 and 3.9 for current measure-
ment

Input type

 Unipolar Voltage 0 V...10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V...+10 V

Galvanic isolation Against Ethernet network

Configurability 0 V...10 V, -10 V...+10 V, 0/4 mA...20 mA,
Pt100/1000, Ni1000 (each input can be config-
ured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0...10 V: 12 bits
Range -10...+10 V: 12 bits + sign
Range 0...20 mA: 12 bits
Range 4...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3136

Parameter Value
Relationship between input signal and hex
code

Tables Input Ranges Voltage, Current and Dig-
ital Input Ä Chapter 1.6.3.7.3.1.10.1 “Input
ranges voltage, current and digital input”
on page 3130 and Input range resistance tem-
perature detector Ä Chapter 1.6.3.7.3.1.10.2
“Input ranges resistance temperature detector”
on page 3131

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 1.0 to 1.3

Reference potential for the inputs Terminals 1.9, 2.9 and 3.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 1.5...1.6

Reference potential for AO0+ to AO1+ Terminal 1.7 (AO-) for voltage outputTerminals
1.9, 2.9 and 3.9 (ZP) for current output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against Ethernet network

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA
(each output can be configured individually)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3137

Parameter Value
Output resistance (load),
as current output

0 ... 500 W

Output loadability,
as voltage output

± 10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Table Output Ranges Voltage and Current
Ä Chapter 1.6.3.7.3.1.10.3 “Output ranges
voltage and current” on page 3132

Unused outputs Are configured as unused (default value) and
can be left open-circuited

Ordering data

Part no. Description Product life cycle phase *)
1SAP 220 900 R0001 CI511-ETHCAT, EtherCAT communi-

cation interface module, 8 DI, 8 DO,
4 AI and 2 AO

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CI512-ETHCAT
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Cam switch functionality (see also Extended Cam Switch Library)
● Extended Cam switch functionality *)

(see also Extended Cam Switch Library)
● Module-wise galvanically isolated
● Expandability with up to 10 S500 I/O modules *)
*) Applicable for device index C0 and above.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3138

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

ETH1

ETH2

CI512

CH−ERR1 CH−ERR3CH−ERR2

3.0 DO8

3.2 DO10

3.4 DO12

3.6 DO14

3.9 ZP

3.1 DO9

3.3 DO11

3.5 DO13

3.7 DO15

3.8 UP32.8 UP

2.9 ZP

2.0 DI8

2.2 DI10

2.3 DI11

2.5 DI13

2.6 DI14

2.4 DI12

2.7 DI15

2.1 DI9

UP 24VDC 200W 8DC 8DI 8DO
Digital Input 24VDC

Digital Output 24VDC 0.5A

S−ERR

I/O−Bus

STA2 ETH

STA1 ETH

PWR/RUN

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5
ADDR

x10H

x01H

ADDR

1.0 DC0

1.2 DC2

1.9 ZP

1.3 DC3

1.1 DC1

1.5 DC5

1.6 DC6

1.8 UP

1.7 DC7

1.4 DC4

12 3 4 5

6
7

8

9

10

11 12

13

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the digital configurable inputs/outputs (DC0 -

DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 - DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 - DO7)
6 2 green LEDs to display the supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 System LEDs: PWR/RUN, NET, DC, S-ERR, I/O-Bus
9 2 rotary switches (reserved for future extensions)
10 Label
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Intended purpose
The EtherCAT communication interface module CI512-ETHCAT is used as decentralized I/O
module in EtherCAT networks. The network connection is performed via 2 RJ45 connectors
which are integrated in the terminal unit. The communication interface module contains 24 I/O
channels with the following properties:
● 8 digital configurable inputs/outputs in 1 group (1.0...1.7)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)
● Cam switch functionality

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3139

The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the configurable digital inputs/outputs is
performed by software.

Functionality

Parameter Value
Interface Ethernet

Protocol EtherCAT

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches Not used; reserved for future extensions

Configurable digital inputs/outputs 8 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU507 or TU508 Ä Chapter 1.6.3.5.1 “TU507-
ETH and TU508-ETH for Ethernet communica-
tion interface modules” on page 2549

Connections
The Ethernet communication interface module CI512-ETHCAT is plugged on the I/O terminal
unit TU507-ETH or TU508-ETH. Properly seat the module and press until it locks in place. The
terminal unit is mounted on a DIN rail or with 2 screws plus the additional accessory for wall
mounting (TA526).
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.4.5
“AC500-eCo” on page 3352.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3140

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 DC0 to DC7 8 digital inputs/outputs (con-

figurable via software)

2.0 to 2.7 DI0 to DI7 8 digital inputs (delay time
configurable via software)

3.0 to 3.7 DO0 to DO7 8 digital outputs

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figures show the connection of the Ethernet communication interface module
CI512-ETHCAT.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3141

3.0 DO 8

3.1 DO 9

3.2 DO 10

3.3 DO 11

3.4 DO 12

3.5 DO 13

3.6 DO 14

3.7 DO 15

DI 8 2.0

DI 9 2.1

DI 10 2.2

DI 11 2.3

DI 12 2.4

DI 13 2.5

DI 14 2.6

DI 15 2.7

1.8

1.9

UP +24 V

ZP 0 V

2.8

2.9 3.9

3.8
UP3 +24 V

ZP 0 V

2 3

DC 0 1.0

DC 1 1.1

DC 2 1.2

DC 3 1.3

DC 4 1.4

DC 5 1.5

DC 6 1.6

DC 7 1.7

1

Fig. 231: Connection of the communication interface module CI512-ETHCAT

1 8 digital configurable inputs/outputs 24 V DC
2 8 digital inputs 24 V DC
3 8 digital outputs 24 V DC

In case of voltage feedback, 2 cases are distinguished:

1. The outputs are already active

The output group will be switched off. A diagnosis message will appear. After 5
seconds, the module tries automatic reactivation.

2. The outputs are not active

Only the output with voltage feedback will not be set to active. A diagnosis
message will appear.

CAUTION!
The process supply voltage must be included within the grounding concept of
the plant (e. g. grounding of the negative pole).

The module provides several diagnosis functions Ä Chapter 1.6.3.7.3.2.9 “Diagnosis”
on page 3147.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment. The pin assignment is used for the EtherCAT master (communica-
tion module CM5xy-ETHCAT) as well.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3142

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.4.6.4.7 “Ethernet connection details” on page 3424.

The EtherCAT network differentiates between input-connectors (IN) and output-
connectors (OUT):

At the EtherCAT slaves (communication interface modules), the ETH1-con-
nector is IN and the ETH2-connector is OUT.

At the EtherCAT master (communication module), the ETHCAT1 connector has
to be used. The ETHCAT2 connector is reserved for future extensions.

Internal data exchange

Parameter Value
Digital inputs (bytes) 1

Digital outputs (bytes) 1

Configurable digital inputs/outputs (bytes) 1 + 1

Addressing
The Ethernet communication interface module CI512-ETHCAT does not consider the position
of the rotary switches at the front side of the module. The function of the rotary switches is
reserved for future expansions.

Pin assignment

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3143

I/O configuration

In order to be able to use the CI51X-ETHCAT with device index C0 or above
properly, please download the corresponding device description (.xml-)files
from http://www.abb.com/plc and install them to the device repository of your
Automation Builder. This will allow you to use up to 10 Expandable S500 I/O
modules as well as the Extended Cam Switch Library with your CI51X-ETHCAT
device.

The CI512-ETHCAT does not store configuration data itself.
The analog I/O channels are configured via software.

Parameterization
Module parameter

Name Value Internal value Internal value,
type

Default

Module ID Internal 49435 WORD 49435

Parameter length Internal 10 BYTE 10

Error LED / Fail-
safe function 1)

On
Off by E4
Off by E3 On +
failsafe Off by E4
+ failsafe Off by
E3 + failsafe

0
1
3
16
17
19

BYTE 0

Check Supply Off
On

0
1

BYTE 1

Table 558: Error LED / Failsafe function 1)
Setting Description
On Error LED lights up at errors of all error classes, Failsafe mode off

Off by E4 Error LED lights up at errors of error classes E1, E2 and E3, Failsafe
mode off

Off by E3 Error LED lights up at errors of error classes E1 and E2 auf, Failsafe
mode off

On + failsafe Error LED lights up at errors of all error classes, Failsafe mode on *)

Off by E4 + failsafe Error LED lights up at errors of error classes E1, E2 and E3, Failsafe
mode on *)

Off by E3 + failsafe Error LED lights up at errors of error classes E1 and E2, Failsafe mode
on *)

*) The parameter behaviourDOatCommunicationFault is only analyzed if the Failsafe-mode is
ON.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3144

http://www.abb.com/plc

Group parameters of the cam switch

Name Value Internal value Internal value,
type

Default

numOfUsed-
Cams 1)

0 ... 32
128...160

0 ... 32
218...160

WORD 0

resolution 2) 0 ... 2
-1

0 ... 2
-1

DWORD 36000

zeroShift 3) 0 ... 2
-1

0 ... 2
-1

DWORD 0

EncoderBitReso-
lution 4)

8 ... 32 8 ... 32 WORD 18

Reserve - - WORD -

Remarks:
1) The parameter numOfUsedCams defines the interrupt cycle time (Therefore, it takes effect to
the accuracy of the track) and the behavior of the module if the DC information is lost.

Parameter setting
for numOfUsed-
Cams

Number of cams
used

Interrupt cycle time Behavior if DC infor-
mation is lost

0 0 50 µs Module changes
to "safe-operational"
state; the outputs are
activated trough the
user program

1...8 1...8 80 µs

9...16 9...16 100 µs

17...32 17...32 200 µs

128 0 50 µs Module keeps in
"operational" state;
the outputs are acti-
vated trough the user
program

129...136 1...8 80 µs Module keeps in
"operational" state;
the cam switch out-
puts are activated
according to an inter-
polated timing infor-
mation

137...144 9...16 100 µs

145...170 17...32 200 µs

2) The parameter resolution defines the angle resolution of the track. The value gives the
number of increments related to 360°; e. g. the value 36,000 corresponds to an angle resolution
of 0.01°.
3) The parameter zeroShift defines the zero shift. With it the encoder can be adjusted to the
mounting position. The value of zeroShift is set in encoder-increments. It is not assigned to the
parameter resolution of the cam switch.
4) The parameter EncoderBitResolution defines the resolution of the used encoder (in bits), e. g.
with the default setting 18 bits the encoder has 196,608 divisions.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3145

Channel parameters for the cam switch (max. 32x)

Name Value Internal value Internal value,
type

Default

camToTrack0 1) Digital Output
0 ... 15, none

0 ... 15, FF BYTE FF

: : : : :

camToTrack31 Digital Output
0 ... 15, none

0 ... 15, FF BYTE FF

1) The value of the parameter camToTrack# defines which DO (digital output) is assigned to the
track. camToTrack0 = 3 for example means that track 0 is assigned to the digital output 3. If the
value FFh is set to a track, no digital output is assigned to it.

Name Value Referred FB from extended
Cam Switch Library 2)

Internal
value

Internal
value,
type

Default

cam-
Type[0]
1)
...

Common
Pulsed
Timed
Comfort
Cam shift
Binary shift
Multiturn cam
Time timed
Reference
Multiturn
timed

MCX_CamSwitchSimple_c
MCX_CamSwitchSimple_dc
MCX_PulseSwitch_dc
MCX_CamSwitchTimed_dc
MCX_CamSwitchComfort_dc
MCX_CamShift_dc
MCX_BinaryShift_dc
MCX_CamSwitchMulti_dc
MCX_SwitchTimeTimed_dc
MCX_BinaryReference_dc
MCX_CamSwitchMulti-
Timed_dc

0

1
2
3
4
5
6
7
8
9

BYTE 0

1) camType additionally to camToTrack identifies the type of each cam switch and enables the
use of a specific function block from the Extended Cam Switch Library.
2) camType parameters and the Extended Camswitch Library are only available for CI511-
ETHCAT and CI512-ETHCAT with device index C0 and above.

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.01 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.01 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3146

Name Value Internal value Internal value,
type

Default

Behaviour DO at
comm. error *)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute values
DO

0 ... 65535 0000h ... FFFFh WORD 0
0x0000

*) The parameter behaviourDOatCommunicationFault is only analyzed if the Failsafe-mode is
ON.

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1..E4 d1 d2 d3 d4 Identifier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6..7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0..5

ETHCAT
Diagnosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3)

Module error

3 - 31 31 31 43 Internal error in the
module

Replace
I/O module

3 - 31 31 31 20 Slave-to-Slave malfunc-
tion

Check
configura-
tion

3 - 31 31 31 41 Distributed Clock mal-
function

Check
configura-
tion

3 - 31 31 31 26 Parameter error Check
master

3 - 31 31 31 11 Process voltage UP too
low

Check
process
supply
voltage

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3147

E1..E4 d1 d2 d3 d4 Identifier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6..7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0..5

ETHCAT
Diagnosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 45 Process voltage UP3
too low

Check
process
voltage

4 - 31 31 31 34 No response during ini-
tialization of the I/O
module

Replace
I/O module

4 - 31 31 31 46 Voltage feedback on
activated digital outputs
4)

Check ter-
minals

Channel error digital

4 - 31 2 0..15 46 Voltage feedback on
deactivated digital
output
5)

Check ter-
minals

4 - 31 4 0..7 47 Short circuit at digital
output

Check ter-
minals

4 - 31 2 8..15 47 Short circuit at digital
output

Check ter-
minals

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module; 14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI512-ETHCAT diagnosis block.

2) With "Device" the following allocation applies:
31 = Module itself or ADR = Hardware address (e. g. of the DC551)

3) With "Module" the following allocation applies dependent of the master:
31 = Module itself (Module error) or Module type (1=AI, 2=DO, 3=AO; channel
error)

4) Diagnosis message appears for the whole output group and not per channel.
The message occurs if the output channel is already active.

5 Diagnosis message appears per channel. The message occurs if the output
channel is not active.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3148

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, NET, DC, S-ERR and I/O-Bus) show the operation state of the

module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 559: States of the 5 system LEDs
LED Color Off On Flashing 1x flash 2x flash
PWR/RUN Green Error in the

internal
supply
voltage or
process
voltage
missing

Internal
supply
voltage OK

Module is
not config-
ured

-- --

Yellow -- -- -- -- --

NET Green Init Operational Pre-opera-
tional

Safe-opera-
tional

--

Red No error PDI
Watchdog
Timeout

Invalid Con-
figuration

Unsolicited
State
Change

Application
time out

DC *) Green Distributed
Clock not
active

Distributed
Clock active

-- -- --

Red -- -- -- -- --

S-ERR Red No error Internal
error

-- -- --

I/O-Bus Green No commu-
nication
interface
modules
connected
or commu-
nication
error

--- --- -- --

ETH1 Green No
EtherCAT
connection

Link OK
No data
transfer

Link OK
Data
transfer OK

-- --

Yellow -- -- -- -- --

ETH2 Green No
EtherCAT
connection

Link OK
No data
transfer

Link OK
Data
transfer OK

-- --

Yellow -- -- -- -- --

*) The state of this LED is only significant if the camswitch functionality is enabled

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3149

Table 560: States of the 29 process LEDs
LED Color OFF ON Flashing
DC0 to DC7 Yellow Input/Output is

OFF
Input/Output is
ON

--

DI8 to DI15 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO8 to DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Bus connection 2 x RJ45

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability (S500 I/O modules) Up to 10 S500 I/O modules (Index C0 and
above), not available (Index below C0)

Indicators 5 LEDs for state indication

Adjusting elements 2 rotary switches (used for future topology
extensions)

Quantity of input/output data CI512-ETHCAT: 10 bytes input and 14 bytes
output
CI511-ETHCAT: 18 bytes input and 18 bytes
output

Limit of data for input and output 144 byte

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3150

Parameter Value
Acyclic services SDO (1500 bytes max.)

Emergency ECAT_SLV_DIAG

Protective functions (according to
CODESYS)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation to network

Technical data of the module

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.15 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of configurable digital inputs/outputs 8

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Diagnosis See Diagnosis and Displays Ä Chapter
1.6.3.7.3.2.9 “Diagnosis” on page 3147

Operation and error displays 34 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3151

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3152

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 3.0 to 3.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 232: Digital input/output (circuit diagram)

1 Digital Output
2 Varistors for demagnetization when inductive loads are turned off
Figure:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3153

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC0...DC07 Terminals 1.0...1.7

If the channels are used as outputs

 Channels DC0...DC07 Terminals 1.0...1.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation From the Ethernet network

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 1.0 to 1.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V *)

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3154

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 1.0 to 1.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3155

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 233: Digital input/output (circuit diagram)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Ordering data

Part no. Description Product life cycle phase *)
1SAP 221 000 R0001 CI512-ETHCAT, EtherCAT communi-

cation interface module, 8 DI, 8 DO
and 8 DC

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.3.7.4 Modbus
CI521-MODTCP

● 4 analog inputs (resolution 12 bits plus sign)
● 2 analog outputs (resolution 12 bits plus sign)
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3156

1 I/O bus
2 Allocation between terminal number and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 - AI3, AO0 -

AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 - DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 - DO7)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the IP address
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Sign for XC version

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3157

Intended purpose
The Modbus TCP communication interface module CI521-MODTCP is used as decentralized
I/O module in Modbus TCP networks. The network connection is performed via 2 RJ45 connec-
tors which are integrated in the terminal unit. The communication interface module contains 22
I/O channels with the following properties:
● 4 analog inputs (1.0...1.3)
● 2 analog outputs (1.5...1.6)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.
For usage in enhanced ambient conditions (e.g. wider temperature and humidity range), a
special XC version of the device is available.

Functionality

Parameter Value
Interface Ethernet

Protocol Modbus TCP

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches for setting the last BYTE of the IP (00h to FFh)

Analog inputs 4 (configurable via software)

Analog outputs 2 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Required terminal unit TU507 or TU508 Ä Chapter 1.6.3.5.1 “TU507-
ETH and TU508-ETH for Ethernet communica-
tion interface modules” on page 2549

Connections
The Ethernet communication interface module CI521-MODTCP is plugged on the I/O terminal
unit TU507-ETH or TU508-ETH Ä Chapter 1.6.3.5.1 “TU507-ETH and TU508-ETH for Ethernet
communication interface modules” on page 2549. Properly seat the module and press until it
locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting accessory”
on page 3329).
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3158

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Conditions for undisturbed operating with older I/O expansion modules
All I/O expansion modules that are attached to the CI52x-MODTCP must be
powered up together with the CI52x-MODTCP if the firmware version of these
I/O expansion modules is V1.9 or lower.

The firmware version is related to the index. The index is printed on the module type label on
the right side.
Modules as of index listed in the following table can be powered up independently.

S500 I/O module type First index with firmware version above 1.9
AI523 D0

AI523-XC D0

AI531 A3

AI531-XC A0

AO523 D0

AO523-XC D0

AX521 D0

AX521-XC D0

AX522 D0

AX522-XC D0

CD522 A2

CD522-XC A0

DA501 A2

DA501-XC A0

DA502 A1

DA502-XC A1

DC522 D0

DC522-XC D0

DC523 D0

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3159

S500 I/O module type First index with firmware version above 1.9
DC523-XC D0

DC532 D0

DC532-XC D0

DI524 D0

DI524-XC D0

DO524 A2

DO524-XC A2

DX522 D0

DX522-XC D0

DX531 D0

AC522 D0

PD501 D0

Do not connect any voltages externally to digital outputs!

Reason: Externally voltages at an output or several outputs may cause that
other outputs are supplied through that voltage instead of voltage UP3 (reverse
voltage). This ist not intended usage.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO0..DO7.

The assignment of the other terminals:

Terminal Signal Description
1.0 AI0+ Positive pole of analog input signal 0

1.1 AI1+ Positive pole of analog input signal 1

1.2 AI2+ Positive pole of analog input signal 2

1.3 AI3+ Positive pole of analog input signal 3

1.4 AI- Negative pole of analog input signals 0 to 3

1.5 AO0+ Positive pole of analog output signal 0

1.6 AO1+ Positive pole of analog output signal 1

1.7 AI- Negative pole of analog output signals 0 and 1

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DI0 Signal of the digital input DI0

2.1 DI1 Signal of the digital input DI1

2.2 DI2 Signal of the digital input DI2

2.3 DI3 Signal of the digital input DI3

2.4 DI4 Signal of the digital input DI4

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3160

Terminal Signal Description
2.5 DI5 Signal of the digital input DI5

2.6 DI6 Signal of the digital input DI6

2.7 DI7 Signal of the digital input DI7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DO0 Signal of the digital output DO0

3.1 DO1 Signal of the digital output DO1

3.2 DO2 Signal of the digital output DO2

3.3 DO3 Signal of the digital output DO3

3.4 DO4 Signal of the digital output DO4

3.5 DO5 Signal of the digital output DO5

3.6 DO6 Signal of the digital output DO6

3.7 DO7 Signal of the digital output DO7

3.8 UP3 Process voltage UP3 (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3161

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figures show the connection of the Ethernet communication interface module
CI521-MODTCP.

Fig. 234: Connection of the communication interface module CI521-MODTCP

Further information is provided in the System Technology chapter Ä Chapter 1.6.5.3.1 “Modbus
communication interface module” on page 3603.

Connection of the digital inputs
The following figure shows the connection of the digital input DI0. Proceed with the digital inputs
DI1 to DI7 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3162

Fig. 235: Connection of the digital inputs to the module CI521-MODTCP

The meaning of the LEDs is described in Displays Ä Chapter 1.6.3.7.4.1.8.2 “State LEDs”
on page 3187.

Connection of the digital outputs
The following figure shows the connection of the digital output DO0. Proceed with the digital
outputs DO1 - DO7 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3163

Fig. 236: Connection of configurable digital inputs/outputs to the module CI521-MODTCP

The meaning of the LEDs is described in Displays Ä Chapter 1.6.3.7.4.1.8.2 “State LEDs”
on page 3187.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module CI521-
MODTCP provides a constant current source which is multiplexed over the max. 4 analog input
channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration to
the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3164

Fig. 237: Connection of resistance thermometers in 2-wire configuration to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.7.4.1.7 “Parameterization”
on page 3176 and Ä Chapter 1.6.3.7.4.1.9 “Measuring ranges” on page 3188:

Pt100 -50 °C...+70 °C 2-wire configuration, 1
channel used

Pt100 -50 °C...+400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, 1
channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.4.1.8 “Diagnosis and state LEDs” on page 3182.
The module CI521-MODTCP performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module CI521-
MODTCP provides a constant current source which is multiplexed over the max. 4 analog input
channels.
The following figure shows the connection of resistance thermometers in 3-wire configuration to
the analog inputs AI0 and AI1. Proceed with the analog inputs AI2 and AI3 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3165

Fig. 238: Connection of resistance thermometers in 3-wire configuration to the analog inputs

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 1.6.3.7.4.1.7 “Parameterization”
on page 3176 and Ä Chapter 1.6.3.7.4.1.9 “Measuring ranges” on page 3188:

Pt100 -50 °C...+70 °C 3-wire configuration, 2 chan-
nels used

Pt100 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C...+150 °C 3-wire configuration, 2 chan-
nels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.4.1.8 “Diagnosis and state LEDs” on page 3182.
The module CI521-MODTCP performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3166

Connection of active-type analog sensors (voltage) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

Fig. 239: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.7.4.1.7 “Parameterization”
on page 3176 Ä Chapter 1.6.3.7.4.1.9 “Measuring ranges” on page 3188:

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.4.1.8 “Diagnosis and state LEDs” on page 3182.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3167

Fig. 240: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.7.4.1.7 “Parameterization”
on page 3176 Ä Chapter 1.6.3.7.4.1.9 “Measuring ranges” on page 3188:

Current 0...20 mA 1 channel used

Current 4...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.4.1.8 “Diagnosis and state LEDs” on page 3182.
Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range 4...20 mA,
these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to
AI3 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3168

Fig. 241: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ± 1 V).
Make sure that the potential difference never exceeds ± 1 V (also not with long
cable lengths).

The following measuring ranges can be configured Ä Chapter 1.6.3.7.4.1.7 “Parameterization”
on page 3176 and Ä Chapter 1.6.3.7.4.1.9 “Measuring ranges” on page 3188.

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.4.1.8 “Diagnosis and state LEDs” on page 3182.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3169

Fig. 242: Connection of passive-type analog sensors (current) to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.7.4.1.7 “Parameterization”
on page 3176 and Ä Chapter 1.6.3.7.4.1.9 “Measuring ranges” on page 3188:

Current 4...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.4.1.8 “Diagnosis and state LEDs” on page 3182.

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Use only sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt zener diode in parallel to AIx+ and ZP.

Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range 4...20 mA,
these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful, if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3170

With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V).
Make sure that the potential difference never exceeds ±1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

Fig. 243: Connection of active-type analog sensors (voltage) to differential analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.7.4.1.7 “Parameterization”
on page 3176 and Ä Chapter 1.6.3.7.4.1.9 “Measuring ranges” on page 3188:

Voltage 0...10 V With differential inputs, 2
channels used

Voltage -10 V...+10 V With differential inputs, 2
channels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.4.1.8 “Diagnosis and state LEDs” on page 3182.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3171

To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs Ä Chapter 1.6.3.7.4.1.10.5
“Technical data of the analog inputs if used as digital inputs” on page 3194. The inputs are not
galvanically isolated against the other analog channels.
The following figure shows the connection of digital sensors to the analog input AI0. Proceed
with the analog inputs AI1 to AI3 in the same way.

Fig. 244: Use of analog inputs as digital inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.7.4.1.7 “Parameterization”
on page 3176 and Ä Chapter 1.6.3.7.4.1.9 “Measuring ranges” on page 3188 :

Digital input 24 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.4.1.8 “Diagnosis and state LEDs” on page 3182.

Connection of analog output loads (Voltage)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3172

Fig. 245: Connection of analog output loads (voltage)

The following measuring ranges can be configured Ä Chapter 1.6.3.7.4.1.7 “Parameterization”
on page 3176 and Ä Chapter 1.6.3.7.4.1.9 “Measuring ranges” on page 3188

Voltage -10 V...+10 V Load ±10 mA max. 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.4.1.8 “Diagnosis and state LEDs” on page 3182.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3173

Fig. 246: Connection of analog output loads (current)

The following measuring ranges can be configured Ä Chapter 1.6.3.7.4.1.7 “Parameterization”
on page 3176 and Ä Chapter 1.6.3.7.4.1.9 “Measuring ranges” on page 3188:

Current 0...20 mA Load 0...500 W 1 channel used

Current 4...20 mA Load 0...500 W 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.4.1.8 “Diagnosis and state LEDs” on page 3182.
Unused analog outputs can be left open-circuited.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment:

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

Pin assignment

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3174

Interface PIN Signal Description
8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.4.6.4.7 “Ethernet connection details” on page 3424.

Internal data exchange

Parameter Value
Digital inputs (bytes) 3

Digital outputs (bytes) 3

Analog inputs (words) 4

Analog outputs (words) 2

Counter input data (words) 4

Counter output data (words) 8

Addressing

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

The IP address of the CI521-MODTCP Module can be set with the "ABB IP Configuration
Tool". Ä Chapter 1.6.6.2.2.4.2 “Configuration of the IP settings with the IP configuration tool”
on page 3675

If the last byte of the IP is set to 0, the address switch will be used instead.
Address switch position 255 is mapped to fixed IP 192.168.0.254 independent of other stored
settings. This is a backup so the module can always get a valid IP address and can be
configured by the “ABB IP Configuration Tool”.
Address switch position 0 is mapped to last byte equal 1 and DHCP enabled.
The factory setting for the IP is 192.168.0.x (last byte is address switch).

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3175

I/O configuration
The CI521-MODTCP stores configuration parameters (IP address configuration, module param-
eters).
The analog/digital I/O channels are configured via software.
Details about configuration are described in Parameterization Ä Chapter 1.6.3.7.4.1.7 “Parame-
terization” on page 3176.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7400 WORD 7000

Ignore Module Internal 0 BYTE 0

Parameter length Internal 63 BYTE 63

Error LED / Fail-
safe function see
table Error LED /
Failsafe function
Ä Table 561 “Err
or LED / Failsafe
function”
on page 3177

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3176

Name Value Internal value Internal value,
type

Default

Timeout for Bus
supervision

No supervision
10 ms timeout
20 ms timeout

0
1
2

BYTE No supervision

IO Mapping
Structure 3)

Fixed Mapping
Dynamic Map-
ping

0
1

BYTE 0

Reserved Internal 0 ARRAY[0..2] OF
BYTE

0,0,0

Check supply off
on

0
1

BYTE 1

Fast counter 0
:

10 3)

0
:
10

BYTE 0

1) With a faulty ID, the Modules reports a "parameter error" and does not perform cyclic
process data transmission.
2) Counter operating modes, see description of the Ä Chapter 1.6.5.1.12 “Fast counters”
on page 3570.
3) Fixed Mapping means each module has its own Modbus registers for data transfer inde-
pendent of the IO bus constellation. For details see Ä Chapter 1.6.5.3.1.2 “Modbus TCP
registers” on page 3604.
Dynamic mapping means the structure of the IO Date is dependent on the I/O bus constella-
tion. Each I/O bus expansion module starts directly after the module before on the next Word
adress.
4) If none of the parameters is set all masters / clients in the network have read and write rights
on the CI52x-MODTCP device and its connected expansion modules.
If at least one parameter is set only the configured masters / clients have write rights on
the CI52x-MODTCP device, all other masters / clients still have read access to the CI52x-
MODTCP device.

Table 561: Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe-mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode off

On +Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe-mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode on *)

*) The parameters Behaviour AO at comm. error and Behaviour DO at comm. error are only
analyzed if the Failsafe-mode is ON.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3177

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard
Reserved

0
255

BYTE 0

Behaviour AO at
comm. error *)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe-mode is ON.

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, Channel
configuration

Table Operating
modes of the
analog inputs
Ä Table 562 “Ch
annel configura-
tion”
on page 3179

Table Operating
modes of the
analog inputs
Ä Table 562 “Ch
annel configura-
tion”
on page 3179

BYTE 0

Input 0, Check
channel

Table Channel
montoring
Ä Table 563 “Ch
annel monitoring”
on page 3179

Table Channel
montoring
Ä Table 563 “Ch
annel monitoring”
on page 3179

BYTE 0

: : : : :

: : : : :

Input 3, Channel
configuration

Table Operating
modes of the
analog inputs
Ä Table 562 “Ch
annel configura-
tion”
on page 3179

Table Operating
modes of the
analog inputs
Ä Table 562 “Ch
annel configura-
tion”
on page 3179

BYTE 0

Input 3, Check
channel

Table Channel
montoring
Ä Table 563 “Ch
annel monitoring”
on page 3179

Table Channel
montoring
Ä Table 563 “Ch
annel monitoring”
on page 3179

BYTE 0

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3178

Table 562: Channel configuration
Internal value Operating modes of the analog inputs, individually configurable
0 (default) Not used

1 0...10 V

2 Digital input

3 0...20 mA

4 4...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50...+400 °C

9 3-wire Pt100 -50...+400 °C *)

10 0...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50...+70 °C

15 3-wire Pt100 -50...+70 °C *)

16 2-wire Pt1000 -50...+400 °C

17 3-wire Pt1000 -50...+400 °C *)

18 2-wire Ni1000 -50...+150 °C

19 3-wire Ni1000 -50...+150 °C *)

*) In the operating modes with 3-wire configuration or with differential inputs, two adjacent
analog inputs belong together (e.g. the channels 0 and 1). In these cases, both channels
are configured in the desired operating mode. The lower address must be the even address
(channel 0). The next higher address must be the odd address (channel 1). The converted
analog value is available at the higher address (channel 1).

Table 563: Channel monitoring
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
Channel configu-
ration

Table Operating
modes of the
analog outputs
Ä Table 564 “Ch
annel configura-
tion”
on page 3180

Table Operating
modes of the
analog outputs
Ä Table 564 “Ch
annel configura-
tion”
on page 3180

BYTE 0

Output 0, Check
channel

Table Channel
monitoring
Ä Table 565 “Ch
annel monitoring”
on page 3180

Table Channel
monitoring
Ä Table 565 “Ch
annel monitoring”
on page 3180

BYTE 0

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3179

Name Value Internal value Internal value,
type

Default

Output 0, Substi-
tute value

Table Substitute
value
Ä Table 566 “Su
bstitute value”
on page 3180

Table Substitute
value
Ä Table 566 “Su
bstitute value”
on page 3180

WORD 0

Output 1,
Channel configu-
ration

Table Operating
modes of the
analog outputs
Ä Table 564 “Ch
annel configura-
tion”
on page 3180

Table Operating
modes of the
analog outputs
Ä Table 564 “Ch
annel configura-
tion”
on page 3180

BYTE 0

Output 1, Check
channel

Table Channel
monitoring
Ä Table 565 “Ch
annel monitoring”
on page 3180

Table Channel
monitoring
Ä Table 565 “Ch
annel monitoring”
on page 3180

BYTE 0

Output 1, Substi-
tute value

Table Substitute
value
Ä Table 566 “Su
bstitute value”
on page 3180

Table Substitute
value
Ä Table 566 “Su
bstitute value”
on page 3180

WORD 0

Table 564: Channel configuration
Internal value Operating modes of the analog outputs, individually configu-

rable
0 (default) Not used

128 -10 V...+10 V

129 0...20 mA

130 4...20 mA

Table 565: Channel monitoring
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 566: Substitute value
Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3180

Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Group parameters for the digital part

Name Value Internal
value

Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value 5 sec
Substitute value 10
sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 255 00h ... FFh BYTE 0
0x0000

Detect voltage
overflow at out-
puts 2)

Off
On

0
1

BYTE On
0x01

1) The parameters Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.
2) The state "externally voltage detected" appears, if the output of a channel DC0..DC7 should
be switched on while an externally voltage is connected Ä Chapter 1.6.3.7.4.1.3 “Connec-
tions” on page 3158. In this case the start up is disabled, as long as the externally voltage is
connected. The monitoring of this state and the resulting diagnosis message can be disabled
by setting the parameters to "OFF".

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3181

Diagnosis and state LEDs
Structure of the diagnosis block

Byte Number Description Possible Values
1 Diagnosis Byte, slot number 31 = CI521-MODTCP (e. g. error at inte-

grated 8 DI / 8 DO)
1 = 1st connected S500 I/O Module
...
10 = 10th connected S500 I/O Module

2 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

3 Diagnosis Byte, channel According to the I/O bus specification
passed on by modules to the fieldbus
master

4 Diagnosis Byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

For diagnosis firmware version ³ 3.2.6 is required.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3182

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
Master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 No process voltage
UP

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3183

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs DO0...DO7
on UP3 4)

Check
terminals

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3184

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 No process voltage
UP3

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 0...7 46 Externally voltage
detected at digital
output DO0...DO7
6)

Check
terminals

4 - 31 2 0...7 47 Short circuit at dig-
ital output 7)

Check
terminals

Channel error analog

4 - 31 1 0..3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0..3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0..3 47 Short circuit at an
analog input

Check
terminals

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3185

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 3 0..1 4 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0..1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI521-MODTCP diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself; 1..10 =
Expansion module

3) With "Module" the following allocation applies:
31 = Module itself
Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals
DO0...DO7 cause that other digital outputs are supplied through that voltage
Ä Chapter 1.6.3.7.4.1.3 “Connections” on page 3158. All outputs of the
apply digital output groups will be turned off for 5 seconds. The diagnosis
message appears for the whole output group.

5) The voltage on digital outputs DO0...DO7 has overrun the process supply
voltage UP3 Ä Chapter 1.6.3.7.4.1.3 “Connections” on page 3158. Diag-
nosis message appears for the whole module.

6) This message appears, if the output of a channel DO0...DO7 should be
switched on while an externally voltage is connected. In this case the start
up is disabled, as long as the externally voltage is connected. Otherwise this
could produce reverse voltage from this output to other digital outputs. This
diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for
100ms. Then a new start up will be executed. This diagnosis message
appears per channel.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3186

8) In case of an I/O module doesn’t support hot swapping, do not perform any
hot swap operations (also not on any other terminal units (slots)) as modules
may be damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 567: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with IO Controller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1 ETH
(System LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

Device config-
ured, acyclic data
exchange run-
ning

Red --- Communication
error (timeout)
appeared

IP address error

STA2 ETH
(System LED
"SF")

Green Device has valid
parameters

Device is running
parameterization
sequenze

Device has no
parameters

Red --- --- Device has
invalid parame-
ters

S-ERR Red No error Internal error --

I/O-Bus Green No expansion
modules con-
nected or com-
munication error

Expansion
modules con-
nected and
operational

ETH1 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3187

Table 568: States of the 27 process LEDs
LED Color OFF ON Flashing
AI0 to AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 to AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 to DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 toDO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

Normal
range or
measured
value too
low

-0.0004
-1.7593

-0.0004
:
:
:
-10,0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3188

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow <0.0000 <-11.7589 <0.0000 <0.0000 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 /
Pt1000
-50...70 °C

Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured
value too
high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

Normal range 70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

Normal range -0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50,0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3189

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Measured
value too high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0,0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3190

Parameter Value
 Connections Terminals 1.8 and 2.8 for +24 V (UP)

Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of analog inputs 4

Number of analog outputs 2

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Ethernet 10/100 base-TX, internal switch, 2 x RJ45
socket

Setting of the IP address With ABB IP config tool and 2 rotary switches at
the front side of the module

Diagnose See Diagnosis and Displays Ä Chapter
1.6.3.7.4.1.8 “Diagnosis and state LEDs”
on page 3182

Operation and error displays 32 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at 40 °C per group)

Extended ambient temperature (XC version) > 60 °C on request

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3191

Parameter Value
 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 3.0 to 3.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3192

Parameter Value
Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 247: Digital input/output (circuit diagram)

1 Digital Output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 1.0 to1.3

Reference potential for AI0+ to AI3+ Terminal 1.4 (AI-) for voltage and RTD meas-
urement
Terminal 1.9, 2.9 and 3.9 for current measure-
ment

Input type

 Unipolar Voltage 0 ... 10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 ... +10 V

Galvanic isolation Against Ethernet network

Configurability 0...10 V, -10...+10 V, 0/4...20 mA, Pt100/1000,
Ni1000 (each input can be configured individu-
ally)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3193

Parameter Value
Resolution Range 0...10 V: 12 bits

Range -10...+10 V: 12 bits + sign
Range 0...20 mA: 12 bits
Range 4...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Tables Input ranges voltage, current and digital
input Ä Chapter 1.6.3.7.4.1.9.1 “Input ranges
voltage, current and digital input” on page 3188
Input range resistance temperature detector
Ä Chapter 1.6.3.7.4.1.9.2 “Input ranges resist-
ance temperature detector” on page 3189

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 1.0 to 1.3

Reference potential for the inputs Terminals 1.9, 2.9 and 3.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 1.5...1.6

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3194

Parameter Value
Reference potential for AO0+ to AO1+ Terminal 1.7 (AO-) for voltage outputTerminal

1.9, 2.9 and 3.9 for current output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10...+10 V, 0...20 mA, 4...20 mA (each output
can be configured individually)

Output resistance (load), as current output 0...500 W

Output loadability, as voltage output ±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Table Output ranges voltage and current
Ä Chapter 1.6.3.7.4.1.9.3 “Output ranges
voltage and current” on page 3190

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Technical data of the fast counter

Parameter Value
Used inputs Terminal 2.0 (DI0), 2.1 (DI1)

Used outputs Terminal 3.0 (DO0)

Counting frequency Depending on operation mode:

Mode 1 - 6: max. 200 kHz

Mode 7: max. 50 kHz

Mode 9: max. 35 kHz

Mode 10: max. 20 kHz

Detailed description See Ä Chapter 1.6.5.1.12 “Fast counters”
on page 3570

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3195

Ordering data

Part no. Description Product life cycle phase *)
1SAP 222 100 R0001 CI521-MODTCP, Modbus TCP com-

munication interface module, 4 AI,
2 AO, 8 DI and 8 DO

Active

1SAP 422 100 R0001 CI521-MODTCP-XC, Modbus TCP
communication interface module, 4 AI,
2 AO, 8 DI and 8 DO, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CI522-MODTCP
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3196

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the digital configurable inputs/outputs (DC0 -

DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI8 - DI15)
5 8 yellow LEDs to display the signal states of the digital outputs (DO8 - DO15)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the IP address
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Sign for XC version

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3197

Intended purpose
Modbus TCP communication interface module CI522-MODTCP is used as decentralized I/O
module in Modbus TCP networks. The network connection is performed via 2 RJ45 connectors
which are integrated in the terminal unit. The communication interface module contains 24 I/O
channels with the following properties:
● 8 digital configurable inputs/outputs in 1 group (1.0...1.7)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the configurable digital inputs/outputs is
performed by software.
For usage in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Interface Ethernet

Protocol Modbus TCP

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches for setting the last BYTE of the IP ADDRESS
(00h to FFh)

Configurable digital inputs/outputs 8 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Required terminal unit TU507 or TU508 Ä Chapter 1.6.3.5.1 “TU507-
ETH and TU508-ETH for Ethernet communi-
cation interface modules” on page 2549

Connections
The Ethernet bus module CI522-MODTCP is plugged on the I/O terminal unit TU507-ETH
Ä Chapter 1.6.3.5.1 “TU507-ETH and TU508-ETH for Ethernet communication interface
modules” on page 2549 or TU508-ETH Ä Chapter 1.6.3.5.1 “TU507-ETH and TU508-ETH for
Ethernet communication interface modules” on page 2549. Properly seat the module and press
until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting
accessory” on page 3329).
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3198

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Conditions for undisturbed operating with older I/O expansion modules
All I/O expansion modules that are attached to the CI52x-MODTCP must be
powered up together with the CI52x-MODTCP if the firmware version of these
I/O expansion modules is V1.9 or lower.

The firmware version is related to the index. The index is printed on the module type label on
the right side.
Modules as of index listed in the following table can be powered up independently.

S500 I/O module type First index with firmware version above 1.9
AI523 D0

AI523-XC D0

AI531 A3

AI531-XC A0

AO523 D0

AO523-XC D0

AX521 D0

AX521-XC D0

AX522 D0

AX522-XC D0

CD522 A2

CD522-XC A0

DA501 A2

DA501-XC A0

DA502 A1

DA502-XC A1

DC522 D0

DC522-XC D0

DC523 D0

DC523-XC D0

DC532 D0

DC532-XC D0

DI524 D0

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3199

S500 I/O module type First index with firmware version above 1.9
DI524-XC D0

DO524 A2

DO524-XC A2

DX522 D0

DX522-XC D0

DX531 D0

AC522 D0

PD501 D0

Do not connect any voltages externally to digital outputs!

This ist not intended usage.

Reason: Externally voltages at one or more terminals DC0...DC7 or
DO8...DO15 may cause that other digital outputs are supplied through that
voltage instead of voltage UP3 (reverse voltage).

This is also possible, if DC channels are used as inputs. For this, the source for
the input signals should be the impressed UP3 of the device.

This limitation does not apply for the input channels DI0..DI7.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO8...DO15 and DC0...DC7.

The assignment of the other terminals:

Terminal Signal Description
1.0 DC0 Signal of the configurable digital input/output

DC0

1.1 DC1 Signal of the configurable digital input/output
DC1

1.2 DC2 Signal of the configurable digital input/output
DC2

1.3 DC3 Signal of the configurable digital input/output
DC3

1.4 DC4 Signal of the configurable digital input/output
DC4

1.5 DC5 Signal of the configurable digital input/output
DC5

1.6 DC6 Signal of the configurable digital input/output
DC6

1.7 DC7 Signal of the configurable digital input/output
DC7

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3200

Terminal Signal Description
2.0 DI8 Signal of the digital input DI8

2.1 DI9 Signal of the digital input DI9

2.2 DI10 Signal of the digital input DI10

2.3 DI11 Signal of the digital input DI11

2.4 DI12 Signal of the digital input DI12

2.5 DI13 Signal of the digital input DI13

2.6 DI14 Signal of the digital input DI14

2.7 DI15 Signal of the digital input DI15

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DO8 Signal of the digital output DO8

3.1 DO9 Signal of the digital output DO9

3.2 DO10 Signal of the digital output DO10

3.3 DO11 Signal of the digital output DO11

3.4 DO12 Signal of the digital output DO12

3.5 DO13 Signal of the digital output DO13

3.6 DO14 Signal of the digital output DO14

3.7 DO15 Signal of the digital output DO15

3.8 UP3 Process voltage UP3 (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3201

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the Ethernet bus module CI522-MODTCP.

Fig. 248: Connection of the communication interface module CI522-MODTCP

Further information is provided in the System Technology chapter Ä Chapter 1.6.5.3.1 “Modbus
communication interface module” on page 3603.

Connection of the digital inputs
The following figure shows the connection of the digital input DI8. Proceed with the digital inputs
DI9 to DI15 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3202

Fig. 249: Connection of the digital inputs to the module CI522-MODTCP

The meaning of the LEDs is described in Displays Ä Chapter 1.6.3.7.4.2.8.1 “State LEDs”
on page 3214.

Connection of the digital outputs
The following figure shows the connection of the digital output DO8. Proceed with the digital
outputs DO9 - DO15 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3203

The meaning of the LEDs is described in Displays Ä Chapter 1.6.3.7.4.2.8.1 “State LEDs”
on page 3214.

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC0 and
DC1. DC0 is connected as an input and DC1 is connected as an output. Proceed with the
configurable digital inputs/outputs DC2 to DC7 in the same way.

CAUTION!
If a DC channel is used as input, the source for the input signals should
be the impressed UP3 of the device Ä Chapter 1.6.3.7.4.2.3 “Connections”
on page 3198.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3204

1.0
DC0
1.1
DC1
1.2
DC2
1.3
DC3
1.4
DC4
1.5
DC5
1.6
DC6
1.7
DC7
1.8
UP
1.9
ZP

-
+

24 V DC

2.4

DI14

2.0
DI8
2.1
DI9
2.2
DI10
2.3
DI11

DI12
2.5
DI13
2.6

2.7
DI15
2.8
UP
2.9
ZP

3.0
DO8
3.1
DO9
3.2
DO10
3.3
DO11
3.4
DO12
3.5
DO13
3.6
DO14
3.7
DO15
3.8
UP3
3.9
ZP

The meaning of the LEDs is described in Displays Ä Chapter 1.6.3.7.4.2.8.1 “State LEDs”
on page 3214.

Assignment of the Ethernet ports
The terminal unit for the Communication Interface Module provides two Ethernet interfaces with
the following pin assignment:

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.4.6.4.7 “Ethernet connection details” on page 3424.

Pin assignment

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3205

Internal data exchange

Digital inputs (bytes) 5

Digital outputs (bytes) 5

Counter input data (words) 4

Counter output data (words) 8

Addressing
The IP address of the CI5221-MODTCP Module can be set with the “ABB IP Configuration
Tool”. Ä Chapter 1.6.6.2.2.4.2 “Configuration of the IP settings with the IP configuration tool”
on page 3675.
If the last byte of the IP is set to 0, the address switch will be used instead.
Address switch position 255 is mapped to fixed IP 192.168.0.254 independent of other stored
settings. This is a backup so the module can always get a valid IP address and can be
configured by the “ABB IP Configuration Tool”.
Address switch position 0 is mapped to last byte equal 1 and DHCP enabled.
The factory setting for the IP is 192.168.0.x (last byte is address switch).

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI522-MODTCP stores configuration parameters (IP address configuration, module param-
eters).
The digital I/O channels are configured via software.
Details about configuration are described in Parameterization Ä Chapter 1.6.3.7.4.2.7 “Parame-
terization” on page 3206.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7405 WORD 7405

Ignore Module Internal 0 BYTE 0

Parameter length Internal 47 BYTE 47

Error LED / Fail-
safe function
(Table Error
LED / Failsafe
function
Ä Table 569 “
Table Error LED /
Failsafe function”
on page 3208)

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3206

Name Value Internal value Internal value,
type

Default

Off by E3 + fail-
safe

19

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Timeout for Bus
supervision

No supervision
10 ms timeout
20 ms timeout

0
1
2

BYTE No supervision

IO Mapping
Structure 3)

Fixed Mapping
Dynamic Map-
ping

0
1

BYTE 0

Reserved Internal 0 ARRAY[0..2] OF
BYTE

0,0,0

Check supply off
on

0
1

BYTE 1

Fast counter 0
:

10 2)

0
:
10

BYTE 0

Remarks:

1) With a faulty ID, the module reports a "parameter error" and does not
perform cyclic process data transmission.

2) Counter operating modes Ä Chapter 1.6.3.6.1.2.9 “Fast counter”
on page 2776

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3207

3) Fixed Mapping means each module has its own Modbus registers
for data transfer independent of the I/O bus constellation descrip-
tion. For details see Ä Chapter 1.6.5.3.1.2 “Modbus TCP registers”
on page 3604.
Dynamic mapping means the structure of the IO Date is dependent on
the I/O bus constellation. Each I/O bus expansion module starts directly
after the module before on the next Word adress.

4) If none of the parameters is set all masters / clients in the network have
read and write rights on the CI52x-MODTCP device and its connected
expansion modules.
If at least one parameter is set only the configured masters / clients have
write rights on the CI52x-MODTCP device, all other masters / clients still
have read access to the CI52x-MODTCP device.

Table 569: Table Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe-mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode off

On + Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe-mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode on *)

*) The parameter Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.

Group parameters for the digital part

Name Value Internal
value

Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3208

Name Value Internal
value

Internal value,
type

Default

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value 5
sec
Substitute value 10
sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 65535 0000h ...
FFFFh

WORD 0
0x0000

Preventive
voltage feedback
monitoring for
DC0..DC7 2)

Off
On

0
1

BYTE Off
0x00

Detect voltage
overflow at out-
puts 3)

Off
On

0
1

BYTE Off
0x00

Remarks:

1) The parameter Behaviour DO at comm. error is apply to DC and DO
channels and only analyzed if the Failsafe-mode is ON.

2) The state "externally voltage detected" appears, if the output of a
channel DC0...DC7 should be switched on while an externally voltage
is connected. In this case the start up is disabled, as long as the exter-
nally voltage is connected. The monitoring of this state and the resulting
diagnosis message can be disabled by setting the parameters to "OFF".

3) The error state "voltage overflow at outputs" appears, if externally
voltage at digital outputs DC0...DC7 and accordingly DO8...DO15 has
exceeded the process supply voltage UP3 Ä Chapter 1.6.3.7.4.2.3
“Connections” on page 3198 (see description in section). The according
diagnosis message "Voltage overflow on outputs " can be disabled by
setting the parameters on "OFF". This parameter should only be disa-
bled in exceptional cases for voltage overflow may produce reverse
voltage.

Diagnosis
Structure of the Diagnosis Block

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3209

Byte Number Description Possible Values
1 Diagnosis Byte, slot

number
31 = CI502-PNIO (e. g. error at integrated
8 DI / 8 DO)
1 = 1st connected S500 I/O Module
...
10 = 10th connected S500 I/O Module

2 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

3 Diagnosis Byte, channel According to the I/O bus specification
passed on by modules to the fieldbus
master

4 Diagnosis Byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

6 Reserved 0

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

For diagnosis firmware version ³ 3.2.6 is required.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3210

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
Master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3211

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 1...6 255 2 0 45 The connected
Communication
Module has no con-
nection to the net-
work

Check
cabeling

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3212

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

4 - 31 31 31 46 Reverse voltage
from digital out-
puts DO8...DO15 to
UP3 4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
at outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 8..15 46 Externally voltage
detected at digital
output DO8...DO15
6)

Check
terminals

4 - 31 4 0...7 46 Externally voltage
detected at digital
output DC0...DC7
6)

Check
terminals

4 - 31 4 0...7 47 Short circuit at
digital output
DC0...DC77)

Check
terminals

4 - 31 2 8...15 47 Short circuit at
digital output
DO8...DO157)

Check
terminals

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3213

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI502-PNIO diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself, 1..10 = Expan-
sion module

3) With "Module" the following allocation applies dependent of the master:
Module error: 31 = Module itself
Channel error: Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals DC0...DC7
oder DO8...DO15 cause that other digital outputs are supplied through
that voltage (voltage feedback, see description in 'Connections' Ä Chapter
1.6.3.7.4.2.3 “Connections” on page 3198. All outputs of the apply digital output
groups will be turned off for 5 seconds. The diagnosis message appears for the
whole output group.

5) The voltage at digital outputs DC0...DC7 and accordingly DO8...DO15 has
exceeded the process supply voltage UP3 Ä Chapter 1.6.3.7.4.2.3 “Connec-
tions” on page 3198. Diagnosis message appears for the whole module.

6) This message appears, if the output of a channel DC0...DC7 or DO8...DO15
should be switched on while an externally voltage is connected. In this case the
start up is disabled, as long as the externally voltage is connected. Otherwise
this could produce reverse voltage from this output to other digital outputs. This
diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for 2000ms.
Then a new start up will be executed. This diagnosis message appears per
channel.

8) In case of an I/O module doesn’t support hot swapping, do not perform any hot
swap operations (also not on any other terminal units (slots)) as modules may be
damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 570: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O Con-
troller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3214

LED Color OFF ON Flashing
STA1 ETH
(System LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

Device config-
ured, acyclic data
exchange run-
ning

Red --- Communication
error (timeout)
appeared

IP address error

STA2 ETH
(System LED
"SF")

Green Device has valid
parameters

Device is running
parameterization
sequenze

Device has no
parameters

Red --- --- Device has
invalid parame-
ters

S-ERR Red No error Internal error --

I/O-Bus Green No expansion
modules con-
nected or com-
munication error

Expansion
modules con-
nected and
operational

ETH1 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

Table 571: States of the 29 process LEDs
LED Color OFF ON Flashing
DC0 to DC7 Yellow Input/Output is

OFF
Input/Output is
ON

--

DI8 to DI15 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO8 to DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3215

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.15 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of configurable digital inputs/outputs 8

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Ethernet 10/100 base-TX, internal switch, 2 x RJ45
socket

Setting of the I/O device identifier With 2 rotary switches at the front side of the
module

Diagnosis See Diagnosis and Displays Ä Chapter
1.6.3.7.4.2.8 “Diagnosis” on page 3209

Operation and error displays 34 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at 40°C per group)

Extended ambient temperature (XC version) > 60 °C on request

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3216

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI8 to DI15 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3217

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO8 to DO15 Terminals 3.0 to 3.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 250: Digital input/output (circuit diagram)

1 Digital Output
2 Varistors for demagnetization when inductive loads are turned off

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3218

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC0...DC7 Terminals 1.0...1.7

If the channels are used as outputs

 Channels DC0...DC7 Terminals 1.0...1.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation From the Ethernet network

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 1.0 to 1.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V *)

 Undefined Signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3219

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 1.0 to 1.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of
the supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0,8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3220

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 251: Digital input/output (circuit diagram)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Technical data of the fast counter

Parameter Value
Used inputs Terminal 2.0 (DI8),Terminal 2.1 (DI9)

Used outputs Terminal 3.0 (DO8)

Counting frequency Depending on operation mode:
Mode 1- 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Detailed description See Ä Chapter 1.6.5.1.12 “Fast counters”
on page 3570

Ordering data

Ordering No. Scope of delivery Product life cycle phase *)
1SAP 222 200
R0001

CI522-MODTCP, Modbus TCP com-
munication interface module, 8 DC,
8 DI and 8 DO

Active

1SAP 422 200
R0001

CI522-MODTCP-XC, Modbus TCP
communication interface module,
8 DC, 8 DI and 8 DO, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.3.7.5 PROFINET
Comparison of the CI5xx-PNIO modules

The PROFINET IO devices combine the advantages of decentralized I/O modules with the
reaction time of AC500 mounted central I/O modules. The devices for PROFINET provide the
extension -PNIO in the device name.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3221

The communication module CM579-PNIO acts as I/O controller in a PROFINET network. It
is connected to the processor module via an internal communication bus. Depending on the
terminal base, several communication modules can be used for one processor module.
The communication interface modules CI5xx-PNIO act as I/O devices in a PROFINET network.
Additionally the communication module CM589-PNIO(-4) can be used to setup a AC500 PLC to
act as I/O module in a PROFINET network.

The difference of the CI5xx-PNIO devices can be found in their input and output characteristics
Ä Chapter 1.6.3.7.5.1.1.1 “Characteristics of CI50x-PNIO” on page 3222.

PROFINET IO devices CI50x-PNIO
Characteristics of CI50x-PNIO

Parameter Value
Bus connection 2 x RJ45

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability Max. 10 S500 I/O modules

Adjusting elements 2 rotary switches for generation of an explicit
name

Supported protocols RTC - real time cyclic protocol, class 1 *)
RTA - real time acyclic protocol
DCP - discovery and configuration protocol
CL-RPC - connectionless remote procedure
Call
LLDP - link layer discovery protocol
MRP - MRP Client

Acyclic services PNIO read / write sequence (max. 1024 bytes
per telegram)
Process-Alarm service

Supported alarm types Process Alarm, Diagnostic Alarm, Return of
SubModule, Plug Alarm, Pull Alarm

Min. bus cycle 1 ms

Conformance class CC A

Protective functions (according to
IEC 61131-3)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation from the rest of the module

*) Priorization with the aid of VLAN-ID including priority level

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3222

Input/Output characteristics of CI501-PNIO
The PROFINET communication interface module CI501-PNIO is used as decentralized I/O
module in PROFINET networks. The network connection is performed via 2 RJ45 connectors
which are integrated in the terminal unit. The communication interface module contains 22 I/O
channels with the following properties:
● 4 analog inputs (1.0...1.3), configurable as:

– -10 ... +10 V
– 0 ... +10 V
– -10 ... +10 V (differential voltage)
– 0 ... 20 mA
– 4 ... 20 mA
– Pt100 , Pt1000, Ni1000 (for each 2-wire and 3-wire)
– 24 V digital input function

● 2 analog outputs (1.5...1.6), configurable as:
– -10 ... +10 V
– 0 ... 20 mA
– 4 ... 20 mA

● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital transistor outputs 24 V DC (0.5 A max.) in 1 group (3.0...3.7)
● Resolution of the analog channels: 12 bits
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.
For usage in enhanced ambient conditions (e.g. wider temperature and humidity range), a
special XC version of the device is available.

Input/Output characteristics of CI502-PNIO
● 8 digital inputs 24 V DC
● 8 digital transistor outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● XC version for usage in extreme ambient conditions available

Technical data of the serial interfaces of CI504-PNIO

Parameter Value
Number of serial interfaces 3

Connectors for serial interfaces X11 for COM1
X12 for COM2
X13 for COM3

Supported physical layers RS-232
RS-422
RS-485

Supported protocols ASCII

Transmission rate Configurable from 300 bit/s to 115.200 bit/s

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3223

CI501-PNIO
● 4 analog inputs, 2 analog outputs, 8 digital inputs, 8 digital outputs
● Resolution 12 bits plus sign
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 - AI3, AO0 -

AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 - DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 - DO7)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the I/O device identifier
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3224

12 Terminal unit
13 DIN rail

Sign for XC version

Intended purpose
The PROFINET communication interface modules CI501-PNIO and CI502-PNIO are used
as communication interface modules in PROFINET networks. The network connection is per-
formed by Ethernet cables which are inserted in the RJ45 connectors in the terminal unit. An
Ethernet switch in the communication interface module allows daisy chaining of the network.
For usage in enhanced ambient conditions (e.g. wider temperature and humidity range), a
special XC version of the device is available.

Functionality
The communication interface module contains 22 I/O channels with the following properties:
● 4 configurable analog inputs (2-wire / single-ended) or 2 configurable analog inputs (3-wire /

differential) (1.0...1.3)
● 2 analog outputs (1.5...1.6)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC, 0.5 A max. in 1 group (3.0...3.7)
The inputs/outputs are galvanically isolated from the PROFINET network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.

Parameter Value
Interface Ethernet

Protocol PROFINET IO RT

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the I/O device identifier for configu-
ration purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU507 or TU508 Ä Chapter 1.6.3.5.1 “TU507-
ETH and TU508-ETH for Ethernet communica-
tion interface modules” on page 2549

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3225

Connections
The Ethernet communication interface module CI501-PNIO is plugged on the I/O terminal unit
TU507-ETH or TU508-ETH Ä Chapter 1.6.3.5.1 “TU507-ETH and TU508-ETH for Ethernet
communication interface modules” on page 2549. Properly seat the module and press until it
locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall mounting accessory”
on page 3329).
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Do not connect any voltages externally to digital outputs!

Reason: External voltages at an output or several outputs may cause that
other outputs are supplied through that voltage instead of voltage UP3 (reverse
voltage). This is unintended usage.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is connected at the outputs
DO0...DO7.

The assignment of the other terminals:

Terminal Signal Description
1.0 AI0+ Positive pole of analog input signal 0

1.1 AI1+ Positive pole of analog input signal 1

1.2 AI2+ Positive pole of analog input signal 2

1.3 AI3+ Positive pole of analog input signal 3

1.4 AI- Negative pole of analog input signals 0 to 3

1.5 AO0+ Positive pole of analog output signal 0

1.6 AO1+ Positive pole of analog output signal 1

1.7 AI- Negative pole of analog output signals 0 and 1

1.8 UP Process voltage UP (24 V DC)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3226

Terminal Signal Description
1.9 ZP Process voltage ZP (0 V DC)

2.0 DI0 Signal of the digital input DI0

2.1 DI1 Signal of the digital input DI1

2.2 DI2 Signal of the digital input DI2

2.3 DI3 Signal of the digital input DI3

2.4 DI4 Signal of the digital input DI4

2.5 DI5 Signal of the digital input DI5

2.6 DI6 Signal of the digital input DI6

2.7 DI7 Signal of the digital input DI7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DO0 Signal of the digital output DO0

3.1 DO1 Signal of the digital output DO1

3.2 DO2 Signal of the digital output DO2

3.3 DO3 Signal of the digital output DO3

3.4 DO4 Signal of the digital output DO4

3.5 DO5 Signal of the digital output DO5

3.6 DO6 Signal of the digital output DO6

3.7 DO7 Signal of the digital output DO7

3.8 UP3 Process voltage UP3 (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3227

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figures show the connection of the Ethernet bus module CI501-PNIO.

Further information is provided in the System Technology chapter Ä Chapter 1.6.5.3.2
“PROFINET communication interface module” on page 3629.

Connection of the digital inputs
The following figure shows the connection of the digital input DI0. Proceed with the digital inputs
DI1 to DI7 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3228

The meaning of the LEDs is described in Displays Ä Chapter 1.6.3.7.5.2.8.2 “State LEDs”
on page 3253.

Connection of the digital outputs
The following figure shows the connection of the digital output DO0. Proceed with the digital
outputs DO1 - DO7 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3229

The meaning of the LEDs is described in Displays Ä Chapter 1.6.3.7.5.2.8.2 “State LEDs”
on page 3253.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI501-PNIO provides a constant current source which is multiplexed over the max. 4 analog
input channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration to
the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3230

The following measuring ranges can be configured Ä Chapter 1.6.3.7.5.2.7 “Parameterization”
on page 3242 Ä Chapter 1.6.3.7.5.2.9.1 “Input ranges voltage, current and digital input”
on page 3255:

Pt100 -50 °C...+400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, 1
channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.5.2.8 “Diagnosis and state LEDs” on page 3248.
The module CI501-PNIO performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI501-PNIO provides a constant current source which is multiplexed over the max. 4 analog
input channels.
The following figure shows the connection of resistance thermometers in 3-wire configuration to
the analog inputs AI0 and AI1. Proceed with the analog inputs AI2 and AI3 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3231

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 1.6.3.7.5.2.7 “Parameterization”
on page 3242 Ä Chapter 1.6.3.7.5.2.9.1 “Input ranges voltage, current and digital input”
on page 3255:

Pt100 -50 °C...+70 °C 3-wire configuration, 2 chan-
nels used

Pt100 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C...+150 °C 3-wire configuration, 2 chan-
nels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.5.2.8 “Diagnosis and state LEDs” on page 3248.
The module CI501-PNIO performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3232

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

The following measuring ranges can be configured Ä Chapter 1.6.3.7.5.2.7 “Parameterization”
on page 3242 Ä Chapter 1.6.3.7.5.2.9.1 “Input ranges voltage, current and digital input”
on page 3255:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.5.2.8 “Diagnosis and state LEDs” on page 3248.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3233

The following measuring ranges can be configured Ä Chapter 1.6.3.7.5.2.7 “Parameterization”
on page 3242 Ä Chapter 1.6.3.7.5.2.9.1 “Input ranges voltage, current and digital input”
on page 3255:

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.5.2.8 “Diagnosis and state LEDs” on page 3248.
Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range 4 mA...20
mA, these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to
AI3 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3234

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V).
Make sure that the potential difference never exceeds ±1 V (also not with long
cable lengths).

The following measuring ranges can be configured Ä Chapter 1.6.3.7.5.2.7 “Parameterization”
on page 3242 Ä Chapter 1.6.3.7.5.2.7 “Parameterization” on page 3242:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.5.2.8 “Diagnosis and state LEDs” on page 3248.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3235

The following measuring ranges can be configured Ä Chapter 1.6.3.7.5.2.7 “Parameterization”
on page 3242 Ä Chapter 1.6.3.7.5.2.9.1 “Input ranges voltage, current and digital input”
on page 3255:

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.5.2.8 “Diagnosis and state LEDs” on page 3248.

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Use only sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt zener diode in parallel to AIx+ and ZP.

Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range
4 mA...20 mA, these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful, if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3236

With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V).
Make sure that the potential difference never exceeds ±1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

The following measuring ranges can be configured Ä Chapter 1.6.3.7.5.2.7 “Parameterization”
on page 3242 Ä Chapter 1.6.3.7.5.2.9.1 “Input ranges voltage, current and digital input”
on page 3255:

Voltage 0 V...10 V With differential inputs, 2
channels used

Voltage -10 V...+10 V With differential inputs, 2
channels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.5.2.8 “Diagnosis and state LEDs” on page 3248.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3237

To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.
The following figure shows the connection of digital sensors to the analog input AI0. Proceed
with the analog inputs AI1 to AI3 in the same way.

Fig. 252: Use of analog inputs as digital inputs

The following measuring ranges can be configured Ä Chapter 1.6.3.7.5.2.7 “Parameterization”
on page 3242 Ä Chapter 1.6.3.7.5.2.9.1 “Input ranges voltage, current and digital input”
on page 3255 :

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.5.2.8 “Diagnosis and state LEDs” on page 3248.

Connection of analog output loads (Voltage)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3238

Fig. 253: Connection of analog output loads (voltage)

The following measuring ranges can be configured Ä Chapter 1.6.3.7.5.2.7 “Parameterization”
on page 3242 Ä Chapter 1.6.3.7.5.2.9.1 “Input ranges voltage, current and digital input”
on page 3255

Voltage -10 V...+10 V Load ±10 mA max. 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.5.2.8 “Diagnosis and state LEDs” on page 3248.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3239

Fig. 254: Connection of analog output loads (current)

The following measuring ranges can be configured Ä Chapter 1.6.3.7.5.2.7 “Parameterization”
on page 3242 Ä Chapter 1.6.3.7.5.2.9.1 “Input ranges voltage, current and digital input”
on page 3255:

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.3.7.5.2.8 “Diagnosis and state LEDs” on page 3248.
Unused analog outputs can be left open-circuited.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment:

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

Pin assignment

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3240

Interface PIN Signal Description
8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.4.6.4.7 “Ethernet connection details” on page 3424.

Internal data exchange

Parameter Value
Digital inputs (bytes) 3

Digital outputs (bytes) 3

Analog inputs (words) 4

Analog outputs (words) 2

Counter input data (words) 4

Counter output data (words) 8

Addressing

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI501-PNIO stores some PROFINET configuration parameters (I/O device identifier, I/O
device type and IP address configuration). No more configuration data is stored.
The analog/digital I/O channels are configured via software.
Details about configuration are described in Parameterization Ä Chapter 1.6.3.7.5.2.7 “Parame-
terization” on page 3242.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3241

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7000 WORD 7000

Parameter length Internal 25 BYTE 25

Error LED / Fail-
safe function see
table Error LED /
Failsafe function
Ä Table 572 “Err
or LED / Failsafe
function”
on page 3243

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

Process cycle
time 2)

1 ms process
cycle time

1 BYTE 1 ms

2 ms process
cycle time

2

3 ms process
cycle time

3

4 ms process
cycle time

4

5 ms process
cycle time

5

6 ms process
cycle time

6

7 ms process
cycle time

7

8 ms process
cycle time

8

9 ms process
cycle time

9

10 ms process
cycle time

10

11 ms process
cycle time

11

12 ms process
cycle time

12

13 ms process
cycle time

13

14 ms process
cycle time

14

15 ms process
cycle time

15

16 ms process
cycle time

16

Check supply off
on

0
1

BYTE 1

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3242

Name Value Internal value Internal value,
type

Default

Input delay 8 ms 8 ms BYTE 8 ms

Fast counter 0
:

10 3)

0
:
10

BYTE 0

Detect short cir-
cuit at outputs

On 1 BYTE On

Behavior digital
outputs at comm.
error

Off 0 BYTE Off

Substitute value
digital outputs

0 0..255 BYTE 0

Overvoltage
behavior on
output

Off 0 BYTE Off

Behavior analog
outputs atcomm.
error

Off 0 BYTE Off

I/O-Bus reset Off 0 BYTE Off

On 1 BYTE Off

Remarks:

1) With a faulty ID, the modules reports a "parameter error" and does not perform
cyclic process data transmission.

2) As for device index C0 the parameter is no longer evaluated.
3) Counter operating modes, see description of the Fast counter Ä Chapter

1.6.3.6.1.2.9 “Fast counter” on page 2776.

Table 572: Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe-mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode off

On +Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe-mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode on *)

*) The parameters Behaviour AO at comm. error and Behaviour DO at comm. error are only
analyzed if the Failsafe-mode is ON.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3243

IO-BUS reset after PROFINET reconnection controls the behavior of PROFINET CI modules in
relation to connected I/O modules (both safety and non-safety I/O modules).
● IO-BUS reset after PROFINET reconnection = “On” resets and, thus, re-parameterizes

all attached I/O modules. All internal I/O modules states are reset, including the related
diagnosis information.
Note that if the parameter is set to “On” then:
– The bumpless re-start of non-safety I/O modules will not be supported. It means, for

example, that non-safety output channels will go from fail-safe values to “0” values
during the re-connection and re-parameterization time and after that go to new output
values.

– Safety I/O modules will be re-parameterized and re-started as newly started modules,
which may not require their PROFIsafe reintegration, depending on safety CPU state, in
the safety application.

● IO-BUS reset after PROFINET reconnection = “Off” will not reset all attached I/O modules. It
will re-parameterize I/O modules only if parameter change is detected during the reconnec-
tion. All internal I/O modules states are not reset, including the related diagnosis informa-
tion.
Note that if the parameter is set to “Off” then:
– The bumpless re-start of non-safety I/O modules is supported (if no parameters are

changed). It means, for example, that non-safety output channels will not go from fail-
safe values to “0” values during the re-connection and re-parameterization time, but
directly from fail-safe values to new output values.

– Safety I/O modules will not be re-parameterized (if no parameters are changed). Thus,
they may continue their operation, which may require their PROFIsafe reintegration in
the safety application on the safety CPU, e.g., if PROFIsafe watchdog time for this
safety I/O module has expired. Any reintegration of such safety I/O modules will be
not only application specific but also PROFIsafe specific and depend on the safety I/O
handling in the safety application.

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard
Reserved

0
255

BYTE 0

Behaviour AO at
comm. error *)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe-mode is ON.

IO-BUS reset
after PROFINET
reconnection

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3244

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, Channel
configuration

Table Operating
modes of the
analog inputs
Ä Table 573 “Ch
annel configura-
tion”
on page 3245

Table Operating
modes of the
analog inputs
Ä Table 573 “Ch
annel configura-
tion”
on page 3245

BYTE 0

Input 0, Check
channel

Table Channel
montoring
Ä Table 574 “Ch
annel monitoring”
on page 3246

Table Channel
montoring
Ä Table 574 “Ch
annel monitoring”
on page 3246

BYTE 0

: : : : :

: : : : :

Input 3, Channel
configuration

Table Operating
modes of the
analog inputs
Ä Table 573 “Ch
annel configura-
tion”
on page 3245

Table Operating
modes of the
analog inputs
Ä Table 573 “Ch
annel configura-
tion”
on page 3245

BYTE 0

Input 3, Check
channel

Table Channel
montoring
Ä Table 574 “Ch
annel monitoring”
on page 3246

Table Channel
montoring
Ä Table 574 “Ch
annel monitoring”
on page 3246

BYTE 0

Table 573: Channel configuration
Internal value Operating modes of the analog inputs, individually configurable
0 (default) Not used

1 0 V...10 V

2 Digital input

3 0 mA...20 mA

4 4 mA...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50 °C...+400 °C

9 3-wire Pt100 -50 °C...+400 °C *)

10 0 V...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C...+70 °C

15 3-wire Pt100 -50 °C...+70 °C *)

16 2-wire Pt1000 -50 °C...+400 °C

17 3-wire Pt1000 -50 °C...+400 °C *)

18 2-wire Ni1000 -50 °C...+150 °C

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3245

Internal value Operating modes of the analog inputs, individually configurable
19 3-wire Ni1000 -50 °C...+150 °C *)

*) In the operating modes with 3-wire configuration or with differential inputs, two adjacent
analog inputs belong together (e.g. the channels 0 and 1). In these cases, both channels
are configured in the desired operating mode. The lower address must be the even address
(channel 0). The next higher address must be the odd address (channel 1). The converted
analog value is available at the higher address (channel 1).

Table 574: Channel monitoring
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
Channel configu-
ration

Table Operating
modes of the
analog outputs
Ä Further infor-
mation
on page 3247

Table Operating
modes of the
analog outputs
Ä Further infor-
mation
on page 3247

BYTE 0

Output 0, Check
channel

Table Channel
monitoring
Ä Table 576 “Ch
annel monitoring”
on page 3247

Table Channel
monitoring
Ä Table 576 “Ch
annel monitoring”
on page 3247

BYTE 0

Output 0, Substi-
tute value

Table Substitute
value
Ä Table 577 “Su
bstitute value”
on page 3247

Table Substitute
value
Ä Table 577 “Su
bstitute value”
on page 3247

WORD 0

Output 1,
Channel configu-
ration

Table Operating
modes of the
analog outputs
Ä Further infor-
mation
on page 3247

Table Operating
modes of the
analog outputs
Ä Further infor-
mation
on page 3247

BYTE 0

Output 1, Check
channel

Table Channel
monitoring
Ä Table 576 “Ch
annel monitoring”
on page 3247

Table Channel
monitoring
Ä Table 576 “Ch
annel monitoring”
on page 3247

BYTE 0

Output 1, Substi-
tute value

Table Substitute
value
Ä Table 577 “Su
bstitute value”
on page 3247

Table Substitute
value
Ä Table 577 “Su
bstitute value”
on page 3247

WORD 0

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3246

Table 575: Channel configuration
Internal value Operating modes of the analog outputs, individually configu-

rable
0 (default) Not used

128 -10 V...+10 V

129 0 mA...20 mA

130 4 mA...20 mA

Table 576: Channel monitoring
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 577: Substitute value
Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3247

Name Value Internal value Internal value,
type

Default

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0...255 00h...FFh BYTE 0
0x0000

Detect voltage
overflow at out-
puts 2)

Off
On

0
1

BYTE On
0x01

1) The parameters Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.
2) The state "externally voltage detected" appears, if the output of a channel DC0...DC7
should be switched on while an externally voltage is connected Ä Chapter 1.6.3.7.5.2.3
“Connections” on page 3226. In this case the start up is disabled, as long as the externally
voltage is connected. The monitoring of this state and the resulting diagnosis message can be
disabled by setting the parameters to "OFF".

Diagnosis and state LEDs
Structure of the diagnosis block via PNIO_DEV_ALARM function block

Byte Number Description Possible Values
1 Diagnosis Byte, slot number 31 = CI501-PNIO (e. g. error at inte-

grated 8 DI / 8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

3 Diagnosis Byte, channel According to the I/O bus specification
passed on by modules to the fieldbus
master

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3248

Byte Number Description Possible Values
4 Diagnosis Byte, error code According to the I/O bus specification

Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3249

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 No process voltage
UP

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3250

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs DO0...DO7
on UP3 4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 1...6 255 2 0 45 The connected
Communication
Module has no con-
nection to the net-
work

Check
cabeling

4 - 31 31 31 45 No process voltage
UP3

Check
process
supply
voltage

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3251

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 0...7 46 Externally voltage
detected at digital
output DO0...DO7
6)

Check
terminals

4 - 31 2 0...7 47 Short circuit at dig-
ital output 7)

Check
terminals

Channel error analog

4 - 31 1 0...3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0...3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0...3 47 Short circuit at an
analog input

Check
terminals

4 - 31 3 0...1 4 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0...1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3252

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0...4 or 10 = Position of the
communication module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI501-PNIO diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself; 1...10 =
Expansion module

3) With "Module" the following allocation applies:
31 = Module itself
Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals
DO0...DO7 cause that other digital outputs are supplied through that voltage
Ä Chapter 1.6.3.7.5.2.3 “Connections” on page 3226. All outputs of the
apply digital output groups will be turned off for 5 seconds. The diagnosis
message appears for the whole output group.

5) The voltage on digital outputs DO0...DO7 has overrun the process supply
voltage UP3 Ä Chapter 1.6.3.7.5.2.3 “Connections” on page 3226. Diag-
nosis message appears for the whole module.

6) This message appears, if the output of a channel DO0...DO7 should be
switched on while an externally voltage is connected. In this case the start
up is disabled, as long as the externally voltage is connected. Otherwise this
could produce reverse voltage from this output to other digital outputs. This
diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for
100 ms. Then a new start up will be executed. This diagnosis message
appears per channel.

8) In case of an I/O module doesn’t support hot swapping, do not perform any
hot swap operations (also not on any other terminal units (slots)) as modules
may be damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 578: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O Con-
troller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1 ETH
(System LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3253

LED Color OFF ON Flashing
Red --- --- Device is not

configured

STA2 ETH
(System LED
"SF")

Green --- --- Got identification
request from I/O
controller

Red No system error System error
(collective error)

S-ERR Red No error Internal error --

I/O-Bus Green No expansion
modules con-
nected or com-
munication error

Expansion
modules con-
nected and
operational

ETH1 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

Table 579: States of the 27 process LEDs
LED Color OFF ON Flashing
AI0 to AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 to AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 to DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 to DO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3254

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value
Decimal Hex.

Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
:
-10.0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Under-
flow

<0.0000 <-11.7589 <0.0000 <0.0000 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50...+70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value
Decimal Hex.

Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured
value too
high

80.0 °C 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

Normal
range

 400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

800
:
701

0320
:
02BD

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3255

Range Pt100 / Pt1000
-50...+70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value
Decimal Hex.

 0.0 °C 0.0 °C 4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

 -0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

0 0000

Measured
value too
low

< -60.0 °C -50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-1
:
-500

FFFF
:
FE0C

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -501
:
-600

FE0B
:
FDA8

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow > 11.7589 V > 23.5178

mA
> 22.8142
mA

> 32511 > 7EFF

Measured
value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal
range

10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow < -11.7589 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3256

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of analog inputs 4

Number of analog outputs 2

Input data length 2 bytes

Output data length 2 bytes

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the I/O device identifier With 2 rotary switches at the front side of the
module

Diagnose See Diagnosis and Displays Ä Chapter
1.6.3.7.5.2.8 “Diagnosis and state LEDs”
on page 3248

Operation and error displays 32 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at 40 °C per group)

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3257

Parameter Value
Extended ambient temperature (XC version) >60 °C on request

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Parameter Value
Bus connection 2 x RJ45

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability Max. 10 S500 I/O modules

Adjusting elements 2 rotary switches for generation of an explicit
name

Supported protocols RTC - real time cyclic protocol, class 1 *)
RTA - real time acyclic protocol
DCP - discovery and configuration protocol
CL-RPC - connectionless remote procedure
Call
LLDP - link layer discovery protocol
MRP - MRP Client

Acyclic services PNIO read / write sequence (max. 1024 bytes
per telegram)
Process-Alarm service

Supported alarm types Process Alarm, Diagnostic Alarm, Return of
SubModule, Plug Alarm, Pull Alarm

Min. bus cycle 1 ms

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3258

Parameter Value
Conformance class CC A

Protective functions (according to
IEC 61131-3)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation from the rest of the module

*) Priorization with the aid of VLAN-ID including priority level

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3259

Parameter Value
Terminals of the channels DO0 to DO7 Terminals 3.0 to 3.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3260

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 1.0 to1.3

Reference potential for AI0+ to AI3+ Terminal 1.4 (AI-) for voltage and RTD meas-
urement
Terminal 1.9, 2.9 and 3.9 for current measure-
ment

Input type

 Unipolar Voltage 0 V... 10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V... +10 V

Galvanic isolation Against Ethernet network

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA, 4
mA...20 mA Pt100/1000, Ni1000 (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Tables Input ranges voltage, current and dig-
ital input and Input range resistance tem-
perature detector Ä Chapter 1.6.3.7.5.2.9.1
“Input ranges voltage, current and digital input”
on page 3255

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3261

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 1.0 to 1.3

Reference potential for the inputs Terminals 1.9, 2.9 and 3.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 1.5...1.6

Reference potential for AO0+ to AO1+ Terminal 1.7 (AO-) for voltage output terminal
1.9, 2.9 and 3.9 for current output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA
(each output can be configured individually)

Output resistance (load), as current output 0 W...500 W

Output loadability, as voltage output ±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3262

Parameter Value
Relationship between input signal and hex
code

Table Output ranges voltage and current
Ä Chapter 1.6.3.7.5.2.9.3 “Output ranges
voltage and current” on page 3256

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Technical data of the fast counter

Parameter Value
Used inputs Terminal 2.0 (DI0), 2.1 (DI1)

Used outputs Terminal 3.0 (DO0)

Counting frequency Depending on operation mode:
Mode 1 - 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Ä Chapter 1.6.5.1.12 “Fast counters” on page 3570

Ordering data

Part no. Description Product life cycle phase *)
1SAP 220 600 R0001 CI501-PNIO (V3), PROFINET commu-

nication interface module, 8 DI, 8 DO,
4 AI and 2 AO

Active

1SAP 420 600 R0001 CI501-PNIO-XC (V3), PROFINET
communication interface module, 8 DI,
8 DO, 4 AI and 2 AO, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CI502-PNIO
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3263

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the digital configurable inputs/outputs (DC0 -

DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI8 - DI15)
5 8 yellow LEDs to display the signal states of the digital outputs (DO8 - DO15)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the I/O device identifier
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Sign for XC version

Intended purpose
The PROFINET communication interface module CI502-PNIO is used as communication inter-
face module in PROFINET networks. The network connection is performed via 2 RJ45 connec-
tors which are integrated in the terminal unit.
For usage in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3264

Functionality
The CI502 communication interface module contains 24 I/O channels with the following proper-
ties:
● 8 digital configurable inputs/outputs
● 8 digital inputs: 24 V DC
● 8 digital outputs: 24 V DC, 0.5 A max.
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.

Parameter Value
Interface Ethernet

Protocol PROFINET IO RT

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the IO device identifier for configura-
tion purposes (00h to FFh)

Configurable digital inputs/outputs 8 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU507-ETH or TU508-ETH Ä Chapter
1.6.3.5.1 “TU507-ETH and TU508-ETH for
Ethernet communication interface modules”
on page 2549

Connections
The Ethernet communication interface module CI502-PNIO is plugged on the I/O terminal unit
TU507-ETH Ä Chapter 1.6.3.5.1 “TU507-ETH and TU508-ETH for Ethernet communication
interface modules” on page 2549 or TU508-ETH Ä Chapter 1.6.3.5.1 “TU507-ETH and TU508-
ETH for Ethernet communication interface modules” on page 2549. Properly seat the module
and press until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws
plus the additional accessory for wall mounting (TA526 Ä Chapter 1.6.3.8.2.6 “TA526 - Wall
mounting accessory” on page 3329).
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.4.6 “AC500 (Standard)” on page 3398.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3265

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V.
The assignment of the other terminals:

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Do not connect any voltages externally to digital outputs!

This ist not intended usage.

Reason: Externally voltages at one or more terminals DC0..DC7 or DO0..DO7
may cause that other digital outputs are supplied through that voltage instead of
voltage UP3 (reverse voltage).

This is also possible, if DC channels are used as inputs. For this, the source for
the input signals should be the impressed UP3 of the device.

This limitation does not apply for the input channels DI0..DI7.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO0...DO7 and DC0...DC7.

The assignment of the other terminals:

Terminal Signal Description
1.0 DC0 Signal of the configurable digital input/output

DC0

1.1 DC1 Signal of the configurable digital input/output
DC1

1.2 DC2 Signal of the configurable digital input/output
DC2

1.3 DC3 Signal of the configurable digital input/output
DC3

1.4 DC4 Signal of the configurable digital input/output
DC4

1.5 DC5 Signal of the configurable digital input/output
DC5

1.6 DC6 Signal of the configurable digital input/output
DC6

1.7 DC7 Signal of the configurable digital input/output
DC7

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3266

Terminal Signal Description
2.0 DI8 Signal of the digital input DI8

2.1 DI9 Signal of the digital input DI9

2.2 DI10 Signal of the digital input DI10

2.3 DI11 Signal of the digital input DI11

2.4 DI12 Signal of the digital input DI12

2.5 DI13 Signal of the digital input DI13

2.6 DI14 Signal of the digital input DI14

2.7 DI15 Signal of the digital input DI15

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DO8 Signal of the digital output DO8

3.1 DO9 Signal of the digital output DO9

3.2 DO10 Signal of the digital output DO10

3.3 DO11 Signal of the digital output DO11

3.4 DO12 Signal of the digital output DO12

3.5 DO13 Signal of the digital output DO13

3.6 DO14 Signal of the digital output DO14

3.7 DO15 Signal of the digital output DO15

3.8 UP3 Process voltage UP3 (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3267

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the Ethernet communication interface module
CI502-PNIO.

Further information is provided in the System Technology chapter PROFINET Ä Chapter
1.6.5.3.2 “PROFINET communication interface module” on page 3629.

Connection of the Digital inputs
The following figure shows the connection of the digital input DI8. Proceed with the digital inputs
DI9 to DI15 in the same way.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3268

The meaning of the LEDs is described in Displays Ä Chapter 1.6.3.7.5.3.8.1 “State LEDs”
on page 3280.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3269

Connection of the Digital outputs
The following figure shows the connection of the digital output DO8. Proceed with the digital
outputs DO9 - DO15 in the same way.

The meaning of the LEDs is described in Displays Ä Chapter 1.6.3.7.5.3.8.1 “State LEDs”
on page 3280.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3270

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC0 and
DC1. DC0 is connected as an input and DC1 is connected as an output. Proceed with the
configurable digital inputs/outputs DC2 to DC7 in the same way.

CAUTION!
If a DC channel is used as input, the source for the input signals should
be the impressed UP3 of the device Ä Chapter 1.6.3.7.5.3.3 “Connections”
on page 3265.

1.0
DC0
1.1
DC1
1.2
DC2
1.3
DC3
1.4
DC4
1.5
DC5
1.6
DC6
1.7
DC7
1.8
UP
1.9
ZP

-
+

24 V DC

2.4

DI14

2.0
DI8
2.1
DI9
2.2
DI10
2.3
DI11

DI12
2.5
DI13
2.6

2.7
DI15
2.8
UP
2.9
ZP

3.0
DO8
3.1
DO9
3.2
DO10
3.3
DO11
3.4
DO12
3.5
DO13
3.6
DO14
3.7
DO15
3.8
UP3
3.9
ZP

The meaning of the LEDs is described in Displays Ä Chapter 1.6.3.7.5.3.8.1 “State LEDs”
on page 3280.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment:

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

Pin assignment

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3271

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.4.6.4.7 “Ethernet connection details” on page 3424.

Internal data exchange

Parameter Value
Digital inputs (bytes) 5

Digital outputs (bytes) 5

Counter input data (words) 4

Counter output data (words) 8

Addressing

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI502-PNIO stores some PROFINET configuration parameters (I/O device identifier, I/O
device type and IP address configuration). No more configuration data is stored.
The digital I/O channels are configured via software.
Details about configuration are described in Parameterization Ä Chapter 1.6.3.7.5.3.7 “Parame-
terization” on page 3272.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7005 WORD 7005

Parameter length Internal 8 BYTE 8

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3272

Name Value Internal value Internal value,
type

Default

Error LED / Fail-
safe function
(Table Error
LED / Failsafe
function Ä Fur-
ther information
on page 3272)

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

Process cycle
time

1 ms process
cycle time

1 BYTE 1 ms

2 ms process
cycle time

2

3 ms process
cycle time

3

4 ms process
cycle time

4

5 ms process
cycle time

5

6 ms process
cycle time

6

7 ms process
cycle time

7

8 ms process
cycle time

8

9 ms process
cycle time

9

10 ms process
cycle time

10

11 ms process
cycle time

11

12 ms process
cycle time

12

13 ms process
cycle time

13

14 ms process
cycle time

14

15 ms process
cycle time

15

 16 ms process
cycle time

16

Check supply Off
On

0
1

BYTE 1

Fast counter 0
:

10 2)

0
:
10

BYTE 0

I/O-Bus reset Off 0 BYTE Off

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3273

Name Value Internal value Internal value,
type

Default

On 1 BYTE Off
1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission.
2) Counter operating modes Ä Chapter 1.6.3.6.1.2.9 “Fast counter” on page 2776

Table 580: Table Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe-mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode off

On + Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe-mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode on *)

*) The parameter Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.

IO-BUS reset after PROFINET reconnection controls the behavior of PROFINET CI modules in
relation to connected I/O modules (both safety and non-safety I/O modules).
● IO-BUS reset after PROFINET reconnection = “On” resets and, thus, re-parameterizes

all attached I/O modules. All internal I/O modules states are reset, including the related
diagnosis information.
Note that if the parameter is set to “On” then:
– The bumpless re-start of non-safety I/O modules will not be supported. It means, for

example, that non-safety output channels will go from fail-safe values to “0” values
during the re-connection and re-parameterization time and after that go to new output
values.

– Safety I/O modules will be re-parameterized and re-started as newly started modules,
which may not require their PROFIsafe reintegration, depending on safety CPU state, in
the safety application.

● IO-BUS reset after PROFINET reconnection = “Off” will not reset all attached I/O modules. It
will re-parameterize I/O modules only if parameter change is detected during the reconnec-
tion. All internal I/O modules states are not reset, including the related diagnosis informa-
tion.
Note that if the parameter is set to “Off” then:
– The bumpless re-start of non-safety I/O modules is supported (if no parameters are

changed). It means, for example, that non-safety output channels will not go from fail-
safe values to “0” values during the re-connection and re-parameterization time, but
directly from fail-safe values to new output values.

– Safety I/O modules will not be re-parameterized (if no parameters are changed). Thus,
they may continue their operation, which may require their PROFIsafe reintegration in
the safety application on the safety CPU, e.g., if PROFIsafe watchdog time for this
safety I/O module has expired. Any reintegration of such safety I/O modules will be
not only application specific but also PROFIsafe specific and depend on the safety I/O
handling in the safety application.

IO-BUS reset
after PROFINET
reconnection

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3274

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0...65535 0000h...FFFFh WORD 0
0x0000

Preventive
voltage feedback
monitoring for
DC0..DC7 2)

Off
On

0
1

BYTE Off
0x00

Detect voltage
overflow at out-
puts 3)

Off
On

0
1

BYTE Off
0x00

Remarks:

1) The parameter Behaviour DO at comm. error is apply to DC and DO channels
and only analyzed if the Failsafe-mode is ON.

2) The state "externally voltage detected" appears, if the output of a channel
DC0...DC7 should be switched on while an externally voltage is connected. In
this case the start up is disabled, as long as the externally voltage is connected.
The monitoring of this state and the resulting diagnosis message can be disabled
by setting the parameters to "OFF".

3) The error state "voltage overflow at outputs" appears, if externally voltage at
digital outputs DC0...DC7 and accordingly DO0...DO7 has exceeded the process
supply voltage UP3 Ä Chapter 1.6.3.7.5.3.3 “Connections” on page 3265 (see
description in section). The according diagnosis message "Voltage overflow on
outputs " can be disabled by setting the parameters on "OFF". This parameter
should only be disabled in exceptional cases for voltage overflow may produce
reverse voltage.

Diagnosis
Structure of the Diagnosis Block via PNIO_DEV_ALARM function block.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3275

Byte Number Description Possible Values
1 Diagnosis Byte, slot

number
31 = CI502-PNIO (e. g. error at integrated
8 DI / 8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

3 Diagnosis Byte, channel According to the I/O bus specification
passed on by modules to the fieldbus
master

4 Diagnosis Byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3276

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O device

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O device
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3277

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 1...6 255 2 0 45 The connected
Communication
Module has no con-
nection to the net-
work

Check
cabeling

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3278

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 46 Reverse voltage
from digital outputs
DO0..DO7 to UP3
4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
at outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 8...15 46 Externally voltage
detected at digital
output DO0..DO7 6)

Check
terminals

4 - 31 4 0...7 46 Externally voltage
detected at digital
output DC0..DC7 6)

Check
terminals

4 - 31 4 0...7 47 Short circuit at
digital output
DC0..DC77)

Check
terminals

4 - 31 2 8...15 47 Short circuit at
digital output
DO0..DO77)

Check
terminals

Remarks:

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3279

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0...4 or 10 = Position of the
Communication Module;14 = I/O-Bus; 31 = Module itself
The identifier is not contained in the CI502-PNIO diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself, 1..10 = Expan-
sion module

3) With "Module" the following allocation applies dependent of the master:
Module error: 31 = Module itself
Channel error: Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals DC0...DC7
oder DO0...DO7 cause that other digital outputs are supplied through that voltage
(voltage feedback, see description in 'Connections' Ä Chapter 1.6.3.7.5.3.3
“Connections” on page 3265. All outputs of the apply digital output groups will
be turned off for 5 seconds. The diagnosis message appears for the whole output
group.

5) The voltage at digital outputs DC0...DC7 and accordingly DO0...DO7 has
exceeded the process supply voltage UP3 Ä Chapter 1.6.3.7.5.3.3 “Connec-
tions” on page 3265. Diagnosis message appears for the whole module.

6) This message appears, if the output of a channel DC0...DC7 or DO0...DO7
should be switched on while an externally voltage is connected. In this case the
start up is disabled, as long as the externally voltage is connected. Otherwise
this could produce reverse voltage from this output to other digital outputs. This
diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for 2000
ms. Then a new start up will be executed. This diagnosis message appears per
channel.

8) In case of an I/O module doesn’t support hot swapping, do not perform any hot
swap operations (also not on any other terminal units (slots)) as modules may be
damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 581: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with IO Controller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1 ETH
(System-LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3280

LED Color OFF ON Flashing
Red --- --- Device is not

configured

STA2 ETH
(System LED
"SF")

Green --- --- Got identification
request from I/O
controller

Red No system error System error
(collective error)

S-ERR Red No error Internal error --

I/O-Bus Green No expansion
modules con-
nected or com-
munication error

Expansion
modules con-
nected and
operational

ETH1 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

Table 582: States of the 29 process LEDs
LED Color OFF ON Flashing
DC0 to DC7 Yellow Input/Output is

OFF
Input/Output is
ON

--

DI8 to DI15 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO8 to DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.4.6.1 “System data AC500” on page 3398
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450 are
applicable to the XC version.

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3281

Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.15 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of configurable digital inputs/outputs 8

Input data length 12 bytes

Output data length 20 bytes

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the I/O device identifier With 2 rotary switches at the front side of the
module

Diagnosis See Diagnosis and Displays Ä Chapter
1.6.3.7.5.3.8 “Diagnosis” on page 3275

Operation and error displays 34 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at 40 °C per group)

Extended ambient temperature (XC version) > 60 °C on request

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3282

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Parameter Value
Bus connection 2 x RJ45

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability Max. 10 S500 I/O modules

Adjusting elements 2 rotary switches for generation of an explicit
name

Supported protocols RTC - real time cyclic protocol, class 1 *)
RTA - real time acyclic protocol
DCP - discovery and configuration protocol
CL-RPC - connectionless remote procedure
Call
LLDP - link layer discovery protocol
MRP - MRP Client

Acyclic services PNIO read / write sequence (max. 1024 bytes
per telegram)
Process-Alarm service

Supported alarm types Process Alarm, Diagnostic Alarm, Return of
SubModule, Plug Alarm, Pull Alarm

Min. bus cycle 1 ms

Conformance class CC A

Protective functions (according to
IEC 61131-3)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation from the rest of the module

*) Priorization with the aid of VLAN-ID including priority level

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 2.0 to 2.7

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3283

Parameter Value
Reference potential for all inputs Terminals 1.9...3.9 (Negative pole of the supply

voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 3.0 to 3.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3284

Parameter Value
 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC0...DC07 Terminals 1.0...1.7

If the channels are used as outputs

 Channels DC0...DC07 Terminals 1.0...1.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation From the Ethernet network

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3285

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 1.0 to 1.7

Reference potential for all inputs Terminals 1.9...3.9 (Negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 1.0 to 1.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3286

Parameter Value
 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Technical data of the fast counter

Parameter Value
Used inputs Terminal 2.0 (DI8),Terminal 2.1 (DI9)

Used outputs Terminal 3.0 (DO8)

Counting frequency Depending on operation mode:
Mode 1- 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Ä Chapter 1.6.5.1.12 “Fast counters” on page 3570

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3287

Ordering data

Active Active Product life cycle phase *)
1SAP 220 700 R0001 CI502-PNIO (V3), PROFINET commu-

nication interface module, 8 DI, 8 DO
and 8 DC

Active

1SAP 420 700 R0001 CI502-PNIO-XC (V3), PROFINET
communication interface module, 8 DI,
8 DO and 8 DC, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.3.8 Accessories
1.6.3.8.1 AC500-eCo
MC5102 - Micro memory card with micro memory card adapter

● Solid state flash memory storage

1 Micro memory card
2 TA5350-AD micro memory card adapter

The MC5102 micro memory card has no write protect switch.

The TA5350-AD micro memory card adapter has a write protect switch.

In the position "LOCK", the inserted micro memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3288

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other micro memory cards is prohibited. ABB is not responsible nor
liable for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

The micro memory card is used to store or backup application data and/or application programs
or project source codes as well as to update the internal CPU firmware.
The micro memory card can only be used temporarily in standard and XC applications.
The memory card can be read/written on a PC with a SDHC compatible memory card reader
when using TA5350-AD micro memory card adapter.

The dimensions are in mm and in brackets in inch.

Purpose

Dimensions

Micro memory
card

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3289

The dimensions are in mm and in brackets in inch.

Fig. 255: Insert micro memory card into PM56xx

1 Micro memory card
2 TA5350-AD micro memory card adapter
3 Memory card slot
1. Unpack the micro memory card and insert it into the supplied micro memory card adapter.
2. Insert the micro memory card adapter with integrated micro memory card into the memory

card slot of the processor module until locked.

Micro memory
card adapter

Insert the micro
memory card
AC500 V3

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3290

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Carefully insert the micro memory card into the micro memory card slot as far as it will go.

Observe orientation of card.
3. Close the micro memory card slot cover by turning it downwards.

NOTICE!
Removal of the micro memory card
Do not remove the micro memory card when it is working!
AC500 V3: Remove the micro memory card with micro memory card adapter
only when no black square () is shown next to MC in the display.
AC500-eCo V3: Remove the micro memory card only when the MC LED is not
blinking.
Otherwise the micro memory card and/or files on it might get corrupted and/or
normal PLC operation might be disturbed.

AC500-eCo V3

Remove the
micro memory
card

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3291

Fig. 256: Remove micro memory card from PM56xx

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot
1. To remove the micro memory card adapter with the integrated micro memory card, push

on the micro memory card adapter until it moves forward.
2. By this, the micro memory card adapter is unlocked and can be removed.

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Micro memory card can be removed from the micro memory card slot by gripping and

pulling with two fingers.
3. Close the micro memory card slot cover by turning it downwards.

Parameter Value
Memory capacity 8 GB

Total bytes written (TBW) On request

AC500 V3

AC500-eCo V3

Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3292

Parameter Value
Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch

 Micro memory card No

 Micro memory card adapter Yes

Weight 0.25 g

Dimensions 15 mm x 11 mm x 0.7 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the micro memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.7.2 “Memory card in AC500 V3” on page 3999.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0002 MC5102, micro memory

card with TA5350-AD micro
memory card adapter

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA52xx(-x) - Terminal block sets
Removable terminal blocks are used for power supply and for I/O connectors on AC500-eCo V3
processor modules PM50x2.
For option boards there are different removable terminal blocks in spring version.

Ordering data

Intended pur-
pose

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3293

For the AC500-eCo V3 Basic CPUs a 3-pin terminal block for power supply and a 13-pin
terminal block for I/O connectors are used.
For the AC500-eCo V3 Standard CPUs and Pro CPUs a 3-pin terminal block for power supply,
a 13-pin terminal block and a 12-pin terminal block for I/O connectors are used.
For all CPUs there is a screw and a spring variant available.

Basic CPU Standard and Pro CPUs
Spring type
TA5211-TSPF-B

Screw type
TA5211-TSCL-B

Spring type
TA5212-TSPF

Screw type
TA5212-TSCL

Various removable spring-type terminal blocks are available for option boards.
The following spare parts are available (depending on the number of pins).

Spring type
TA5220-SPF5 TA5220-SPF6 TA5220-SPF7 TA5220-SPF8

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3294

CAUTION!
Risk of injury and damaging the product!
Improper installation and maintenance may result in injury and can damage the
product!
– Installation and maintenance have to be performed according to the

technical rules, codes and relevant standards, e.g. EN 60204-1.
– Read product documentation carefully before wiring. Improper wiring or

wrong terminal block from other devices can damage the product!
– Only by qualified personnel.

CAUTION!
Risk of injury and damaging the processor module when using unap-
proved terminal blocks!
Only use terminal blocks approved by ABB to avoid injury and damage to the
processor module.

Terminal block set for PM50x2
Processor modules PM50x2 CPU are not delivered with terminal blocks.

Screw type terminal block set:

– TA5211-TSCL-B (1SAP187400R0001) for PM5012-x-ETH
– TA5212-TSCL (1SAP187400R0004) for PM5032-x-ETH, PM5052-x-ETH,

PM5072-T-2ETH(W)

Spring type terminal block set:

– TA5211-TSPF-B (1SAP187400R0002) for PM5012-x-ETH
– TA5212-TSPF (1SAP187400R0005) for PM5032-x-ETH, PM5052-x-ETH,

PM5072-T-2ETH(W)

Dimensions

3-pin terminal
block for power
supply

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3295

Screw type

Spring type

13-pin terminal
block for I/O
connectors

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3296

Screw type

Spring type

12-pin terminal
block for I/O
connectors

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3297

Screw type

Spring type

x-PIN terminal
blocks for
option boards

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3298

Only these x-pin blocks are available for the option boards.

TA5220-SPFx, with x = 5...8

This results in these dimensions for the available spring terminal blocks.

Description Pin Length [mm] Wide [mm] Height [mm]
TA5220-SPF5 5 18.2 7.7 22.9

TA5220-SPF6 6 21.7 7.7 22.9

TA5220-SPF7 7 25.2 7.7 22.9

TA5220-SPF8 8 28.7 7.7 22.9

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3299

Table 583: Screw type terminal block for power supply
Parameter Value
Type

 TA5211-TSCL-B Removable 3-pin terminal block:
screw front/cable side 5.00 mm pitchTA5212-TSCL

Usage Power supply for AC500-eCo V3 processor
modules

Conductor cross section

 Solid (copper) 0.5 mm²...2.5 mm²

 Flexible (copper) 0.5 mm²...2.5 mm²

Stripped conductor end 7 mm

Assembly

Disassembly

Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3300

Parameter Value
Fastening torque 0.5 Nm

Dimensions

 3-pin terminal block 15 mm x 12.4 mm x 26.05 mm

Weight

 TA5211-TSCL-B 150 g (2 terminal blocks)

 TA5212-TSCL 200 g (3 terminal blocks)

Table 584: Spring type terminal block for power supply
Parameter Value
Type

 TA5211-TSPF-B Removable 3-pin terminal block:
spring front/cable front 5.00 mm pitchTA5212-TSPF

Usage Power supply for AC500-eCo V3 processor
modules

Conductor cross section

 Solid (copper) 0.5 mm²...2.5 mm²

 Flexible (copper) 0.5 mm²...2.5 mm²

Stripped conductor end 11 mm

Dimensions

 3-pin terminal block 15 mm x 15 mm x 25.95 mm

Weight

 TA5211-TSPF-B 150 g (2 terminal blocks)

 TA5212-TSPF 200 g (3 terminal blocks)

Table 585: Screw type terminal block for onboard I/Os
Parameter Value
Type

 TA5211-TSCL-B Removable 13-pin terminal block:
screw front/cable side 5.00 mm pitch

TA5212-TSCL Removable 13-pin and 12-pin terminal block:
screw front/cable side 5.00 mm pitch

Usage Onboard I/Os for AC500-eCo V3 processor
modules

Conductor cross section

 Solid (copper) 0.5 mm²...2.5 mm²

 Flexible (copper) 0.5 mm²...2.5 mm²

Stripped conductor end 7 mm

Fastening torque 0.5 Nm

Dimensions

 13-pin terminal block 65 mm x 12.4 mm x 26.05 mm

12-pin terminal block 60 mm x 12.4 mm x 26.05 mm

Weight

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3301

Parameter Value
 TA5211-TSCL-B 150 g (2 terminal blocks)

TA5212-TSCL 200 g (3 terminal blocks)

Table 586: Spring type terminal block for onboard I/Os
Parameter Value
Type

 TA5211-TSPF-B Removable 13-pin terminal block:
spring front/cable front 5.00 mm pitch

TA5212-TSPF Removable 13-pin and 12-pin terminal block:
spring front/cable front 5.00 mm pitch

Usage Onboard I/Os for AC500-eCo V3 processor
modules

Conductor cross section

 Solid (copper) 0.5 mm²...2.5 mm²

 Flexible (copper) 0.5 mm²...2.5 mm²

Stripped conductor end 11 mm

Dimensions

 13-pin terminal block 65 mm x 15 mm x 25.95 mm

12-pin terminal block 60 mm x 15 mm x 25.95 mm

Weight

 TA5211-TSPF-B 150 g (2 terminal blocks)

TA5212-TSPF 200 g (3 terminal blocks)

Table 587: Spring type terminal block for option boards
Parameter Value
Type

 TA5220-SPF5 Removable 5-pin terminal block:
spring front, cable front 3.50 mm pitch

TA5220-SPF6 Removable 6-pin terminal block:
spring front, cable front 3.50 mm pitch

TA5220-SPF7 Removable 7-pin terminal block:
spring front, cable front 3.50 mm pitch

TA5220-SPF8 Removable 8-pin terminal block:
spring front, cable front 3.50 mm pitch

Usage Connectors for AC500-eCo V3 option boards

Conductor cross section

 Solid (copper) 0.2 mm²...1.5 mm²

 Flexible (copper) 0.2 mm²...1.5 mm²

Stripped conductor end 8 mm...10 mm

Dimensions

 TA5220-SPF5 18.2 mm x 7.7 mm x 22.9 mm

TA5220-SPF6 21.7 mm x 7.7 mm x 22.9 mm

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3302

Parameter Value
TA5220-SPF7 25.2 mm x 7.7 mm x 22.9 mm

TA5220-SPF8 28.7 mm x 7.7 mm x 22.9 mm

Weight

 TA5220-SPF5 150 g

TA5220-SPF6 170 g

TA5220-SPF7 180 g

TA5220-SPF8 200 g

Part no. Description
1SAP 187 400 R0001 TA5211-TSCL-B: screw terminal block set for AC500-eCo V3 CPU

Basic
screw front, cable side 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors

1SAP 187 400 R0002 TA5211-TSPF-B: spring terminal block set for AC500-eCo V3 CPU
Basic
spring front, cable front 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors

Part no. Description
1SAP 187 400 R0004 TA5212-TSCL: screw terminal block set for AC500-eCo V3 Standard

and Pro CPU
screw front, cable side 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors
● 1 removable 12-pin terminal block for I/O connectors

1SAP 187 400 R0005 TA5212-TSPF: spring terminal block set for AC500-eCo V3
Standard and Pro CPU
spring front, cable front 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors
● 1 removable 12-pin terminal block for I/O connectors

Part no. Description
Spare parts

1SAP 187 400 R0012 TA5220-SPF5: spring terminal block, removable, 5-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 400 R0013 TA5220-SPF6: spring terminal block, removable, 6-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 400 R0014 TA5220-SPF7: spring terminal block, removable, 7-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 400 R0015 TA5220-SPF8: spring terminal block, removable, 8-pin, spring front,
cable front, 6 pieces per packing unit

Ordering data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3303

TA5300-CVR - Option board slot cover
TA5300-CVR option board slot covers for PM50xx processor modules are necessary to protect
not used option board slots.

CAUTION!
Risk of injury and damaging the product!
Always plug in the option board slot cover when the option board is not inserted.
If the option board slot cover is lost, please order the replacement TA5300-CVR
(1SAP187500R0001).
Never power up the CPU with uncovered option board slot, otherwise it may
cause serious injury and/or damage the product.

The AC500-eCo V3 processor modules are delivered with option board slot
cover(s).

The option board slot cover has to be removed before inserting an option board.

The TA5300-CVR option board slot covers are available as spare parts.

The dimensions are in mm and in brackets in inch.

Intended pur-
pose

Dimensions

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3304

1. Press on the option board slot cover to insert it in the not used option board slot of the
processor module PM50xx.

2. The option board slot cover must click into the not used option board slot.

1. Press the side of the inserted option board slot cover.
2. At the same time, pull the option board slot cover out of the option board slot of the

processor module PM50xx.

The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Weight 47 g

Dimensions 42.1 mm x 30.8 mm x 23.55

Inserting of the
option board
slot cover

Removing of the
option board
slot cover

Technical data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3305

Part no. Description Product life cycle phase
*)

1SAP 187 500 R0001 TA5300-CVR: option board slot cover,
removable plastic part, 6 pieces per
packing unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Ordering data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3306

TA5400-SIM - Input simulator
● TA5400-SIM input simulator for 6 digital inputs 24 V DC
● For usage with AC500-eCo V3 processor modules

1 Contacts for connecting the input simulator to the terminal block for I/O connectors
2 6 switches for the digital inputs DI0 ... DI5 (0 means opened switch, 1 means closed switch)
3 Screw terminal block for power supply
4 Screw terminal block(s) for I/O connectors

TA5400-SIM
The TA5400-SIM input simulator is only intended for testing and training pur-
poses for AC500-eCo V3 processor modules PM50x2.

Continuous operation in a productive system is not permitted.

The TA5400-SIM input simulator may only be used with screw-type terminal
blocks.

The TA5400-SIM input simulator must not be used with spring-type terminal
blocks.

Intended
purpose

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3307

Environmental conditions for testing and training purposes
In order not to impair the functionality of the product, avoid any kind of dis-
turbing environmental influences:

– mechanical disturbances
– climatic influences

Make sure that the parameters are within the normal range:

– temperature
– air pressure
– humidity
– altitude

The TA5400-SIM input simulator can simulate 6 digital 24 V DC input signals to the digital inputs
I0...I5 of onboard I/Os.
With the TA5400-SIM input simulator, the digital 24 V DC inputs I0...I5 can be turned OFF and
ON separately:
● If the lever of the switch is on the right side (1), the input is ON.
● If the lever of the switch is on the left side (0), the input is OFF.

The dimensions are in mm and in brackets in inch.

The diagram below shows the connection of the TA5400-SIM input simulator.

Dimensions

Electrical
diagram

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3308

NOTICE!
Risk of damage to the TA5400-SIM input simulator!
Do not remove the terminal block while the TA5400-SIM input simulator is
connected.
Do not apply mechanical forces to the input simulator when it is connected to
the terminal block.
In both cases the input simulator could be damaged.

1. Make sure that the power supply of the processor module is turned off.

CAUTION!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overvoltages and short circuits.
Make sure, that all voltage sources (supply and process voltage) are
switched off before you start working on the system.
Never connect voltages > 24 V DC to the terminal block of the TA5400-
SIM input simulator.

CAUTION!
Risk of damaging the input simulator and/or PLC modules!
The TA5400-SIM input simulator may only be used with AC500-eCo V3
processor modules PM50x2.
Never use the input simulator with other devices.
The input simulator may only be used with screw-type terminal blocks.
The input simulator is only intended for testing and training purposes.
Never use it within productive sytems.

Assembly

Insertion of the
input simulator

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3309

2. Make sure that all clamps of the onboard I/Os are totally open.
3. Insert the TA5400-SIM input simulator into the screw terminal block as shown in the figure.

4. Tighten all screws of the onboard I/O clamps.
5. Make sure all switches are in OFF state (0).
6. Connect 24 V DC to the power supply of the TA5400-SIM (L+ and M). Tighten the screws.
7. Connect the processor module power supply wires (24 V DC). See PM50xx Ä “Pin

assignment” on page 3371.

1. Make sure that the power supply of the processor module is turned off.

CAUTION!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overvoltages and short circuits.
Make sure that all voltage sources (supply and process voltage) are
switched off before you start working on the system.

2. Disconnect the TA5400-SIM power supply wires (24 V DC) with a flat-blade screwdriver
from the terminal block for power supply (L+ and M).

3. Loosen all screws of the onboard I/Os.
4. Remove the input simulator by pulling it to the left side.

The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Disassembly

Removal of the
input simulator

Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3310

Table 588: Technical data of the module
Parameter Value
Process supply voltage

 Connections Terminal (L+) for +24 V DC and terminal (M) for
0 V DC

Rated value 24 V DC

Max. ripple 5 %

Protection against reversed voltage Yes

Galvanic isolation Yes (on processor module PM50xx)

Isolated Groups 1 (6 channels per group)

Weight 18 g

Mounting position Horizontal or vertical

Table 589: Technical data of the inputs
Parameter Value
Number of channels per module 6 digital input channels (+24 V DC)

Distribution of the channels into groups 1 (6 channels per group)

Connections of channels I0 to I5 Terminals 2...7

Reference potential for the channels I0 to I5 Terminal 1 (negative pole of the process supply
voltage, signal name C0...5)

Input current per active channel (at input
voltage +24 V DC)
The current is given through the used pro-
cessor module.

Typ. 5 mA

Inrush current per active channel
The current is given through the used pro-
cessor module.

Typ. 5 mA

Part no. Description Product life cycle phase *)
1SAP 187 600 R0001 TA5400-SIM, input simulator

for PM50x2
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.3.8.2 AC500 (standard)
MC502 - Memory card

● Solid state flash memory storage

Ordering data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3311

1 MC502 memory card

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.

Purpose

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3312

The memory card can be read/written on a PC with a SDHC compatible memory card reader.

The dimensions are in mm and in brackets in inch.

AC500 V3

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Fig. 257: Insert memory card into PM56xx

1 Memory card
2 Memory card slot

Dimensions

Insert the
memory card

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3313

AC500 V3

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working!

Remove the memory card only when no black square () is shown next to MC
in the display.
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Fig. 258: Remove memory card from PM56xx

1 Memory card
2 Memory card slot

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

Remove the
memory card

Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3314

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.7.2 “Memory card in AC500 V3” on page 3999.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0001 MC502, memory card Classic

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC5102 - Micro memory card with micro memory card adapter
● Solid state flash memory storage

1 Micro memory card
2 TA5350-AD micro memory card adapter

The MC5102 micro memory card has no write protect switch.

The TA5350-AD micro memory card adapter has a write protect switch.

In the position "LOCK", the inserted micro memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

Ordering data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3315

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other micro memory cards is prohibited. ABB is not responsible nor
liable for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

The micro memory card is used to store or backup application data and/or application programs
or project source codes as well as to update the internal CPU firmware.
The micro memory card can only be used temporarily in standard and XC applications.
The memory card can be read/written on a PC with a SDHC compatible memory card reader
when using TA5350-AD micro memory card adapter.

The dimensions are in mm and in brackets in inch.

Purpose

Dimensions

Micro memory
card

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3316

The dimensions are in mm and in brackets in inch.

Fig. 259: Insert micro memory card into PM56xx

1 Micro memory card
2 TA5350-AD micro memory card adapter
3 Memory card slot
1. Unpack the micro memory card and insert it into the supplied micro memory card adapter.
2. Insert the micro memory card adapter with integrated micro memory card into the memory

card slot of the processor module until locked.

Micro memory
card adapter

Insert the micro
memory card
AC500 V3

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3317

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Carefully insert the micro memory card into the micro memory card slot as far as it will go.

Observe orientation of card.
3. Close the micro memory card slot cover by turning it downwards.

NOTICE!
Removal of the micro memory card
Do not remove the micro memory card when it is working!
AC500 V3: Remove the micro memory card with micro memory card adapter
only when no black square () is shown next to MC in the display.
AC500-eCo V3: Remove the micro memory card only when the MC LED is not
blinking.
Otherwise the micro memory card and/or files on it might get corrupted and/or
normal PLC operation might be disturbed.

AC500-eCo V3

Remove the
micro memory
card

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3318

Fig. 260: Remove micro memory card from PM56xx

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot
1. To remove the micro memory card adapter with the integrated micro memory card, push

on the micro memory card adapter until it moves forward.
2. By this, the micro memory card adapter is unlocked and can be removed.

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Micro memory card can be removed from the micro memory card slot by gripping and

pulling with two fingers.
3. Close the micro memory card slot cover by turning it downwards.

Parameter Value
Memory capacity 8 GB

Total bytes written (TBW) On request

AC500 V3

AC500-eCo V3

Technical data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3319

Parameter Value
Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch

 Micro memory card No

 Micro memory card adapter Yes

Weight 0.25 g

Dimensions 15 mm x 11 mm x 0.7 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the micro memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.7.2 “Memory card in AC500 V3” on page 3999.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0002 MC5102, micro memory

card with TA5350-AD micro
memory card adapter

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC5141 - Memory card
● Solid state flash memory storage

1 MC5141 memory card

Ordering data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3320

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.
The memory card can be read/written on a PC with a SDHC compatible memory card reader.

Purpose

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3321

The dimensions are in mm and in brackets in inch.

AC500 V3

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Fig. 261: Insert memory card into PM56xx

1 Memory card
2 Memory card slot

AC500 V3

Dimensions

Insert the
memory card

Remove the
memory card

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3322

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working!

Remove the memory card only when no black square () is shown next to MC
in the display.
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Fig. 262: Remove memory card from PM56xx

1 Memory card
2 Memory card slot

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

Technical data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3323

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.7.2 “Memory card in AC500 V3” on page 3999.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0041 MC5141, memory card Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA521 - Battery
● Manganese dioxide lithium battery, 3 V, 560 mAh
● Non-rechargeable

The TA521 battery is the only applicable battery for the AC500 processor modules Ä Chapter
1.6.3.3.2.1 “PM56xx-2ETH for AC500 V3 products” on page 2516. It cannot be recharged.

The processor modules are supplied without lithium battery. It must be ordered separately. The
TA521 lithium battery is used for data (SRAM) and RTC buffering while the processor module is
not powered.
See system technology - AC500 battery. Ä Chapter 1.6.5.1.4.2 “AC500 battery” on page 3479

The CPU monitors the discharge degree of the battery. A warning is issued before the battery
condition becomes critical (about 2 weeks before). Once the warning message appears, the
battery should be replaced as soon as possible.

● Do not short-circuit or re-charge the battery! It can cause excessive heating and explosion.
● Do not disassemble the battery!
● Do not heat up the battery and not put into fire! Risk of explosion.
● Store the battery in a dry place.
● Replace the battery with supply voltage ON in order not to risk data being lost.
● Recycle exhausted batteries meeting the environmental standards.

Ordering data

Purpose

Handling
instructions

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3324

The battery lifetime is the time, the battery can store data while the processor module is not
powered. As long as the processor module is powered, the battery will only be discharged by its
own leakage current.

To avoid a short battery discharge, the battery should always be inserted or
replaced while the process module is under power, then the battery is correctly
recognized and will not shortly discharged.

To ensure propper operation and to prevent data loss, the battery insertion or
replacement must be always done with the system under power. Without battery
and power supply there is no data buffering possible.

WARNING!
Risk of fire or explosion!
Use of incorrect Battery may cause fire or explosion.

Battery lifetime

Insertion

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3325

1. Open the battery compartment with the small locking mechanism, press it down and slip
down the door. The door is attached to the front face of the processor module and cannot
be removed.

2. Remove the TA521 battery from its package and hold it by the small cable. Remove then
the small connector from the socket, do this best by lifting it out with a screwdriver.

3. Insert the battery connector into the small connector port of the compartment. The con-
nector is keyed to find the correct polarity (red = positive pole = above).

4. Insert first the cable and then the battery into the compartment, push it until it reaches the
bottom of the compartment.

5. Arrange the cable in order not to inhibit the door to close.
6. Pull-up the door and press until the locking mechanism snaps.

In order to prevent data losses or problems, the battery should be replaced after
3 years of utilisation or at least as soon as possible after receiving the "low
battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries
too long in stock.

To ensure propper operation and to prevent data loss, the battery insertion or
replacement must be always done with the system under power. Without battery
and power supply there is no data buffering possible.

1. Open the battery compartment with the small locking mechanism, press it down and slip
down the door. The door is attached to the front view of the processor module and cannot
be removed.

2. Remove the old TA521 battery from the battery compartment by pulling it by the small
cable. Remove then the small connector from the socket, do this best by lifting it out with a
screwdriver.

3. Follow the previous instructions to insert a new battery.

Replacement of
the battery

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3326

CAUTION!
Risk of explosion!
Do not open, re-charge or disassemble a lithium battery. Attempts to charge
lithium batteries lead to overheating and possible explosions.
Protect them from heat and fire and store them in a dry place.
Never short-circuit or operate lithium batteries with the polarities reversed. The
batteries are likely to overheat and explode. Avoid chance short circuiting and
therefore do not store batteries in metal containers and do not place them on
metallic surfaces. Escaping lithium is a health hazard.

In order to prevent data losses or problems, the battery should be replaced after
3 years of utilisation or at least as soon as possible after receiving the "low
battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries
too long in stock.

Parameter Value
Nominal voltage 3 V

Nominal capacity 560 mAh

Temperature range (index below C0) Operating: 0 °C...+60 °C
Storage: -20 °C...+60 °C
Transport: -20 °C...+60 °C

Temperature range (index C0 and above) Operating: -40 °C...+70 °C
Storage: -40 °C...+85 °C
Transport: -40 °C...+85 °C

Battery lifetime Typ. 3 years at 25 °C

Self-discharge 2 % per year at 25 °C
5 % per year at 40 °C
20 % per year at 60 °C

Protection against reverse polarity Yes, by mechanical coding of the plug.

Insulation The battery is completely insulated.

Connection Red = positive pole = above at plug, black =
negative pole,

Weight 7 g

Dimensions Diameter of the button cell: 24.5 mm
Thickness of the button cell: 5 mm

Part no. Description Product life cycle phase *)
1SAP 180 300 R0001 TA521, lithium battery Active

Technical data

Ordering data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3327

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA524 - Dummy communication module

1 Type
2 Label

TA524 is used to cover an unused communication module slot of a terminal base Ä Chapter
1.6.3.2.1 “TB56xx for AC500 V3 products” on page 2430. It protects the terminal base from dust
and inadvertent touch.

TA524 is mounted in the same way as a common communication module Ä Chapter 1.6.4.6.3.5
“Mounting/Demounting the communication modules” on page 3414.

Parameter Value
Weight 50 g

Dimensions 135 mm x 28 mm x 62 mm

Purpose

Handling
instructions

Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3328

Part no. Description Product life cycle phase *)
1SAP 180 600 R0001 TA524, dummy communica-

tion module
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA526 - Wall mounting accessory

If a terminal base TB5xx or a terminal unit TU5xx should be mounted with screws, the wall
mounting accessories TA526 must be inserted at the rear side first. This plastic parts prevent
bending of terminal bases and terminal units while screwing up.

Handling of the wall mounting accessory is described in detail in the section Mounting and
disassembling the terminal unit Ä “Mounting with screws” on page 3411 and Mounting/Disas-
sembling Terminal Bases and Function Module Terminal Bases Ä “Mounting with screws”
on page 3409.

Parameter Value
Weight 5 g

Dimensions 67 mm x 35 mm x 5,5 mm

Part no. Description Product life cycle phase *)
1SAP 180 800 R0001 TA526, wall mounting acces-

sory
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.3.8.3 S500
TA523 - Pluggable label mounting

For labelling the channels of S500 I/O modules.

Ordering data

Purpose

Handling
instructions

Technical data

Ordering data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3329

1 Pluggable label mounting TA523
2 Plastic labels to be inserted into the holder

The pluggable label mounting is used to hold 4 plastic labels, on which the meaning of the I/O
channels of I/O modules can be written down. The holder is transparent so that after snapping it
onto the module the LEDs shine through.

The plastic labels can be printed out from TA563.doc http://new.abb.com/products/
ABB1SAP180500R0001.

Parameter Value
Use For labelling channels of I/O modules

Mounting Snap-on to the module

Weight 20 g

Dimensions 82 mm x 67 mm x 13 mm

Purpose

Handling
instructions

Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3330

http://new.abb.com/products/ABB1SAP180500R0001
http://new.abb.com/products/ABB1SAP180500R0001

Part no. Description Product life cycle phase *)
1SAP 180 500 R0001 TA523, pluggable label

mounting (10 pieces)
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA525 - Plastic labels
Accessory to label AC500 and S500 modules.

DC532

1.0 I0

1.1 I1

1.2 I2

1.3 I3

1.4 I4

1.5 I5

1.6 I6

1.7 I7

1.8 UP

1.9 ZP

2.0 I8

2.1 I9

2.2 I10

2.3 I11

2.4 I12

2.5 I13

2.6 I14

2.7 I15

2.8 UP

2.9 ZP

3.0 C16

3.1 C17

3.2 C18

3.3 C19

3.4 C20

3.5 C21

3.6 C22

3.7 C23

3.8 UP

3.9 ZP

4.0 C24

4.1 C25

4.2 C26

4.3 C27

4.4 C28

4.5 C29

4.6 C30

4.7 C31

4.8 UP

4.9 ZP

CH-ERR3 CH-ERR4

16 DI 16 DC
Input 24 V DC

Output 24 V DC 0.5 A

CH-ERR2CH-ERR1

TA525

DC532

1.0 I0

1.1 I1

1.2 I2

1.3 I3

1.4 I4

1.5 I5

1.6 I6

1.7 I7

1.8 UP

1.9 ZP

2.0 I8

2.1 I9

2.2 I10

2.3 I11

2.4 I12

2.5 I13

2.6 I14

2.7 I15

2.8 UP

2.9 ZP

3.0 C16

3.1 C17

3.2 C18

3.3 C19

3.4 C20

3.5 C21

3.6 C22

3.7 C23

3.8 UP

3.9 ZP

4.0 C24

4.1 C25

4.2 C26

4.3 C27

4.4 C28

4.5 C29

4.6 C30

4.7 C31

4.8 UP

4.9 ZP

CH-ERR3 CH-ERR4

16 DI 16 DC
Input 24 V DC

Output 24 V DC 0.5 A

CH-ERR2CH-ERR1

2
UP 24VDC 200WUP 24VDC 200W

1

1 Module without plastic label TA525
2 Module with plastic label TA525

The plastic labels are suitable for labelling AC500 and S500 modules (CPUs, communication
modules and I/O modules). The small plastic parts can be written on with a standard waterproof
pen.

The plastic labels are inserted under a slight pressure. For disassembly, a small screwdriver is
inserted at the lower edge of the module.

Parameter Value
Use For labelling AC500 and S500 modules

Mounting Insertion under a slight pressure

Ordering data

Purpose

Handling
instructions

Technical data

PLC Automation with V3 CPUs

PLC integration (hardware) > Device specifications

2022/01/21 3ADR010583, 3, en_US 3331

Parameter Value
Disassembly With a small screwdriver

Scope of delivery 10 pieces

Weight 1 g per piece

Dimensions 8 mm x 20 mm x 5 mm

Part no. Description Product life cycle phase *)
1SAP 180 700 R0001 TA525, Set of 10 white plastic

labels
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA526 - Wall mounting accessory

If a terminal base TB5xx or a terminal unit TU5xx should be mounted with screws, the wall
mounting accessories TA526 must be inserted at the rear side first. This plastic parts prevent
bending of terminal bases and terminal units while screwing up.

Handling of the wall mounting accessory is described in detail in the section Mounting and
disassembling the terminal unit Ä “Mounting with screws” on page 3411 and Mounting/Disas-
sembling Terminal Bases and Function Module Terminal Bases Ä “Mounting with screws”
on page 3409.

Parameter Value
Weight 5 g

Dimensions 67 mm x 35 mm x 5,5 mm

Part no. Description Product life cycle phase *)
1SAP 180 800 R0001 TA526, wall mounting acces-

sory
Active

Ordering data

Purpose

Handling
instructions

Technical data

Ordering data

PLC Automation with V3 CPUs
PLC integration (hardware) > Device specifications

2022/01/213ADR010583, 3, en_US3332

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA535 - Protective caps for XC devices

Accessory to cover unused connectors of XC devices in salt mist environments.
One TA535 package includes different cap types for the following connectors:
● RJ45 connectors
● 9-pole D-sub connector
● FieldBusPlug connector
Protection should be done for all unused slots of -XC devices.

Part no. Description Product life cycle phase *)
1SAP 182 300 R0001 TA535, Protective Caps for

XC devices
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.4 System assembly, construction and connection
1.6.4.1 Introduction

This chapter provides information on assembly, construction and connection of control systems
of the product family AC500.

The AC500 product family consists of the sub-families:
● AC500 (standard): standard PLC that offers a wide range of performance levels and scala-

bility.
● AC500-eCo: cost-effective PLC that offers total inter-operability with the core AC500 range.
● AC500-S: PLC for special safety requirements in all functional safety applications.
AC500 (standard) and AC500-S provide devices with -XC extension as a product variant. Those
devices operate mainly identical to the appropriate AC500 product family, however, can be oper-
ated under extreme conditions Ä Chapter 1.6.4.7.1 “System data AC500-XC” on page 3450.
AC500 product family is characterized by functional modularity, i.e. the devices of all AC500
sub-families can be combined flexible.
As assembly, construction and connection for the devices of the AC500 product family is similar,
information that is valid for all sub-families is provided within an overall section. Details that are
only valid for a specific AC500 sub-family are described in separate sections.

Purpose

Ordering data

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3333

As assembly, construction and connection for the devices of the AC500 product family is similar,
information that is valid for all sub-families is provided within an overall section Ä Chapter
1.6.4.4 “Overall information (valid for complete AC500 product family)” on page 3338. Details
that are only valid for a specific AC500 sub-family are described in separate sections.

Consider the safety instructions
In the description, special attention must be paid to designs using galvanic
isolation, grounding and EMC measures for the reasons stated. Consider
the safety instructions for AC500 product family Ä Chapter 1.6.4.3 “Safety
instructions” on page 3335.

1.6.4.2 Regulations
The following regulations have to be taken into due consideration:
● DIN VDE 0100: "Regulations for the Setting up of Power Installations"
● DIN VDE 0110 Part 1 and Part 2: "The Rating of Creepage Distances and Clearances"
● DIN VDE 0160 and DIN VDE 0660 Part 500: "The Equipment of Power Installations with

Electrical Components"
To ensure project success and proper installation of all systems, customers must be familiar and
proficient with the following standards and must comply with their directives:
● DIN VDE 0113 Part 1 & Part 200: "Working & Process Machinery"
● DIN VDE 0106 Part 100: "Close proximity to dangerous voltages"
● DIN VDE 0160, DIN VDE 0110 Part 1: "Protection against direct contact"
The user has to guarantee that the devices and the components are mounted following these
regulations. For operating the machines and installations, other national and international rele-
vant regulations, concerning prevention of accidents and using technical working means, also
have to be met.
AC500 devices are designed according to IEC 1131 Part 2 under overvoltage category II per
DIN VDE 0110 Part 2.
For direct connection of AC Category III overvoltages provide protection measures for over-
voltage category II according to IEC-Report 664/1980 and DIN VDE 0110 Part 1.
Equivalent standards:
● DIN VDE 0110 Part 1 ↔ IEC 664
● DIN VDE 0113 Part 1 ↔ EN 60204 Part 1
● DIN VDE 0660 Part 500 ↔ EN 60439-1 ↔ IEC 439-1
All rights reserved to change design, size, weight, etc.

Both the control system AC500 and other components in the vicinity are operated with dan-
gerous contact voltages. Touching parts, which are under such voltages, can cause grave
damage to health.
In order to avoid such risks and the occurrence of material damage, persons involved with the
assembly, starting up and servicing must possess pertinent knowledge of the following:
● Automation technology sector
● Dealing with dangerous voltages
● Using standards and regulations, in particular VDE, accident prevention regulations and

regulations concerning special ambient conditions (e.g. areas potentially endangered by
explosive materials, heavy pollution or corrosive influences).

Appropriate
system setup

Qualified per-
sonnel

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3334

1.6.4.3 Safety instructions
The examples and diagrams in this manual are included solely for illustrative purposes.
Because of the many variants and requirements associated with any particular installation, ABB
cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by ABB with respect to use of information, circuits, equipment or
software described in this manual. No liability is assumed for the direct or indirect consequences
of the improper use, improper application or inadequate maintenance of these devices. In no
event will ABB be responsible or liable for indirect or consequential damages resulting from the
use or application of this equipment.

The product family AC500 control system is designed according to EN 61131-2
IEC 61131-2 standards. Data, different from IEC 61131, are caused by the
higher requirements of Maritime Services. Other differences are described in
the technical data description of the devices.

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge, which can
cause internal damage and affect normal operation. Observe the following rules
when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe packaging.

NOTICE!
PLC damage due to operation conditions
Protect the devices from dampness, dirt and damage during transport, storage
and operation!

NOTICE!
PLC damage due to wrong enclosures
Due to their construction (degree of protection IP 20 according to EN 60529)
and their connection technology, the devices are suitable only for operation in
enclosed switchgear cabinets.

Cleaning instruction
Do not use cleaning agent for cleaning the device.

Use a damp cloth instead.

Connection plans and user software must be created so that all technical safety aspects, legal
regulations and standards are observed. In practice, possible shortcircuits and breakages must
not be able to lead to dangerous situations. The extent of resulting errors must be kept to a
minimum.

PLC specific
safety notices

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3335

Do not operate devices outside of the specified, technical data!

Trouble-free functioning cannot be guaranteed outside of the specified data.

NOTICE!
PLC damage due to missing grounding
– Ensure to earth the devices.
– The grounding (switch cabinet grounding, PE) is supplied both by the mains

connection (or 24 V supply voltage) and via DIN rail. The DIN rail must be
connected to the ground before the device is subjected to any power. The
grounding may be removed only if it is certain that no more power is being
supplied to the control system.

In the description for the devices (operating manual or AC500 system description), reference is
made at several points to grounding, galvanic isolation and EMC measures. One of the EMC
measures consists of discharging interference voltages into the grounding via Y-type capacitors.
Capacitor discharge currents must basically be able to flow off to the grounding (in this respect,
see also VBG 4 and the relevant VDE regulations).

CAUTION!
Do not obstruct the ventilation for cooling!
The ventilation slots on the upper and lower side of the devices must not be
covered.

CAUTION!
Run signal and power wiring separately!
Signal and supply lines (power cables) must be laid out so that no malfunctions
due to capacitive and inductive interference can occur (EMC).

WARNING!
Labels on or inside the device alert people that dangerous voltage may be
present or that surfaces may have dangerous temperatures.

WARNING!
Splaying of strands can cause hazards!
During wiring of terminals with stranded conductors, splaying of strands shall be
avoided.
– Ferrules can be used to prevent splaying.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3336

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

CAUTION!
Use only ABB approved lithium battery modules!
At the end of the battery’s lifetime, always replace it only with a genuine battery
module.

CAUTION!
Risk of explosion!
Do not open, re-charge or disassemble a lithium battery. Attempts to charge
lithium batteries lead to overheating and possible explosions.
Protect them from heat and fire and store them in a dry place.
Never short-circuit or operate lithium batteries with the polarities reversed. The
batteries are likely to overheat and explode. Avoid chance short circuiting and
therefore do not store batteries in metal containers and do not place them on
metallic surfaces. Escaping lithium is a health hazard.

Environment considerations
Recycle exhausted batteries. Dispose batteries in an environmentally conscious
manner, in accordance to local-authority regulations.

Information on
batteries

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3337

This equipment is intended for use in a Pollution Degree 2 industrial environ-
ment, in overvoltage Category II applications (as defined in IEC publication
60664-1), at altitudes up to 2.000 meters without derating.

This equipment is considered Group 1, Class A industrial equipment according
to IEC/CISPR Publication 11. Without appropriate precautions, there may
be potential difficulties ensuring electromagnetic compatibility in other environ-
ments due to conducted as well as radiated disturbance.

This equipment is supplied as "open type" equipment. It must be mounted
within an enclosure that is suitably designed for those specific environmental
conditions that will be present and appropriately designed to prevent personal
injury resulting from accessibility to live parts. The interior of the enclosure must
be accessible only by the use of a tool. Subsequent sections of this publication
may contain additional information regarding specific enclosure type ratings that
are required to comply with certain product safety certifications.

Refer to NEMA Standards publication 250 and IEC publication 60529, as appli-
cable, for explanations of the degrees of protection provided by different types
of enclosure. Also see the appropriate sections in this manual.

1.6.4.4 Overall information (valid for complete AC500 product family)
1.6.4.4.1 Serial I/O bus

The synchronized serial I/O bus is the I/O data bus for the I/O modules connected with the
processor modules or communication interface modules. Through this bus, I/O and diagnosis
data are transferred.
Up to 10 I/O terminal units (for 1 I/O module each) can be added to one terminal base or to one
AC500-eCo processor module. The I/O terminal units and the AC500-eCo I/O modules, have
a bus input at the left side and a bus output at the right side. Thus the length of the I/O bus
increases with the number of attached I/O modules.

1 I/O bus connection
The connection of the I/O bus is performed automatically by telescoping the modules on the DIN
rail. The I/O bus provides the following signals:
● Supply voltage of 3.3 V DC for feeding the electronic interface components
● 3 data lines for the synchronized serial data exchange
● several control signals

Environment
and enclosure
information

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3338

NOTICE!
The I/O bus is not designed for plugging and unplugging modules while in
operation. If a module is plugged or replaced while the bus is in operation, the
following consequences are possible
– reset of the station or of the CPU
– system lockup
– damage of the module

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

With its fast data transmission, the I/O bus obtains very low reaction times. Depending on the
device and on the version of firmware and Automation Builder, the following numbers of I/O
devices can be connected to the I/O bus.

Device Version Automation
Builder

Version firmware Max. number of I/O
devices

CANopen bus
modules CI581-CN
and CI582-CN

As of V2.1.0 All 0

PROFINET bus
modules CI501-PNIO
and CI502-PNIO

As of V2.1.0 all 10

EtherCAT com-
munication inter-
face module CI511-
ETHCAT and
CI512-ETHCAT

As of V2.1.0 As of V2.0.x 10

Table 590: General data
Parameter Value
Supply voltage, signal level 3.3 V DC ± 10 %

Max. supply current On request

Type of the data interface Synchronized serial data exchange

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3339

Parameter Value
Bus data transmission speed 1.8 Mb/s

Minimum bus cycle time 500 µs 1)

Galvanic isolation I/O bus is galvanic connected to CPU and
communication interface logic ciruits. Galvanic
isolation of I/O bus is I/O module specific. See
each module specification for details.

Protection against electrostatic discharge
(ESD)

TB5xx, TB56xx: with protection diodes,
no ESD discharge allowed on the port.

Max. bus length 1 m
1) Minimum bus cycle time: This value is valid for all module combinations (from 1 to 10 I/O
modules)

Table 591: Wiring (bus connection)
Parameter Value
Bus connection Left-side and right-side connection from

module to module via a 10-pole HE plug (male
at the left side, female at the right side)

Mechanical connection Established by the terminal units

Max. bus length 1 m

1.6.4.4.2 Mechanical encoding

18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Pos.
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Fig. 263: Possible positions for mechanical encoding (1 to 18)

NOTICE!
Terminal units and terminal bases have a mechanical coding which prevents
modules (from) being inserted into the wrong places for cases that might result
in dangerous parasitic voltages or if modules could be destroyed.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3340

The coding either makes it impossible to insert the module to the wrong place or blocks its
electrical function (outputs are not activated).
The following figures show the possible encodings.

Fig. 264: Encoding for processor modules with Ethernet interface

Fig. 265: Encoding for real-time Ethernet modules

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3341

Fig. 266: Encoding for communication interface modules

Fig. 267: Encoding for I/O modules (24 VDC)

Fig. 268: Encoding for communication interface modules with PROFINET interface

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3342

Fig. 269: Encoding for I/O modules (120 VAC / 230 VAC)

Fig. 270: Encoding for positioning modules

1.6.4.4.3 Earthing concept (Block diagrams)

NOTICE!
PLC damage due to missing grounding
– Ensure to earth the devices.
– The grounding (switch cabinet grounding, PE) is supplied both by the mains

connection (or 24 V supply voltage) and via DIN rail. The DIN rail must be
connected to the ground before the device is subjected to any power. The
grounding may be removed only if it is certain that no more power is being
supplied to the control system.

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3343

Power

DC532/DI524

I/O Terminal Unit TU515/TU516

ZP

supply

DIN
rail

I/O-Bus

Digital

UP CH-ERRx

0V
UP

+24V
Inputs/outputs

I/O-Bus

I/Os

I/O interface

1 M

1 M

ZP ZP

Block diagram:
Digital I/O
modules

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3344

Power

AX522

I/O Terminal Unit TU515/TU516

ZP

supply

DIN
rail

I/O-Bus

UP CH-ERRx

0V
UP

+24V
I+ I–

I/O-Bus
Analog I/O interface

Inputs Outputs

+ – + –

I+ I– O+ O–

+ – + –

O+ O–

PTC PTC

1 M

1
M

1.6.4.4.4 EMC-conforming assembly and construction
General principles

Electric and electronical devices have to work correctly on site. This is also valid when electro-
magnetic influences affect them in defined and/or expected strength. The devices themselves
must not emit electro-magnetic noises.
Advant Controller components have a very high noise immunity.
When the wiring and grounding instructions are met, an error-free operation is given.
High electro-magnetic noises of nearby mounted applications must be taken in consideration
during the planning phase.
An EMC compatible earthing concept will also guarantee an error-free operation here.

Block diagram:
Analog I/O
modules

General consid-
erations

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3345

There are three important principles to be especially considered:
– Keep all connections as short as possible (in particular the grounding con-

ductors)
– Use large conductor cross sections (in particular for the grounding conduc-

tors)
– Create low-impedance, i.e. good and large-sized contacts (in particular for

the grounding conductors)

Pay attention to the following:
– Use vibration-resistant connections
– Clean metallic contact areas
– Use solid plug and screw-type connections
– Use earth cable shields with clips on a well-grounded metallic surface
– Do not use aluminium parts
– Do not use sheath wires
– Do not use toothed lock washers under screw connections

Fig. 271: Assembly: wrong

Fig. 272: Assembly: correct

Make a connection between the DIN rails and PE (Protective Earth). For this, use an grounding
wire with a minimum conductor cross section of 10 mm².
The wire is connected to the DIN rail with an M6 screw.
A large-area contact of the DIN rail with the metallic mounting plate improves the EMC behavior
significantly, as the disturbances can be discharged more effective.

Cable routing
● Route cables meeting the standards.
● Sort the cables into cable groups:

– Power current cables
– Power supply cables
– Signal cables
– Data cables

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3346

● Rout signal cables and data cables separately from the power cables.
– Separate cable ducts or cable bundles.
– The distance should be 20 cm or greater.

● Lay signal and data cables close to earthed surfaces.

Cable shields
● Use only shielded data cables. The shield should be grounded at both ends.

A cable shield only grounded at one end can only protect from capacitively coupled interfer-
ence and low-frequency disturbances (50 Hz hum).

● Avoid parasitic currents flowing through the cable shields.
This can be done by installing current-carrying equipotential bondings.

● Use only cables with braided shields.
Foil shields are not robust enough, cannot be contacted well and have poor HF properties.

● Use only metallic or [metal]-plated plugs for shielded data cables.
● Use only shielded cables for analog signals.

For small signals ground the shield only at one end.
● Ground the cable shield directly with a clip when entering the switchgear cabinet.

Do not cut the shield until the cable reaches the module connected.

The connection between the PE bar and the shield bar must have a low impe-
dance.

Switchgear cabinet

According to DNV GL mounting in a seperate metall cabinet is required for:

– SM560-S-FD-1
– CI521-MODTCP
– CI522-MODTCP

The connections between the switchgear cabinet, the mounting plates, the PE bar and the
shield bar must have a low impedance.

Ground the switchgear cabinet doors with short and highly flexible conductors.

Only use filament lamps (bulbs) or fluorescent tubes with interference suppression.

Use the mains socket which is located inside the switchgear cabinet.
Ä Chapter 1.6.4.6.2.1 “Switchgear cabinet assembly” on page 3403

Reference potential
● Provide a uniform reference potential in the entire installation and ground all electrical

appliances if possible.
● Route your grounding conductors in a star configuration so that no ground loops can occur.

Connections

Grounding

Illumination

For supplying
the PC

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3347

Equipotential bonding
The Installation of equipotential bondings are necessary if there are present or expected poten-
tial differences between parts of your application.

– The impedance of equipotential bonding must be equal or lower than 10 %
of the shield impedance of the shielded signal cables between the same
points.

– The conductor cross section of a equipotential bonding must be 16 mm² to
withstand the maximum possible compensating current.

– Equipotential bondings and shielded signal cables should be laid close to
each other.

– Equipotential bondings must be connected to PE with low impedance.

Fig. 273: AC500, equipotential bonding

1 Cabinet 1
2 Cabinet 2
3 Power supply for the CPU
4 Fuse for the CPU power
5 Power supply for the I/Os
6 Fuse for the I/O power
7 For fuses for the contacts of the relay outputs
8 0V rail
9 Grounding of the 0V rail
10 Cabinet grounding
11 Equipotential bonding between the cabinets min. 16 mm2

12 Cable shields grounding
13 Fieldbus connection (e.g. Ethernet)

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3348

1.6.4.4.5 Power consumption of an entire station
The power consumption of a complete station consists of the sum of all individual consump-
tions.
● Consumers over terminals L+ and M on the AC500 terminal base/AC500-eCo CPU:

– CPU itself
– I/O modules attached on the I/O bus
– Communication modules attached (AC500 terminal base)

● Consumers over the process supply voltage terminals ZP and UP of the AC500 terminal
units / the L+/M or UP/ZP terminals of the AC500-eCo I/O modules:
– Digital I/O modules
– Analog I/O modules

The two supply voltages can be provided by the same power supply unit. The CPU and the
I/O modules should, however, be fused separately. Of course also separate power supplies are
possible.

Calculation of the total current consumption
In the example, the AC500 control system consists of the following devices:
● AC500 CPU with Ethernet interface
● 4 communication modules
● 7 I/O modules (digital and analog)
● As well as the required terminal bases and terminal units

Example

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3349

Because of the high total current consumption of the digital I/O modules (from
UP = 24 V DC), the supply is divided up into several electric circuits fused
separately.

The maximum permitted total current over the supply terminals of the I/O ter-
minal units is 8 A.

The total current can be calculated as follows:
ITotal = ILOGIC + IUP

with the assumptions
ILOGIC = ICPU + II/O bus + IC1 + IC2 + IC3 + IC4 (CPU + communication modules + I/O bus)

II/O bus = Number of expansion modules × Current consumption through the I/O bus per module

and
IUP = IUP1 + ILOAD1 + IUP2 + ILOAD2 + IUP3 + ILOAD3 + IUP4 + ILOAD4 + IUP5 + ILOAD5 + IUP6 + ILOAD6 + IUP7
+ ILOAD7

If one assumes that all outputs are switched on and are operated with their maximum permitted
load currents (under compliance with the maximum permitted currents at the supply terminals),
then the following values are the result for an example shown above:

 ICPU *) ICx *) II/O bus *) IUPx *) ILOADx *)

CPU / communication module part
CPU 0.110 A - - - -

C1 - 0.050 A - - -

C2 - 0.085 A - - -

C3 - 0.050 A - - -

C4 - 0.050 A - - -

I/O module part
Analog1 - - 0.002 A 0.150 A -

Analog2 - - 0.002 A 0.150 A 0.160 A

Analog3 - - 0.002 A 0.100 A 0.080 A

Analog4 - - 0.002 A 0.100 A 0.080 A

Digital1 - - 0.002 A 0.050 A 8.000 A

Digital2 - - 0.002 A 0.050 A 8.000 A

Digital3 - - 0.002 A 0.050 A 8.000 A

S columns 0.110 A 0.235 A 0.014 A 0.650 A 24.320 A

S ILOGIC ≈ 0.4 A S IUP ≈ 25 A

 ITotal ≈ 25.4 A

*) All values in this column are exemplary values

Dimensioning of the fuses
To be able to select the fuses for the station correctly, both the current consumption and the
inrush currents (melting integral for the series-connected fuse) must be taken into consideration.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3350

Fuse for S of the
melting
integrals in
A²s

I Logic A IUPx A Recommended fuse
Type Value

F1 CPU logic 1.000 » 0.4 - Quick 10 A

F2 Module Dig-
ital1

0.005 - 8.050 Quick 10 A

F3 Module Dig-
ital2

0.008 - 8.050 Quick 10 A

F4 Module Dig-
ital3

0.007 - 8.050 Quick 10 A

F5 Modules
Analog1 +
Analog2 +
Analog3 +
Analog4

0.130 - 0.820 Quick 10 A

1.6.4.4.6 Decommissioning
1. Delete the runtime licenses Ä Chapter 1.6.6.2.2.2.4 “Returning a license” on page 3671.
2. Delete certificates available on the CPU Ä Chapter 1.8.2.4.1 “View 'Security Screen' -

'Devices'” on page 4125.
3. Delete applications Ä Chapter 1.4.1.20.3.6.12 “Command 'Reset Origin'” on page 1039

Ä Chapter 1.4.1.20.3.6.13 “Command 'Reset Origin Device'” on page 1040.
4. Delete applications from memory card, if available Ä Chapter 1.4.1.14 “Copying files to/

from PLC” on page 441.
5. If available, remove memory card and battery from CPU.
6. Delete all user accounts and user data Ä “Tab 'User'” on page 996.
7. Demount and dispose the hardware modules Ä Chapter 1.6.4.5.3 “Mounting

and demounting” on page 3360 Ä Chapter 1.6.4.6.3 “Mounting and demounting”
on page 3408 Ä Chapter 1.6.4.4.7 “Recycling” on page 3352.

If you can not access the data stored in the CPU, e.g., because the CPU is not functional
any more, then physically destroy the device.

ð This ensures that the credentials that are stored in the device, can not be misused.

Secure decom-
missioning of a
functional CPU

Secure decom-
missioning of a
not functional
CPU

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3351

1.6.4.4.7 Recycling

Disposal and recycling information
This symbol on the product (and on its packaging) is in accordance with the
European Union's Waste Electrical and Electronic Equipment (WEEE) Directive.

The symbol indicates that this product must be recycled/disposed of separately
from other household waste.

It is the end user’s responsibility to dispose of this product by taking it to a
designated WEEE collection facility for the proper collection and recycling of the
waste equipment.

The separate collection and recycling of waste equipment will help to conserve
natural resources and protect human health and the environment.

For more information about recycling, please contact your local environmental
office, an electrical/electronic waste disposal company or the store where you
purchased the product.

1.6.4.5 AC500-eCo
1.6.4.5.1 System data AC500-eCo V3
Environmental conditions

Table 592: Process and supply voltages
Parameter Value
24 V DC

 Voltage 24 V (-15 %, +20 %)

Protection against reverse polarity Yes

24 V AC

 Voltage 24 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

100 V AC

 Voltage 100 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

230 V AC

 Voltage 230 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

100 V AC...240 V AC wide-range supply

 Voltage 100 V...240 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

Allowed interruptions of power supply, according to EN 61131-2

 DC supply Interruption < 10 ms, time between 2 interruptions
> 1 s, PS2

NOTICE!
Exceeding the maximum power supply voltage (> 30 V DC) for process or
supply voltages could lead to unrecoverable damage of the system. The system
might be destroyed.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3352

Parameter Value
PM5012-x-ETH PM5032-

x-ETH
PM5052-
x-ETH

PM5072-
T-2ETH

PM5072-T-2ETHW

Temperature

 Operating

 Horizontal mounting

 Standard temperature
range

0 °C...+55 °C 0 °C...+60 °C -

Wide temperature
range

- -20 °C...+70 °C
I/O derating
in range
60 °C…70 °C:
75 %

Vertical mounting (output load reduced to 50 % per group)

 Standard temperature
range

0 °C...+40 °C -

Wide temperature
range

- -20 °C...+40 °C

Storage -40 °C...+70 °C

Transport -40 °C...+70 °C

Humidity Max. 95 %, without condensation

Air pressure

 Operating > 800 hPa / < 2000 m

Storage > 660 hPa / < 3500 m

Ingress protection PLC System: IP 20 in accordance with IEC 60529
● with all modules or option boards plugged in
● with all terminal blocks plugged in
● with all covers closed

Option boards Temperature range
TA5101-4DI 0 °C... 60 °C

TA5105-4DOT 0 °C... 60 °C

TA5110-2DI2DOT 0 °C... 60 °C

TA530-KNXPB 0 °C... 60 °C

TA5131-RTC 0 °C...+55 °C

TA5141-RS232I 0 °C... 60 °C

TA5142-RS485I 0 °C... 60 °C

TA5142-RS485 0 °C... 60 °C

Creepage distances and clearances
The creepage distances and clearances meet the requirements of the overvoltage category II,
pollution degree 2.

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3353

Power supply units
For the supply of the modules, power supply units according to SELV or PELV specifications
must be used.

Safety Extra Low Voltage (SELV) and Protective Extra Low Voltage (PELV)
To ensure electrical safety of AC500/AC500-eCo extra low voltage circuits, 24
V DC supply, communication interfaces, I/O circuits, and all connected devices
must be powered from sources meeting requirements of SELV, PELV, class 2,
limited voltage or limited power according to applicable standards.

WARNING!
Improper installation can lead to death by touching hazardous voltages!
To avoid personal injury, safe separation, double or reinforced insulation and
separation of the primary and secondary circuit must be observed and imple-
mented during installation.
– Only use power converters for safety extra-low voltages (SELV) with safe

galvanic separation of the primary and secondary circuit.
– Safe separation means that the primary circuit of mains transformers must

be separated from the secondary circuit by double or reinforced insulation.
The protective extra-low voltage (PELV) offers protection against electric
shock.

Electromagnetic compatibility

Electromagnetic Compatibility
Device suitable for:

 Industrial applications Yes

 Domestic applications Yes

Immunity against electrostatic discharge
(ESD):

According to IEC 61000-4-2, zone B, crite-
rion B

 Electrostatic voltage in case of air dis-
charge

8 kV

 Electrostatic voltage in case of contact dis-
charge

6 kV

 ESD with communication connectors In order to prevent operating malfunctions,
it is recommended, that the operating
personnel discharge themselves prior to
touching communication connectors or
perform other suitable measures to reduce
effects of electrostatic discharges.

Immunity against the influence of radiated
(CW radiated):

According to IEC 61000-4-3, zone B, crite-
rion A

 Test field strength 10 V/m

Immunity against transient interference vol-
tages (burst):

According to IEC 61000-4-4, zone B, crite-
rion B

 Supply voltage units (DC) 2 kV

 Digital inputs/outputs (24 V DC) 1 kV

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3354

Electromagnetic Compatibility
 Digital inputs/outputs (100 V AC...240 V

AC)
Relay 2 kV

 Ethernet 1 kV

 Serial interfaces 1 kV

Immunity against the influence of line-con-
ducted interferences (CW conducted):

According to IEC 61000-4-6, zone B, crite-
rion A

Test voltage 10 V pass A

High energy surges According to IEC 61000-4-5, zone B, crite-
rion B

 Power supply DC 1 kV CM / 0.5 kV DM 1)

 DC I/O supply 1 kV CM / 0.5 kV DM 1)

 Ethernet 1 kV CM 1)

 Serial interfaces 1 kV CM 1)

 AC I/O unshielded 2 kV CM, 1 kV DM 1)

 I/O analog, I/O DC unshielded 1 kV CM 1)

Radiation (radio disturbance) According to IEC 55011, group 1, class A

1) CM = Common Mode, DM = Differential Mode

Mechanical data

Parameter Value
Mounting Horizontal

Degree of protection EN61131-2: IP20 with all option boards or
option board slot covers attached (and all ter-
minal screws are tightened)

Housing Classification V0 according to UL 94

Vibration resistance acc. to EN 61131-2 all three axes (DIN rail mounting)
5 Hz...8.2 Hz: ±7.5 mm peak
8.2 Hz...150 Hz: 2 g peak

Shock test All three axes
15 g, 11 ms, half-sinusoidal

Mounting of the modules:

DIN rail according to DIN EN 50022 35 mm, depth 7.5 mm or 15 mm

Mounting with screws M3

Fastening torque 1.2 Nm

Approvals and certifications
Information on approvals and certificates can be found in the corresponding chapter of the Main
catalog, PLC Automation.

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3355

http://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch

1.6.4.5.2 Mechanical dimensions
Switchgear cabinet assembly (indoor use)

Information on EMC-conforming assembly and construction is provided within
the overall functions section Ä Chapter 1.6.4.4.4 “EMC-conforming assembly
and construction” on page 3345.

To protect PLCs against:
● unauthorized access,
● dusting and pollution,
● moisture and wetness and
● mechanical damage,
switchgear cabinet IP54 for common dry factory floor environment is suitable.

Maintain spacing from:
● enclosure walls
● wireways
● adjacent equipment
Allow a minimum of 20 mm clearance on all sides. This provides ventilation and galvanic
isolation.
It is recommended to mount the modules on an grounded mounting plate, or an grounded DIN
rail, independent of the mounting location.

Fig. 274: Installation of AC500-eCo V3 CPU/S500 modules in a switchgear cabinet

1 Cable duct
2 Distance from cable duct ≥20 mm
3 Mounting plate, grounded

PLC enclosure

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3356

NOTICE!
 Horizontal mounting is highly recommended.
Vertical mounting is possible, however, derating consideration should be made
to avoid problems with poor air circulation and overheating.

When vertically mounted, always place an end-stop terminal block (e.g. type
BADL, P/N: 1SNA399903R0200) on the bottom and on the top of the modules
to properly secure the modules.

With high vibration applications and horizontal mounting, we also recommend
to place end-stop terminals at the right and left side of the device to properly
secure the modules, e.g. type BADL, P/N: 1SNA399903R0200.

Mechanical dimensions AC500-eCo V3 option boards
TA5105, TA5110

TA5130

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3357

Mechanical dimensions AC500-eCo V3

All mechanical dimensions are given in millimeters and inches. The value in
brackets is the inch-value.

TA5131-RTC

TA5101, TA514x

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3358

Fig. 275: Side, front and back view

Mechanical dimensions S500-eCo

All mechanical dimensions are given in millimeters and inches. The value in
brackets is the inch-value.

Fig. 276: Side, front and back view

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3359

1.6.4.5.3 Mounting and demounting
The control system is designed to be mounted to a well-grounded mounting surface such as a
metal panel. Additional grounding connections from the mounting tabs or DIN rail (if used), are
not required unless the mounting surface cannot be grounded.

During panel or DIN rail mounting of all devices, be sure that all debris (metal
chips, wire strands, etc.) is kept from falling into the controller. Debris that falls
into the controller could cause damage while the controller is energized.

All devices are grounded through the DIN rail to chassis ground. Use zinc
plated yellow-chromate stell DIN rail to assure proper grounding. The use of
other DIN rail materials (e.g. aluminium, plastic, etc.) that can corrode, oxidize,
or are poor conductors, can result in improper or intermittent grounding.

Mounting and demounting of the AC500-eCo V3 CPUs
Mounting a processor module on a DIN rail

NOTICE!
Risk of function faults!
The processor module is grounded via DIN rail.
The DIN rail must be included into the earthing conception of the plant.

Mount the processor module at the top of the DIN rail, then snap it in below.

See hardware description of PM50xx Ä Chapter 1.6.3.3.1.1 “PM50xx”
on page 2440 for connection.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3360

Demounting a processor module mounted on a DIN rail
1. Remove I/O modules if connected.

2. While pressing down processor module pull it away from DIN rail.

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3361

Mounting a processor module on a metal plate

NOTICE!
Risk of function faults!
Missing electrical contact by isolating screws or washers!
Use metal screws on the metal plate.
The metal plate must be included into the earthing concept of the plant.
Do NOT use insulating washers!

One TA543 wall mounting accessory Ä Chapter 1.6.4.5.5.5 “TA543 - Screw
mounting accessory” on page 3396 is needed per processor module.

1. Snap in the TA543 at the back side of the processor module.

2. Fasten the processor module with two screws (max. diameter: 4 mm) to the metal plate.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3362

See hardware description of PM50xx Ä Chapter 1.6.3.3.1.1 “PM50xx”
on page 2440 for connection.

Demounting a processor module mounted on a metal plate
1. Remove I/O modules if connected.

2. Remove the 2 screws.

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3363

Mounting of TA5301-CFA

1 TA5301-CFA cable fixing accessory
2 2 openings on the PM50x2 processor module

Insert the TA5301-CFA cable fixing accessory into the two openings on the PM50x2
processor module marked white in the figure.

Mounting and demounting option boards
Inserting the option board

After mounting the PM50x2 processor module on the DIN rail, mount the option board.

Press the option board TA51xx (or TA5300-CVR) into the slot of the processor module
PM50x2 until it locks in place.

The option board must click into the slot of the processor module.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3364

Removing the option board

1. Push the option board on the side to release the lock.
2. At the same time, pull the option board out of the slot.

CAUTION!
Risk of injury and damaging the product!
Always plug in the option board slot cover when the option board is not inserted.
If the option board slot cover is lost, please order the replacement TA5300-CVR
(1SAP187500R0001).
Never power up the CPU with uncovered option board slot, otherwise it may
cause serious injury and/or damage the product.

Mounting and demounting of S500-eCo I/O modules
S500-eCo I/O modules can be mounted either on a DIN rail or with screws on a metal plate.

NOTICE!
Risk of function faults!
The S500-eCo I/O modules are grounded via the DIN rail.
The DIN rail must be included into the earthing concept of the plant.
Use only metal screws.

Mounting I/O
modules on a
DIN rail

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3365

1. Mount I/O module at the top of the DIN rail, then snap it in below.

2. Attach I/O module by hand to an other module. The serial I/O bus is connected automati-
cally.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3366

1. Remove I/O module by hand if connected.

2. While pressing down I/O module pull it away from DIN rail.

NOTICE!
Risk of function faults!
Missing electrical contact by isolating screws or washers!
Use metal screws on the metal plate.
The metal plate must be included into the earthing concept of the plant.
Do NOT use insulating washers!

Demounting I/O
modules
mounted on a
DIN rail

Mounting I/O
modules on a
metal plate

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3367

One TA566 wall mounting accessory Ä Chapter 1.6.4.5.5.6 “ TA566 - Wall
mounting accessory” on page 3397 is needed per S500-eCo I/O module.

1. Snap in the TA566 at the back side of the I/O module.

2. Attach the I/O module by hand to an other module. The serial I/O bus is connected
automatically.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3368

3. Fasten the I/O module with two screws (max. diameter: 4 mm) to the metal plate.

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3369

1. Remove the 2 screws.

2. Remove the I/O module from the connected module by hand.

1.6.4.5.4 Connection and wiring
For detailed information such as technical data of your mounted devices (AC500 product family)
refer to the hardware device specification of the appropriate device.

Demounting I/O
modules
mounted on a
metal plate

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3370

Power supply
The processor modules PM50x2 can be connected to the 24 V DC supply voltage via a remov-
able 3-pin spring terminal block or a 3-pin screw terminal block.

Table 593: Removable terminal block for the supply voltage 24 V DC
3-pin spring terminal block 3-pin screw terminal block

The terminal block is available as a set for AC500-eCo V3 processor modules.

Basic CPU (PM5012) Standard CPUs (PM5032, PM5052) and
Pro CPUs (PM5072)

Spring type Screw type Spring type Screw type
TA5211-TSPF-B TA5211-TSCL-B TA5212-TSPF TA5212-TSCL

Further information on the terminal blocks concerning power supply and onboard inputs/out-
puts are provided under pluggable connectors for screw and spring connection Ä Chapter
1.6.4.5.5.2 “TA52xx(-x) - Terminal block sets” on page 3379.

Pin Assignment Pin Label Function Description

Terminal block
inserted

1 FE Functional earth

2 L+ +24 V DC Positive pin of the
power supply voltage

3 M 0 V Negative pin of the
power supply voltage

CAUTION!
Risk of damaging the AC500-eCo V3 processor module and the connected
modules!
Voltages > 30 V DC might damage the processor module and the connected
modules.
Make sure that the supply voltage never exceeds 30 V DC.

Pin assignment

Faulty wiring on
power supply
terminals

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3371

Processor module interfaces

The I/O bus is not available for PM5012-T-ETH and PM5012-R-ETH. I/O
channel extension using option board slot only.

The I/O bus is the I/O data bus for the I/O modules. Through this bus, I/O and diagnosis data
are transferred between the processor module and the I/O modules. Up to 10 I/O modules for
PM5032-x-ETH (but with a limit of 128 Bytes input/ 128 Bytes output variables) and 10 I/O
modules for PM5052-x-ETH and PM5072-T-2ETH can be added.

Depending on the processor module variants, an additional option board can be connected to
the option board slot to extend the feature of the processor module Ä Chapter 1.6.2.6.2.1.1
“Option boards for AC500-eCo V3 processor modules” on page 2410 .

RS-232 communication interface is available by using option board:
● TA5141-RS232I (isolated)
Ä Chapter 1.6.3.3.1.2.6 “TA5141-RS232I - Option board for COMx serial communication”
on page 2502

RS-485 communication interface is available by using option boards:
● TA5142-RS485I (isolated)
Ä Chapter 1.6.3.3.1.2.7 “TA5142-RS485I - Option board for COMx serial communication”
on page 2504

● TA5142-RS485 (non isolated)
Ä Chapter 1.6.3.3.1.2.8 “TA5142-RS485 - Option board for COMx serial communication”
on page 2510

Ethernet

Ethernet is also used for Modbus TCP connection.

Ethernet interface
The Ethernet interface is carried out via a RJ45 jack. The pin assignment of the Ethernet
interface:

Interface Pin Description
1 Tx+ Transmit Data +

2 Tx- Transmit Data -

3 Rx+ Receive data +

4 NC Not connected

5 NC Not connected

6 Rx- Receive data -

7 NC Not connected

I/O bus

Option board
slot interface

Serial interface

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3372

Interface Pin Description
8 NC Not connected

Shield Cable shield Functional earth

Modbus RTU connection details
The Modbus RTU protocol is implemented in the AC500 processor modules.
Modbus is a master-slave (client-server) protocol. The client sends a request to the server(s)
and receives the response(s).
Available serial interfaces can work as Modbus interfaces simultaneously.
The Modbus client operating mode of an interface is set with the function block
COM_MOD_MAST.

Table 594: Description of the Modbus protocol
Parameter Value
Supported standard See Serial interfaceÄ Chapter 1.6.6.2.14.1

“Configuring Modbus RTU on serial interface”
on page 3793

Number of connection points 1 client
Max. 1 server with RS-232 interface
Max. 31 servers with RS-485

Protocol Modbus

Operating mode Client/server

Address Server only

Data transmission control CRC16

Data transmission speed From 9,600 bits/s to 115,200 bits/s
(see Serial interfaceÄ Chapter 1.6.6.2.14.1
“Configuring Modbus RTU on serial interface”
on page 3793)

Encoding 1 start bit
8 data bits
1 or 2 stop bits
1 parity bit (see Serial interfaceÄ Chapter
1.6.6.2.14.1 “Configuring Modbus RTU on
serial interface” on page 3793)

Max. cable length for RS-485 on serial inter-
face option board used on the CPU.

1.200 m at 19.200 baud

Point-to-point with RS-232 or bus topology with RS-485. Modbus is a master-slave protocol.
For further information on Modbus see chapter Ä Chapter 1.6.5.1.10 “Communication with
Modbus RTU” on page 3542.

Technical data

Bus topology

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3373

PLC-Configuration-V3.chm::/Modbus_RTU_serial_interface.htm
PLC-Configuration-V3.chm::/Modbus_RTU_serial_interface.htm
PLC-Configuration-V3.chm::/Modbus_RTU_serial_interface.htm

1.6.4.5.5 Handling of accessories
This section only describes accessories that are frequently used for system assembly, connec-
tion and construction. A description of all additional accessories that can be used to supplement
AC500 system can be found in the Hardware PLC device description.

MC5102 - Micro memory card with micro memory card adapter
● Solid state flash memory storage

1 Micro memory card
2 TA5350-AD micro memory card adapter

The MC5102 micro memory card has no write protect switch.

The TA5350-AD micro memory card adapter has a write protect switch.

In the position "LOCK", the inserted micro memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other micro memory cards is prohibited. ABB is not responsible nor
liable for consequences resulting from use of unapproved memory cards.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3374

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

The micro memory card is used to store or backup application data and/or application programs
or project source codes as well as to update the internal CPU firmware.
The micro memory card can only be used temporarily in standard and XC applications.
The memory card can be read/written on a PC with a SDHC compatible memory card reader
when using TA5350-AD micro memory card adapter.

The dimensions are in mm and in brackets in inch.

The dimensions are in mm and in brackets in inch.

Purpose

Dimensions

Micro memory
card

Micro memory
card adapter

Insert the micro
memory card

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3375

Fig. 277: Insert micro memory card into PM56xx

1 Micro memory card
2 TA5350-AD micro memory card adapter
3 Memory card slot
1. Unpack the micro memory card and insert it into the supplied micro memory card adapter.
2. Insert the micro memory card adapter with integrated micro memory card into the memory

card slot of the processor module until locked.

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Carefully insert the micro memory card into the micro memory card slot as far as it will go.

Observe orientation of card.
3. Close the micro memory card slot cover by turning it downwards.

AC500 V3

AC500-eCo V3

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3376

NOTICE!
Removal of the micro memory card
Do not remove the micro memory card when it is working!
AC500 V3: Remove the micro memory card with micro memory card adapter
only when no black square () is shown next to MC in the display.
AC500-eCo V3: Remove the micro memory card only when the MC LED is not
blinking.
Otherwise the micro memory card and/or files on it might get corrupted and/or
normal PLC operation might be disturbed.

Fig. 278: Remove micro memory card from PM56xx

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot
1. To remove the micro memory card adapter with the integrated micro memory card, push

on the micro memory card adapter until it moves forward.
2. By this, the micro memory card adapter is unlocked and can be removed.

Remove the
micro memory
card

AC500 V3

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3377

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Micro memory card can be removed from the micro memory card slot by gripping and

pulling with two fingers.
3. Close the micro memory card slot cover by turning it downwards.

Parameter Value
Memory capacity 8 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch

 Micro memory card No

 Micro memory card adapter Yes

Weight 0.25 g

Dimensions 15 mm x 11 mm x 0.7 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the micro memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.7.2 “Memory card in AC500 V3” on page 3999.

AC500-eCo V3

Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3378

Part no. Description Product life cycle phase *)
1SAP 180 100 R0002 MC5102, micro memory

card with TA5350-AD micro
memory card adapter

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA52xx(-x) - Terminal block sets
Removable terminal blocks are used for power supply and for I/O connectors on AC500-eCo V3
processor modules PM50x2.
For option boards there are different removable terminal blocks in spring version.

For the AC500-eCo V3 Basic CPUs a 3-pin terminal block for power supply and a 13-pin
terminal block for I/O connectors are used.
For the AC500-eCo V3 Standard CPUs and Pro CPUs a 3-pin terminal block for power supply,
a 13-pin terminal block and a 12-pin terminal block for I/O connectors are used.
For all CPUs there is a screw and a spring variant available.

Basic CPU Standard and Pro CPUs
Spring type
TA5211-TSPF-B

Screw type
TA5211-TSCL-B

Spring type
TA5212-TSPF

Screw type
TA5212-TSCL

Ordering data

Intended pur-
pose

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3379

Various removable spring-type terminal blocks are available for option boards.
The following spare parts are available (depending on the number of pins).

Spring type
TA5220-SPF5 TA5220-SPF6 TA5220-SPF7 TA5220-SPF8

CAUTION!
Risk of injury and damaging the product!
Improper installation and maintenance may result in injury and can damage the
product!
– Installation and maintenance have to be performed according to the

technical rules, codes and relevant standards, e.g. EN 60204-1.
– Read product documentation carefully before wiring. Improper wiring or

wrong terminal block from other devices can damage the product!
– Only by qualified personnel.

CAUTION!
Risk of injury and damaging the processor module when using unap-
proved terminal blocks!
Only use terminal blocks approved by ABB to avoid injury and damage to the
processor module.

Terminal block set for PM50x2
Processor modules PM50x2 CPU are not delivered with terminal blocks.

Screw type terminal block set:

– TA5211-TSCL-B (1SAP187400R0001) for PM5012-x-ETH
– TA5212-TSCL (1SAP187400R0004) for PM5032-x-ETH, PM5052-x-ETH,

PM5072-T-2ETH(W)

Spring type terminal block set:

– TA5211-TSPF-B (1SAP187400R0002) for PM5012-x-ETH
– TA5212-TSPF (1SAP187400R0005) for PM5032-x-ETH, PM5052-x-ETH,

PM5072-T-2ETH(W)

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3380

Dimensions

3-pin terminal
block for power
supply
Screw type

Spring type

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3381

13-pin terminal
block for I/O
connectors
Screw type

Spring type

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3382

12-pin terminal
block for I/O
connectors
Screw type

Spring type

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3383

Only these x-pin blocks are available for the option boards.

TA5220-SPFx, with x = 5...8

This results in these dimensions for the available spring terminal blocks.

Description Pin Length [mm] Wide [mm] Height [mm]
TA5220-SPF5 5 18.2 7.7 22.9

TA5220-SPF6 6 21.7 7.7 22.9

TA5220-SPF7 7 25.2 7.7 22.9

TA5220-SPF8 8 28.7 7.7 22.9

x-PIN terminal
blocks for
option boards

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3384

Table 595: Screw type terminal block for power supply
Parameter Value
Type

 TA5211-TSCL-B Removable 3-pin terminal block:
screw front/cable side 5.00 mm pitchTA5212-TSCL

Usage Power supply for AC500-eCo V3 processor
modules

Conductor cross section

 Solid (copper) 0.5 mm²...2.5 mm²

 Flexible (copper) 0.5 mm²...2.5 mm²

Stripped conductor end 7 mm

Assembly

Disassembly

Technical data

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3385

Parameter Value
Fastening torque 0.5 Nm

Dimensions

 3-pin terminal block 15 mm x 12.4 mm x 26.05 mm

Weight

 TA5211-TSCL-B 150 g (2 terminal blocks)

 TA5212-TSCL 200 g (3 terminal blocks)

Table 596: Spring type terminal block for power supply
Parameter Value
Type

 TA5211-TSPF-B Removable 3-pin terminal block:
spring front/cable front 5.00 mm pitchTA5212-TSPF

Usage Power supply for AC500-eCo V3 processor
modules

Conductor cross section

 Solid (copper) 0.5 mm²...2.5 mm²

 Flexible (copper) 0.5 mm²...2.5 mm²

Stripped conductor end 11 mm

Dimensions

 3-pin terminal block 15 mm x 15 mm x 25.95 mm

Weight

 TA5211-TSPF-B 150 g (2 terminal blocks)

 TA5212-TSPF 200 g (3 terminal blocks)

Table 597: Screw type terminal block for onboard I/Os
Parameter Value
Type

 TA5211-TSCL-B Removable 13-pin terminal block:
screw front/cable side 5.00 mm pitch

TA5212-TSCL Removable 13-pin and 12-pin terminal block:
screw front/cable side 5.00 mm pitch

Usage Onboard I/Os for AC500-eCo V3 processor
modules

Conductor cross section

 Solid (copper) 0.5 mm²...2.5 mm²

 Flexible (copper) 0.5 mm²...2.5 mm²

Stripped conductor end 7 mm

Fastening torque 0.5 Nm

Dimensions

 13-pin terminal block 65 mm x 12.4 mm x 26.05 mm

12-pin terminal block 60 mm x 12.4 mm x 26.05 mm

Weight

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3386

Parameter Value
 TA5211-TSCL-B 150 g (2 terminal blocks)

TA5212-TSCL 200 g (3 terminal blocks)

Table 598: Spring type terminal block for onboard I/Os
Parameter Value
Type

 TA5211-TSPF-B Removable 13-pin terminal block:
spring front/cable front 5.00 mm pitch

TA5212-TSPF Removable 13-pin and 12-pin terminal block:
spring front/cable front 5.00 mm pitch

Usage Onboard I/Os for AC500-eCo V3 processor
modules

Conductor cross section

 Solid (copper) 0.5 mm²...2.5 mm²

 Flexible (copper) 0.5 mm²...2.5 mm²

Stripped conductor end 11 mm

Dimensions

 13-pin terminal block 65 mm x 15 mm x 25.95 mm

12-pin terminal block 60 mm x 15 mm x 25.95 mm

Weight

 TA5211-TSPF-B 150 g (2 terminal blocks)

TA5212-TSPF 200 g (3 terminal blocks)

Table 599: Spring type terminal block for option boards
Parameter Value
Type

 TA5220-SPF5 Removable 5-pin terminal block:
spring front, cable front 3.50 mm pitch

TA5220-SPF6 Removable 6-pin terminal block:
spring front, cable front 3.50 mm pitch

TA5220-SPF7 Removable 7-pin terminal block:
spring front, cable front 3.50 mm pitch

TA5220-SPF8 Removable 8-pin terminal block:
spring front, cable front 3.50 mm pitch

Usage Connectors for AC500-eCo V3 option boards

Conductor cross section

 Solid (copper) 0.2 mm²...1.5 mm²

 Flexible (copper) 0.2 mm²...1.5 mm²

Stripped conductor end 8 mm...10 mm

Dimensions

 TA5220-SPF5 18.2 mm x 7.7 mm x 22.9 mm

TA5220-SPF6 21.7 mm x 7.7 mm x 22.9 mm

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3387

Parameter Value
TA5220-SPF7 25.2 mm x 7.7 mm x 22.9 mm

TA5220-SPF8 28.7 mm x 7.7 mm x 22.9 mm

Weight

 TA5220-SPF5 150 g

TA5220-SPF6 170 g

TA5220-SPF7 180 g

TA5220-SPF8 200 g

Part no. Description
1SAP 187 400 R0001 TA5211-TSCL-B: screw terminal block set for AC500-eCo V3 CPU

Basic
screw front, cable side 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors

1SAP 187 400 R0002 TA5211-TSPF-B: spring terminal block set for AC500-eCo V3 CPU
Basic
spring front, cable front 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors

Part no. Description
1SAP 187 400 R0004 TA5212-TSCL: screw terminal block set for AC500-eCo V3 Standard

and Pro CPU
screw front, cable side 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors
● 1 removable 12-pin terminal block for I/O connectors

1SAP 187 400 R0005 TA5212-TSPF: spring terminal block set for AC500-eCo V3
Standard and Pro CPU
spring front, cable front 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors
● 1 removable 12-pin terminal block for I/O connectors

Part no. Description
Spare parts

1SAP 187 400 R0012 TA5220-SPF5: spring terminal block, removable, 5-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 400 R0013 TA5220-SPF6: spring terminal block, removable, 6-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 400 R0014 TA5220-SPF7: spring terminal block, removable, 7-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 400 R0015 TA5220-SPF8: spring terminal block, removable, 8-pin, spring front,
cable front, 6 pieces per packing unit

Ordering data

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3388

TA5300-CVR - Option board slot cover
TA5300-CVR option board slot covers for PM50xx processor modules are necessary to protect
not used option board slots.

CAUTION!
Risk of injury and damaging the product!
Always plug in the option board slot cover when the option board is not inserted.
If the option board slot cover is lost, please order the replacement TA5300-CVR
(1SAP187500R0001).
Never power up the CPU with uncovered option board slot, otherwise it may
cause serious injury and/or damage the product.

The AC500-eCo V3 processor modules are delivered with option board slot
cover(s).

The option board slot cover has to be removed before inserting an option board.

The TA5300-CVR option board slot covers are available as spare parts.

The dimensions are in mm and in brackets in inch.

Intended pur-
pose

Dimensions

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3389

1. Press on the option board slot cover to insert it in the not used option board slot of the
processor module PM50xx.

2. The option board slot cover must click into the not used option board slot.

1. Press the side of the inserted option board slot cover.
2. At the same time, pull the option board slot cover out of the option board slot of the

processor module PM50xx.

The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Parameter Value
Weight 47 g

Dimensions 42.1 mm x 30.8 mm x 23.55

Inserting of the
option board
slot cover

Removing of the
option board
slot cover

Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3390

Part no. Description Product life cycle phase
*)

1SAP 187 500 R0001 TA5300-CVR: option board slot cover,
removable plastic part, 6 pieces per
packing unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Ordering data

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3391

TA5400-SIM - Input simulator
● TA5400-SIM input simulator for 6 digital inputs 24 V DC
● For usage with AC500-eCo V3 processor modules

1 Contacts for connecting the input simulator to the terminal block for I/O connectors
2 6 switches for the digital inputs DI0 ... DI5 (0 means opened switch, 1 means closed switch)
3 Screw terminal block for power supply
4 Screw terminal block(s) for I/O connectors

TA5400-SIM
The TA5400-SIM input simulator is only intended for testing and training pur-
poses for AC500-eCo V3 processor modules PM50x2.

Continuous operation in a productive system is not permitted.

The TA5400-SIM input simulator may only be used with screw-type terminal
blocks.

The TA5400-SIM input simulator must not be used with spring-type terminal
blocks.

Intended
purpose

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3392

Environmental conditions for testing and training purposes
In order not to impair the functionality of the product, avoid any kind of dis-
turbing environmental influences:

– mechanical disturbances
– climatic influences

Make sure that the parameters are within the normal range:

– temperature
– air pressure
– humidity
– altitude

The TA5400-SIM input simulator can simulate 6 digital 24 V DC input signals to the digital inputs
I0...I5 of onboard I/Os.
With the TA5400-SIM input simulator, the digital 24 V DC inputs I0...I5 can be turned OFF and
ON separately:
● If the lever of the switch is on the right side (1), the input is ON.
● If the lever of the switch is on the left side (0), the input is OFF.

The dimensions are in mm and in brackets in inch.

The diagram below shows the connection of the TA5400-SIM input simulator.

Dimensions

Electrical
diagram

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3393

NOTICE!
Risk of damage to the TA5400-SIM input simulator!
Do not remove the terminal block while the TA5400-SIM input simulator is
connected.
Do not apply mechanical forces to the input simulator when it is connected to
the terminal block.
In both cases the input simulator could be damaged.

1. Make sure that the power supply of the processor module is turned off.

CAUTION!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overvoltages and short circuits.
Make sure, that all voltage sources (supply and process voltage) are
switched off before you start working on the system.
Never connect voltages > 24 V DC to the terminal block of the TA5400-
SIM input simulator.

CAUTION!
Risk of damaging the input simulator and/or PLC modules!
The TA5400-SIM input simulator may only be used with AC500-eCo V3
processor modules PM50x2.
Never use the input simulator with other devices.
The input simulator may only be used with screw-type terminal blocks.
The input simulator is only intended for testing and training purposes.
Never use it within productive sytems.

Assembly

Insertion of the
input simulator

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3394

2. Make sure that all clamps of the onboard I/Os are totally open.
3. Insert the TA5400-SIM input simulator into the screw terminal block as shown in the figure.

4. Tighten all screws of the onboard I/O clamps.
5. Make sure all switches are in OFF state (0).
6. Connect 24 V DC to the power supply of the TA5400-SIM (L+ and M). Tighten the screws.
7. Connect the processor module power supply wires (24 V DC). See PM50xx Ä “Pin

assignment” on page 3371.

1. Make sure that the power supply of the processor module is turned off.

CAUTION!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overvoltages and short circuits.
Make sure that all voltage sources (supply and process voltage) are
switched off before you start working on the system.

2. Disconnect the TA5400-SIM power supply wires (24 V DC) with a flat-blade screwdriver
from the terminal block for power supply (L+ and M).

3. Loosen all screws of the onboard I/Os.
4. Remove the input simulator by pulling it to the left side.

The system data of AC500-eCo V3 apply Ä Chapter 1.6.4.5.1 “System data AC500-eCo V3”
on page 3352

Only additional details are therefore documented below.

Disassembly

Removal of the
input simulator

Technical data

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3395

Table 600: Technical data of the module
Parameter Value
Process supply voltage

 Connections Terminal (L+) for +24 V DC and terminal (M) for
0 V DC

Rated value 24 V DC

Max. ripple 5 %

Protection against reversed voltage Yes

Galvanic isolation Yes (on processor module PM50xx)

Isolated Groups 1 (6 channels per group)

Weight 18 g

Mounting position Horizontal or vertical

Table 601: Technical data of the inputs
Parameter Value
Number of channels per module 6 digital input channels (+24 V DC)

Distribution of the channels into groups 1 (6 channels per group)

Connections of channels I0 to I5 Terminals 2...7

Reference potential for the channels I0 to I5 Terminal 1 (negative pole of the process supply
voltage, signal name C0...5)

Input current per active channel (at input
voltage +24 V DC)
The current is given through the used pro-
cessor module.

Typ. 5 mA

Inrush current per active channel
The current is given through the used pro-
cessor module.

Typ. 5 mA

Part no. Description Product life cycle phase *)
1SAP 187 600 R0001 TA5400-SIM, input simulator

for PM50x2
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA543 - Screw mounting accessory

The TA543 screw mounting accessory is used for mounting the processor module PM50xx
without DIN rail.

Ordering data

Intended pur-
pose

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3396

TA543 must be snapped on the backside of PM50xx Ä Chapter 1.6.4.5.3.1.3 “Mounting a
processor module on a metal plate” on page 3362.

1 Screw mounting accessory TA543
2 Slot for screw mounting accessory TA543
3 2 holes for screw mounting

Parameter Value
Weight 5 g

Dimensions 12 mm x 8.5 mm x 10 mm

Part no. Description Product life cycle phase *)
1SAP 182 800 R0001 TA543, screw mounting

accessory for PM50x2
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA566 - Wall mounting accessory

The TA566 wall mounting accessory is used for mounting S500-eCo I/O modules without DIN
rail.

Handling
instruction

Technical data

Ordering data

Intended pur-
pose

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3397

The TA566 is snapped into the back side of the device's housing Ä “Mounting I/O modules on a
metal plate” on page 3367.

Parameter Value
Weight 5 g

Dimensions 29 mm x 28 mm x 5 mm

Part no. Description Product life cycle phase *)
1TNE 968 901 R3107 TA566, wall mounting acces-

sory, 100 pieces
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.4.6 AC500 (Standard)
1.6.4.6.1 System data AC500
Environmental conditions

Table 602: Process and supply voltages
Parameter Value
24 V DC

 Voltage 24 V (-15 %, +20 %)

Protection against reverse polarity Yes

120 V AC

 Voltage 120 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

230 V AC

 Voltage 230 V AC (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

120 V AC...240 V AC wide-range supply

 Voltage 120 V...240 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

Allowed interruptions of power supply, according to EN 61131-2

 DC supply Interruption < 10 ms, time between 2 interrup-
tions > 1 s, PS2

AC supply Interruption < 0.5 periods, time between 2
interruptions > 1 s

NOTICE!
Exceeding the maximum power supply voltage for process or supply voltages
could lead to unrecoverable damage of the system. The system might be
destroyed.

Handling
instruction

Technical data

Ordering data

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3398

NOTICE!
Improper voltage level or frequency range which cause damage of AC inputs:
– AC voltage above 264 V
– Frenquency below 47 Hz or above 62.4 Hz

NOTICE!
Improper connection leads cause overtemperature on terminals.
PLC modules may be destroyed by using wrong cable type, wire size and cable
temperature classification.

Parameter Value
Temperature

 Operating 0 °C...+60 °C: Horizontal mounting of modules.
0 °C...+40 °C: Vertical mounting of modules.
Output load reduced to 50 % per group.

 Storage -40 °C...+70 °C

 Transport -40 °C...+70 °C

Humidity Max. 95 %, without condensation

Air pressure

 Operating > 800 hPa / < 2000 m

 Storage > 660 hPa / < 3500 m

Ingress protection IP20

Creepage distances and clearances
The creepage distances and clearances meet the requirements of the overvoltage category II,
pollution degree 2.

Insulation test voltages, routine test

Parameter Value
230 V circuits against other
circuitry

2500 V 1.2/50 µs

120 V circuits against other
circuitry

1500 V 1.2/50 µs

120 V...240 V circuits against
other circuitry

2500 V 1.2/50 µs

24 V circuits (supply, 24 V
inputs/outputs, analog inputs/
outputs), if they are galvani-
cally isolated against other cir-
cuitry

500 V 1.2/50 µs

According to EN
61131-2

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3399

Parameter Value
COM interfaces, galvanically
isolated

500 V 1.2/50 µs

Ethernet 500 V 1.2/50 µs

230 V circuits against other
circuitry

1350 V AC 2 s

120 V circuits against other
circuitry

 820 V AC 2 s

120 V...240 V circuits against
other circuitry

1350 V AC 2 s

24 V circuits (supply, 24 V
inputs/outputs, analog inputs/
outputs), if they are galvani-
cally isolated against other cir-
cuitry

350 V AC 2 s

COM interfaces, galvanically
isolated

350 V AC 2 s

 Not applicable Not applicable

Ethernet 350 V AC 2 s

The content of the following table is only valid for PM56xx and TB56xx.

Table 603: Insulation, test voltages and continuous voltages
 Insulation Test Voltage Continuous Voltage
COM interfaces, gal-
vanically isolated

1.1 mm 1216 V DC (60 s)
1500 V (1.2/50µs)

75 V

CAN interface, gal-
vanically isolated

1.1 mm 1216 V DC (60 s)
1500 V (1.2/50µs)

75 V

Ethernet 1.1 mm 1500 V rms (50-60
Hz, 60 s)
2400 V (1.2/50µs)

On request

Power supply units
For the supply of the modules, power supply units according to SELV or PELV specifications
must be used.

According to
IEC 61010-2-201

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3400

Safety Extra Low Voltage (SELV) and Protective Extra Low Voltage (PELV)
To ensure electrical safety of AC500/AC500-eCo extra low voltage circuits, 24
V DC supply, communication interfaces, I/O circuits, and all connected devices
must be powered from sources meeting requirements of SELV, PELV, class 2,
limited voltage or limited power according to applicable standards.

WARNING!
Improper installation can lead to death by touching hazardous voltages!
To avoid personal injury, safe separation, double or reinforced insulation and
separation of the primary and secondary circuit must be observed and imple-
mented during installation.
– Only use power converters for safety extra-low voltages (SELV) with safe

galvanic separation of the primary and secondary circuit.
– Safe separation means that the primary circuit of mains transformers must

be separated from the secondary circuit by double or reinforced insulation.
The protective extra-low voltage (PELV) offers protection against electric
shock.

Electromagnetic compatibility
Table 604: Range of use
Parameter Value
Industrial applications Yes

Domestic applications No

Table 605: Immunity against electrostatic discharge (ESD), according to IEC 61000-4-2, zone B,
criterion B
Parameter Value
Electrostatic voltage in case of air discharge 8 kV

Electrostatic voltage in case of contact dis-
charge

4 kV, in a closed switchgear cabinet 6 kV 1)

ESD with communication connectors In order to prevent operating malfunctions, it
is recommended, that the operating personnel
discharge themselves prior to touching com-
munication connectors or perform other suit-
able measures to reduce effects of electro-
static discharges.

ESD with connectors of terminal bases The connectors between the Terminal Bases
and processor modules or Communication
Modules must not be touched during opera-
tion. The same is valid for the I/O bus with all
modules involved.

1) High requirement for shipping classes are achieved with additional specific measures (see
specific documentation).

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3401

Table 606: Immunity against the influence of radiated (CW radiated), according to IEC
61000-4-3, zone B, criterion A
Parameter Value
Test field strength 10 V/m

Table 607: Immunity against fast transient interference voltages (burst), according to IEC
61000-4-4, zone B, criterion B
Parameter Value
Supply voltage units (DC) 2 kV

Supply voltage units (AC) 2 kV

Digital inputs/outputs (24 V DC) 1 kV

Digital inputs/outputs (120 V AC...240 V AC) 2 kV

Analog inputs/outputs 1 kV

CS31 bus 1 kV

Serial RS-485 interfaces (COM) 1 kV

Serial RS-232 interfaces (COM, not for PM55x
and PM56x)

1 kV

Ethernet 1 kV

I/O supply (DC-out) 1 kV

Table 608: Immunity against the influence of line-conducted interferences (CW conducted),
according to IEC 61000-4-6, zone B, criterion A
Parameter Value
Test voltage 3V zone B, 10 V is also met.

High energy surges According to IEC 61000-4-5, zone B, criterion
B

 Power supply DC 1 kV CM / 0.5 kV DM ²)

 DC I/O supply 0.5 kV CM / 0.5 kV DM ²)

 Communication Lines, shielded 1 kV CM ²)

 AC I/O unshielded 3) 2 kV CM / 1 kV DM ²)

 I/O analog, I/O DC unshielded 3) 1 kV CM / 0.5 kV DM ²)

Radiation (radio disturbance) According to IEC 55011, group 1, class A

²) CM = Common Mode, DM = Differential Mode
3) When DC I/O inputs are used with AC voltage, external filters limiting high energy surges to 1
kV CM / 0.5 DM are required to meet requirements according IEC 61131-2.

Mechanical data

Parameter Value
Mounting Horizontal

Degree of protection IP 20

Housing Classification V-2 according to UL 94

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3402

Parameter Value
Vibration resistance acc. to EN 61131-2 all three axes

2 Hz...8.4 Hz, continuous 3.5 mm
8.4 Hz...150 Hz, continuous 1 g (higher values
on request)

Shock test All three axes
15 g, 11 ms, half-sinusoidal

Mounting of the modules:
DIN rail according to DIN EN 50022 35 mm, depth 7.5 mm or 15 mm

Mounting with screws Screws with a diameter of 4 mm

Fastening torque 1.2 Nm

Approvals and certifications
Information on approvals and certificates can be found in the corresponding chapter of the Main
catalog, PLC Automation.

1.6.4.6.2 Mechanical dimensions
Switchgear cabinet assembly

Information on EMC-conforming assembly and construction is provided within
the overall functions section Ä Chapter 1.6.4.4.4 “EMC-conforming assembly
and construction” on page 3345.

NOTICE!
PLC damage due to wrong enclosures
Due to their construction (degree of protection IP 20 according to EN 60529)
and their connection technology, the devices are suitable only for operation in
enclosed switchgear cabinets.

To protect PLCs against:
● unauthorized access,
● dusting and pollution,
● moisture and wetness and
● mechanical damage,
switchgear cabinet IP54 for common dry factory floor environment is suitable.

Maintain spacing from:
● enclosure walls
● wireways
● adjacent equipment
Allow a minimum of 20 mm clearance on all sides. This provides ventilation and galvanic
isolation.

PLC enclosure

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3403

http://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch

It is recommended to mount the modules on an grounded mounting plate, or an grounded DIN
rail, independent of the mounting location.

Fig. 279: Installation of AC500/S500 modules in a switchgear cabinet

1 Cable duct
2 Distance from cable duct ≥20 mm
3 Mounting plate, grounded

NOTICE!
 Horizontal mounting is highly recommended.
Vertical mounting is possible, however, derating consideration should be made
to avoid problems with poor air circulation and overheating (see Ä Chapter
1.6.4.6.1.1 “Environmental conditions” on page 3398).

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3404

When vertically mounted, always place an end-stop terminal block (e.g. type
BADL, P/N: 1SNA399903R0200) on the bottom and on the top of the modules
to properly secure the modules.

With high vibration applications and horizontal mounting, we also recommend
to place end-stop terminals at the right and left side of the device to properly
secure the modules, e.g. type BADL, P/N: 1SNA399903R0200.

Mechanical dimensions AC500

Fig. 280: Terminal bases, side view and front view

Dimensions: ter-
minal bases

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3405

Fig. 281: Terminal bases with processor modules, side view and front view

Mechanical dimensions S500

Fig. 282: Terminal units, side view and front view

Dimensions:
Terminal units

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3406

Fig. 283: Terminal units and S500 modules, side view and front view

Fig. 284: Terminal base (for comparison)

All dimensions are in mm (in.). Hole spacing tolerance: ±0.4 mm (0.016 in.)

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3407

1.6.4.6.3 Mounting and demounting
The control system is designed to be mounted to a well-grounded mounting surface such as a
metal panel. Additional grounding connections from the mounting tabs or DIN rail (if used), are
not required unless the mounting surface cannot be grounded.

During panel or DIN rail mounting of all devices, be sure that all debris (metal
chips, wire strands, etc.) is kept from falling into the controller. Debris that falls
into the controller could cause damage while the controller is energized.

All devices are grounded through the DIN rail to chassis ground. Use zinc
plated yellow-chromate stell DIN rail to assure proper grounding. The use of
other DIN rail materials (e.g. aluminium, plastic, etc.) that can corrode, oxidize,
or are poor conductors, can result in improper or intermittent grounding.

Mounting/Demounting terminal bases and function module terminal bases

1. Mount DIN rail 7.5 mm or 15 mm.
2. Mount the terminal base/function module terminal base:

ð The terminal base is put on the DIN rail above and then snapped-in below.

Demounting on
DIN rail

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3408

3. The demounting is carried out in a reversed order.

If the terminal base should be mounted with screws, wall mounting accessories TA526
Ä Chapter 1.6.4.6.5.5 “TA526 - Wall mounting accessory” on page 3445 must be inserted at
the rear side first. These plastic parts prevent bending of the terminal base while screwing on.
TB560x and TB561x need one TA526, TB562x, TB564x and TB566x need two TA526.

Fig. 285: Terminal bases, Fastening with screws

Fig. 286: Function module terminal bases, Fastening with screws

By wall mounting, the terminal base is grounded through the screws. It is neces-
sary that

– the screws have a conductive surface (e.g. steel zinc-plated or brass nickel-
plated)

– the mounting plate is grounded
– the screws have a good electrical contact to the mounting plate

Mounting with
screws

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3409

The following procedure allows you to use the mounted modules as a template for drilling holes
in the panel. Due to module mounting hole tolerance, it is important to follow these procedures:
1. On a clean work surface, mount no more than 3 modules (e.g. one terminal base and two

terminal units).
2. Using the mounted modules as a template, carefully mark the center of all module-

mounting holes on the panel.
3. Return the mounted modules to the clean work surface, including any previously mounted

modules.
4. Drill and tap the mounting holes for the screws (M4 or #8 recommended).
5. Place the modules back on the panel and check for proper hole alignment.
6. Attach the modules to the panel using the mounting screws.

If mounting more modules, mount only the last one of this group and put
the others aside. This reduces remounting time during drilling and tapping
of the next group.

7. Repeat the steps for all remaining modules.

Mounting/Demounting the terminal unit

1. Mount DIN rail 7.5 mm or 15 mm.
2. Mount the terminal unit.

The terminal unit is snapped into the DIN rail in the same way as the Terminal Base.
Once secured to the DIN rail, slide the terminal unit to the left until it fully locks into place
creating a solid mechanical and connection.

When attaching the devices, make sure the bus connectors are securely
locked together to ensure proper connection. Max. 10 terminal units can
be attached.

Practical tip

Mounting on
DIN rail

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3410

3. Demounting: A screwdriver is inserted in the indicated place to separate the terminal units.

If the terminal unit should be mounted with screws, wall mounting accessories TA526
Ä Chapter 1.6.4.6.5.5 “TA526 - Wall mounting accessory” on page 3445 must be inserted at
the rear side first. These plastic parts prevent bending of the Terminal Base while screwing on.

Fig. 287: Fastening with screws

By wall mounting, the terminal unit is grounded through the screws. It is neces-
sary that

– the screws have a conductive surface (e.g. steel zinc-plated or brass nickel-
plated)

– the mounting plate is grounded
– the screws have a good electrical contact to the mounting plate

The following procedure allows you to use the mounted modules as a template for drilling holes
in the panel. Due to module mounting hole tolerance, it is important to follow these procedures:
1. On a clean work surface, mount no more than 3 modules (e.g. one terminal base and two

terminal units).
2. Using the mounted modules as a template, carefully mark the center of all module-

mounting holes on the panel.

Mounting with
screws

Practical tip

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3411

3. Return the mounted modules to the clean work surface, including any previously mounted
modules.

4. Drill and tap the mounting holes for the screws (M4 or #8 recommended).
5. Place the modules back on the panel and check for proper hole alignment.
6. Attach the modules to the panel using the mounting screws.

If mounting more modules, mount only the last one of this group and put
the others aside. This reduces remounting time during drilling and tapping
of the next group.

7. Repeat the steps for all remaining modules.

Mounting processor modules PM57x, PM58x, PM59x and PM56xx
1. After mounting the Terminal Base on the DIN rail, mount the processor module.

2. Press the processor module into the Terminal Base until it locks in place.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3412

3. The demounting is carried out in a reversed order. Press above and below, then remove
the processor module.

Mounting/Demounting the I/O modules
After mounting the terminal unit, mount the I/O modules.
1. Press the I/O module into the terminal unit until it locks in place.

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3413

2. The demounting is carried out in a reversed order.
Press above and below, then remove the module.

Mounting/Demounting the communication modules
Communication modules are mounted on the left side of the processor module on the same
terminal base. The connection is established automatically when mounting the communication
module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

After mounting the terminal base, mount the communication modules.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3414

1. First insert the bottom nose of the communication module into the dedicated holes of the
terminal base. Then, rotate the communication module on the dedicated terminal base slot
until it is locked in place.

ð
NOTICE!
Risk of malfunctions!
Unused slots for communication modules are not protected against
accidental physical contact.
– Unused slots for communication modules must be covered

with dummy communication modules to achieve IP20 rating
Ä Chapter 1.6.4.6.5.6 “TA524 - Dummy communication module”
on page 3446.

– I/O bus connectors must not be touched during operation.

2. The demounting is carried out in a reversed order.
Press above and below, then rotate the communication module and remove it.

Mounting/Demounting the accessories
Additional components such as batteries, cables, etc. are required for commissioning the PLC
system. Information on assembly, replacement or basic use of the orderable components can
be found in the description of the respective accessory.
Ä Chapter 1.6.4.6.5 “Handling of accessories” on page 3428

Hardware details can be found in the device specifications of the accessory.
Ä Chapter 1.6.3.8 “Accessories” on page 3288

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3415

1.6.4.6.4 Connection and wiring
For detailed information such as technical data of your mounted devices (AC500 product family)
refer to the hardware device description of the appropriate device.

NOTICE!
Attention:
The devices should be installed by experts who are trained in wiring electronic
devices. In case of bad wiring, the following problems could occur:
– On the terminal base, the terminals L+ and M are doubled. If the power

supply is badly connected, a short circuit could happen and lead to a
destruction of the power supply or its fuse. If no suitable fuse exists, the
terminal base itself might be destroyed.

– The terminal bases and all electronic modules and terminal units are pro-
tected against reverse polarity.

– All necessary measures should be carried out to avoid damages to modules
and wiring. Notice the wiring plans and connection examples.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

NOTICE!
 Attention:
Due to possible loss of communcation, the communication cables should be
fixed with cable duct or bracket or clamp during application.

Power supply
As soon as the power supply of the processor module (CPU) is higher than the min-
imum Process and supply voltage (see Ä Chapter 1.6.4.6.1.1 “Environmental conditions”
on page 3398), the power supply detection is activated and the processor module is started.
Power supply of processor module and I/O modules should be powered on the same time,
otherwise the processor module will not switch to run after startup.
When during operation the power supply is going down lower than the minimum Process and
supply voltage (see Ä Chapter 1.6.4.6.1.1 “Environmental conditions” on page 3398) for more
than 10 ms, the processor module is switched to safety mode (display shows “AC500”). A
restart of the processor module only occurs by switching the power supply off and on again.
If an I/O module is disconnected during normal operation from power supply while processor
module is still powered, the processor module will continue its normal operation on all other
powered peripherals (I/O modules, communication modules and communication interfaces), but
freezes the input image. After recovery of I/O Module power supply it will continue normal
operation and inputs and outputs were updated.
Logic Controller Supply: AC500 logic controller power supply is provided through terminals L+ /
M.
Process Power Supply: S500 process power supply is provided through terminals UP / ZP.
Logic Controller Supply is galvanic isolated from Process Power Supply.
As system power supply for AC500/S500, the ABB CP power supply series can be used.

AC500 system
power supply

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3416

Power supply for processor modules
The supply voltage of 24 V DC is connected to a removable 5-pin terminal block. L+/M exist
twice. It is therefore possible to feed e.g. external sensors (up to 8 A max. with 1.5 mm2

conductor) via these terminals.

Pin Assignment Label Function Description

Terminal block
removed

Terminal block
inserted

L+ +24 V DC Positive pin of the
power supply voltage

L+ +24 V DC Positive pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

FE Functional earth

Terminals for power supply and the COM1 interface

Number of cores per ter-
minal

Conductor type Cross section

1 Solid 0.08 mm² to 1.5 mm²

1 Flexible 0.08 mm² to 1.5 mm²

1 with wire-end ferrule
(without plastic sleeve)

Flexible 0.25 mm² to 1.5 mm²

1 with wire-end ferrule (with
plastic sleeve)

Flexible 0.25 mm² to 0.5 mm²

1 (TWIN wire end ferrule) Flexible 0.5 mm²

Terminals at the terminal unit

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Pin assignment

Terminal type:
Spring terminal

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3417

Front terminal, conductor connection vertically with respect to the printed circuit board.

Parameter Value
Type Front terminal

Degree of protection IP 20

Stripped conductor end 9 mm, min. 8 mm

Fastening torque 0.6 Nm

Needed tool Slotted screwdriver

Dimensions Blade diameter 3.5 mm

Terminal units with product index < C0 e. g. 1SAP 212 200 R0001 B0

Number of cores per terminal Conductor type Cross section
1 Solid 0.08 mm² to 2.5 mm²

1 Flexible 0.08 mm² to 2.5 mm²

1 with wire-end ferrule Flexible 0.25 mm² to 1.5 mm²

2 Solid Not intended

2 Flexible Not intended

2 with TWIN wire end ferrule (length
10 mm) with plastic sleeve

Flexible 2 x 0.25 mm² or 2 x 0.5 mm² or
2 x 0.75 mm², with square cross-
section of the wire-end ferrule also
2 x 1.0 mm²

Terminal units with product index ³ C0 e. g. 1SAP 212 200 R0001 C0

Number of cores per terminal Conductor type Cross section
1 Solid 0.08 mm² to 2.5 mm²

1 Flexible 0.08 mm² to 2.5 mm²

1 with wire-end ferrule without
plastic sleeve

Flexible 0.08 mm² to 2.5 mm²

1 with wire-end ferrule with plastic
sleeve

Flexible 0.14 mm² to 1.5 mm²

2 Solid 0.08 mm² to 1.5 mm²

2 Flexible 0.08 mm² to 1.5 mm²

2 with TWIN wire end ferrule (length
10 mm) with plastic sleeve

Flexible 2 x 0.5 mm² to 2 x 1.0 mm²

2 with separate wire-end ferrule
without plastic sleeve

Flexible 0.08 mm² to 0.75 mm²

Front terminal, conductor connection vertically with respect to the printed circuit board.

Terminal type:
Screw-type ter-
minal

Terminal type:
Spring terminal

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3418

Parameter Value
Type Front terminal

Degree of protection IP 20

Stripped conductor end 9 mm, min. 8 mm

Needed tool Slotted screwdriver

Dimensions 2.5 x 0.4 to 3.5 x 0.5 mm, screwdriver must be at least 15 mm
free of insulation at the tip

Number of cores per terminal Conductor type Cross section
1 Solid 0.08 mm² to 2.5 mm²

1 Flexible 0.08 mm² to 2.5 mm²

1 with wire-end ferrule Flexible 0.25 mm² to 1.5 mm²

2 Solid Not intended

2 Flexible Not intended

2 with TWIN wire end ferrule (length
10 mm) with plastic sleeve

Flexible 2 x 0.25 mm² or 2 x 0.5 mm² or
2 x 0.75 mm², with square cross-
section of the wire-end ferrule also
2 x 1.0 mm²

Connection of wires at the spring terminals

1 2 3

b

a

conductor driver
screw-

b
Screwdriver

for
Opening forOpening

closed
Terminal

open
Terminal

a

inserted
Screwdriver

Screwdriver

Spring

Fig. 288: Connect the wire to the spring terminal (steps 1 to 3)

Connection

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3419

5 6 74

Fig. 289: Connect the wire to the spring terminal (steps 4 to 7)

1. Side view (open terminal drawn for illustration)
2. The top view shows the openings for wire and screwdriver
3. Insert screwdriver (2.5 x 0.4 to 3.5 x 0.5 mm) at an angle, screwdriver must be at least 15

mm free of insulation at the tip
4. While erecting the screwdriver, insert it until the stop (requires a little strength)
5. Screwdriver inserted - terminal open
6. Strip the wire for 7 mm (and put on wire-end ferrule)
7. Insert wire into the open terminal
8. Done

2 3

Screwdriver

1

Screwdriver

Fig. 290: Disconnect wire from the spring terminal (steps 1 to 3)

Disconnection

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3420

4 5 6

Conductor
Screwdriver

Fig. 291: Disconnect wire from the spring terminal (steps 4 to 6)

1. Terminal with wire connected
2. Insert screwdriver (2.5 x 0.4 to 3.5 x 0.5 mm) at an angle, screwdriver must be at least 15

mm free of insulation at the tip
3. While erecting the screwdriver, insert it until the stop (requires a little strength) - terminal is

now open
4. Remove wire from the open terminal
5. Done

Terminals for CANopen/DeviceNet communication modules

Fig. 292: Combicon, 5-pole, female, removable plug with spring terminals

Fig. 293: Combicon, 5-pole, female, removable plug with spring terminals

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3421

Number of cores
per terminal

Conductor type Cross section Stripped conductor
end

1 solid 0.2 mm² to 2.5 mm² 10 mm

1 flexible 0.2 mm² to 2.5 mm² 10 mm

1 with wire-end fer-
rule (without plastic
sleeve)

flexible 0.25 mm² to 2.5 mm² 10 mm

1 with wire-end fer-
rule (with plastic
sleeve)

flexible 0.25 mm² to 2.5 mm² 10 mm

CANopen field bus
For CANopen, only bus cables with characteristics as recommended in ISO 11898 are to be
used. The requirements for the bus cables depend on the length of the bus segment. Regarding
this, the following recommendations are given by ISO 11898:

Length of seg-
ment [m]

Bus cable (shielded, twisted pair) Max. transmis-
sion rate [kbit/s]

 Conductor
cross section
[mm²]

Line resistance
[W/km]

Wave impe-
dance [W]

0...40 0.25...0.34 /
AWG23, AWG22

70 120 1000 at 40 m

40...300 0.34...0.60 /
AWG22, AWG20

< 60 120 < 500 at 100 m

300...600 0.50...0.60 /
AWG20

< 40 120 < 100 at 500 m

600...1000 0.75...0.80 /
AWG18

< 26 120 < 50 at 1000 m

NOTICE!
Risk of telegram and data errors!
The use of wrong cable type and quality could lead to limitations in cable length,
causing telegram and data errors.

NOTICE!
Risk of damaging the terminating resistor!
A bus-line short-circuit to the 24 V DC power supply can cause damage by
exceeding the power rating of the terminating resistor.

Terminal type:
Spring terminal

Types of bus
cables

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3422

NOTICE!
Risk of telegram and data errors!
Miss- or unterminated data lines can cause reflections on the bus, leading to
telegram and data errors. For maximum cable length and transmission rate, the
bus must always be terminated on both ends with the characteristic impedance
of the cable type.

NOTICE!
Verification of termination (Make sure the power supply on all CAN nodes
is turned off)!
To verify the termination, the DC resistance between CAN_H and CAN_L can
be measured. The value should be between 50 W and 70 W.

Check for correct resistor values, short circuits and correct number of termi-
nating resistors, if the measurement is showing deviations.

Ensure that the termination and FE connection will not be removed when
removing CAN modules from the bus.

Branches are not allowed in a CAN network. Stubs should be avoided or kept
as short as possible (< 0.3 m).

When connecting the cable take care to use one dedicated twisted pair for
the CAN signals (CAN_L and CAN_H) and another free wire for CAN_GND.
CAN_GND must be connected as reference, to avoid common mode problems
causing telegram errors.

Keep the CAN bus wiring away from electrical disturbance and close to earth
potential to minimize interference.

Installation hint

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3423

Fig. 294: CAN bus, connection and wiring

1 Cabinet
2 Direct earthing of shields when entering the cabinet
3 CAN bus segment
4 Current-carrying connection

Ethernet connection details

Ethernet is also used for PROFINET, EtherCAT and Modbus TCP connection.

Ethernet interface

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NU Not used

5 NU Not used

6 RxD- Receive data -

7 NU Not used

8 NU Not used

Shield Cable shield Functional earth

See supported protocols and used Ethernet ports: Ä Chapter 1.6.5.1.7.1.2 “Ethernet protocols
and ports for AC500 V3 products” on page 3515.
See communication via Modbus TCP/IP: Ä Chapter 1.6.5.1.11 “Communication with Modbus
TCP/IP” on page 3558.
See communication via Modbus RTU: Ä Chapter 1.6.5.1.10 “Communication with Modbus
RTU” on page 3542.

Pin assignment

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3424

Wiring
For the maximum possible cable lengths within an Ethernet network, various factors have to
be taken into account. Twisted pair cables (TP cables) are used as transmission medium for
10 Mbit/s Ethernet (10Base-T) as well as for 100 Mbit/s (Fast) Ethernet (100Base-TX). For a
transmission rate of 10 Mbit/s, cables of at least category 3 (IEA/TIA 568-A-5 Cat3) or class C
(according to European standards) are allowed. For fast Ethernet with a transmission rate of
100 Mbit/s, cables of category 5 (Cat5) or class D or higher have to be used. The maximum
length of a segment, which is the maximum distance between two network components, is
restricted to 100 m due to the electric properties of the cable.
Furthermore, the length restriction for one collision domain has to be observed. A collision
domain is the area within a network which can be affected by a possibly occurring collision
(i.e. the area the collision can propagate over). This, however, only applies if the components
operate in half-duplex mode since the CSMA/CD access method is only used in this mode. If
the components operate in full-duplex mode, no collisions can occur. Reliable operation of the
collision detection method is important, which means that it has to be able to detect possible
collisions even for the smallest possible frame size of 64 bytes (512 bits). But this is only
guaranteed if the first bit of the frame arrives at the most distant subscriber within the collision
domain before the last bit has left the transmitting station. Furthermore, the collision must
be able to propagate to both directions at the same time. Therefore, the maximum distance
between two ends must not be longer than the distance corresponding to the half signal propa-
gation time of 512 bits. Thus, the resulting maximum possible length of the collision domain is
2000 m for a transmission rate of 10 Mbit/s and 200 m for 100 Mbit/s. In addition, the bit delay
times caused by the passed network components also have to be considered.
The following table shows the specified properties of the respective cable types per 100 m.

Table 609: Specified cable properties:
Parameter 10Base-T [10 MHz] 100Base-TX [100 MHz]
Attenuation [dB / 100m] 10.7 23.2

NEXT [dB / 100m] 23 24

ACR [dB / 100m] N/A 4

Return loss [dB / 100m] 18 10

Wave impedance [Ohms] 100 100

Category 3 or higher 5

Class C or higher D or higher

The TP cable has eight wires arranged in four pairs of twisted wires. Different color codes
exist for the coding of the wires, the coding according to EIA/TIA 568, version 1, being the one
most commonly used. In this code, the individual pairs are coded with blue, orange, green and
brown color. One wire of a pair is unicolored and the corresponding second wire is striped,
the respective color alternating with white. For shielded cables, a distinction is made between
cables that have one single shield around all pairs of wires and cables that have an additional
individual shield for each pair of wires. The following table shows the different color coding
systems for TP cables:

Table 610: Color coding of TP cables:
Pairs EIA/TIA 568

Version 1
EIA/TIA 568
Version 2

DIN 47100 IEC 189.2

Pair 1 white/
blue

blue green red white brown white blue

Pair 2 white/
orange

orange black yellow green yellow white orange

Cable length
restrictions

TP cable

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3425

Pairs EIA/TIA 568
Version 1

EIA/TIA 568
Version 2

DIN 47100 IEC 189.2

Pair 3 white/
green

green blue orange grey pink white green

Pair 4 white/
brown

brown brown slate blue red white brown

Two general variants are distinguished for the pin assignment of the normally used RJ45
connectors: EIA/TIA 568 version A and version B. The wiring according to EIA/TIA 568 version
B is the one most commonly used.

T568A

T3

1

R3

2

T2

3

R1

4

T1

5

R2

6

T4

7

R4

8

Pair 3 Pair 4Pair 1

Pair 2

T568B

T3

1

R3

2

T2

3

R1

4

T1

5

R2

6

T4

7

R4

8

Pair 2 Pair 4Pair 1

Pair 3

Fig. 295: Pin assignment of RJ45 sockets

Cable types

Particular use
Crossover cables are needed only for a direct Ethernet connection without
crossover functionality. In particular for AC500 modules in product life cycle
phase "Classic".

Crossover cables are for a direct Ethernet connection of two terminal devices as the simplest
variant of a network. From transmission lines of the first station to the reception lines of the
second station.

12345678 123456781
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Fig. 296: Wiring of a crossover cable

For networks with more than two subscribers, hubs or switches have to be used additionally for
distribution. These active devices already have the crossover functionality implemented which
allows a direct connection of the terminal devices using straight-through cables.

12345678 123456781
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Fig. 297: Wiring of a straight-through cable

Crossover cable

Straight-through
cable

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3426

CAUTION!
Risk of communication faults!
When using inappropriate cables, malfunctions in communication may occur.
Only use network cables of the categories 5 (Cat 5, Cat 5e, Cat 6 or Cat 7) or
higher within PROFINET networks.

Modbus RTU connection details
The Modbus RTU protocol is implemented in the AC500 processor modules.
Modbus is a master-slave (client-server) protocol. The client sends a request to the server(s)
and receives the response(s).
Available serial interfaces can work as Modbus interfaces simultaneously.
The Modbus client operating mode of an interface is set with the function block
COM_MOD_MAST.

The Modbus operating mode and the interface parameters are set in the Ä Chapter 1.6.6.2.14.1
“Configuring Modbus RTU on serial interface” on page 3793.

Table 611: Description of the Modbus protocol
Parameter Value
Supported standard See Ä Chapter 1.6.6.2.14.1 “Config-

uring Modbus RTU on serial interface”
on page 3793

Number of connection points 1 client
Max. 1 server with RS-232 interface
Max. 31 servers with RS-485

Protocol Modbus

Operating mode Client/server

Address Server only

Data transmission control CRC16

Data transmission speed From 9,600 bits/s to 115,200 bits/s
Ä Chapter 1.6.6.2.14.1 “Configuring Modbus
RTU on serial interface” on page 3793

Encoding 1 start bit
8 data bits
1 or 2 stop bits
1 parity bit
Ä Chapter 1.6.6.2.14.1 “Configuring Modbus
RTU on serial interface” on page 3793)

Max. cable length for RS-485 on COM1 for
AC500 CPU

1.200 m at 19.200 baud

Technical data

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3427

Point-to-point with RS-232 or bus topology with RS-485. Modbus is a master-slave protocol.
For further information on Modbus see chapter Ä Chapter 1.6.5.1.10 “Communication with
Modbus RTU” on page 3542.

1.6.4.6.5 Handling of accessories
This section only describes accessories that are frequently used for system assembly, connec-
tion and construction. A description of all additional accessories that can be used to supplement
AC500 system can be found in the Hardware PLC device description.

MC502 - Memory card
● Solid state flash memory storage

1 MC502 memory card

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

Bus topology

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3428

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.
The memory card can be read/written on a PC with a SDHC compatible memory card reader.

The dimensions are in mm and in brackets in inch.

AC500 V3

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Purpose

Dimensions

Insert the
memory card

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3429

Fig. 298: Insert memory card into PM56xx

1 Memory card
2 Memory card slot

AC500 V3

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working!

Remove the memory card only when no black square () is shown next to MC
in the display.
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Remove the
memory card

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3430

Fig. 299: Remove memory card from PM56xx

1 Memory card
2 Memory card slot

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.7.2 “Memory card in AC500 V3” on page 3999.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0001 MC502, memory card Classic

Technical data

Ordering data

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3431

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC5102 - Micro memory card with micro memory card adapter
● Solid state flash memory storage

1 Micro memory card
2 TA5350-AD micro memory card adapter

The MC5102 micro memory card has no write protect switch.

The TA5350-AD micro memory card adapter has a write protect switch.

In the position "LOCK", the inserted micro memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3432

The use of other micro memory cards is prohibited. ABB is not responsible nor
liable for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

The micro memory card is used to store or backup application data and/or application programs
or project source codes as well as to update the internal CPU firmware.
The micro memory card can only be used temporarily in standard and XC applications.
The memory card can be read/written on a PC with a SDHC compatible memory card reader
when using TA5350-AD micro memory card adapter.

The dimensions are in mm and in brackets in inch.

Purpose

Dimensions

Micro memory
card

Micro memory
card adapter

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3433

The dimensions are in mm and in brackets in inch.

Fig. 300: Insert micro memory card into PM56xx

1 Micro memory card
2 TA5350-AD micro memory card adapter
3 Memory card slot
1. Unpack the micro memory card and insert it into the supplied micro memory card adapter.
2. Insert the micro memory card adapter with integrated micro memory card into the memory

card slot of the processor module until locked.

Insert the micro
memory card
AC500 V3

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3434

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Carefully insert the micro memory card into the micro memory card slot as far as it will go.

Observe orientation of card.
3. Close the micro memory card slot cover by turning it downwards.

NOTICE!
Removal of the micro memory card
Do not remove the micro memory card when it is working!
AC500 V3: Remove the micro memory card with micro memory card adapter
only when no black square () is shown next to MC in the display.
AC500-eCo V3: Remove the micro memory card only when the MC LED is not
blinking.
Otherwise the micro memory card and/or files on it might get corrupted and/or
normal PLC operation might be disturbed.

AC500-eCo V3

Remove the
micro memory
card

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3435

Fig. 301: Remove micro memory card from PM56xx

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot
1. To remove the micro memory card adapter with the integrated micro memory card, push

on the micro memory card adapter until it moves forward.
2. By this, the micro memory card adapter is unlocked and can be removed.

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Micro memory card can be removed from the micro memory card slot by gripping and

pulling with two fingers.
3. Close the micro memory card slot cover by turning it downwards.

Parameter Value
Memory capacity 8 GB

Total bytes written (TBW) On request

AC500 V3

AC500-eCo V3

Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3436

Parameter Value
Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch

 Micro memory card No

 Micro memory card adapter Yes

Weight 0.25 g

Dimensions 15 mm x 11 mm x 0.7 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the micro memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.7.2 “Memory card in AC500 V3” on page 3999.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0002 MC5102, micro memory

card with TA5350-AD micro
memory card adapter

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC5141 - Memory card
● Solid state flash memory storage

1 MC5141 memory card

Ordering data

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3437

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.
The memory card can be read/written on a PC with a SDHC compatible memory card reader.

Purpose

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3438

The dimensions are in mm and in brackets in inch.

AC500 V3

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Fig. 302: Insert memory card into PM56xx

1 Memory card
2 Memory card slot

AC500 V3

Dimensions

Insert the
memory card

Remove the
memory card

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3439

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working!

Remove the memory card only when no black square () is shown next to MC
in the display.
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Fig. 303: Remove memory card from PM56xx

1 Memory card
2 Memory card slot

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

Technical data

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3440

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.7.2 “Memory card in AC500 V3” on page 3999.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0041 MC5141, memory card Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA521 - Battery
● Manganese dioxide lithium battery, 3 V, 560 mAh
● Non-rechargeable

The TA521 battery is the only applicable battery for the AC500 processor modules Ä Chapter
1.6.3.3.2.1 “PM56xx-2ETH for AC500 V3 products” on page 2516. It cannot be recharged.

The processor modules are supplied without lithium battery. It must be ordered separately. The
TA521 lithium battery is used for data (SRAM) and RTC buffering while the processor module is
not powered.
See system technology - AC500 battery. Ä Chapter 1.6.5.1.4.2 “AC500 battery” on page 3479

The CPU monitors the discharge degree of the battery. A warning is issued before the battery
condition becomes critical (about 2 weeks before). Once the warning message appears, the
battery should be replaced as soon as possible.

● Do not short-circuit or re-charge the battery! It can cause excessive heating and explosion.
● Do not disassemble the battery!
● Do not heat up the battery and not put into fire! Risk of explosion.
● Store the battery in a dry place.
● Replace the battery with supply voltage ON in order not to risk data being lost.
● Recycle exhausted batteries meeting the environmental standards.

Ordering data

Purpose

Handling
instructions

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3441

The battery lifetime is the time, the battery can store data while the processor module is not
powered. As long as the processor module is powered, the battery will only be discharged by its
own leakage current.

To avoid a short battery discharge, the battery should always be inserted or
replaced while the process module is under power, then the battery is correctly
recognized and will not shortly discharged.

To ensure propper operation and to prevent data loss, the battery insertion or
replacement must be always done with the system under power. Without battery
and power supply there is no data buffering possible.

WARNING!
Risk of fire or explosion!
Use of incorrect Battery may cause fire or explosion.

Battery lifetime

Insertion

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3442

1. Open the battery compartment with the small locking mechanism, press it down and slip
down the door. The door is attached to the front face of the processor module and cannot
be removed.

2. Remove the TA521 battery from its package and hold it by the small cable. Remove then
the small connector from the socket, do this best by lifting it out with a screwdriver.

3. Insert the battery connector into the small connector port of the compartment. The con-
nector is keyed to find the correct polarity (red = positive pole = above).

4. Insert first the cable and then the battery into the compartment, push it until it reaches the
bottom of the compartment.

5. Arrange the cable in order not to inhibit the door to close.
6. Pull-up the door and press until the locking mechanism snaps.

In order to prevent data losses or problems, the battery should be replaced after
3 years of utilisation or at least as soon as possible after receiving the "low
battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries
too long in stock.

To ensure propper operation and to prevent data loss, the battery insertion or
replacement must be always done with the system under power. Without battery
and power supply there is no data buffering possible.

1. Open the battery compartment with the small locking mechanism, press it down and slip
down the door. The door is attached to the front view of the processor module and cannot
be removed.

2. Remove the old TA521 battery from the battery compartment by pulling it by the small
cable. Remove then the small connector from the socket, do this best by lifting it out with a
screwdriver.

3. Follow the previous instructions to insert a new battery.

Replacement of
the battery

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3443

CAUTION!
Risk of explosion!
Do not open, re-charge or disassemble a lithium battery. Attempts to charge
lithium batteries lead to overheating and possible explosions.
Protect them from heat and fire and store them in a dry place.
Never short-circuit or operate lithium batteries with the polarities reversed. The
batteries are likely to overheat and explode. Avoid chance short circuiting and
therefore do not store batteries in metal containers and do not place them on
metallic surfaces. Escaping lithium is a health hazard.

In order to prevent data losses or problems, the battery should be replaced after
3 years of utilisation or at least as soon as possible after receiving the "low
battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries
too long in stock.

Parameter Value
Nominal voltage 3 V

Nominal capacity 560 mAh

Temperature range (index below C0) Operating: 0 °C...+60 °C
Storage: -20 °C...+60 °C
Transport: -20 °C...+60 °C

Temperature range (index C0 and above) Operating: -40 °C...+70 °C
Storage: -40 °C...+85 °C
Transport: -40 °C...+85 °C

Battery lifetime Typ. 3 years at 25 °C

Self-discharge 2 % per year at 25 °C
5 % per year at 40 °C
20 % per year at 60 °C

Protection against reverse polarity Yes, by mechanical coding of the plug.

Insulation The battery is completely insulated.

Connection Red = positive pole = above at plug, black =
negative pole,

Weight 7 g

Dimensions Diameter of the button cell: 24.5 mm
Thickness of the button cell: 5 mm

Part no. Description Product life cycle phase *)
1SAP 180 300 R0001 TA521, lithium battery Active

Technical data

Ordering data

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3444

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA526 - Wall mounting accessory

If a terminal base TB5xx or a terminal unit TU5xx should be mounted with screws, the wall
mounting accessories TA526 must be inserted at the rear side first. This plastic parts prevent
bending of terminal bases and terminal units while screwing up.

Handling of the wall mounting accessory is described in detail in the section Mounting and
disassembling the terminal unit Ä “Mounting with screws” on page 3411 and Mounting/Disas-
sembling Terminal Bases and Function Module Terminal Bases Ä “Mounting with screws”
on page 3409.

Parameter Value
Weight 5 g

Dimensions 67 mm x 35 mm x 5,5 mm

Part no. Description Product life cycle phase *)
1SAP 180 800 R0001 TA526, wall mounting acces-

sory
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Purpose

Handling
instructions

Technical data

Ordering data

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3445

TA524 - Dummy communication module

1 Type
2 Label

TA524 is used to cover an unused communication module slot of a terminal base Ä Chapter
1.6.3.2.1 “TB56xx for AC500 V3 products” on page 2430. It protects the terminal base from dust
and inadvertent touch.

TA524 is mounted in the same way as a common communication module Ä Chapter 1.6.4.6.3.5
“Mounting/Demounting the communication modules” on page 3414.

Parameter Value
Weight 50 g

Dimensions 135 mm x 28 mm x 62 mm

Part no. Description Product life cycle phase *)
1SAP 180 600 R0001 TA524, dummy communica-

tion module
Active

Purpose

Handling
instructions

Technical data

Ordering data

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3446

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CP-E - Economic range

The power supplies feature series and parallel connection as well as a true redundant setup via
a redundancy module.
● Wide-range input voltage
● Mounting on DIN rail
● High efficiency of up to 90 %
● Low power dissipation and low heating
● Wide ambient temperature range from -40 °C...+70 °C
● No-load-proof, overload-proof, continuous short-circuit-proof
● Power factor correction (depending on the type)
● Approved in accordance with all relevant international standards

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3447

Table 612: Ordering data
Order No. Type Input Output Overload

capacity
Module
width [mm]

1SVR427030R0000 CP-E
24/0.75

100-240 V
AC or
120-370 V
DC

24 V DC,
0.75 A

- 22.5

1SVR427031R0000 CP-E
24/1.25

100-240 V
AC or
90-375 V DC

24 V DC,
1.25 A

- 40.5

1SVR427032R0000 CP-E 24/2.5 100-240 V
AC or
90-375 V DC

24 V DC, 2.5
A

- 40.5

1SVR427034R0000 CP-E 24/5.0 115/230 V
AC auto
select or
210-370 V
DC

24 V DC, 5 A - 63.2

1SVR427035R0000 CP-E
24/10.0

115/230 V
AC auto
select or
210-370 V
DC

24 V DC, 10
A

- 83

1SVR427036R0000 CP-E
24/20.0

115-230 V
AC or
120-370 V
DC

24 V DC, 20
A

- 175

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3448

CP-C.1 - High performance range

The power supplies feature series and parallel connection as well as a true redundant setup via
a redundancy module.
The CP-C.1 power supplies are ABB’s high performance and most advanced range. With
excellent efficiency, high reliability and innovative functionality it is prepared for the most
demanding industrial applications. These power supplies have a 50 % integrated power reserve
and operate at an efficiency of up to 94 %. They are equipped with overheat protection and
active power factor correction. Combinded with a broad AC and DC input range and extensive
worldwide approvals the CP-C.1 power supplies are the preferred choice for professional DC
applications.
● Typical efficiency of up to 94 %
● Power reserve design delivers up to 150 % of the nominal output current
● Signaling outputs for DC OK and power reserve mode
● High power density leads to very compact and small devices
● No-load-proof, overload-proof, continuous short-circuit-proof
● Active power factor correction (PFC)

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3449

Table 613: Ordering data
Order No. Type Input Output Overload

capacity
Module
width [mm]

1SVR360563R1001 CP-C.1
24/5.0

110-240 V
AC or
90-300 V DC

24 V DC, 5 A +50 % 40

1SVR360663R1001 CP-C.1
24/10.0

110-240 V
AC or
90-300 V DC

24 V DC, 10
A

+50 % 60

1SVR360763R1001 CP-C.1
24/20.0

110-240 V
AC or
90-300 V DC

24 V DC, 20
A

+30 % 82

1.6.4.7 AC500-XC
1.6.4.7.1 System data AC500-XC

Assembly, construction and connection of devices of the variant AC500-XC
is identical to AC500 (standard) Ä Chapter 1.6.4.6 “AC500 (Standard)”
on page 3398. The following description provides information on general tech-
nical data of AC500-XC system.

Environmental conditions
Table 614: Process and supply voltages
Parameter Value
24 V DC

 Voltage 24 V (-15 %, +20 %)

Protection against reverse polarity Yes

120 V AC...240 V AC wide-range supply

 Voltage 120...240 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

Allowed interruptions of power supply

 DC supply Interruption < 10 ms, time between 2 interrup-
tions > 1 s, PS2

NOTICE!
Exceeding the maximum power supply voltage for process or supply voltages
could lead to unrecoverable damage of the system. The system might be
destroyed.

NOTICE!
For the supply of the modules, power supply units according to PELV or SELV
specifications must be used.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3450

The creepage distances and clearances meet the requirements of the over-
voltage category II, pollution degree 2.

Parameter Value
Temperature

 Operating -40 °C...+70 °C
-40 °C...-30 °C: Proper start-up of system;
technical data not guaranteed
-40 °C...0 °C: Due to the LCD technology, the
display might respond very slowly.
-40 °C...+40 °C: Vertical mounting of modules
possible, output load limited to 50 % per group
+60 °C...+70 °C with the following deratings:
● System is limited to max. 2 communication

modules per terminal base
● Applications certified for cULus up to +60

°C
● Digital inputs: maximum number of simul-

taneously switched on input channels
limited to 75 % per group (e.g. 8 channels
=> 6 channels)

● Digital outputs: output current maximum
value (all channels together) limited to 75
% per group (e.g. 8 A => 6 A)

● Analog outputs only if configured as
voltage output: maximum total output
current per group is limited to 75 %
(e.g. 40 mA => 30 mA)

● Analog outputs only if configured
as current output: maximum number
of simultaneously used output chan-
nels limited to 75 % per group
(e.g. 4 channels => 3 channels)

 Storage / Transport -40 °C...+85 °C

Humidity Operating / Storage: 100 % r. H. with conden-
sation

Air pressure Operating:
-1000 m....4000 m (1080 hPa...620 hPa)
> 2000 m (< 795 hPa):
● max. operating temperature must be

reduced by 10 K (e.g. 70 °C to 60°C)
● I/O module relay contacts must be oper-

ated with 24 V nominal only

Immunity to corrosive gases Operating: Yes, according to:
ISA S71.04.1985 Harsh group A, G3/GX
IEC 60721-3-3 3C2 / 3C3

Immunity to salt mist Operating: Yes, horizontal mounting only,
according to IEC 60068-2-52 severity level: 1

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3451

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.3.8.3.4 “TA535 - Protective caps for XC devices”
on page 3333

Table 615: Electromagnetic compatibility
Parameter Value
Device suitable for:

 Industrial applications Yes

 Domestic applications No

Radiated emission (radio disturbances) Yes, according to:
CISPR 16-2-3

Conducted emission (radio disturbances) Yes, according to:
CISPR 16-2-1, CISPR
16-1-2

Electrostatic discharge (ESD) Yes, according to:
IEC 61000-4-2, zone B,
criterion B

Fast transient interference voltages (burst) Yes, according to:
IEC 61000-4-4, zone B,
criterion B

High energy transient interference voltages (surge) Yes, according to:
IEC 61000-4-5, zone B,
criterion B

Influence of radiated disturbances Yes, according to:
IEC 61000-4-3, zone B,
criterion A

Influence of line-conducted interferences Yes, according to:
IEC 61000-4-6, zone B,
criterion A

Influence of power frequency magnetic fields Yes, according to:
IEC 61000-4-8, zone B,
criterion A

In order to prevent malfunctions, it is recommended, that the operating per-
sonnel discharge themselves prior to touching communication connectors or
perform other suitable measures to reduce effects of electrostatic discharges.

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3452

NOTICE!
Risk of malfunctions!
Unused slots for communication modules are not protected against accidental
physical contact.
– Unused slots for communication modules must be covered with dummy

communication modules to achieve IP20 rating Ä Chapter 1.6.4.6.5.6
“TA524 - Dummy communication module” on page 3446.

– I/O bus connectors must not be touched during operation.

Mechanical data

Parameter Value
Wiring method Spring terminals

Degree of protection IP 20

Vibration resistance Yes, according to:
IEC 61131-2
IEC 60068-2-6
IEC 60068-2-64

Shock resistance Yes, according to:
IEC 60068-2-27

Assembly position Horizontal
Vertical (no application in salt mist environ-
ment)

Assembly on DIN rail

DIN rail type According to IEC 60715
35 mm, depth 7.5 mm or 15 mm

Assembly with screws

Screw diameter 4 mm

Fastening torque 1.2 Nm

Environmental tests

Parameter Value
Storage IEC 60068-2-1 Test Ab: cold withstand test -40 °C / 16 h

IEC 60068-2-2 Test Bb: dry heat withstand test +85 °C / 16 h

Humidity IEC 60068-2-30 Test Db: Cyclic (12 h / 12 h) damp-heat test
55 °C, 93 % r. H. / 25 °C, 95 % r. H., 6 cycles
IEC 60068-2-78, stationary humidity test: 40 °C, 93 % r. H.,
240 h

Insulation Test IEC 61131-2

PLC Automation with V3 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/21 3ADR010583, 3, en_US 3453

Parameter Value
Vibration resistance IEC 61131-2 / IEC 60068-26: 5 Hz...500 Hz, 2 g (with memory

card inserted)
IEC 60068-2-64: 5 Hz...500 Hz, 4 g rms

Shock resistance IEC 60068-2-27: all 3 axes 15 g, 11 ms, half-sinusoidal

Table 616: EMC immunity
Parameter Value
Electrostatic discharge (ESD) Electrostatic voltage in case of air discharge: 8 kV

Electrostatic voltage in case of contact discharge: 6 kV

Fast transient interference vol-
tages (burst)

Supply voltage units (DC): 4 kV
Digital inputs/outputs (24 V DC): 2 kV
Analog inputs/outputs: 2 kV
Communication lines shielded: 2 kV
I/O supply (DC-out): 2 kV

High energy transient interference
voltages (surge)

Supply voltage units (DC): 1 kV CM *) / 0.5 kV DM *)
Digital inputs/outputs (24 V DC): 1 kV CM *) / 0.5 kV DM *)
Digital inputs/outputs (AC): 4 kV
Analog inputs/outputs: 1 kV CM *) / 0.5 kV DM *)
Communication lines shielded: 1 kV CM)*
I/O supply (DC-out): 0,5 kV CM *) / 0.5 kV DM *)

Influence of radiated disturbances Test field strength: 10 V/m

Influence of line-conducted inter-
ferences

Test voltage: 10 V

Power frequency magnetic fields 30 A/m 50 Hz
30 A/m 60 Hz

*) CM = Common Mode, * DM = Differential Mode

1.6.4.8 AC500-S

The AC500-S safety user manual must be read and understood before using safety configura-
tion and programming tools of Automation Builder / PS501 Control Builder Plus. Only qualified
personnel shall be allowed to work with AC500-S safety PLCs.
In order to have always the latest version and due to a different lifecycle compared to
Automation Builder help, the AC500-S safety user manual is only available on our website.

The AC500-S safety PLC includes the following safety-relevant hardware components.
● SM560-S / SM560-S-FD-1 / SM560-S-FD-4
● DI581-S
● DX581-S
● AI581-S
● TU582-S

PLC Automation with V3 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/213ADR010583, 3, en_US3454

https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=en&DocumentPartId=&Action=Launch

1.6.5 System technology for AC500 V3 products
This chapter provides advanced information on the system technology of AC500 control sys-
tems from a general perspective. It provides information to link the details from the hardware
descriptions (provided in the device specifications section) with detailed information on config-
uring/programming a corresponding library (provided in the individual library sections).
Configuration of a specific device with Automation Builder is described in the PLC configuration
section.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3455

1.6.5.1 System technology of CPU and overall system
1.6.5.1.1 Handling of remanent variables for AC500 V3 products

The retain / persistent memory must be buffered by a battery TA521 for the
PLCs PM56xx-2ETH. Following described functionalities are only working if a
battery is inserted. Take care about the handling for TA521 battery.

Ä Chapter 1.6.4.6.5.4 “TA521 - Battery” on page 3441

The AC500-eCo V3 PLCs, PM50xx-ETH PLCs don't need a battery.

All operands supported by CODESYS are described in Ä Chapter 1.4.1.7 “Configuring I/O
Links” on page 213. For the memory sizes of the different CPUs, see for AC500-eCo V3
Ä “AC500-eCo V3 processor modules” on page 3457 and for AC500 V3 Ä “AC500 V3 pro-
cessor modules” on page 3457.

This part of the documentation describes the declaration of remanent variables for AC500 V3
products.

Different handling of remanent variables in AC500 FW ≥V3.0.2
– No more %R memory area (use instead %M with {no_init} Ä Chapter

1.6.5.1.1.5 “Initialization of %M variables” on page 3461)
– Creating of addresses for "VAR RETAIN PERSISTENT" variables automati-

cally by IEC Compiler

It is NOT possible to change the structure (e.g. add, delete, change order, ..) of retain / persisten
variables of a project and update the project via memory card.
Up to version of SystemFW 3.4.x the boot project will be deleted (renamed into application.err)
and the PLC will not load the boot project anymore. Also download of new/other project with
Automation Builder failes.
Workaround:
● Automation Builder ➔ PLC Shell ➔ clearsram all ➔ retain persistent / retain area is deleted

(not the %M area) ➔ application is running after reboot with initialized / retain / persistent
data

● Automation Builder ➔ PLC Shell ➔ clearsram all ➔ retain persistent / retain area is deleted
➔ sram c m (clear %M) ➔ %M area is deleted ➔ reboot ➔ application is running with
initialized /retain/persistent/%M data

● Automation Builder empty project ➔ Reset Origin Device ➔ retain persistent / retain area /
%M area is deleted ➔ new update via SD card ➔ application is running after reboot with
initialized data

● For midrange reboot without battery ➔ application is running after reboot with initialized
data

The application is running with initialized persistent and/or retain after updating
the application via memory card and rebooting the PLC.

In version of SystemFW 3.5.x the changed retain persistent / retain area is
deleted. Application is running after reboot with initialized / retain / persistent
data.

In case of trouble use the above described workaround.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3456

Memory sizes

PLC type system RAM
disk

userdisk
PlcLogic
...

Retain, ProzM
area

flash disk memory
card

PM5012-x-
ETH

Dynamically
 /max. 7.6 MB

30 MB 8 kB
Retain and per-
sistent 4 kB (of
which 88 byte are
reserved for allo-
cation table)
ProzM 4 kB

None see
Ä Chapter
1.6.4.6.5.2
“MC5102 -
Micro
memory card
with micro
memory card
adapter”
on page 3432

PM5032-x-
ETH

32 kB
Retain and per-
sistent 16 kB (of
which 88 byte are
reserved for allo-
cation table)
ProzM 16 kB

PM5052-x-
ETH

PM5072-
T-2ETH(W)

100 kB
Retain and per-
sistent 36 kB (of
which 88 byte are
reserved for allo-
cation table)
ProzM 64 kB

PLC type system RAM
disk

userdisk
PlcLogic
...

SRAM
Retain, ProzM
area

flash disk memory
card

PM5630-2ET
H

Dynamically
 /max. 7.6 MB

40 MB
30 MB (as of
V3.4.0)

256 kB
Retain and per-
sistent 128 kB (of
which 24 byte are
reserved for allo-
cation table)
ProzM 128 kB

None see
Ä Chapter
1.6.4.6.5.1
“MC502 -
Memory
card”
on page 3428

Ä Chapter
1.6.4.6.5.3
“MC5141 -
Memory
card”
on page 3437

Ä Chapter
1.6.4.6.5.2
“MC5102 -
Micro
memory card
with micro
memory card
adapter”
on page 3432

PM5650-2ET
H

Dynamically
 /max. 16 MB

246 MB (as
of V3.0.x)
381 MB (as
of V3.1)
285.75 (as of
V3.4.0)

PM5670-2ET
H

Dynamically
 /max. 69 MB

858 MB
643.50 MB
(as of V3.4.0)

1536 MB
1 MB retain and
persistent (of
which 24 byte are
reserved for allo-
cation table)
512 kB ProzM

PM5675-2ET
H

8 GB

AC500-eCo V3
processor
modules

AC500 V3 pro-
cessor modules

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3457

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Adding a global list of persistent/retain variables
A global list of persistent variables will be added with the standard definition for persistent varia-
bles "VAR RETAIN PERSISTENT" (see Remanent variables Ä Chapter 1.4.1.19.2.13 “Retain
Variable - RETAIN” on page 537 Ä Chapter 1.4.1.19.2.12 “Persistent Variable - PERSISTENT”
on page 535).
First steps:
1. Expand the object path of your PLC
2. After right click on App select Add object in the context menu.

The window Add object below: Application appears.

3. Select Persistent Variables and click “Add object”.

The object name can be chosen freely. In the application it will be reused to reference the
persistent variables.

Declaring a new variable in global list
Declare a new variable in the window "GlobPersist".

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3458

Afterwards the variable can be selected in the program.

In this way the persistent variable can be accessed directly.

Do not use the same persistent variable in different IEC tasks, to avoid prob-
lems with consistency.

Declaring a new persistent/retain variable in local POU
It is also possible to declare a persistent/retain variable in a local POU and not in the global list
of persistent variables.

It is not recommended to declare a large number of persistent variables locally,
due to the potentially effect to performance.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3459

The auto-declare mechanism declares always a persistent variable locally and not in the global
list. If the program will be executed, the following warning appears in the message window:

The locally declared persistent variable has to be added to the global list.

NOTICE!
For the initialization of a Retain/Persistent variable the value of the global list is
used NOT the value of the local declaration.
For further information see "RetainPersistentExample.project".

1. Right-click in window "PersistentVars".
2. Select option "Add all instance paths".

ð Afterwards the persistent variables are added.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3460

The application can be downloaded to the PLC

It is NOT recommended to declare a new persistent variable in the application
due to performance problems.

For example PM5650-2ETH:

1000 DWORD ≈ 600µs additional cycle time of task.

Initialization of %M variables
After download or restart, all %M variables will be initialized to 0. This can be prevented by
setting the "no_init" attribute.
In doing so the %M variables behave similar to the "VAR RETAIN PERSISTENT" variables.

In the example above variable "ProzMivar" has the attribute "no_init". This variable will not be
initialized and keeps its last value.
The attribute "no_init" is always and only valid for the next following variable (see Ä Chapter
1.4.1.19.6.2.30 “Attribute 'noinit'” on page 713).
The following two variables "Proz MivarField" and "Proz Mivar1" will be further on initialized to 0.

Behavior of retain variables
The declaration of the retain variables strictly follows the 3S standard (see Remanent variables
Ä Chapter 1.4.1.19.2.13 “Retain Variable - RETAIN” on page 537Ä Chapter 1.4.1.19.2.12
“Persistent Variable - PERSISTENT” on page 535).
For retain variables it does not matter if they are declared locally in a program or in the global
variable list.

PLC shell command for import and export of retain/persistent variables
The syntax of the command is: sram <direction><area><path>

Supported options:
Direction: i=import, e=export

Area: rp=Retain/Persistent, m=%M area

Path: Any pathname

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3461

The file will be stored in the user partition of the PLC. This data can be imported or exported via
the FTP-Server or the Files dialog in Automation Builder.
If no path is indicated, the files are saved under “PlcLogic/<ApplicationName>/
<ApplicationName>.ret or .prozm”.
If a path is indicated, the files are saved under or accessed via “<path>/<ApplicationName>.ret
or .prozm”.
A non-existing path is created with the exception of the memory card. The path for the memory
card must be an existing path. On the memory card a non-existing path leads to an error
message.

Data area File extension Path
Retain/Persistent .ret PlcLogic/<ApplicationName>/<Application-

Name>.ret
<path>/<ApplicationName>.ret

%M (memory area) .prozm PlcLogic/<ApplicationName>/<Application-
Name>.prozm
<path>/<ApplicationName>.prozm

Application Command File
myApp sram e rp PlcLogic/myApp/myApp.ret

sram e ep data data/myApp.ret

Application sram i m PlcLogic/Application/Applica-
tion.prozm

sram i m data data/Application.prozm

If the path "data" does not exist, tha path is created. The path for the memory card must be
an existing path. The path "sdcard/data" leads to an error message if the path "data" does not
exists on the memory card.
Only if the application uses Retain or Retain/Persistent variables the command generates an
output file.

Examples:

Attention!
It is recommended to execute the PLC shell command only while PLC is in
state STOP, or it is ensured that there is no write access to the %M or the
Retain/Persistent area.

Import and export of retain/persistent variables by library functions
It is also possible to import or export the Retain/Persistent variables and the %M markers via
system function calls from the PLC Application. The required system functions are implemented
in the IEC library ABB_IntUtils_AC500.library.
It provides the following Functions or function blocks:
● SRAM_IMPORT
● SRAM_EXPORT
● SRAM_CLEARED

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3462

SRAM_IMPORT
The function block SRAM_IMPORT is used to import the %M markers and the Retain/Persistent
variables from the specified files in the userdisk.

Import only those %M markers and/or Retain/Persistent variables that are com-
patible to the application running in the PLC.

It is recommended to import only when the %M and/or the Retain/Persistent
area is not accessed by the application.

Otherwise inconsistencies are possible.

For a complete description of the function block see ABB_IntUtils_AC500.library.

SRAM_EXPORT
The function block SRAM_EXPORT is used to export the %M markers and the Retain/Persis-
tent variables to the specified files in the userdisk.

Export only those %M markers and/or Retain/Persistent variables that are com-
patible to the application running in the PLC.

It is recommended to export only when the %M and/or the Retain/Persistent
area is not accessed by the application.

Otherwise inconsistencies are possible.

For a complete description of the function block see ABB_IntUtils_AC500.library.

SRAM_CLEARED
The Function SRAM_CLEARED is used to check if the SRAM was deleted.
For a complete description of the Function see ABB_IntUtils_AC500.library.

1.6.5.1.2 System processing
System start-up / Program processing

AC500-eCo processor modules do not have an integrated display and key-
board. All functions related to keyboard and display are not applied for those
devices.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3463

Definitions: PLC system start-up

The AC500-eCo V3 does not use a battery for buffering the operand areas
specified below, hence the “cold start” mode does not exist in this product.

● A cold start is performed by switching power OFF/ON if no battery is connected.
● All RAM memory modules are checked and erased (see Ä Chapter 1.4.1.20.3.6.10 “Com-

mand 'Reset Cold'” on page 1038).
● If no user program is stored in the Flash EPROM, the default values (as set on delivery) are

applied to the interfaces.
● If there is a user program stored in the Flash EPROM, it is loaded into RAM.
● The default operating modes set by the PLC configuration are applied.

● A warm start is performed by switching power OFF/ON with a battery connected.
● All RAM memory modules are checked and erased except of the buffered operand areas

and the RETAIN variables (see Ä Chapter 1.4.1.20.3.6.11 “Command 'Reset Warm'”
on page 1038).

● If there is a user program stored in the Flash EPROM, it is loaded into RAM.
● The default operating modes set by the PLC configuration are applied.

● RUN -> STOP means pressing the RUN function key on the PLC while the PLC is in run
mode (AC500 PLC display "run", AC500-eCo PLC "RUN LED" is ON).

● If a user program is loaded into RAM, execution is stopped.
● All outputs are set to FALSE or 0.
● Variables keep their current values, i.e., they are not initialized.
● The AC500 PLC display changes from "run" to "StoP", AC500-eCo "RUN LED" changes

from ON to OFF.

● START -> STOP means stopping the execution of the user program in the PLC's RAM using
the menu item "Online/Stop" in the programming system.

● All outputs are set to FALSE or 0.
● Variables keep their current values, i.e., they are not initialized.
● The AC500 PLC display changes from "run" to "StoP".

● Performs a START -> STOP process.
● Preparation for program restart, i.e., the variables (VAR) (exception: RETAIN variables) are

set to their initialization values.
● Reset is performed using the menu item "Online/Reset" in the programming system or

pressing the function key RUN for ≥ 5 s in STOP mode.

● Performs a START -> STOP process.
● Preparation for program restart, i.e., the variables (VAR) (also RETAIN variables) are set to

their initialization values.
● Reset (cold) is performed using the menu item "Online/Reset (cold)" in the programming

system.

● Resets the controller to its original state (deletion of Flash, SRAM (%M, area, %R area,
RETAIN, RETAIN PERSISTENT), Communication Module configurations and user pro-
gram!).

● Reset (original) is performed using the menu item "Online/Reset (original)" in the program-
ming system.

Cold start

Warm start

RUN -> STOP

START -> STOP

Reset

Reset (cold)

Reset (original)

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3464

● STOP -> RUN means short pressing the RUN function key on the PLC while the PLC is
in STOP mode (AC500 PLC display "StoP", AC500-eCo "RUN LED" is ON). "RUN LED" is
OFF of the toggle switch of an AC500-eCo CPU.

● If a user program is loaded into RAM, execution is continued, i.e., variables will not be set to
their initialization values.

● The AC500 PLC display changes from "StoP" to "run", AC500-eCo "RUN LED" changes
from OFF to ON.

● STOP -> START means continuing the execution of the user program in the PLC's RAM
using the menu item "Online/Start" in the programming system.

● If a user program is loaded into RAM, execution is continued, i.e., variables will not be set to
their initialization values.

● The AC500 PLC display changes from "StoP" to "run", AC500-eCo PLC "RUN LED"
changes from OFF to ON.

● Download means loading the complete user program into the PLC's RAM. This process is
started by selecting the menu item "Online/Download" in the programming system or after
confirming a corresponding system message when switching to online mode (menu item
"Online/Login").

● Execution of the user program is stopped.
● In order to store the user program to the Flash memory, the menu item "Online/Create boot

project" must be called after downloading the program.
● Variables are set to their initialization values according to the initialization table.
● RETAIN variables can have wrong values as they can be allocated to other memory

addresses in the new project!
● A download is forced by the following:

– changed PLC configuration
– changed task configuration
– changed library management
– changed compile-specific settings (segment sizes)
– execution of the commands "Project/Clean all" and "Project/Rebuild All".

● After a project has changed, only these changes are compiled when pressing the key <F11>
or calling the menu item "Project/Build". The changed program parts are marked with a blue
arrow in the block list.

● The term Online Change means loading the changes made in the user program into the
PLC's RAM using the programming system (after confirming a corresponding system mes-
sage when switching to online mode, menu item "Online/Login").

● Execution of the user program is not stopped. After downloading the program changes,
the program is re-organized. During re-organization, no further online change command is
allowed. The storage of the user program to the Flash memory using the command "Online/
Create boot project" cannot be initiated until re-organization is completed.

● Online Change is not possible after:
– changes in the PLC configuration
– changes in the task configuration
– changes in the library management
– changed compile-specific settings (segment sizes)
– performing the commands "Project/Clean all" and "Project/Rebuild All".

STOP -> RUN

STOP -> START

Download

Online change

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3465

● Data buffering, i.e., maintaining data after power ON/OFF, is only possible, if a battery is
connected for AC500 CPU and the buffering will take place in FLASH with AC500-eCo V3
CPU. The following data can be buffered completely or in parts:
– Data in the addressable flag area (%M area)
– RETAIN variable
– PERSISTENT variable (number is limited, no structured variables)
– PERSISTENT area (%R area)

● In order to buffer particular data, the data must be excluded from the initialization
process (see Ä Chapter 1.6.5.1.1 “Handling of remanent variables for AC500 V3 products”
on page 3456).

Start of the user program
The user program (UP) is started according to the following table. It is assumed that a valid user
program is stored to the Flash memory.
See Ä Chapter 1.6.7.1.4 “Storage device details” on page 3997.

Action No memory
card with UP
installed
Auto run = ON

No memory
card with UP
installed
Auto run = OFF

Memory card
with UP
installed
Auto run = ON

Memory card
with UP
installed
Auto run = OFF

Voltage ON
or Warm start
or Cold start

UP is loaded
from Flash into
RAM and started
from Flash.

No UP is loaded
from Flash.
When logging in,
the message "No
program avail-
able in the con-
troller ..." is dis-
played.

UP is loaded
from the memory
card into Flash
memory and
RAM and then
started from
RAM.

UP is loaded
from the memory
card to the Flash
memory. RAM
remains empty.
When logging in,
the message "No
program avail-
able in the con-
troller ..." is dis-
played.

STOP -> RUN UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

STOP -> START UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

Download 1) The UP currently
stored in the
CPU's RAM is
stopped. The
built UP is loaded
from the PC into
the PLC's RAM.

The built UP is
loaded from the
PC into the PLC's
RAM.

The UP currently
stored in the
CPU's RAM is
stopped. The
built UP is loaded
from the PC into
the PLC's RAM.

The built UP is
loaded from the
PC into the PLC's
RAM.

Online Change 2) Processing of the
UP currently
stored in the
CPU's RAM is
continued. The
changes made to
the UP are
loaded from the
PC into the PLC's
RAM. The UP is
reorganized and
processed.

The changes
made to the UP
are loaded from
the PC into the
PLC's RAM. The
UP is reorgan-
ized.

Processing of the
UP currently
stored in the
CPU's RAM is
continued. The
changes made to
the UP are
loaded from the
PC into the PLC's
RAM. The UP is
reorganized and
processed.

The changes
made to the UP
are loaded from
the PC into the
PLC's RAM. The
UP is reorgan-
ized.

Remarks:

Data buffering

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3466

1): After the download is completed, the program is not automatically stored to the Flash
memory. To perform this, create a boot project Ä Chapter 1.4.1.10.6 “Generating boot appli-
cations” on page 391. If the UP is not stored to the Flash memory, the UP is reloaded from
the Flash memory after voltage OFF/ON. Start the program either by pressing the RUN/STOP
function key or using Automation Builder.
2): After the online change process is completed, the program is not automatically stored to
the Flash memory. For this, after reorganization is completed create a boot project. During
reorganization and flashing, no further online change command is allowed. If the UP is not
stored to the Flash memory, the UP is reloaded from the Flash memory after voltage OFF/ON.
2): After the online change process is completed, the program is not automatically stored to
the Flash memory. For this, after reorganization is completed create a boot project Ä Chapter
1.4.1.10.6 “Generating boot applications” on page 391. During reorganization and flashing, no
further online change command is allowed. If the UP is not stored to the Flash memory, the UP
is reloaded from the Flash memory after voltage OFF/ON.

Task configuration

This statement is applicable to PM5032-x-ETH, PM5052-x-ETH and
PM5072-T-2ETH(W).
If the main task cycle is faster than 10 ms, remove the onboard inputs I8..I11
and I/O channels of option boards or option boards for serial communication
from the main task cycle, but use a separate task cycle.

The task model processes the following kind of tasks:
● Non-real-time system tasks: system tasks with no real-time property (e.g. file access,

Ethernet communication, OPC UA, …)
● Non-real-time IEC tasks: IEC tasks with no real-time property
● Real-time system tasks: system tasks with real-time property
● Real-time IEC tasks: IEC tasks with real-time property
The possible number of tasks depends on the type of processor module. How to distribute the
IEC tasks over multiple CPU cores and on how to use the IEC task configuration for Automation
Builder is described in detail in the CODESYS task configuration section.
● Task configuration Ä Chapter 1.4.1.8.16 “Task Configuration” on page 292
● Tab 'Configuration' Ä Chapter 1.4.1.20.2.27.1 “Tab 'Configuration'” on page 942

Watchdog handling in IEC tasks
If a new project is created or a new task is inserted in the task configuration (Ä Chapter
1.4.1.8.16 “Task Configuration” on page 292), the task is created with the “default task settings”
priority = 15 and cycle time = 10 ms. The watchdog is activated, set to 20 ms and sensitivity = 1.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3467

The watchdog handling depends also on the setting of the CPU parameter “Missed cycle
behavior”:

This parameter configures the behavior of a real-time task if the processing time of the task is
longer than the cycle time.
“Next” means – skip the missed cycle and start the task on the next cycle on time. This might
result in skipped tasks, but at least the highest priority task is always started on time, if it is not
skipped (= default value).
“ASAP” means - start the task immediately when possible.

This parameter is valid for all real-time tasks (priorities 0-15) of the PLC applica-
tion.

Example 1: default task settings, tTask – processing time of the task in [ms]

tTask Par.

6 Next

12 ASAP

12 Next

No watchdog occurs, also if the processing time of the task is longer than the cycle time (cases
2 and 3) since the processing time is shorter than the watchdog time.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3468

Example 2: default task settings, tTask – processing time of the task 24 ms, SWD – sensitivity of
the watchdog

SWD Par.

1 Next

3 ASAP

3 Next

Watchdog occurs in all 3 cases since the processing time of the task is longer than the
watchdog time. According to the setting of the sensitivity the watchdog occurs after 1 or 3
cycles.
Beside the task watchdog there is the so-called “omitted cycle watchdog” (OMCW). The omitted
cycle watchdog is only active if a watchdog has been configured for the task.
The "normal" Watchdog triggers only if the processing time of the task exceeds the set
Watchdog value.
The omitted cycle watchdog on the other hand checks completely "failed" cycles. E.g. if the
scheduler has a problem and the task never executes its cycle again, then the "normal"
watchdog will not be triggered. Therefore, the run time does an additional check, if a task has
been executed within the double cycle time or the double watchdog time (the bigger of both is
valid). If not, the omitted cycle watchdog is triggered.

Example 3: default task settings, tTask - processing time of the task in ms, Clost - lost cycles

tTask Clost

6 3-6

12 3-6

¥ 2ff

Omitted cycle watchdog occurs after double watchdog time (2 x 20 ms = 40 ms).

Example 4: Two tasks with following settings:

Task Priority Cycle time
[ms]

Watchdog
time [ms]

Sensitivity Parameter Task pro-
cessing
time [ms]

1 10 10 20 1 Next 6

2 15 50 50 1 30

Task

1

2

Watchdog of task 2 is triggered since the task cannot run in the defined task cycle.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3469

Example 5: Two tasks with following settings

Task Priority Cycle time
[ms]

Watchdog
time [ms]

Sensitivity Parameter Task pro-
cessing
time [ms]

1 10 10 20 1 ASAP 12

2 15 30 60 1 6

Task

1

2

Watchdog of task 2 is triggered since the task cannot start in the defined task cycle.

Example 6: Two tasks with following settings

Task Priority Cycle time
[ms]

Watchdog
time [ms]

Sensitivity Parameter Task pro-
cessing
time [ms]

1 10 10 20 1 Next 12

2 15 30 60 1 6

Task

1

2

No watchdog is triggered, but task 1 is running in 20 ms cycle instead of configured 10 ms
cycle. Task 2 is running alternating every 20 ms or 40 ms.

PLC utilization

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3470

The parameters cpuload and plcload represent the actual CPU load or PLC load of the
system.
● cpuload: This value represents the time the PLC requires to calculate all processes run-

ning on the PLC. For a good system performance this value should be less than 80%. In
case of a higher value, the degree of utilization should be reduced by using a more powerful
PLC or by reducing the amount of processes.

● plcload: This value represents the time the PLC requires to calculate all real-time pro-
cesses. Real-time processes are either high priority system tasks or IEC tasks with a priority
between 0 and 15. For a good system performance this value should be less than 60%. In
case of a higher value, the degree of utilization should be reduced by using a more powerful
PLC.

During commissioning we recommend to monitor the CPU and PLC values online with one of
the following methods:

● Commissioning via Ä Chapter 1.6.6.4.4 “PLC shell commands” on page 3950 (command
'plcload' and 'cpuload').

● Commissioning via Ä Chapter 1.4.1.12.3 “Data Recording with Trace” on page 421. In
order to display the load of the CPU or PLC, create a new Device Trace object in your
PLC project. Then upload the data into the views Ä Chapter 1.4.1.20.3.21.19 “ Command
'Upload Trace'” on page 1146. .

To access the parameters plcload and cpuload please use system functions as follows:

● plcload: SchedGetProcessorLoad() included in library ‘CmpSchedule’.
● cpuload: SysMCGetLoad() included in library ‘SysCpuMultiCore’.

Managing priorities by selecting the appropriate communication schema
The AC500 V3 PLCs have an integrated preemptive real-time operating system that supports
100 priorities from 0 (lowest priority) to 99 (highest priority). Hereof 0 ... 49 in the non-real-time
area and 50...99 in the real-time area.
For real-time tasks in the IEC user program 16 priorities from 0 (highest priority) to 15 (lowest
priority) can be used. They correspond to the operating system priorities 67 (for IEC task priority
0) to 52 (for IEC task priority 15).
The file system, the memory card and flash tasks run on lowest real-time priority 50.
The non-real-time IEC task priority 16 runs in the non-real-time area. Likewise, all Ethernet
protocols and the diagnosis system run in the non-real-time area.
As of Automation Builder 2.4.1 and “SystemFW” 3.4.1 provides a new PLC boot parameter
Communication Schema (non-real time vs. real-time Ethernet data) for AC500 V3:

● Name: “Default”
Description: Balanced priority for communication via communication modules (CMs) and
onboard Ethernet communication.
Ä Further information on page 3472

● Name: “Communication modules”
Description: Priority and high performance for communication module (CM) based commu-
nication via sync tasks. Lower priority for onboard Ethernet and local I/O bus.
Ä Further information on page 3473

Automation
Builder

IEC applica-
tions/IEC pro-
gram

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3471

● Name: “Onboard Ethernet”
Description: Priority for onboard Ethernet communication (e. g. via Modbus TCP). Lower
priority for communication via communication modules (CMs)
Ä Further information on page 3473

● Name: “Realtime onboard Ethernet”
Description: Very high priority for onboard Ethernet communication (e. g. EtherCAT,
PROFINET, Ethernet/IP). Low priority for communication via communication modules (CMs)
Ä Further information on page 3473

The value “Realtime onboard Ethernet” is reserved for later use and has cur-
rently the same settings as “Onboard Ethernet” and in addition the I/O bus on
the same priority as the Ethernet.

In version of “SystemFW” 3.5.0 the priority of onboard CAN interface has been adapted and is
now included in the priority schemas.
In addition the parameter Communication Schema is now also available for the eCo-V3
PLCs.

The „Default“ priority schema in “SystemFW” 3.4.1
The default value of the boot-parameter Communication Schema is the balanced priority for
communication via communication modules (CMs) and onboard Ethernet communication. The
following figure gives an overview about the main task priorities in the AC500 V3 PLCs.

The highest IEC task priority 0 should be used
for high prior functions in the PLC with short
execution time.
The communication modules interrupts
(CM5xx), the local I/O bus, the IEC scheduler
observer task and the CAA event task are pro-
cessed with higher priority than all user IEC
tasks.
Ethernet runs on non-real-time priority.

The default setting of the priorities is suitable for most applications and corresponds to the
settings in the firmware versions 3.4.0 and before.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3472

The “Communication modules” priority schema in “SystemFW” 3.4.1
The communication modules priority schema has been established for priority and high perform-
ance for communication module (CM) based communication via sync tasks. Lower priority for
onboard Ethernet and local I/O bus.

The highest IEC task priority 0 should be used
for the sync task of the highest priority com-
munication module, e. g. CM579-ETHCAT, pri-
ority 1 for the sync task with second highest
priority, and so on.
Only the communication modules interrupts
(CM5xx) and the CAA event task is processed
with higher priority than the IEC tasks.
The IEC scheduler observer task has been
moved to priority 66, means below IEC task
priority 0 and on the same level as IEC task
priority 1.
The priority of the local I/O bus has been
moved to priority 59, means inside the IEC
task priority area, but below the external event
task priorities.
Ethernet runs on non-real-time priority.

The priority schema communication module should be used in applications with one or more
communication modules CM5xx with sync mode. As of Automation Builder 2.4.1 these are the
CM579-ETHCAT EtherCAT master and CM598-CN CANopen master communication modules.
The sync task with priority 0 will be interrupted only by system interrupts. Since the IEC sched-
uler observer task is located below IEC priority 0, the watchdog for this task is also ineffective.
However, this should not interfere with a sync task.
If more than one CM5xx are used in sync mode, the priority order must be defined. The sync
task of highest priority CM5xx receives IEC priority 0, the next priority 1 and so on.
In a mixed PLC configuration with communication modules with and without sync mode the
interrupts of the communication modules without sync mode will be handled on the priority
of the lowest sync task. Currently supported communication modules without sync mode are
CM579-PNIO PROFINET IO controller and SM560-S Safety PLC.

The “Onboard Ethernet” priority schema in “SystemFW” 3.4.1
The “Onboard Ethernet” priority schema has been established for priority for onboard Ethernet
communication (e. g. via Modbus TCP).

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3473

The Ethernet interrupt task has been moved
from non-real-time area to priority 59, means
inside the IEC task priority (real-time) area,
but below the external event task priorities.

This priority schema should be used for applications with much Ethernet communication, e. g.
Modbus TCP communication with a high number of Modbus TCP clients/servers.

NOTICE!
Since the Ethernet interrupt task is running in this mode in the real-time priority
area, the Ethernet communication can block IEC tasks with priorities 12-15.

Working with real-time priority at onboard Ethernet and using a high number of Modbus TCP
client connections can force high CPU load. To avoid this, it is recommended to call the Modbus
function blocks in steps.

100 Modbus TCP client connections shall be used in a 20 ms task.
Call 20 function blocks in a first cycle, 20 function blocks in a second cycle and so on.

Example

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3474

The „Default“ priority schema in “SystemFW” 3.5.0
The default value of the boot-parameter Communication Schema is the balanced priority for
communication via communication modules (CMs) and onboard Ethernet communication.
The following figure gives an overview about the main task priorities in the AC500 V3 midrange
PLCs in version “SystemFW” 3.5.0.

The highest IEC task priority 0 should be used
for high prior functions in the PLC with short
execution time.
The communication modules interrupts
(CM5xx), the local I/O bus, the IEC scheduler
observer task and the CAA event task are pro-
cessed with higher priority than all user IEC
tasks.
Ethernet runs on non-real-time priority.
The CAN onboard interrupt is moved from
non-real-time priority to real-time priority 69,
one priority above the CAN transmit and
receive threads.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3475

The default setting of the priorities is suitable for most applications and corresponds to the
settings in the firmware versions 3.4.0 and before.

The “Communication modules” priority schema in “SystemFW” 3.5.0
The communication modules priority schema has been established for priority and high perform-
ance for communication module (CM) based communication via sync tasks. Lower priority for
onboard Ethernet and local I/O bus.

The highest IEC task priority 0 should be used
for the sync task of the highest priority com-
munication module, e. g. CM579-ETHCAT, pri-
ority 1 for the sync task with second highest
priority, and so on.
Only the communication modules interrupts
(CM5xx) and the CAA Event task is processed
with higher priority than the IEC tasks.
The IEC scheduler observer task has been
moved to priority 66, means below IEC task
priority 0 and on the same level as IEC task
priority 1.
The priority of the local I/O bus has been
moved to priority 59, means inside the IEC
task priority area, but below the external event
task priorities.
The CAN onboard interrupt has the same pri-
ority as the I/O bus and the CAN transmit and
receive threads one priority below, means 58.
Ethernet runs on non-real-time priority.

The priority schema communication module should be used in applications with one or more
communication modules CM5xx with sync mode. As of Automation Builder 2.4.1 these are the
CM579-ETHCAT EtherCAT master and CM598-CN CAN master communication modules.
The sync task with Prio 0 will be interrupted only by system interrupts. Since the IEC scheduler
observer task is located below IEC Prio 0, the watchdog for this task is also ineffective. How-
ever, this should not interfere with a sync task.
If more than one CM5xx are used in sync mode, the priority order must be defined. The sync
task of highest priority CM5xx receives IEC Prio 0, the next Prio 1 and so on.
In a mixed PLC configuration with communication modules with and without sync mode the
interrupts of the communication modules without sync mode will be handled on the priority
of the lowest sync task. Currently supported communication modules without sync mode are
CM579-PNIO PROFINET IO controller and SM560-S safety PLC.

The “Onboard Ethernet” priority schema in “SystemFW” 3.5.0
The “Onboard Ethernet” priority schema has been established for priority for onboard Ethernet
communication (e. g. via Modbus TCP).

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3476

The Ethernet interrupt task has been moved
from non-real-time area to priority 59, means
inside the IEC task priority (real-time) area,
but below the external event task priorities.
The CAN onboard interrupt is moved one pri-
ority below the Ethernet interrupt to priority 58
and the CAN transmit and receive threads one
priority below the CAN onboard interrupt to
priority 57.

This priority schema should be used for applications with much Ethernet communication, e. g.
Modbus TCP communication with a high number of Modbus TCP clients/servers.

NOTICE!
Since the Ethernet interrupt task is running in this mode in the real-time priority
area, the Ethernet communication can block IEC tasks with priorities 12-15.

Working with real-time priority at Onboard Ethernet and using a high number of Modbus TCP
client connections can force a high CPU Load. To avoid this, we recommend calling the Modbus
FB’s in steps.

100 Modbus TCP client connections shall be used in a 20 ms task.
Call 20 function blocks in a first cycle, 20 function blocks in a second cycle and so on.

Example

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3477

Setting standard configuration
If the target setting configuration is changed, standard configuration can be restored:
1. Open CODESYS.
2. In the “Resources” tab, double-click “PLC Configuration”.
3. Select “Menu Extras è Standard Configuration”.

1.6.5.1.3 User Management
With the help of the integrated user management, user groups with different access rights
and authorizations can be defined. Configuration and handling of the user managment in
Automation Builder and a AC500 V3 is decribed in an application note.

1.6.5.1.4 Real-time clock and battery

The real-time clock is an optional function for AC500-eCo V3 Basic processor
modules (e.g. PM5012-x-ETH) and requires a TA5131-RTC. All other AC500-
eCo V3 processor modules have an integrated real-time clock.

The real-time clock operates as a PC clock. It saves date and time to a DWORD in DT format
(DATE AND TIME FORMAT), i.e., in seconds passed since the start time: 1 January 1970 at
00:00.
For AC500-eCo V3, Basic CPU with TA5131-RTC buffers the real-time clock for 7 days, and
Standard/Pro CPU buffers the integrated real-time clock for 20 days. When the CPU is not
powered over the buffering time, the real-time clock data will be cleared.
If a battery is connected and full, the real-time clock continues to run even if the control voltage
is switched off.
If no battery is inserted or the battery is empty, the real-time clocks starts with the value 0
(=1970-01-01, 00:00:00).

Notes on real-
time clock

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3478

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010315&LanguageCode=en&DocumentPartId=&Action=Launch

When switching on the control voltage, the system clock of the operating system is set to the
value of the real-time clock.

Real-time clock
The PLC browser/PLC shell commands date and time are used to set the real-time clock.

The commands date <ENTER> or time <ENTER> display the current date and time of the
real-time clock.
The command: date yyyy-mm-dd<ENTER> (year-month-day) sets the date.

The command: time hh-mm-ss<ENTER> (hours-minutes-seconds) sets the time.

Example:
The real-time clock should be set to 22 February 2005, 16:50.
1. Enter the date:

date 2005-02-22<ENTER>
ð Display: date 2005-02-22 Clock set to 2005-02-22 08:01:07

The time remains unchanged.
2. Enter the time:

time 16:50<ENTER>
ð Display: time 16:50 Clock set to 2005-02-22 16:50:00

The following function blocks located in the folder "Realtime clock" of the system library
ABB_ExtUtils_AC500.lib can be used to set and display the real-time clock (RTC) with help
of the user program:

Function block Function
CLOCK (V3) “Library Manager è ABB-
AC500 è Use Cases è AC500 Utils
è PM<Version> (ABB) è Function Blocks
è Realtime clock”

Sets and displays the real-time clock with
values for year, month, day, hours, minutes
and seconds.
Also the day of week is indicated (Mo=1,
Tue=2, Wed=3, Thu=4, Fr=5, Sa=6, Su=0).
Note: The week of day cannot be set. It
is given by the real-time clock. The input
DAY_SET is ignored.

CLOCK_DT (V3) “Library Manager è ABB-
AC500 è Use Cases è AC500 Utils
è PM<Version> (ABB) è Function Blocks
è Realtime clock”

Sets and displays the real-time clock in DT
format, for example DT#2005-02-17-17:15:00.

Reference for function blocks, functions, structures etc. Ä Chapter 1.10 “Reference, function
blocks” on page 4292

AC500 battery
The AC500 battery buffers the following data in case of "control voltage off":
● Retentive variables in SRAM (VAR_RETAIN..END_VAR) Ä Chapter 1.6.5.1.1 “Handling of

remanent variables for AC500 V3 products” on page 3456
● Date and time of the real-time clock

Real-time clock
with PLC
browser

Real-time clock
with user pro-
gram

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3479

Further information:
● Ä Chapter 1.7.3 “Diagnosis messages” on page 4062

To prevent data loss when using the AC500 battery, the battery status should be
periodically monitored by the user program.

The battery status can be monitored either with the help of a user program on the PLC or in
Automation Builder.
In the PLC shell of Automation Builder the command "batt" Ä Chapter 1.6.6.4.4 “PLC shell com-
mands” on page 3950 can be used. Ä Chapter 1.6.6.4.4 “PLC shell commands” on page 3950.
The following is output:

0 Battery empty

20 Remaining battery charge below 20 %

100 Battery charge OK

In the user program, the battery status can be checked with the function BATT which is avail-
able in the folder "Battery" of the system library ABB_ExtUtils_AC500.lib (“Library Manager
è ABB-AC500 è Use Cases”). The following is output:

0 Battery empty

20 Remaining battery charge below 20 %, battery
must be replaced

100 Battery charge OK

On the device, the battery status can be checked with the function keys of a processor module.
Ä Chapter 1.6.5.1.6 “LEDs, display and function keys on the front panel” on page 3486

Ä Chapter 1.6.5.1.6.5.4 “Reading out values” on page 3507

AC500-eCo V3 data buffering
The AC500-eCo V3 buffers the following data in case of "control voltage off":
● Retentive variables in FLASH (VAR_RETAIN..END_VAR) Ä Chapter 1.6.5.1.1 “Handling of

remanent variables for AC500 V3 products” on page 3456
● Date and time of the real-time clock are using an integrated gold-capacitor with a lower

retention time as a battery.

The AC500-eCo V3 has no battery but stores the remanent data in flash or
the real-time clock using a gold-capacitor, there is no battery or gold-capacitor
status or survey.

In case of “control voltage off”, the real-time clock is buffered for about 7 days
for Basic CPU with TA5131-RTC and about 20 days for Standard or Pro CPUs
at 40 °C using temperature.

Battery status

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3480

1.6.5.1.5 AC500-eCo V3 processor module, LEDs, RUN/STOP switch on front panel

Fig. 304: Example: PM5072-T-2ETH

1 Micro memory card slot
2 5 LEDs to display the states of the processor module (Power, Error, Run, MC, MOD1)
3 RUN button
4 RJ45 female connector for Ethernet1 connection
5 RJ45 female connector for Ethernet2 connection (available for PM5072-T-2ETH(W))
6 3-pin terminal block for power supply 24 V DC
7 2 holes for screw mounting
8 Option board slot cover for option board slot (the number of available slots varies according

to the CPU type)
9 Cable fixing
10 13-pin terminal block for onboard I/Os
11 12-pin terminal block for onboard I/Os (not available on PM5012-x-ETH)
12 12 LEDs to display the states of the signals
13 10 LEDs to display the states of the signals
14 Cable fixing accessory TA5301-CFA on the top of the housing (optional)

The processor module is shown with pluggable terminal blocks. These terminal
blocks must be ordered separately.

The cable fixing accessory on the top of the housing is optional.

Please use TA5301-CFA cable fixing accessory to provide strain relief.

It can also be used for AC500-eCo I/O modules.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3481

The PM50x2 processor modules are supplied with option board slot covers as
standard.

There are various TA51xx option boards for the processor modules that can be
ordered separately.

Which and how many option boards can be plugged, depends on the respective
processor module.

State LEDs and operating elements
The processor modules, PM50xx series, have a RUN/STOP button. By pressing the RUN/STOP
button, the processer modules switch between RUN mode and STOP mode. By long-pressing
RUN/STOP button during the processor module power on phase, the processor module will be
in MOD1.

The processor modules PM50xx indicate their states of operation via 5 LEDs located on the
upper left side of the processor module.

LED State Color LED = ON LED = OFF LED flashing
PWR Power supply Green Power supply

present
Power supply
missing

-

MC Micro memory
card indication

Yellow Micro memory
card is in the
socket

Micro memory
card is not in the
socket

Micro memory
card is in read/
write state: any
file on card is
opened, means
activity on card

ERR Error indication Red An error occurred No errors or only
warnings
encountered (E4
errors).
The LED
behavior for the
error classes 2 to
4 is configurable.

Fast flashing (4
Hz) displays
together with the
RUN LED a cur-
rently running
firmware-upgrade
or writing data to
the Flash-
EPROM. Slow
flashing (1 Hz)
alone displays
shutdown of
Request To
Send. Medium
flashing (2 Hz)
alone displays at
start of PLC if
reboot after
watchdog.

MOD1 Mode 1 indication Yellow Processor
module is in
mode 1 state

Processor
module is not in
mode 1 state

-

RUN/STOP
button

State LEDs

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3482

LED State Color LED = ON LED = OFF LED flashing
RUN RUN/STOP state Green Processor

module is in state
RUN

Processor
module is in state
STOP

Fast flashing (4
Hz):
The processor
module is
reading/writing
data from/to the
memory card.
If the ERR-LED
is also flashing,
data is being
written to the
Flash-EPROM.

Slow flashing (1
Hz):
The firmware
update from the
memory card has
been completed
successfully
or
Boot project is
being updated.
Slow flashing
(0.5 Hz) together
with
MOD1 LED ON:
Mode1: Boot
project is not
loaded.

Two LEDs below
“ERR” and
“MOD1”

Configurable Yellow Configurable Configurable Additional two
LEDs are
reserved and can
be controlled
from IEC user
code with FB
PmLedSet

The AC500-eCo V3 processor module also provides 2 LEDs below the state LEDs which can be
used by user and driven by an application.
The LEDs can be used into a project and controlled using special function blocks which are
contained in the PM AC500 library. The POU is PmLedSet located in folder LED control.

The processor module provides up to 10 LEDs (PM5012-x-ETH), 20 LEDs (PM5032-R-ETH,
PM5052-R-ETH), or 22 LEDs (PM5032-T-ETH, PM5052-T-ETH, PM5072-T-2ETH) to display
the states of the inputs and outputs.

Processor
module

LED State Color LED = ON LED = OFF

PM5012-x-ETH I0..I5 Digital input Yellow Input is ON Input is OFF

O0..O3 Transistor
output

Yellow Output is ON Output is OFF

User configu-
rable LEDs

I/O LEDs

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3483

Processor
module

LED State Color LED = ON LED = OFF

NO0..NO3 Relay output Yellow Output is ON Output is OFF

PM5032-x-ETH
PM5052-x-ETH

I0..I11 Digital input Yellow Input is ON Input is OFF

O0..O7 Transistor
output

Yellow Output is ON Output is OFF

NO0..NO5 Relay output Yellow Output is ON Output is OFF

C12, C13 Digital configu-
rable input/
output

Yellow Input/Output
is ON

Input/Output is
OFF

PM5072-T-2ETH
PM5072-
T-2ETHW

I0..I11 Digital input Yellow Input is ON Input is OFF

O0..O7 Transistor
output

Yellow Output is ON Output is OFF

C12, C13 Digital configu-
rable input/
output

Yellow Input/Output
is ON

Input/Output is
OFF

Table 617: State LEDs at Ethernet connector
LED Color OFF ON Flashing
Activity Yellow No activity --- Activity

Link Green No link Link ---

Ethernet state
LEDs

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3484

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3485

1.6.5.1.6 LEDs, display and function keys on the front panel
Overview

The display of a processor module is equipped with a background-lighted 7-segment display.
This display consists of 6 digits for plain text or error codes.

Some functionalities may be not yet supported by the product. Please refer to
the release notes of the product at time of release.

● A black square () denotes the state/working activity of the corresponding object on the
left/right side of the display. The black square flashes according to the device's activity, e.g.
during data exchange on ETH1, ETH2, COM1, etc.

MC activity
For the activity of the memory card the black square () is shown as long as a
file is open on memory card.

● A black triangle () points to the selected item/interface on the left/right side of the display
to be configured or read. Further, it acts as a cursor for the count up/count down function
keys.

A black triangle () at the BATT item indicates a missing or uncharged battery.

Display indica-
tors

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3486

The indicators point to the following items on the left side of the display:

No. On the left Side Description
1 MC (memory card) Refers to the memory card status.

2 SYS (system) Refers to the system status.

3 BATT (battery) Refers to the battery status.

4 I/O bus Refers to I/O bus connection.

The indicators point to the following items on the right side of the display:

No. On the right side Description
5 ETH1 Refers to the first Ethernet interface.

6 ETH2 Refers to the second Ethernet interface.

7 COM1 Refers to COM1 interface.

8 CAN Refers to CAN interface.

9 Function keys on front panel

Processor
module

Display variant Description

PM56xx-2ETH Display of a processor module
with support for 2 Ethernet
interfaces, CAN and COM1.

Text outputs of the display

Display Description
Display on system start (power on).

PLC is in boot mode.

Is shown on startup after „Boot“, when a
wrong DisplayFW is detected, e.g. the old ver-
sion 3.0.
Please update display with DisplayFW 4.1 (or
higher).

PLC is in initialization mode.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3487

Display Description
PLC is in STOP mode.

No system firmware (SystemFW) available.
Start update firmware.
PLC is waiting for a firmware download via
Automation Builder or memory card.
See Ä Chapter 1.6.6.1.4.2 “ AC500 V3 firm-
ware installation and update” on page 3653

PLC is in RUN mode.
Switch into RUN mode is only possible if a
valid boot project is available in the flash
memory.

Only in RUN mode and as of SystemFW
V3.2.0
Reminder: demo license
PLC runs in „Demo mode“, since at least one
feature license is missing.
Will be displayed for 5 minutes at every
license check
If „Demo time“ expires, PLC will go to „Stop“.

Only in RUN mode and as of SystemFW
V3.2.0
10 minutes step reminder: license was
removed
PLC runs in „Grace mode“, since at least one
feature license which has been available dis-
appeard. PLC is waiting for this license.
Will be displayed for 5 minutes
If „Grace time“ expires, PLC will go to „Stop“.

New as of SystemFW 3.3.1.103.
Text is shown if no communication between
CPU and display is possible due do very high
CPU load (e.g. endless loop in user program
and not activated task watchdog).

Startup procedure of the PLC
Startup procedure of a new PLC from factory

State Display Description
0 Display on system start (power on).

1 PLC is in boot mode.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3488

State Display Description
2 PLC is in initialization mode.

3 No system firmware (SystemFW) available.
Start update firmware.
PLC is waiting for a firmware download via Automation
Builder or memory card.
See Ä Chapter 1.6.6.1.4.2 “ AC500 V3 firmware installa-
tion and update” on page 3653

Startup procedure of a PLC with system firmware
The startup procedure depends on the selected PLC mode.

PLC
mod
e

Display Startup Behavior

00 The user program will be loaded and run.
PLC changes to mode „RUN“.

01 User program will not be loaded / run. PLC stay in mode
„STOP“.

02 Reserved for further development (currently like Mode
00).

Mode 01 can be activated via function key CFG (see Ä Further information
on page 3487), or by pressing function key RUN during startup of PLC until
Mode 01 is shown on display.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3489

State Display Description
0 Display on system start (power on).

1 PLC is in boot mode (see Ä Further information
on page 3487).

2 PLC is in initialization mode (see Ä Further information
on page 3487).

3 PLC is in STOP mode (see Ä Further information
on page 3487).
Same as status Stop in Automation Builder.

4 PLC is in RUN mode (see Ä Further information
on page 3487).
Switch into RUN mode is only possible if a valid
boot project is available in the flash memory.

5 Only in RUN mode and as of SystemFW V3.2.0
Reminder: demo license
PLC runs in „Demo mode“, since at least one feature
license is missing.
Will be displayed for 5 minutes at every license check
If „Demo time“ expires, PLC will go to „Stop“.

6 Only in RUN mode and as of SystemFW V3.2.0
10 minutes step reminder: license was removed
PLC runs in „Grace mode“, since at least one feature
license which has been available disappeard. PLC is
waiting for this license.
Will be displayed for 5 minutes
If „Grace time“ expires, PLC will go to „Stop“.

Description of LEDs
The LEDs below the display indicate the status of the processor module:

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3490

LED State Color LED = ON LED = OFF LED flashes
Power LED
(PWR)

Denotes the
power supply
state of the pro-
cessor module

Green Voltage is
present (24 V
DC)

Voltage is
missing

-

Run LED
(RUN)

Denotes the
activity state of
the processor
module

Green Processor
module is in
RUN mode

Processor
module is in
STOP mode

If the LED flashes
fast (4 Hz) a firm-
ware update is
finished with no
errors.
If the Run LED
flashes fast (4 Hz),
alternating with a
flashing Run LED
the firmware is
updated.
To enforce boot
mode 1, keep the
RUN function key
pressed during the
boot procedure.
In this case, the
Run LED flashes
slowly (1 Hz). A
subsequent project
download (from
within Automation
Builder) cancels
the blinking.

Error LED
(ERR)

Denotes an
error

Red An error has
occured.

No errors or
only warnings
have
occurred.

If the Error LED
flashes slowly
(1 Hz) a firm-
ware update from
the memory card
is finished with
errors.
If the Error LED
flashes fast with
AC500 on display
a fatal system
error has occurred.
If the Error LED
flashes fast (4 Hz)
alternating with a
flashing Run LED
the firmware is
updated.

A running processor module is indicated with the state RUN on the display, a deactivated
processor module is indicated with the state STOP. In both cases the display's backlight is off.

Description of the function keys
Overview

The processor module can be operated manually using the function keys on the front panel:

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3491

Function Key Description Description
Run Toggles between RUN and STOP mode. Switching

into RUN mode is only possible if an error free
project has been created and downloaded with
Automation Builder.

Value Shows different state values of the processor
module.

Escape Quits the current menu, submenu or function without
saving.

OK / Acknowledgement Acknowledges the current value or selects a menu/
submenu. Changes that have been sent to the pro-
cessor module successfully are confirmed with donE
on the display.

Diagnostic Allows evaluation of error messages in detail.

Configuration Show/set IP configuration, PLC startup mode and
Ethernet address.
Enters submenus.

Count up / navigate in
submenu

Press the function key repeatedly in order to
increase the value each time by 1, or navigate in
submenu to previous entry
Keep the function key pressed in order to count up
fast.

Count down / navigate
in submenu

Press the function key repeatedly in order to
decrease the value each time by 1, or navigate in
submenu to next entry.
Keep the function key pressed in order to count
down fast.

Backlight is switched on for about 20 seconds by pressing any function key.

Start and stop PLC

State Description Menu level 0 Result on pressing one of the function keys

0 Short click:
State 1 is
displayed.
Long click
(>5 sec):
State 2 is
displayed.

No action No action

Function key
RUN

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3492

State Description Menu level 0 Result on pressing one of the function keys

1

PLC only in state RUN if a
correct project is in RAM of
PLC

State 0 is
displayed.
STOP -
same as
Online stop
in
Automation
Builder (halt,
no init of
variables)

2 RUN
LED=ON

Perform RESET same
as Online reset in
Automation Builder
(stop and init varia-
bles)
State 0 is displayed.

No RESET
State 0 is dis-
played.

Configuration
Configuration CPU firmware SystemFW V3.1.x and DisplayFW V3.0

(see Ä Chapter 1.6.6.2.9.2 “Switch functionality of Ethernet interfaces ETH1/ETH2”
on page 3736)
Navigation starts with the processor module being in RUN/STOP mode (State 0). By pressing
one of the three function keys a certain action is triggered. The result of this action is described
in the result columns of the tables.

State Description - Main menu 1 Result on pressing one of the function keys

0 The processor module is in
RUN/STOP mode.

State 1 is
displayed.

Remains in RUN/
STOP mode.

Remains in RUN/
STOP mode.

1 State 2 is
displayed.

Return into RUN/
STOP mode.

Refers to sub
menu 1

2

Change the values with the
Count up/Count down func-
tion keys.

State 3 is
displayed.

Return into RUN/
STOP mode.

Shows DONE,
your settings are
saved. Return
into RUN/STOP
mode.

3 State 4 is
displayed.

Return into RUN/
STOP mode.

Refers to sub
menu 1

Function key
CFG main menu
with ETH1 /
ETH2 mode:
“Two separate
interfaces”

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3493

State Description - Main menu 1 Result on pressing one of the function keys
4

Change the values with the
Count up/Count down func-
tion keys.

State 5 is
displayed.

Return into RUN/
STOP mode.

Shows DONE,
your settings are
saved. Return
into RUN/STOP
mode.

5

Change the values with the
Count up/Count down func-
tion keys.
See also Ä Further informa-
tion on page 3489.

State 1 is
displayed.

Return into RUN/
STOP mode.

Shows DONE,
your settings are
saved. Return
into RUN/STOP
mode.

(see Ä Chapter 1.6.6.2.9.2 “Switch functionality of Ethernet interfaces ETH1/ETH2”
on page 3736)
Navigation starts with the processor module being in RUN/STOP mode (State 0). By pressing
one of the three function keys a certain action is triggered. The result of this action is described
in the result columns of the tables.

State Description - Main menu 2 Result on pressing one of the function keys

0 The processor module is in
RUN/STOP mode.

State 1 is
displayed.

Remains in RUN/
STOP mode.

Remains in RUN/
STOP mode.

1 State 2 is
displayed.

Return into RUN/
STOP mode.

Refers to sub
menu 1

2

Change the values with the
Count up/Count down func-
tion keys.

State 3 is
displayed.

Return into RUN/
STOP mode.

Your settings are
saved. State 2 is
displayed.

3

Change the values with the
Count up/Count down func-
tion keys.
See also Ä Further informa-
tion on page 3489.

State 1 is
displayed.

Return into RUN/
STOP mode.

Shows DONE,
your settings are
saved. Return
into RUN/STOP
mode.

Function key
CFG main menu
with ETH1 /
ETH2 mode:
“Switch
functionality
ETH1-ETH2”

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3494

Sta
te

Description - Submenu 1 Result on pressing one of the function keys

1.1

IPETH1 or IPETH2

State 2 is
displayed.

Return into RUN/
STOP mode.

State 1.2 is dis-
played.

1.2

IP Configuration (address,
subnet mask, gateway)

State 1.3 is
displayed.

Aborts the menu
unchanged. Return to
State 1.1

State 3.2 is dis-
played.

1.3

Reset to production data
(default settings)

State 1.4 is
displayed.

Aborts the menu
unchanged. Return to
State 1.1

Activate RESET to
default by pressing
OK twice.
Shows DONE,
your settings are
saved. Return into
RUN/STOP mode.

1.4

Activate DHCP
Sets a DHCP address.

State 1.2 is
displayed.

Aborts the menu
unchanged. Return to
State 1.1

Activate DHCP to
default by pressing
OK twice
Shows DONE,
your settings are
saved. Return into
RUN/STOP mode.

Sta
te

Description - Submenu 2 Result on pressing one of the function keys

2.1

IPETH1 or IPETH2

State 2 is
displayed.

Aborts the menu
unchanged. Return to
State 0.

State 2.2 is dis-
played.

2.2

DHCP active

State 2.3 is
displayed.

Aborts the menu
unchanged. Return to
State 2.1.

--

2.3

IP Configuration (address,
subnet mask, gateway)

State 2.4 is
displayed.

Aborts the menu
unchanged. Return to
State 2.1.

State 3.2 is dis-
played.

Function key
CFG sub menu
IPETH1 or
IPETH2; DHCP
not active

Function key
CFG sub menu
IPETH1 or
IPETH2; DHCP
active

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3495

Sta
te

Description - Submenu 2 Result on pressing one of the function keys

2.4

Reset to production data
(default settings)

-- Aborts the menu
unchanged. Return to
State 2.1.

Activate RESET to
default by pressing
OK twice
Shows DONE,
your settings are
saved. Return into
RUN/STOP mode.

Sta
te

Description - Submenu 3 Result on pressing one of the function keys

3.1

IP Configuration (address,
subnet mask, gateway)

State 2.4 is
displayed.

Aborts the menu
unchanged.
Return to State 1.1
(sub menu IPETH1 or
IPETH2)

State 3.2 is dis-
played.

3.2

IP address A1-A4

 Number is blinking if value
has changed and is not yet
sent to CPU

State 3.3 is
displayed.

Aborts the menu
unchanged.
Return to State 1.1
(sub menu IPETH1 or
IPETH2)

Sends changed
values to CPU
and go to default
menue RUN/STOP
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

3.3

Subnet mask N1-N4

 Number is blinking if value
has changed and is not yet
sent to CPU

State 3.4 is
displayed.

Aborts the menu
unchanged.
Return to State 1.1
(sub menu IPETH1 or
IPETH2)

Sends changed
values to CPU
and go to default
menue RUN/STOP
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

Function key
CFG sub menu
STATIC

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3496

Sta
te

Description - Submenu 3 Result on pressing one of the function keys

3.4

Gateway G1-G4

 Number is blinking if value
has changed and is not yet
sent to CPU

State 3.2 is
displayed
again.

Aborts the menu
unchanged.
Return to State 1.1
(sub menu IPETH1 or
IPETH2)
Aborts the menu
unchanged. Return to
State 1.

Sends changed
values to CPU
and go to default
menue RUN/STOP
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

Sta
te

Description - Submenu 4 Result on pressing one of the function keys

4.1 State 4.2 is
displayed.

Aborts the menu
unchanged.
Return to State 1

DHCP not active:
State 1.2 is dis-
played
DHCP active:
State 2.2 is dis-
played

4.2

Change the values with the
Count up/Count down func-
tion keys starting with current
value.

 Number is blinking if value
has changed and is not yet
sent to CPU

State 2.3 is
displayed.

Aborts the menu
unchanged.
Return to State 4.1

Sends changed
values to CPU
and go to default
menue RUN/STOP
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

Function key
CFG sub menu
ADR

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3497

Sta
te

Description - Submenu 4 Result on pressing one of the function keys

4.3

Subnet mask N1-N4

 Number is blinking if value
has changed and is not yet
sent to CPU

State 4.1 is
displayed.

Aborts the menu
unchanged.
Return to State 4.1

Sends changed
values to CPU
and go to default
menue RUN/STOP
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

Configuration CPU firmware SystemFW >=V3.2.0 and DisplayFW >=V4.1
(see Ä Chapter 1.6.6.2.9.2 “Switch functionality of Ethernet interfaces ETH1/ETH2”
on page 3736)
Navigation starts with the processor module being in RUN/STOP mode (State 0). By pressing
one of the five function keys a certain action is triggered. The result of this action is described in
the result columns of the tables.

State Description - CFG
menu level 1

Result on pressing one of the function keys

0 The processor
module is in RUN/
STOP mode.

State 1 is
displayed.

 Remains in
RUN/STOP
mode.

Remains in
RUN/STOP
mode.

1

Switch is OFF

Refers to
submenu
level 2
Ä “Func-
tion key
CFG sub-
menu
show / set
PLC ID ”
on page 3507

State 2
is dis-
played if
KNX
func-
tionality
is
active.
State 3
is dis-
played if
KNX
func-
tionality
is inac-
tive.

State 6 is
displayed.

Return into
RUN/STOP
mode.

2

KNX program
button (appears
if functionality is
active)

 State 3
is dis-
played.

State 1 is
displayed.

Return into
RUN/STOP
mode.

Function key
CFG menu level
1, with ETH1 /
ETH2 mode:
“Two separate
interfaces”

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3498

State Description - CFG
menu level 1

Result on pressing one of the function keys

3 Refers to
submenu
level 2
Ä “Func-
tion key
CFG menu
level 2
(IPETH1 or
IPETH2); ”
on page 3501

State 4
is dis-
played.

State 2 is
displayed.

Return into
RUN/STOP
mode.

Only active
if no
changes in
CFG menu.
Return into
RUN/STOP
mode.

4 Refers to
submenu
level 2
Ä “Func-
tion key
CFG menu
level 2
(IPETH1 or
IPETH2); ”
on page 3501

State 5
is dis-
played.

State 3 is
displayed.

Return into
RUN/STOP
mode.

5

Note: COM1 mode
RS-232 (default) or
RS-485 can only
be shown but not
changed. This is a
PLC boot paramter
(see Ä Chapter
1.6.6.2.14.3 “Set-
ting up a
serial interface”
on page 3798)
„“ and must be set
in AB Ä Chapter
1.6.6.2.14.3.1
“Configuration”
on page 3798.
Mode is activated in
PLC boot process.

 State 6
is dis-
played.

State 4 is
displayed.

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

6 Refers to
submenu
set startup
mode of
PLC
Ä “Func-
tion key
CFG sub-
menu
show / set
startup
mode of
PLC ”
on page 3506

State 1
is dis-
played.

State 5 is
displayed.

Return into
RUN/STOP
mode.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3499

(see Ä Chapter 1.6.6.2.9.2 “Switch functionality of Ethernet interfaces ETH1/ETH2”
on page 3736)
Navigation starts with the processor module being in RUN/STOP mode (State 0). By pressing
one of the five function keys a certain action is triggered. The result of this action is described in
the result columns of the tables.

State Description - CFG
menu level 1

Result on pressing one of the function keys

0 The processor
module is in RUN/
STOP mode.

State 1 is
displayed.

 Remains in
RUN/STOP
mode.

Remains in
RUN/STOP
mode.

1

Switch is ON

 State 2 is
displayed
if KNX
function-
ality is
active.
State 3 is
displayed
if KNX
function-
ality is
inactive.

State 5 is
displayed.

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

2

KNX program button
(appears if function-
ality is active)

 State 3 is
dis-
played.

State 1 is
displayed.

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

3 Refers to
submenu
level 2
Ä “Func-
tion key
CFG
menu
level 2
(IPETH1
or
IPETH2); ”
on page 3501

State 4 is
dis-
played.

State 2 is
displayed.

Return into
RUN/STOP
mode.

Only active
if no
changes in
CFG menu.
Return into
RUN/STOP
mode.

Function key
CFG menu level
1, with ETH1 /
ETH2 mode:
“Switch
functionality
ETH1-ETH2”

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3500

State Description - CFG
menu level 1

Result on pressing one of the function keys

4

Note: COM1 mode
RS-232 (default) or
RS-485 can only
be shown but not
changed. This is
a PLC boot param-
eter (see Ä Chapter
1.6.6.2.14.3 “Setting
up a serial inter-
face” on page 3798)
„“ and must be set
in AB Ä Chapter
1.6.6.2.14.3.1
“Configuration”
on page 3798. Mode
is activated in PLC
boot process.

 State 5 is
dis-
played.

State 3 is
displayed.

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

5 Refers to
submenu
set startup
mode of
PLC
Ä “Func-
tion key
CFG sub-
menu
show / set
startup
mode of
PLC ”
on page 3506

State 1 is
dis-
played.

State 4 is
displayed.

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

State Description - CFG
menu level 2

Result on pressing one of the function keys

0

IPETH1 or IPETH2

State 1 is
displayed.

 Return into
RUN/STOP
mode.

Return into
RUN/
STOP
mode.

Function key
CFG menu level
2 (IPETH1 or
IPETH2);

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3501

State Description - CFG
menu level 2

Result on pressing one of the function keys

1

IP Configuration
(address, subnet
mask, gateway)

Refers to
submenu
StAtIC
Ä “Func-
tion key
CFG menu
level 3,
show / set
STATIC”
on page 3503

State 2 is
dis-
played.

State 4 is
displayed.

Case 1, no
submenu is
entered:
Return into
RUN/STOP
mode.
Case 2, no
changes: State
0 is displayed.

Send all
changes to
CPU.
State 5 is
displayed.

2 Refers to
submenu
set dHCP
Ä “Func-
tion key
CFG menu
level 2
Show/set
DHCP”
on page 3504

State 3 is
dis-
played.

State 1 is
displayed.

3

Activate DHCP
Sets a DHCP
address.

Refers to
submenu
set Id
Ä “Func-
tion key
CFG menu
level 2
Show/set
Id”
on page 3505

State 4 is
dis-
played.

State 2 is
displayed.

State 1 is dis-
played.

4

Reset to production
data (default set-
tings)

Refers to
submenu
set rESEt
Ä “Func-
tion key
CFG sub-
menu
show / set
RESET”
on page 3506

State 1 is
dis-
played.

State 3 is
displayed.

Send all
changes to
CPU.
State 5 is
displayed.

5 Remain all
changes
State 1 is dis-
played.

State 6 is
displayed.

6 Changes applied
donE is displayed for 2 sec. then return into RUN/STOP mode.

Changes failed
FAILEd is displayed for 2 sec. then return into RUN/STOP mode.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3502

State Description - Sub-
menu STATIC

Result on pressing one of the function keys

0

IP Configuration
(address, subnet
mask, gateway)

State 1 is
dis-
played.

 Aborts the
menu
unchanged.
Return to
IPETH1 or
IPETH2

No changes:
return to
IPETH1 or
IPETH2
Changes:
(StAtIC
blinks) state
5 of previous
table is dis-
played

1

IP address A1-A4
If submenu is
entered: Number is
blinking if value has
changed and is not
yet sent to CPU

Refers to
submenu
of A1-A4

Count
down A1-
A4

Count up
A4-A1

Aborts the
menu
unchanged.
Return to
CFG menu
level 2
StAtIC

Take over
new values,
but don´t
send to CPU.
Return to
CFG menu
level 2
StAtIC

2

Subnet mask N1-N4
If submenu is
entered: Number is
blinking if value has
changed and is not
yet sent to CPU

Refers to
submenu
of N1-N4

Count
down N1-
N4

Count up
N4-N1

Aborts the
menu
unchanged.
Return to
CFG menu
level 2
StAtIC

Take over
new values,
but don´t
send to CPU.
Return to
CFG menu
level 2
StAtIC

Function key
CFG menu level
3, show / set
STATIC

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3503

State Description - Sub-
menu STATIC

Result on pressing one of the function keys

3

Gateway G1-G4
If submenu is
entered: Number is
blinking if value has
changed and is not
yet sent to CPU

Refers to
submenu
G1-G4

Count
down G1-
G4

Count up
G4-G1

Aborts the
menu
unchanged.
Return to
CFG menu
level 2
StAtIC

Take over
new values,
but don´t
send to CPU.
Return to
CFG menu
level 2
StAtIC

State Description - CFG
menu level 4

Result on pressing one of the function keys

0

A4 is blinking if sub-
menu is entered

No action Count
down
value.
Value is
blinking if
changed

Count up
value.
Value is
blinking if
changed

Aborts the
menu
unchanged.
Shows
unchanged
value.

Take over
new value,
but don´t
send to CPU.
Go back to
menu level 3
(here subnet
mask N1)

Stat
e

Description -
Show/set DHCP

Result on pressing one of the function keys

0 State 1
is dis-
played.

 Aborts the
menu
unchanged.

1

IP address A1-A4

 Value is blinking
if value has changed
and is not yet sent to
CPU

 State 2 is
displayed.

State 2 is
displayed.

Aborts the
menu
unchanged.
Go back to
CFG menu
level 1.

Take over
new values,
but don´t
send to CPU.
Text is
blinking if
value is
changed.
State 3 is
displayed.

2 State 1 is
displayed.

State 1 is
displayed.

Go to sub-
menu
StAtIC.

Function key
CFG menu level
4, Example: I/P
address A4

Function key
CFG menu level
2 Show/set
DHCP

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3504

Stat
e

Description -
Show/set DHCP

Result on pressing one of the function keys

3 Remain all
changes
State 1 is
displayed.

State 4 is
displayed.

4 Changes applied
donE is displayed for 2 sec. then return into RUN/STOP mode.

Changes failed
FAILEd is displayed for 2 sec. then return into RUN/STOP mode.

Stat
e

Description -
Show/set Id

Result on pressing one of the function keys

0 Count down
value:
255 ... 000,
starting with
current
value

Count up
value: 000 ...
255, starting
with current
value

Case 2, no
changes:
stop
blinking,
return to
menu
Ä “Function
key CFG
menu level
2 (IPETH1
or
IPETH2); ”
on page 3501
.

Go toCFG
menu level 2
(IPETH1 or
IPETH2)
state 5-6.

1

IP address A1-A4

 Number is blinking
if value has changed
and is not yet sent to
CPU

 Count down
value:
255 ... 000,
starting with
current
value

Count up
value: 000 ...
255, starting
with current
value

Discard the
changes.
Stop
blinking.
Show pre-
vious value.

Go toCFG
menu level 2
(IPETH1 or
IPETH2)
state 5-6.

2 Count down
value:
255 ... 000,
starting with
current
value

Count up
value: 000 ...
255, starting
with current
value

Discard the
changes.
Stop
blinking.
Show pre-
vious value.

Go toCFG
menu level 2
(IPETH1 or
IPETH2)
state 5-6.

Function key
CFG menu level
2 Show/set Id

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3505

Sta
te

Description - Sub-
menu show / set
RESET

Result on pressing one of the function keys

0 State
1 is
dis-
playe
d.

No action No action Aborts the
menu
unchanged.
Return to sub-
menu level 1

1

 Display is blinking
if value has changed
and is not yet sent to
CPU

 Aborts the
menu
unchanged.
Return to sub-
menu level 1

Discard all
made
changes.
Stop
blinking.
Send com-
mand "reset
to factory
settings" to
CPU
Ä Chapter
1.6.5.1.6.3.1
“Startup pro-
cedure of a
new PLC
from factory”
on page 3488
.„reset Ask
confirmation.
Go back to
default
menue RUN/
STOP.
State 2 is
displayed.

2 Aborts the
menu
unchanged.
Return to sub-
menu STATIC

Sends
changed
values to
CPU, dis-
plays state
3.

3 Changes applied
donE is displayed for 2 sec. then return into RUN/STOP mode.

Changes failed
FAILEd is displayed for 2 sec. then return into RUN/STOP mode.

Stat
e

Description - Sub-
menu show / set
startup mode of PLC

Result on pressing one of the function keys

Start Count down
value: 02 ...
0, starting
with current
value

Count up
value: 00 ...
02, starting
with current
value

Aborts the
menu.
Go back to
main menue
RUN/STOP

Sends
changed
values to
CPU.

Function key
CFG submenu
show / set
RESET

Function key
CFG submenu
show / set
startup mode of
PLC

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3506

Stat
e

Description - Sub-
menu show / set
startup mode of PLC

Result on pressing one of the function keys

1 Displays 2
sec. donEor
FAILEd
Go back to
main menue
RUN/STOP

 Text is blinking if
value has changed and
is not yet sent to CPU

 Count down
value: 02 ...
00, starting
with current
value

Count up
value: 00 ...
02, starting
with current
value

Aborts the
menu.
Go back to
main menue
RUN/STOP

2

 Text is blinking if
value has changed and
is not yet sent to CPU

 Count down
value: 02 ...
00, starting
with current
value

Count up
value: 00 ...
02, starting
with current
value

Aborts the
menu.
Go back to
main menue
RUN/STOP

Sta
te

Description - Sub-
menu show / set
startup mode of PLC

Result on pressing one of the function keys

0

Switch is OFF

Stat
e 1
is
dis-
play
ed

 Return into
RUN/STOP
mode.

1

PLC ID

 State 2 is
displayed

State 2 is dis-
played

Return into
RUN/STOP
mode.

2

 Text PLC is blinking
if edit mode with keys
up/down is enabled

 Number is blinking if
value has changed and
is not yet sent to CPU

 Count down
value:
255®0,
starting with
current
value

Count up
value:
000®255,
starting with
current value

Aborts the
menu.
Go back to
main menue
RUN/STOP

Takes over
new value, if
changed

Reading out values
Reading out values CPU firmware SystemFW 3.1.x and DisplayFW 3.0

The following settings of the processor module can be read out by pressing the function key
VAL repeatedly:
1. Displays time of the processor module (hh.mm.ss).
2. Displays date of the processor module (yy.mm.dd).
3. Displays state of battery (ub 100 = 100%, ub 020 = 20% or ub 000 = empty).
4. Displays version of display firmware (e.g. d 3.0 r (= display version 3.0 release).

Function key
CFG submenu
show / set PLC
ID

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3507

5. Displays version of CPU firmware (e.g. C 3.1.0r (= CPU version 3.1.0 release).
6. Displays CPU type.
7. Displays default text (RUN/STOP).

Reading out values CPU firmware SystemFW >=V3.2.0 and DisplayFW >=V4.1
By pressing Function Key VAL state 1 is displayed

Stat
e

Description
Menu VAL

Result on pressing one of the function keys

1

Time of the pro-
cessor module
(hh.mm.ss).

No action State 2 is
displayed

State 6 is
displayed

Go back to main menue
RUN/STOP

2

Date of the pro-
cessor module
(yy.mm.dd).

State 3 is
displayed

State 1 is
displayed

3

State of battery
(ub 100 = 100%,
ub 020 = 20% or
ub 000 = empty).

State 4 is
displayed

State 2 is
displayed

4

Version of display
firmware (e.g.
d 4.1 r (= dis-
play version 4.1
release).

State 5 is
displayed

State 3 is
displayed

5

Version of CPU
firmware (e.g.
C 3.2.0r (=
CPU version 3.2.0
release).

State 6 is
displayed

State 4 is
displayed

6

CPU type.

State 1 is
displayed

State 5 is
displayed

Function key
VAL

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3508

Reading out diagnosis messages on the CPU
Table 618: Example: no diagnosis message in status list
State Display Result on pressing one of the function keys

0 The processor
module is in
RUN/STOP
mode.

State 1 is
displayed

- - - -

1 No action No action Return into RUN/STOP
mode.

Table 619: Example: diagnosis messages in status list
State Display Result on pressing one of the function keys

0 The processor
module is in
RUN/STOP
mode.

State 1 is
displayed

- - - -

1

Number of diag-
nosis mes-
sages; here 4

 Go to first/
next diag-
nosis mes-
sage in
status list
(e.g., state
2)

Go to last/
previous
diagnosis
message in
status list

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

2

Diagnosis mes-
sage example:
Error battery
empty or
missing

Toggling
between state 2
and 3

Selects
displayed
diagnosis
message
and
shows
details
Ä Table 6
20 “Exam
ple: error
battery
empty or
missing”
on page 3510

Go to first/
next diag-
nosis mes-
sage in
status list

Go to last/
previous
diagnosis
message in
status list

Return into
RUN/STOP
mode.

Acknowl-
edge and
return into
RUN/STOP
mode.

3

Error ID
example
Toggling
between state 2
and 3

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3509

Table 620: Example: error battery empty or missing
State Display Result on pressing one of the function keys

0

E4 = error
severity 4
bAt = subdevice
battery
Toggling
between state 0
and 1

State 2 is
displayed

State 2 is
displayed

State 6 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

1

Error ID
example
Toggling
between state 0
and 1

2

Error number 8
Battery is
missing or
empty

 State 3 is
displayed

State 0 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Displays
state 0
Return to
diagnosis
status list

3

Detail 1
Subdevice 22:
battery

 State 4 is
displayed

State 2 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

4

Detail 2
Error type 0:
device

 State 5 is
displayed

State 3 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

5

Detail 3
Error type
number 0:
device itself

 State 6 is
displayed

State 4 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

6

Detail 4
Additional infor-
mation 0: none

 State 1 is
displayed

State 5 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3510

Enable flashing of display
As of SystemFW 3.1.0 and AB 2.1.0 the Blink functionality is implemented. “Blink” means –
activate flashing of backlight of AC500 display in Automation Builder via “IP-Configuration” tool
Ä Chapter 1.6.6.2.2.4.2.2.4 “Blink functionality” on page 3685.

As of SystemFW 3.1.0 and AB 2.0.0 the Wink functionality is implemented. “Wink” means –
activate flashing of backlight of AC500 display in Automation Builder via communication settings
Wink functionality.

Function blocks
This function block switches the ERR-LED ON and OFF.

With this function block a text can be displayed on the CPU.

Ä Chapter 1.10 “Reference, function blocks” on page 4292

1.6.5.1.7 Onboard technologies
Ethernet
Ethernet protocols and ports for AC500-eCo V3 processor modules

Description PM5012
-x-ETH

PM5032
-x-ETH

PM5052
-x-ETH

PM507
2-

T-2ETH

³ CPU
firm-
ware

ABB netConfig x x x x V3.4.1

Online access with driver 3S UDP
BlkDrvUdp

x x x x V3.4.1

Online access with driver 3S TCP/IP
BlkDrvTcp

x x x x V3.4.1

Modbus TCP server x x x x V3.4.1

Modbus TCP client with POU
ETHx_MOD_MAST

x x x x V3.4.1

UDP out of user program with library netBa-
seService.lib

x x x x V3.4.1

UDP data exchange, Network variables x x x x V3.4.1

TCP/IP out of user program with library net-
BaseService.lib

x x x x V3.4.1

Web server on PLC with web visualization x x x V3.4.1

IEC60870-5-104 control station incl. 2nd

connection and 2nd port
 -

IEC60870-5-104 substation incl. 2nd port x V3.4.1

FTP server
(See Ä Chapter 1.6.6.3.5.1 “Configuration
of FTP server” on page 3917)

 x x x V3.4.1

CODESYS network variables x x x x V3.4.1

OPC DA server x x x x V3.4.1

Blink function-
ality

Wink function-
ality

PmErrLedSet

PmDispSetText

Supported as of
Automation
Builder V 2.4.1

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3511

Description PM5012
-x-ETH

PM5032
-x-ETH

PM5052
-x-ETH

PM507
2-

T-2ETH

³ CPU
firm-
ware

OPC UA server x x x V3.4.1

ICMP – ping out of user project with POU
ETHx_ICMP_PING

x x x x V3.4.1

DHCP client x x x x V3.4.1

SNTP (Simple Network Time Protocol)
client system solution
(See Ä Chapter 1.6.6.3.4.2.1 “(S)NTP client
configuration” on page 3913)

x x x x V3.4.1

SNTP (Simple Network Time Protocol)
server system solution
(See Ä Chapter 1.6.6.3.4.2.2 “(S)NTP
server configuration” on page 3916)

x x x x V3.4.1

Maximum number of Input/output allowed
variable on Ethernet for the protocol

 1 kB /1
kB

1 kB /1
kB

2 kB /2
kB

V3.4.1

IEC 61850 (MMS server, GOOSE) 2) x V3.4.1

EthernetIP Scanner 1, 2) x x x AB
2.4.1/
FW

3.4.1

EthernetIP Adapter 1, 2) x x x AB
2.4.1/
FW

3.4.1

KNX - Building communication 2) x x V3.4.1

BACnet-BC - Infrastructure communication
2)

 x V3.3.1

HTTPS – secure web server on PLC with
CODESYS web visualization
(See Ä Chapter 1.6.6.3.7.3.2 “Secure web
server” on page 3922)

 x x x V3.4.1

 WebVisu for data visualisation on web-
server HTML5

 x x x V3.4.1

FTPS – secure FTP
(See Ä Chapter 1.6.6.3.7.3.3 “Secure FTP”
on page 3923)

 x x x V3.4.1

Secure online access with driver 3S UDP
BlkDrvUdp

x x x x V3.4.1

Secure online access with driver 3S TCP/IP
BlkDrvTcp

x x x x V3.4.1

ICMP – ping out of user project with
POU ETHx_ICMP_PING or EthIcmpPing
(PLCopen style)

x x x x V3.4.1

Modbus TCP client (master) with
POU ETHx_MOD_MAST or ModTcpMast
(PLCopen style)

x x x x V3.4.1

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3512

Description PM5012
-x-ETH

PM5032
-x-ETH

PM5052
-x-ETH

PM507
2-

T-2ETH

³ CPU
firm-
ware

RTV (Remote Target Visualization) x x x x V3.4.1

Remarks:
1): in preparation
2): feature is licensed

Default open Ethernet ports of PM50xx-x-xETH
After startup without a PLC project the AC500-eCo V3 PM50xx-x-xETH contains the following
Ethernet ports and sockets:

Protocol Port

ABB NetConfig 1) UDP 24576

Online access with driver 3S Tcp/Ip BlkDrvTcp (no scan) TCP 11740

OPC UA server 2) TCP 4840

Remarks:
1): The port 24576 for ABB NetConfig protocol can be disabled via PLC configuration by
deleting the protocol node from configuration tree of Ethernet interfaces ETH1 and ETH2.
2): The port 4840 for OPC UA server is closed by default as of System FW V3.1.0.

All other ports are closed by default.

Overview of protocols, sockets and ports

Protocol Port Sockets
ABB netConfig 24576 1 permanent socket per interface

3S gateway client (e.g. CODESYS) to
gateway server

1217 1 permanent socket

Online access with driver 3S UDP
BlkDrvUdp (with scan)

1740 1 socket per connection + 4
listen

Online access with driver 3S block driver
TCP/IP (no scan)

11740 1 socket per connection + 1
listen

Modbus TCP server 502 or config-
urable

1 socket listen + 1 socket per
server connection, number of
server connections is configu-
rable in AB

Modbus TCP client with POU
ETHx_MOD_MAST

Random 1 socket per connection with
POU ETHx_MOD_MAST

UDP out of user program with library
SysLibSockets.lib

1 ... 65535 1 socket per connection

TCP/IP out of user program with library
SysLibSockets.lib

1 ... 65535 1 socket per connection

Web server on PLC with web visualization 80 1 listen and 1 per connection

SNTP client 123 1 permanent socket

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3513

Protocol Port Sockets
IEC60870-5-104 substation 2404 1 per connection

FTP server
(See Ä Chapter 1.6.6.3.5.1 “Configuration
of FTP server” on page 3917)

Command
port = 21
Data active
mode = 20
Data passive
mode =
random

1 per session, max. 4 allowed

CODESYS network variables 1202 (UDP broadcast)

OPC DA server (default 3S block driver) UDP = 1740
or
TCP/IP
=11740

1 socket per connection

OPC UA server 4840 1 permanent socket

ICMP – ping out of user project with POU
ETHx_ICMP_PING DHCP

none No socket

DHCP 67 1 socket during startup

SNTP (Simple Network Time Protocol)
client system solution
(See Ä Chapter 1.6.6.3.4.2.1 “(S)NTP
client configuration” on page 3913)

123 1 permanent socket

SNTP (Simple Network Time Protocol)
server system solution
(See Ä Chapter 1.6.6.3.4.2.2 “(S)NTP
server configuration” on page 3916)

123 1 permanent socket

HTTPS – secure web server on PLC with
CODESYS web visualization
(See Ä Chapter 1.6.6.3.7.3.2 “Secure web
server” on page 3922)
Not for PM5012-x-ETH!

443 1 listen and 1 per connection

FTPS – secure FTP
(See Ä Chapter 1.6.6.3.7.3.3 “Secure FTP”
on page 3923)
Not for PM5012-x-ETH!

Command
port = 21
Data active
mode = 20
Data passive
mode =
random

1 per session, max. 4 allowed

Secure online access with driver 3S UDP
BlkDrvUdp

1740 1 socket per connection + 1
listen

Secure online access with driver 3S
TCP/IP BlkDrvTcp

11740 1 socket per connection + 1
listen

ICMP – ping out of user project with
POU ETHx_ICMP_PING or EthIcmpPing
(PLCopen style)

None No socket

Modbus TCP client (master) with
POU ETHx_MOD_MAST or ModTcpMast
(PLCopen style)

Random 1 socket per connection with
POU ETHx_MOD_MAST or
ModTcpMast

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3514

Limitation of connections per protocol

Protocol PM5012
-x-ETH

PM503
2-x-
ETH

PM5052-
x-ETH

PM5072-
T-2ETH

³ CPU
firm-
ware

Modbus TCP server (e.g. for SCADA
access)

3 8 10 15 3.4.1

Modbus TCP client with POU
ETHx_MOD_MAST

8 13 20 30 3.4.1

Modbus TCP client with POU
ETHx_MOD_MAST or ModTcpMast
(PLCopen style)

8 13 20 30 3.4.1

IEC60870-5-104 control station incl. 2nd

connection and 2nd port

IEC60870-5-104 substation incl. 2nd port 5 3.4.1

IEC60870-5-104: No. of free tags

+ additional license for extension 1)

 1.000 3.4.1

FTP server 2 2 2 3.4.1

Online access with driver 3S UDP
BlkDrvUdp

4 4 4 6 3.4.1

Online access with driver 3S TCP/IP
BlkDrvTcp

4 4 4 6 3.4.1

OPC DA server (number of connections) 4 4 4 6 3.4.1

OPC UA server (number of connections) 5 5 10 3.4.1

 No. of free tags

+ additional license for extension 1)

 125 250 1.000 3.4.1

 min sampling rate (limit) 1000
ms

1000 ms 500 ms 3.4.1

Secure online access with driver 3S UDP
BlkDrvUdp

4 4 4 6 3.4.1

Secure online access with driver 3S
TCP/IP BlkDrvTcp

4 4 4 6 3.4.1

FTPS - secure FTP server 2 2 2 3.4.1

RTV (Remote Target Visualization) 4 4 4 6 3.4.1

Remarks:
1): in preparation

Ethernet protocols and ports for AC500 V3 products

Description PM5630
-2ETH

PM5650
-2ETH

PM5670
-2ETH

PM567
5-2ETH

³ CPU
firm-
ware

ABB netConfig x x x x V3.0.0

Online access with driver 3S TCP/IP
BlkDrvTcp

x x x x V3.0.0

Modbus TCP server x x x x V3.0.3

Modbus TCP client with POU
ETHx_MOD_MAST

x x x x V3.0.1

AC500-eCo V3
processor
modules

Supported as of
Automation
Builder V 2.1

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3515

Description PM5630
-2ETH

PM5650
-2ETH

PM5670
-2ETH

PM567
5-2ETH

³ CPU
firm-
ware

UDP out of user program with library netBa-
seService.lib

x x x x V3.0.0

UDP data exchange, Network variables x x x x V3.0.0

TCP/IP out of user program with library net-
BaseService.lib

x x x x V3.0.0

Web server on PLC with web visualization x x x x V3.0.0

NTP/SNTP ((Simple) Network Time Pro-
tocol) client with 3S licenced store package
SNTPService.package.
Library container: SNTPService

x x x x V3.0.0

IEC60870-5-104 control station incl. 2nd

connection and 2nd port
x x x x V3.0.0

IEC60870-5-104 substation incl. 2nd port x x x x V3.0.0

FTP server
(See Ä Chapter 1.6.6.3.5.1 “Configuration
of FTP server” on page 3917)

x x x x V3.0.0

CODESYS network variables x x x x V3.0.0

OPC DA server x x x x V3.0.0

OPC UA server x x x x V3.0.0

ICMP – ping out of user project with POU
ETHx_ICMP_PING

x x x x V3.0.0

DHCP client x x x x V3.1.0

NTP/SNTP ((Simple) Network Time Pro-
tocol) client system solution
(See Ä Chapter 1.6.6.3.4.2.1 “(S)NTP client
configuration” on page 3913)

x x x x V3.1.0

NTP/SNTP ((Simple) Network Time Pro-
tocol) server system solution
(See Ä Chapter 1.6.6.3.4.2.2 “(S)NTP
server configuration” on page 3916)

x x x x V3.1.0

Maximum number of Input/output allowed
variable on Ethernet for the protocol

2 kB /2
kB

4 kB /4
kB

5 kB /5
kB

5 kB /5
kB

V3.4.0

IEC 61850 (MMS server, GOOSE) 2) x x x x V3.1.0

EthernetIP Scanner 1, 2) x x x x AB
2.4.1/
FW

3.4.1

EthernetIP Adapter 1, 2) x x x x AB
2.4.1/
FW

3.4.1

KNX - Building communication 2) x x x x V3.2.x

BACnet-BC - Infrastructure communication
2)

x x x x V3.3.1

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3516

Description PM5630
-2ETH

PM5650
-2ETH

PM5670
-2ETH

PM567
5-2ETH

³ CPU
firm-
ware

HTTPS – secure web server on PLC with
CODESYS web visualization
(See Ä Chapter 1.6.6.3.7.3.2 “Secure web
server” on page 3922)

x x x x V3.1.0

 WebVisu for data visualisation on web
server HTML5

x x x x V3.0.0

FTPS – secure FTP
(See Ä Chapter 1.6.6.3.7.3.3 “Secure FTP”
on page 3923)

x x x x V3.1.0

Secure online access with driver 3S UDP
BlkDrvUdp

x x x x V3.1.0

Secure online access with driver 3S TCP/IP
BlkDrvTcp

x x x x V3.1.0

ICMP – ping out of user project with
POU ETHx_ICMP_PING or EthIcmpPing
(PLCopen style)

x x x x V3.1.0

Modbus TCP client (master) with
POU ETHx_MOD_MAST or ModTcpMast
(PLCopen style)

x x x x V3.1.0

RTV (Remote Target Visualization) x x x x V3.1.0

Remarks:
1): in preparation
2): feature is licensed

Default open Ethernet ports of PM56xx-2ETH
After startup without a PLC project the PM56xx-2ETH contains the following Ethernet ports and
sockets:

Protocol Port

ABB NetConfig 1) UDP 24576

Online access with driver 3S UDP BlkDrvUdp (with scan) UDP 1740

Online access with driver 3S Tcp/Ip BlkDrvTcp (no scan) TCP 11740

OPC UA server 2) TCP 4840

Remarks:
1): The port 24576 for ABB NetConfig protocol can be disabled via PLC configuration by
deleting the protocol node from configuration tree of Ethernet interfaces ETH1 and ETH2.
2): The port 4840 for OPC UA server is closed by default as of SystemFW V3.1.0.

All other ports are closed by default.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3517

Overview of protocols, sockets and ports

Protocol Port Sockets
ABB netConfig 24576 1 permanent socket per interface

3S gateway client (e.g. CODESYS) to
gateway server

1217 1 permanent socket

Online access with driver 3S UDP
BlkDrvUdp (with scan)

1740 1 socket per connection + 4
listen

Online access with driver 3S block driver
TCP/IP (no scan)

11740 1 socket per connection + 1
listen

Modbus TCP server 502 or config-
urable

1 socket listen + 1 socket per
server connection, number of
server connections is configu-
rable in AB

Modbus TCP client with POU
ETHx_MOD_MAST

Random 1 socket per connection with
POU ETHx_MOD_MAST

UDP out of user program with library
SysLibSockets.lib

1 ... 65535 1 socket per connection

TCP/IP out of user program with library
SysLibSockets.lib

1 ... 65535 1 socket per connection

Web server on PLC with web visualization 80 1 listen and 1 per connection

NTP/SNTP client 123 1 permanent socket

IEC60870-5-104 control station Random 1 per connection

IEC60870-5-104 substation 2404 1 per connection

FTP server
(See Ä Chapter 1.6.6.3.5.1 “Configuration
of FTP server” on page 3917)

Command
port = 21
Data active
mode = 20
Data passive
mode =
random

1 per session, max. 4 allowed

CODESYS network variables 1202 (UDP broadcast)

OPC DA server (default 3S block driver) UDP = 1740
or
TCP/IP
=11740

1 socket per connection

OPC UA server 4840 1 permanent socket

ICMP – ping out of user project with POU
ETHx_ICMP_PING DHCP

none No socket

DHCP 67 1 socket during startup

NTP/SNTP ((Simple) Network Time Pro-
tocol) client system solution
(See Ä Chapter 1.6.6.3.4.2.1 “(S)NTP
client configuration” on page 3913)

123 1 permanent socket

NTP/SNTP ((Simple) Network Time Pro-
tocol) server system solution
(See Ä Chapter 1.6.6.3.4.2.2 “(S)NTP
server configuration” on page 3916)

123 1 permanent socket

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3518

Protocol Port Sockets
HTTPS – secure web server on PLC with
CODESYS web visualization
(See Ä Chapter 1.6.6.3.7.3.2 “Secure web
server” on page 3922)

443 1 listen and 1 per connection

FTPS – secure FTP
(See Ä Chapter 1.6.6.3.7.3.3 “Secure FTP”
on page 3923)

Command
port = 21
Data active
mode = 20
Data passive
mode =
random

1 per session, max. 4 allowed

Secure online access with driver 3S UDP
BlkDrvUdp

1740 1 socket per connection + 1
listen

Secure online access with driver 3S
TCP/IP BlkDrvTcp

11740 1 socket per connection + 1
listen

ICMP – ping out of user project with
POU ETHx_ICMP_PING or EthIcmpPing
(PLCopen style)

None No socket

Modbus TCP client (master) with
POU ETHx_MOD_MAST or ModTcpMast
(PLCopen style)

Random 1 socket per connection with
POU ETHx_MOD_MAST or
ModTcpMast

Limitation of connections per protocol

Protocol PM5630
-2ETH

PM565
0-2ETH

PM5670-
2ETH

PM5675-
2ETH

³ CPU
firm-
ware

Modbus TCP server (e.g. for SCADA
access)

30
40
15

100
40
25

100
40
50

100
40
50

3.0.3
3.1.0
3.1.3

Modbus TCP client with POU
ETHx_MOD_MAST

n/a
40
30

100
40
50

n/a
40
120

n/a
40
120

3.0.1
3.1.0
3.1.3

Modbus TCP client with POU
ETHx_MOD_MAST or ModTcpMast
(PLCopen style)

30
30

100
50

100
120

100
120

3.1.0
3.1.3

IEC60870-5-104 control station incl. 2nd

connection and 2nd port
10
5

10
10

10
20

10
20

3.1.0
3.4.0

IEC60870-5-104 substation incl. 2nd port 10
5

10
10

10
20

10
20

3.1.0
3.4.0

IEC60870-5-104: No. of free tags

+ additional license for extension 1)

1.000 5.000 10.000 10.000 3.4.0

FTP server 4 4 4 4 3.1.0

Online access with driver 3S UDP
BlkDrvUdp

n/a
8

4
8

n/a
8

n/a
8

3.0.0
3.1.0

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3519

Protocol PM5630
-2ETH

PM565
0-2ETH

PM5670-
2ETH

PM5675-
2ETH

³ CPU
firm-
ware

Online access with driver 3S TCP/IP
BlkDrvTcp

n/a
8

4
8

n/a
8

n/a
8

3.0.0
3.1.0

OPC DA server (number of connections) n/a
8

4
8

n/a
8

n/a
8

3.0.0
3.1.0

OPC UA server (number of connections) 50
10

50
20

50
50

50
50

3.1.0
3.4.0

 No. of free tags

+ additional license for extension 1)

1.000 5.000 30.000 30.000 3.4.0

 min sampling rate (limit) 500 ms 100 ms 50 ms 50 ms 3.4.0

Secure online access with driver 3S UDP
BlkDrvUdp

8 8 8 8 3.1.0

Secure online access with driver 3S
TCP/IP BlkDrvTcp

8 8 8 8 3.1.0

FTPS - secure FTP server 4 4 4 4 3.1.0

RTV (Remote Target Visualization) 5 5 5 5 3.1.0

Remarks:
1): in preparation

The PLC types PM5630-2ETH, PM5670-2ETH and PM5675-2ETH are avail-
able as of SystemFW 3.1.0.

Ethernet configuration
Default Ethernet configuration

Module IP Address Netmask Comment
PM5xx2-x-ETH ETH: 192.168.0.10 255.255.255.0

PM5072-T-2ETH ETH1: 192.168.0.10
ETH2: 192.168.1.10

255.255.255.0 The Ethernet ports
must be configured
in different sub net-
works.

PM56xx-2ETH ETH1: 192.168.0.10
ETH2: 192.168.1.10

255.255.255.0 The Ethernet ports
must be configured
in different sub net-
works.

For changing the default addresses or the description of the function keys see:
Ä Chapter 1.6.6.2.2.4.2 “Configuration of the IP settings with the IP configuration tool”
on page 3675

Ä Chapter 1.6.5.1.6.5 “Description of the function keys” on page 3491.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3520

Online access
Preferred driver for online access: 3S UDP block driver BlkDrvUdp. This driver allows to scan
and select the connected PLC’s.
Alternative: 3S TCP/IP block driver. This driver requires at least 2 sockets:
● 1x driver “BlkDrvTcp” on port 11740
● 1x listen on port 11740 if PLC has established online connection

Online access can be established from:

– Automation Builder command 'Login' Ä Chapter 1.4.1.20.3.6.2 “Command
'Login'” on page 1028

– CODESYS OPC DA server
– Panel CP600 series

Each established connection needs one socket. In addition one socket on port 11740 is lis-
tening.
1. Startup the PLC.

ð One socket on port 11740 (listen).

2. Login from Automation Builder via driver “BlKDrvTcp”.

ð 2 sockets on port 11740 (1x online, 1x listen)

3. Additional login out of OPC server with the same driver.

ð 3 sockets on port 11740 (2x online, 1x listen)

4. Additional connect CP600 via driver “BlkDrvTcp”.

ð 4 sockets on port 11740 (3x online, 1x listen)

SNTP client and server
As of version 3.1.0 the SystemFW provides a SNTP Protocol implementation which can be used
for time synchronization of PLC clock. It can be used as SNTP Client or / and SNTP Server.
But only one instance of each can be executed at the same time on one PLC. See Ä Chapter
1.6.6.3.4.2 “Configuration of the (S)NTP protocol” on page 3913.

The SNTP server is listening only on the Ethernet interface, which the protocol
is configured on. It is not possible to have an SNTP server on several Ethernet
interfaces.

To read diagnosis information from the SNTP protocol within an IEC application the function
block PmSntpInfo can be used. This Function block is part of the library ABB_Pm_AC500.lib. It
can also be used to determine the synchronization state of the PLC clock.

Using network variables in AC500 V3
When using network variables via UDP broadcast, the default broadcast address is set to
255.255.255.255.
This will not work on PLCs with multiple Ethernet interfaces, because of undecidable routing.
Set the broadcast address to a matching subnet broadcast address, depending on which inter-
face should be used to send the variables into the network.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3521

● ETH1 with IP 192.168.0.10 netmask 255.255.255.0
● ETH2 with IP 192.168.1.10 netmask 255.255.255.0

Example

If you want the network variables to be broadcast on ETH1, use broadcast address
192.168.0.255.

Onboard CAN configuration
AC500 V3 PLCs provide the following methods for CAN integration:
● Onboard CAN interface
● CANopen master-slave arrangement (with CM598-CN as a master device)

Table 621: Differences in supported protocols
 Onboard CAN CM598-CN
CANopen Manager X

CAN 2A/2B X X

J1939 X

Onboard CAN interface is not available on AC500-eCo V3!

Onboard CAN interface supports the following protocols
● CANopen Manager: Connection of CI581 and CI582 without additional I/O modules
● CAN 2A/2B
● J1939
Configuration in Automation Builder is described in chapter Ä Chapter 1.6.6.2.11.1.1 “CM598-
CAN - CANopen master communication module” on page 3737.
Further information can be found in chapter Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800

Supported pro-
tocols

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3522

1.6.5.1.8 Hot swap
Preconditions for using hot swap

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

Hot swap is not supported by AC500-eCo V3 CPU!

Hot swap

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3523

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3524

Device Min. required device index for I/O module as of
FW Version 3.0.14

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC561 B2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

DI572 A1

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3525

Compatibility of hot swap

Hot swap is not supported by AC500-eCo V3 CPU!

 Central I/O on V3 CPU
I/O module on TU5xx-H connected to I/O bus
master

AC500 V3 CPU types:
PM56xx-2ETH

Required version of I/O bus master Firmware as of V3.2.0

Fieldbus master when used as remote I/O with
AC500 V3

-

When used as remote I/O on third party
controller (PLC or DCS)

-

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3526

Hot swap behavior
The following table describes the behavior in case of I/O attached to the AC500 CPU with
firmware supporting hot swap on the I/O bus.

Hot Swap Behavior Central I/O on V3 CPU
Start-up behavior with unplugged or damaged
I/O module on hot swap terminal unit TU5xx-H

System and I/O modules attached to the CPU
are starting (except unplugged or damaged
module when plugged on hot swap terminal
unit).
As soon as the correct and operational I/O
module is plugged on the terminal unit, the
module is configured and ready to start.
No specific setting needed.

Start-up behavior with wrong I/O module type
on any terminal unit

System and I/O modules are not starting

Diagnosis of presence of hot swap terminal
unit

Diagnosis using PLC browser command "io-
bus desc" in Automation Builder V3.
The PLC browser then provides an overview
of the modules on the I/O bus including the
position of hot swap terminal units in the
I/O bus.
In the application program this can be
detected with a function block
"IoModuleHotSwapInfo"
(Library: AC500_Io / Function Blocks / I/O-Bus)
.
One instance of function block is needed per
terminal unit on the I/O bus. The function
block provides five outputs delivering infor-
mation about slut number, hot swap capa-
bility and plugged/unplugged state of the I/O
module

Diagnosis while hot swap module is pulled or
module (mounted on hot swap terminal unit)
has stopped working

If module is pulled then diagnosis Err 9480
“Module removed from Hot Swap Terminal
Unit” is generated

Diagnosis after plugging the I/O module on
the hot swap terminal unit

Diagnosis Err 9480 is automatically
acknowledged

1.6.5.1.9 KNX IP integration
This document describes the system aspects of AC500 V3 PLCs interface to KNX and its
integration into the engineering tools.
It assumes - beneath basic AC500 and Automation Builder know-how at least basic experience
and expertise in use of KNX and ETS (engineering software for KNX).
Additional information can be found:
● In the example projects and their documentation (C:\Users\Public\Documents\Automation-

Builder\Examples\PS5604-KNX).
● In ABB products and services.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3527

https://new.abb.com/products/1SAP195800R0101/ps5604-knx-ac500-v3-ip-runtime-license

Introduction
KNX is a bus system used more on the room and floor level in buildings (e.g. for lighting,
shading and local HVAC devices).
The KNX as such doesn´t necessarily need a dedicated controller for simple connection of
sensor/switch to receiving/actuator devices.
The signals exchanged via the protocol are so called “group addresses” (“objects”), which are
downloaded via ETS to all the thereby linked (=grouped) devices.
On the room level it typically has a serial wiring called KNX TP (twisted pair), which then is
linked to floor or central building or management level via IP routers. On Ethernet it is called
KNXnet/IP abbreviated also as KNX IP.

The AC500 V3 PLC is after the Automation Builder engineering step and download a standard
KNX device, in which KNX communication is done via the IP network interface. It is arranged
topologically on the area / main line of the KNX IP routers and communicates with them via the
KNXnet/IP protocol.

Engineering workflow
Both engineering software systems for AC500 V3 PLC (Automation Builder) and KNX (ETS) are
directly linked.
A data exchange for the group objects (hereinafter also called communication objects) from the
Automation Builder to ETS (via an XML file) and received by a DCA (Device configuration APP)
for ETS is available.
The AC500 V3 PLC is integrated into the ETS via a certified KNX “device” with the transferred
group objects as configured in Automation Builder and a physical KNX address (transferred via
ETS and KNX IP to the AC500 V3 PLC).

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3528

Programming and commissioning of the AC500 V3 PLC starts with Automation Builder:
Configuration of the AC500 V3 PLC, its communications, here KNX, and I/O modules and all
necessary parameters.
1. Configure programmable KNX controller in CODESYS by adding group objects to the

device.
2. Use group objects as inputs and outputs in the IEC application.
3. Download of the above into the AC500 V3 PLC (via the engineering interface)
4. Export of the group objects for ETS via XML file.

The subsequent linking of the AC500 V3 PLC and the other KNX devices takes place with
the vendor independent KNX commissioning software ETS:

5. Install DCA Plugin and the AC500 V3 PLC device description in ETS
6. Connect group objects in ETS and assign group addresses.
7. KNX IP download to AC500 V3 PLC.
8. The physical KNX address of the AC500 V3 PLC must be set before or during download

of the KNX configuration.

The programming of the AC500 V3 PLC and the KNX commissioning can be done also by
different people at different times and with same or separate engineering PCs. Both projects
carry out their own download parts of their respective configurations to the AC500 V3 PLC.
The only data exchange between the two Engineering programs are the details about the
KNX group objects defined in the ABB Automation Builder. This is done flexibly via the XML
configuration file.

Prerequisites
● PC(s) with Windows 7 or higher with Administrator right(s)
● At least temporary network access to the internet for downloading and installing of:

– Automation Builder as of version AB 2.1.2, (and e.g. example .project)
– ETS5 and the necessary additional files (DCA .etsapp, device description .knxprod) plus

possibly an matching example .knxproj) to above Automation Builder .project

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3529

● Network access to the local network, were the AC500 V3 PLC and KNX devices are
connected.

● PS5604-KNX AC500 runtime license for each dedicated AC500 V3 PLC used in KNX
networks (see Ä Chapter 1.6.5.1.9.6.1 “KNX runtime license” on page 3541).

● The current IP address of the engineering PC(s) where Automation Builder and ETS are
located in same Network / masked IP range, as the AC500 V3 PLC to be used.

General settings and system behavior
The KNX interface at the AC500 V3 PLC is only active during the PLC is in RUN.
1. Download Automation Builder program.
2. Run PLC.
3. Set physical address or download KNX application Programm via ETS.

ð The bus status can be viewed in Online View of Automation Builder.

KNX communication is only working after download the matching ETS application to the AC500
V3 PLC. Until then, the AC500 V3 PLC KNX communication is deactivated and marked with a
warning symbol.

Fig. 305: KNX Interface not ready

However in this state the AC500 V3 PLC can still be switched to the KNX programming mode
and the physical KNX address can be programmed. Also the device info can be read by ETS.
If the KNX interface is ready, this can be recognized by the green symbol on the KNX interface
in the Automation Builder.

Fig. 306: KNX Interface ready

Start-up behavior

KNX bus works only in RUN mode.

If the PLC is in "STOP" mode the KNX bus and the outputs are reset.

To avoid this behavior in "STOP" mode set the following preferences at the PLC_AC500_CPU:

Start/Stop PLC

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3530

1. Double-click PLC_AC500_V3 <...> and click PLC Settings.
2. Enable checkbox Update IO while in stop and select in dropdown-menu Behavior for

Outputs in Stop “Keep current values”.

If the PLC is reset also the connected objects will be reset on the KNX bus.

After Power ON the KNX Interface need approximately 1 s to start after the PLC program had
started. During this period no inputs will be recognized by the PLC and no outputs will be send
to the bus.

Engineering of KNX in Automation Builder
Creation of KNX group objects

Attention
This information refers to Automation Builder as of version 2.2.0.

The data exchange with the KNX bus is done via KNX group objects.
1. Double-click node “KNX” in the device tree “click General è click Add”.

ð The window Communication object appears.

2. Enter your properties:
● Group Object Number:

The number of the KNX Group Object must match within the controller. It is displayed
in the ETS and influences the display order in the ETS and the Automation Builder.

● Type:
Selection of the communication direction.
– Input means that the controller receives values from the KNX bus.
– Output means that the controller sends values to the KNX bus.

● Data Point Type:
Specification of the KNX data point type (DPT) of the Group Object. This determines
the memory size, scaling and unit. For further information see the KNX Standard.

● Group Object Name:
The name of the KNX Group Object. It is freely selectable and is displayed in the ETS
under the field name.

● Group Object Function:
The name of the function of the Group Object. It is freely selectable and is displayed in
the ETS under the field Function.

Based on this selection, the flags of the KNX Group Object are set accordingly in the ETS.
You can use the [Export CSV...] button in the “General” tab menu bar to display the list of KNX
group objects in a spreadsheet program such as Excel and edit and extend it flexibly. Then you
can import them again via [Import CSV].
After you have created all the required KNX group objects, export them using the [Export to
ETS] button. This exported file contains the configuration of the KNX group objects of the
AC500 V3 PLC and is imported by ETS for linking to other KNX devices. If you have not yet
created project information under main menu “Project è Project Information”, the default values
will be used during the export.

Warm start /
Cold start

Power ON/Off

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3531

To use these KNX group objects in your application program, you must assign them with
IEC61131-3 variables. This additional abstraction layer of an additional variable allows you to
create modular automation programs that are independent of the used bus system or input /
output modules.
The assignment is possible either via the parameter page “KNX I/O Mapping” or “I/O mapping
list”. Both editors offer the same function in different representations.
On the KNX I/O Mapping page, the KNX variables are shown hierarchically. Each KNX Group
Object consists of several channels with additional information. These differ depending on
whether it is an input or an output.
The view is structured as follows:
● Variable:

Enter the name of the IEC 61131-3 variable that you want to assign to this channel (KNX
Group Object).

● Mapping:
Shows if the channel is already linked

● Channel:
Name of the Channel (Channel name)

● Address:
The memory address under which the information is stored in the memory of the AC500 V3
PLC. Inputs start with %I and outputs start with %Q.

● Type:
Specification of the IEC 61131-3 variable type

● Default Value:
The value used after starting the controller.
– At a KNX Group Object input, this value is used by the automation program until a value

has been received from the KNX bus.
– At a KNX Group Object output, this value is sent to the bus when the controller is

started.
● Unit:

Specification of the KNX data point type (DPT)
● Description:

Note text
A KNX Group Object “input” consists of a status and a control part:
The Channel name of the status part consists of: Object Number + Object Name + Object
Function and include the following informations:
● UpdateFlag:

This status flag is set to the value “true” for one cycle as soon as a new KNX telegram has
been received. Even if the value of the telegram does not differ from the previous one.

● ValueChanged:
This status flag is set to the value “true” as soon as a new KNX telegram has been received
and the value differs from the previous one.

● ValueValid:
This status flag is set to the value “true” as soon as a KNX telegram has been received for
the first time after the controller has been started.

● WatchdogTimeout:
As of Automation Builder 2.2.1 it will be possible to define a Watchdog Timeout for each
input object. If a timeout occur this flag will be set to the value “true” for one cycle.

● Value:
The current value of the KNX Group Object received from the KNX bus.

The Channel name of the control part consists of: “Control” + Object Number + Object Name +
Object Function and include the following control possibilities:

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3532

● Reset status flags:
When this flag is set from “false” to “true” by the automation program then the above-men-
tioned status flags of the KNX Group Object are reset to the value “false”.

● Send value read:
When this flag is set from “false” to “true” by the automation program, a ValueRead telegram
is sent to the KNX bus. This causes the KNX remote device to send back its current value.

A KNX Group Object “output” is represented as follows:
The Channel name of the Group Object consists of: Object Number + Object Name + Object
Function
● Trigger Output:

When this flag is set from “false” to “true” by the automation program, the current value is
sent immediately to the KNX bus. The sending conditions that are may be activated in the
ETS (send on change and cyclic sending) will be restarted

● Disable Output:
As long this flag is set to “true” by the automation program, the sending conditions send on
change and cyclic sending in the ETS are deactivated.

● Value:
The current value of the KNX Group Object that is sent to the KNX bus.

The permanently defined Program LED Status represent the function as known in other KNX
devices, showing the status of the programming LED.

Create an application program
The KNX variables defined on the KNX I/O Mapping page are available programwide under
IoConfig_Globals_Mapping.
These you can see if you click in to the programming window and either via right-click select
“Input Assistant” or press F2.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3533

Export XML file
To exchange the configured KNX group objects the configuration has to be exported via XML
file.
If later both projects (from Automation Builder and ETS) are loaded on the PLC, the PLC checks
if the two projects have the same source and fit together. This will be done by an automatically
calculated Checksum. For calculating the Checksum the following information’s from the Project
information will be used:
● Company
● Title
● Version
● Timestamp
This Information will also be shown in the ETS after loading the XML file. If the user has not
entered any project information some default values will be set.

Integration of the PLC in KNX
Insert controller

1. Start the ETS and insert the PS5604-KNX AC500 as controller from the ETS device
catalog into your ETS project.

2. Assign a physical KNX address to the controller.

ð The controller is placed topologically on the IP Main Area.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3534

Import configuration

1. Select the “PS5604-KNX AC500” in the ETS explorer tree and click on “DCA” tab in the
editor window.

2. Click on Load Configuration and select the configuration XML file.

ð The KNX group objects defined in AC500 V3 PLC in Automation Builder are displayed
in the ETS.

Connect controller with KNX Devices
1. Right-click on a “PS5604-KNX AC500” group object and assign a KNX group address or

drag and drop from group address window.
2. Interlink group objects by assigning the same KNX Group Address.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3535

Parameters of the device
The following settings are possible in the ETS parameters of the PS5604-KNX AC500.

● Default Gateway:
The used KNXnet/IP broadcast address. This must match the KNX system (KNX IP router).
It is the default setting that is usually not changed.
– The entry field Default Gateway can contain another IP address for the Multicast com-

munication. The normal Multicast IP address for KNX ist 224.0.23.12.
– If another Multicast IP address is to be used, it can be chosen in the area from 239.0.0.0

to 239.255.255.255. This alternative Multicast IP address can be defined in the input
field Default Gateway.

● Telegram rate:
The maximum transmission rate of the AC500 V3 PLC can be limited in order to prevent an
excessive bus load and thus to avoid malfunction of the KNX system.
The KNX telegrams are buffered until they have been sent. New values which have been
calculated by the automation program in the meantime are updating the cached values. The
old cached value is discarded and not sent.

● Project Information:
At this point, the project information of the Automation Builder project is displayed.

Tab General set-
tings

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3536

For each KNX Group Object of the AC500 V3 PLC an Object entry is displayed in the device
parameters. This is named after the number of the KNX Group Object.
For outputs (controller sends to the KNX bus) the KNX transmission conditions can be set:
● Communication direction:

Setting of the transmission direction of the object.
– Input (KNX to PLC): The Controller receives values from the KNX bus.
– Output (PLC to KNX): The Controller sends values to the KNX bus.

● Send condition (only for outputs):
Setting whether the Controller sends a telegram to the KNX bus automatically when the
object value is changed. The following options are available
– No automatic sending:

No automatic sending to the KNX bus. This must be done via the program code by the
Trigger Output flag.

– Send on change:
Every time the object value changes, a telegram is sent to the KNX bus. No matter how
minor this change is.

– Send on difference (only for group objects which are not DPT 1.* Boolean): Every time
the object value changes, this value is only sent to the KNX bus if it differs from the last
sent value at least by the settable difference.

● Sending difference (only if Send on difference is active):
Input of the difference by which the object value must change to be send. You can enter
numbers with decimal places.

● Cyclic sending (only for outputs):
Setting whether in addition the object value is sent cyclically repeatedly to the bus. This also
happens if this object value has not changed. Two different range of values for the cycle
time can be specified.

● Cycle time (only when Cyclic sending is active):
Specification of the cycle time for the cyclic transmission.
Input format:
hour:minute:second
Note: The cycle time of the KNX stack depends on the cycle time of the task that executes
the stack. A long task time causes long download times from ETS. Consider the CPU load
and cycle times of other processes running on the CPU when selecting a cycle time for the
KNX stack.

Tab Object 1 .. 3

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3537

Regardless of the set transmission conditions, the program code can trigger by the flag Trigger
Output a sending of the value to the KNX bus at any time.
By activating the flag Read on Init of the KNX group objects in the right ETS properties panel,
the Controller sends a value read query to the connected KNX device at startup. This then
responds with its current object value.
In this properties panel you can also select the appropriate subdata point type of the KNX
Group Object. This defines the unit of the value in the KNX system. For example DPT 9.001
represents temperature in ° C.

If for example the response of an actuator state is needed for an input "Aktor A Status", this
feature can be enabled in the parameter of the Switch Actuator (e.g. 1.1.6 SA/S4.10.1).

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3538

The current IP address as well as further information of the AC500 V3 PLC can be read via the
ETS Device Info function. For this the physical KNX address is necessary. You can determine
the address by the ETS function Programming Mode.
With the ETS function Group Monitor you can analyze the telegrams on the KNX bus. You can
also use it to write/read KNX telegrams.

Download ETS configuration to controller
The download of the ETS configuration to the AC500 V3 PLC is done via the ETS function
“Download” in the menu bar. This download happens via the KNX interface directly to the
AC500 V3 PLC.
Best you select in ETS the network interface of the computer as the bus interface. Thus, a fast
data exchange is possible and the data is not routed via the KNX TP bus.
At the first download, the physical KNX address of the controller is programmed. To do this, set
the AC500 V3 PLC to KNX programming mode.
This can be done either via the display or functions inside the application program of the
controller (e.g. connected to a Webvisu like done in the example program).

Ä Chapter 1.6.5.1.6.5.3.2 “Configuration CPU firmware SystemFW >=V3.2.0 and DisplayFW
>=V4.1” on page 3498

Attention!
The activation of the KNX programming mode via the display only works with
Automation Builder as of version 2.2.0.

The KNX configuration of AC500-eCo V3 uses TA5130-KNXPB.

1. Press the CFG function key.

ð Switch is OFF (S OFF) is displayed.

Via AC500 dis-
play

The AC500 V3
PLC must be in
RUN mode.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3539

2. Press the Arrow Down function key

ð Pbut 0 is displayed.

(Pbut is standing for progamming button, the 0 (or the 1) showing the status of the
programming LED (0=Off; 1 =ON))

3. Press the CFG function key.

ð The display shows Pbut 1 flashing.

4. Confirm this with the OK function key.

ð The display permanently shows Pbut 1. The AC500 V3 PLC is in KNX programming
mode.

1. Ensure the TA5130-KNXPB is plugged in during power up, PLC is in RUN mode.
2. Ensure that TA5130-KNXPB is configured inside Automation Builder configuration.
3. Push the button on the TA5130-KNXPB.

ð The LED on the option board should turn ON. The AC500-eCo V3 is in KNX program-
ming mode.

The AC500 V3 PLC automatically terminates the KNX programming mode after the program-
ming of the physical KNX address.
Alternatively you can terminate the programming mode with Pbut 0 by pressing the CFG func-
tion key.
For AC500-eCo V3: push the button on the TA5130-KNXPB again to terminate the program-
ming mode, the LED should turn OFF.
You can exit the menu at any time with the ESC function key.

Please use the following variable for setting the KNX Program Button:
AC500_IoDrvKNX.GVL.IoDrvKNXCopyChannels.ProgramButton
The controller automatically terminates the programming mode after programming the physical
address with the ETS.
The AC500 V3 PLC has then besides the Automation Builder configuration also the appropriate
ETS configuration and starts its KNX communication.
Download all other linked KNX devices as well as the KNX IP routers. The ETS automatically
creates the filter tables of the KNX IP routers so that the KNX telegrams are routed from the
KNX TP lines to the IP line of the AC500 Controller.

Make changes
Changes can be made in the Automation Builder as well as in the ETS without the need for a
change in the other software or the need for a new data exchange.
Only if changes are made to the KNX group objects in the Automation Builder, a data exchange
with the ETS is again necessary. Afterwards, a download is required both in the Automation
Builder and in the ETS. Only when these two configurations have been downloaded again to the
AC500 V3 PLC, the KNX communication is in operation again.
The DCA detects changes to names and numbers of the KNX group objects when importing the
configuration file in the ETS and keeps the already made settings and linked Group Addresses
of these changed group objects.

AC500-eCo V3
via TA5130-
KNXPB

Via AC500 appli-
cation

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3540

Remarks
KNX runtime license

The standard V3 AC500 CPUs are shipped from the factory without firmware and need an
installed PS5604-KNX runtime license for KNX operation in each CPU. The PS5604-KNX is a
license document with activation code and needs to be purchased separately. The license can
after a first download to one CPU also be transferred to another CPU via Automation Builder.

Data conversion
The KNX standard defines a big-endian byte order while the IEC 61131-3 is based on the
little-endian byte order. Therefore, the controller automatically converts the data point types.
However, if you access the bits of the structured KNX data point types (DPT) for time, date
(DPT 10.* , DPT 16.* , DPT 19.*) in your program code, you have to note the reverse byte order.
Therefore, as of Automation Builder version 2.2.0, corresponding function libraries are available
that provide conversion functions for these data point types.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3541

1.6.5.1.10 Communication with Modbus RTU
Protocol description

The Modbus RTU protocol is implemented in the AC500 processor modules.
Modbus is a master-slave (client-server) protocol. The client sends a request to the server(s)
and receives the response(s).
The Modbus operating mode of a serial interface is set in the PLC configuration See Ä Chapter
1.6.6.2.14.1 “Configuring Modbus RTU on serial interface” on page 3793

To use Modbus RTU protocol on an AC500-eCo V3 PLC, the CPU must be
equipped with an option board for COMx serial communication TA5141-RS232I,
TA5142-RS485 or TA5142-RS485I option board. The type of the option board
adapter must be selected according to the type of physical serial interface
needed.

According to the CPU type, up to 3 option boards for COMx serial communica-
tion can be used. Following serial interface option boards can be used, see
Ä Chapter 1.6.6.2.8.3 “Attach an option board for COMx serial communication”
on page 3721

In this operating mode, the telegram traffic with the server(s) is handled via the function block
ModRtuMast.
This function block sends Modbus request telegrams to the server(s) via the set interface and
receives Modbus response telegrams from the server(s) via this interface.
The Modbus blocks transferred by the server contain the following information:
● Modbus address of the interrogated server (1 byte)
● Function code that defines the request of the client (1 byte)
● Data to be exchanged (n bytes)
● CRC16 control code (2 bytes)

In this operating mode, no function block is required for Modbus communication. Sending and
receiving Modbus telegrams is performed automatically.
The AC500 CPUs process the following Modbus operation codes:

Function code Description
DEC HEX
01 or 02 01 or 02 Read n bits

03 or 04 03 or 04 Read n words

05 05 Write one bit (encoded in one
word)

06 06 Write one word

15 0F Write n bits (encoded in one
byte)

16 10 Write n words

22 16 Mask write

23 17 Read/write multiple words in
one telegram

Modbus client

Modbus server

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3542

The following restrictions apply to the length of the data to be sent:

Function code Max. length
DEC HEX
01 or 02 01 or 02 2000 bits

03 or 04 03 or 04 125 words / 62 double words

05 05 1 bit

06 06 1 word

15 0F 2000 bits

16 10 123 words / 61 double words

22 16 Write: 1 word

23 17 Read: 125 words / 62 double
words
Write: 121 words / 60 double
words

Technical data
The Modbus operating mode and the interface parameters are set in the Ä Chapter 1.6.6.2.14.1
“Configuring Modbus RTU on serial interface” on page 3793.

Table 622: Description of the Modbus protocol
Parameter Value
Supported standard See Ä Chapter 1.6.6.2.14.1 “Config-

uring Modbus RTU on serial interface”
on page 3793

Number of connection points 1 client
Max. 1 server with RS-232 interface
Max. 31 servers with RS-485

Protocol Modbus

Operating mode Client/server

Address Server only

Data transmission control CRC16

Data transmission speed From 9,600 bits/s to 115,200 bits/s
Ä Chapter 1.6.6.2.14.1 “Configuring Modbus
RTU on serial interface” on page 3793

Encoding 1 start bit
8 data bits
1 or 2 stop bits
1 parity bit
Ä Chapter 1.6.6.2.14.1 “Configuring Modbus
RTU on serial interface” on page 3793)

Max. cable length for RS-485 on COM1 for
AC500 CPU

1.200 m at 19.200 baud

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3543

Modbus addresses for AC500-eCo V3 processor modules PM50x2
A range of maximum 64 kB is allowed for the access via Modbus to the addressable flag area
(%M area). Thus, the complete address range 0000hex up to 7FFFhex is available for Modbus.
The availability of the segments depends on the CPU. The size of the %M area can be found in
the technical data of the CPUs and in the target system settings.
Inputs and outputs cannot be directly accessed using Modbus.
Following values apply:

 PM5012-x-ETH PM5032-x-ETH PM5052-x-ETH PM5072-T-2ETH
Size of the %M
area

4 kB 16 kB 16 kB 64 kB

Modbus address range (Word accesses)

HEX 0000 … 07FF 0000 … 1FFF 0000 … 1FFF 0000 … 7FFF

DEC 0000 … 2047 0000 … 8191 0000 … 8191 0000 … 32767

Byte %MB0 …
%MB4097

%MB0 …
%MB16382

%MB0 …
%MB16382

%MB0 …
%MB65534

Word %MW0 …
%MW2047

%MW0 …
%MW8191

%MW0 …
%MW8191

%MW0 …
%MW32767

Modbus addresses for AC500 V3 processor modules PM56xx
Modbus address table

Table 623: Modbus addresses (word accesses)
Modbus address Byte

BYTE
Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

0000 0 %MB0 %MX0.0 ...
%MX0.7

%MW0 %MD0

%MB1 %MX1.0 ...
%MX1.7

0001 1 %MB2 %MX2.0 ...
%MX2.7

%MW1

%MB3 %MX3.0 ...
%MX3.7

0002 2 %MB4 %MX4.0 ...
%MX4.7

%MW2 %MD1

%MB5 %MX5.0 ...
%MX5.7

0003 3 %MB6 %MX6.0 ...
%MX6.7

%MW3

%MB7 %MX7.0 ...
%MX7.7

...

7FFE 32766 %MB65532 %MX65532.0
...
%MX65532.7

%MW32766 %MD16383

Modbus
address table

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3544

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

%MB65533 %MX65533.0
...
%MX65533.7

7FFF 32767 %MB65534 %MX65534.0
...
%MX65534.7

%MW32767

%MB65535 %MX65535.0
...
%MX65535.7

8000 32768 %MB65536 %MX65536.0
...
%MX65536.7

%MW32768 %MD16384

%MB65537 %MX65537.0
...
%MX65537.7

8001 32769 %MB65538 %MX65538.0
...
%MX65538.7

%MW32769

%MB65539 %MX65539.0
...
%MX65539.7

8002 32770 %MB65540 %MX65540.0
...
%MX65540.7

%MW32770 %MD16385

%MB65541 %MX65541.0
...
%MX65541.7

8003 32771 %MB65542 %MX65542.0
...
%MX65542.7

%MW32771

%MB65543 %MX65543.0
...
%MX65543.7

...

FFFE 65534 %MB131068 %MX131068.
0 ...
%MX131068.
7

%MW65534 %MD32767

%MB131069 %MX131069.
0 ...
%MX131069.
7

FFFF 65535 %MB131070 %MX131070.
0 ...
%MX131070.
7

%MW65535

%MB131071 %MX131071.
0 ...
%MX131071.
7

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3545

Table 624: Address assignment (bit accesses)
Modbus address Byte

BYTE
Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

0000 0 %MB0 %MX0.0 %MW0 %MD0

0001 1 %MX0.1

0002 2 %MX0.2

0003 3 %MX0.3

0004 4 %MX0.4

0005 5 %MX0.5

0006 6 %MX0.6

0007 7 %MX0.7

0008 8 %MB1 %MX1.0

0009 9 %MX1.1

000A 10 %MX1.2

000B 11 %MX1.3

000C 12 %MX1.4

000D 13 %MX1.5

000E 14 %MX1.6

000F 15 %MX1.7

0010 16 %MB2 %MX2.0 %MW1

0011 17 %MX2.1

0012 18 %MX2.2

0013 19 %MX2.3

0014 20 %MX2.4

0015 21 %MX2.5

0016 22 %MX2.6

0017 23 %MX2.7

0018 24 %MB3 %MX3.0

0019 25 %MX3.1

001A 26 %MX3.2

001B 27 %MX3.3

001C 28 %MX3.4

001D 29 %MX3.5

001E 30 %MX3.6

001F 31 %MX3.7

0020 32 %MB4 %MX4.0 %MW2 %MD1

0021 33 %MX4.1

0022 34 %MX4.2

...

0FFF 4095 %MB511 %MX511.7 %MW255 %MD127

1000 4096 %MB512 %MX512.0 %MW256 %MD128

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3546

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

...

7FFF 32767 %MB4095 %MX4095.7 %MW2047 %MD1023

8000 32768 %MB4096 %MX4096.0 %MW2048 %MD1024

...

FFFF 65535 %MB8191 %MX8191.7 %MW4095 %MD2047

Calculation of the bit variable from the hexadecimal address:

Formula:
 Bit variable (BOOL) := %MXBYTE.BIT

where: DEC Decimal address

 BYTE DEC / 8

 BIT DEC mod 8 (Modulo division)

● Address hexadecimal = 16#2002
DEC := 8194
BYTE := 8194 / 8 := 1024
BIT := 8194 mod 8 := 2
Bit variable: %MX1024.2

● Address hexadecimal = 16#3016
DEC := 12310
BYTE := 12310 / 8 := 1538,75 -> 1538
BIT := 12310 mod 8 := 6
Bit variable: %MX1538.6

● Address hexadecimal = 16#55AA
DEC := 21930
BYTE := 21930 / 8 := 2741,25 -> 2741
BIT := 21930 mod 8 := 2
Bit variable: %MX2741.2

Examples:

Calculation of the hexadecimal address from the bit variable:

● Bit variable := %MX515.4
DEC := 515 * 8 + 4 := 4124
Address hex := 16#101C

● Bit variable := %MX3.3
DEC := 3 * 8 + 3 := 27
Address hex := 16#001B

● Bit variable := %MX6666.2
DEC := 6666 * 8 + 2 := 53330
Address hex := 16#D052

Examples:

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3547

Peculiarities for accessing Modbus addresses
Peculiarities for bit access:
● A WORD in the %M area is assigned to each Modbus address 0000hex .. FFFFhex.
● Bit addresses 0000hex .. FFFFhex are contained in the word range %MW0 .. %MW4095

Areas protect from read/write access by Modbus client
As described in Ä Chapter 1.6.6.3.3.1.1 “Configuration of Modbus TCP/IP server”
on page 3910, one write-protected and one read-protected area can be defined. If you try to
write to a write-protected area or to read from a read-protected area, an exception response is
generated.

Local data of the Modbus client
The address of the area from which data are to be read or to which data are to be written is
specified in the function block ModRtuMast at input "Data", via the ADR operator.

For the AC500, the following areas can be accessed using the ADR operator:
● Inputs area (%I area)
● Outputs area (%Q area)
● Area of non-buffered variables (VAR .. END_VAR or VAR_GLOBAL END_VAR)
● Addressable flag area (also protected areas for %M area)
● Area of buffered variables (VAR RETAIN .. END_VAR or VAR_GLOBAL RETAIN ..

END_VAR)

Modbus telegrams
The send and receive of telegrams shown in this section are not visible in the PLC. However,
the complete telegrams can be made visible using a serial data analyzer connected to the
connection line between server and client, if required.
The amount of user data depends on the capabilities of the server and the client.
For the following examples, it is assumed that one AC500 Modbus module is used as client
and another one is used as server. There may be different properties if modules of other
manufacturers are used.

FCT 1 or 2: Read n bits
Table 625: Client request
Server
address

Function
code

Server operand
address

Number of bits CRC

High Low High Low High Low

Table 626: Server response
Server
address

Function
code

Number of Bytes ...Data... CRC

High Low

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3548

FCT 3 or 4: Read n words
Table 627: Client request
Server
address

Function
code

Server operand
address

Number of words CRC

High Low High Low High Low

Table 628: Server response
Server
address

Function
code

Number of Bytes Data CRC

High Low High Low

FCT 3 or 4: Read n double words
The function code "read double word" is not defined in the Modbus RTU standard. This is why
the double word is composed of a low word and a high word (depending on the manufacturer)
Same tables as Ä Chapter 1.6.5.1.10.6.2 “FCT 3 or 4: Read n words” on page 3549.

FCT 5: Write 1 bit
For the function code "write 1 bit", the value of the bit to be written is encoded in one word.
BIT = TRUE -> Data word = FF 00 HEX
BIT = FALSE -> Data word = 00 00 HEX

Table 629: Client request
Function
code

Server operand address Number of words CRC

High Low High Low High Low

Table 630: Server response
Function
code

Server operand address Data CRC

High Low High Low High Low

FCT 6: Write 1 word
Table 631: Server request
Server
address

Function
code

Server operand
address

Data CRC

High Low High Low High Low

Table 632: Server response
Server
address

Function
code

Server operand
address

Data CRC

High Low High Low High Low

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3549

FCT 15: Write n bits
Table 633: Client request
Server operand
address

Number of bits Number of
bytes

...Data... CRC

High Low High Low High Low

Table 634: Server response
Server
address

Function
code

Server operand
address

Number of bits CRC

High Low High Low High Low

FCT 16: Write n words
Table 635: Client request
Server operand
address

Number of words Number of
bytes

...Data... CRC

High Low High Low High Low

Table 636: Server response
Function
code

Server operand address Number of words CRC

High Low High Low High Low

FCT 16: Write n double words
The function code "write double word" is not defined in the Modbus RTU standard. This is why
the double word is composed of a low word and a high word (depending on the manufacturer).

Table 637: Client request
Server operand
address

Number of words Number of
bytes

...Data... CRC

High Low High Low High Low

Table 638: Server response
Server
address

Function
code

Server operand
address

Number of words CRC

High Low High Low High Low

FCT 22: Mask write register
Table 639: Client request
Server
address

Function
code

Server operand
address

AND Mask OR Mask CRC

High Low High Low High Low High Low

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3550

Table 640: Server response
Server
address

Function
code

Server operand
address

AND Mask OR Mask CRC

High Low High Low High Low High Low

FCT 23: Read/Write n words
Table 641: Client request
Server
addre
ss

Func-
tion
code

Operand
addr. read

Number of
words
read

Operand
addr. write

Number of
words write

Numb
er of
bytes
write

...Dat
a...

CRC

High Lo
w

High Lo
w

High Low High Low Hig
h

Lo
w

Table 642: Server response
Server
address

Function
code

Number of bytes
read

...Data... CRC

High Low

Exception response by server
In operating mode Modbus client, the AC500 does only send requests, if the parameters at the
ModRtuMast inputs are logically correct.
Nevertheless, it can happen that a server cannot process the request of the client or that the
server cannot interpret the request due to transmission errors or in case it’s capabilities are
exceeded in any way. In those cases, the server returns an exception response to the client.
In order to identify this response as an exception response, the function code returned by the
server is a logical OR interconnection of the function code received from the client and the value
80HEX.

Table 643: Server response
Server address OR 80HEX Error code CRC

High Low

Possible error codes of the client

Code Description
01DEC ILLEGAL FUNCTION

The server does not support the function requested by the client

02DEC ILLEGAL DATA ADDRESS
Invalid operand address in the server or operand area exceeded

03DEC ILLEGAL DATA VALUE
At least one value is outside the permitted range of values

04DEC SERVER DEVICE FAILURE
An unrecoverable error occurred while the server was attempting to
perform the requested action

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3551

Code Description
05DEC ACKNOWLEDGE

Specialized use in conjunction with programming commands.
The server has accepted the request and is processing it, but a
long duration of time will be required to do so. This response is
returned to prevent a timeout error from occurring in the client.
The client can next issue a Poll Program Complete message to
determine if processing is completed

06DEC SERVER DEVICE BUSY
Specialized use in conjunction with programming commands.
The server is engaged in processing a long–duration program com-
mand. The client should retransmit the message later when the
server is free.

07DEC NEGATIVE ACKNOWLEDGE
Specialized use in conjunction with programming commands.
The server cannot perform the programming functions. Client
should request diagnostic or error information from server.

08DEC MEMORY PARITY ERROR
Specialized use in conjunction with function codes 20 and 21 and
reference type 6, to indicate that the extended file area failed to
pass a consistency check. The server attempted to read record file,
but detected a parity error in the memory. The client can retry the
request, but service may be required on the server device.

10DEC GATEWAY PATH UNAVAILABLE
Specialized use in conjunction with gateways, indicates that the
gateway was unable to allocate an internal communication path
from the input port to the output port for processing the request.
Usually means that the gateway is misconfigured or overloaded.

11DEC GATEWAY TARGET DEVICE FAILED TO RESPOND
Specialized use in conjunction with gateways, indicates that no
response was obtained from the target device. Usually means that
the device is not present on the network.

Example
Table 644: Example:
Modbus request of the client:
 Function code: 01 Read n bits

 Server operand
address:

4000HEX =
16384DEC

Area for read access
disabled in server

Modbus response of the server:
 Function code: 81HEX

 Error code: 03

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3552

Processing bits
Some of the Modbus function codes are used to read or write bits (coils, discrete inputs). While
a variable of data type WORD can be accessed easily, accessing a stream of bits is complex.
Data type Ä Chapter 1.4.1.19.5.10 “Data Type 'BIT'” on page 656 must not be mixed up with
data type Ä Chapter 1.4.1.19.5.1 “Data type 'BOOL'” on page 647. Variables of both types may
have values ‘TRUE’ or ‘FALSE’. But while BIT means one single bit only, BOOL requires a byte
(8 bit) of memory.

Modbus client
When accessing bits in a Server, the local data referred to at Client function blocks input data is
always expected to be of format BOOL.

Modbus server
Using the bit offset

The simplest way to access a certain bit within a larger variable is to directly use the bit offset (0
based; see Ä Chapter 1.4.1.19.4.9 “Bit Access in Variables” on page 641).

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3553

Defining symbolic names for the bit offsets
A more convenient way to access bits e.g. within a word is to define a symbolic name for each
single offset Ä Chapter 1.4.1.19.4.9 “Bit Access in Variables” on page 641.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3554

Defining a data type
A further alternative is to define your own data types (see Ä Chapter 1.4.1.20.2.6 “Object 'DUT'”
on page 835) according to the requirements of your particular application (see Ä “Symbolic bit
access in structure variables” on page 642).

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3555

Defining a complex data type
In case your application requires some more complex data types you can combine data types
(DUT; see Ä “Symbolic bit access in structure variables” on page 642).

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3556

Pack/unpack BOOL variables
In case you prefer variables of type BOOL you can use the functions for packing
MEM_Pack_BitsToByte and unpacking MEM_UnpackWord of the CAA_Memory.library, which
can be found with the Library Manager Ä Chapter 1.5.3 “Library Manager functionality”
on page 2146.

Function block ModRtuMast
This function block is only required in the operating mode Modbus client. It handles the commu-
nication (transmission of telegrams to the servers and receipt of telegrams from the servers).
The function block can be used for the local serial interfaces of the controller. A separate
instance of the function block has to be used for each interface.
ModRtuMast is contained in the library AC500_ModRtuMast.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3557

1.6.5.1.11 Communication with Modbus TCP/IP
Protocol description

The Modbus TCP protocol is implemented in the AC500 processor modules.
Modbus is a master-slave (client-server) protocol. The client sends a request to the server(s)
and receives the response(s).
Each Ethernet interface can work as Modbus client and server interface in parallel if required.
The Modbus operating mode of an Ethernet interface is set in Modbus on TCP/IPÄ Chapter
1.6.6.3.3 “Modbus protocol” on page 3910external.

In this operating mode, the telegram traffic with the server(s) is handled via the function block
ETHx_MOD_MAST, which can be found through the Library Manager Ä Chapter 1.5.3 “Library
Manager functionality” on page 2146. This function block sends Modbus request telegrams to
the server(s) via the set interface and receives Modbus response telegrams from the server(s)
via this interface.
The Modbus function blocks transferred by the client contain the following information:
● Transaction identifier for synchronization between messages of server and client (2 byte)
● Protocol identifier (0 for Modbus/TCP) (2 byte)
● Length field (Number of bytes in frame) (2 byte)
● Unit identifier (1 byte)
● Function code that defines the request of the client (1 byte)
● Data to be exchanged (n bytes)

In this operating mode, no function block is required for Modbus communication. Sending and
receiving Modbus telegrams is performed automatically.
The AC500 CPUs process the following Modbus operation codes:

Function code Description
DEC HEX
01 or 02 01 or 02 Read n bits

03 or 04 03 or 04 Read n words

05 05 Write one bit (encoded in one
word)

06 06 Write one word

15 0F Write n bits (encoded in one
byte)

16 10 Write n words

22 16 Mask write

23 17 Read/write multiple words in
one telegram

The following restrictions apply to the length of the data to be sent:

Function code Max. length
DEC HEX
01 or 02 01 or 02 2000 bits

03 or 04 03 or 04 125 words / 62 double words

Modbus client

Modbus server

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3558

Function code Max. length
DEC HEX
05 05 1 bit

06 06 1 word

15 0F 2000 bits

16 10 123 words / 61 double words

22 16 Write: 1 word

23 17 Read: 125 words / 62 double
words
Write: 121 words / 60 double
words

Technical data
Configuration of Modbus on TCP/IP is described in the chapter Ä Chapter 1.6.6.3.3 “Modbus
protocol” on page 3910.

Modbus addresses for AC500-eCo V3 processor modules PM50xx
A range of maximum 64 kB is allowed for the access via Modbus to the addressable flag area
(%M area). Thus, the complete address range 0000hex up to 7FFFhex is available for Modbus.
The availability of the segments depends on the CPU. The size of the %M area can be found in
the technical data of the CPUs and in the target system settings.
Inputs and outputs cannot be directly accessed using Modbus.
Following values apply:

 PM5012-x-ETH PM5032-x-ETH PM5052-x-ETH PM5072-T-2ETH
Size of the %M
area

4 kB 16 kb 16 kB 64 kB

Modbus address range (Word accesses)

HEX 0000 … 07FF 0000 … 1FFF 0000 … 1FFF 0000 … 7FFF

DEC 0000 … 2047 0000 … 8191 0000 … 8191 0000 … 32767

Byte %MB0 …
%MB4097

%MB0 …
%MB16382

%MB0 …
%MB16382

%MB0 …
%MB65534

Word %MW0 …
%MW2047

%MW0 …
%MW8191

%MW0 …
%MW8191

%MW0 …
%MW32767

Modbus
address table

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3559

Modbus addresses for AC500 V3 processor modules PM56xx
Modbus address table

Table 645: Modbus addresses (word accesses)
Modbus address Byte

BYTE
Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

0000 0 %MB0 %MX0.0 ...
%MX0.7

%MW0 %MD0

%MB1 %MX1.0 ...
%MX1.7

0001 1 %MB2 %MX2.0 ...
%MX2.7

%MW1

%MB3 %MX3.0 ...
%MX3.7

0002 2 %MB4 %MX4.0 ...
%MX4.7

%MW2 %MD1

%MB5 %MX5.0 ...
%MX5.7

0003 3 %MB6 %MX6.0 ...
%MX6.7

%MW3

%MB7 %MX7.0 ...
%MX7.7

...

7FFE 32766 %MB65532 %MX65532.0
...
%MX65532.7

%MW32766 %MD16383

%MB65533 %MX65533.0
...
%MX65533.7

7FFF 32767 %MB65534 %MX65534.0
...
%MX65534.7

%MW32767

%MB65535 %MX65535.0
...
%MX65535.7

8000 32768 %MB65536 %MX65536.0
...
%MX65536.7

%MW32768 %MD16384

%MB65537 %MX65537.0
...
%MX65537.7

8001 32769 %MB65538 %MX65538.0
...
%MX65538.7

%MW32769

%MB65539 %MX65539.0
...
%MX65539.7

8002 32770 %MB65540 %MX65540.0
...
%MX65540.7

%MW32770 %MD16385

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3560

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

%MB65541 %MX65541.0
...
%MX65541.7

8003 32771 %MB65542 %MX65542.0
...
%MX65542.7

%MW32771

%MB65543 %MX65543.0
...
%MX65543.7

...

FFFE 65534 %MB131068 %MX131068.
0 ...
%MX131068.
7

%MW65534 %MD32767

%MB131069 %MX131069.
0 ...
%MX131069.
7

FFFF 65535 %MB131070 %MX131070.
0 ...
%MX131070.
7

%MW65535

%MB131071 %MX131071.
0 ...
%MX131071.
7

Table 646: Address assignment (bit accesses)
Modbus address Byte

BYTE
Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

0000 0 %MB0 %MX0.0 %MW0 %MD0

0001 1 %MX0.1

0002 2 %MX0.2

0003 3 %MX0.3

0004 4 %MX0.4

0005 5 %MX0.5

0006 6 %MX0.6

0007 7 %MX0.7

0008 8 %MB1 %MX1.0

0009 9 %MX1.1

000A 10 %MX1.2

000B 11 %MX1.3

000C 12 %MX1.4

000D 13 %MX1.5

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3561

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

000E 14 %MX1.6

000F 15 %MX1.7

0010 16 %MB2 %MX2.0 %MW1

0011 17 %MX2.1

0012 18 %MX2.2

0013 19 %MX2.3

0014 20 %MX2.4

0015 21 %MX2.5

0016 22 %MX2.6

0017 23 %MX2.7

0018 24 %MB3 %MX3.0

0019 25 %MX3.1

001A 26 %MX3.2

001B 27 %MX3.3

001C 28 %MX3.4

001D 29 %MX3.5

001E 30 %MX3.6

001F 31 %MX3.7

0020 32 %MB4 %MX4.0 %MW2 %MD1

0021 33 %MX4.1

0022 34 %MX4.2

...

0FFF 4095 %MB511 %MX511.7 %MW255 %MD127

1000 4096 %MB512 %MX512.0 %MW256 %MD128

...

7FFF 32767 %MB4095 %MX4095.7 %MW2047 %MD1023

8000 32768 %MB4096 %MX4096.0 %MW2048 %MD1024

...

FFFF 65535 %MB8191 %MX8191.7 %MW4095 %MD2047

Calculation of the bit variable from the hexadecimal address:

Formula:
 Bit variable (BOOL) := %MXBYTE.BIT

where: DEC Decimal address

 BYTE DEC / 8

 BIT DEC mod 8 (Modulo division)

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3562

● Address hexadecimal = 16#2002
DEC := 8194
BYTE := 8194 / 8 := 1024
BIT := 8194 mod 8 := 2
Bit variable: %MX1024.2

● Address hexadecimal = 16#3016
DEC := 12310
BYTE := 12310 / 8 := 1538,75 -> 1538
BIT := 12310 mod 8 := 6
Bit variable: %MX1538.6

● Address hexadecimal = 16#55AA
DEC := 21930
BYTE := 21930 / 8 := 2741,25 -> 2741
BIT := 21930 mod 8 := 2
Bit variable: %MX2741.2

Examples:

Calculation of the hexadecimal address from the bit variable:

● Bit variable := %MX515.4
DEC := 515 * 8 + 4 := 4124
Address hex := 16#101C

● Bit variable := %MX3.3
DEC := 3 * 8 + 3 := 27
Address hex := 16#001B

● Bit variable := %MX6666.2
DEC := 6666 * 8 + 2 := 53330
Address hex := 16#D052

Examples:

Peculiarities for accessing Modbus addresses
Peculiarities for bit access:
● A WORD in the %M area is assigned to each Modbus address 0000hex .. FFFFhex.
● Bit addresses 0000hex .. FFFFhex are contained in the word range %MW0 .. %MW4095

Areas protect from read/write access by Modbus client
As described in Ä Chapter 1.6.6.3.3.1.1 “Configuration of Modbus TCP/IP server”
on page 3910, one write-protected and one read-protected area can be defined. If you try to
write to a write-protected area or to read from a read-protected area, an exception response is
generated.

Local data of the Modbus client
The address of the area from which data are to be read or to which data are to be written is
specified in the function block ETHx_MOD_MAST or ModTcpMast at input "Data", via the ADR
operator.
For more information about the function blocks use the Library Manager Ä Chapter 1.5.3
“Library Manager functionality” on page 2146.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3563

For the AC500, the following areas can be accessed using the ADR operator:
● Inputs area (%I area)
● Outputs area (%Q area)
● Area of non-buffered variables (VAR .. END_VAR or VAR_GLOBAL END_VAR)
● Addressable flag area (also protected areas for %M area)
● Area of buffered variables (VAR RETAIN .. END_VAR or VAR_GLOBAL RETAIN ..

END_VAR)

Modbus telegrams
For a detailed description of the Modbus TCP telegrams and their elements please see the
corresponding specifications on public websites.

Exception response by server
In operating mode Modbus client, the AC500 does only send requests, if the parameters at
the MODMAST inputs are logically correct. Nevertheless, it can happen that a server cannot
process the request of the client or that the server cannot interpret the request due to transmis-
sion errors or in case it’s capabilities are exceeded in any way. In those cases, the server
returns an exception response to the client. In order to identify this response as an exception
response, the function code returned by the server is a logical OR interconnection of the
function code received from the client and the value 80HEX.

General telegram description
Table 647: Server response
Error code CRC

High Low

Possible error codes of the client

Code Description
01DEC ILLEGAL FUNCTION

The server does not support the function requested by the client

02DEC ILLEGAL DATA ADDRESS
Invalid operand address in the server or operand area exceeded

03DEC ILLEGAL DATA VALUE
At least one value is outside the permitted range of values

04DEC SERVER DEVICE FAILURE
An unrecoverable error occurred while the server was attempting
to perform the requested action

05DEC ACKNOWLEDGE
Specialized use in conjunction with programming commands.
The server has accepted the request and is processing it, but a
long duration of time will be required to do so. This response is
returned to prevent a timeout error from occurring in the client.
The client can next issue a Poll Program Complete message to
determine if processing is completed

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3564

Code Description
06DEC SERVER DEVICE BUSY

Specialized use in conjunction with programming commands.
The server is engaged in processing a long–duration program
command. The client should retransmit the message later when
the server is free.

07DEC NEGATIVE ACKNOWLEDGE
Specialized use in conjunction with programming commands.
The server cannot perform the programming functions. Client
should request diagnostic or error information from server.

08DEC MEMORY PARITY ERROR
Specialized use in conjunction with function codes 20 and 21 and
reference type 6, to indicate that the extended file area failed to
pass a consistency check. The server attempted to read record
file, but detected a parity error in the memory. The client can retry
the request, but service may be required on the server device.

09DEC UNDEFINED
Actually not defined by Modbus specification but might be used by
particular servers.

10DEC GATEWAY PATH UNAVAILABLE
Specialized use in conjunction with gateways, indicates that the
gateway was unable to allocate an internal communication path
from the input port to the output port for processing the request.
Usually means that the gateway is misconfigured or overloaded.

11DEC GATEWAY TARGET DEVICE FAILED TO RESPOND
Specialized use in conjunction with gateways, indicates that no
response was obtained from the target device. Usually means that
the device is not present on the network.

Example
Table 648: Example:
Modbus request of the client:
 Function code: 01 Read n bits

 Server operand
address:

4000HEX =
16384DEC

Area for read access
disabled in server

Modbus response of the server:
 Function code: 81HEX

 Error code: 03

Processing bits
Some of the Modbus function codes are used to read or write bits (coils, discrete inputs). While
a variable of data type WORD can be accessed easily, accessing a stream of bits is complex.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3565

Data type Ä Chapter 1.4.1.19.5.10 “Data Type 'BIT'” on page 656 must not be mixed up with
data type Ä Chapter 1.4.1.19.5.1 “Data type 'BOOL'” on page 647. Variables of both types may
have values ‘TRUE’ or ‘FALSE’. But while BIT means one single bit only, BOOL requires a byte
(8 bit) of memory.

Modbus client
When accessing bits in a Server, the local data referred to at Client function blocks input data is
always expected to be of format BOOL.

Modbus server
Using the bit offset

The simplest way to access a certain bit within a larger variable is to directly use the bit offset (0
based; see Ä Chapter 1.4.1.19.4.9 “Bit Access in Variables” on page 641).

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3566

Defining symbolic names for the bit offsets
A more convenient way to access bits e.g. within a word is to define a symbolic name for each
single offset Ä Chapter 1.4.1.19.4.9 “Bit Access in Variables” on page 641.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3567

Defining a data type
A further alternative is to define your own data types (see Ä Chapter 1.4.1.20.2.6 “Object 'DUT'”
on page 835) according to the requirements of your particular application (see Ä “Symbolic bit
access in structure variables” on page 642).

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3568

Defining a complex data type
In case your application requires some more complex data types you can combine data types
(DUT; see Ä “Symbolic bit access in structure variables” on page 642).

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3569

Pack/unpack BOOL variables
In case you prefer variables of type BOOL you can use the functions for packing
MEM_Pack_BitsToByte and unpacking MEM_UnpackWord of the CAA_Memory.library, which
can be found with the Library Manager Ä Chapter 1.5.3 “Library Manager functionality”
on page 2146.

Function block ETHx_MOD_MAST and ModTcpMast
These function blocks are only required for the operating mode Modbus client. It handles the
communication (transmission of telegrams to the servers and receipt of telegrams from the
servers). The function block can be used for the Ethernet interfaces of the controller.
ETHx_MOD_MAST is contained in the library Ethernet_AC500_V10.lib.
ModTcpMast is contained in the library ABB_ModbusTcp_AC500.

1.6.5.1.12 Fast counters
Fast counters in AC500 devices

For AC500 devices the function "fast counter" is available in S500 I/O modules
as of firmware version V1.3.

For AC500-eCo V3 devices the function "fast counter" is available in onboard
I/Os of PM50x2 modules, according to the CPU type, the fast inputs have
different functionality or frequency.

Integrated fast counters are only available for digital I/O modules.
The digital I/O modules on the I/O bus contain two fast counters each.
If the counter is used, it needs up to 2 digital inputs and one digital output.
If the fast counter is deactivated, the inputs and outputs reserved for the counter can be used
for other tasks.
See Ä Chapter 1.6.6.2.13.9 “Fast counter” on page 3778.
A fast counter is available in the following constellations:
● In digital I/O modules, connected to an AC500 processor module.
● In AC500-eCo V3 processor modules PM50x2 with onboard I/Os
● In CANopen communication interface modules.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3570

● In Modbus, PROFIBUS and PROFINET communication interface modules and in the con-
nected digital I/O modules.

● In digital I/O modules, connected to an EtherCAT communication interface module.

The following table shows the S500 modules which contain a fast counter and which of the
digital inputs and outputs are reserved for the counter.

Module Assigned inputs 1) Assigned
output

Remarks

Channel A Channel B Channel C 2) or
(CF)

DA501 DC16 DC17 DC18 The counter func-
tion is not avail-
able if the
modules are
mounted on the
communication
interface
modules CI581-
CN or CI582-CN

DA502 DC16 DC17 DC18 - in mode 1
and mode 2
DO0 - in mode
101 and mode
102 3)

DC522 C8 C9 C10

DC523 C16 C17 C18

DC532 C24 C25 C26

DI524 I24 I25 No hardware
output available

DX522 I0 I1 The counter does
not activate any
relay output

CI501‑PNIO,
CI541‑DP,
CI581‑CN,
CI521‑MODTCP

DI0 DI1 DO0

CI502‑PNIO,
CI542‑DP,
CI582‑CN;
CI522‑MODTCP

DI8 DI9 DO8

1) The two hardware inputs (channels A and B) are also and always available within the normal
process image, irrespective of the operating mode of the counter.
2) The hardware output channel C is activated by the fast counter only in the operating modes 1
and 2.
3) Especially for module DA502: The counter operating mode 101 is the same as mode 1, but
the assigned output is DO0 instead of DC18. Also the counter operating mode 102 is the same
as mode 2, but the assigned output is DO0 instead of DC18.

The counter function is performed within the communication interface module and, accordingly,
in the digital I/O module(s). It works independently of the user program and is therefore able
to respond quickly to external signals. A simultaneous counter operation of several digital I/O
modules is possible.
Each module counter can be configured for one out of 10 possible modes. The desired oper-
ating mode is selected in the PLC configuration using module parameters. After that, it is
activated during the initialization phase (power-on, cold start, warm start).

Fast counter
integrated in
S500 modules

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3571

The data exchange to and from the user program is performed using input and output operands.
While integrating a module containing a fast counter in the PLC configuration, the necessary
operands are created and reserved immediately. Thus, a counter implementation carried out
later on does not cause an address shift.

● The pulses at the fast counters' inputs or the evaluated signals of the traces A and B in case
of incremental position sensors are counted.

● The counting frequencies of the communication interface modules of PROFINET,
PROFIBUS and CANopen are max. 200 kHz (in modes 1 to 6), max. 50 kHz (in mode
7), max. 35 kHz (in mode 9), and max. 20 kHz (in mode 10).

● If the modules DA501, DC522, DC523, DC532 are used, each counting input must be
circuited externally in series with a resistor of 470 W / 1 W, in order to safely avoid influences
from the deactivated module outputs to the connected sensors.

● The positive signal edges are counted, if not noted differently.
● By setting the operating mode 0, the counting function is switched off. In this case, the

reserved inputs and outputs can be used for other tasks. Simultaneous use of these termi-
nals for the fast counter and other signals must be avoided.

● The fast counter's actual value is provided as a double word (32 bits).
● The fast counter can count upwards in all operating modes. It counts beginning at the start

value (set value) up to the end value (max. from 0 to 4,294,967,295 or hexadecimal from
00 00 00 00 to FF FF FF FF. After reaching 4,294,967,295, the counter jumps with the next
pulse to 0. When the counter reaches the programmed end value, the counter output is
stored permanently as CF = TRUE (end value reached). Only when the fast counter is set
again (set value), CF is reset to FALSE.

● Operating modes of the fast counter: Ä Chapter 1.6.6.2.13.9.1.2 “Operating modes”
on page 3781

● Configuration of the fast counter: Ä Chapter 1.6.6.2.13.9 “Fast counter” on page 3778

1.6.5.1.13 Onboard I/O on AC500-eCo V3 processor modules
Onboard I/Os

The AC500-eCo V3 processor modules have onboard I/Os which provide several functionalities.
According to the CPU type, the number or the functionality of the onboard I/Os can be different.

Intended purpose
Table 649: Numbers and types of the onboard I/Os
Processor module No. and type of dig-

ital inputs
No. and type of dig-
ital outputs

No. and type of con-
figurable inputs/out-
puts

PM5012-T-ETH 6
24 V DC
(one isolation group)

4
0.5 A max., transistor
(one isolation group)

None

PM5012-R-ETH 6
24 V DC
(one isolation group)

4
2 A max., relay
(two isolation groups)

None

Features inde-
pendent of the
fast counter
operating mode

Further informa-
tion

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3572

Processor module No. and type of dig-
ital inputs

No. and type of dig-
ital outputs

No. and type of con-
figurable inputs/out-
puts

PM5032-T-ETH 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5032-R-ETH 12
24 V DC
(one isolation group)

6
2 A max., relay
(two isolation groups)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5052-T-ETH 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5052-R-ETH 12
24 V DC
(one isolation group)

6
2 A max., relay
(two isolation groups)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5072-T-2ETH 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5072-T-2ETHW 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3573

Functionality

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)

PM5032-R-ETH
PM5052-R-ETH

Digital inputs 6 12

Functionality of
digital inputs
(encoder, fast
counter, counter,
interrupt)

6 DI fast input 24 V DC (max. 5
kHz)
usable as
● 6 DI 24 V DC standard
● 2 channel 5 kHz encoder with

frequency measurement or
● 2 channel 5 kHz encoder with

frequency measurement and
with touch/reset using standard
DI or

● 2 fast counter (5 kHz)
● 4 DI as interrupt input with

1 dedicated interrupt task and
input information

4 DI fast input 24 V DC (max. 200
kHz)
usable as
● 4 DI 24 V DC standard or
● 4 fast counter (100 kHz) or
● 2 A/B encoder (200 kHz) with

frequency measurement or
● 2 full A/B encoders 0 and 1 (200

kHz) with frequency measure-
ment and with touch/reset using
standard highspeed (5 kHz) DI

● 1 full A/B encoder 0 (200 kHz)
with frequency measurement
and optional with touch/reset
using 2 touch/sync inputs with
A/B encoder 0

4 DI fast input 24 V DC (5 kHz)
usable as
● 4 DI 24 V DC standard or
● 4 DI as interrupt input with

1 dedicated interrupt task and
input information

● 4 touch/sync inputs with A/B
encoder 0 or 1

4 standard DI 24 V DC
Digital outputs 4 8 6

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3574

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)

PM5032-R-ETH
PM5052-R-ETH

Functionality of
digital outputs

4 fast output
DO-T
24 V DC/0.5 A
(max. 5 kHz)
usable as
● 4 DO-T

24 V DC/0.5 A
or

● 4 PWM
Note: The
speed must
be limited
below 100
Hz. The low
speed PWM
can be used
for heating
control.

● 4 limit switch

4 DO-R
24 V DC / 240 V
AC 2A in 2
groups

4 fast output
DO-T
24 V DC (100
kHz)
usable as
● 4 DO-T 24 V

DC/0.5 A
● 4 limit/ switch

outputs for
encoder/
counter or

● 4 PWM (30
kHz, 2 µs
accuracy and
maximum
duty 95 %) or

● 2 PTO (200
kHz)
CW/CCW or
Pulse/Direc-
tion

● 4 PTO
(PWM) 100
kHz Pulse/
Direction
using
standard
output

6 DO-R
24 V DC / 240 V
AC 2A in 2
groups

4 fast output
DO-T
24 V DC/0.5 A (5
kHz) (max. 5
kHz)
usable as
● 4 DO-T 24 V

DC/0.5 A
● 4 limit/ switch

outputs for
encoder/
counter or

● 4 PWM
Note: The
speed must
be limited
below 100
Hz. The low
speed PWM
can be used
for heating
control.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3575

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)

PM5032-R-ETH
PM5052-R-ETH

Digital inputs/
outputs,
configurable

- - 2 2

Functionality of
digital inputs/
outputs,
configurable

- - 2 DC 24 V DC
● 2 standard

I/Os
configurable

2 DC 24 V DC
usable as
● 2 DC

standard (DI
24 V DC or
DO-T) or

● 2 PWM (30
kHz) or

● 1 PTO (200
kHz) as
Pulse/Direc-
tion or
CW/CCW

LED displays For signal states

Internal power
supply

Via processor module

External power
supply

Via UP and ZP terminal

Fast counter in AC500-eCo V3 (Onboard I/O in PM50xx)

For AC500 devices the function "fast counter" is available in S500 I/O modules
as of firmware version V1.3.

For AC500-eCo V3 devices the function "fast counter" is available in onboard
I/Os of PM50xx.

The AC500-eCo V3 processor modules with onboard I/Os provide some special functionality on
the digital inputs or digital outputs. Fast counter, encoder inputs, interrupt inputs or PWM/PTO
outputs are available depending on the device used.
The fast counter functionality can be activated within the onboard I/O configuration.
The fast counter can work in pulse/direction mode or A/B track counter mode.
The pulse/direction counter detects the rising edge of the counter input. It will increase or
decrease the count value (depending on the direction input) at every rising edge.
The A/B track counter is used to count the signal from an encoder.
The counter can count with quad phases. In the following the behavior of the A/B track counter
is described.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3576

Further information:
Operating modes of the fast counter: Ä Chapter 1.6.6.2.13.9.1.2 “Operating
modes” on page 3781

Configurarion of the fast counter: Ä Chapter 1.6.6.2.7.2 “Fast counters in the
onboard I/Os” on page 3710

1.6.5.1.14 Simple motion
Introduction

The AC500-eCo V3 PLC provide several HW and SW features allowing to realize some motion
application.
Specific fast onboard I/O and dedicated SW library function blocks (simple motion) are available
and can manage up to 2x Axis on the CPU.
The simple motion capability is based on a library for the onboard I/O and some motion control
blocks allowing point-to-point or velocity control.
All the AC500-eCo V3 PLC from Basic, Standard or Pro type offer dedicated feature according
to their performance classes.

 Basic Standard Pro
PM5012-x-ETH PM5032-x-ETH / PM5052-x-ETH PM5072-T-2ETH

Relay outputs Transistor
outputs

Relay outputs Transistor
outputs

Transistor
outputs

HSC - High-
speed counter

Up to 2 (5 kHz) Up to 4 (100 kHz)

Frequency
measurement

Up to 2 (5 kHz) Up to 2 (200 kHz)

A / B Encoder 1 A/B simple encoder (5 kHz) with
sync/reset

Up to 2 A/B encoder 200 kHz with sync/reset inputs

Interrupt inputs Up to 4 Up to 4

PTO - pulse-train
output

- 1
Pulse/ Direction

or
CW/CCW

both mode with
200 kHz

Up to 2
Pulse/Direction

or
CW/CCW

both mode with 200 kHz

Up to 4
Pulse/Direction with 100 kHz using

fast Output channels
for Pulse and standard outputs

for direction on SW motion function
bloc

PWM - pulse-
width modulation

- Up to 4 (100 Hz) Up to 2 (30 kHz) Up to 4 (30 kHz)

Limit switches - Up to 2 Up to 8

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3577

Hardware components for motion control
Basic CPU – PM5012-R-ETH and PM5012-T-ETH

Fig. 307: Example: PM5012-T-ETH

1 HSC 5kHz frequency measurement interrupt I/O
2 PWM output

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3578

Standard and Pro CPU - PM5032-x-ETH / PM5052-x-ETH / PM5072-T-2ETH

Fig. 308: Example: PM5052-T-ETH

1 HSC 100 kHz and 5 kHz A/B Encoder 200 kHz interrupt I/O standard inputs
2 PTO 100 kHz/200kHz PWM 30 kHz limit switch standard outputs
3 Drives, Encoder, Stepper Motor
For PLC with relay outputs, the input features are identical.
The digital configurable inputs/outputs can be used for PTO/PWM functions.

System technology
The following chapters describe the system technology of the AC500-eCo V3 using motion
examples.
The simple motion set of function blocks is standard part of the system libraries for AC500-eCo
V3.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3579

Use the onboard I/Os as encoder with A and B signals
Parameter configuration

The onboard I/O accept encoder signal A and B. When configure the encoder track A, the
encoder track B will be automatically inserted.
The user can configure the following input channel as encoder input.
● “Encoder 0 Track – A”: Input channel 4
● “Encoder 0 Track – B”: Input channel 5
● “Encoder 1 Track – A”: Input channel 6
● “Encoder 1 Track – B”: Input channel 7
After configuring the encoder input channel, the user can configure the touch/reset for the
respective encoder channel.

See also the following chapter: Ä Chapter 1.6.6.2.5 “Configure the onboard I/O
channel” on page 3700.

E.g. PM50x2-T-xETH with 2x A/B encoders with Touch/Reset on I0..I3

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3580

Function block

If “Enable” is TRUE, the “OBIOEncoderCounter” instruction increments the counter by one base
on the input.
If “Set” bit is TRUE, the “OBIOEncoderCounter” instruction moves the “CounterValueSet” to the
“CounterValue”.

If “Enable” is TRUE, the “OBIOEncoderCounter” instruction increments the counter by one
based on the input.
If “EnableLimit” bit is TRUE, the accumulated value continues incrementing.

OBIOEncoder
Counter

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3581

After “CounterValue” reaches the “LimitValueMax”, the “OBIOEncoderCounter” instruction writes
0 to the “CounterValue”.

“Encoder Counter Mode”: 0 = “90° Mode”.
In this encoder counter mode, an increasing count results when input B is 90° ahead of input A.
The count is initiated on the rising edge of input A, and the direction of the encoder is clockwise
(positive).
The module produces a decreasing count when input A is 90° ahead of Input B.
The count is initiated on the falling edge of input A, and the direction is counterclockwise
(negative).
By monitoring both the number of pulses and the phase relationships of input A and B, you can
accurately determine the position and direction of the rotation.

“Encoder Counter Mode”: 1 = “Pulse/Direction”.
In this encoder counter mode, the count increases or decreases based on the state of input B,
which can be a random signal.
If input B is high, the counter will count down.
If input B is low the counter counts up.
Counting is done on the leading edge of input A.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3582

If “Enable” is TRUE, the “OBIOEncoderCounter” instruction increments the counter by one
based on the input.
If “EnableRef” bit is TRUE, the “OBIOEncoderCounter” instruction is ready to receive the touch/
reset input.
If the “Touch/Reset” input is TRUE, the current “CounterValue” will be replaced by the
“CounterValueSet”.

If “Enable” is TRUE, the “OBIOEncoderCounter” instruction increments the counter by one
based on the input.
If “EnableTouch” bit is TRUE, the “OBIOEncoderCounter” instruction is ready to receive the
“Touch/Reset” input.
If the “Touch/Reset” input is TRUE, the current “CounterValue” will be captured and written to
the “CounterTouchValue”.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3583

Use the onboard I/Os as forward counter
Parameter configuration

The Onboard I/O accept pulse input as forward counter.
User can configure the following input channel as forward counter.
● “Forward Counter 0”: Input channel 4
● “Forward Counter 1”: Input channel 5
● “Forward Counter 2”: Input channel 6
● “Forward Counter 3”: Input channel 7

E.g. PM50x2-x-xETH with forward counter on fast inputs I4…I7

See also the following chapter: Ä Chapter 1.6.6.2.5 “Configure the onboard I/O
channel” on page 3700

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3584

Function block

If “Enable” is TRUE, the “OBIOForwardCounter” instruction increments the counter by one
based on the input.
If “Set” bit is TRUE, the “OBIOForwardCounter” instruction moves the “CounterSetValue” to the
“CounterValue”.

If “Enable” is TRUE, the “OBIOForwardCounter” instruction increments the counter by one
based on the input.
If “EnableLimit” bit is TRUE, the accumulated value continues incrementing.
After “CounterValue” reaches the “LimitValueMax”, the “OBIOForwardCounter” instruction writes
0 to the “CounterValue”.

Use the onboard I/Os as interrupt input with dedicated interrupt task
Parameter configuration

The onboard I/O input can be configured as interrupt input to trigger the interrupt task.

OBIOForward
Counter

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3585

The user can configure the following input channel as interrupt input.
● Interrupt input 0 : Input Channel 0
● Interrupt input 1 : Input Channel 1
● Interrupt input 2 : Input Channel 2
● Interrupt input 3 : Input Channel 3

E.g. PM50x2-x-xETH with interrupt inputs on digital inputs I0…I3

See also the following chapter: Ä Chapter 1.6.6.2.5 “Configure the onboard I/O
channel” on page 3700

After configuring the parameter, the user need to create a new task with the “Type” set to
“External” and the “External event” set to “OnBoard_Binary_Input”.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3586

Function block

The “OBIOInterruptPara” instruction is configured for 4 interrupt inputs.
if “EnableInterrupt” bit is TRUE, the “OBIOInterruptInfo” instruction is ready to receive the
interrupt input.
If the interrupt input is TRUE, the interrupt task will be executed.
If the second interrupt is TRUE with the interval less than 10 ms (as set), the execution of the
interrupt task will be ignored.
If no interrupt occurred in 50 ms (as set), the interrupt task is executed automatically.

Use the onboard I/Os as output limit switch
Parameter configuration

Thje user can configure the following output channel as limit switch.
● “LimitSwitch 0”: Output channel 0
● “LimitSwitch 1”: Output channel 1
● “LimitSwitch 2”: Output channel 2
● “LimitSwitch 3”: Output channel 3
● “LimitSwitch 4”: Output channel 4
● “LimitSwitch 5”: Output channel 5
● “LimitSwitch 6”: Output channel 6
● “LimitSwitch 7”: Output channel 7

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3587

See also the following chapter: Ä Chapter 1.6.6.2.5 “Configure the onboard I/O
channel” on page 3700

Function block

If the counter value reaches the “LowerLimitOn” preset, it will write to the LimitSwitch output
based on the signal until the “UpperLimitOn” preset is reached.

Use the onboard I/Os as PTO (pulse-train output) with 100 kHz frequency (max. 2 PTO using PTO HW
channels)
Parameter configuration

The user can configure the following output channels as PTO (pulse-train output).
● “PTO”: Output channel 4
● “PTO”: Output channel 5
● “PTO”: Output channel 6
● “PTO”: Output channel 7
If the user configures the output 4 as PTO, the output 5 is automatically configured as PTO.
If the user configures the output 6 as PTO, the output 7 is automatically configured as PTO.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3588

The input “CwCCw” of the function block “OBIOPulseTrainOutput” determines the output 5 and
7 as “CounterClockWise” or “Direction” if it is set as PTO.

See also the following chapter: Ä Chapter 1.6.6.2.5 “Configure the onboard I/O
channel” on page 3700

Function block

If “Set” bit is TRUE, the instruction moves the “CounterSetValue” to the “CounterValue”.

If “EnableLimit” bit is TRUE, the accumulated value continues incrementing.
After “CounterValue” reaches the “LimitValueMax”, the instruction writes 0 to the
“CounterValue”.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3589

If the input “CwCCw” of the “OBIOPulseTrainOutput” is set to FALSE, the PTO output channel B
is toggled based on the direction.

If the input “CwCCw” of the “OBIOPulseTrainOutput” is set to TRUE. The PTO output channel A
will lead by 90° or PTO output channel B will lead by 90° depending on direction.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3590

Use the onboard I/Os as PTO (pulse-train output) with 200 kHz frequency (max. 2 PTO using PTO HW
channels) and Simple Motion OBIOMotionPTO function block
Parameter configuration

Only the Standard and Pro processor modules can be used with PTO outputs.
The Basic processor modules PM5012 do not have PTO outputs.

The available PTO outputs can be used as PTO with Pulse/Direction or PTO
with CW/CCW mode when the channels have been configured as PTO outputs.

The user can configure the following output channels as PTO (pulse-train output).
● “PTO”: Output channel 4
● “PTO”: Output channel 5
● “PTO”: Output channel 6
● “PTO”: Output channel 7
If the user configures the output 4 as PTO, the output 5 is automatically configured as PTO.
If the user configures the output 6 as PTO, the output 7 is automatically configured as PTO.
The input “CwCCw” of the function block “OBIOPulseTrainOutput” determines the output 5 and
7 as “CounterClockWise” or “Direction” if it is set as PTO.

See also the following chapter: Ä Chapter 1.6.6.2.5 “Configure the onboard I/O
channel” on page 3700

Function block

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3591

If the input “CwCCw” of the “OBIOMotionPTO” is set to FALSE, the PTO output channel B is
toggled based on the direction.

If the input “CwCCw” of the “OBIOMotionPTO” is set to TRUE. The PTO output channel A will
lead by 90° or PTO output channel B will lead by 90° depending on direction.

Use the onboard I/Os as PTO (pulse-train output) with 100 kHz frequency (Max. 4 PTO using PWM HW
channels) and Simple Motion OBIOMotionPWM function bloc
Parameter configuration

It is possible to have also up to 4 PTO channels only with Pulse/Direction mode on the AC500-
eCo V3 CPU by using the fast outputs O4…O7 configured as PWM outputs and using a specific
Motion function block and standard outputs for direction channel.

Only the Standard and Pro processor modules can be used with PTO (PWM)
outputs. The Basic processor modules PM5012 do not have PTO outputs.

The available software PTO outputs can be used as PTO with Pulse/Direction
or PTO with CW/CCW mode when the channels have been configured as PWM
outputs.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3592

The user must configure the following output channels as PWM outputs and use the
“OBIOMotionPWM” function block.
● “PWM”: Output channel 4
● “PWM”: Output channel 5
● “PWM”: Output channel 6
● “PWM”: Output channel 7
If the user configures the output 4...7 as PWM using the “OBIOMotionPWM” function block, up
to four Software PTO can be realized offering then only the Pulse/Direction mode.
The Pulse output will always use the fast output channels O4…O7 and the direction output of
the function block can be assigned to any other output e.g. O0…O3 or also outputs from a S500
I/O module.

See also the following chapter: Ä Chapter 1.6.6.2.5 “Configure the onboard I/O
channel” on page 3700

Function block

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3593

Use the onboard I/Os as output PWM (pulse-width modulation)
Parameter configuration

The user can configure the following output channels as PWM (pulse-width modulation).
● “PWM 0”: Output channel 0
● “PWM 1”: Output channel 1
● “PWM 2”: Output channel 2
● “PWM 3”: Output channel 3
● “PWM 4”: Output channel 4
● “PWM 5”: Output channel 5
● “PWM 6”: Output channel 6
● “PWM 7”: Output channel 7

See also the following chapter: Ä Chapter 1.6.6.2.5 “Configure the onboard I/O
channel” on page 3700

Function block

The complete cycle of the “PWM” is based on the “OnTime” and “OffTime”.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3594

The duty cycle ratio of the “PWM” is based on the formula = Ton / (Ton + Toff).

Function block description
Function block descriptions of all V3 libraries are available in the library manager. Ä Chapter
1.10 “Reference, function blocks” on page 4292

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3595

1. Under “Application” open “Library Manager”.
2. Select “Add Library”.

ð A list of all available libraries is displayed.

Libraries in folder “ABB - AC500” are created by ABB and tested in combination with
Automation Builder.
We recommend to use libraries of subfolder “Use Cases” for your project.
Libraries in subfolder “Intern” are necessary for internal procedures.
All 3S libraries distributed with Automation Builder are required by ABB libraries and
have been tested in combination with AC500 and Automation Builder. Additional 3S
libraries that are not distributed with Automation Builder can easily be added. There
are no known major issues with using them, however, be aware that they are not
tested by ABB.

3. Add a library.
4. Choose the added library in Library Manager to access the documentation.

The function block description is shown as an example as follows.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3596

AC500-eCo V3 option board slots for processor modules PM50xx
Depending on the processor module type, up to three option board slots are available on the
CPU for different purpose like digital or analog I/O extension, serial interface or special module
for specific functionality.

Option board slots Basic CPU Standard CPU Pro CPU
PM5012-x-ETH PM5032-x-ETH PM5052-x-ETH PM5072-T-2ETH

Figure

● 1: Slot 1
● 2: Slot 2
● 3: Slot 3

Option board slot 1 X X X X

Option board slot 2 - X X X

Option board slot 3 - - X X

Usable option boards
onAC500-eCo V3

Basic CPU Standard CPU Pro CPU
PM5012-x-ETH PM5032-x-ETH PM5052-x-ETH PM5072-T-2ETH

TA5130-KNXPB - - - X 1)

TA5131-RTC X1) - - -

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3597

Usable option boards
onAC500-eCo V3

Basic CPU Standard CPU Pro CPU
PM5012-x-ETH PM5032-x-ETH PM5052-x-ETH PM5072-T-2ETH

TA5101-4DI X X X X

TA5105-4DOT X X X X

TA5110-2DI2DOT X X X X

TA5120-2AI-UI 2) X X X X

TA5122-2AI-TC 2) X X X X

TA5123-2AI-RTD 2) X X X X

TA5126-2AO-UI 2) X X X X

TA5141-RS232I X X X X

TA5142-RS485I X X X X

TA5142-RS485 X X X X

1) Can be used only once per CPU
2) In preparation, not yet available

The option board slots are not affected to one type of option board and they
can be plugged and used on each slot. The only limitation is the number of
slot available on the processor module. The following types of option board are
available, all type can be mixed on all the slots.

Option board for COMx serial communication

Always needed for serial communication like Modbus RTU. Selection and con-
figuration can be found into the PLC Configuration V3 documentation part:
Ä Chapter 1.6.6.2.8.3 “Attach an option board for COMx serial communication”
on page 3721

Part no. Description
1SAP 187 300 R0001 TA5141-RS232I: AC500, option board for COMx serial communica-

tion, spring/cable front terminal 3.50 mm pitch

1SAP 187 300 R0002 TA5142-RS485I: AC500, option board for COMx serial communica-
tion, spring/cable front terminal 3.50 mm pitch

1SAP 187 300 R0003 TA5142-RS485: AC500, option board for COMx serial communica-
tion, spring/cable front terminal 3.50 mm pitch

Option board for digital I/O extension

Selection and configuration can be found into the PLC Configuration V3 docu-
mentation part: Ä Chapter 1.6.6.2.8.2 “Attach an option board for digital I/O
extension” on page 3721

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3598

Part no. Description
1SAP 187 000 R0001 TA5101-4DI: AC500, option board for digital I/O extension, 4DI 24 V

DC, spring/cable front terminal 3.50 mm pitch

1SAP 187 000 R0002 TA5105-4DOT: AC500,option board for digital I/O extension, 4DO-T
24 V DC / 0.5 A, spring/cable front terminal 3.50 mm pitch

1SAP 187 000 R0003 TA5110-2DI2DOT: AC500, option board for digital I/O extension, 2DI
24 V DC, 2DO-T 24 V DC / 0.5 A, spring/cable front terminal 3.50
mm pitch

Option board for specific function

The TA5130-KNXPB can only be used on AC500-eCo V3 processor modules
Pro PM5072-T-ETH(W).

The TA5131-RTC can only be used on AC500-eCo V3 processor modules
Basic PM5012-x-ETH.

These two option boards can only be used once on one slot at a time!

Part no. Description
1SAP 187 200 R0001 TA5130-KNXPB: AC500, option board KNX adress push button

1SAP 187 200 R0002 TA5131-RTC:AC500, real-time clock without battery, option board
for AC500-eCo V3 Basic CPU

1.6.5.2 System technology of the AC500 communication modules
1.6.5.2.1 CANopen communication modules
Triggering of event tasks with CAN-IDs

For CM598-CAN module the execution of a PLC application task can be triggered automatically
by a certain event, i.e. by incoming CAN 2.0 A or CAN 2.0 B frames. For this, the PLC
application task is to be configured as external event task.

Prerequisites
– PLC firmware version 3.2.5 and Automation Builder as of version 2.2.5.
– Only one PLC application task can be assigned to a communication

module.
– Triggering of event tasks is only supported for the communication module

CM598-CAN.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3599

Every incoming CAN frame on a CM598-CAN module processes an event in the AC500 PLC. If
the parameter "Trigger PLC Task" is set to TRUE, the CAN protocol task checks via the receive
buffer configuration and the corresponding CAN-ID of the CAN frame whether a CAN frame is to
be executed or not. Only those CAN-IDs that are configured in the protocol configuration will be
processed. All other CAN frames will be rejected. If a CAN frame is to be processed, the CAN
frame data is copied to the receive buffer and an event on the IEC event task is triggered.

The IEC event task will be executed for one cycle.

The IEC event task will be triggered continuously until all associated receive
buffers have been emptied. Hence, ensure that the buffers are emptied by the
task, otherwise the task will run into a loop.

Within the task the function block Cm598CanMsgRecEvt must be used to read the CAN frames
from the receive buffers. The function block Cm598CanMsgRec is not suitable as it requires
several task cycles for execution.

The following figure shows the sequence CAN frames processing when the triggering of event
task is used.

CAN frame pro-
cessing

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3600

– Only one external event task can be assigned to a CM598-CAN.
– There is only one common event for an external event task and all selected

CAN-IDs. It must be evaluated which CAN-IDs have been received.
– It is possible that CAN frames are lost when necessary system resources

are in use or when the CAN frames could not be processed in time due
to high system load. So, the PLC application must monitor the task which
consumes the events of the CAN protocol with a watchdog mechanism or
something similar.

– Received CAN frames of the same CAN-ID are internally stored in FIFO
buffers. Reading and writing of the FIFO buffers is not possible at the same
time.

– Within an external event task the function block Cm598CanMsgRecEvt
must be used to read the received CAN frames. The function block
Cm598CanMsgRec is not suitable since its execution needs more than one
task cycle.

– The CAN-IDs that are enabled to trigger an external event task must be
read by the associated task. Otherwise the task is triggered again and
again, and the CPU load will be high.

Add the external event task that should be executed to the task configuration of the PLC
application:

Event task con-
figuration

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3601

1. Right-click on “Task Configuration”. Enter a name for the task and click “Add object”.
2. Right-click on the new task and append a “Program Call”. This contains the program code

that is executed by the task.
3. Double-click on the task and setup the task parameters.

A parameter description is given in the Ä Chapter 1.4.1.20.2.27.1 “Tab 'Configuration'”
on page 942. Deviations are described in the following:

Parameter Default Value Description
Priority 16 0..16

Value '0' indicates the
highest priority

Priority of the task

Type n.a. External Specifies the task
type.

External Event n.a. CouplerEvent<slot
index of the
CM>_CAN

Specifies the event
that triggers execution
of the task.

Interval n.a. Cycle time Not used

Configuration of a CM598-CAN module is desribed in the configuration chapter Ä Chapter
1.6.6.2.11.1 “CANopen” on page 3737.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3602

1.6.5.3 System technology of the communication interface modules
1.6.5.3.1 Modbus communication interface module
Overview

The Modbus TCP communication interface module CI52x-MODTCP is used as decentralized
I/O module in Modbus TCP networks. The network connection is performed via 2 RJ45 connec-
tors which are integrated in the terminal unit.

I/O channels properties:
● 4 analog inputs (1.0...1.3)
● 2 analog outputs (1.5...1.6)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)

Functionality

Parameter Value
Interface Ethernet

Protocol Modbus TCP

Power supply from the process supply voltage UP

Supply of the electronic circuitry of the
I/O expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the last BYTE of the IP (00h to FFh)

Analog inputs 4 (configurable via software)

Analog outputs 2 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via software)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

I/O channels properties:
● 8 digital configurable inputs/outputs in 1 group (1.0...1.7)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)

CI521-MODTCP

CI522-MODTCP

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3603

Functionality

Parameter Value
Interface Ethernet

Protocol Modbus TCP

Power supply from the process supply voltage UP

Supply of the electronic circuitry of the
I/O expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the last BYTE of the IP (00h to FFh)

Configurable digital inputs/outputs 8 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via software)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels.
The configuration of the inputs/outputs is performed by software.
For usage in enhanced ambient conditions (e.g. wider temperature and humidity range), a
special XC version of the device is available.

Modbus TCP registers
Register layout for CI52x-MODTCP

The registers can be divided in 4 sections:
● Information data section 0x0000 to 0x0D50 (for acyclic use)
● I/O data and diagnosis section 0x0FFA to 0x2B00 (for cyclic use)
● Parameter data section 0x3000 to 0x3B00 (for acyclic use)
● Special functionality section 0x5A00 to 0x6A00 (for acyclic use)

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3604

Information data section (Acyclic data)
The information data section can be used to read out common and module specific information.
This section is read only.

Register
(hex)

Description Readable by
Modbus
function code

Writeable by
Modbus
function code

0 Device and FW information CI 3 x

50 Production data CI 3 x

100 Device and FW information 1. EXP 3 x

125 Device and FW information 1. Hot swap
terminal unit

3 *) x

150 Production data 1. EXP 3 x

175 Production data 1. Hot swap terminal unit 3 *) x

... ... x

A00 Device and FW information 10. EXP 3 x

A25 Device and FW information 10. Hot swap
terminal unit

3 *) x

A50 Production data 10. EXP 3 x

A75 Production data 10. Hot swap terminal
unit

3 *) x

D00 Common device information 3 x

*) supported from CI52x firmware version V3.2.0 (device index F0)
This section can be divided again in two sections:
● The module specific section (containing information for each module CI52x-MODTCP and

expansion modules and hot swap terminal units)
● The common device information block

Module specific information registers
For each module (CI52x device, expansion modules and hot swap terminal units) the following
data can be read out:
● Device and FW information

This section consists of 20 WORDs per module and contains information on each module
using the following structure:

Data DATA TYPE Description
Module ID WORD The module ID of the requested module

Module name ARRAY [1..10] OF BYTE The module name of the requested module

Version 1st processor ARRAY [1..4] OF BYTE The version of the 1st processor of the
requested module

Version 2nd processor ARRAY [1..4] OF BYTE The version of the 2nd processor of the
requested module

Version 3rd processor ARRAY [1..4] OF BYTE The version of the 3rd processor of the
requested module

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3605

Data DATA TYPE Description

Version 4th processor ARRAY [1..4] OF BYTE The version of the 4th processor of the
requested module

Hardware version 1) ARRAY [1..4] OF BYTE The hardware version of the 4 processors

Reserved ARRAY [1..8] OF BYTE
ARRAY [1..4] OF BYTE
2)

Reserved

Number input data WORD Number of input data of the requested
module in BYTES

Number output data WORD Number of output data of the requested
module in BYTES

1) supported from CI52x firmware version V3.2.0 (device index F0)
2) from CI52x firmware version V3.2.0 (device index F0) “Reserved” is ARRAY [1..4] OF BYTE
● Production / Traceability data:

This section consists of 25 WORDs per module and contains the traceability data for each
module using following structure:
– Article number: Byte 01..15
– Index: Byte 16..17
– Name: Byte 18..29
– Production date: Byte 30..33
– Key number: Byte 34..38
– Site: Byte 39..40
– Year: Byte 41..42
– Serial number: Byte 41..50 (The serial number implies the year)

● Production / Traceability data from CI5x2 firmware version V3.2.0 (device index F0):
This section consists of 26 WORDs per module and contains the traceability data for each
module using following structure:
– Article number: Byte 01..15
– Index: Byte 16..17
– Name: Byte 18..31
– Production date: Byte 32..35
– Key number: Byte 36..40
– Site: Byte 41..42
– Year: Byte 43..44
– Serial number: Byte 42..52 (The serial number implies the year)

Common device information registers
This section consists of 80 WORDs (90 WORDs from CI52x firmware version V3.2.0 (device
index F0)) and contains cluster wide information (CI52x device and connected expansion
modules using the following structure:

Common device
information
block

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3606

Data DATA TYPE Description
Device state BYTE The actual state of the device:

0: STATE_PREOP (device booting)
1: STATE_OPERATION (device in operational,
no bus supervision active)
2: STATE_ERROR (device detected a bus
error, bus supervision active)
3: STATE_IP_ERROR (the device has a IP
address error)
4: STATE_CYCLIC_OPERATION (device in
operational, bus supervision active)

Parameter state BYTE The actual parameter state of the device:
0: PARA_STATE_NO_PARA (the device has
no parameters)
1: PARA_STATE_PARA_ACTIVE
(parameterization process running)
2: PARA_STATE_PARA_DONE (the uses valid
parameters)
3: PARA_STATE_ERROR (The device has
invalid

Module ID CI device WORD Module ID of the CI52x device itself

Module ID 1st expansion WORD Module ID of the 1st connected expansion
module

Module ID 2nd expansion WORD Module ID of the 2nd connected expansion
module

...

Module ID 10th expansion WORD Module ID of the 10th connected expansion
module

Expansion bus error count DWORD Global telegram error count over all expansion
modules

Good count onboard I/O DWORD Telegram good count onboard I/Os

Good count 1st expansion DWORD Telegram good count 1st expansion module

Good count 2nd expansion DWORD Telegram good count 2nd expansion module

...

Good count 10th expansion DWORD Telegram good count 10th expansion module

Error count onboard I/O DWORD Telegram error count onboard I/Os

Error count 1st expansion DWORD Telegram error count 1st expansion module

Error count 2nd expansion DWORD Telegram error count 2nd expansion module

...

Error count 10th expansion DWORD Telegram error count 10th expansion module

Input address onboard I/O WORD Modbus TCP register address for inputs of the
onboard I/Os

Input address 1st expansion WORD Modbus TCP register address for inputs of the
1st expansion module

Input address 2nd expansion WORD Modbus TCP register address for inputs of the
2nd expansion module

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3607

Data DATA TYPE Description
...

Input address 10th expansion WORD Modbus TCP register address for inputs of the
10th expansion module

Output address onboard I/O WORD Modbus TCP register address for outputs of
the onboard I/Os

Output address 1st

expansion
WORD Modbus TCP register address for outputs of

the 1st expansion module

Output address 2nd

expansion
WORD Modbus TCP register address for outputs of

the 2nd expansion module

...

Output address 10th

expansion
WORD Modbus TCP register address for outputs of

the 10th expansion module

Module ID 1st hot swap
terminal unit *)

WORD Module ID of the 1st connected hot swap
terminal unit *)

Module ID 2nd hot swap
terminal unit *)

WORD Module ID of the 2nd connected hot swap
terminal unit *)

...

Module ID 10th hot swap
terminal unit *)

WORD Module ID of the 10th connected hot swap
terminal unit *)

*) supported from CI52x firmware version V3.2.0 (device index F0)

I/O / Process data and diagnosis section (Cyclic data)
Table 650: The cyclic data section for CI52x-MODTCP

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

FCE *) Module state 3,4, 23 x

FFA Diagnosis 3,4, 23 x

1000 Inputs CI 3, 4, 23 x

1100 Inputs 1.EXP 3, 4, 23 x

... ... x

1A00 Inputs 10.EXP 3, 4, 23 x

2000 Outputs CI 3, 23 6, 16, 23

2100 Outputs 1.EXP 3, 23 6, 16, 23

... ...

2A00 Outputs 10.EXP 3, 23 6, 16, 23

2B00 Dummy output 3, 23 6, 16, 23

*) supported from CI52x firmware version V3.2.0 (device index F0)
This section can be divided again in three sections:
● Module state (containing the state of connected expansion modules and hot swap terminal

units)
● Diagnosis data (containing diagnosis data in AC500 specific format)
● Process data (containing I/O data)

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3608

Module state
The module state section consists of 44 WORDs and contains the module state of connected
expansion modules and hot swap terminal units using the following structure:

Data DATA TYPE Description
Module ID WORD Module ID of the CI52x

Expected module ID WORD Expected (configured) module ID of the CI52x

Module state BYTE The current module state of the CI52x:
0: NO_MOD (no module detected)
1: MOD_INIT (module detected, module is in
initialization phase)
2: MOD_RUN (module detected and running or in
failsafe state, input data are valid)
3: WRONG_MOD (wrong module detected, module ID
doesn’t match expected module ID)
4: MOD_REMOVED (module removed or defective on
hot swap terminal unit, no communication to module
possible)
5: MOD_ERROR (module defective on hot swap
terminal unit, no communication to module possible)
6: MOD_LOST (lost communication to module on not
hot swap capable terminal unit)
7: UNKNOWN (module detected but not configured)

Diagnosis flag BYTE Diagnosis flag for the CI52x:
0: NO_DIAG (no diagnosis evailable from CI52x I/O
cards)
1: DIAG_AVAILABLE (diagnosis available for CI52x I/O
cards)

Terminal unit state BYTE Terminal unit state for the CI52x:
0: NO_HOTSWAP_TU (not hot swap terminal unit
detected)
1: HOTSWAP_TU_RUNNING (hot swap terminal unit
detected and working)
2: HOTSWAP_TU_ERROR (hot swap terminal unit
detected, but communication errors for hot swap
terminal unit detected)

Parameter state BYTE Parameter state of the CI52x:
0: NO_PARA (module is in initialization phase and not
ready for parameterization)
1: WAIT_PARA (module awaits parameterization)
2: PARA_RUN (parameterization running)
3: LEN_ERR (length of parameters not correct)
4: ID_ERR (module ID inside parameters not correct)
5: PARA_DONE (parameterization finished without
errors)

Module ID WORD Module ID of the 1st connected expansion module

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3609

Data DATA TYPE Description
Expected module ID WORD Expected (configured) module ID of the 1st connected

expansion module

Module state BYTE The current module state of the 1st connected
expansion module

Diagnosis flag BYTE Diagnosis flag for the 1st connected expansion module
0: NO_DIAG (no diagnosis evailable for expansion
module)
1: DIAG_AVAILABLE (diagnosis available for expansion
module)

Terminal unit state BYTE Terminal unit state for the 1st connected expansion
module

Parameter state BYTE Parameter state of the 1st connected expansion module

...

Module ID WORD Module ID of the 10th connected expansion module

Expected module ID WORD Expected (configured) module ID of the 10th connected
expansion module

Module state BYTE The current module state of the 10th connected
expansion module

Diagnosis flag BYTE Diagnosis flag for the 10th connected expansion module

Terminal unit state BYTE Terminal unit state for the 10th connected expansion
module

Parameter state BYTE Parameter state of the 10th connected expansion
module

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3610

Diagnosis data
The diagnosis data section contains one diagnosis message with the following structure
(according to AC500 diagnosis):

Byte
Number

Description Possible Values

1 Diagnosis Byte,
slot number

31 = CI52x-MODTCP (e. g. error at integrated 8 DI / 8 DO)

1 = 1st connected S500 I/O Module

...

10 = 10th connected S500 I/O Module

2 Diagnosis Byte,
module number

According to the I/O bus specification passed on by
modules to the fieldbus master

3 Diagnosis Byte,
channel

According to the I/O bus specification passed on by
modules to the fieldbus master

4 Diagnosis Byte,
error code

According to the I/O bus specification Bit 7 and Bit 6, coded
error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to Bit 5, coded error description

5 Diagnosis Byte,
flags

According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

6 Reserved 0

If a diagnosis message is read out, the next one will be automatically filled in.
If no more diagnosis messages are available the buffer will be reset to zero.
This ensures that each diagnosis message can be delivered to the Modbus TCP client/slave
and no diagnosis will be lost.

I/O data
The I/O data section can use two different formats according to the module parameter “I/O
Mapping Structure” (see Ä Chapter 1.6.3 “Device specifications” on page 2430 for details).
● Fixed I/O mapping

In case of fixed I/O mapping each module has a predefined register range for each Inputs
and Outputs.

● Dynamic I/O mapping
In case of dynamic I/O mapping the mapping is build according to the actual configuration.

The dummy output at the end of the I/O data section can be used to retrigger the bus supervi-
sion and has no effect on the HW outputs.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3611

In case of fixed I/O mapping the following predefined register table is used:

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

1000 Inputs CI 3, 4, 23 x

1100 Inputs 1.EXP 3, 4, 23 x

... ... x

1A00 Inputs 10.EXP 3, 4, 23 x

2000 Outputs CI 3, 23 6, 16, 23

2100 Outputs 1.EXP 3, 23 6, 16, 23

... ...

2A00 Outputs 10.EXP 3, 23 6, 16, 23

2B00 Dummy output 3, 23 6, 16, 23

If a certain expansion module has no inputs or outputs the corresponding registers remain
empty.

In case of dynamic mapping only the start addresses of inputs and outputs are predefined:

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

1000 Inputs CI 3, 4, 23 x

... ... x

2000 Outputs CI 3, 23 6, 16, 23

... ...

2B00 Dummy output 3, 23 6, 16, 23

The register addresses of the connected expansion modules are calculated dynamically based
on the number of inputs and outputs of the previous modules (each module starts directly on the
next register after the previous module).
The register addresses of each module can be read out via the common device register (see
Ä Chapter 1.6.5.3.1.2.2.2 “Common device information registers” on page 3606).

Fixed I/O
mapping

Dynamic I/O
mapping

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3612

The difference between fixed I/O mapping and dynamic I/O mapping is shown in the following
table.
For this comparison a cluster with CI522, AX522, DC532, AX521, DC523, DC532, AO523,
AI523, DI524, AX522 and DC523 is used.

Fixed Mapping Dynamic Mapping
Register

(hex)
Description Type Data Register

(hex)
Description Type Data

1000 Inputs CI 8 DC, 8 DI,
FC

4 BYTE + 4
WORD

 1000 Inputs CI 8 DC, 8 DI,
FC

4 BYTE + 4
WORD

1100 Inputs AX522 8 AI 8 WORD 1006 Inputs AX522 8 AI 8 WORD

1200 Inputs DC532 16 DI, 16
DC

4 BYTE 100E Inputs DC532 16 DI, 16
DC

4 BYTE

1300 Inputs AX521 4 AI 4 WORD 1010 Inputs AX521 4 AI 4 WORD

1400 Inputs DC523 24 DC 3 BYTE 1014 Inputs DC523 24 DC 3 BYTE

1500 Inputs DC532 16 DI, 16
DC

4 BYTE 1016 Inputs DC532 16 DI, 16
DC

4 BYTE

1600 Inputs AO523 --- --- --- Inputs AO523 --- ---

1700 Inputs AI523 16AI 16 WORD 1018 Inputs AI523 16AI 16 WORD

1800 Inputs DI524 32 DI 4 BYTE 1028 Inputs DI524 32 DI 4 BYTE

1900 Inputs AX522 8 AI 8 WORD 102A Inputs AX522 8 AI 8 WORD

1A00 Inputs DC523 24 DC 3 BYTE 1032 Inputs DC523 24 DC 3 BYTE

2000 Outputs CI 8 DC, 8DO,
FC

4 BYTE + 8
WORD

2000 Outputs CI 8 DC, 8DO,
FC

4 BYTE + 8
WORD

2100 Outputs
AX522

8 AO 8 WORD 200A Outputs
AX522

8 AO 8 WORD

2200 Outputs
DC532

16 DC 2 BYTE 2012 Outputs
DC532

16 DC 2 BYTE

2300 Outputs
AX521

4 AO 4 WORD 2013 Outputs
AX521

4 AO 4 WORD

2400 Outputs
DC523

24 DC 3 BYTE 2017 Outputs
DC523

24 DC 3 BYTE

2500 Outputs
DC532

16 DC 2 BYTE 2019 Outputs
DC532

16 DC 2 BYTE

2600 Outputs
AO523

16 AO 16 WORD 201A Outputs
AO523

16 AO 16 WORD

2700 Outputs AI523 --- --- --- Outputs AI523 --- ---

2800 Outputs DI524 --- --- --- Outputs DI524 --- ---

2900 Outputs
AX522

8 AO 8 WORD 202A Outputs
AX522

8 AO 8 WORD

2A00 Outputs
DC523

24 DC 3 BYTE 2032 Outputs
DC523

24 DC 3 BYTE

Comparative
example

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3613

When commissioning a CI521 module with byte order "big endian" in combina-
tion with a V3 PLC.

Table 651: I/O data (Inputs 19 BYTEs)
Signal DATA TYPE Description

AI0 WORD Input value of the 1st analog input

AI1 WORD Input value of the 2nd analog input

AI2 WORD Input value of the 3rd analog input

AI3 WORD Input value of the 4th analog input

Additional reserve byte BYTE reserved, not used

DI BYTE Input value of the DI channels

Fast counter actual value
counter 1

DWORD Ä Chapter 1.6.5.1.12.1 “Fast
counters in AC500 devices”
on page 3570Fast counter actual value

counter 2
DWORD

Fast counter state counter 1 BYTE

Fast counter state counter 2 BYTE

Table 652: I/O data (Outputs 23 BYTEs)
Signal DATA TYPE Description
AO0 WORD Output value of the 1st analog output

AO1 WORD Output value of the 2nd analog
output

Additional reserve byte BYTE reserved, not used

DO BYTE Output value of the DO channels

Fast counter start value
counter 1

DWORD Ä Chapter 1.6.5.1.12.1 “Fast
counters in AC500 devices”
on page 3570Fast counter end value

counter 1
DWORD

Fast counter start value
counter 2

DWORD

Fast counter end value
counter 2

DWORD

Fast counter control counter 1 BYTE

Fast counter control counter 2 BYTE

Process data
structure CI521-
MODTCP

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3614

When commissioning a CI522 module with byte order "big endian" in combina-
tion with a V3 PLC.

Table 653: I/O data (Inputs 12 BYTEs)
Signal DATA TYPE Description

DI BYTE Input value of the DI channels

DC BYTE Input value of the DC channels

Fast counter actual value
counter 1

DWORD Ä Chapter 1.6.5.1.12.1 “Fast
counters in AC500 devices”
on page 3570Fast counter actual value

counter 2
DWORD

Fast counter state counter 1 BYTE

Fast counter state counter 2 BYTE

Table 654: I/O data (Outputs 20 BYTEs)
Signal DATA TYPE Description

DO BYTE Output value of the DO channels

DC BYTE Output value of the DC channels

Fast counter start value
counter 1

DWORD Ä Chapter 1.6.5.1.12.1 “Fast
counters in AC500 devices”
on page 3570Fast counter end value

counter 1
DWORD

Fast counter start value
counter 2

DWORD

Fast counter end value
counter 2

DWORD

Fast counter control counter 1 BYTE

Fast counter control counter 2 BYTE

Parameter data (Acyclic data)

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

3000 Parameters CI 3 6, 16

3080 Stored parameters CI 3 x

3100 Parameters 1. EXP 3 6, 16

3180 Stored parameters 10. EXP 3 x

...

3A00 Parameters 10. EXP 3 6, 16

3A80 Stored parameters 10. EXP 3 x

3B00 controlword/statusword 3 6, 16

Process Data
Structure CI522-
MODTCP

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3615

For each connected module the following parameter data are defined (the parameters are
represented as ARRAY OF BYTE):
● Actual used parameter for each module

In these sections the actual parameters are stored. This section is also used to write
parameters to the module (For a description on how to parameterize see Ä Chapter
1.6.5.3.1.3.2 “Parameterization” on page 3622).

● Stored parameters for each module
If the module has stored nonvolatile parameters these can be read out using the
corresponding registers.

The controlword/statusword is used to trigger a parameterization process. The single bits have
the following meaning:

The direction of the first 8 bits is client to server (master to slave).
The direction of the second 8 bits is server to client (slave to master). A description of the bits
can be found in chapter behavior Ä Chapter 1.6.5.3.1.3.2 “Parameterization” on page 3622.
The parameter register sections (actual and stored parameters) have the structure as explained
in the of the corresponding module Ä Chapter 1.6.3 “Device specifications” on page 2430.

Short description of the CI521-MODTCP parameters

Parameter Single
parameter

index

Description Additional Info

0 Module ID (high Byte) Fixed, must be 16#1C

1 Module ID (low Byte) Fixed, must be 16#E8

2 Ignore Module Reserved, must be 0

3 Length of following parameter
block

Fixed, must be 16#3F

4 0 Error LED / Failsafe See Ä Chapter 1.6.3 “Device
specifications” on page 2430

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3616

Parameter Single
parameter

index

Description Additional Info

5 1 Master IP Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)6 Master IP Byte 1

7 Master IP Byte 2

8 Master IP Byte 3

9 2 Master IP 1 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)10 Master IP 1 Byte 1

11 Master IP 1 Byte 2

12 Master IP 1 Byte 3

13 3 Master IP 2 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)14 Master IP 2 Byte 1

15 Master IP 2 Byte 2

16 Master IP 2 Byte 3

17 4 Master IP 3 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)18 Master IP 3 Byte 1

19 Master IP 3 Byte 2

20 Master IP 3 Byte 3

21 5 Master IP 4 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)22 Master IP 4 Byte 1

23 Master IP 4 Byte 2

24 Master IP 4 Byte 3

25 6 Master IP 5 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)26 Master IP 5 Byte 1

27 Master IP 5 Byte 2

28 Master IP 5 Byte 3

29 7 Master IP 6 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)30 Master IP 6 Byte 1

31 Master IP 6 Byte 2

32 Master IP 6 Byte 3

33 8 Master IP 7 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)34 Master IP 7 Byte 1

36 Master IP 7 Byte 2

36 Master IP 7 Byte 3

37 9 Timeout Timeout for bus supervision
in 10ms steps
if set to 0 no bus supervision
is active

38 10 (read only) I/O Mapping Structure See Ä Chapter 1.6.3 “Device
specifications” on page 2430

39 11 Reserved Reserved, must be 0

40 12 Reserved Reserved, must be 0

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3617

Parameter Single
parameter

index

Description Additional Info

41 13 Reserved Reserved, must be 0

42 14 Check supply See Ä Chapter 1.6.3 “Device
specifications” on page 2430

43 15 Analog data format Reserved, must be 0

44 16 Input delay See Ä Chapter 1.6.3 “Device
specifications” on page 243046 17 Fast counter

46 18 Short circuit detection

47 19 Behavior binary outputs at com.
fault

48 20 Substitute value binary outputs

49 21 Overvoltage monitoring

50 22 Behavior analog outputs

51 23 Channel Config AI0

52 24 Check Channel AI0

53 25 Channel Config AI1

54 26 Check Channel AI1

55 27 Channel Config AI2

56 28 Check Channel AI2

57 29 Channel Config AI3

58 30 Check Channel AI3

59 31 Channel Config AO0

60 32 Check Channel AO0

61 33 Substitute value AO0 (high Byte)

62 Substitute value AO0 (low Byte)

63 34 Channel Config AO1

64 35 Check Channel AO1

65 36 Substitute value AO1 (high Byte)

66 Substitute value AO1 (low Byte)

Short description of the CI522-MODTCP parameters

Parameter Single
parameter

index

Description Additional Info

0 Module ID (high Byte) Fixed, must be 16#1C

1 Module ID (low Byte) Fixed, must be 16#ED

2 Ignore Module Reserved, must be 0

3 Length of following parameter
block

Fixed, must be 16#2F

4 0 Error LED / Failsafe See Ä Chapter 1.6.3 “Device
specifications” on page 2430

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3618

Parameter Single
parameter

index

Description Additional Info

5 1 Master IP Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)6 Master IP Byte 1

7 Master IP Byte 2

8 Master IP Byte 3

9 2 Master IP 1 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)10 Master IP 1 Byte 1

11 Master IP 1 Byte 2

12 Master IP 1 Byte 3

13 3 Master IP 2 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)14 Master IP 2 Byte 1

15 Master IP 2 Byte 2

16 Master IP 2 Byte 3

17 4 Master IP 3 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)18 Master IP 3 Byte 1

19 Master IP 3 Byte 2

20 Master IP 3 Byte 3

21 5 Master IP 4 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)22 Master IP 4 Byte 1

23 Master IP 4 Byte 2

24 Master IP 4 Byte 3

25 6 Master IP 5 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)26 Master IP 5 Byte 1

27 Master IP 5 Byte 2

28 Master IP 5 Byte 3

29 7 Master IP 6 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)30 Master IP 6 Byte 1

31 Master IP 6 Byte 2

32 Master IP 6 Byte 3

33 8 Master IP 7 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 3624)34 Master IP 7 Byte 1

36 Master IP 7 Byte 2

36 Master IP 7 Byte 3

37 2 Timeout Timeout for bus supervision
in 10ms steps
if set to 0 no bus supervision
is active

38 3 (read only) I/O Mapping Structure See Ä Chapter 1.6.3 “Device
specifications” on page 2430

39 4 Reserved Reserved, must be 0

40 5 Reserved

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3619

Parameter Single
parameter

index

Description Additional Info

41 6 Reserved

42 7 Check supply See Ä Chapter 1.6.3 “Device
specifications” on page 243043 8 Input delay

44 9 Fast counter See Ä Chapter 1.6.3 “Device
specifications” on page 243046 10 Short circuit detection

46 11 Behavior binary outputs at com.
fault

47 12 Substitute value binary outputs
(high byte)

48 Substitute value binary outputs
(low byte)

49 13 Voltage feedback monitoring

50 14 Overvoltage monitoring

Parameters of connected expansion modules
The parameters of the connected expansion modules are represented as byte array (the param-
eters valid for “CPU” in the Ä Chapter 1.6.3 “Device specifications” on page 2430 of the
corresponding module are used):

Parameter Description Additional Info
0 Module ID (high byte) Fixed, see Ä Chapter 1.6.3 “Device speci-

fications” on page 2430 of corresponding
module (the module ID of FBP is used)

1 Module ID (low byte) Fixed, see of corresponding module
(the module ID of FBP is used)
Ä Chapter 1.6.3 “Device specifications”
on page 2430

2 Ignore module Reserved must be 0

3 Length of following parameter block Fixed, see Ä Chapter 1.6.3 “Device speci-
fications” on page 2430 of corresponding
module

4... The rest of the parameter are
described in the corresponding
module

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3620

Special functionality
This section contains special services like firmware update or single parameterization.

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

4000 Firmware download 3 16

4100 Firmware download state 3 x

5000 Write single parameterization of CI x 16

5100 Write single parameterization of 1.
EXP

x 16

...

5A00 Write single parameterization of 10.
EXP

x 16

6000 Read single parameterization of CI 3 16

6100 Read single parameterization of 1.
EXP

3 16

...

6A00 Read single parameterization of 10.
EXP

3 16

Behavior
IP address assignment

The delivery IP address of the CI52x-MODTCP is 192.168.0.xx (xx is the hardware address
switch position of the device.
The devices support BOOTP, DHCP and fixed IP address setting (these can be set individual or
together). If BOOTP and DHCP are enabled the following priority takes place:
● If DHCP configuration fails, the device will fall back to BOOTP.
● In case of a BOOTP failure, the fixed IP address will be used.

A new IP address (or changing of BOOTP and DHCP) can be set in two different ways:
● With the address switches of the corresponding module
● With the Ä Chapter 1.6.6.2.2.4.2 “Configuration of the IP settings with the IP configuration

tool” on page 3675

Using the address switches
With the address switches only the last byte of the IP address can be changed.
The IP address can only be set via the address switches in case of factory default or in case of
the last byte of the IP address is set to zero with the Ä Chapter 1.6.6.2.2.4.2 “Configuration of
the IP settings with the IP configuration tool” on page 3675. The not allowed IP addresses are
mapped as followed:
● Address switch position 255 is mapped to fixed IP 192.168.0.254 independent of other

stored settings (by IP Configuration Tool).
This is a backup so the module can always get a valid IP address and can be configured by
the IP Configuration Tool.

● Address switch position 0 is mapped to last byte equal 1 and DHCP enabled.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3621

Using the IP configuration tool
With the Ä Chapter 1.6.6.2.2.4.2 “Configuration of the IP settings with the IP configuration tool”
on page 3675 a network scan can be executed, and the found devices can be assigned with
new settings, e.g. enable BOOTP or DHCP and set a new fixed IP. If the last byte of the IP
address of the CI52x-MODTCP devices is set to 0 with the IP Configuration Tool the address
switch position is used instead (see Ä Chapter 1.6.5.3.1.3.1.1 “Using the address switches”
on page 3621).

Parameterization
The parameterization is done via the corresponding registers explained in the Modbus TCP
registers Ä Chapter 1.6.5.3.1.2.4 “Parameter data (Acyclic data)” on page 3615.
In addition to that the parameters can be directly transferred via Automation Builder (see
documentation of Automation Builder for that).
There are two different parameter sections with different behavior.
Actual used parameters
After startup this section contains the following data:
● Default parameters (only module id and parameter length set all others zero) if no valid

stored parameters are available (no or invalid parameters stored).
● Actual used / stored parameters if valid parameters are stored nonvolatile.
These parameters can be read out and changed by reading or writing of the corresponding reg-
isters, but will not be used automatically after writing them, the use of new written parameters
has to be triggered by writing the parameter control word with the corresponding bits set (see
below).
Stored parameters
This section always contains a copy of the nonvolatile stored parameters, if no parameters are
stored nonvolatile this sections will be 0.
Controlword/statusword parameter
This parameter can be used to trigger and save new parameters.
The direction of the first 8 bit is client to server (master to slave). The direction of the second 8
bits is server to client (slave to master).

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3622

Bit Description
0 Use parameters / start

parameterization
If this bit is set the CI Device starts the parameterization
with the parameters in the actual parameters registers.

1 Store parameters volatile If this bit is set the CI device will use the parameters
temporarily, which means after a bus error detection and
reconnection the parameters will be used again.
This bit should always be set.
This bit is only evaluated when bit 0 is set.

2 Store parameters
nonvolatile

If this bit is set the CI device will store the parameters
nonvolatile, which means after a power cycle the stored
parameter data will be used again.
This bit is only evaluated when bit 0 is set.

3 Reserved -

4 Delete nonvolatile stored
parameters

If this bit is set the CI device will delete its nonvolatile
stored parameters.
This bit is only evaluated when bit 0 is set.

5 Ignore parameter error
for nonvolatile parameter
storage

If this bit is set a parameter error during nonvola-
tile storage of parameters will be ignored, and the
parameters will be stored.
This bit can only be set in combination with bit 0 and
bit 2.

6 Reserved -

7 Reserved -

8 New diagnosis available The device will set this bit if new diagnosis data are
available in the diagnosis data section.

9 New parameters available The device will set this bit if new parameters are
available in the actual parameter data section and these
were not activated by setting bit 0 in the control word.

10...15 Reserved -

Cyclic I/O data exchange
The I/O data can be exchanged cyclic by the master by reading, writing the corresponding
registers.
I/O data exchange is only possible after successful parameterization of the device.
For writing of outputs bus failure detection can be activated by setting the corresponding
parameter. This bus failure detection is described in the following chapter.

If the parameter ““timeout”” in the module parameters of the CI52x-MODTCP is set, the module
will supervise the Modbus TCP "write telegrams".
After the first "write telegram" the bus will be supervised. If no new "write telegram" arrives at
the CI52x-MODTCP within the configured time, the module will detect a bus failure and switch
off its outputs or switch them to the configured failsafe state (see module parameter CI521
Ä Chapter 1.6.3.7.4.1.7 “Parameterization” on page 3176 and CI522 Ä Chapter 1.6.3.7.4.2.7
“Parameterization” on page 3206 for details).

Bus failure
detection

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3623

With the module parameters “Master IP”- “Master IP 7” it is possible to set write restrictions on
the CI52x-MODTCP device.
If none of the parameters is set, all masters / clients in the network have read and write rights on
the CI52x-MODTCP device and its connected expansion modules.
If at least one parameter is set only the configured masters / clients have write rights on the
CI52x-MODTCP device.
All other masters / clients still have read access to the CI52x-MODTCP device.

Diagnosis behavior
Each diagnosis message signals if this error is coming or going , so it is possible to create a list
in the master of actual pending diagnosis.
Diagnosis messages will be transferred again after a bus failure detection and reconnection.
Diagnosis messages can be read out with function code 3,4,23. Function codes 3 and 4 can
always read out diagnosis messages, function code 23 can only read out after successful
parameterization of the device. See also table Ä Chapter 1.6.5.3.1.2.3.2 “Diagnosis data”
on page 3611.

Single parameterization
The single parameterization services can be used to read or write parameters during run time of
device without the need of triggering a new parameterization process.
For indexes used for single parameterization services see parameter lists in section Modbus
TCP registers of this document.
The read and write parameterization services are explained below, for each module
(CI52x-MODTCP and connected expansion modules) a different section for read and write is
defined see chapter Modbus TCP registers in this document). Both services are using the
following data structure:

The length of the read / write service depends on the count of parameters that should be
transferred (length = 4+ count*8).

The read single parameterization works in two steps:
● Writing of a request list containing the indexes that should be read using the structure

explained above.
Only CNT and PARA_IDX has to be set.
Up to 5 parameters can be requested with one telegram.
The length of the write service depends on the count of parameters that should be
transferred (length = 4+ count*8).

● Reading of the parameters list with the same length then the previous write request.
If the internal reading process inside the CI52x-MODTCP device is done the data will be
read out.
If the internal reading process inside the CI52x-MODTCP device is not yet finished the read
service will be rejected with Modbus TCP exception code 6 (device busy).

Configurable
write restriction

Reading of
single parame-
ters

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3624

For writing of single parameters only one step is necessary, the parameters are transferred with
one write request using the structure described above.
The length of the write service depends on the count of parameters that should be transferred
(length = 4+ count*8).
In case of write of single parameters the following values have to be set:
● CNT: number of parameters to be set
● And for each parameter:

Parameter index
Parameter length
New parameter value

Written single parameters are not stored volatile and not stored nonvolatile. That means after a
bus reconnection or power cycle the written parameters will be discarded.

Commissioning example
Set IP Address:
● The setting of the IP address is the first step to integrate the CI52x-MODTCP devices into a

running system.
● The setting of the IP address of the CI52x-MODTCP devices is described in the chapter
Ä Chapter 1.6.5.3.1.3.1 “IP address assignment” on page 3621 in this document.

Set Parameters (optional read parameters):
● The second step in configuring the CI52x-MODTCP devices is to set the module and

channel parameters.
● A read of parameters is optional but can be used the get the module IDs and the parameter

length.
● The reading and or writing of parameters is described in chapter Ä Chapter 1.6.5.3.1.3.2

“Parameterization” on page 3622.
Set Control Word:
● After setting the parameter data these have to be activated by writing the control word.
● The meaning and usage of the control word is described in chapter Ä Chapter 1.6.5.3.1.3.2

“Parameterization” on page 3622.
Exchange data:
● After setting and activating the parameters the CI52x-MODTCP device is ready for data

exchange.
● The registers for data exchange are described in chapter Ä Chapter 1.6.5.3.1.2.3 “I/O /

Process data and diagnosis section (Cyclic data)” on page 3608.

Hot swap
With hot swap for AC500 and S500 it is possible to exchange expansion modules (with same
type) during run time.

Preconditions for using hot swap
Information about preconditions for using hot swap see Ä “Hot swap” on page 3523.

Writing of single
parameters

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3625

Compatibility of hot swap

 Modbus remote I/O
I/O module on TU5xx-H connected to I/O bus
master

CI521-MODTCP or CI522-MODTCP

Required version of I/O bus master Module index as of F0
Firmware as of V3.2.3

Fieldbus master when used as remote I/O with
AC500 V3

Any AC500 V3 CPU with on-board Ethernet

When used as remote I/O on third party con-
troller (PLC or DCS)

No limitation known

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3626

Hot swap behavior
The following table describes the behavior in case of I/O attached to communication interface
module for Modbus TCP, CI521-MODTCP or CI522-MODTCP.

Hot Swap Behavior Modbus TCP remote I/O
Start-up behavior with missing or damaged
I/O module on hot swap terminal unit TU5xx-H

Remote I/O station is not starting
As of device index F4 and Automation Builder
Version 2.4.1 it is possible to configure the
startup in case of missing modules on hot
swap terminal units. If configured, the remote
I/O station is starting up with missing or dam-
aged I/O module, if the module is plugged
later or replaced it will be automatically par-
ameterized and I/O data will be exchanged.
As the Automation Builder checks that all
modules are available during configuration
process, it is necessary that all I/O modules
are available and in working order during
configuration via Automation Builder. As the
parameters are stored nonvolatile inside the
CI52x devices later one the parameters have
effect for power cycle or reconnection opera-
tions.

Start-up behavior with wrong I/O module type
on any terminal unit

Remote I/O station is not starting

Diagnosis of presence of
hot swap terminal unit

Information is available in Modbus registers
of the communication interface module which
can be accessed by the application program
As of device index F4 and Automation Builder
Version 2.4.1 it is possible to configure a list of
required hot swap terminal units. If a required
hot swap terminal unit is missing (normal one
plugged) this will not prevent a normal oper-
ation but a diagnosis message will be gener-
ated for the corresponding slot.

Diagnosis of hot swap capability of I/O module
mounted on hot swap terminal unit

Information can be obtained by reading
Modbus registers in the communication inter-
face module. Those Modbus registers contain:
● Diagnosis in case that a not hot-swap-

pable I/O module is plugged on a hot
swap terminal unit

● Diagnosis In case that in a mixed configu-
ration with at least one hot swap terminal
unit an I/O module, that must not be used
in a hot swap configuration, is mounted on
any terminal unit of the configuration

● Production data and version index of the
modules

Diagnosis while hot swap module is pulled or
module (mounted on hot swap terminal unit)
has stopped working

Diagnosis is available in Modbus registers in
the communication interface module

Input state in process image of controller while
module is pulled or module is not operational

Input = ZERO

Diagnosis after plugging the I/O module on
the hot swap terminal unit

Diagnose "diagnosis gone" is available in
Modbus registers in the communication
interface module

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3627

System behavior
If an expansion module is removed or defective during run time, the input data of this module
will be set to “0” and the module state will be set to the corresponding value (see Ä Chapter
1.6.5.3.1.2.3 “I/O / Process data and diagnosis section (Cyclic data)” on page 3608). A diag-
nosis message will be created in that case (see hardware description of Ä Chapter 1.6.3.7.4.1
“CI521-MODTCP” on page 3156 / Ä Chapter 1.6.3.7.4.2 “CI522-MODTCP” on page 3196 for
diagnosis messages).
In case a module is replaced, the new module will automatically be parameterized with the last
parameters of the removed module (if single parameters were written to the previously removed
module, this parameters will be ignored).
During pulling or plugging of a certain module, all other module will continue to operate with one
limitation: The reaction time of modules connected to the right of the affected module will be
bigger in that case (up to 50 ms).
If the bus failure detection is active for CI52x and failsafe is configured (see Ä Chapter
1.6.5.3.1.3.3 “Cyclic I/O data exchange” on page 3623) the following behavior applies if a
module is removed and replugged during failsafe condition:
● Last value configured for output:

– After a bus failure is detected, failsafe will be activated and the output will remain at its
last value.

– If the module is removed and plugged again, the output will remain off, and not be kept
its last value, as the last value of the new module is “0” in that case.

● Substitute value configured for output:
– After a bus failure is detected, failsafe will be activated and the output will be according

to the configured substitute value.
– If the module is removed and plugged again now, the output will be set according to the

configured substitute value again.
● Substitute value for x seconds configured for output:

– After a bus failure is detected, failsafe will be activated and the output will be according
to the configured substitute value for the configured time.

– If the module is removed and plugged again now, the output will be set according to the
configured substitute value again, and the configured time starts again.

Mandatory rules for hot swapping
Mandatory rules for hot swapping:
● Between two pull and / or plug operations of I/O modules a pause of at least 1 second must

be observed.
– That means if a module is pulled or plugged there has to be at least a break of 1 second

before the next module is pulled or plugged.
● At boot up of CI52x all configured expansion modules have to be physically available.

– Start up with missing modules is not supported.
● In the application program it is possible to detect if a hot swap terminal unit is mounted

in a specific position on the I/O bus. The information is available in the common device
information registers. These can be accessed when the version of the communication inter-
face module supports hot swap.
– This has to be checked by application:

Best way for checking if a hot swap terminal unit is available or not, is reading out
the common device information registers (see Ä Chapter 1.6.5.3.1.2.2 “Information data
section (Acyclic data)” on page 3605). If the CI52x rejects this read out the CI52x
doesn’t support hot swap at all.

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3628

1.6.5.3.2 PROFINET communication interface module
Hot swap

With hot swap for AC500 and S500 it is possible to exchange expansion modules (with same
type) during run time.

Preconditions for using hot swap
Information about preconditions for using hot swap see Ä “Hot swap” on page 3523.

Compatibility of hot swap

 PROFINET remote I/O
I/O module on TU5xx-H connected to I/O bus
master

CI501-PNIO or CI502-PNIO

Required version of I/O bus master Module index as of F0
Firmware as of V3.2.10

Fieldbus master when used as remote I/O with
AC500 V3

Not supported

When used as remote I/O on third party con-
troller (PLC or DCS)

Note: alarms must be acknowledged by
fieldbus master.
GSDML as of version
GSDML-V2.3-ABB-S500-CI501-
PNIO-20180822.xml or
GSDML-V2.3-ABB-S500-CI502-
PNIO-20180822.xml
needed for full scope of vendor specific
diagnosis.

PLC Automation with V3 CPUs

PLC integration (hardware) > System technology for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3629

Hot swap behavior
The following table describes the behavior in case of I/O attached to communication interface
module for PROFINET, CI501-PNIO or CI502-PNIO.

Hot Swap Behavior PROFINET remote I/O with third party
controller

Start-up behavior with missing or damaged
I/O module on hot swap terminal unit TU5xx-H

Remote I/O station is not starting
As of device index F1 and Automation Builder
Version 2.4.1 it is possible to configure the
startup in case of missing modules on hot
swap terminal units. If configured, the remote
I/O station is starting up with missing or dam-
aged I/O module, if the module is plugged
later or replaced it will be automatically para-
meterized and I/O data will be exchanged.

Start-up behavior with wrong I/O module type
on any terminal unit

Remote I/O station is not starting

Diagnosis of presence of hot swap terminal
unit

Information is available either:
● via acyclic services

or
● as cyclic state information in the process

image
As of device index F1 and Automation Builder
Version 2.4.1 it is possible to configure a list of
required hot swap terminal units. If a required
hot swap terminal unit is missing (normal one
plugged) this will not prevent a normal oper-
ation but a diagnosis message will be gener-
ated for the corresponding slot.

Diagnosis of hot swap capability of I/O module
mounted on hot swap terminal unit

Diagnosis is transmitted as vendor specific
PROFINET channel diagnosis:
● Diagnosis in case that a not hot-swap-

pable I/O module is plugged on a hot
swap terminal unit

● Diagnosis in case that in a mixed
configuration with at least one hot swap
terminal unit an I/O module, that must
not be used in a hot swap configuration,
is mounted on any terminal unit of the
configuration

Production data and version index of the
modules is accessible via acyclic services

Diagnosis while hot swap module is pulled or
module (mounted on hot swap terminal unit)
has stopped working

PROFINET channel diagnosis is generated
together with standard "pull alarm" which must
be acknowledged

Input state in process image of controller while
module is pulled or module is not operational

Input = ZERO
In addition a standard PROFINET state infor-
mation is transmitted saying "Inputs not valid"

Diagnosis after plugging of the I/O module on
the hot swap terminal unit

PROFINET channel diagnosis is generated
together with standard "plug alarm" which
must be acknowledged

PLC Automation with V3 CPUs
PLC integration (hardware) > System technology for AC500 V3 products

2022/01/213ADR010583, 3, en_US3630

System behavior
If an expansion module is removed or defective during run time, the input data of this module
will be set to “0” and the module state will be set to the corresponding value. A diagnosis
message will be created in that case (see hardware description of Ä Chapter 1.6.3.7.5.2
“CI501-PNIO” on page 3224 / Ä Chapter 1.6.3.7.5.3 “CI502-PNIO” on page 3263 for diagnosis
messages).
In case a module is replaced, the new module will automatically be parameterized with the last
parameters of the removed module (if single parameters were written to the previously removed
module, this parameters will be ignored).
During pulling or plugging of a certain module, all other module will continue to operate with one
limitation: The reaction time of modules connected to the right of the affected module will be
bigger in that case (up to 50 ms).
If the bus failure detection is active for CI50x and failsafe is configured the following behavior
applies if a module is removed and replugged during failsafe condition:
● Last value configured for output:

– After a bus failure is detected, failsafe will be activated and the output will remain at its
last value.

– If the module is removed and plugged again, the output will remain off, and not be kept
its last value, as the last value of the new module is “0” in that case.

● Substitute value configured for output:
– After a bus failure is detected, failsafe will be activated and the output will be according

to the configured substitute value.
– If the module is removed and plugged again now, the output will be set according to the

configured substitute value again.
● Substitute value for x seconds configured for output:

– After a bus failure is detected, failsafe will be activated and the output will be according
to the configured substitute value for the configured time.

– If the module is removed and plugged again now, the output will be set according to the
configured substitute value again, and the configured time starts again.

Mandatory rules for hot swapping
Mandatory rules for hot swapping:
● Between two pull and / or plug operations of I/O modules a pause of at least 1 second must

be observed.
– That means if a module is pulled or plugged there has to be at least a break of 1 second

before the next module is pulled or plugged.
● At boot up of CI50x all configured expansion modules have to be physically available.

– Start up with missing modules is not supported.
● In the application program it is possible to detect if a hot swap terminal unit is mounted

in a specific position on the I/O bus. The information is available in the process data area
or can be read out via acyclic read. These can be accessed when the version of the
communication interface module supports hot swap.
– This has to be checked by application:

Best way for checking if a hot swap terminal unit is available or not, is checking the
corresponding information inside the process image.

1.6.6 Configuration in Automation Builder for AC500 V3 products
1.6.6.1 General settings

This chapter describes the device configuration of AC500 product family with Automation
Builder. Basic information on Automation Builder handling can be found in the Ä Chapter 1.2
“Getting started” on page 11.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3631

1.6.6.1.1 Project handling
● A project contains the objects which are necessary to create a controller program ("applica-

tion"):
– Pure POUs, for example programs, function blocks, functions, and GVLs.
– Objects that are also required to be able to run the application on a PLC. For example,

task configuration, Library Manager, symbol configuration, device configuration, visuali-
zations, and external files.

● In a project, you can program multiple applications and connect multiple controller devices.
● CODESYS manages device-specific and application-specific POUs in the “Devices” view

("device tree") and project-wide POUs in the “POUs” view.
● For the creation of projects, there are templates that already contain certain objects.
● Basic configurations and information for the project are defined in the “Project Settings” and

“Project Information”. For example:
– Compiler settings
– User management
– Author
– Data about the project file
There are settings for the version compatibility of the project in the configuration dialogs in
the “Project Environment”.

● You save a project as a file in the file system. As an option, you can pack it together with
project-relevant files and information into a project archive. It is also possible to save files in
a source code management system such as SVN.

● Each project contains the information about the CODESYS version with which it was cre-
ated. When you open it in another version, CODESYS will notify you about possible or
necessary updates regarding file format, library versions, etc.

● You can compare, import/export projects, and create documentation for them.
● You can protect a project from being changed, or even completely protect it from being read.

By using user management, you can selectively control the access to the project and even
to individual objects in the project.

See also
● Ä Chapter 1.4.1.20.2.1 “Object 'Application'” on page 819
● Ä Chapter 1.4.1.20.2 “Objects” on page 818
● Ä Chapter 1.4.1.20.4 “Dialogs” on page 1149
● Ä Chapter 1.4.1.20.3.4.13 “Command 'Project information'” on page 1007
● Ä Chapter 1.4.1.5 “Protecting and Saving Projects” on page 197

Creating a new project
1. Select “File è New Project”.

If the used Automation Builder version is not the latest version, an information is dis-
played.
● Select “Change to newest installed version” to create a project with the latest installed

version of Automation Builder.
● Select “Continue to work with version: XXX” to create a project in the current software

version.
2. Select “AC500 project”, enter a project name and specify the storage location for the new

project.
With “Empty project” a project without a PLC is created.

What is a
project?

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3632

3. Select the device type for the new project and click [Add device].

ð A new project is created and can be configured.

Opening an existing project

NOTICE!
Risk of damaging Automation Builder projects!
Projects created with Automation Builder are incompatible with CODESYS
V2.3.9.x. Do not open projects with CODESYS V2.3.9.x as this can cause
corrupted Automation Builder projects.

Automation Builder performs an integrity check for the PLC configuration before
generating the configuration.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3633

1. Select “File è Open Project”.

ð The “Open Project” dialog appears.

2. Select a previously saved project from the file system.

ð Automation Builder switches to the version of the project and opens the project.

Exporting and importing a project
Configuration of a complete PLC or of single devices can be reused within the same project by
copy-and-paste the desired nodes in the device tree.
In order to reuse a PLC configuration cross-over projects, the project configuration can be
exported and imported afterwards into another project.

An exported project configuration can only be imported to a project with the
same Automation Builder version. If the versions are not the same, the import
fails with an error message.

Automation Builder performs an integrity check for the PLC configuration before
generating the configuration.

From the menu, select “Project è Export è Project”. Select the objects to be exported. The
configuration of the selected items will be added to an export file (*.export).

“One file per subtree”: If this option is activated, all objects belonging to the same subtree will
be exported into the same export file, otherwise a separate file will be created for each particular
object.

Opening a
project

Project export

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3634

For importing a project a basic and an advanced function is available.
Basic project import: Users with a basic or a standard Automation Builder license can perform
a basic project import. Command: “Project è Import è Project”.

A previously exported project configuration is imported into the current project.
With this, the current project configuration is overwritten.

In order to supplement the current project with the project configuration of
a previously exported project, use the compare function. Command: “Project
è Compare”.

Ä Chapter 1.6.6.1.1.6 “Comparing projects” on page 3640

Advanced project import: Users with a premium Automation Builder license can perform
an advanced project import. Command: “Project è Import è Project with compare”. This
command allows to compare two projects, to check on differences and to adapt single parts of
the project configuration easily.

Basic project import
1. From the menu, select “Project è Import è Project”.

A previously exported project configuration is imported into the current
project. With this, the current project configuration is overwritten.

In order to supplement the current project with the project configuration
of a previously exported project, use the compare function. Command:
“Project è Compare”.

Ä Chapter 1.6.6.1.1.6 “Comparing projects” on page 3640

2. Select the export file from the file system and click [Open] to import the project configura-
tion.

An exported project configuration can only be imported to a project with the
same Automation Builder version. If the versions are not the same, the import
fails with an error message.

Advanced project import
Perform an advanced project import in order to compare two projects, to check on differences
and to adapt single parts of a previously exported project configuration easily.
1. From the menu, select “Project è Import è Project with compare”.
2. Select the export file from the file system and click [Open] to import the project configura-

tion.

ð The project import is started.

Project import

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3635

3. Once the project file is imported, a compare view is displayed. The left pane represents
the current project, the right pane represents the imported project.

ð Differences between the current project and the imported project are highlighted in red
color.

ð Additional modules in the current project that are not available in the imported project
are highlighted in green color.

ð Additional modules in the the imported project or deleted modules in the current
project are highlighted in blue color.

ð A summary of all differences within the projects is given in the “Comparison statistics”
under the device tree.

4. Every highlighted item of both projects can be handled individually and can either be
transferred to the current project or skipped.
● [Accept Block]: All items of the selected node are transferred to the current project

with one click. Use this function for example to copy all nodes of a PLC configuration
from the imported project to the current project (select “I/O_Bus” node).

● [Accept Single]: Only a single item from a node is transferred to the current project.
Use this function for example to copy certain I/O modules from the imported project to
the current project.

ð All accepted items are highlighted in the current project in yellow color.

ð To undo a selection, again, click [Accept Block] or [Accept Single].

ð To accept all changes on the current project, close the “Project Comparison -
Differences” tab and confirm the prompted dialog.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3636

5. If in the import project the PLC contains an AC500-S safety module, a security check is
performed which requires user authentication:

6. After a successful user authentication the AC500-S safety modules are added to the
compare view and can be imported to the current project.

Upgrading/ updating a project to a new Automation Builder version or profile
When upgrading or updating Automation Builder a previously configured project can be con-
verted in order to be used in a new Automation Builder version or with a new Automation Builder
profile.

Definition:

Automation Builder upgrade: changing over to a major Automation Builder ver-
sion (e.g. from version 2.3.1 to version 2.4.1).

Automation Builder update: changing over to a minor Automation Builder ver-
sion (e.g. from version 2.4.0 to version 2.4.1).

Further, a project that has been configured for an AC500 V2 PLC can be converted to a project
for an AC500 V3 PLC.
Ä Chapter 1.6.6.6 “Converting an AC500 V2 project to an AC500 V3 project” on page 3993

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3637

Project archive

Create a project archive before updating Automation Builder. Project archives
contain all project data, including data that is not stored with a *.project file, e.g.
device description files for third party devices.

Ä Chapter 1.6.6.1.1.7.1 “Creation of an archive ” on page 3642

RobotStudio station
RobotStudio integration has been discontinued as of Automation Builder 2.1.0. It is recom-
mended to externally store the link to the RobotStudio station and to remove the RobotStudio
station object prior to the upgrade.
Automation Builder profile
To use the Automation Builder profile of an older project, the old profile must have been
installed. The installation of older Automation Builder profiles can be activated in the device
dialog during the upgrade process.

1. With opening a project Automation Builder automatically detects the project version. In
case of an outdated project version a dialog is prompted.

ð If the update is confirmed, the project is automatically updated to the latest Automation
Builder version.
Automation Builder updates the complete project (complete device tree) to the latest
version. Success messages, warnings and errors are described in the section “All
messages”.

ð If the update is declined, the project is closed unchanged.

In order to initiate a project update or upgrade later on, select “Project è Update
Project”.

ð
To keep an older project, it must be opened with the same Control
Builder Plus/ Automation Builder version the project has been created.
For this, the appropriate Control Builder Plus/ Automation Builder profil
must be selected.

In this mode, new Automation Builder features cannot be used.

It is not possible to downgrade a project to an earlier Automation
Builder version.

Automation Builder performs an integrity check for the PLC configura-
tion before generating the configuration.

Before the
upgrade/update

Upgrading/
Updating a
project

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3638

2. When upgrading Automation Builder, new available AC500 V2 system libraries are
installed automatically. In difference to AC500 V3 libraries the AC500 V2 libraries are
not versioned. Hence, after an Automation Builder update login to a PLC might only be
possible after a rebuild and with an online change. This might be required although the
application has not been changed and the previous version profile is still in use.
To avoid this, add the AC500 V2 libraries to the Automation Builder project. The procedure
on how to add a AC500 V2 (system) library to a project is described exemplarily.
Ä Chapter 1.4.1.16.2 “Adding a Library to the Application” on page 450

3. During the project upgrade, an option for migration of third party devices can be selected.
If this option was not selected during the upgrade procedure, migration can be initiated
manually after an Automation Builder upgrade in order to migrate all third party devices to
the project.
Ä Chapter 1.6.6.1.5 “Migration of third party devices” on page 3658

4. Exception, for the CANopen device CM598-CN:

Usually, when upgrading Automation Builder or an existing project, new
AC500 V2 system libraries are installed automatically and older library
versions are removed.

As an exception, for the CANopen device CM598-CN both library versions
are available in the Library Manager due to compatibility reasons. How-
ever, coexistence of a new library version and an older library version
is not possible. In order to avoid compile errors remove the older library
version.

5. After the Automation Builder upgrade login to the PLC from Automation Builder: right-click
“Application è App” and select “Login [PLC_AC500_V2]”.

ð The firmware on the devices is upgraded.

Depending on the currently installed firmware versions, a login from
CODESYS V2.3 might be impossible prior to the firmware update.

To update all devices of a PLC project, right-click the PLC node and select “Update objects”.
In the dialog enable “update subtree” option to update all sub-objects. Otherwise only the
processor module object is updated.
To update a specific device only, the command “Update objects” can be executed individually at
the specific node.

I/O mapping export and import
To exchange information on I/O mapping only, data can be exported as .csv file. This allows
maintenance of I/O data outside Automation Builder, e.g. in MS Excel.
Right-click the “Processor Module” node or “I/O_Bus” node in the device tree and select “Export
-> IO mapping”. To export the I/O Mapping for the complete project, e.g. with more than one
configured processor modules, I/O data of the complete project can be exported “Project ->
Export -> I/O mapping”.

A previously exported .csv file can be imported to the project: “Project -> Import -> I/O
mapping”.

AC500 V2 libra-
ries

Migrate third
party devices

Login

Updating PLC
devices

Export I/O map-
ping

Import I/O map-
ping

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3639

Comparing projects
You can compare the currently open project with another project – a reference project. The
differences in contents, properties, or access rights are detected and shown in a comparison
view.
Clicking “Project è Compare” opens the “Project Compare” dialog for you to configure and
run the comparison. Then the result is shown in the comparison view “Project Compare -
Differences” where the objects are aligned in a tree structure. Objects that indicate differences
from the respective reference object are identified by colors and symbols. This is how you
detect whether or not the contents, properties, or access rights are different.
For differences in the contents, you can also open the detailed compare view “Project Compare
- <object name> Differences” in order to zoom into the object. In the detailed compare view,
the contents of the object and reference object are displayed or their source code aligned. The
detected differences are marked. Previously opened views are not closed. In this way, you can
have any number of comparison views open and read them, in addition to the project compare
view.
You can accept the detected differences from the reference project into the current project.
This is possible only from the reference project into the open project. To do this, you activate
differences (for example in the code) that should be accepted in the current project with the
commands , , or in the active comparison view for accepting. These positions are high-
lighted in yellow. Make sure that any other open compare views are inactive (write-protected,
read-only). therefore, you can activate differences to be accepted in exactly one comparison
view only. When exiting the active compare view, if you confirm that the differences that are
activated for acceptance are actually accepted into the current project, then the current project
is modified.
In order to exit the project comparison completely, close the project compare view.

Creating a comparison view
Requirement: You have made changes in your current project and wish, for example, to com-
pare it with the last-saved version. In the meantime, for example, you have added further POUs,
removed a POU, changed single lines of code or the object properties in function blocks.
1. Select the command “Project è Compare”.

ð The “Project Comparison” dialog box opens.

2. Enter the path to the reference project, for example the path to the last-saved version of
your current project.

3. Leave the activation of the comparison option “Ignore Spaces” as it is.
4. Click on “OK”.

ð The comparison view opens. Title: “ Project Comparison – Differences”. The Device
trees of the current project and the reference project are displayed alongside each
other and the changed objects are marked in color.

5. Select an object marked in blue in the tree of the reference project (right). The current
project no longer contains this object.

Click on “Accept Single”

ð The object is added to the tree of the current project (left). The line has a yellow
background. appears in the middle column.

6. Select an object marked in green in the tree of the current project (left). The reference
project does not contain this object.

Click on “Accept Single”

ð The object is removed again from the tree of the current project (left). The line has a
yellow background. appears in the middle column.

7. If changes are detected in the content of an object that is contained in both the current
project and the reference project, this is indicated by red lettering. You can then switch to
the detailed comparison view for the object by double-clicking on the object.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3640

8. Close the comparison view and answer the query whether the changes made are to be
saved with “Yes”.

ð The changes become effective in the project.

Opening the detailed compare view
Requirement: For example, a user modified the code in a POU of the current project. You have
performed the project comparison by clicking “Project è Compare”. The project compare view
shows this POU highlighted in red in the aligned in the project tree.
1. Double-click the line of the aligned POU versions.

ð The compare view switches to the detailed compare view of the POU. The modified
code lines are highlighted in gray and written in red.

2. Click .

ð Code lines with changes (red) are extended by two lines: an line with insert (left,
green) and a line with delete (right, blue).

3. Click again.

ð The code line is marked again as modified.

4. Move the mouse pointer to the code line marked as modified and click “Accept Single”.

ð The code line from the reference project is activated for acceptance into the current
project.

5. Click .

ð The project compare view opens for the entire project. It is write-protected (read-only)
to prevent you from activating differences for acceptance. The link highlighted in
yellow above the tree view also indicates this.

6. Click the link: “Project compare view is read only because there are uncommitted changes
in another view. Click here to switch to the modified view.”

ð The detailed compare view opens again. The unconfirmed changes are highlighted in
yellow.

7. Click in the tab of the view and confirm that the changes should be saved.

ð The detail project view is closed and the POU is overwritten. Now it corresponds to
the POU of the reference project. The project view is active again so that you can
continue working with project compare.

If you do not click the link, but click instead to close the editor of the project
compare view, then you will also confirm the acceptance of changes into the
current project. The detail changes are accepted and then the project compare
is closed completely.

See also
● Ä Chapter 1.4.1.4 “Comparing projects” on page 195
● Ä Chapter 1.4.1.20.3.4.21 “Command 'Compare'” on page 1010
● Ä Chapter 1.6.6.1.1.6.1 “Creating a comparison view” on page 3640

Project archive
Automation Builder supports the creation and the import of project archive files. Archive
files contain all relevant project data including the PLC configuration, the project files of the
CODESYS and all device descriptions. This allows exchanging Automation Builder projects
without taking care of the target environment.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3641

Creation of an archive
The following steps describe the creation archive file from an Automation Builder project:

1. Select “File è Project Archive è Save/Send Archive”.
2. Select the information which should be included in the archive file from the list box.

Section/Control Parameter Description
Information
selection list box

Options Not supported

Referenced
devices

The referenced devices can be selected by expanding
the "Referenced devices" item of the list box. It is
strongly recommended to include all devices in the
project archive to maintain consistency.

Additional files - Not supported

Comment - Opening a control window which allows the input of a
comment to the project archive.

Save - Opening a dialog window to determine the path and the
file name of the project archive and storing it to the file
system.

Send - Not supported

Cancel - Canceling the operation and closing the dialog window.

With [Comment] additional information can be added to the project archive, for example to
add a brief description or some information concerning the project.

3. Proceed with [Save...].

It is strongly recommended to keep the default settings.

Section “Options” of the list box is not support. Do not enable this option.

Extraction of an archive

The currently loaded project will be closed automatically when extracting
the selected project archive. It is recommended to open a new instance of
Automation Builder before starting the extraction process.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3642

The following steps describe the extraction of an archive file and the import to Automation
Builder.
1. Select “File è Project Archive è Extract Archive”.
2. Select the desired project file and click [Open].

Section/
Control

Parameter Description

Locations Extract into the
same folder where
the archive is
located

The project archive will be extracted to the same path
where the archive is located.

 Extract into the fol-
lowing folder

Path to which the project archive should be extracted.

 Button ... Opening a folder selection dialog which allows
selecting the desired path.

Contents Items Select the items which should be extracted.

 Comment Displaying comments included inside the Project
archive file.

 Extract Triggering the extraction process. Automation Builder
extracts the archive and creates a project from out
the archive. After creating the project Automation
Builder checks the version of the project. If the
project version and the activated Automation Builder
version is not identical the workflow is the same as
described in "Opening an Existing Project".

 Cancel Closing the Extract Project Archive dialog and can-
celing the extraction process.

1.6.6.1.2 User and access rights management
User and access rights

The 'User Management' provide functions for defining user accounts and configure the access
rights within a project. The rights to access project objects via specified actions are assigned
only to user groups, not to a single user account. So each user must be member of a group.

User management
Before setting up users and user groups, notice the following: The configuration of users and
groups is done in the Project Settings dialog Ä Chapter 1.6.6.1.2.3 “Project Settings - Users
and groups” on page 3646.
● Automatically there is always a group "Everyone" and by default primarily each defined user

or other groups are members of this group. Thus each user account at least automatically is
provided with defined default settings. Group "Everyone" cannot be deleted, just renamed,
and no members can be removed from this group.

● Also automatically there is always a group "Owner" containing one user "Owner". Users can
be added to or removed from this group, but at least one user must remain. This group also
cannot be deleted and always has all access rights. Thus it is not possible to make a project
unusable by denying the respective rights to all groups. Both group and user "owner" might
be renamed.

● When starting the programming system resp. a project, primarily no user is logged on the
project. But then the user optionally might log on via a defined user account with user name
and password in order to have a special set of access rights.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3643

Notice that each project has its own user management!
So, for example to get a special set of access rights for a library included in a
project, the user must separately log on to this library. Also users and groups,
set up in different projects, are not identical even if they have identical names.

CAUTION!
The user passwords are stored irreversibly!
If a password gets lost, the respective user account gets unusable. If the
"Owner"-password gets lost, the entire project might get unusable!

Access right management
User management in a project is only useful in combination with the access right management.
Notice the following:
● In a new project basically all rights are not yet defined explicitly but set to a default value.

This default value usually is: "granted".
● In the further run of working on the project each right can be explicitly granted or denied

resp. set back to default. The access right management of a project is done in the Permis-
sions dialog Ä “Permissions” on page 3645.

● Access rights on objects get "inherited". If an object has a "father" object (example: if an
action is assigned to a program object, that is inserted in the structure tree below the
program, then the program is the "father" of the action object) , the current rights of the
father automatically will become the default settings of the child. Father-child relations of
objects concerning the access rights usually correspond with the relations shown in the
POUs or Devices tree and are indicated in the Permissions dialog by the syntax "<father
object>.<child object>".

Action ACT is assigned to POU object PLC_PRG. So in the POUs window ACT is shown in
the objects tree indented below PLC_PRG. In the Permissions dialog ACT is represented by
"PLC_PRG.ACT" indicating that PLC_PRG is the "father" of ACT. If the "modify" right would be
denied explicitly for PLC_PRG and a certain user group, the default value of the "modify" right
for ACT automatically also would be "denied".

Example

User management commands
The 'User Management UI' plug-in provides commands for command category 'User Manage-
ment'.
These are used for:
● Configuration of access rights on the project objects
● Logging on or off to/from the project via a defined user account in order to get the access

rights which are associated to this account
The configuration of user accounts and groups is done in the Project Settings subdialog User
Management Ä Chapter 1.6.6.1.2.3 “Project Settings - Users and groups” on page 3646.
By default the following commands are part of submenu 'User Management' in the 'Project'
menu: Logon, Logoff, Permissions.

Symbol:
This command opens the Logon dialog for logging on to a project or library via a defined user
account.

Logon

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3644

Logging on with a certain user account means to log on with those object access rights which
are granted to the group which the user belongs to. The configuration of user accounts and
groups is done in the Project Settings subdialog User Management.
To log on select the project or an included library from the selection list in the Project/Library
field. Enter User name and Password of a valid user account, noticing that each project or
library has an own user and access rights management. Log on with OK.
If already another user is logged on the project, this one will be logged out automatically by the
new log-on action.
When you are logged on to a project or library and try to perform an action for which you
have no right, automatically a Logon dialog will be opened, giving the possibility to log on with
another user account provided with the appropriate rights.
The status bar always displays which user currently is logged on the project.

Symbol:
This command logs off the currently logged on user. If no user had been logged on to the
currently opened project or to a referenced library an appropriate message will appear when
trying to log off.
If the user currently is logged on to more than one project or referenced library (not necessarily
with the same user account) a Logoff dialog will appear when trying to log off.
From the Project/Library selection list choose those project/library for which you want to log off.
The name of the Current user is displayed just for information.
The status bar always displays which user currently is logged on the project.

This command opens the Permissions dialog, where the rights to work on objects or to perform
commands in the current project can be configured.

Any changes made in this dialog will be applied immediately.

Logoff

Permissions

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3645

The Actions window displays all possible rights, that is all actions which might be performed on
any object of the current project.
The tree is structured in the following way:
● Top-level see the names of some categories, which have been set up just for the

purpose of optical structuring the rights management.
They are grouping concerning the execution of Commands, the configuration of User
accounts and Groups, the creation of Object Types, the viewing, editing, removing and
handling of child objects of Project Objects.

● Below each category node there are nodes for the particular actions which might be
performed on the command, user account, group, object type or project object. These nodes
also only have optical function. Possible Actions:
– execute (execution of a menu command)
– create (creating a new object in the current project)
– add or remove children (adding or removing of "child" objects to an existing object)
– modify (editing an object in an editor)
– remove (deleting or cutting an object)
– view (viewing an object in an editor)

Below each action node find the possible targets, that is project objects, of the respective
action.
The Permissions window provides a list of all currently available user groups (except the
"Owner" group) and a toolbar for configuring rights to a group.
Select the group and configure it´s permissions.
Left to each group name one of the following icons indicates the currently assigned permission
concerning the target which is currently selected in the Actions window:
● : The action(s) for the target(s) currently selected in the Actions window are granted

for the selected group.
● : The action(s) for the target(s) currently selected in the Actions window are denied for

the selected group.
● : The right to perform the action(s) which are currently selected for the selected target(s)

 in the Actions window, has not been granted explicitly, but is granted by default, for
example because the corresponding right has been granted to the "father" object. (Example:
The group has got the right for object "myplc", thus it by default it also has got it for object
"myplc.pb_1".) Basically this is the default setting for all rights which not explicitly have
been configured.

● : The right to perform the action(s) which are currently selected for the selected target(s)
 in the Actions window, has not been denied explicitly, but is denied by default, for example

in case because the corresponding right has been assigned to the "father" object.
If currently multiple actions are selected in the Actions window, which do not have unique
settings referring to the currently selected group, no icon will be displayed.

To configure the rights for a group select the desired action(s) and target in the Actions
window and the desired group in the Permissions window. Then use the appropriate button in
the toolbar of the Permissions window:

: Explicit granting.

: Explicit denying.

: The currently granted right for the action(s) currently selected in the Actions window will
be deleted, that is set back to the default.

Project Settings - Users and groups
The Project Settings dialog in category 'Users and Groups' provides three subdialogs for the
user management for the current project: Users, Groups, Settings. For a general description on
users and access rights management see help page Ä Chapter 1.6.6.1.2.1 “User and access
rights” on page 3643.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3646

Users dialog
The currently registered users are listed in a tree structure. The ownerships of each user is
displayed and each user is a member of a group by default Ä Chapter 1.6.6.1.2.1 “User and
access rights” on page 3643.

1. Click “Add” to open the “Add User” dialog.
2. Define the user credentials and click OK to set up the new user. If there are incorrect

entries (no login name, password mismatch, user already existing) you will get an appro-
priate error message.

Click “Edit” to open the “Edit User” dialog. The entry fields are the same as in the “Add User”
dialog. The password fields however - for security reasons - will show 32 * characters. After
having modified the desired entries close the dialog with OK to get applied the new settings.

Enable the entries to be removed in the Users list and click “Remove”. Note that you will get no
further inquiry! An error message appears if you try to delete all users from a group. At least one
entry must remain.

Groups dialog
The currently available groups are displayed in a tree structure. A member also might be a
group.
1. Click “Add” to open the “Add Group” dialog.
2. Define a name for the new group and enable all entries (single users or groups) which

should be members of the new group.
3. Click OK to set up the new group. If there are incorrect entries (no name defined, group

already existing, in Members having selected a group which would cause a "group cycle",
you will get an appropriate error message.

Click “Edit” to open the “Edit User” dialog. The entry fields are the same as in the 'Add Group'
dialog (see above). After having modified the desired entries close the dialog with OK to get
applied the new settings.

Enable the entries to be removed in the groups tree and click “Remove”. Note that you will
get no further inquiry! The members of the deleted groups will remain unmodified. An error
message appears if you try to delete the groups "Everyone" and/or "Owner".

Settings dialog
The following basic options and settings concerning the user accounts can be made:
● Maximum number of authentication trials: If activated, the user account will be set invalid

after the specified number of trials to log in with a wrong password. If not activated, the
number of erroneous trials is unlimited. Default: option activated, number of trials: 3; permis-
sible values: 1-10.

● Automatically log out after time of inactivity: If activated, the user account will be logged
out automatically after the specified number of minutes of inactivity (no user actions via
mouse or keyboard registered in the programming system). Default: option activated, time:
10 minutes; permissible time values: 1-180 minutes.

Define a new
user account

Modify a user
account

Remove user
accounts

Add a group

Modify a group

Remove groups

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3647

1.6.6.1.3 Later change-over of a target system
Changing the processor module type

In a project, you can change the target system by changing the type of processor module or
terminal base type. If possible, the device configuration of fieldbusses and interfaces is kept and
switched over to the device configuration of the new module.
Target change options:
● between platforms: from V2 platform to V3 platform (and vice versa)
● between module types: from AC500 (standard) to AC500-eCo (and vice versa)
● a combination of changed platform and changed module type

Target change from a V2 processor module to a V3 processor module
Target change options:

● AC500 V2 processor module Ü AC500 V3 processor module
● AC500 V2 processor module Ü AC500-eCo V3 processor module
● AC500-eCo V2 processor module Ü AC500-eCo V3 processor module
● AC500-eCo V2 processor module Ü AC500 V3 processor module

1. Close CODESYS.
2. Double-click the PLC_AC500_V2 <...> node and open the “PM5<...> Hardware” tab.
3. Enable “Change to AC500 V3 PLC” and select the desired V3 processor module from the

“PM5xx Type” drop-down list.

4. Click [Create V3 PLC].

ð The new V3 processor module is displayed in the navigation tree.

ð Change the node name of the processor module, if desired.

In case of a target change from AC500-eCo V2 to AC500-eCo V3, the I/O bus
and Ethernet configuration is kept.

Procedure:

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3648

Target change from a V3 processor module to another V3 processor module
Target change options:

● AC500 V3 processor module Ü AC500 V3 processor module
● AC500 V3 processor module Ü AC500-eCo V3 processor module
● AC500-eCo V3 processor module Ü AC500 V3 processor module
● AC500-eCo V3 processor module Ü AC500-eCo V3 processor module

1. Close CODESYS.
2. Double-click the PLC_AC500_V3 <...> node and open the “PM5<...> Hardware” tab.
3. Select the desired V3 processor module from the “PM5xx Type” drop-down list.

Fig. 309: Change_Hardware_V3

Procedure:

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3649

4. Ensure the correct “Terminal Base Type” is selected and click [Change PM / TB type].

ð If possible, the device configurations from the previous processor module will be kept
and switched over to the new processor module.
The device configurations that cannot be kept are listed in a prompted information
dialog.

By default, all device configurations which cannot be switched over will be copied to
a "device pool" section in the navigation tree (option “Copy all objects that cannot
be added to the new PLC into a device pool for further access”). If required, this
backuped configuration can be used in another project or in another processor module
configuration.
If the checkbox is deactivated all device configurations that cannot be switched will be
lost after the execution of the target change.

The configuration of the onboard I/Os, the option board slots and the onboard
RTC cannot be changed-over to the new module.

The configuration of COM1, CAN and the I/O bus cannot be changed-over to
the new module. Depending on the selected target, also the I/O bus configura-
tion and ETH2 configuration cannot be switched.

ETH1 configuration is kept even if the configured protocols are not allowed for
the selected AC500-eCo V3 PLC. In this case error messages are displayed in
the messages window.

Target change
from AC500-eCo
V3 to AC500 V3

Target change
from AC500 V3
to AC500-eCo
V3

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3650

Libraries which are not used anymore are not deleted with the target change.
Libraries of option boards are kept in the Library Manager even if no longer
available at the target module.

Customer libraries
CODESYS for AC500 V2 products contains different types of libraries:
● Standard CODESYS libraries
● Specific AC500 libraries
● Customer libraries
In general, the Standard CODESYS libraries and the AC500 libraries are automatically con-
verted during a target change from AC500 V2 to AC500 V3. Those libraries that cannot be
converted (e. g. because there is no matching in V3) are created automatically in the V3 Library
Manager and must be manually deleted by the user after the target change.
The customer libraries have to be converted manually using the Library Converter integrated
into the Automation Builder installation:
1. In Automation Builder click “File è Open project”.
2. Select the CODESYS library for AC500 V2 products which has to be converted.
3. After conversion of the library, open the view POUs in the device navigator and double-

click “Project Information”.
4. To have the library automatically available in the V3 project, enter “Company”, “Title” and

“Version” in the specific fields of the dialog.
Then, open the “Properties” tab. For the target change the new “Key” "CoDeSysV2Library"
has to be added. Under “value”, enter the name of the CODESYS library and click the
“Add” button.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3651

Click “File è Save project” and install into the library repository.

1.6.6.1.4 Firmware identification and update

Without direct access to the internet, a firmware update with the memory card is
also possible. Ä Chapter 1.6.7.2 “Memory card in AC500 V3” on page 3999

Version information
Information on the firmware versions of the processor modules or communication modules, is
provided on the “Version information” tab.
Remarks:
● The “Version information” tab displays the version identified on the device and the version

provided with Automation Builder.
● The firmware on the devices must match to the Automation Builder version. Upgrade or

downgrade to version supplied with Automation Builder is recommended (especially for
CPUs) to ensure correct functionality.

● The firmware type can be changed to the type required by the hardware configuration for
devices that support changing the firmware type. E.g., the onboard field bus communication
modules of PM595 that may be used as PROFINET, Ethernet or EtherCAT communication
module.

Firmware version on device matches version supplied with
Automation Builder.

Firmware version (or type) on device is different from version supplied
with Automation Builder. Upgrade/downgrade to version supplied with
Automation Builder is recommended.

Only for communication modules if CPU firmware must be updated
first. This happens when CPU firmware has version below 2.5.0.0.
Firmware version (or type) on device is different from version supplied
with Automation Builder. Upgrade/downgrade to version supplied with
Automation Builder is recommended.

State icons

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3652

Identified device is different from configured device, thus no firmware
update is possible. Happens only for Communication Modules.

No icon Firmware of device is not updateable or no newer firmware than the
initial version is available.

The [Update Firmware] button to download the new firmware is only enabled if
there is updateable firmware.

AC500 V3 firmware installation and update
The PLC firmware can be updated via Automation Builder.

This is also necessary for commissioning V3 CPUs.

A very new CPU has no pre-installed firmware. To guarantee the authenticity of delivered
AC500 firmware, V3 CPUs are delivered with a boot loader only. You need to download a valid
firmware to the CPU. After download, the functionality of the CPU is given.

An Automation Builder project with an AC500 V3 CPU is open.

CPU is in "stop" mode or shows uPdAtE (update) on the display.

After update the CPU shows either donE or StoP on the display

For new modules: IP address is set. (The default IP address is 192.168.0.10)
1. Double-click CPU “PLC_AC500_V3”.
2. Select “Version information”.

3. Select “Update Firmware”.

ð While the update process is running, the RUN and ERR LEDs are toggling, i.e., they
are flashing alternating.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3653

4. Wait for the PLC to finish the update.
A completed update is indicated by a message on the display. Either donE, or StoP.

NOTICE!
Do not disconnect the power supply during the update process! The PLC
could be damaged.

ð StoP indicates a restart has been performed by the CPU. When donE is displayed
sometimes it is necessary to re-boot the CPU manually, e.g., by powering-off. Manual
re-boot might be, e.g., for some older CPU versions or if downgrading to an older
firmware version according to application settings.

The CPU display shows "stop" after re-boot. The update process is finished.
5. If necessary, refresh the version information by switching to another tab and back.

ð Successful firmware update:

Behavior of
LEDs during
firmware update

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3654

LED LED flashes Status
RUN and ERR Toggling Update pending

RUN Flashing slow Done successful

ERR Flashing slow Done failed

AC500-eCo V3 firmware installation and update
The PLC firmware can be updated via Automation Builder.

This is also necessary for commissioning AC500-eCo V3 CPUs.

A very new CPU has no pre-installed firmware. To guarantee the authenticity of delivered
AC500-eCo firmware, V3 CPUs are delivered with a boot loader only. You need to download a
valid firmware to the CPU. After download, the functionality of the CPU is given.

An Automation Builder project with an AC500-eCo V3 CPU is open.

CPU is in "stop" mode without firmware.

The power LED is ON.

For new modules: IP address is set. (The default IP address is 192.168.0.10)
1. Double-click CPU “PLC_AC500_V3”.
2. Select “Version information”.

3. Select [Update Firmware].

ð While the update process is running, the RUN and ERR LEDs are toggling, i.e., they
are flashing alternating.

4. Wait for the PLC to finish the update.

NOTICE!
Do not disconnect the power supply during the update process! The PLC
could be damaged.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3655

5. If necessary, refresh the version information by switching to another tab and back.

ð Successful firmware update:

● CPU without firmware, only the power LED is on.
● While the firmware update process is running, the RUN and ERR LEDs are toggling, i.e.,

they are flashing alternating.

LED LED flashes Status
RUN and ERR Toggling Update pending

RUN Flashing slow Done successful

ERR Flashing slow Done failed

● CPU with installed firmware, only the power LED is on.
● If the CPU is running, then the RUN LED is on.
● If the CPU is in STOP mode, the RUN LED is off.

Update CI52x-Modbus firmware
Requirement: A firmware update file is available, e.g. AC500_CI52x_Firmware_V3.2.8.bin.

The CI52x Modbus firmware update is only available in the Automation Builder
IP Configuration Tool.

Installation of the IP configuration tool
1. In Automation Builder click “Tools è Installation Manager” to start the Installation Man-

ager.
2. Close any other running instances of Automation Builder. Then, click “Modify” in the

Installation Manager.
3. Select the option “IP Configuration Tool” from the list and start the installation of the IP

Configuration Tool.

Behavior of
LEDs during
firmware update

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3656

Firmware update procedure
1. In the IP Configuration Tool click “Scan” to initialize a device scan.
2. From the list select the CI52x-MODTCP device(s) which shall be updated and click “FW

Update”.
3. Select the firmware update file (e.g. AC500_CI52x_Firmware_V3.2.8.bin) to initialize a

signature check and start the update procedure.
4. After the update, click “Scan” again to retrieve the firmware version of the device.

Troubleshooting
After the IP Configuration Tool has been installed, the firmware update of the CI devices can
be initialized. If the CI firmware update fails, check the troubleshooting hints and follow the
instructions.
General hints
● Close all unused applications on the update PC and do not open Automation Builder or any

other applications during the firmware update.
● Stop the communication between AC500 PLC and the CI52x devices and disconnect the

Ethernet connection of the update PC and the CI Modbus device(s).
● Do not close the IP Configuration Tool during a firmware update and do not switch off a CI

Modbus device during the firmware update.

During a firmware update the operation of the device(s) is stopped. After the
update, all outputs are set to zero.

Erroneous firmware update

Error Solution
Error 1: Package Timeout
Due to a primitive firmware update protocol
a fast and stable network connection is
required. Otherwise the update packages
cannot be transferred within the requested
time and a timeout occurs.

Locate the PC on which the update is per-
formed as near as possible to the stationed CI
Modbus devices. Avoid network switches.

Error 2: Unable to read device status
After the firmware update the IP Configura-
tion Tool reads out the status of the updated
device in order to check if the update was
successful.

Rescan and repeat the update. If this doesn't
work, power cycle the device and retry the
update.

Error 3: IP is not unique
If more than one device hold the same IP
address, a firmware update is not possible as
the update command is IP based.

Correct the IP address, rescan and repeat the
update. If this doesn't work, power cycle the
device and retry the update.

Error 4: Internal Error
An internal error on the CI52x Modbus device
occurred during the firmware update.

Rescan and repeat the update. If this doesn't
work, power cycle the device and retry the
update.

Error 5: Cannot connect to device
The TCP communication is not sufficient for a
connection. Increase the connection quality.

See Error 1: Package Timeout.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3657

Signature check failed
After the selection of the firmware file (*.bin) a signature check is performed. If either the firm-
ware file or the signature file is corrupt, the signature check fails. In the event of an erroneous
signature check, perform the following steps:
● Ensure the signature file is stored in the same directory as the firmware file.
● Check the file names. The name of the signature file must be the same as the firmware file

+ attached ".sig”.

Name of the firmware file: c:\AC500\AC500_CI52x_Firmware_V3.2.8.bin
Correct name of the signature file: c:\AC500\AC500_CI52x_Firmware_V3.2.8.bin.sig
Wrong name of the signature file: c:\AC500\AC500_CI52x_Firmware_V3.2.8.sig

File names

Indeterminate device firmware version
If the firmware version of the device cannot be determined, an error occurs. In this case, check
that the device and the update PC are located in the same subnet and ping the device. If the
ping is successful you can use the IP Configuration Tool to retrieve the device firmware version.

PC Device Result
192.168.14.71 /
255.255.255.0

192.168.14.10 /
255.255.255.0

OK

192.168.10.71 /
255.255.255.0

192.168.14.10 /
255.255.255.0

ERROR

192.168.10.71 / 255.255.0.0 192.168.14.10 / 255.255.0.0 OK

1.6.6.1.5 Migration of third party devices
After an update of Automation Builder the device repository contains only ABB devices. The
third party devices which were installed into previous versions of Automation Builder are not
automatically installed in the newest version profile. This has to be triggered by the user.

The feature “Migrate third party devices” is available as of Automation Builder
2.1.1.

1. Click “Tools” in the main menu of Automation Builder.
2. Click “Migrate third party devices” in the drop-down list.

ð The window Version profile selection appears.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3658

3. Select a version profile in the drop-down list containing previous Automation Builder /
Control Builder Plus profiles. The active profile does not appear in the list.

ð After selection of a previous version profile, all the third party devices which have been
installed inside this version profile are listed.

It is not possible to select or deselect some third party devices. Importing will affect all
the third party devices which are listed in the list view.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3659

4. Select [Import].

ð During the migration the message window displays success or failure of device migra-
tion.

In case of failure during the migration the affected third party device
description has to be installed manually via main menu “Tools
è Device Repository è Install”.

In the status bar, the third party device which is on Migrating: <...> is displayed on the
left side.
The import operation can be cancelled by clicking the “Click here to CANCEL this
operation” link on the right side of the status bar. This becomes effective when the
migration of the just migrating third party device is finished.

5. To close the dialog select the [Close] button of the Version profile selection.

1.6.6.1.6 Advanced IO device handling
Automation Builder provides the Advanced IO Device Handling feature for configuring identical
IO device types at multiple instances.
This feature is supported by the following commands that works with IO devices only.
● Generate DUT
● Map to Existing DUT
● Release DUT mapping
These commands work on individual nodes and on CI (communication interface) level nodes.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3660

Generating DUT
Each device generates two DUTs. One for the input and one for the output. Some devices
contain only input or output type. In such cases, the device generates only one DUT of the
relevant type.
● Right-click on the desired IO device and select “Generate DUT” to generate a DUT for an IO

device.
The following example shows how to generate DUTs at CI level node.
● In the device tree, right-click on a master node such as PNIO_Controller and select

“Generate DUT” to create DUTs for the child nodes.
● The DUTs of child nodes are generated in “Application è App
è IO_Device_Generated_Items” folder.

● Generated DUT considers channels with BYTE datatype as members. If channels with
BYTE datatype are not present in the given hierarchy, it adds the members with another
higher datatype.

● Channels with BOOL datatype are not considered.

Mapping to existing DUT
This command is enabled for the IO device when the IO device is not mapped and when DUTs
of matching size (calculated based on device channel list) are available in “Application è App
è IO_Device_Generated_Items” folder.
1. Right-click on an IO device and select “Map to Existing DUT”.

ð Enter Instance Name dialog is displayed.

2. Enter the instance name which satisfies IEC naming validations and unique name in
global scope.

3. Click “OK” to create a global variable associated with the mappings in DI (PRG).
If you want to view mapped instances, double-click “DI (PRG)”.

With the 'Map to Existing DUT' command:
● Any device can be mapped only to one input DUT and one output DUT. If you have already

mapped an input DUT, only the output DUT is shown in the options list and vice-versa.
● Mapping is also supported at CI level nodes. To create global variables for CI level nodes,

the address of the first child is considered.

Releasing DUT mapping
This command is enabled on an IO device only when an IO device is mapped either to input,
output or both DUTs. You can use this command to release (or revert) mappings and to delete
global variables created during 'Map to Existing DUT'.
Right-click on an IO device and select “Release DUT Mapping”. The mapped DUT instance is
deleted.

Using DUT variables in CODESYS application
1. In the Automation Builder project, double-click “Application” to launch CODESYS applica-

tion.

ð CODESYS application is launched. CODESYS application contains mapped DUT
instances.

2. Double-click “PLC_PRG” to create DUT variables.
3. Add DUT variables based on mapped DUTs.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3661

For further information on mapping DUTs, see section Ä Chapter 1.6.6.1.6.2 “Mapping to
existing DUT” on page 3661.
For example, in the PLC_PRG, add analog I/O and digital I/O. If you insert a dot at a position
where an identifier should be inserted, then a selection list is open, offering all the input and
output variables which are found in the project.
After adding DUT variables, rebuild the program in CODESYS application using “Project
è Rebuild”.

Support for CI level node
The user can create DUTs for the entire hierarchy of CI level node (for example, IO_BUS), by
right-clicking on the desired CI level node and by selecting “Generate DUT”. Further, all the
DUTs are generated in “Application è App è IO_Device_Generated_Items” folder.
● The command generates DUT for the node itself and also for all child nodes.
● The DUT generated for the CI level node contains generated DUTs for the child nodes as

their members.
● For every execution, the command checks, if any new child node is added and generates

DUT.
If you delete child nodes in CI level node (for example, IO_BUS), the DUTs generated for
these child nodes are not deleted automatically. You should delete the DUTs manually in the
“Application è App è IO_Device_Generated_Items” folder if desired.

Configuration check
Configuration check for size is enabled to ensure that all devices are mapped with DUTs of the
correct size. In case of any changes in the mapped DUT, configuration check verifies the size of
the DUT. If it fails, an error message is displayed in Automation Builder messages window and
does not allow to launch the application. This check can be performed in “Create configuration
data”.

1.6.6.2 PLC devices and components
1.6.6.2.1 Device repository

The Device Repository of Automation Builder manages the pool of devices that can be used in
the PLC configuration.
You install or uninstall devices in the “Device Repository” dialog box. The system installs a
device by reading the device description files, which define the device properties for configura-
bility, programmability, and possible connections to other devices.
You can use the devices provided in the device repository by adding them to the device tree of
your project.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3662

1. Click “Tools è Device Repository”.

ð The “Device Repository” dialog box opens.

[Edit Locations]: Changes the default repository location. The devices can be man-
aged at different locations.
[Install] / [Uninstall]: Installs or uninstalls devices.
[Renew device repository]: Updates the device list, e.g. after uninstallation of a device.
[Details]: Provides technical details on the selected device.

2. Select the install location. “System Repository” is set by default.

The device repository cannot be changed manually, e.g. by copying or deleting
files. Use always the Device Repository dialog to add or remove devices.

Dialog device
repository

Installing
devices

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3663

1. Click [Install] and select the appropriate file format.

ð The “Install Device Description” dialog box opens.

2. Select the file path of the device description.
3. Select the file type filter of the required device description.

ð All device descriptions of the selected file type are listed.

4. Select the required device description and click “Open”.

ð Automation Builder adds the device description to the matching category of your
device repository.
If errors occur during installation (for example, missing files that are referenced by the
device description), then Automation Builder displays them in the lower part of the
device repository dialog box.

During the installation the device description files and all additional files refer-
enced by that description will be copied to an internal location. Altering the
original files will have no further effects to an internal location.

The changes take only effect after reinstalling the corresponding device(s).
The version number shown in the information section of the device should be
verified.

Select the device you want to remove and click [Uninstall].
The device is removed from the list.

Uninstalled devices which are used in existing projects are indicated by the
symbol . The device will not be configured properly.

Uninstalling
devices

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3664

1.6.6.2.2 PLC start-up
A fast online program modification of the user program is possible without interrupting the
running operation. If data areas should be saved during power OFF/ON, they can be stored in
the flash EPROM. An optional battery saves data in the RAM.

Initialization of AC500 V3 CPU
To initialize an AC500 V3 CPU, you need to download the firmware.
A new CPU has no pre-installed firmware, it is delivered with a boot loader only. You need
to download a valid firmware to the CPU. See Ä Chapter 1.6.6.1.4.2 “ AC500 V3 firmware
installation and update” on page 3653. After download, the functionality of the CPU is given.

PLC runtime licensing
The use of some libraries and devices require the PLC to have a runtime license. If you
purchased such a license, activate the license Ä Chapter 1.6.6.2.2.2.1 “Activating a runtime
license via license key” on page 3665.
If you want to test device functionality or library features in advance, you can activate a demo
license in advance Ä Chapter 1.6.6.2.2.2.2 “Activating a demo license” on page 3669.
The license status of a PLC can be displayed at any time Ä Chapter 1.6.6.2.2.2.5 “View license
information” on page 3672.

NOTICE!
After removing a Wibu memory card (which holds the AC500 runtime license),
the PLC system moves into 'Stop' mode after 24 h.
Ensure to insert the Wibu memory card at the time.

Activating a runtime license via license key
The use of some libraries and devices require the PLC to have a runtime license.

PC and PLC are connected. In case of no connection, perform the activation via memory
card Ä Chapter 1.6.6.2.2.2.3 “Licensing via memory card” on page 3669.

There is a connection to the Internet. In case of no connection, perform the activation
on another PC with internet connection Ä Chapter 1.6.6.2.2.2.1.1 “Activation without internet
connection” on page 3666.
1. Right-click on the PLC and select “PLC runtime licensing” from the “Runtime Licensing”

menu.

ð A wizard starts. Follow the instructions.

2. Enter the license activation key and select “Next” to finish the licensing procedure.

ð The license is activated on the PLC device.

If the license shall be used on another PLC device, the installed license can be
returned Ä Chapter 1.6.6.2.2.2.4 “Returning a license” on page 3671.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3665

Activation without internet connection
1. If an error occurs when communicating with the ABB license server, or if Automation

Builder is running on a PC without internet connection, then it is possible to manually com-
plete the ABB license server interaction by using another PC (with internet connection).

2. In the error dialog select “Next” and save the license activation request file to a storage
location the other PC can access, e.g. a file share.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3666

3. In the dialog the web address of the ABB license server is displayed (http://
lc.codemeter.com/32838/depot/index.php). From the PC with internet connection, upload
the license activation request file.

4. After the upload, download and save the license activation file from the ABB license
server. Transfer this file to the PC without Internet connection.

5. Select “Next” to continue the license activation process. Click “Cancel” to continue the
license activation process at a later time (see Offline activation Ä Further information
on page 3668).

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3667

http://lc.codemeter.com/32838/depot/index.php
http://lc.codemeter.com/32838/depot/index.php

6. Select “Browse” and select the license activation file (*.WibuCmRaU) from the defined
storage location.

ð The license is validated by the ABB license server and afterwards activated on the
PLC device.
If the license shall be used on another PLC device, the installed license can be
returned Ä Chapter 1.6.6.2.2.2.4 “Returning a license” on page 3671.

7. To complete the licensing process, a license receipt file must be uploaded to the ABB
license server.
Save the license receipt file and upload it manually from a PC with internet connection to
http://lc.codemeter.com/32838/depot/index.php.

ð A license confirmation is returned.

Offline activation
If the runtime licensing process was closed between saving the license activation request
file and obtaining the license activation file from the ABB license server, perform an offline
activation:
1. Right-click on the PLC node and select “PLC runtime licensing” from the “Runtime

Licensing” menu.

ð A wizard starts. Follow the instructions.

2. Select the option “Complete offline licensing process”.
3. Select “Browse” and select the license activation file (*.WibuCmRaU) from the defined

storage location.

ð The license is activated on the PLC device.

If the license shall be used on another PLC device, the installed license can be
returned Ä Chapter 1.6.6.2.2.2.4 “Returning a license” on page 3671.

4. To complete the licensing process, a license receipt file must be uploaded to the ABB
license server.
Save the license receipt file and upload it manually from a PC with internet connection to
http://lc.codemeter.com/32838/depot/index.php.

ð A license confirmation is returned.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3668

http://lc.codemeter.com/32838/depot/index.php
http://lc.codemeter.com/32838/depot/index.php

Activating a demo license
It is possible to try out device features or library features by using a Demo license on the PLC.
With this, you can use the features for a limited time period.

PC and PLC device are connected. In case of no connection, perform the activation via
memory card Ä Chapter 1.6.6.2.2.2.3 “Licensing via memory card” on page 3669.

There is a connection to the Internet. In case of no connection, perform the activation
on another PC with Internet connection Ä Chapter 1.6.6.2.2.2.1.1 “Activation without internet
connection” on page 3666.
1. Right-click on the PLC node and select “PLC runtime licensing” from the “Runtime

Licensing” menu.

ð A wizard is started. Follow the instructions.

2. Select the option “Create a demo license” and click “Next” to finish the licensing proce-
dure.

ð The demo license is validated by the ABB license server and afterwards activated on
the PLC device.

Licensing via memory card
When you have no connection between your PC and the PLC device the licensing procedure
can be done via a memory card.

There is a connection to the internet.

The memory card can be used with AC500 V3 products.

NOTICE!
If a SDCard.ini file is stored on the memory card, the file will be overwritten.

1. Place the memory card in the PC.
2. Right-click on the PLC node and select “Prepare PLC license SD memory card” from the

“Runtime Licensing” menu.
3. From the filesystem select the root folder of the memory card.

ð A success message is displayed when the creation of the memory card files is com-
pleted.
The license request files are stored to the selected folder.

1. Insert the memory card into the PLC device and reboot the PLC.

ð When the license request file is successfully created by the PLC, “done” is shown on
the display of the PLC.

2. Remove the memory card from the PLC.

On the PC:
Create a license
request

On the PLC:
Transfer the
license data

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3669

For this action, internet connection is required.

1. Place the memory card into the PC.
2. Open the PLC project in Automation Builder. Ensure the PLC is logged out.
3. Right-click on the PLC node and select “PLC runtime licensing” from the “Runtime

Licensing” menu.

ð A wizard is started. Follow the instructions.

4. Enter the license activation key.
5. From the filesystem, select the root folder of the memory card.

ð The previously created license request files are sent to the ABB license server. A
license activation is created on the memory card.

6. Remove the memory card from the PC.

1. Insert the memory card into the PLC device and reboot the PLC.

ð done is displayed on the PLC if license activation was successful.

2. Remove the memory card from the PLC

Trying to activate a runtime license, that has already been activated (e.g. via an
online conncetion), will result in following error in the sdcard.rdy file:

;Result of license file import
ImportLicense=13;Internal Error (1)

For this action, internet connection is required.

To complete the licensing process, the license receipt file must be uploaded to the ABB license
server.
1. Place the memory card into the PC.
2. Upload the license receipt file manually from a PC with internet connection to http://

lc.codemeter.com/32838/depot/index.php.

The license receipt on the memory card is located in the subfolder license

ð A license confirmation is returned.

On the PC:
Enter the
license activa-
tion key

On the PLC:
Complete
license activa-
tion for the PLC

On the PC:
Complete
license activa-
tion on the
license server

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3670

http://lc.codemeter.com/32838/depot/index.php
http://lc.codemeter.com/32838/depot/index.php

Returning a license

NOTICE!
After returning a AC500 runtime license, the PLC system moves into 'Stop'
mode after 24 h.

A license which has been installed on a PLC device can be returned and installed on another
PLC device.

PC and PLC device are connected. In case of no connection, perform the activation via
memory card Ä “Returning a license via memory card” on page 3671.
1. Right-click on the PLC node and select “Return active license” from the “Runtime

Licensing” menu.

ð A wizard is started. Follow the instructions.

2. Enter the license activation key and click “Return license”.

ð The results of the return process will be displayed in the dialog.

The license from the PLC device is removed and can be used now for another PLC
device.

When the PLC is not connected to the PC (PLC logged out) it is possible to return a license via
memory card.

1. Insert the memory card in the PC and execute “Runtime Licensing è Prepare PLC
license SD card ” on the PLC node.

2. Place the memory card into the PLC.
3. Perform “power cycle” after a successful update reboot the PLC and connect to the PLC.

ð The License is removed from the PLC.

4. Place the memory card into the PC.
5. Right-click on the PLC node and select “Return active license” from the “Runtime

Licensing” menu.

ð A wizard is started. Follow the instructions.

Returning a
license without
memory card

Returning a
license via
memory card

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3671

6. Enter the license activation key and click “Return license”.

7. Click “Browse” and select the root folder of the memory card.

ð Returning of the license is started.

8. Place the memory card in the PLC device and reboot the PLC.

ð The license from the PLC device is removed and can be used now for another PLC
device.

9. To complete the licensing process, a license receipt file must be uploaded to the ABB
license server.
Save the license receipt file and upload it manually from a PC with internet connection to
http://lc.codemeter.com/32838/depot/index.php.

ð A license confirmation is returned.

View license information
To view the license information of AC500 V3 products:
1. In the Automation Builder device tree double-click on the PLC node.

ð The PLC tab is opened.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3672

http://lc.codemeter.com/32838/depot/index.php

2. In the PLC tab select “License Information”.

ð The project is scanned for required licenses.

If you are logged into a PLC, then the licenses available on the PLC are displayed.
Missing required licenses are highlighted.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3673

Connection of devices
All installed devices that are available in Automation Builder are listed in the Ä Chapter
1.6.6.2.1 “Device repository” on page 3662.

Configuring devices
Modify your Automation Builder project by adding device objects. Preset items can be replaced
in the same way.
1. In the device tree, right-click an item node. Select “Add object”.

2. Select the desired object and click [Add object].
3. Double-click the new object in the device tree to configure the device settings. Depending

on the selected item different configuration tabs are available.

Update of AC500 devices
Perform a firmware update to update AC500 V3 devices. Ä Chapter 1.6.6.1.4.2 “ AC500 V3
firmware installation and update” on page 3653

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3674

Comparing objects
To compare similar objects within a project (such as the project configuration) select both
objects. Right-click and select Compare Objects to see the differences.

IP settings
Configuration of the IP settings with the LED display

The IP settings for the PLC can be set directly on the processor module via keypad and LED
display.
See Ä Chapter 1.6.5.1.6.5.3 “Configuration” on page 3493

Configuration of the IP settings with the IP configuration tool
The IP address for AC500 devices can be set or changed in Automation Builder using
● the IP configuration tool which is described in the following.
● the 'Communication Settings'. Ä Chapter 1.6.6.2.2.4.3 “Configuration of communication via

Ethernet (TCP/IP)” on page 3688

As an alternative the IP address can be changed at the hardware device itself. Ä Chapter
1.6.5.1.6.5 “Description of the function keys” on page 3491

The IP configuration tool can be used
● to set or change the IP address of devices.
Ä Chapter 1.6.6.2.2.4.2.2.2 “Changing the IP address” on page 3680

● to scan the network for available hardware devices.
Ä Chapter 1.6.6.2.2.4.2.2.1 “Network scan” on page 3678

The IP configu-
ration tool:

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3675

● to update the firmware of devices.
This functionality is only supported if the IP configuration tool is used stand-alone.
Ä Chapter 1.6.6.2.2.4.2.2.3 “Firmware update” on page 3681

● to activate certain functionality on hardware devices.
This feature is only available on AC500 V3 devices.
Ä Chapter 1.6.6.2.2.4.2.2.4 “Blink functionality” on page 3685

The IP configuration tool is part of Automation Builder and can be called via “Tools è IP-
Configuration”.
Further the IP configuration tool can be used stand-alone without an Automation Builder appli-
cation running. The stand-alone variant requires a separate installation via the Installation
Manager Ä Chapter 1.6.6.2.2.4.2.1 “Stand-alone installation” on page 3676.
After the installation, the IP configuration tool is started via .exe file / desktop icon.

Some functionality is only supported if the IP configuration tool is used stand-
alone, e.g. for firmware updates for communication interface devices.

Stand-alone installation

The IP configuration tool is part of Automation Builder and can be called via
“Tools è IP-Configuration”. A separate installation is only required if the IP
configuration tool shall be used stand-alone.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3676

1. Open the Installation Manager in Automation Builder: “Tools è Installation Manager”.
2. Close all other instances of Automation Builder as only one instance of the program can

be executed at a time.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3677

3. Click “Modify” and select the “IP Configuration Tool” from the structure tree.

4. Click “Continue” to start the installation.

ð After a successful installation the IP configuration tool is available as stand-alone tool
(.exe).

ð To start the IP configuration tool, click the new created desktop icon.

Using the tool functions
Network scan

With a network scan all devices that have been found in the network by the scan process are
listed, i.e. ABB devices such as AC500 processor modules, AC500 communication interface
modules or ABB Drives.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3678

1. Start the IP configuration tool in Automation Builder (“Tools è IP-Configuration”) or start it
stand-alone (.exe).

2. The “IP-Configuration” dialog opens. Define the device type for the network scan by
selecting the desired option under “Scan Protocol”:
● “ABB Net config protocol”:

Use this option for AC500 devices such as processor modules, CI5xx-Modbus devices
or ABB Drives. The device(s) to be scanned must be connected to the PC via a direct
Ethernet connection.

● “Profinet Dynamic Configuration Protocol (DCP)”:
Use this option for PROFINET communication interface modules. The device(s) to
be scanned must be connected to the PC via a direct Ethernet connection (not via
CM579).
For the scan, a NPcap driver needs to be installed separately.
Ä Step 4 on page 3683

● “EtherCAT”:
Use this option for EtherCAT communication interface modules. The Ethernet cable
must be connected directly to the first EtherCAT slave device of the EtherCAT
fieldbus. Ensure that no EtherCAT master device is available on the bus when a scan
is performed.
“Emergency” option: Enable this option to check on failures in the EtherCAT assembly
during the scan process, i.e. a frame loss or interchanged ports. Errors are displayed.
For the scan, a NPcap driver needs to be installed separately.
Ä Step 4 on page 3683

3. Click [Scan] to start the scan process.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3679

4. All devices that have been found in the network are listed including hardware and connec-
tion details. The following details can be changed under “IP settings”:

ð ● “IP Address”:
Current IP address of the device.

● “Conf. IP Address”:
Configured IP address of the device. A changed IP address will update this
column.

● “FW Version”:
Current installed firmware version of the device. This field is visible not until a first
network scan. If this field is still empty after a network scan, check on connection
errors.
Ä Chapter 1.6.6.2.2.4.2.3.1 “Trouble-shooting for firmware update” on page 3686

The IP address of some devices, e.g. EtherCAT devices cannot be
changed.

Changing the IP address
1. In order to change the IP address of devices perform a network scan.

Ä Chapter 1.6.6.2.2.4.2.2.1 “Network scan” on page 3678

2. Select a device from the list and select the appropriate protocol under “Scan protocol”.
“DHCP” or “BOOTP” option: If required, DHCP or BOOTP can be used to receive the IP
address for the device from the server.
“IP address”, “subnet mask”, “Std. gateway”: Use these fields to change the IP address
settings including the settings for the subnet mask and the standard gateway. Ensure that
the combination of connection settings is correct.
Ä “Check subnet configuration” on page 3686

Note for CI52x-Modbus devices
Consider the behavior of CI52x-Modbus devices if the last number of the
IP address is set to "0".

Ä “Check last number of IP address” on page 3687

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3680

3. Change the settings for the IP configuration and click [Send settings] to transmit the data
to the device.

ð
Note for PROFINET devices
The device name of PROFINET devices can be edited. If changing the
name, ensure the following rules apply:

– Labels must be separated by "."
– Total length: 1 to 240
– Label length: 1 to 63
– Labels can consist of characters [a-z] and numbers [0-9]
– Labels are not allowed to start with "-"
– Labels are not allowed to end with "-"

4. In order to keep all IP changes after a power cycle, the settings can be stored perma-
nently. Confirm the prompted message during the scan process.

Firmware update
The firmware of AC500 communication interface modules can be updated with the IP configura-
tion tool.
For this, the IP configuration tool must be used as stand-alone variant.
Ä Chapter 1.6.6.2.2.4.2.1 “Stand-alone installation” on page 3676

It is not possible to perform a firmware update out of Automation Builder.

– For PROFINET communication interface modules a firmware update is only
supported for devices with firmware version ³ 3.3.3.

– For EtherCAT communication interface modules a firmware update is only
supported for devices with firmware version ³ 2.1.4.

– For Modbus communication interface modules a firmware update is only
supported for devices with firmware version ³ 3.2.13.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3681

Before the firmware update
● Ensure a fast and stable network connection
● Close all unused applications on the executing PC
● Stop the communication between AC500 PLC and the communication interface module that

shall be updated
During the firmware update
● Do not close the IP configuration tool
● Do not open Automation Builder software or any other application
● Do not switch-off the communication interface module that shall be updated
● Do not disconnect the Ethernet connection of a communication interface module or the

executing PC

The firmware update will stop the operation of the affected device(s). Hence,
the device(s) will become unresponsive for 1 - 2 minutes.

1. Start the IP configuration tool stand-alone (.exe).
2. Perform a network scan.

Ä Chapter 1.6.6.2.2.4.2.2.1 “Network scan” on page 3678

3. Select the devices that shall be updated from the list and click [Scan] to trigger the scan
process.
A multiple selection of several devices is possible via control key, however, ensure to
select only devices of the same protocol at a time. Otherwise the firmware update fails.

Requirements:

Procedure:

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3682

4. This step is only required for devices that require an installed NPcap driver. In this case an
appropriate message including a download link is prompted in the IP-Configuration dialog:

ð Click on the displayed link https://nmap.org/download.html and download the latest
version of the npcap-X.X.exe file.

ð After the download, execute the file as administrator and restart the scan process.

ð The devices that have been scanned are listed.

5. Click [Update Firmware] to start the firmware update for the selected devices.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3683

https://nmap.org/download.html

6. For CI50x, CI51x and CI52x devices a signature check is started. Select the appropriate
firmware update file (*.bin) for the device(s). Example: C:\AC500\AC500_CI52x_Firm-
ware_V3.2.8.bin.
After a successful signature check the firmware update file (*.bin) and the respective
signature file (*.bin.sig) are transferred to the device. This can last up to 3 minutes.
If the signature check fails, check the availability of the *.bin file and the *bin.sig file.
Ä “Signature check” on page 3687

7. A status check followed by a device reboot followed by a second status check is per-
formed automatically.

After the firmware update all outputs of the updated devices are set to '0'.

8. After a successful firmware update the update status or the new firmware version is
displayed in the “FW Version” field.
If this field is empty, there possibly is a connection error between the device and the
executing PC.
Ä “Error: Can’t connect to device” on page 3688

Exception: For EtherCAT devices an empty “FW Version” field does not indicate a connec-
tion error.

ð If the firmware update fails
● check the requirements for the update procedure.
Ä “Requirements:” on page 3682

● check the hints for trouble-shooting.
Ä Chapter 1.6.6.2.2.4.2.3.1 “Trouble-shooting for firmware update” on page 3686

● perform a network scan and repeat the update. If the error still persists power
cycle the device and try the update again.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3684

Blink functionality
This function activates flashing of the backlight of an AC500 LED display.
1. From the menu, select “Tools è IP-Configuration”.
2. Click [Scan] to trigger the scan process for devices in the network.

ð A progress bar shows the progress. The IP settings of a selected device is displayed
below the list and can be edited.

3. Adjust your desired time and click [Blink] to activate flashing.

Trouble-shooting for IP configuration tool
On a standard Windows 7 installation without third party firewall or security tools installed the IP
configuration tool should work properly.
The Automation Builder setup installs rules or exceptions for the built-in Windows firewall to
allow IPConfig to receive the responses for the IPConfig scan.
To check the Windows firewall is set correctly check the firewall settings.

On the network that is used for communication with the PLC, set “Incoming connections” to
"Block all connections to programs that are not on the list of allowed programs".

Firewall excep-
tions:

Windows 7/
Windows 10:

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3685

If a third party firewall is used these exceptions must be configured manually.

Either exceptions for applications can be entered: Automation Builder and IP
configuration tool must be added as application.

Or the protocol and the port number must be given (for IPConfig: UDP protocol
and port number 24576).

Trouble-shooting for firmware update
Ensure that all requirements have been considered before and during the update procedure.
Ä “Requirements:” on page 3682

This hint is only valid for Modbus devices and PROFINET devices.
If the “FW Version” field is empty after the network scan or if the firmware version has not been
updated after the update procedure, there possibly is a connection error between the device
and the executing PC.
Ping the device from the executing PC. If no connection can be established, check whether the
device and the PC are in the same subnet.

Check the
requirements

Check subnet
configuration

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3686

PC Device Result
192.168.14.71 / 255.255.255.0 192.168.14.10 / 255.255.255.0 OK

192.168.10.71 / 255.255.255.0 192.168.14.10 / 255.255.255.0 ERROR

192.168.10.71 / 255.255.0.0 192.168.14.10 / 255.255.0.0 OK

Example

Click [Scan] again to restart the network scan. If the connection is successful a newer firmware
version is displayed in the “FW Version” column.

This hint is only valid for CI52x-Modbus devices.
Check the last number of the IP address. If it is set to "0", the IP address setting for this last
number will be used from the rotary switches on the hardware device.
Example:

Automation Builder AC500 communication interface module
(rotary switch)

IP address:
192.168.14.0

IP address:
6

As a result, in the field “IP Address” the last number is set to "6":

During the firmware update of CI50x, CI51x and CI52x devices a signature check is started.
The update procedure expects a firmware update file (*.bin) and a signature file (*.bin.sig) in the
same directory. Without a signature file the signature check will fail.
Example:
Firmware update file:
C:\AC500\AC500_CI52x_Firmware_V3.2.8.bin
Signature file:
C:\AC500\AC500_CI52x_Firmware_V3.2.8.bin.sig

Check last
number of IP
address

Signature check

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3687

A timeout error may occure due to an instable network.
Solution: Keep the executing PC as near as possible to the devices that shall be updated. Avoid
network switches.

A read error may occure due to errors in the firmware update protocol.
After the firmware update the IP configuration tool reads out the status of the updated device in
order to check if the update was successful.

If an IP address is obtained by more than one device an error occures. A firmware update is not
possible.

Internal device error during the firmware update.
Solution:
Step 1: Scan again and repeat the firmware update.
Step 2: If this does not work, power cycle the device, scan again and repeat the firmware
update.

The TCP communication is not sufficient. Increase the connection quality.
Solution: Keep the executing PC as near as possible to the devices that shall be updated. Avoid
network switches.

Configuration of communication via Ethernet (TCP/IP)
Programming via Ethernet is only possible on a PC with Ethernet board and installed network.
Programming can be done via the internal (onboard) Ethernet communication module.
An application note describes the configuration of an AC500 V3 PLC for EtherNet/IP
communicationÄ Chapter 1.4.2.4 “EtherNet/IP Configurator” on page 1220.

Error: Package
timeout

Error: Unable to
read device
status

Error: IP is not
unique

Error: Error
State

Error: Can’t
connect to
device

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3688

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010825&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010825&LanguageCode=en&DocumentPartId=&Action=Launch

Enter a known PLC IP address
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box Communication Settings <...> appears.

2. Enter your PLC IP Address and click [OK].

Enter PLC IP address by scanning devices
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box Communication Settings <...> appears.

2. Click [...].

ð Dialog box Communication Settings <...> appears.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3689

3. Click [Scan], select your desired PLC and click [OK].

ð Entry is transferred to the dialog box Communication Settings <...>.

Click [OK].

4. Click to log in the “PLC_AC500_V3” project.

Enter PLC IP address by [Advanced Settings...]
If a remote gateway instead of a local one has to be used it can be configured in the [Advanced
Settings...].
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box Communication Settings <...> appears.

2. Enable checkboxUse advanced settings and click [Advanced Settings...].

ð Tab “Communication Settings” opens.

3. Check gateway or change if required.

ð Successful connection is indicated by green dot on the gateway icon.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3690

4.
Manual entry of the IP address.

Check IP adress or change if required.
5. Press ENTER to confirm changed IP address.

ð Successful communication is indicated by green dot on the PLC icon.

6. Or instead of the last two steps:

Set the IP address via a scan.

Click [Scan Network], select your desired PLC and click [OK].

ð Successful connection is indicated by green dot on the gateway icon.

7. Click to log in the “PLC_AC500_V3” project.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3691

1.6.6.2.3 Processor modules
Configure a processor module in the device tree

1. Add a processor module to your project. Ä Chapter 1.6.6.1.1.1 “Creating a new project ”
on page 3632

2. Double-click the PLC node in the device tree.

ð This will open a new window with tabs for the device configuration:

● “Communication Settings” Ä Chapter 1.4.1.20.2.8.2 “Tab 'Communication Set-
tings'” on page 840

● “PLC Settings” Ä Chapter 1.4.1.20.2.8.9 “Tab 'PLC Settings'” on page 850
● “Version information” Ä Chapter 1.6.6.1.4.1 “Version information” on page 3652
● “Statistics” Ä Chapter 1.7.2.4.2 “Statistics” on page 4053
● “Files” Ä Chapter 1.4.1.20.2.8.7 “Tab 'Files'” on page 848
● “Log” Ä Chapter 1.7.2.4.3 “Log” on page 4053
● “PLC Shell” Ä Chapter 1.6.6.4.4 “PLC shell commands” on page 3950
● “Users and Groups” Ä Chapter 1.4.1.20.2.8.13 “Tab 'Users and Groups'”

on page 860
● “Access Rights ” Ä Chapter 1.4.1.20.2.8.14 “Tab 'Access Rights'” on page 863
● “Symbol Rights” Ä Chapter 1.4.1.20.2.8.15 “Tab 'Symbol Rights'” on page 868
● “PM5xxx Hardware” Ä Chapter 1.6.6.2.3.2 “Changing the processor module type”

on page 3694
● “CPU-Parameters Parameters” Ä Chapter 1.4.1.20.2.8.3 “Tab 'Parameters'”

on page 844
● “IEC Objects” Ä Chapter 1.4.1.20.2.8.12 “Tab '<device name> IEC Objects'”

on page 859
● “I/O mapping list” Ä Chapter 1.6.6.2.13.8 “I/O mapping list” on page 3777
● “I/O-Bus I/O Mapping” Ä Chapter 1.7.2.5 “Live values in views with I/O compo-

nents” on page 4056
● “Task Deployment” Ä Chapter 1.4.1.20.2.8.17 “Tab 'Task deployment'”

on page 869
● “Applications” Ä Chapter 1.4.1.20.2.8.4 “Tab 'Applications'” on page 845
● “Backup and Restore” Ä Chapter 1.4.1.20.2.8.5 “Tab 'Backup and Restore'”

on page 846
● “Status” Ä Chapter 1.7.2.4.5 “Status” on page 4055
● “Diagnosis” Ä Chapter 1.7.1.3.4 “Device diagnosis” on page 4018
● “Diagnosis History” Ä Chapter 1.7.1.3.5 “Diagnosis history” on page 4019
● “License Information” Ä Chapter 1.6.6.2.2.2.5 “View license information”

on page 3672
● “Information” General information about the device (name, vendor, version etc.)

3. Select the “CPU-Parameters Parameters” tab to configure the parameters for the pro-
cessor module. Ä Table on page 3761

4. Use the “PM5xxx Hardware” tab for later on changes of “Terminal Base Type” or
“Processor Module Type” Ä Chapter 1.6.6.2.3.2 “Changing the processor module type”
on page 3694.

5. Select the “I/O mapping list” tab to create mapping variables with better usability sup-
port compared to the tree structured view. Ä Chapter 1.6.6.2.13.8 “I/O mapping list”
on page 3777

6. Select the “Backup and Restore” tab to create a backup or restore the project. Ä Chapter
1.4.1.20.2.8.5 “Tab 'Backup and Restore'” on page 846

7. Select the “Diagnosis” tab to know what errors have occurred in the project. Ä Chapter
1.7.1.3.4 “Device diagnosis” on page 4018

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3692

Parameter Default Value Description
Error LED On On The error LED lights up for errors of all

classes, no fail-safe function activated.

Off by E4 Warnings (E4) are not indicated by the
error LED, no fail-safe function activated.

Off by E3 Warnings (E4) and minor errors (E3) are
not indicated by the error LED, no fail-safe
function activated.

POU control Control LED ERR with POU PmErrLedSet

Check battery On On The presence of the battery and the bat-
tery status are checked. If no battery is
available or the battery is empty, a warning
(E4) is generated and the ERR LED lights
up.

Off The presence of the battery is not
checked. No warning (E4) is generated.
The LCD display "Batt" (triangle) can not
be acknowledged! This also applies if a
battery is installed but empty.

Stop on error
class

Diagnosis of
at least error
class 2

Diagnosis of at
least error
class 2

In case of a fatal or severe error (E1-E2),
the user program is stopped.

Diagnosis of at
least error
class 3

In case of a fatal, severe or minor error
(E1-E3), the user program is stopped.

Diagnosis of at
least error
class 4

In case of a fatal, severe or minor error
(E1-E3) or a warning (E4) the user pro-
gram is stopped.

Diagnosis - Add
PLC name to node
name

Off Off Diagnosis - Add PLC name to node name.

On

PLC behavior after
voltage dip

Halt Halt Behavior of the PLC after short voltage
dip: reboot or halt.Reboot

Diagnosis history On On Enable the diagnosis history.

Off Disable the diagnosis history.

Max. Diagnosis
history entries

1000 1000 Max. number of entries kept by the diag-
nosis history.

Missed cycle
behavior

Next Next Skip the current cycle and start task in
time on next cycle.

ASAP Start the task immediately.

Communication
Schema

Default Default Balanced priority for communication
via communication modules (CMs) and
onboard Ethernet communication.

Communica-
tion modules

Priority and high performance for commu-
nication module (CM) based communica-
tion via sync tasks. Lower priority for
onboard Ethernet and local I/O bus.

Onboard
Ethernet

Priority for onboard Ethernet communica-
tion (e.g. via Modbus TCP). Lower pri-
ority for communication via communication
modules (CMs).

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3693

Parameter Default Value Description
Real time
onboard
Ethernet

Very high priority for onboard Ethernet
communication (e.g. EtherCAT PROFINET
Ethernet). Low priority for communication
via communication modules (CMs).

Automated reboot
after E2 error

Off Off Not automated reboot after E2 error.

On Automated reboot after E2 error.

Changing the processor module type
In a project, you can change the target system by changing the type of processor module or
terminal base type. If possible, the device configuration of fieldbusses and interfaces is kept and
switched over to the device configuration of the new module.
Target change options:
● between platforms: from V2 platform to V3 platform (and vice versa)
● between module types: from AC500 (standard) to AC500-eCo (and vice versa)
● a combination of changed platform and changed module type

Target change from a V2 processor module to a V3 processor module
Target change options:

● AC500 V2 processor module Ü AC500 V3 processor module
● AC500 V2 processor module Ü AC500-eCo V3 processor module
● AC500-eCo V2 processor module Ü AC500-eCo V3 processor module
● AC500-eCo V2 processor module Ü AC500 V3 processor module

1. Close CODESYS.
2. Double-click the PLC_AC500_V2 <...> node and open the “PM5<...> Hardware” tab.
3. Enable “Change to AC500 V3 PLC” and select the desired V3 processor module from the

“PM5xx Type” drop-down list.

4. Click [Create V3 PLC].

ð The new V3 processor module is displayed in the navigation tree.

ð Change the node name of the processor module, if desired.

Procedure:

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3694

In case of a target change from AC500-eCo V2 to AC500-eCo V3, the I/O bus
and Ethernet configuration is kept.

Target change from a V3 processor module to another V3 processor module
Target change options:

● AC500 V3 processor module Ü AC500 V3 processor module
● AC500 V3 processor module Ü AC500-eCo V3 processor module
● AC500-eCo V3 processor module Ü AC500 V3 processor module
● AC500-eCo V3 processor module Ü AC500-eCo V3 processor module

1. Close CODESYS.
2. Double-click the PLC_AC500_V3 <...> node and open the “PM5<...> Hardware” tab.
3. Select the desired V3 processor module from the “PM5xx Type” drop-down list.

Fig. 310: Change_Hardware_V3

Procedure:

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3695

4. Ensure the correct “Terminal Base Type” is selected and click [Change PM / TB type].

ð If possible, the device configurations from the previous processor module will be kept
and switched over to the new processor module.
The device configurations that cannot be kept are listed in a prompted information
dialog.

By default, all device configurations which cannot be switched over will be copied to
a "device pool" section in the navigation tree (option “Copy all objects that cannot
be added to the new PLC into a device pool for further access”). If required, this
backuped configuration can be used in another project or in another processor module
configuration.
If the checkbox is deactivated all device configurations that cannot be switched will be
lost after the execution of the target change.

The configuration of the onboard I/Os, the option board slots and the onboard
RTC cannot be changed-over to the new module.

The configuration of COM1, CAN and the I/O bus cannot be changed-over to
the new module. Depending on the selected target, also the I/O bus configura-
tion and ETH2 configuration cannot be switched.

ETH1 configuration is kept even if the configured protocols are not allowed for
the selected AC500-eCo V3 PLC. In this case error messages are displayed in
the messages window.

Target change
from AC500-eCo
V3 to AC500 V3

Target change
from AC500 V3
to AC500-eCo
V3

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3696

Libraries which are not used anymore are not deleted with the target change.
Libraries of option boards are kept in the Library Manager even if no longer
available at the target module.

Changing the processor module type for AC500-eCo V3 CPU

It is not possible to change from an AC500 V3 processor module to an AC500-
eCo V3 processor module!

Changing an AC500-eCo V3 processor module to another AC500-eCo V3 pro-
cessor module is possible and the same limitation as listed before are applying,
only the available or possible feature from the new processor module will be
kept from the old processor module.

Close CODESYS.
1. Double-click the PLC_AC500_V3 <...> node.

2. Open the “PM50xx Hardware” tab and select the new “PM50xx Type” from the drop-down
list.

Parameters of the processor module

Automated reboot after E2 error
The parameter “Automated reboot after E2 error” allows to set the behavior of the CPU in case
of severe errors (class E2).

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3697

If the default setting “Off” is used, no automated reebot after an E2 error is performed.
If the setting “On” is used, an automated reebot after an E2 error is performed.

PLC behaviour after voltage dip
The parameter “PLC behaviour after voltage dip” allows to set the behavior of the CPU in case
of short voltage dips.

If the default setting “Halt” is used, the CPU is changed to STOP mode if a short voltage dip >10
ms occurs. A new powercycle is required.
If the setting “Reboot” is used, CPU will reboot after power supply has recovered to nominal
value.

Floating point values
A calculation with floating points can lead to the following values:

If a calculation results in an underrun, the value is set to 0 (result near 0, but not presentable).
Depending on the sign bit, it can be a positive zero or a negative zero. The operator "=" of -0
and 0 returns TRUE.

If a calculation results in an overrun, the value is set to Infinity (the result is not presentable).
Depending on the sign bit, it can be a positive infinity (Infinity) or negative infinity (-Infinity).
If Infinity is converted into another data type it results in the maximum value of the other data
type (e.g.. conversion into DWORD with REAL_TO_DWORD: 16#FFFFFFFF, into DINT with
REAL_TO_DINT: 16#7FFFFFFF).
If -Infinity is converted into another data type it results in the maximum value of the other data
type (e.g.. conversion into DWORD with REAL_TO_DWORD: 16#00000000, into DINT with
REAL_TO_DINT: 16#80000000).

0 (zero)

Infinity

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3698

Except for:
TRUE := REAL_TO_BOOL(Infinity);
'#Inf' := REAL_TO_STRING(Infinity);
'-#Inf' := REAL_TO_STRING(-Infinity);

Infinity -Infinity
Infinity := 1.0 / 0.0 -Infinity := -1.0 / 0.0

Infinity := Infinity + Infinity -Infinity := -Infinity -Infinity

Infinity := Infinity + 1.0 -Infinity := -Infinity + 1.0

Infinity := LREAL_TO_REAL(Infinity) -Infinity := LREAL_TO_REAL(-Infinity)

Examples:

If a calculation results in an undefined value the result is set to NaN (Not a Number). The result
of each calculation with NaN is NaN. The operators "<", "<=", ">" and ">=" return FALSE if either
or both operands are NaN.
Operator "=" returns FALSE if one operand is NaN.
Operator "<>" returns TRUE if one operand is NaN.
If NaN is converted into another data type the result is 0.
Except for:
TRUE := REAL_TO_BOOL(NaN);
'#NaN' := REAL_TO_STRING(NaN);

NaN := SQRT(-2.0)
NaN := 0.0 / 0.0
NaN := Infinity -Infinity
NaN := 0.0 * Infinity
NaN := Inifnity / Infinity

Examples:

The result of an operation can be checked with the following program parts:

Check for NaN (REAL): Check for NaN (LREAL):
rX: REAL;
IF (rX <> rX) THEN
(* rX is a NaN *)
...;
END_IF;

lrX: LREAL;
IF (lrX <> lrX) THEN
(* lrX is a NaN *)
...;
END_IF;

NaN

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3699

Check for Infinity (REAL): Check for Infinity (LREAL):
Infinity is represented with sign bit 0, exponent of all 1s and a fraction of all 0s.
-Infinity is represented with sign bit 1, exponent of all 1s and a fraction of all 0s.
rX: REAL;
prX: POINTER TO REAL;
pdwX: POINTER TO DWORD;
prX := ADR(rX);
pdwX := prX;
IF (pdwX^ = 16#7F800000) THEN
(* rX is Infinity *)
...;
END_IF;
IF (pdwX^ = 16#FF800000) THEN
(* rX is -Infinity *)
...;
END_IF;

lrX: LREAL;
plrX: POINTER TO LREAL;
plwX: POINTER TO LWORD;
plrX := ADR(lrX);
plwX := plrX;
IF (plwX^ = 16#7FF0000000000000)
THEN
(* lrX is Infinity *)
...;
END_IF;
IF (plwX^ = 16#FFF0000000000000)
THEN
(* lrX is -Infinity *)
...;
END_IF;

1.6.6.2.4 AC500-eCo V3 onboard I/Os
According to the used AC500-eCo V3 processor module, the onboard I/Os are different and the
functionality of the I/Os are adapted to the processor module type.

Onboard I/O combination PM5012-x-
ETH

PM5032-x-
ETH

PM5052-x-
ETH

PM5072-
T-2ETH

6 DI, digital input 24 V DC / 4
DO, digital output transistor 24

V DC / 0.5 A

X

6 DI, digital input 24 V DC / 4
DO, digital output relay 240 V

AC / 2 A

X

12 DI, digital input 24 V DC /
8 DO, digital output transistor
24 V DC / 0.5 A / 2 DC, digital
in/out configurable 24 V DC,

24 V DC / 0.5 A

 X X X

12 DI, digital input 24 V DC /
6 DO, digital output relay 240
V AC / 2A / 2 DC, digital in/out

configurable 24 V DC, 24 V
DC / 0.5 A

 X X

1.6.6.2.5 Configure the onboard I/O channel
The onboard I/Os support the following channels functions according to the processor module
type:

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3700

Onboard I/O
type

Channel func-
tion

PM5012-T-ETH PM5012-R-ETH Channel name
when available

Digital input
channel total

thereof as

Digital input 6 6 DI0 … DI5

Fast input x,
max. 5 kHz

Digital input 6 6 DI0 … DI5

Interrupt input 4 4 DI0 … DI3

Fast counter 2 2 DI4 … DI5

Digital output
channel total

thereof as

Digital output 4 4 DO0 … DO3

Fast output x,
max. 5 kHz

Digital output 4 4 DO0 … DO3

Limit switch 4 - DO0 … DO3

PWM output 4 - DO0 … DO3

Onboard I/O
type

Channel func-
tion

PM5032-T-ETH
PM5052-T-ETH
PM5072-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

Channel name
when available

Digital input
channel total

thereof as

Digital input 12 12 DI0 … DI11

Fast input x,
max. 5 kHz

Digital input 4 4 DI0 … DI3

Interrupt input 4 4 DI0 … DI3

Touch/Reset 4, together with
dedicated
encoder

4, together with
dedicated
encoder

DI0 … DI3

Fast input x,
max. 100 kHz

Digital input 4 4 DI4 … DI7

Interrupt input 2, with A/B tracks 2, with A/B tracks DI4 … DI7

Fast counter 4 4 DI4 … DI7

Standard input Digital input 4 4 DI8 … DI11

Digital output
channel total

thereof as

Digital output 8 6 DO0 … DO7
DO0 … DO5

Fast output x,
max. 5 kHz

Digital output 4 - DO0 … DO3

Limit switch 4 - DO0 … DO3

PWM output 4 - DO0 … DO3

Fast output x,
max. 100 kHz

Digital output 4 - DO4 … DO7

Limit switch 4 - DO4 … DO7

PWM output 4 - DO4 … DO7

PTO output 2, pair of output - DO4 … DO7

Digital in/output
configurable
channel total

thereof as

Digital in/output 2 2 DC12 … DC13

Standard dig.
channel

Digital In/output 2 2 DC12 … DC13

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3701

Onboard I/O
type

Channel func-
tion

PM5032-T-ETH
PM5052-T-ETH
PM5072-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

Channel name
when available

Fast output, max.
100 kHz

Limit switch - 2 DC12 … DC13

PWM output - 2 DC12 … DC13

PTO output - 2 DC12 … DC13

For all CPU versions the configuration of the input channels is the same. The configuration of
the output channels is only available on CPU version with transistor output channels:

Version with relay outputs, same configuration for the input channels, no configuration for the
output channels relay:

The following parameter can be configured:

Onboard I/O
type

Parameter Channel
name

Default
value

Value Description

Digital inputs Input X, input
delay

Channel 0..5 8 ms No delay Configures input
with no delay

1 ms Configures 1 ms
input delay

8 ms Configures 8 ms
input delay

32 ms Configures 32 ms
input delay

PM5012-x-ETH
Basic CPU

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3702

Onboard I/O
type

Parameter Channel
name

Default
value

Value Description

Input X,
channel con-
figuration

Channel 0..3 Input/Inter-
rupt

Input/Inter-
rupt

Configures the
channel as normal
digital or interrupt
input

The configu-
ration /func-
tion of the
following
channels is
realized
using func-
tion blocks in
the program

Channel 4..5 Input Input Configures the
channel as normal
digital input

Encoder 0
track-A or B

Configures the pair
of channels as
encoder input track
A or B. When that
value is configured
then both channels
are reserved for that
functionality

Forward
counter

Configures the
channel as forward
counter

The configuration of output channel is only available on the CPU with transistor outputs
Digital out-
puts

Output X,
channel con-
figuration

Channel 0..3 Output Output Configures the
channel as digital
output

Limit switch Configures the
channel as limit
switch output

PWM Configures the
channel as PWM
output

For all CPU versions the configuration of the input channels is the same. The configuration of
the output channels is only available on CPU version with transistor output channels, the digital
configurable In/Output channels are present on both version (transistor or relay output) but with
different features configurable:

PM5032-x-ETH,
PM5052-x-ETH
Standard CPU

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3703

For the CPU with relay outputs, the digital configurable Input/Output channels have specific
functionalities:

Onboard I/O
type

Parameter Channel
name

Default
value

Value Description

Digital inputs Input X, input
delay

Channel
0..11

8 ms No delay Configures input
with no delay

1 ms Configures 1 ms
input delay

8 ms Configures 8 ms
input delay

32 ms Configures 32 ms
input delay

Fast inputs
max. 5 kHz

Input X,
channel con-
figuration

Channel 0..1 Input/Inter-
rupt

Input/Inter-
rupt

Configures the
channel as normal
digital or interrupt
input

Touch/Reset
0

Configures the pair
of adjacent chan-
nels as Touch/Reset
inputs together with
encoder 0

Channel 2..3 Input/Inter-
rupt

Input/Inter-
rupt

Configures the
channel as normal
digital or interrupt
input

Touch/Reset
1

Configures the pair
of adjacent chan-
nels as Touch/Reset
inputs together with
encoder 1

Fast inputs
max.
100/200 kHz

The function
of the fol-
lowing chan-
nels is real-
ized using
function
blocks in the
program

Channel 4..5 Input Input Configures the
channel as normal
digital input

Max. fre-
quency 200
kHz

When that
value is con-
figured then
both chan-
nels are
reserved for
that function-
ality

Encoder 0
track-A or B

Configures the pair
of adjacent chan-
nels as encoder 0
input track A or B.

Max. fre-
quency 100
kHz

 Forward
counter

Configures the
channel as forward
counter

Fast inputs
max.
100/200 kHz

 Channel 6..7 Input Input Configures the
channel as normal
digital input

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3704

Onboard I/O
type

Parameter Channel
name

Default
value

Value Description

Max. fre-
quency 200
kHz

When that
value is con-
figured then
both chan-
nels are
reserved for
that function-
ality

Encoder 1
track-A or B

Configures the pair
of adjacent chan-
nels as encoder 1
input track A or B.

 Touch/Reset Configures the pair
of adjacent chan-
nels as Touch/Reset
inputs together with
encoder 0

Max. fre-
quency 100
kHz

 Forward
counter

Configures the
channel as forward
counter

The following configuration of output channel is only available on the CPU with tran-
sistor
Fast outputs,
max. 5 kHz

Output X,
channel con-
figuration

Channel 0..3 Output Output Configures the
channel as digital
output

The configu-
ration / func-
tion of the
following
channels is
realized
using func-
tion blocks in
the program

Limit switch Configures the
channel as limit
switch output

PWM Configures the
channel as PWM
output

Fast outputs
max.
100/200 kHz

Output X,
channel con-
figuration

Channel 4..7 Output Output Configures the
channel as digital
output

The function
of the fol-
lowing chan-
nels is real-
ized using
function
blocks in the
program

Limit switch Configures the
channel as limit
switch output

Max. fre-
quency 100
kHz

PWM Configures the
channel as PWM
output

Max. fre-
quency
100/200 kHz

Depending
on the OBIO-
MotionPTO
or OBIOMo-
tionPWM
function
block used

PTO Configures the pair
of adjacent chan-
nels as PTO output

Digital con-
figurable
input/outputs

Output X,
channel con-
figuration

Channel
DC12..DC13

Input/Output Input/Output Configures the
channel as digital
input/output

The following configuration of output channel is only available on the CPU with relay
outputs

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3705

Onboard I/O
type

Parameter Channel
name

Default
value

Value Description

Digital con-
figurable
input/outputs

Output X,
channel con-
figuration

Channel
DC12..DC13

Input/Output Input/Output Configures the
channel as digital
input/output

The function
of the fol-
lowing chan-
nels is real-
ized using
function
blocks in the
program

Limit switch Configures the
channel as limit
switch output

Max. fre-
quency 100
kHz

 PWM Configures the
channel as PWM
output

Max. fre-
quency
100/200 kHz

Depending
on the OBIO-
MotionPTO
or OBIOMo-
tionPWM
function
block used

PTO Configures the pair
of channels as PTO
output

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3706

1.6.6.2.6 Mapping of the I/O channels
Onboard I/O variable mapping

1. Double-click “OnBoard_IO” in the device tree.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3707

ð A tab opens in the editor view.

2. Select “12DI/8DO-T/2DC I/O Mapping”.

ð Here, you will map variable names (symbols) for the channels you will need in the
program.

The suggested name convention is based on "Hungarian notation". A name prefix is describing
variable type: e.g., "x" = variable of type BOOL, "w" = WORD, "i" = INT (integer) etc. This
increases the code readability and is helpful for program analysis.

Handle the digital input variables

1. Open the list of the digital inputs.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3708

2. Fill in the variable names:

Channel Type Variable
Digital input DI0 BOOL xDI_00_OnBoard_IO_I0

Handle the digital output variables

1. Open the list of the digital outputs.
2. Fill in the variable names:

Channel Type Variable
Digital output DO0 BOOL xStartDrilling1

1.6.6.2.7 Configuration of the onboard I/Os of AC500-eCo V3 PLC
Digital inputs from the onboard I/Os

Depending on the processor module used, several configurations are possible for the onboard
I/Os mostly different per group of channels.

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

Digital inputs PM5012-x-
ETH

I0…I3 Input/Interrupt Not needed Input delay
can be some-
times config-
ured
according to
channels type

I4...I5 Input

PM5032-x-
ETH,
PM5052-x-
ETH,
PM5072-
T-2ETH

I0…I3 Input/Interrupt Not needed Input delay
can be some-
times config-
ured
according to
channels
type, for the
PLC with
relay outputs,

I4…I7 Input

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3709

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

I8...I11 - (Always
inputs)

the digital
configurable
channels
have some
other configu-
rable features.

C12…C13 Input/Output

Fast counters in the onboard I/Os
General details on fast counters see (System Technology) Ä Chapter 1.6.5.1.13.2 “Fast counter
in AC500-eCo V3 (Onboard I/O in PM50xx)” on page 3576

Details on the configuration see Ä Chapter 1.6.6.2.5 “Configure the onboard I/O channel”
on page 3700

Depending on the configuration for the input channels of the onboard I/O from the processor
module different functionality are possible which must be used together with the dedicated
function block of the user program.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3710

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

Forward
counter

PM5012-x-
ETH

I0…I3 Not relevant
for the func-
tionality

OBIOFor-
wardCounter

Up to 2 for-
ward counters
with up to 5
kHz can be
used, the
other inputs
can be used
for other pur-
pose

I4...I5 Forward
counter

PM5032-x-
ETH,
PM5052-x-
ETH,
PM5072-
T-2ETH

I0…I3 Not relevant
for the func-
tionality

OBIOFor-
wardCounter

Up to 4 for-
ward counters
with up to 100
kHz can be
used, the
other inputs
can be used
for other pur-
pose

I4…I7 Forward
counter

I8...I11 Not relevant
for the func-
tionality

A/B Encoder in the onboard I/Os
Depending on the configuration for the input channels of the onboard I/O from the processor
module different functionality are possible which must be used together with the dedicated
function block of the user program.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3711

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

A/B encoder 5
kHz with
touch/reset
inputs

PM5012-x-
ETH

I0 Touch/Reset0 OBIOEnco-
derCounter

The function-
ality uses the
4 digital
inputs, the
other can be
used for other
purpose

I1 Touch/Reset0

I2…I3 Not relevant
for the func-
tionality

I4 Encoder 0
Track A

I5 Encoder 0
Track B

Up to 2x A/B
encoders
200kHz pos-
sible with
touch/reset
standard
inputs

PM5032-x-
ETH,
PM5052-x-
ETH,
PM5072-
T-2ETH

I0 Touch/Reset0 OBIOEnco-
derCounter

The function-
ality uses up
to the 4 digital
fast inputs
200 kHz and
the 4x 5 kHz,
the other
inputs can be
used for other
purpose.
Select
encoder x
track A for an
input (I4 or I7)
automatically
selects the
adjacent input
for B track

I1 Touch/Reset0

I2 Touch/Reset1

I3 Touch/Reset1

I4 Encoder 0
Track A

I5 Encoder 0
Track B

I6 Encoder 1
Track A

I7 Encoder 1
Track B

I8...I11 Not relevant
for the func-
tionality

One A/B
encoder 200
kHz with
touch/reset

PM5032-x-
ETH,
PM5052-x-
ETH,
PM5072-
T-2ETH

I0 Not relevant
for the func-
tionality

OBIOEnco-
derCounter

The function-
ality uses the
4 digital fast
inputs 200
kHz, the other
inputs can be
used for other
purpose.
Select
encoder x
track A for the
input (I4)
automatically
selects the
adjacent input
for B track

I1 Not relevant
for the func-
tionality

I2 Not relevant
for the func-
tionality

I3 Not relevant
for the func-
tionality

I4 Encoder 0
Track A

I5 Encoder 0
Track B

I6 Touch/Reset

I7 Touch/Reset

I8...I11 Not relevant
for the func-
tionality

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3712

Configuration of interrupt inputs
Depending on the configuration for the input channels of the onboard I/O from the processor
module different functionality are possible which must be used together with the dedicated
function block of the user program.

Example with
one encoder

Example with
two encoders

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3713

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

Interrupt
inputs

PM5012-x-
ETH

I0…I3 Input/Interrupt OBIO
InterruptInfo
OBIOInter-
ruptPara

Up to 4 inter-
rupt input
channels can
be used, the
other inputs
can be used
for other pur-
pose

I4...I5 Not relevant
for the func-
tionality

PM5032-x-
ETH,
PM5052-x-
ETH,
PM5072-
T-2ETH

I0…I3 Input/Interrupt OBIO
InterruptInfo
OBIOInter-
ruptPara

Up to 4 inter-
rupt input
channels can
be used, the
other inputs
can be used
for other pur-
pose

I4…I11 Not relevant
for the func-
tionality

Creating an interrupt task
After configuring the parameter, the user needs to create a new task with the “Type” set to
“External” and the “External event” set to “OnBoard_Binary_Input”.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3714

Please see the chapter how to use the function in the system technology…

Configuration of digital outputs
According to the processor module type, the digital outputs have several functionalities. To use
them as digital output and as default configuration the following configuration is needed:

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

Digital Out-
puts

PM5012-x-
ETH

O0…O3 Output Not needed -

PM5032-x-
ETH,
PM5052-x-
ETH,
PM5072-
T-2ETH

O0…O3 Output Not needed No other con-
figuration
neededO4…O7 Output

C12…C13 Input/Output

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3715

Configuration of outputs as limit switch
The AC500-eCo V33 processor modules provide according to the output variants transistor
or relay some output which can be used as limit switch. For the process modules with relay
outputs, only the digital configurable channels provide this functionality.

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

Limit switch PM5012-x-
ETH

O0…O3 Limit Switch OBIO-
LimitSwitch

Up to 4 limit
switches

PM5032-T-
ETH,
PM5052-T-
ETH,
PM5072-
T-2ETH

O0…O3 Limit Switch OBIO-
LimitSwitch

Up to 8 limit
switchesO4…O7 Limit Switch

C12…C13 Not relevant
for the func-
tionality

PM5032-R-
ETH,
PM5052-R-
ETH

O0…O2 Not relevant
for the func-
tionality

OBIO-
LimitSwitch

Relay outputs
without other
functions

O3…O5 Not relevant
for the func-
tionality

C12…C13 Limit Switch Up to 8 limit
switches

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3716

Operating the limit switch output with user program
The OBIOLimitSwitch function block of the library must be used to operate the outputs with help
of user program.

Configuration of PWM outputs (Pulse Width Modulation)
The AC500-eCo V3 processor modules provide up to 8 PWM output channels with a maximum
frequency of 20 KHz. The parameter of PWM output channel of onboard I/O must be configured
before it can be used. User should take these steps to configure the PWM output function.

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

PWM outputs PM5012-x-
ETH

O0…O3 PWM OBIOPwm Up to 4 PWM
100 Hz

PM5032-T-
ETH,
PM5052-T-
ETH,
PM5072-
T-2ETH

O0…O3 PWM OBIOPwm Up to 4 PWM
with 100 Hz
and 4 PWM
30 kHz

O4…O7 PWM

C12…C13 Not relevant
for the func-
tionality

PM5032-R-
ETH,
PM5052-R-
ETH

O0…O2 Not relevant
for the func-
tionality

OBIOPwm Relay outputs
without other
functions

O3…O5 Not relevant
for the func-
tionality

C12…C13 PWM Up to 2 PWM
30 kHz only
on these
channels

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3717

Operating the PWM output with user program
The OBIOPwm function block of the library must be used to operate the PWM outputs with help
of user program.

Configuration of PTO outputs (HW fast outputs for Pulse Train Output)
TheAC500-eCo V3 processor modules provide up to 2 PTO hardware dedicated output chan-
nels with a maximum frequency of 200 kHz. The parameter of PTO output channel of onboard
I/O must be configured before it can be used. User should take these steps to configure the
PTO output function.
The PTO outputs can be used with 2 different modes either Pulse / Direction or Cc/Ccw mode.
Please refer to the chapter…
The PTO channels are always requiring 2 consecutive output channels for the function.

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

PTO outputs PM5012-x-
ETH

O0…O3 Not possible - No PTO avail-
able

PM5032-T-
ETH,
PM5052-T-
ETH,
PM5072-
T-2ETH

O0…O3 Not relevant
for the func-
tionality

OBIOPulse-
TrainOutput
OBIOMo-
tionPTO

Up to 2 PTO
200 Hz with
Pulse/Direc-
tion or
Cc/Ccw modeO4…O7 PTO -> auto-

matically for
O5 also

C12…C13 PTO -> auto-
matically for
O7 also

PM5032-R-
ETH,
PM5052-R-
ETH

O0…O2 Not relevant
for the func-
tionality

OBIOPulse-
TrainOutput
OBIOMo-
tionPTO

Up to 2 PTO
200 Hz with
Pulse/Direc-
tion or
Cc/Ccw modeO3…O5 Not relevant

for the func-
tionality

C12…C13 PTO -> auto-
matically for
C13 also

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3718

Operating the PTO hardware output with user program
The OBIOPulseTrainOutput function block of the library can be used to operate the PTO outputs
with help of user program.This FB allows to control the output in PTO mode. The OBIOMo-
tionPTO function block is a dedicated Motion control block to realize point-to-point movement or
velocity control of a motion axis. See the dedicated chapter of the system Info…

Configuration of SW PTO (PWM) outputs (HW fast outputs and standard outputs with software dedicated
function block)

The AC500-eCo V3 processor modules could also provide up to 4 PTO (PWM) software output
channels with a maximum frequency of 100 kHz. To use that mode, the parameter of output
channel of Onboard I/O must be configured before it can be used. User should take these steps
to configure this special PTO output function. The PTO outputs channels can be only used as
Pulse / Direction mode. Please refer to the chapter…
The PTO channel is using a digital fast output configured as PWM output to generate the Pulse
output and a standard digital output to indicate the direction. A dedicated PTO motion block will
then control the channel to realize the functionality.
Up to 4 PTO can be then provided each using 2 digital outputs.
A mixed configuration of one HW PTO channel (e.g. Output 04..05) up to 200 kHz and Pulse/
Direction or Cc/Ccw mode together with up to 2 other software PTO Channels (e.g. O6, O7 +
dedicated output) up to 100 kHz and only Pulse/Direction mode is then possible.
To achieve such a software PTO mode the following channel configuration must be done.

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

PTO outputs
(HW fast out-
puts PWM
and software
PTO)

PM5012-x-
ETH

O0…O3 Not possible - No PTO avail-
able

PM5032-T-
ETH,
PM5052-T-
ETH,
PM5072-
T-2ETH

O0 Output OBIOMo-
tionPWM

The 4 soft-
ware PTO
channels will
use the fast
outputs O4…
O7 PWM to
generate the
Pulse signal
of each SW
PTO and the

O1 Output

O2 Output

O3 Output

O4 PWM

O5 PWM

O6 PWM

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3719

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

O7 outputs O0…
O3 will gen-
erate the
direction sig-
nals

PWM

C12…C13 Not relevant
for the func-
tionality

PM5032-R-
ETH,
PM5052-R-
ETH

O0…O2 Not relevant
for the func-
tionality

OBIOMo-
tionPWM

Relay outputs
without other
functions

O3…O5 Not relevant
for the func-
tionality

C12…C13 PWM Theoretically
possible up to
2 software
PTO 100 Hz
with Pulse/
Direction but
need an addi-
tional digital
ouput module
for the direc-
tion signal

Operating the software PTO output channels with user program
The OBIOMotionPWM function block is a dedicated motion control block to realize point-to-point
movement or velocity control of a motion axis. This block will then control the output channels
as PTO mode Pulse/Direction only up to 100 kHz. See the dedicated chapter of the system
Info…

1.6.6.2.8 Option board for processor modules PM50xx
Depending on processor module type, up to 3 option board slot are available and for each
several option board modules are available.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3720

Select the option board

To add an option board on the processor module, select the desired OptionSlot to be configured
and attach the needed option board from the list.
There is no limitation on the number of same option board used on the CPU, no dedicated slot
for a specific function and no specific order to place the option board module.
Depending on the type of option board selected and attached to the CPU some further configu-
ration of channels or function may be needed.

Attach an option board for digital I/O extension

Just select and attached the module, no other channel configuration is needed. The I/O chan-
nels are directly mapped in the I/O mapping and variables can then be defined.

Attach an option board for COMx serial communication
The desired serial interface option board type for the desired option board slot must be selected
and added.
The option board may require some other channel configuration according to your need.
Following example shows how to add a TA5142-RS485I isolated interface and the desired
protocol.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3721

The desired protocol has also to be added according to your needs, e.g. Modbus RTU client:

The parameter for the serial interface can also be adapted like baudrate, data bit, stop bit or
parity.

1.6.6.2.9 Onboard Ethernet configuration
Onboard Ethernet is provided for device types with -ETH extension.

Configuration of the IP settings with the IP configuration tool
The IP address for AC500 devices can be set or changed in Automation Builder using
● the IP configuration tool which is described in the following.
● the 'Communication Settings'. Ä Chapter 1.6.6.2.2.4.3 “Configuration of communication via

Ethernet (TCP/IP)” on page 3688

As an alternative the IP address can be changed at the hardware device itself. Ä Chapter
1.6.5.1.6.5 “Description of the function keys” on page 3491

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3722

The IP configuration tool can be used
● to set or change the IP address of devices.
Ä Chapter 1.6.6.2.9.1.2.2 “Changing the IP address” on page 3727

● to scan the network for available hardware devices.
Ä Chapter 1.6.6.2.9.1.2.1 “Network scan” on page 3725

● to update the firmware of devices.
This functionality is only supported if the IP configuration tool is used stand-alone.
Ä Chapter 1.6.6.2.9.1.2.3 “Firmware update” on page 3728

● to activate certain functionality on hardware devices.
This feature is only available on AC500 V3 devices.
Ä Chapter 1.6.6.2.9.1.2.4 “Blink functionality” on page 3732

The IP configuration tool is part of Automation Builder and can be called via “Tools è IP-
Configuration”.
Further the IP configuration tool can be used stand-alone without an Automation Builder appli-
cation running. The stand-alone variant requires a separate installation via the Installation
Manager Ä Chapter 1.6.6.2.9.1.1 “Stand-alone installation” on page 3723.
After the installation, the IP configuration tool is started via .exe file / desktop icon.

Some functionality is only supported if the IP configuration tool is used stand-
alone, e.g. for firmware updates for communication interface devices.

Stand-alone installation

The IP configuration tool is part of Automation Builder and can be called via
“Tools è IP-Configuration”. A separate installation is only required if the IP
configuration tool shall be used stand-alone.

The IP configu-
ration tool:

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3723

1. Open the Installation Manager in Automation Builder: “Tools è Installation Manager”.
2. Close all other instances of Automation Builder as only one instance of the program can

be executed at a time.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3724

3. Click “Modify” and select the “IP Configuration Tool” from the structure tree.

4. Click “Continue” to start the installation.

ð After a successful installation the IP configuration tool is available as stand-alone tool
(.exe).

ð To start the IP configuration tool, click the new created desktop icon.

Using the tool functions
Network scan

With a network scan all devices that have been found in the network by the scan process are
listed, i.e. ABB devices such as AC500 processor modules, AC500 communication interface
modules or ABB Drives.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3725

1. Start the IP configuration tool in Automation Builder (“Tools è IP-Configuration”) or start it
stand-alone (.exe).

2. The “IP-Configuration” dialog opens. Define the device type for the network scan by
selecting the desired option under “Scan Protocol”:
● “ABB Net config protocol”:

Use this option for AC500 devices such as processor modules, CI5xx-Modbus devices
or ABB Drives. The device(s) to be scanned must be connected to the PC via a direct
Ethernet connection.

● “Profinet Dynamic Configuration Protocol (DCP)”:
Use this option for PROFINET communication interface modules. The device(s) to
be scanned must be connected to the PC via a direct Ethernet connection (not via
CM579).
For the scan, a NPcap driver needs to be installed separately.
Ä Step 4 on page 3730

● “EtherCAT”:
Use this option for EtherCAT communication interface modules. The Ethernet cable
must be connected directly to the first EtherCAT slave device of the EtherCAT
fieldbus. Ensure that no EtherCAT master device is available on the bus when a scan
is performed.
“Emergency” option: Enable this option to check on failures in the EtherCAT assembly
during the scan process, i.e. a frame loss or interchanged ports. Errors are displayed.
For the scan, a NPcap driver needs to be installed separately.
Ä Step 4 on page 3730

3. Click [Scan] to start the scan process.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3726

4. All devices that have been found in the network are listed including hardware and connec-
tion details. The following details can be changed under “IP settings”:

ð ● “IP Address”:
Current IP address of the device.

● “Conf. IP Address”:
Configured IP address of the device. A changed IP address will update this
column.

● “FW Version”:
Current installed firmware version of the device. This field is visible not until a first
network scan. If this field is still empty after a network scan, check on connection
errors.
Ä Chapter 1.6.6.2.9.1.3.1 “Trouble-shooting for firmware update” on page 3733

The IP address of some devices, e.g. EtherCAT devices cannot be
changed.

Changing the IP address
1. In order to change the IP address of devices perform a network scan.

Ä Chapter 1.6.6.2.9.1.2.1 “Network scan” on page 3725

2. Select a device from the list and select the appropriate protocol under “Scan protocol”.
“DHCP” or “BOOTP” option: If required, DHCP or BOOTP can be used to receive the IP
address for the device from the server.
“IP address”, “subnet mask”, “Std. gateway”: Use these fields to change the IP address
settings including the settings for the subnet mask and the standard gateway. Ensure that
the combination of connection settings is correct.
Ä “Check subnet configuration” on page 3733

Note for CI52x-Modbus devices
Consider the behavior of CI52x-Modbus devices if the last number of the
IP address is set to "0".

Ä “Check last number of IP address” on page 3734

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3727

3. Change the settings for the IP configuration and click [Send settings] to transmit the data
to the device.

ð
Note for PROFINET devices
The device name of PROFINET devices can be edited. If changing the
name, ensure the following rules apply:

– Labels must be separated by "."
– Total length: 1 to 240
– Label length: 1 to 63
– Labels can consist of characters [a-z] and numbers [0-9]
– Labels are not allowed to start with "-"
– Labels are not allowed to end with "-"

4. In order to keep all IP changes after a power cycle, the settings can be stored perma-
nently. Confirm the prompted message during the scan process.

Firmware update
The firmware of AC500 communication interface modules can be updated with the IP configura-
tion tool.
For this, the IP configuration tool must be used as stand-alone variant.
Ä Chapter 1.6.6.2.9.1.1 “Stand-alone installation” on page 3723

It is not possible to perform a firmware update out of Automation Builder.

– For PROFINET communication interface modules a firmware update is only
supported for devices with firmware version ³ 3.3.3.

– For EtherCAT communication interface modules a firmware update is only
supported for devices with firmware version ³ 2.1.4.

– For Modbus communication interface modules a firmware update is only
supported for devices with firmware version ³ 3.2.13.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3728

Before the firmware update
● Ensure a fast and stable network connection
● Close all unused applications on the executing PC
● Stop the communication between AC500 PLC and the communication interface module that

shall be updated
During the firmware update
● Do not close the IP configuration tool
● Do not open Automation Builder software or any other application
● Do not switch-off the communication interface module that shall be updated
● Do not disconnect the Ethernet connection of a communication interface module or the

executing PC

The firmware update will stop the operation of the affected device(s). Hence,
the device(s) will become unresponsive for 1 - 2 minutes.

1. Start the IP configuration tool stand-alone (.exe).
2. Perform a network scan.

Ä Chapter 1.6.6.2.9.1.2.1 “Network scan” on page 3725

3. Select the devices that shall be updated from the list and click [Scan] to trigger the scan
process.
A multiple selection of several devices is possible via control key, however, ensure to
select only devices of the same protocol at a time. Otherwise the firmware update fails.

Requirements:

Procedure:

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3729

4. This step is only required for devices that require an installed NPcap driver. In this case an
appropriate message including a download link is prompted in the IP-Configuration dialog:

ð Click on the displayed link https://nmap.org/download.html and download the latest
version of the npcap-X.X.exe file.

ð After the download, execute the file as administrator and restart the scan process.

ð The devices that have been scanned are listed.

5. Click [Update Firmware] to start the firmware update for the selected devices.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3730

https://nmap.org/download.html

6. For CI50x, CI51x and CI52x devices a signature check is started. Select the appropriate
firmware update file (*.bin) for the device(s). Example: C:\AC500\AC500_CI52x_Firm-
ware_V3.2.8.bin.
After a successful signature check the firmware update file (*.bin) and the respective
signature file (*.bin.sig) are transferred to the device. This can last up to 3 minutes.
If the signature check fails, check the availability of the *.bin file and the *bin.sig file.
Ä “Signature check” on page 3734

7. A status check followed by a device reboot followed by a second status check is per-
formed automatically.

After the firmware update all outputs of the updated devices are set to '0'.

8. After a successful firmware update the update status or the new firmware version is
displayed in the “FW Version” field.
If this field is empty, there possibly is a connection error between the device and the
executing PC.
Ä “Error: Can’t connect to device” on page 3735

Exception: For EtherCAT devices an empty “FW Version” field does not indicate a connec-
tion error.

ð If the firmware update fails
● check the requirements for the update procedure.
Ä “Requirements:” on page 3729

● check the hints for trouble-shooting.
Ä Chapter 1.6.6.2.9.1.3.1 “Trouble-shooting for firmware update” on page 3733

● perform a network scan and repeat the update. If the error still persists power
cycle the device and try the update again.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3731

Blink functionality
This function activates flashing of the backlight of an AC500 LED display.
1. From the menu, select “Tools è IP-Configuration”.
2. Click [Scan] to trigger the scan process for devices in the network.

ð A progress bar shows the progress. The IP settings of a selected device is displayed
below the list and can be edited.

3. Adjust your desired time and click [Blink] to activate flashing.

Trouble-shooting for IP configuration tool
On a standard Windows 7 installation without third party firewall or security tools installed the IP
configuration tool should work properly.
The Automation Builder setup installs rules or exceptions for the built-in Windows firewall to
allow IPConfig to receive the responses for the IPConfig scan.
To check the Windows firewall is set correctly check the firewall settings.

On the network that is used for communication with the PLC, set “Incoming connections” to
"Block all connections to programs that are not on the list of allowed programs".

Firewall excep-
tions:

Windows 7/
Windows 10:

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3732

If a third party firewall is used these exceptions must be configured manually.

Either exceptions for applications can be entered: Automation Builder and IP
configuration tool must be added as application.

Or the protocol and the port number must be given (for IPConfig: UDP protocol
and port number 24576).

Trouble-shooting for firmware update
Ensure that all requirements have been considered before and during the update procedure.
Ä “Requirements:” on page 3729

This hint is only valid for Modbus devices and PROFINET devices.
If the “FW Version” field is empty after the network scan or if the firmware version has not been
updated after the update procedure, there possibly is a connection error between the device
and the executing PC.
Ping the device from the executing PC. If no connection can be established, check whether the
device and the PC are in the same subnet.

Check the
requirements

Check subnet
configuration

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3733

PC Device Result
192.168.14.71 / 255.255.255.0 192.168.14.10 / 255.255.255.0 OK

192.168.10.71 / 255.255.255.0 192.168.14.10 / 255.255.255.0 ERROR

192.168.10.71 / 255.255.0.0 192.168.14.10 / 255.255.0.0 OK

Example

Click [Scan] again to restart the network scan. If the connection is successful a newer firmware
version is displayed in the “FW Version” column.

This hint is only valid for CI52x-Modbus devices.
Check the last number of the IP address. If it is set to "0", the IP address setting for this last
number will be used from the rotary switches on the hardware device.
Example:

Automation Builder AC500 communication interface module
(rotary switch)

IP address:
192.168.14.0

IP address:
6

As a result, in the field “IP Address” the last number is set to "6":

During the firmware update of CI50x, CI51x and CI52x devices a signature check is started.
The update procedure expects a firmware update file (*.bin) and a signature file (*.bin.sig) in the
same directory. Without a signature file the signature check will fail.
Example:
Firmware update file:
C:\AC500\AC500_CI52x_Firmware_V3.2.8.bin
Signature file:
C:\AC500\AC500_CI52x_Firmware_V3.2.8.bin.sig

Check last
number of IP
address

Signature check

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3734

A timeout error may occure due to an instable network.
Solution: Keep the executing PC as near as possible to the devices that shall be updated. Avoid
network switches.

A read error may occure due to errors in the firmware update protocol.
After the firmware update the IP configuration tool reads out the status of the updated device in
order to check if the update was successful.

If an IP address is obtained by more than one device an error occures. A firmware update is not
possible.

Internal device error during the firmware update.
Solution:
Step 1: Scan again and repeat the firmware update.
Step 2: If this does not work, power cycle the device, scan again and repeat the firmware
update.

The TCP communication is not sufficient. Increase the connection quality.
Solution: Keep the executing PC as near as possible to the devices that shall be updated. Avoid
network switches.

Error: Package
timeout

Error: Unable to
read device
status

Error: IP is not
unique

Error: Error
State

Error: Can’t
connect to
device

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3735

Switch functionality of Ethernet interfaces ETH1/ETH2
As of SystemFW 3.1.0 the Ethernet interfaces ETH1/ETH2 can be configured as an Ethernet
switch.
The default setting is “Two separate interfaces”.

The change of the PLC Boot parameter ETH1 / ETH2 mode will become active
after a PLC reboot.

Create and download a Boot project before rebooting the PLC!

Parameter Value Description
ETH1 / ETH2 mode Two separate interfaces Two separate Ethernet inter-

faces ETH1 and ETH2

Switch functionality ETH1-
ETH2

Switch between ETH1 and
ETH2

If the Switch functionality ETH1-ETH2 is active, only the Ethernet interface
ETH1 is available (see Ä Chapter 1.6.5.1.6.5.3 “Configuration” on page 3493).
Any protocols configured under Ethernet interface ETH2 must be deleted. Oth-
erwise a compile error will be created.

The setting of ETH1 / ETH2 mode can be checked on LED display with soft key <CFG> (see
Ä Chapter 1.6.5.1.6.5.3 “Configuration” on page 3493).

1.6.6.2.10 Onboard CAN configuration
AC500 V3 PLCs provide the following methods for CAN integration:
● Onboard CAN interface
● CANopen master-slave arrangement (with CM598-CN as a master device)

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3736

Table 655: Differences in supported protocols
 Onboard CAN CM598-CN
CANopen Manager X

CAN 2A/2B X X

J1939 X

Onboard CAN interface is not available on AC500-eCo V3!

Onboard CAN interface supports the following protocols
● CANopen Manager: Connection of CI581 and CI582 without additional I/O modules
● CAN 2A/2B
● J1939
Configuration in Automation Builder is described in chapter Ä Chapter 1.6.6.2.11.1.1 “CM598-
CAN - CANopen master communication module” on page 3737.
Further information can be found in chapter Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800

1.6.6.2.11 Communication modules
CANopen
CM598-CAN - CANopen master communication module
Configuration of the communication module

– Click menu “Tools è Options” and select “Device editor” in the Options
window.

– Enable first checkbox Show generic device configuration views and click
[OK].

1. Right-click on your desired Slot below node “Extension_Bus” and click “Add object”.

ð Dialog Replace object: appears.

2. Click CM598_CAN in the list and click [Replace object].
3. Double-click “CM598_CAN (CM598-CAN)” to get the “CM598-CAN Parameters” in the

editor window.

The following parameters are available:

Parameter Default value Value Description
Run on config
fault

No No In case of a configuration error, the
user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration
of the CM598-CAN communication
module.

Bus behavior Asynchronous
(IEC bus cycle)

Asynchronous
(IEC bus cycle)

Not yet supported.

Supported pro-
tocols

Append a
CM598-CAN

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3737

Parameter Default value Value Description
Synchronous
(start of bus
cycle)

Not yet supported.

Node ID 1 1 - 127 Identifier of the device within
CANopen.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3738

The tab “CAN Bus” contains the basic settings of the CAN bus and special settings for the CAN
2.0 B protocol.

The settings at “29 Bit COB-ID” are only valid for CAN 2.0 B protocol. Ensure
the option “Enable 29 Bit COB-ID” is enabled. Otherwise no CAN 2.0 B frames
can be received. With the other parameters at “Enable 29 Bit COB-ID” the
receive filter is configured.

Possibilities for using the SAE J1939 protocol in AC500 V3 PLCs are described in the
application example.

Parameter Default value Value Description
Bus parameters
Transmission rate 250 kBit/s 10 kBit/s

20 kBit/s
50 kBit/s
100 kBit/s
125 kBit/s
250 kBit/s
500 kBit/s
800 kBit/s
1000 kBit/s

Transmission speed in
[kBit/s]

Node settings
Stop in case of moni-
toring error

Disabled Disabled The manager does
not stop in case of
a monitoring error
(Node Guarding or
Heartbeat Error). A
loss of communica-
tion to one node has
no influence to other
nodes. The manager
tries to reestablish the
communication to the
error affected nodes.

Enabled If this function is ena-
bled, the manager
will also stop the
communication to all
responding and active
nodes.
Not yet supported.

Send "Global Start
Node"

Enabled Disabled No "Global Start
Node" message is
sent after configuring
the nodes.

Enabled A "Global Start Node"
message is sent after
configuring the nodes.
This synchronize all
Nodes again.
Not yet supported.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3739

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010564&LanguageCode=en&DocumentPartId=&Action=Launch

Parameter Default value Value Description
29 Bit COB-ID
Enable 29 bit COB-ID Disabled Disabled 29 bit CAN-IDs are

disabled, but 11 bit
CAN-IDs are still ena-
bled.

Enabled 29 bit CAN-IDs are
additional enabled.

Acceptance mask 0 29 bit Specifies the bits of a
CAN-ID which will be
evaluated by the filter.
For instance, with an
acceptance mask =
0x1FFFFFFF all bits
are evaluated.

Acceptance code 0 29 bit Specifies the bits of
a CAN-ID which has
to be set to pass the
filter. Only those bits
which are set in the
acceptance mask are
relevant.

The tab “CM598-CAN IEC Objects” contains the created instance of the IO driver.

Configuration of the protocols CAN 2.0 A / CAN 2.0 B
The Communication Module CM598-CAN can be used to realize CAN bus based networks in
combination with library ABB_CM598Can_AC500.library.
To enable the support for the desired protocol it must be appended to CM598-CAN.
1. Right-click “CM598_CAN (CM598-CAN)” in the device tree and select “Add device” in the

context menu.

ð Window Add object below: CM598_CAN_1 appears.

2. Select “CAN 2.0 A” or “CAN 2.0 B” from the list.

The CAN data transmission requires a buffer for the incoming data that can be read with
function blocks of library ABB_CM598Can_AC500.library.

Parameteriza-
tion

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3740

1. Right-click “CAN_2_0A_11_bit_identifier_ (CAN 2.0A)” or “CAN_2_0B_29_bit_identifier_
(CAN 2.0B)” and select “Add object”.

2. Select “Buffer for CAN 2A” for CAN 2.0A. Or select “Buffer for CAN 2B” for CAN 2.0B from
the list.

3. Double-click on “Buffer_for_CAN_2A (Buffer for CAN2A)” or “Buffer_for_CAN_2B (Buffer
for CAN2B)” in the device tree to open the Buffer configuration in the editor window.

The following parameters are available:

Parameter Default value Value Description
Identifier 0 CAN 2A: 0 ... 2047

CAN 2B: 0 ...
536870911

The value of the CAN
identifier that is com-
pared with the identi-
fier of the incoming
telegrams. The tele-
grams will be added
to the buffer if the
identifier matches.

Number of receive
buffers

1 1 ... 16 The size of the buffer
in number of tele-
grams.

Behaviour on receive
buffer overflow

Overwrite Overwrite The oldest telegram
in the buffer is
overwritten by the
incoming telegram.

Discard Incoming telegrams
are discarded as long
as the buffer is full.

Enable triggering of
IEC task

No No Disables the triggering
of the execution of the
related IEC task.

Yes Enables the triggering
of the execution of
the related IEC task
as soon as a CAN
frame with the speci-
fied CAN-ID arrives
Ä Chapter 1.6.5.2.1.1
“Triggering of event
tasks with CAN-IDs”
on page 3599.

Configuration of the CANopen master
Ä Chapter 1.6.6.2.16.1.1 “CANopen manager (master)” on page 3800

PROFINET
CM579-PNIO - PROFINET IO controller
For Automation Builder < 2.2.0

Configuration in Automation Builder is described in PROFINET IO configuration Ä Chapter
1.6.6.2.18 “PROFINET IO Configurator” on page 3832.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3741

For Automation Builder >= 2.2.0
PROFINET IO
CM579-PNIO – PROFINET IO communication module
Configuration of the communication module

Configuration is valid as of CPU FW 3.2.0.

1. Right-click on your desired Slot below node “Extension_Bus” and click “Add object”.

ð Dialog Replace object: appears.

2. Click CM579_PNIO in the list and click [Replace object].
3. Double-click “CM579_PNIO (CM579-PNIO)” to get the “CM579-PNIO Parameters” in the

editor window.

The following parameters are available:

Parameter Default value Value Description
Run on config
fault

No No In case of a configuration error, the
user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration
of the CM579-PNIO communication
module.

Bus behavior Asynchronous
(IEC bus cycle)

Asynchronous
(IEC bus cycle)

The bus cycle and the IEC Application
are running asynchronously. The IO
update rate between the Profinet IO
Controller and the IEC Application is
defined with the bus cycle task.

Configuration of the PROFINET IO controller
The PROFINET IO Controller node appears automatically below the added Communication
Module CM579-PNIO.

PROFINET IO controller - Configuration
Double-click on “PNIO_Controller” and open the tab “General” in the editor window.

The following parameters are available:

Parameter Default Value Description Parameter
Station name CM579 Up to 240 char-

acters
Network name of the
PROFINET IO controller
station. Must be a valid
hostname.

Station name

IP parameters
IP-Address 192.168.0.1 Valid IP address IP address of the

PROFINET IO controller
station.

IP address

Append a
CM579-PNIO

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3742

Parameter Default Value Description Parameter
Subnetmask 255.255.255.

0
Valid subnet
mask

Network mask of the
PROFINET IO controller
station.

Subnet Mask

Default
gateway

0.0.0.0 Valid gateway
address

Gateway address of the
PROFINET IO controller
station.

Default
gateway

Station name controller Up to 240 char-
acters

Network name of the
PROFINET IO controller
station. Must be a valid
hostname.

Station name

Address settings for devices
First IP-
Address

192.168.0.2 Valid IP address First IP address of the
PROFINET IO devices.
This parameter determines
the address range of the
PROFINET IO devices in
combination with parameter
Last IP address.

First IP address

Last IP-
Address

192.168.0.25
4

Valid IP address Last IP address of the
PROFINET IO devices.
This parameter determines
the address range of the
PROFINET IO devices in
combination with parameter
First IP address.

Last IP address

Subnetmask 255.255.255.
0

Valid subnet
mask

Network mask of the
PROFINET IO devices.

Default subnet
mask

Default
gateway

0.0.0.0 Valid gateway Gateway address of the
PROFINET IO devices.

Default
gateway
address

PROFINET IO controller - Parameters
The tab “PROFINET-IO-Controller Parameters” is a generic view of all PROFINET IO controller
parameters. It is normally hidden and is normally not needed for configuration.

Use tab “PROFINET-IO-Controller Parameters” only, if you need to change a
parameter, which is not visible in other dialogs.

1. Click “Tools è Options” and select “Device editor”.

ð The Device editor dialog opens.

2. Enable checkbox Show generic device configuration views and click [OK]

ð The tab is now available.

PROFINET IO controller - I/O mapping
In this tab the bus cycle task can be specified. It is possible to select a particular task of the IEC
application by its name or to use the option “Use the parent bus cycle setting”. In the latter case
the setting of the Bus cycle options in “PLC_AC500_V3 è PLC settings” are used.

Activating tab

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3743

Configuration of PROFINET IO devices

1. Right-click on node “PNIO_Controller (PROFINET-IO-controller)” and click “Add object.”

ð A list with all installed PROFINET IO devices appears.

2. Slelect the desired device and click [Add object].

ð The device is added to the Profinet IO Controller in the device tree.

PROFINET IO device - Configuration
Double-click on “PNIO-Device” to open the device configuration in the editor window.
The following parameters are available:

Parameter Default Value Description Parameter
Identification
Station name Device-spe-

cific
Up to 240
characters

This is a system wide unique
name for addressing the
device. Must be a valid host-
name.

Slave parame-
ters -> Identifi-
cation -> Sta-
tion name

Communication Parameter
Send clock
(ms)

Device-spe-
cific

0.25
0.5
1
2
4

Parameter Send clock deter-
mines the SendCycle.
SendCycle = Send clock x
Reducation ratio <= 512ms x

Slave parame-
ters -> Reduc-
tion ratio

Reduction
ratio

Device-spe-
cific

1...16384 The Reduction ratio deter-
mines the factor for calcu-
lating the cycle time.
Cycle time = Send clock x
Reducation ratio

Slave parame-
ters -> Reduc-
tion ratio

Phase 1 1…Reduction
ratio

Defines the part of the Send-
Cycle at which an IO frame is
sent.

Phase

Watchdog
factor

3 1...65535 The Watchdog time is calcu-
lated as Watchdog time =
SendCycle * Watchdog factor.
The transfer of a IO telegram
is always checked of the con-
sumer side. Within this time
the next IO telegram must
be received by a consumer.
Otherwise it is checked if the
Datahold has been expired
too.

Watchdog
interval

RT Class
RT Class RT Class 1

Data-RTC-
PDU

RT Class 1
Data-RTC-
PDU

Defines the Realtime Class
of cyclic data. Currently only
RT Class 1 (legacy) and
RT Class 1 are supported.

Slave parame-
ters -> RT
Class

Add PROFINET
IO device

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3744

Parameter Default Value Description Parameter
RT Class 2
Data-RTC-
PDU

RT Class 3
Data-RTC-
PDU

RT Class
UDP-RTC-
PDU

VLAN ID 0 0..4095 or
0..32767

In case of VLAN usage the
parameter VLAN ID repre-
sents the ID of the virtual net-
work.
For VLAN type 802.1Q the
range is 0..4095 while VLAN
type ISL accepts values from
0 to 32767.
The supported type depends
on the used device.

Slave parame-
ters -> VLAN
ID

IP Parameter
IP-Address 192.168.0.8 Valid IP

address
IP address of the PROFINET
IO Controller station.

Slave parame-
ters -> Identifi-
cation -> IP
address

Subnetmask 255.255.255.
0

Valid subnet
mask

Network mask of the
PROFINET IO Controller sta-
tion.

Slave parame-
ters -> Identifi-
cation ->
Subnet mask

Default
gateway

0.0.0.0 Valid gateway
address

Default gateway address of
the PROFINET IO Controller
station.

Slave parame-
ters -> Identifi-
cation ->
Default
gateway
address

PROFINET IO device – Timing parameters
In the current implementation are 2 Communication Relations (CR) between the controller and
the device defined.
One describes the I/O telegram from the controller to the device (outputs), the other the I/O
telegram from the device to the controller (inputs).
The timing of the corresponding I/O telegrams can be defined separately for each device.
Editable timing parameters are:
● Send clock
● Reduction ratio
● Phase

The relation between these parameters is shown in the following drawing.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3745

For each device a SendCycle must be configured, which determines the sending interval of I/O
frames. It is based on a time base of 31.25 µs and is calculated as:
SendClock [ms] = SendClockFactor * 31.25 µs / 1000.
The cycle time of an I/O telegram is defined by the SendCyle.
It’s calculated as:
SendCyle [ms] = SendClock [ms] * Reduction Ratio.
The values of the individual parameters are limited by the maximum value 512 ms of the
SendCycle. The following table summarizes the relation of the timing parameters.

Parameter Description Relation Range
SendCycle Is the cycle time of a RT telegram. SendCyle = Send-

Clock * Reduction
ratio.

1ms..512 ms

SendClock The SendCycle is divided into sev-
eral time slots. The SendClock
defines the size of a time slot within
the SendCyle.

SendClock =
SendClock factor *
31.25 µs;

SendClock *
Reduction ratio £
512 ms

SendClock factor Is multiplied with the time base
31.25 µs to calculate the SendClock.

SendClock
factor = Send-
Clock / 31.25 µs

1..128

Reduction ratio The reduction ratio defines the
number of time slots within the
SendCyle.

SendClock *
Reduction factor £
512 ms

1..16384

Phase The time slot in which the IO frame
is sent.

A integer value of
the range 1 …
Reduction ratio

1..16384

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3746

PROFINET IO device – PNIO parameters
The tab “PNIO Parameters” is a generic view of all PROFINET IO device parameters. It is
normally hidden and is normally not needed for configuration.

Use tab “PNIO Parameters” only, if you need to change a parameter, which is
not visible in other dialogs.

1. Click “Tools è Options” and select “Device editor”.

ð The Device editor dialog opens.

2. Enable checkbox Show generic device configuration views and click [OK]

ð The tab is now available.

Configuration of 3rd party PROFINET IO devices
Before a 3rd party PROFINET IO device can be used, the provided GSDML file has to be
installed in the Device Repository.

Go to “Tools è Device Repository è Install”.

See Ä Chapter 1.6.6.2.11.2.1.2.1.1.3 “Configuration of PROFINET IO devices” on page 3744.

I/O mapping of the PROFINET IO devices
1. Doube-click on the “PNIO_Controller” or below on the “<...>PNIO-Device” or below on the

“I/O-Module” in the device tree.
2. Select tab “I/O mapping list” to show the list of I/O channels.

The content of the list depends on the selected node.
For instance:
● When the “PNIO_Controller” node is selected all I/O channels of all configured devices are

shown.
● When a “PNIO-Device” is selected all I/O channels of the configured modules are shown.
An IEC variable for an I/O channel that is available in the Application can be defined by
double-clicking in column Variable.

Activating tab

Installation

Configuration

Open I/O map-
ping list

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3747

CM589-PNIO PROFINET IO device communication module

Configuration is valid as of CPU FW 3.5.0 and “CM589-PNIO” FW 1.6.2.20.

The configuration of the “CM589-PNIO” PROFINET IO device module has to be done in the
following steps:
● Parameterization of the AC500 communication module interface Ä “Parameterization - CM

interface” on page 3748
● Parameterization of the PROFINET IO device protocol stack Ä “Parameterization -

PROFINET IO stack” on page 3749
● Configuring PROFINET IO device module structure Ä “Configuring PROFINET IO structure”

on page 3749
● Parameterization of the PROFINET IO device modules Ä “Parameterization - PROFINET

IO device modules” on page 3750

For connecting a PLC as “PROFINET IO device”, plug “CM589-PNIO” at the “Extension_Bus”
node.
Double-click on “CM589-PNIO” to open the “CM589-PNIO” configuration in the editor window.
The following parameter is available:

Parameter Default value Value Description
Run on config
fault

No No In case of a configuration error, the
user program is not started.

Yes The user program is started even in
case of configuration error.

Click on tab [CM589-PNIO I/O Mapping] to get “Bus Cycle Options” in the editor window.
The following parameter is available:

Parameteriza-
tion - CM inter-
face

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3748

Parameter Default value Value Description
Bus cycle task Use parent bus

cycle settings
Use parent bus
cycle settings

Settings from “PLC settings” tab are
used.

Name of task Name of task that triggers the bus
cycle

Click on tab [CM589-PNIO IEC-Objects]. Here the IO driver instance of communication module
is specified.

“PROFINET IO device” protocol does not need user configuration. All needed parameters are
set automatically by Automation Builder. Double-click on “PROFINET IO device” in tree view will
show the parameter set in tab “PROFINET IO device parameters”. The parameters are dis-
played just for information and in read-only mode.

– Station name: the default name is displayed. The real name used on acting
at the field bus is combined out of this default name and the used setting of
the rotary switches at the CM589 module (“cm589-pnio-00”, “00” will be
replaced by rotary switch value) or the name set via PROFINET set name
service.

– Parameter “IP address”, “Subnet Mask”, “Default Gateway”: the default
values are displayed here. These values are not used as communication
settings. “PROFINET IO controller” supplies the IO devices with IP settings
on communication establishing.

“CM589-PNIO” provides I/O data as modules with different data types and directions. Create an
application specific I/O structure by compiling an appropriate combination of modules.
To assign I/O modules to “PROFINET-IO-device” node open “Add Object” dialog.

Parameteriza-
tion - PROFINET
IO stack

Configuring
PROFINET IO
structure

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3749

If “CM589-PNIO” module does not support the number of I/O data configured, download config-
uration will fail. Currently 1440 bytes are supported for inputs and 1440 bytes for outputs. See
Ä “Calculating size of I/O data” on page 3751 how to calculate number of I/O data occupied by
certain configuration.

PROFINET-IO device modules do not need user configuration. All needed parameters are set
automatically by Automation Builder. Double-click on a module node shows the parameter set
just for information. This parameter set is identical for all module types and is displayed in read-
only mode.

Parameteriza-
tion - PROFINET
IO device
modules

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3750

– API: shows the API which is used by the CM589-PNIO modules. As API 0 is
supported only CM589-PNIO modules do not provide configuration capabili-
ties for this parameter

– Slot number, Sub-Slot-Number, Offset in DPM, inputs/outputs: will be set to
default values on inserting a module. On creating configuration data
Automation Builder calculates real values and overwrites the defaults

– Offset IOPS provider/consumer: not used and set to 0 values

PROFINET defines IO data and status information to be exchanged between IO controller and
IO device. The status information is called “Provider Status” and “Consumer Status”. Both (IO
data and status information) have to be considered on calculating allocated memory in input
and output image.
● The number of status bytes depends on the type of module used.
● The different types of modules input, output and in/output have to be considered different.
● Some status bytes are reserved for predefined submodules have to be considered addition-

ally.
A configured IO module allocates memory space at the corresponding IO image for data and
status bytes. Additionally memory is allocated at the opposite directions IO image to store
further status bytes. E.g. an input module allocates memory at the input image but additionally it
allocates one byte for status at the output image. Summarized size of input and output data and
status has to fit to the corresponding image.
See following table for an overview of IO module types and corresponding status bytes:

Module
Type

Input Data Output data
Inputs Provider

Status
Inputs

Consumer
Status Out-
puts

Outputs Provider
Status Out-
puts

Consumer
Status
Inputs

Reserved 0 Input
Bytes

4 Bytes 0 Bytes 0 Bytes 0 Bytes 4 Bytes

Input
Module

n Input
Bytes

1 Byte 0 Bytes 0 Bytes 0 Bytes 1 Byte

Output
Module

0 Input
Bytes

0 Bytes 1 Byte n Output
Bytes

1 Byte 0 Bytes

Input/
Output
Module

n Input
Bytes

1 Byte 1 Byte n Output
Bytes

1 Byte 1 Byte

Following expressions calculate allocated sizes of input and output data:

Size Input = Input + Status + 4 bytes (reserved status)
Size Output = Output + Status + 4 bytes (reserved status)

● Input = summarized number input bytes all modules
● Output = summarized number output bytes all modules
● Status = count input modules + count output modules + 2 * count input/output modules

Double-click on the desired “PROFINET-IO-device” module object in the device tree to show
current I/O mappings connected to this module.

Calculating size
of I/O data

Mapping of the
I/Os

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3751

See chapter Symbolic Names for Variables, Inputs and Outputs Ä Chapter 1.6.6.2.13.7 “Sym-
bolic names for variables, inputs and outputs” on page 3776 for further details on mapping
inputs and outputs.

“CM589-PNIO” – PROFINET device diagnosis
The diagnosis messages of Communication module “CM589-PNIO” are displayed in tab [Diag-
nosis] of node CM589-PNIO in device tree of Automation Builder. Within PLC application they
can be read with the diagnosis methods of IO driver or “Function Block Diag”.
Ä Chapter 1.7.1.4.3.2 “Device state” on page 4035

Ä Chapter 1.7.1.4.2.2.1 “Method Ack / DiagAck: acknowledgement” on page 4029

In PLC display the diagnosis messages of “CM589-PNIO” are not shown.
The following diagnosis messages are signaled by “CM589-PNIO”:

Error
severit
y

SubSyste-
minfo

Addi-
tional

Error code Meaning Remedy

3 0 0 1000 No communication
module or wrong
type found

Plug the correct com-
munication module

3 0 0 1001 Type of CM589-
PNIO not supported

Exchange the com-
munication module

3 0 0 1002 Firmware version of
CM589-PNIO not
supported

Update firmware of
CM589-PNIO

3 0 0 1003 Identification of com-
munication module
failed

Exchange the com-
munication module or
plug the correct com-
munication module

3 0 0 2000 Watchdog error

3 0 0 2001 CM589-PNIO is not
communicating

Check bus connection
and configuration

3 0 0 2002 CM589-PNIO signals
communication error

Check bus connection
and configuration

3 0 0 2003 Starting of CM589-
PNIO's protocol
stack failed

Check bus connection
and configuration

3 0 0 2004 Stopping of CM589-
PNIO 's protocol
stack failed

3 0 0 2005 PLC cannot be set to
run due to an error of
CM589-PNIO

Check error log and
correct errors

3 0 0 3000 Configuration error Check configuration
and correct errors

3 0 0 3001 Configuration version
mismatch

Use matching CPU
firmware version

3 0 0 4000 Ethernet link down Check Ethernet cable
connection

Diagnosis and
debugging for
AC500 V3 prod-
ucts

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3752

CM589-PNIO - PROFINET IO slave
Configuration in Automation Builder is described in PROFINET IO Slave configuration
Ä Chapter 1.6.6.2.18 “PROFINET IO Configurator” on page 3832.

EtherCAT
CM579-ETHCAT - EtherCAT I/O master

Configuration in Automation Builder is described in EtherCAT master configuration Ä Chapter
1.6.6.2.17 “EtherCAT configurator” on page 3815.

● Double-click on “CM579_ECAT (CM579-ECAT)” to open the CM579-ECAT configuration in
the editor window.

The following parameters are available:

Parameter Default value Value Description
Run on config
fault

No No In case of a configuration error,
the user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration
of the EtherCAT Communication
Module.

Broken slave
behavior

Leave all broken
slaves down

Leave all broken
slaves down

Broken slaves will not be served.

Leave addressless
slaves down

Only slaves without address will
be left down.

Leave no slaves
down

Broken slaves will be ignored.

Distributed clocks Inactive Inactive Distributed clocks are inactive.

Active Distributed clocks are active.

Bus Target State Operational, OP Operational, OP Target state of the EtherCAT bus
at application start.Safe-Operational,

SAFEOP

Pre-Operational,
PREo

Bus behavior Asynchronous (IEC
bus cycle)

Asynchronous
(IEC bus cycle)

Type of bus behavior (asynchro-
nous/synchronous)

Synchronous
(Sync mode 1)

Minimum lag (1 bus cycle)
between input and output values.

Synchronous
(Sync mode 2)

Extended application time, higher
lag (2 bus cycles) between input
and output values.

Optimize I/O
update

Off On When activated, consecutive I/Os
are merged in one block to opti-
mize the performance.Off

Parameteriza-
tion of the
CM579-ETHCAT
communication
module inter-
face

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3753

EtherCAT-Master - ABB functionality for sync units
With the EtherCAT sync units, several slaves are configured into groups and subdivided into
smaller units. For each group, the working counter can be monitored for an granular input data
validation. As soon as a slave is missing in a sync unit group, the input data of all other slaves in
the same group becomes invalid.
Detection occurs immediately in the next bus cycle, as the working counter is continuously
checked. Unaffected groups remain operable without any interference.
Right click on the “Application” node and press “Create configuration data”.
Automation Builder creates a set of global variables defining the working counter state of a
SyncUnit command.
The variables use the following naming scheme:
"SLOT_" + "CouplerSlot_ " + "SyncUnitName" + "_CMD_" + "LogicalAccess" + "_FRAME_" +
"FrameID CouplerSlot".
CouplerSlot

The communication module slot is the ID of the slot where the communication module is
plugged in.
SyncUnitName

The sync unit name is as defined in the “Sync Unit Assignment” tab.
LogicalAccess

The logical access defines the command List of logical access commands:
● Read = 10;
● Write = 11
● Read/Write = 12
FrameID

The frame ID starts with 1 and increments if the cyclic exchanged data is larger than the
maximum Ethernet frame boundary.
Values
● FALSE : Working counter is as expected (data from slaves is valid)
● TRUE : Working counter is different to expected value (data from slaves is invalid)
The variables can be used by conditional consumption of slave data in the application:

See Ä Chapter 1.6.6.2.17.1.2 “Tab 'EtherCAT Master - Sync Unit Assignment' ” on page 3818.

EtherCAT diagnosis (V2 PLC and V3 PLC)
Automation Builder 2.3 provides an enhanced diagnosis interface for the EtherCAT fieldbus.
The user can get EtherCAT diagnosis information from different editor views. All these views are
accessible within the EtherCAT master device editor and provide information about the master
and all configured or connected slaves. The main diagnosis overview is given in the EtherCAT
master view “Diagnostics main”.
The application example shows how to integrate and use the function blocks to receive diag-
nosis messages in the CODESYS program of an AC500 V3 PLC.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3754

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010852&LanguageCode=en&DocumentPartId=&Action=Launch

“Diagnostics main” shows EtherCAT state “Operate”.

“Diagnostics main” shows EtherCAT state “Topology error’”.

If the EtherCAT bus state shows “Operate”, the user does not need to check for any more
information.
If the “Diagnostics main” shows any error, like “Topology mismatch detected”, the user can
continue to the next level of information by opening editor view “Master State Control”.

“Master State Control” shows EtherCAT state “Operate”.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3755

“Master State Control” shows EtherCAT state “Toplogy error”.

In editor view “Master State Control” the user can request a master state change or get informa-
tion about configured parameters as well as events and latest communication errors. In case of
any topology error (e.g. slaves are configured in a different order than they exist in hardware)
the Automation Builder shows a hint to the user that it might be helpful to execute a bus scan
in editor view “Diagnostics live list” to compare the scan result of the real hardware with the
configures slaves in the Automation Builder project.

Bus scan result in editor view “Diagnostics live list” shows the connected hardware.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3756

The bus scan result list shows the following information for each connected slave:

ID Position of the found slave device

Type Slave identification (name or Vendor/Device ID number)

State The connection/link state of all ports (0-3) of the given
slave

 Connected => Cable is plugged in

 + Link => Physically connected to another slave

 + Communication => Communication works fine

Name Not used for EtherCAT

Address Not used for EtherCAT

Details E.g. revision number of the slave device

The bus scan shows information about the real connected hardware.

Note that a bus scan will always restart the EtherCAT bus.

This should not be a problem during commissioning but it might not be appli-
cable in a running system.

For runtime diagnosis the Automation Builder provides cyclic information of all configured slaves
and their states in the editor view “Slave diagnosis”.

Slave diagnosis information shows that configured slaves are ok.

“Slave diagnosis” view shows wrong slave at position 1.

The editor view “Slave diagnosis” shows information about the configured slaves. If these slaves
are found in hardware, the states of all slaves are ok. If there is a mismatch between hardware
and configuration the view shows at which position that mismatch was detected.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3757

The “Slave diagnosis” shows the following information for each configured slave:

Topology Position Position of the configured slave device.

Configured Station Address Address that is defined by configuration.
This address is not topology dependent.

Slave Name Configured name of the slave device.

Slave State The state of the slave. Possible slave states are:

 NOT CONNECTED 1)

 INIT

 PREOP

 SAFEOP

 OP

 INIT ERR

 PREOP ERR

 SAFEOP ERR

Port State 2) The state of all ports (0-3) of the given slave.

Shows how many connections this slave has to other
slaves and if the connections are working fine:

 Connected => Cable is plugged in

 + Link => Physically connected to another slave

 + Communication => Communication works fine

Last Error The last error that occurred in this slave. As text, if avail-
able, and error number. If this is any topology error, the
editor view will show a hint to perform a bus scan.

Emergency [CAN application pro-
tocol over EtherCAT (CoE)]

This column contains up to 5 CoE emergency entries.
Each entry has

 Error code

 Address of the error reg-
ister

 Error data (1 byte)

 If there are more than five emergencies reported by the
slave, the columns show a hint that some emergency
entries have been lost.
The column is empty, if no CoE emergencies exist.

Frame Error Counters 2) Counts transmission errors on frame layer, detected by
CRC check of frames. Fast growing values show a
serious problem. Possible root causes include damaged
cables, high electromagnetic noise or misbehavior of
EtherCAT slave devices. Four counter values are shown,
one for each port 0-3. Column has red background in case
of any value other than 0.

Physical Layer Error Counters 2) Counts transmission errors on physical layer. Possible
root causes include electromagnetic disturbance or faulty
devices. Four counter values are shown, one for each port
0-3. Column has red background in case of any value
other than 0.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3758

Link Lost Counters 2) Optional feature of EtherCAT slave devices, not supported
by every device.

Counts loss of physical connection (no link, LED off). Even
short interruptions can be detected. Possible root causes
include power dips, device reset, poor cables or connec-
tors, loose contact. Four counter values are shown, one
for each port 0-3. Column has red background in case of
any value other than 0.

1) Note that columns “Port State”, “Frame Error Counters”, “Physical Layer Error Counters”
and “Link Lost Counters” show “LLD: Timeout”, if this state is NOT CONNECTED, because this
information is not accessible.
2) Note that this column contains “LLD: Timeout”, if slave state is NOT CONNECTED.

General note on the counters
Please note that this kind of errors will be detected by devices when power
state changes, e.g. when the device itself or a neighboring device is powered
on, caused by switching artifacts on the cable. This does not signal an issue,
only counters increasing during normal operation should trigger deeper anal-
ysis. Counters can be reset by the PLC program using corresponding function
blocks.

PROFIBUS
The fieldbus PROFIBUS is supported in AC500 PLC as master and slave. The communication
modules “CM592-DP PROFIBUS DP V0/V1 master module” and “CM582-DP PROFIBUS DP
slave module” are provided for these purposes.

Parameterization of the CM592-DP/CM582-DP communication modules
Configuration is valid as of CPU FW 3.5.0.
To append a communication module, add the communication module to the “Extension_Bus”
node.
● Right-click the desired slot and select “Add object”.
● Select the communication module from the list and click [Replace object].

● Double-click the new node to open the CM592-DP/CM582-DP PROFIBUS DP configura-
tion in the editor window. Click on tab “CM592-DP/CM582-DP Parameters” if not already
opened.

The following parameters are available:

Parameter Default
value

Value Description

Run on config fault No No In case of a configuration error,
the user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration
of the PROFIBUS communica-
tion module.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3759

Click on tab “CM592-DP/CM582-DP I/O Mapping” to open the “Bus Cycle Options” in the editor
window.
The following parameter is available:

Parameter Default value Value Description
Bus cycle task Use parent bus cycle

settings
Use parent bus cycle
settings

Settings from PLC
settings tab are used.

Task Name of the task that
triggers the bus cycle

Click on tab CM592-DP/CM582-DP IEC-Objects to open the list of used IEC Objects. For
information instantiated I/O driver function block class is shown.

CM592-DP PROFIBUS DP master communication module
Configuration of a PROFIBUS DP master

Double-click on “Profibus_Master_x (Profibus_Master)” to open the “Profibus_Master” configu-
ration in the editor window:
Click on tab “General” if not already opend.

Most of the parameters are calculated automatically. Uncheck [Use defaults] to enable values to
be edited individually. Checking [Use defaults] again will revert all parameters to default values.

All times for the PROFIBUS parameters are given in bit time [tBit]. The bit time
is the result of the reciprocal of the transmission rate:

tBit = 1 / transmission rate in [bit/s]

The conversion from milliseconds into a bit time is shown in following formula:

tBit = Time in [ms] * transmission rate in [bit/s]

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3760

The following parameters are available:

Parameter Default Value Description Parameter
(Remark 1)

Adresses
Station address 1 0...125 The individual device address of

the master device on the bus.
DpParameter
-> Station
address

Highest station
address

126 0...126 The highest bus address up to
which a master searches for
another master at the bus in
order to pass on the token.
This station address must on
no account be smaller than the
master station address.

DpParameter
-> Highest
station
address

Mode
Auto-Clear mode Enabled Disabled The master operation mode will

stay in the mode 'Operate' and
the communication to all avail-
able slaves is kept up.

AutoClear-
Supported

Enabled The masters operation mode will
change from 'Operate' to 'Clear'
and it shuts down the communi-
cation to all assigned slaves, if
at least 1 slave is not responding
within the data control time.

Automatic
startup

Enable Disable Do not perform automatic startup AutoStart

Enable Perform automatic startup

Parameters
Baud rate 1500 9.6

19.2
45.45
93.75
187.5
500
1500
3000
6000
12000

Data transfer speed in [kBits/s].
The baud rate must be set to the
same value for all devices on the
bus. The result of changing the
baud rate is that all other param-
eters must be recalculated.

DpParameter
-> Baudrate

T_SL
Slot time

300 37.. 65535 Monitoring time of the sender
(requester) of a telegram for the
acknowledgement of the recip-
ient (responder). After expiration,
a retry occurs in accordance with
the value of maximum telegram
retries.

DpParameter
-> TSL

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3761

Parameter Default Value Description Parameter
(Remark 1)

min. T_SDR
Minimum station
delay responder
time

11 1...65535 Shortest time period that must
elapsed before a remote recip-
ient (responder) may send an
acknowledgement of a received
query telegram. The shortest
time period between reception of
the last bit of a telegram to the
sending of the first bit of a fol-
lowing telegram.

DpParameter
-> min. TSDR

max. T_SDR
Maximum station
delay responder
time

150 1...65535 Longest time period that
must elapse before a sender
(requestor) may send a further
query telegram. Greatest time
period between reception of the
last bit of a telegram to the
sending of the first bit of a fol-
lowing telegram.
The sender (requestor, master)
must wait at least for this time
period after the sending of an
unacknowledged telegram (e.g.
broadcast only) before a new
telegram is sent.

DpParameter
-> max. TSDR

T_QUI
Quiet time

0 0...127 Time delay that occurs for mod-
ulators (modulator-trip time) and
repeaters (repeater-switch time)
for the change over from sending
to receiving.

DpParameter
-> TQUI

T_SET
Setup time

1 0...255 Minimum period reaction time
between the receipt of an
acknowledgement to the sending
of a new query telegram (reac-
tion) by the sender (requestor).

DpParameter
-> TSET

T_TR
Target rotation
time

11894 1.. 2
-1
(=1677721
5)

Pre-set nominal token cycle time
within the sender authorization
(token). The available time for
the master to send data tele-
grams to the slaves depends on
the difference between the nom-
inal and the actual token cycle
time.
The Target rotation time (TTR)
is shown in Bit times [tBit] like
the other bus parameters. Below
the displayed bit time, the Target
rotation time is also displayed in
[ms].
The default value depends on the
number of slaves attached to the
master and their module configu-
ration.

DpParameter
-> TTR

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3762

Parameter Default Value Description Parameter
(Remark 1)

Gap
Gap update
factor

10 0...255 Factor for determining after how
many token cycles an added
participant is accepted into the
token ring. After expiry of the
time period G*TTR, the station
searches to see whether a fur-
ther participant wishes to be
accepted into the logical ring.

DpParameter
-> Gap update
factor

Retry limit
Maximum retries

1 1...15 Maximum number of repeats in
order to reach a station.

DpParameter
-> max. retry
limit

Data control time 120 1..224-1 Defines the time in [ms]
within the Data_Transfer_List is
updated at least once. After the
expiration of this period, the
master (class 1) reports its oper-
ating condition automatically via
the Global_Control command.
The default value depends on the
transmission rate.

DpParameter
-> Data con-
trol time

Slave interval
Minimum slave
interval

2000 1...65535 Defines the minimum time period
between two slave list cycles in
[µs]. The maximum value the
active stations require is always
given.
The default value depends on the
slave types.

DpParameter
-> min. slave
interval

Poll timeout
Minimum poll
timeout

10 Sets the maximum period of
time in [ms] during which the
response has to be received.

DpParameter
-> Poll timeout

Remark 1:
To display the parameters of this column, enable the option “Show generic device configuration
views” under “Tools è Options è Device editor”.

Configuration of a PROFIBUS DP slave
A PROFIBUS DP slave can be added by right-clicking on “Profibus_Master_x
(Profibus_Master)” and selecting “Add object”.
If the desired device is not listed it can be installed via the “Device Repository” (menu item
“Tools” -> “Device Repository”).
The slave configuration parameters can be edited in slave related editor window. To open this
editor window, double-click the corresponding slave in the device tree.
Click on tab “General” if not already opened.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3763

All times for the PROFIBUS parameters are given in bit time [tBit]. The bit time
is the result of the reciprocal of the transmission rate:

tBit = 1 / transmission rate in [bit/s]

The conversion from milliseconds into a bit time is shown in following formula:

tBit = Time in [ms] * transmission rate in [bit/s]

The following parameters are available:

Parameter Default Value Description Parameter
(Remark 1)

Identification
Station address 1 0...126 Station address of the

PROFIBUS DP slave device.
StationAd-
dress

Ident number GSD file
specific

---- Ident number of the PROFIBUS
DP slave device.

SlavePrmData
-> ident-
Number

Parameter
T_SDR (tBit) 11 11...255 The parameter T_SDR (tBit) rep-

resents the minimum station
delay of a responder (time a res-
ponder waits before generating
the reply frame).

SlavePrmData
-> minTsdr

Lock/unlock 2 (Lock) 0 (T_SDR
unlock)

The TSDR and slave-specific
parameter may be overwritten.

Bit 6 = 0 and
bit 7 = 0 of bit-
mask Slave-
PrmData ->
stationStatus

1 (Will be
unlocked)

The slave is released to other
masters.

Bit 6 = 1 and
bit 7 = 0 of bit-
mask Slave-
PrmData ->
stationStatus

2 (Lock) The slave is locked to other mas-
ters, all parameters are accepted.

Bit 6 = 0 and
bit 7 = 1 of bit-
mask Slave-
PrmData ->
stationStatus

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3764

Parameter Default Value Description Parameter
(Remark 1)

3 (Unlock) The slave is released to other
masters.

Bit 6 = 1 and
bit 7 = 1 of bit-
mask Slave-
PrmData ->
stationStatus

Watchdog
Watchdog control Enabled Disabled The PROFIBUS Slave does not

utilize the Watchdog Control Time
setting.

SlavePrmData
-> wdFact1

Enabled The PROFIBUS slave utilizes
the Watchdog Control Time set-
ting in order to detect commu-
nication errors to the assigned
Master. When the Slave finds an
interruption of an already opera-
tional communication, defined by
a Watchdog time, then the Slave
carries out an independent Reset
and places the outputs into the
secure condition.

Time (ms) 400 0...2540 Watchdog time in [ms].
The default value depends on the
number of slaves attached to the
master and their configuration.

SlavePrmData
-> wdFact2

User parameter
Symbolic values Enabled Disabled No symbolic names for the user

parameters.
-

Enabled The values for the parameters
are shown with symbolic names.

-

Length of user
parameter (Byte)

3 Device-
specific

The length of the user parame-
ters in [bytes]. By default this
value is 3 due to the existing
reserved values.

-

Defaults - - The button restores the default
values of the user parameters.

-

Remark 1:
To display the parameters of this column, enable the option “Show generic device configuration
views” under “Tools è Options è Device editor”.

Click on tab “Check configuration”.
Following dialog shows values for input/output/parameter data occupied by your configuration.
Here it can be checked how much data is left for further configuration.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3765

CM582-DP PROFIBUS DP slave communication module
Configuration of PROFIBUS DP slave

Double-click on “PROFIBUS_DP_Slave” to open the PROFIBUS slave configuration in the
editor window:

The following parameters can be modified:

Parameter Default value Value Description
Bus address 1 0...126 The bus address is the individual device

address of the slave device on the bus.

Configuration of I/O data objects
To append I/O data, add the desired input / output objects to the Communication Module node.
Right-click the Communication Module node and select “Add object”.
Different types of data objects group I/O variables by size and direction. The I/O driver of the
PLC firmware copies the amount of data bytes configured by these data objects cyclically.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3766

Select the desired I/O objects from the list and click [Add object].

To keep basic load of PLC low, only configure as much I/O data objects as
actually required. If further I/O variables need to be added later, additional data
objects can be inserted.

Technical details on the device such as the maximum amount of bytes used for I/O data is
described in the device specification for .
Double-click an added I/O object node to open the preset configuration. As the I/O objects do
not need user configuration all parameters in the “Parameters” tab are read-only.
Open the “I/O Mapping” tab to configure the mapping configuration for the I/O object.

On using CM582-DP slave device configured with modules types combining input and output
data the following situation may happen:

Possible incon-
sistency

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3767

CM582-DP Communication Module configuration uses module type 16 Byte In/Out.
The device representation assigned to CM592-DP master uses module types 16 Byte Output
and 16 Byte Input at the same place instead.

Example

This mismatch will not be detected; neither by Automation Builder nor by PROFIBUS master
and slave.
However, the communication will run stable and I/O data exchange is executed successfully.
Reason:
AC500 defines modules combining input and output directions to be split to two separated
module configurations internally with output direction first.
Thus in AC500 the PROFIBUS configuration data for one module of type 16 Byte In/Out looks
the same as for the combination of module types 16 Byte Output and 16 Byte Input.

Mapping of the I/Os
Double-click on the desired I/O data object in the device tree to show current I/O mapping
connected to this data object.
See chapter Symbolic Names for Variables, Inputs and Outputs for further details on mapping
inputs and outputs Ä Chapter 1.6.6.2.13.7 “Symbolic names for variables, inputs and outputs”
on page 3776.

1.6.6.2.12 Communication interface modules
Configuration of communication interface modules

Automation Builder can be used to configure the parameters of CI5xx devices.

Configuration of S500 I/O modules can be performed without CI5xx devices
connected.

1. Right click in the device tree on the node “Slot1” or “Slot2” of the “Extension_Bus” and
click “Add object”.

ð The window Replace object : Slot <...> opens.

Adding CI5xx
device to the
device tree

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3768

2. Select your CM5xx master module and click [Add object].

ð The CM5xx master appears in the Slot.

3. Right click on the CM5xx master module and click “Add object”.

ð The window Add object below : <...>_Master opens.

4. Select your “CI5xx” device and click [Add object].

ð The “CI5xx” device appears in your device tree.

1. Right click on your “CI5xx” device and click [Add object].

ð The window Add object below: opens.

2. Select your I/O module and click [Add object].

ð The I/O module is added.

Double-click the “CI5xx” device to open editors and select the “CI5xx_IO Parameters” tab.

This editor shows the parameters that can be set for each device. For more information see
Ä Chapter 1.6.3.7 “Communication interface modules (S500)” on page 3043, and Ä Chapter
1.6.3.6 “I/O modules” on page 2569.

CI521-MODTCP/CI522-MODTCP
Unbundled CI52x-MODTCP configuration

Automation Builder can be used to configure the parameters of CI52x-MODTCP devices.

A direct Ethernet connection is required between the PC running Automation
Builder and the CI52x-MODTCP module.

Configuration of S500 I/O modules can be performed without CI52x-MODTCPs
modules connected.

1. Select “New Project” in menue item “File”.

ð The window “New Project” appears.

2. Select the “CI52x-MODTCP Configuration Project” and click “OK”.

ð The window “Select PLC” opens.

3. Select a “CI52x-MODTCP” device and click “Add device”.

ð A project is created. More modules can be added.

Adding S500 I/O
modules

Configure
parameters

Start a project
from template

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3769

1. Right click in the device tree on the root of the “Project” and click “Add object”.

ð The window “Add object below” opens.

2. Select “Modbus devices” and click “Add object”.

ð The node“Modbus_devices” appears in your device tree.

3. Right click on the node “Modbus_devices” and click “Add object”.

ð The window “Select PLC” opens.

4. Select your “CI52x-MODTCP” device and click “Add device”.

ð The “CI52x-MODTCP” device appears in your device tree.

1. “Add object” to your “CI52x-MODTCP” device.

ð The window “Add object below: CI52x-MODTCP” opens.

2. Select your I/O module and click “Add object”.

ð The I/O module is added.

Double-click the device to open editors and select the “CI52x-MODTCP Parameters” tab.

This editor shows the parameters that can be set for each device. For more information
see Ä Chapter 1.6.3.7.4.1.7.1 “Parameters of the module” on page 3176 CI521, Ä Chapter
1.6.3.7.4.2.7.1 “Parameters of the module” on page 3206 CI522 and Ä Chapter 1.6.3.6 “I/O
modules” on page 2569.

To read or write parameters, the CI52x-MODTCP module must be connected to the PC with an
Ethernet connection.

Add CI52x-
MODTCP to a
project

Add S500 I/O
modules

Configure
parameters

Connect to
device

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3770

See Ä Chapter 1.6.3.7.4.1.5 “Addressing” on page 3175 CI521 and Ä Chapter 1.6.3.7.4.2.5
“Addressing” on page 3206 CI522 of the CI52x-MODTCP hardware documentation for informa-
tion on configuring the IP address of the device.
On the CI52x-MODTCP device editor, the “Connection Settings” tab allows the IP address of the
device to be entered.

Read Reads the parameters from the CI52x-MODTCP and also for the attached S500 I/O
modules.

Write Sends the parameters from the editors to the CI52x-MODTCP and also the S500 I/O
modules.

The CI52x-MODTCP module knows which I/O modules are attached.
While reading and writing parameters, the project must match the physical hardware. Otherwise
an error will be given.
Communication errors will also result in error messages.
When the parameters have been read or written correctly, a message is seen in the “All
messages” window:

It is possible to read and write parameters when the S500 I/O modules are not attached to the
CI52x-MODTCP module.

To perform a read, the project structure must still match the configuration of
CI52x-MODTCP.

A warning will be shown if an I/O module is not detected:

When writing parameters, the CI52x-MODTCP configuration is overwritten so the current config-
uration of missing (unplugged) modules does not matter.
If the I/O modules are attached, then the project must match the hardware, otherwise an error
will be given.

Device checking

Attached S500
modules

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3771

As of Automation Builder 2.2.1, the IP Configuration Tool can be used to perform firmware
updates for CI52x-MODTCP devices.

1.6.6.2.13 I/O bus and I/O modules
Hot swap configuration
Parameter configuration

I/O extension modules include the below parameters for hot swap configuration

Parameter Purpose Value
Hot-swap terminal unit
required

To include diagnosis
for missing hot-swap ter-
minal unit

Yes:
Communication Interface provides
extended diagnosis for missing hot-
swap terminal unit

No (default):
Extended diagnosis not available

Start-up with missing
module on hot-swap ter-
minal unit

Ignore missing module
during start-up on hot-
swap terminal unit.
Incomplete I/O configura-
tions must not prevent the
system from starting.

Yes:
Module is optional, start-up if there is
no module available on hot-swap ter-
minal unit

No (default):
Module is mandatory, start-up only if
correct module is available

In the Automation Builder projects for V3 PLCs, hot-swap parameters can be configured from
Module Parameters tab of respective I/O module.

By default, the Module Parameters tab is not visible for parameter configuration.
Follow the below steps to enable this tab
1. In the Automation Builder menu select “Tools è Options”

2. Select “Device editor” option from “Options” dialog.
3. Enable the option “Show generic device configuration views” (if not already done)
4. To save the settings and close the dialog select “OK”

Firmware
update

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3772

Parameterization of the I/O bus
Double-click the “IO_Bus” node in the device tree to open the I/O bus configuration.
The following parameters are available:

Parameter Default Value Description
Run on config fault No No In case of configura-

tion fault the user
program will not be
launched.

Yes The user program will
be also launched in
case of configuration
error on the I/O Bus.

Max wait run 3000 0...120000 Maximum waiting time
for valid inputs.

In case of a digital I/O Module, the channels are provided as WORD, BYTE and BOOL.
Because the analog inputs can also be configured as digital inputs, bit 0 of each channel is
also available as BOOL.
The symbolic name of a channel can be entered in front of the string "AT" in the channel
declaration.

 All channels should have a symbolic name and only symbolic names should be
used in the program code. If the hardware configuration has changed or if you
want to download the project to a PLC with another hardware configuration and
thus the PLC configuration has to be changed, the addresses of the inputs and
outputs can change. In case of symbolic programming (i.e., symbolic names are
used), the program code does not have to be changed.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3773

Parameter 'Ignore module'
All I/O devices provide the parameter "Ignore module". This parameter can be used for simula-
tion purposes and determines whether an I/O device is considered or ignored during a PLC
configuration check.
This allows to use an existing Automation Builder project/PLC configuration though some hard-
ware devices are not physically available in a hardware installation.

The Automation Builder project for machine A shall be used for machine B. However, the
second DC523 device is missing in the hardware installation of machine B. Hence, for machine
B the value for 'Ignore module' is set to 'YES'.

I/O bus - Bus cycle task
By "bus" it means all fieldbuses including I/O bus. There is no bus cycle task for Modbus
because it is controlled by POUs. Modbus does not provide IO mapping.
It's recommended to define a dedicated bus cycle task for each fieldbus configured in the
project. It's strongly recommended not to use "unspecified" in the "“PLC Settings”" to avoid
unexpected behavior. The task defined in “PLC Settings” determines the bus cycle task of I/O
bus and, depending on the configuration, of the additional fieldbuses (the setting is by default
inherited).
Especially in case of EtherCAT, a dedicated bus cycle task should be used which is not shared
with other fieldbuses. If [unspecified] is set in “PLC Settings”, the EtherCAT task might be
automatically used by other fieldbuses, potentially causing EtherCAT task processing to fail.
This should be avoided by specifying a task different to the EtherCAT task in “PLC Settings”.
As a rule, for each IEC task the used input data is read at the start of each task and the written
output data is transferred to the I/O driver at the end of the task . The implementation in the I/O
driver is decisive for further transfer of the I/O data. The implementation is therefore responsible
for the timeframe and the specific time when the actual transmission occurs on the respective
bus system.
Other tasks copy only the I/O data from an internal buffer that is exchanged only with the
physical hardware in the bus cycle task.

Example

General infor-
mation

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3774

(1) Read inputs from input buffer (2) IEC task
(3) Write outputs to output buffer (4) Bus cycle
(5) Input buffer (6) Output buffer
(7) Copy data to/from bus
(9) Bus cycle task, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5
Using tasks
The “Task Deployment” provides an overview of used I/O channels, the set bus cycle task, and
the usage of channels.

WARNING!
If an output is written in various tasks, then the status is undefined, as this can
be overwritten in each case.
When the same inputs are used in various tasks, the input could change when
a task is processed. This happens if the task is interrupted by a task with a
higher priority and causes the process map to be read again. Solution: At the
beginning of the IEC task, copy the input variables to variables and then work
only with the local variables in the rest of the code.
Conclusion: Using the same inputs and outputs in several tasks does not make
any sense and can lead to unexpected reactions in some cases.

Insertion of S500 I/O devices
1. Right-click “IO_Bus” in device tree and select [Add object].

-> The Add Device dialog window where all available S500 I/O Devices are listed will
open.

2. Append the S500 I/O Devices in the same order as they are mounted on the hardware.
Input and output modules connected to the I/O bus occupy the I/O following area: %IB0 ..
%IB999 or %QB0 .. %QB999.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3775

AC500 (Standard): PM56xx support up to 10 S500 I/O Devices.

Configuring the input and output modules and channels
The I/O channel configuration depends on the corresponding S500 I/O Device. See hardware
documentation of the I/O Device for more information.
The individual configuration parameters can be opened in the editor window via double-click on
the corresponding module and are listed in tab [S500 I/O device name] Configuration.

Symbolic names for variables, inputs and outputs

The IEC naming rules are not checked during input in Automation Builder.

Devices with I/Os provide an I/O Mapping tab in their configuration editor where the available
I/O channels can directly be mapped to a global variable.
The corresponding variable declarations are automatically available in the project.
All available I/O channels can easily be assigned to a variable.

AC500 uses Intel Byte Order (Little Endian).

Only entries with a data type set in column "Type" can be mapped. These
entries can be expanded to show the available I/O channels.

If the project has been imported from a previous Automation Builder version,
all variables should be checked to avoid inconsistencies concerning the I/O
mapping.

Input and output
mapping

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3776

I/O mapping list
Automation Builder contains an I/O mapping list feature for creating mapping variables with
better usability support compared to the tree structured view. Details on the tree structured view
is provided in the CODESYS Development System Ä Chapter 1.4.1.7.1 “Configuring Devices
and I/O Mapping” on page 213.

Functionalities of the I/O mapping list:
● Displays I/O mappings for current node and all valid subsequent child nodes.
● Displays channel information with additional columns.
● Supports keyboard functions such as cut, copy, paste, delete, and select all within the editor

and within Excel spreadsheet (for bulk editing).
● Contains a toolbar for various actions, e.g. filtering, undo/redo and clear mappings.
● Supports single click edit and easy navigation using arrow keys.
● Improvised error handling:

– Allows to enter invalid mapping variables. This provides flexibility in bulk editing. Only
when saving the project, the errors - according to IEC 61131 standard - are displayed.

– In the message window, the error log is visible. The user can track the errors to their
corresponding channel in the editor.

● Allows multi-selection of rows and columns. (Random selection is not allowed.)

Configuring I/O mapping list
Automation Builder supports tree and list based editors for creating I/O mapping variables.
1. From the Tools menu, select Options.
2. Under Automation Builder, select the Editors tab.
3. Choose your desired mapping dialog and click OK.

● Choose tree based to display the I/O mapping in tree structure.
● Choose list based to display the I/O mapping as list with the functionalities of the

ToolBar.
● Choose both to display both the tree structure (I/O Mapping tab) and the list view (I/O

mapping list tab).

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3777

The I/O mapping list displays the channel information in offline and online mode. In online
mode, all columns are read-only. In offline mode, some columns are editable.

The order of the devices in I/O mapping list is synchronized with the order in the device tree.
The channels of a device are ordered by the device description file. If channels have a section,
the channel information is represented in a specific format.
Example: Fast counter: Actual value 1. These channels are listed at last position of a device.

Editing I/O mapping list
1. In the device tree, double-click IO_Bus to configure entire I/O mapping list of different I/O

devices.
2. Enter the variables and descriptions to map the I/O devices.

Do not start variable names with a number or a special character. When
saving the project, this generates an error. Example: 12input3, @input4.

3. Click Save Project to save the I/O mapping changes.

Toolbar
Especially in case of long I/O mapping lists, it might be helpful to filter the I/O mappings. For
this, click the “Filter” icon to display all available criteria for filter options.

When reducing the width of the editor, some filters might be hidden.

● Undo: Cancels the last change.
● Redo: Repeats the last change.
● Clear mappings: Deletes all variables and descriptions.

Fast counter
Configuration for S500 I/O modules

1. In the device tree, add a digital I/O module to the “IO-Bus” node.
2. Double-click the node for the I/O module, open the “Parameters” tab and set the counting

mode Ä Chapter 1.6.6.2.13.9.2.1 “Counting modes” on page 3786 of the “Fast counter”
parameter.

Available
channel infor-
mation

Filtering

Undo, redo and
clear

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3778

3. In the “I/O Mapping” tab channel configuration is displayed. Ä Chapter 1.6.6.2.13.9.3
“Control of the fast counter” on page 3790

Operands
Table 656: Input information
Description of the
input information

Output information of
the user program

Description

Start value 1 Output double word 0 Double word Set values for the counters 1
and 2:
Each counter can be set to
a start value. Start values are
loaded into the counter by the
user program. Using the set
signal (depending on the oper-
ating mode either via a terminal
or the bit SET within the con-
trol byte 1 or 2), the values of
the double word variables are
loaded into the counter 1 or 2.

Start value 2 Output double word 1 Double word

End value 1 Output double word 2 Double word End value for the counters 1
and 2:
The end values for the
two counters are stored as
comparison values into the
module by the user program.
Both counters compare contin-
uously whether or not their pro-
grammed end value is equal
to their actual value. When the
counter (actual value) reaches
its programmed end value, the
binary output CF of the status
byte is set permanently.

End value 2 Output double word 3 Double word

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3779

Description of the
input information

Output information of
the user program

Description

Control byte 1
see 1)

Output byte 0 Byte:
Bit 0 =
UP/DWN
Bit 1 = EN
Bit 2 = SET
Bit 3 = CF_HW
Bit 4 to Bit 7
free

Control bytes for the counter 1:
UP/DWN: In some operating
modes, the counter can count
downwards, too. If counting
down is desired, set the bit
UP/DWN to TRUE and the bit
SET to 1. When doing so, the
counter starts counting down-
wards from the start value (set
value) to the end value (max.
from 4,294,967,295 to 0 or
hexadecimal from FF FF FF FF
to 00 00 00 00). After
reaching 0 the counter jumps
to 4,294,967,295.
EN: Processing of the counter
signals must be enabled.
Depending on the operating
mode, enabling is done via a
terminal or by the bit EN =
TRUE within the control byte.
SET: The counter can be set to
a start value (see the descrip-
tion of the set values for the
counters 1 and 2 at the begin-
ning of this table.
CF_HW
0 = state of CF is set to hard-
ware channel (only for mode 1
and 2)
1 = normal output is set to
hardware channel
Bit 3 is evaluated only in con-
trol byte of counter 1.

Control byte 2
see 1)

Output byte 0 Byte:
Bit 0 =
UP/DWN
Bit 1 = EN
Bit 2 = SET
Bit 3 to Bit 7
free

Control bytes for the counter 2:
UP/DWN: In some operating
modes, the counter can count
downwards, too. If counting
down is desired, set the bit
UP/DWN to TRUE and the bit
SET to 1. When doing so, the
counter starts counting down-
wards from the start value (set
value) to the end value (max.
from 4,294,967,295 to 0 or
hexadecimal from FF FF FF FF
to 00 00 00 00). After
reaching 0 the counter jumps
to 4,294,967,295.
EN: Processing of the counter
signals must be enabled.
Depending on the operating
mode, enabling is done via a
terminal or by the bit EN =
TRUE within the control byte.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3780

Description of the
input information

Output information of
the user program

Description

SET: The counter can be set to
a start value (see the descrip-
tion of the set values for the
counters 1 and 2 at the begin-
ning of this table.

1) Only for CI581-CN/CI582-CN: Control bytes 1 and 2 are available twice on grounds of
data consistency. Hence, a Start and End evaluation is only effected if the signals "Control
Byte1_0" and "Control Byte1_1" or "Control Byte2_0" and "Control Byte2_1" (process image)
are identical.

Table 657: Output information
Output informa-
tion

Input information for
the user program

Description

Actual Value 0 Input double word 0 Double word Actual value of the counter 0

Actual Value 1 Input double word 1 Double word Actual value of the counter 1

Status Byte 0 Input byte 0 Byte:
Bit 0 = CF
Bit 1 to Bit 7 free

CF: When the counter rea-
ches the programmed end
value, the counter output is
stored permanently as CF =
TRUE (end value reached).
Only when the counter is set
again (set value), CF is reset
to FALSE.

Status Byte 1 Input byte 1

Operating modes
Inputs and outputs which are not used by the counters, are available for other tasks.
Legend:
● A refers to input channel A
● B refers to input channel B
● C refers to output channel C

Operating mode Function Used inputs and out-
puts

Notes

0 No counter none This operating mode
is selected if the inte-
grated fast counter is
not necessary.

1 One count up counter A = Counting input
C = End value
reached

The counting input
and the output "End
value reached) are
enabled by the bit EN
= TRUE within the
control byte.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3781

Operating mode Function Used inputs and out-
puts

Notes

2 One count up counter
with enable input via
terminal

A = Counting input
B = Enable input
C = End value
reached

The enable input ena-
bles the counting
input and the output
"end value reached".
The counter is only
enabled if the enable
input = TRUE (signal
1) AND the bit EN =
TRUE within the con-
trol byte.

3 Two up/down counters A = Counting input 0
B = Counting input 1

With this operating
mode, two counters
exist, which are inde-
pendent of each other.
The state "End value
reached" is only read-
able from the two
status bytes. It is not
readable from output
terminals.
The counting direction
is defined by the bit
UP/DWN within the
control byte.

4 Two up/down coun-
ters (1 counting input
inverted)

A = Counting input 0
B = Counting input 1

This operating mode
equals operating
mode 3 with
one exception: The
counting input B (of
counter 1) is inverted.
It counts the TRUE/
FALSE edges at input
B.

5 One bidirectional
counter with a
dynamic set input via
terminal

A = Counting input
B = Dynamic set input

With this operating
mode, one bidirec-
tional counter is avail-
able which has a
dynamic set input.
Dynamic means that
the set operation
is performed at the
FALSE/TRUE signal
edge (0/1 edge) of the
set input and not while
the signal is TRUE.
The state "End value
reached" is only read-
able from the status
byte, not from an
output terminal.

6 One bidirectional
counter with a
dynamic set input via
terminal

A = Counting input
B = Dynamic set input

This operating mode
equals operating
mode 5 with
one exception: The
dynamic set input
operates at the TRUE/
FALSE edge (1-0
edge).

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3782

Operating mode Function Used inputs and out-
puts

Notes

7 One bidirectional
counter for position
sensors

A = Trace A of the
position sensor
B = Trace B of the
position sensor

With this operating
mode, incremental
position sensors can
be used which inter-
change their counting
signals on tracks A
and B in a 90° phase
sequence. Depending
on the sequence of
the signals at A
and B, the counter
counts up or down.
There is no pulse-mul-
tiplier function (e.g.
x2 or x4). The posi-
tion sensor must pro-
vide 24 V signals. Sig-
nals of 5 V sensors
must be converted.
Zero traces are not
processed. The state
"End value reached"
is only readable from
the state byte 0, not
from an output ter-
minal.
The bit UP/DWN
within the control byte
must be FALSE. Oth-
erwise, a parameter
error occurrs.
In this operating
mode, the maximum
counting frequency is:
I/O modules 35 kHz.
Communucation inter-
face modules 50 kHz.

8 Reserved

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3783

Operating mode Function Used inputs and out-
puts

Notes

9 One bidirectional
counter for position
sensors (pulse multi-
plier x2)

A = Trace A of the
position sensor
B = Trace B of the
position sensor

This operating mode
equals operating
mode 7 with one
exception: There is a
pulse multiplication x2
with the evaluation of
the counting inputs.
This means, that the
counter counts both
the positive edges
and the negative
edges of trace A. This
results in the double
number of counting
pulses. The precision
increases correspond-
ingly.
In this operating
mode, the maximum
counting frequency is:
I/O modules 30 kHz.
Communucation inter-
face modules 35 kHz.

10 One bidirectional
counter for position
sensors (pulse multi-
plier x4)

A = Trace A of the
position sensor
B = Trace B of the
position sensor

This operating mode
equals operating
mode 7 with one
exception: There is a
pulse multiplication x4
with the evaluation of
the counting inputs.
This means that the
counter counts the
positive and negative
edges of the traces A
and B. This results in
the fourfold number of
counting pulses. The
precision increases
correspondingly.
In this operating
mode, the maximum
counting frequency is:
I/O modules 15 kHz.
Communucation inter-
face modules 20 kHz.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3784

Configuration for onboard I/Os
1. In the device tree, double-click the “Onboard I/O” node (OBIO).
2. In the “Parameters” tab set the counting mode Ä Chapter 1.6.6.2.13.9.2.1 “Counting

modes” on page 3786 for the fast counter.

3. In the “I/O Mapping” tab channel configuration is displayed. Ä Chapter 1.6.6.2.13.9.3
“Control of the fast counter” on page 3790

The parameter of the fast counter channels of the Onboard I/O must be configured before they
can be used. User should take these steps to configure the fast counter:

Channel Direction Width Description
Actual
value X

Input DWORD Current value of the fast counter.

State byte
X

Input BYTE Bit 0 = CF
If the counter reaches the programmed end value, the
counter output is stored permanently as CF = TRUE
(end value reached). Only, if the counter is set again
(set value), CF is reset to FALSE.
Bit 1 to Bit 7 free

Start value
X

Output DWORD Each counter can be set to a start value. Start values
are loaded into the counter by the user program. Using
the set signal (dependent on the operating mode either
via a terminal or the bit SET within the control byte X),
the values of the double word variables are loaded into
the counter X.

End value
X

Output DWORD The end values for the two counters are stored as
comparison values into the module by the user pro-
gram. Both counters compare continuously, whether
or not their programmed end value is equal to their
actual value. If the counter (actual value) reaches its
programmed end value, the binary output CF of the
status byte is set permanently.

Configuring the
fast counter

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3785

Channel Direction Width Description
Control
byte 1

Output BYTE Bit 0 = UP/DWN
In some operating modes, the counter can count down-
wards, too. If counting down is desired, the bit UP/DWN
must be set to TRUE. When doing so, the counter starts
counting downwards at the start value (set value) to the
end value (max. from 4,294,967,295 to 0 or hexadec-
imal from FF FF FF FF to 00 00 00 00). After reaching 0,
the counter jumps to 4,294,967,295.
Bit 1 = EN
The processing of the counter signals must be enabled.
Depending on the operating mode, enabling is done via
a terminal or by the bit EN = TRUE within the control
byte.
Bit 2 = SET
The counter can be set to a start value (see the descrip-
tion of the set values for the counters 1 and 2 at the
beginning of this table).
Bit 3 = CF_HW
0 = state of CF is set to hardware channel (only for
mode 1 and 2)
1 = normal output is set to hardware channel
Bit 3 is evaluated only in control byte of counter 1.
Bit 4 to Bit 7 free

Control
byte 2

Output BYTE Bit 0 = UP/DWN
In some operating modes, the counter can count down-
wards, too. If counting down is desired, the bit UP/DWN
must be set to TRUE. When doing so, the counter starts
counting downwards at the start value (set value) to the
end value (max. from 4,294,967,295 to 0 or hexadec-
imal from FF FF FF FF to 00 00 00 00). After reaching 0,
the counter jumps to 4,294,967,295.
Bit 1 = EN
The processing of the counter signals must be enabled.
Depending on the operating mode, enabling is done via
a terminal or by the bit EN = TRUE within the control
byte.
Bit 2 = SET
The counter can be set to a start value (see the descrip-
tion of the set values for the counters 1 and 2 at the
beginning of this table).
Bit 3 to Bit 7 free

Counting modes
The fast counter can be configured as one mode out of 10 possible modes. The desired
operating mode is selected in the PLC configuration using configuration parameters. Inputs and
outputs which are not used by the counter are available for other tasks. In the following table, A
means input channel A, B means input channel B and C means output channel C.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3786

CPUs Integrated
fast counter

Assigned inputs Assigned
Outputs

Remarks

Channel A Channel B Channel C
PM55x,
PM56x

Yes Input channel
0

Input channel
1

Output
channel 0

Only 1 fast
counter is
available on
the module.
Input channel
0 is the
default
channel for
fast counter.
Input channel
1 can be used
as another
fast counter
channel
depending on
fast counter
mode.

Operating Mode Function Input channels Description Counting fre-
quency (max.)
for PM5x4-T and
PM5x4-R

0 No counter None Fast counter is
disabled

-

1 1 count up
counter

A = Counter input
C = End value
reached

Counting up A
from 0 to
0xFFFFFFFF
When the end
value is reached,
C will be set to
high.

30 kHz (before
firmware V2.0.6)
50 kHz (since
firmware V2.0.6)

2 1 count up
counter with
release input

A = Counter input
B = Enable input
C = End value
reached

Counting up A
from 0 to
0xFFFFFFFF
The counter is
enabled if B is
high When the
end value is
reached, C will
be set to high.

30 kHz (before
firmware V2.0.6)
50 kHz (since
firmware V2.0.6)

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3787

Operating Mode Function Input channels Description Counting fre-
quency (max.)
for PM5x4-T and
PM5x4-R

3 2 Up/Down coun-
ters

A = Counter input
1
B = Counter input
2

2 independent
counters. Status
"End value
reached" is only
readable from the
2 status bytes,
not from output
terminals. The
counting direction
is defined by the
Boolean parame-
ters UD1 and
UD2 of function
block
ONB_IO_CNT (H
andle fast
counter on
Onboard I/O)

30 kHz (before
firmware V2.0.6)
50 kHz (since
firmware V2.0.6)

4 2 Up/Down coun-
ters (2nd on
falling edges)

A = Counter input
1
B = Counter input
2

Same as oper-
ating mode 3, but
counting input B
is inverted
(counts at TRUE/
FALSE edges at
input B).

30 kHz (before
firmware V2.0.6)
50 kHz (since
firmware V2.0.6)

5 1 Up/Down
counter with
dynamic set/
rising edge

A = Counter input
B = Dynamic set
input

1 Up/Down
counter is avail-
able which
counts on the
rising edge of A
and has a
dynamic set input
on B. Dynamic
set input will set
the start value at
the rising edge of
B.

30 kHz (before
firmware V2.0.6)
50 kHz (since
firmware V2.0.6)

6 1 Up/Down
counter with
dynamic set/
falling edge

A = Counter input
B = Dynamic set
input

1 Up/Down
counter is avail-
able which
counts on the
rising edge of A
and has a
dynamic set input
on B. Dynamic
set input will set
the start value at
the falling edge
of B.

30 kHz (before
firmware V2.0.6)
50 kHz (since
firmware V2.0.6)

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3788

Operating Mode Function Input channels Description Counting fre-
quency (max.)
for PM5x4-T and
PM5x4-R

7 1 UpDown direc-
tional discrimi-
nator

A = Phase A
B = Phase B

With this mode,
incremental
encoders can be
used which give
their counting
signals on phase
A and B in a 90°
phase sequence
to each other.
Dependent on
the sequence of
the signals at A
and B, the
counter counts
up or down.
There is no pulse
multiplier func-
tion.

12 kHz (before
firmware V2.0.6)
35 kHz (since
firmware V2.0.6)

8 Reserved - - -

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3789

Operating Mode Function Input channels Description Counting fre-
quency (max.)
for PM5x4-T and
PM5x4-R

9 1 UpDown direc-
tional discrimi-
nator X2

A = Phase A B
= Phase B

This mode is the
same as mode 7
with one excep-
tion: There is a
pulse multiplica-
tion x2 with the
evaluation of the
counting inputs.
This means that
the counter
counts both the
positive edges
and the negative
edges of phase
A. This results in
the double
number of
counting pulses.
The precision
increases corre-
spondingly.

11 kHz (before
firmware V2.0.6)
30 kHz (since
firmware V2.0.6)

10 1 UpDown direc-
tional discrimi-
nator X4

A = Phase A
B = Phase B

This mode is the
same as mode 7
with one excep-
tion: There is a
pulse multiplica-
tion x4 with the
evaluation of the
counting inputs.
This means that
the counter
counts both the
positive edges
and the negative
edges of phase A
and B. This
results in the
fourfold number
of counting
pulses. The pre-
cision increases
correspondingly.

10 kHz (before
firmware V2.0.6)
15 kHz (since
firmware V2.0.6)

If channel 0 is configured as fast counter, the other channels 1,2 and 3 cannot
be configured as interrupt inputs. Otherwise, a configuration error will appear
and the CPU will be stopped.

Control of the fast counter
To control the fast counter configuration open the “I/O Mapping” tab.
The channels can be mapped as described in Symbolic Names for Variables, Inputs and Out-
puts and have the following meaning Ä Chapter 1.6.6.2.13.7 “Symbolic names for variables,
inputs and outputs” on page 3776:

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3790

Channel Direction Width Description
Actual value X Input DWORD Current value of the fast counter

State byte X Input BYTE Bit 0 = CF
If the counter reaches the pro-
grammed end value, the counter
output is stored permanently as CF
= TRUE (end value reached). Only if
the counter is set again (set value),
CF is reset to FALSE.

Bit 1 to Bit 7 free

Start value X Output DWORD Each counter can be set to a start
value. Start values are loaded into
the counter by the user program.
Using the set signal (dependent on
the operating mode either via a ter-
minal or the bit SET within the control
byte X), the values of the double word
variables are loaded into the counter
X.

End value X Output DWORD The end values for the 2 counters
are stored as comparison values into
the module by the user program.
Both counters compare continuously
whether or not their programmed end
value is equal to their actual value.
When the counter (actual value) rea-
ches its programmed end value, the
binary output CF of the status byte is
set permanently.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3791

Channel Direction Width Description
Control byte 1 Output BYTE Bit 0 = UP/DWN

In some operating modes, the counter
can count downwards, too. If counting
down is desired, the bit UP/DWN
must be set to TRUE. If doing so, the
counter starts counting downwards at
the start value (set value) to the end
value (max. from 4,294,967,295 to 0
or hexadecimal from FF FF FF FF to
00 00 00 00). After reaching 0 the
counter jumps to 4,294,967,295.

Bit 1 = EN
The processing of the counter signals
must be enabled. Depending on the
operating mode, enabling is done via
a terminal or by the bit EN = TRUE
within the control byte.

Bit 2 = SET
The counter can be set to a start
value (see the description of the set
values for the counters 1 and 2 at the
beginning of this table. CF = 0
Bit 3 = CF_HW
0 = state of CF is set to hardware
channel (only for mode 1 and 2)
1 = normal output is set to hardware
channel
Bit 3 is evaluated only in control byte
of counter 1.

Bit 4 to Bit 7 free

Control byte 2 Output BYTE Bit 0 = UP/DWN
In some operating modes, the counter
can count downwards, too. If counting
down is desired, the bit UP/DWN
must be set to TRUE. If doing so, the
counter starts counting downwards at
the start value (set value) to the end
value (max. from 4,294,967,295 to 0
or hexadecimal from FF FF FF FF to
00 00 00 00). After reaching 0 the
counter jumps to 4,294,967,295.

Bit 1 = EN
The processing of the counter signals
must be enabled. Depending on the
operating mode, enabling is done via
a terminal or by the bit EN = TRUE
within the control byte.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3792

Channel Direction Width Description
Bit 2 = SET
The counter can be set to a start
value (see the description of the set
values for the counters 1 and 2 at the
beginning of this table.

Bit 3 to Bit 7 free

1.6.6.2.14 Serial interface
Configuring Modbus RTU on serial interface

To enable Modbus RTU on a serial interface the protocol setup per default has to be replaced
by either Modbus RTU Client or Server, depending on required operation mode.
A serial interface supports only one protocol/operation mode at once.

1. Right-click node “CAA_SerialCom” and click “Add object”.
2. Select “Modbus RTU Client” or “Modbus RTU Server” and click “Add object”.

ð “CAA_SerialCom” is replaced by your selection.

Parameters
Serial parameters to be set selecting the interfaces node “COM_1”. They are common for both
operating modes client and server.

Replace object
“CAA_SerialCo
m”

Serial

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3793

The parameter “Data bits” always has to be set to “8” for Modbus.

Server specific parameters to be set selecting the protocol’s node “Modbus_RTU_Server”.

Address

Bus address of the PLC as Modbus RTU Server on that interface
Byte Order

Format/Endianess for the transmission of WORD values (register) within the request/response
telegram (default: Big Endian)
Disable

Parameter Default Value Description
Disable write to %MB from 0 0 ... 65535 Disable write access starting at

%MBx

Disable write to %MB to 0 0 ... 65535 Disable write access up to %MBx

Disable read from %MB
from

0 0 ... 65535 Disable read access starting at
%MBx

Disable read from %MBx
to

0 0 ... 65535 Disable read access up at %MBx

It is possible to disable read and/or write access to individual segments. Reading/writing is
disabled beginning at the set start address and is valid up to the set end address (inclusive).

“Modbus RTU Client” does not have any protocol parameters.

Configuring CAA SerialCom on serial interface
The protocol CAA SerialCom represents the standard serial protocol provided by 3S and allows
the users to implement their own custom protocol.

For details on CAA SerialCom, refer to standard 3S V3 documentation .

Modbus RTU
server

Modbus RTU
client

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3794

When creating a new project, the protocol “CAA SerialCom” is automatically attached to the
“COM_1” port of a V3 PLC.

Right-click on the node attached to “COM_1” node in the device tree and click “Delete”.

ð The node is switched back to the “CAA SerialCom” protocol.

Since CAA SerialCom doesn’t represent a “real” protocol, there are no specific parameters
required. All common settings can be found at the Tab “COM_1” after double-click on the
“COM_1” node (see also Ä Chapter 1.6.6.2.14.3 “Setting up a serial interface” on page 3798).

Activate particular configuration parameters
The parameters set up in the Automation Builder device tree are NOT automatically taken over
in the PLC.

Default setting

Switch to
default setting

Parameters

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3795

It is still required to use the 3S IEC POUs to activate the particular configuration parameters.

ABB provides the library AC500_Com (“ABB - AC500 / Use Cases / Serial Communication)”
which contains a POU called “ComGetCaaSerialComConfig”.
The function block can be used to obtain the configuration data which is set up in Automation
Builder to directly pass it to CAA SerialCom-POU Open. This avoids manual creation of a
parameter list.
The following code snippet shows, how the COM port is identified by its node name and how the
parameter list for the function block is read from the configuration data of the currently loaded
IEC application:
FUNCTION_BLOCK GET_CAA_COM_CFG
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR

 ComGetCaaSerialComConfig: ComGetCaaSerialComConfig;
 bExecGetCfg: BOOL := FALSE;
 bDoneGetCfg: BOOL := FALSE;
 bErrorGetCfg: BOOL := FALSE;
 bBusyGetCfg: BOOL := FALSE;
 ErrorIdGetCfg: AC500_Com.ERROR_ID :=
AC500_Com.ERROR_ID.NO_ERROR;
 asParamList: ARRAY[0..31] OF
AC500_Com.Serial_Communication.COM.PARAMETER;
 uiNumParams: UINT := 32;

 uiStep: UINT := 0;
 szNodeName: STRING(80) := 'COM1';
 ComID: AC500_Com.COM_PORT_ID;
 bSuccess: BOOL := FALSE;
 bError: BOOL := FALSE;
END_VAR

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3796

VAR CONSTANT
 STEP_INIT: UINT := 0;
 STEP_GET_ID: UINT := 1;
 STEP_FAILED_GET_ID: UINT := NOT STEP_GET_ID;
 STEP_GET_CFG_CAA: UINT := (STEP_GET_ID + 1);
 STEP_FAILED_GET_CFG_CAA: UINT := NOT STEP_GET_CFG_CAA;
 STEP_DONE_SUCCESS: UINT := (STEP_GET_CFG_CAA + 1);

END_VAR

IF uiStep = STEP_GET_ID THEN
 ComId := ComGetIdByName(szNodeName);
 IF ComId = AC500_Com.COM_PORT.COM_ID_INVALID THEN
 uiStep := STEP_FAILED_GET_ID;
 ELSE
 bExecGetCfg := TRUE;
 uiStep := STEP_GET_CFG_CAA;
 END_IF
END_IF

IF uiStep = STEP_GET_CFG_CAA THEN
 ComGetCaaSerialComConfig(
 Execute:= bExecGetCfg,
 Done=> bDoneGetCfg,
 Busy=> bBusyGetCfg,
 Error=> bErrorGetCfg,
 ComID:= ComID,
 pCaaParamList:= ADR(asParamList[0]),
 NumParams:= uiNumParams,
 ErrorID=> ErrorIdGetCfg);
 IF bDoneGetCfg THEN
 uiStep := STEP_DONE_SUCCESS;
 ELSIF bErrorGetCfg THEN
 uiStep := STEP_FAILED_GET_CFG_CAA;
 END_IF
END_IF

IF uiStep = STEP_DONE_SUCCESS THEN
 bSuccess := TRUE;
END_IF

IF uiStep = STEP_FAILED_GET_ID THEN
 bError := TRUE;
END_IF

IF uiStep = STEP_FAILED_GET_CFG_CAA THEN
 bError := TRUE;
END_IF

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3797

Setting up a serial interface

The configuration for serial interfaces and their protocols is done via two nodes:
● One node represents the common serial parameters related to the hardware port.
● The node below represents the parameterization for the particularly attached protocol.

● 3S CAA SerialCom (common serial communication, send/receive data Ä Chapter
1.6.6.2.14.2 “Configuring CAA SerialCom on serial interface” on page 3794)

● Modbus RTU (client & server Ä Chapter 1.6.6.2.14.1 “Configuring Modbus RTU on serial
interface” on page 3793)

How to switch between the protocols, see Ä “Default setting” on page 3795.

Configuration
The following parameters are available in the configuration view of the COM port node:

Parameter Value ranges Description
Run on config fault No If this parameter is set to “Yes” the IEC appli-

cation will not be prevented from switching to
RUN state, independent from possibly existing
configuration errors of the particular COM port.

Yes

Transmission rate 9600 baud/sec Sets up the transmission rate to use for the
COM port.19200

38400

57600

115200

Parity None Sets up the parity to use for the COM port.

Odd

Even

Data bits 5 data bits Sets up the number of data bits to use for the
COM port6 data bits

7 data bits

8 data bits

Stop bits 1 stop bits Sets up the number of stop bits to use for the
COM port.2 stop bits

General

Protocols sup-
ported by
AC500 V3 PLCs

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3798

Parameter Value ranges Description
Flow control No flow control Allows to switch between different flow control

modes (either RTS/CTS hardware or Xon/Xoff
software or none). This setting is only valid for
RS-232 serial interface mode. In case RS-485
is used for parameter “Serial interface”, flow
control must set to “No flow control”. Otherwise
a configuration error is triggered.

Hardware RTS/CTS

Software Xon/Xoff

Boot parameter
Serial interface

RS-232 Allows to switch between RS-232 and RS-485.
Due to technical reasons, it’s not possible to
dynamically switch between the modes. This
means, a reboot (or power cycle) of the PLC is
required to activate the particular setting once
changed.

RS-485

Comparison to V2
The following table shows the differences between V2 and V3 PLCs regarding the parameter
set for serial interfaces:

V2 Parameter Representation in V3 Remark
Run on config fault Run on config fault Exactly the same

RTS control Flow control (partially) Special modes which allow to use PLC as
modem and mode implicitly setting RS-485 will
not be taken over. Flow control settings will be
limited and only support hardware, software or
none.

Transmission rate Transmission rate For V3, the transmission rate range will be 9600
to 115200. Low modes will not be supported
due to lack of support in Linux. High rates were
only realized in V2 to support field bus plug as
well as CS31 field bus. Both protocols are not
supported anymore in V3, so these transmission
rates won’t be available in V3. Approach: Only
support most common transmission rates

Parity Parity (subset) A500 V3 doesn’t allow to configure parity modes
“mark” and “space”. This means, only “none”,
“odd” and “even” are configurable.

Data Bits Data Bits Exactly the same

Stop Bits Stop Bits Exactly the same

1.6.6.2.15 Gateway configuration
1. In the Automation Builder project, right-click the topmost PLC tree node and select

“Communication Settings”.

ð The dialog window Communication Settings appears.

2. Click “Advanced Settings” to open the Ä Chapter 1.4.1.20.2.8.2 “Tab 'Communication
Settings'” on page 840 dialog.

ð This information will be stored in the project file.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3799

3. Click “Gateway” and select the desired action from the Gateway menu either to change
the local gateway (see Ä Chapter 1.4.1.20.3.18.2 “Command 'Configure the Local Gate-
way'” on page 1125) or to add a new gateway channel (see Ä Chapter 1.4.1.20.3.18.1
“Command 'Add New Gateway'” on page 1124).
Confirm your settings with “OK”.

Gateway settings on windows server 2012
To allow multiple concurrent users from different user sessions on the server to connect to
PLCs, the user has to run CODESYS gateway as a system service. This is managed by a
service called "CoDeSys V2.3 Gateway Service Wrapper". The service starts on system start-up
and launch the gateway.
If you want to restart the gateway, use "Services management console" to restart "CoDeSys
V2.3 Gateway Service Wrapper".

You can set the communication settings in the Automation Builder project for every PLC. Other-
wise, an error message is displayed while trying to open CODESYS.
See the description for Ä Chapter 1.6.6.2.15 “Gateway configuration” on page 3799 and select
"TCP/IP" under “Connection”.

1.6.6.2.16 CAN onboard
CANopen

In Automation Builder, a CANopen network consists of one CANopen manager which acts as
master device and optional CANopen remote devices which act as slave devices.

CANopen manager (master)
Tab 'CANopen Manager - General'
Table 658: “General”
“Node-ID” The node number identifies the CANopen Manager as unique (range of values:

1...127).

“Check and Fix Configuration” Opens the dialog of the same name. See below for details.

“Autostart CANopen Manager” : The CANopen Manager starts automatically (switches to OPERATIONAL
mode) after all required slaves are ready.

: The CANopen Manager has to be started from the application. The function
block CiA405.NMT can be used to do this.

Hint: As long as the CANopen Manager is not in OPERATIONAL mode, no
PDOs are sent (outputs refreshed).

“Polling of optional slaves” : When a slave does not respond during the boot sequence, the CANopen
Manager interrogates it every second until it does respond.
Constantly polling the slave increases the bus cycle time, which can interfere
with the application (especially motion applications). You can deactivate polling
to avoid this behavior. If polling is deactivated, then a slave is detected again
when it sends a bootup message.

“Start slaves” : The CANopen Manager is responsible for starting the slaves.

: You have to start the slaves from the application. Use the CiA405 NMT
function block to do this.

Gateway as a
service

Gateway set-
tings

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3800

“NMT start all (if possible)” : If the “Start slaves” option is activated, then the CANopen Manager starts
all slaves with an "NMT Start All" command. The "NMT Start All" command is
not executed as long as optional slaves are not yet ready to be started. In this
case, the CANopen Manager starts each slave individually. The "NMT Start All"
command can be guaranteed only in a project without optional slaves.

“NMT error behavior” ● “Restart slave”. If an error occurs during slave monitoring (NMT Error Event),
then the slave is restarted automatically by the stack (NMT Reset + SDO
Configuration + NMT Start).

● “Stop slave”. If an error occurs during slave monitoring (NMT Error Event),
then the slave is stopped. Then you have to reset the slave from the applica-
tion, using the CiA405 NMT function block.

Table 659: “Guarding”
Working with heartbeat messages is an alternative method of monitoring. It can be executed from both master
and slave nodes, as opposed to node guarding. Normally the master sends heartbeat messages to the slaves.

“Enable heartbeat producing” The master sends heartbeats. They define the time interval in the “Producer
time”. When the slaves are provided with the heartbeat function, a heartbeat
consuming entry from the slave is created for the master. Then the Node-ID and
the 1.5x heartbeat interval of the master are applied.

: Node guarding is enabled for the slaves. The settings from the EDS file of
the slaves are used for this. If the values there cannot be used, then default
values are used. Note that a CANopen Slave device can also be configured as a
heartbeat producer.

“Node-ID” Unique identification (1-127) of the heartbeat producer on the bus

“Producer time (ms)” Interval length between successive heartbeats (in milliseconds)

“Redundancy Node-ID” Requirement: A “Redundancy Configuration” object is inserted below the appli-
cation.
Unique identification (1-127) of the redundant heartbeat producer on the bus

“Redundancy wait time (µs)” Requirement: A “Redundancy Configuration” object is inserted below the appli-
cation.
Duration of how long the passive controller waits for the heartbeat of the active
controller. If this time is exceeded, then the passive controller takes on the active
role.

Table 660: “SYNC”
“Enable SYNC producing” : The CANopen manager sends SYNC telegrams (disabled by default)

The synchronous PDOs are sent directly after the SYNC telegram.

“COB-ID (Hex)” CAN-ID of the SYNC telegram. Range of possible values: [1...2047].

“Cycle period (µs)” Interval length (in microseconds) after which the SYNC telegram is sent

“Window length (µs)” Length of the time frame for synchronous PDOs (in microseconds)

“Enable SYNC consuming” : (disabled by default). Another device must produce the SYNC telegrams that
are received by the CANopen Manager.

NOTICE!
If SYNC producing is enabled for the CANopen manager, then you are not per-
mitted to select the “Enable SYNC producing” option for all other bus devices.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3801

Table 661: “TIME”
“Enable TIME producing” : (disabled by default). The CANopen Manager sends TIME messages.

“COB-ID (Hex)” (Communication Object Identifier): identifies the time stamp of the message.
Default values: [0...2047], preset 16#100

“Producer time (ms)”: Interval (in milliseconds) when the time stamp is sent. This value has to be a
multiple of the task cycle time. Possible values [0, 65535]

The run time has to support high resolution timestamps. If not, then an error
message is displayed.

See also
● Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800
● Ä Chapter 1.6.6.2.16.1.2.1 “Tab 'CANopen Remote Device - General'” on page 3803

If you insert several devices below the CANopen manager, then error messages may report
multiple assigned Node-IDs or invalid COB-IDs. The “Check and Fix Configuration” button
opens a dialog for solving these conflicts.
For conflicts with Node-IDs or PDO COB-IDs, you can click “Edit Conflicts” to open a dialog with
detailed information.

Table 662: “Node-ID and COB-ID conflicts”
“Doubled node number” List of all devices with identical IDs. In the field of the “Node-ID” column, you can

enter new node numbers for the affected devices.

“Incorrect and double
assignment of PDO COB-IDs”

The COB-IDs that are generated automatically from the device description files
may not be permitted. All incorrect entries are listed with the respective device
names, Node-IDs, and indexes. There are three options for correcting invalid
COB-IDs:
● Correct the displayed formula for calculating the COB-IDs so that a valid

COB-ID results. You can change the formula in the respective table element.
● Accept the automatic suggestion for the COB-ID by clicking the respective

button.
● Accept all automatic suggestions by clicking the “Use Suggested COB-ID”

button.

Corrected entries are removed from the displayed list automatically.
You can solve timing problems automatically by using the “Automatic Repair”. The command
modifies all timing values to compatible values. (The time should be a multiple of the task time.)

CANopen remote device (Slave)
In CODESYS, a CANopen Remote Device is a slave device that you insert below a CANopen
Manager in the device tree of a project. A distinction is made between modular and non-mod-
ular slaves:
● Modular slaves: You can insert CANopen modules (submodules) below a modular slave.

These modules provide a “I/O Mapping” tab to map their inputs and outputs. Modular slaves
can also have fixed I/Os. Then these devices also provide the “I/O Mapping” tab. Modular
devices provide the “Configure PDO mapping automatically” option, which we recommend
for standard applications. You find this option in the “CANopen Remote Device” dialog, on
the “General” tab.

● Non-modular slaves: You cannot insert additional modules below a non-modular device.
The inputs and outputs of these devices are mapped in the “I/O Mapping” dialog. Automatic
mapping is not possible here.

Dialog 'Check
and Fix Configu-
ration'

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3802

See also
● Ä Chapter 1.6.6.2.16.1.2.1 “Tab 'CANopen Remote Device - General'” on page 3803

Tab 'CANopen Remote Device - General'
The general settings of the CANopen Slave are defined in this dialog of a CANopen Remote
Device (slave).

Table 663: “General”
“Node-ID” The node number identifies the CANopen Remote Device uniquely. It corre-

sponds to the number (value between 1 and 127) set on the device (hardware).
You have to provide the Node-ID as a decimal.

“Expert settings” : All settings are displayed that are predefined by the device description (EDS
file) for the device.

“SDO channels (...)” Click this button to open a dialog for activating the SDO channels that are prede-
fined in the EDS file. Service data objects (SDOs) allow access to all entries in
the CANopen object directory. An SDO creates a peer-to-peer communication
channel between two devices (SDO server and client channel).

“Optional device” : The slave is optional and not required for starting the CAN network.

“Sync producing” Available only when the “Enable sync producing” option is cleared in the
CANopen Manager.

: The I/O transmission is synchronized on the bus. The slave works as a sync
producer. The parameters of the sync interval are defined in the settings of the
CANopen Manager.

“No initialization” This option is for non-configurable slave that already start with a valid configura-
tion.

: The master does not send configuration SDOs or NMT start commands to
the slave. PDO communication and monitoring (heartbeat, node guarding) are
performed when this has been configured in the configurator.
If the slave does not start automatically, then the user can use the CiA405 NMT
function block to send an NMT start command to the slave.

“Default settings” The availability of this option depends on the contents of the device description
file.

: Activated by default. The slave nodes are reset to the default parameters
before the configuration is loaded to the device or always when the slave is
configured. Which parameters can be set is device-specific. The concrete task is
performed from the subindex of the list box.
● “Sub:001”: All parameters are reset.
● “Sub:002”: Communication parameters (index 1000h - 1FFFh manufacturer-

specific communication parameters) are reset.
● “Sub:003”: Application parameters (index 6000h - 9FFFh manufacturer-spe-

cific application parameters) are reset.
● “Sub:004” - “Sub:127”: Manufacturer-specific, individual selection of parame-

ters is reset.
● “ Sub:128” - “Sub254”: Reserved for future purposes

“Autoconfig PDO mapping”. This option is available for modular devices only.

 PDO mapping is generated automatically from the definitions in the device
description and then cannot be changed in the two mapping dialogs. If the
automatically generated mapping does not match your application, then you can
deactivate the option and configure the mapping manually. We recommend that
this option is activated for standard applications.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3803

Table 664: “Node Guarding”
Node guarding is an outdated monitoring method and should not be used anymore because is uses RTR frames.
You should always use heartbeats whenever possible. In some exceptions, such as for older slaves, you can use
only node guarding.

“Enable node guarding” : The CANopen Manager sends a message to the slave in the “Guard time
(ms)” interval. If the slave does not respond with the given “Guard COB-ID”
(Communication Object Identifier), then the CANopen Manager resends this
message as many times as defined in “Lifetime factor” or until the slave
responds.
If the slave does not respond, then it is marked as "unavailable".

“Guard time (ms)” Interval for sending messages (default: 200 ms)

“Lifetime factor” When the slave does not respond, a node-guarding error is established
according to the “Lifetime factor” time multiplied by the “Guard time”.

“Enable heartbeat producing” : The module sends heartbeats in the time intervals as given in “Producer time
(ms)”.

“Producer time (ms)”: The default setting is 200 as long as there is no special entry or the entry in the
device description file is 0.

“Heartbeat consuming (...)” Opens a “Heartbeat Consuming Properties” dialog. There you activate the slaves
that you want to watch.
The number of possible slaves to be monitored is defined in the EDS file. To do
this, you must select the "Enable" check box and enter the Node-ID of the slave
and the required values in the “Heartbeat time” field (in milliseconds). Then the
slave monitors the heartbeats that are sent from the affected slaves (defined by
the Node-ID). When no more heartbeats are received, the slave switches off the
I/Os.
When a slave is monitoring, a green check mark is displayed on the “Heartbeat
Consuming” button.
Note: When you insert a device with the heartbeat function, its heartbeat settings
are harmonized automatically with the master (CANopen Manager).

Table 665: “Emergency”
“Activate Emergency” : When internal errors occur, the slave sends emergency messages with a

unique COB-ID. You can read these messages by using the function blocks from
the library CAA Can Low Level Extern (RECV_EMCY_DEF, RECV_EMCY).

“COB-ID” CAN ID of the EMCY message. Range of possible values: [1...2047].

Table 666: “TIME”
The availability of this function depends on the device description.

“Enable TIME producing” : The device sends TIME messages.

“COB-ID (Hex)” (Communication Object Identifier): identifies the time stamp of the message.

“Enable TIME consuming” : The device processes TIME messages.

Table 667: “Checks at Startup”
The respective information is read from the firmware of the CANopen Slave (0x1018 identity object) and com-
pared to the information from the EDS file. In case of disparities, the configuration is stopped and the slaves are
not started.

“Vendor ID” : Check of the vendor ID at startup

“Product number” : Check of the product number at startup

“Revision number” : Check of the revision number at startup

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3804

See also
● Ä Chapter 1.6.6.2.16.1.1.1 “Tab 'CANopen Manager - General'” on page 3800
● Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800

Tab 'CANopen Device - PDOs'
Object: CANopen Remote Device, CANopen Local Device
This dialog is available only in the device editor of a CANopen Slave of version V3.5.6.0 or
higher. It shows all PDOs and their default settings. In this dialog, you can add new objects and
delete or edit existing objects.
On the left side, there are the PDOs that the slave receives from the master. On the right side,
there are the PDOs that the slave sends to the master.

“Add PDO” Opens the “Select PDO” dialog where all available PDOs are displayed. In this
dialog, you select the PDOs to be added to “Receive PDOs” or “Transmit PDOs”.

“Add Mapping” Opens the “Select Item from Object Directory” dialog. Objects are listed there
that you can add to the PDO mapping.

“Edit” When a PDO is selected, the “PDO Properties” dialog opens.
When a PDO mapping is selected, the “Select Item from Object Directory” dialog
opens.

“Delete” Deletes the selected objects from the list

“Move Up” Moves the selected object upwards by one line.

“Move Down” Moves the selected object downwards by one line.

See also
● Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800

“COB-ID” Every PDO message must have a COB-ID (Communication Object Identi-
fier). You can input explicit values (example: 16#201) or formulas (example:
$NODEID+16#200).

“RTR” Remote Transmission Request. This option is available for transmit PDOs only.

 You can use an RTR frame for interrogating the PDO externally.

“Inhibit time (x 100µs)” You can edit this field only if the device supports this functionality. The inhibit
time is the minimum time between two messages of a specific PDO. You can
use this setting for preventing PDOs from being sent too often when their values
are edited. Default: "0". Possible values: 0–65535.

Dialog 'PDO
Properties'

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3805

“Transmission type” ● “Acyclic - synchronous”: When a change is made, the PDO is transmitted
synchronously, but not periodically. (default)

● “Cyclic - synchronous”: The PDO is transmitted every nth sync.
● “Synchronous – only RTR”: Available for transmit PDOs only. After a syn-

chronization message, the PDO is updated, but not transmitted. Transmis-
sion is by explicit request only (Remote Transmission Request).

● “Asynchronous – only RTR”: Available for transmit PDOs only. The PDO
is updated and transmitted by explicit request only (Remote Transmission
Request).

● “Asynchronous – manufacturer specific”: The PDO is transmitted only after
specific events.

● “Asynchronous – device profile”: The PDO is transmitted according to the
CiA device profile.

“Number of syncs” For transmission type “Cyclic - synchronous” only.
Indicate the interval for transmitting the PDOs. The value is a multiple of the
“Cycle period (µs)” of the CANopen Manager. Default: 1. Possible values: 1–240.
Example: Number of syncs = 4, Cycle Period = 1000 µs à transmission interval
= 4000 µs

“Event time (x 1ms)” Only for transmission types “Asynchronous - manufacturer specific” and
“Asynchronous - device profile”.
You can edit this field only if the device supports this functionality. Indicate the
time span that should be between two PDO transmissions PDOs (in millisec-
onds). Default: "0". Possible values: 0–65535.

“Processing by CANopen
Manager”

: Default settings

: The CANopen Manager does not process the PDO any longer. It is no longer
transmitted or received.

For modular slave, you have to clear the “Autoconfig PDO mapping” option to be able to
configure the mapping manually.
The table shows all object directory entries from the EDS file of the device. For receive PDOs,
CODESYS provides only the objects here with write permission (flag = w); for transmit PDOs,
read permission.

“Name” COB-ID of the PDO or the name of the mapped object as it is used in the device
description and in the object directory.

“Index” Index of the object

“Subindex” Subindex of the object

“Access type” ● “RW”: Read/Write
● “RO”: Read Only
● “WO”: Write Only
● “RWW”: Read/Write per SDO; write permission per PDO (==> RxPDO,

output from the master viewpoint, input from point of view of the slave).
● “RWR”: Read/Write per SDO; read permission per PDO (==> TxPDO, input

from the master viewpoint, output from the point of view of the slave).
● CONST=constant

“Type” Data type of the object

“Default value” Default value of the object

“Bit length” Length of the object

Dialog 'Select
Item from
Object Direc-
tory'

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3806

Tab 'CANopen Remote Device - SDOs'
During the initialization of the CAN bus, CODESYS transmits the current configuration settings
by using SDOs (service data objects).
On this tab, you configure the necessary SDOs. You configure the necessary SDOs and deter-
mine the transmission order of the objects and the actions taken in case of a transmission error.
The object order in this list corresponds to the transmission order of SDOs to the module.

NOTICE!
If the “Expert settings” option is not activated for the current device, then only
the user-defined SDOs are shown here.

“Add SDO” Opens the “Select Item from Object Directory” dialog where all available SDOs
are displayed. The selected object is inserted after the selected object.

“Modify” Opens the “Select Item from Object Directory” dialog and marks the corre-
sponding object. You can modify the object parameters or replace the object
with another one.

“Delete” Deletes the selected objects from the list

“Move Up” Moves the selected object upwards by one line.

“Move Down” Moves the selected object downwards by one line.

“Abort on Error” : If an error is detected for this SDO, then the stack stops the configuration
phase of the current slave. The slave remains in PREOPERATIONAL mode.

“Jump to Line on Error” : The transmission is continued with the SDO that you indicated in the “Next
Line” column.

“Next Line” Line number where processing continues if there an error is detected

“SDO Timeout (ms)” Timeout for the SDO transmission. If the slave does not respond to the SDO
request within this time, then the transmission is canceled with a timeout.

“Create all SDOs” : Creates an SDO for all writable objects starting at index 16#2000 for which a
default value is given in the EDS. Only experts should use this option. It should
be deactivated for standard use.

“Write complete PDO
configuration”

: This option forces the writing of all PDO configuration objects. In this way,
you make sure that the settings in the project correspond to those of the slave.

: PDOs are not deactivated explicitly. The requirement is that the “Default
settings” option is activated in the common settings of the slave and the PDOs
are also deactivated in the EDS. If the default values in the EDS do not match
the default settings of the slave firmware, then this procedure may cause prob-
lems. In this case, you should activate this option.

See also
● Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800

The table shows all object directory entries from the device EDS file for each SDO that are
writable and not larger than 4 bytes. Before you add an SDO for selection in the SDO dialog,
you can modify its parameters in the fields below the table. In this way, you can also created an
SDO that is not writable in the EDS file by entering a new index/subindex value.

“Name” COB-ID of the PDO or the name of the mapped object as it is used in the device
description and in the object directory.

“Index” Index of the object

Dialog 'Select
Item from
Object Direc-
tory'

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3807

“Subindex” Subindex of the object

“Access type” ● “RW”: Read/Write
● “WO”: Write Only
● “RWW”: Read/Write per SDO; write permission per PDO (==> RxPDO,

output from the master viewpoint, input from point of view of the slave).
● “RWR”: Read/Write per SDO; read permission per PDO (==> TxPDO, input

from the master viewpoint, output from the point of view of the slave).

“Type” Data type of the object

“Default value” Default value of the object

“Bit length” Length of the object

“Value”

CANopen module
CANopen modules are components that you insert below a CANopen remote device.

J1939
J1939 is a CAN-based protocol (CAN stands for "Controller Area Network"). It was developed
for serial data transmission between electronic control units (ECU) in heavy goods vehicles. The
CODESYS plug-in 'DeviceEditorJ1939' provides dialogs to configure J1939 devices according
to SAE J1939 standards.
See also
● Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800

Bus Cycle Task

(1) Receive single package PG (4) Receive multi-package
PGs, send PGs
See also
● Tab '<device name> I/O Mapping'

Behavior of the
bus cycle for
J1939

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3808

ms-its:codesys.chm::/_cds_edt_device_io_mapping.htm

J1939 manager
The J1939 Manager is inserted in the device tree below the CAN bus node. It provides the
J1939 parameter groups and signal database. The ECUs are inserted below the J1939 Man-
ager.
The “Scan Devices” command is not available for J1939.

(1) CANopen Manager (2): J1939 Manager (3) J1939 ECU
See also
● Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800
● Ä Chapter 1.6.6.2.16.2.2.1 “Tab 'J1939 Manager - General'” on page 3809

Tab 'J1939 Manager - General'

In CODESYS version 3.5 SP17 and higher, the J1939 configurator is no longer
supplied with a parameter group / signal database. The old database is no
longer supported.

However, you can post-install a DBC database in the J1939 Manager.
A database can be purchased, for example from CSS Electronics: https://
www.csselectronics.com/screen/product/j1939-dbc-file-pgn-spn

If you do not install a database, then you can also configure parameter groups
and signals manually on the “User-Defined” tab.

“Databases” List with names of installed databases (DBC or DB format)

“Install” Opens the file manager to select a J1939 file (DBC or DB format). The J1939
files are usually stored in "C:\ProgramData\CODESYS\J1939 Databases".

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3809

https://www.csselectronics.com/screen/product/j1939-dbc-file-pgn-spn
https://www.csselectronics.com/screen/product/j1939-dbc-file-pgn-spn

“Uninstall” Uninstalls the selected database

“Set as default” Sets a database as the default database. This database is then set as default in
the “Add Parameter Group” and “Add Signal” dialogs.

See also
● Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800

J1939 ECU
1.6.6.2.16.2.3.1 Tab 'J1939 ECU - General'... 3810
1.6.6.2.16.2.3.2 Tab 'J1939 ECU - TX Signals'... 3811
1.6.6.2.16.2.3.3 Tab 'J1939 ECU - P2P RX Signals'...................................... 3813

Tab 'J1939 ECU - General'
In this dialog of the J1939 ECU editor, the general parameters of a J1939 ECU can be dis-
played and modified.

Table 668: “General”
“Preferred address” Address of the ECU. If more than one ECU with the same address exists in the

network, then all affected ECUs get a new address. The requirement is that the
ECUs allow an address change (“Arbitrary Address Capable”).

“Local Device” You can configure any number of local ECUs. Then every local ECU is its
own ECU instance in the J1939 network. For local devices, an additional “RX
Signals (P2P)” dialog is provided to configure received signals.

Table 669: “ECU NAME”
“NAME (64 bit): 16#” Hexadecimal 64-bit code that contains complete information about the subse-

quent parameters. Each time this code is modified, the respective parameter is
also modified. The same is true for the other direction.

“Arbitrary address capable” If the ECU detects an address conflict, then it tries independently to set
another address.

“Industry group” List of industry groups according to the definition from SAE J1939.

“Vehicle system instance” The parameter depends on the “Vehicle system”. The 4-bit value assigns a
number to each instance of the “Vehicle system”.

“Vehicle system” The value is defined in the SAE J1939 standard.

“Reserved” Always deactivated and reserved for future SAE definitions.

“Function” The parameter is defined and assigned by SAE. The range of values is 0...255,
but not all values are assigned.
The interpretation of values, which are greater than or equal to 127, depends on
the “Industry” selection. For example, the value "133" means "Product Flow" in
the "Agricultural and Forestry Equipment" industry. If "Construction Equipment"
is selected for “Industry”, then the same value means "Land Leveling System
Display".
If the value is less than 128 (0 – 127), then there is no dependency to other
parameters.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3810

“Function instance” The parameter is related to the “Function” field. A J1939 network can consist of
multiple ECUs with the same “Function”. The 5-bit “Function instance” assigns
a number to each instance of the “Function”, where 0 is assigned to the first
instance.

“ECU instance” A J1939 network can include multiple ECUs that have the same task. For
example, a vehicle can have two identical ECUs, where one measures vehicle
speed and the other measures the trailer speed.

“Manufacturer code” The 11-bit manufacturer code is assigned by SAE and indicates the company
that manufactured the ECU. This code is defined in the SAE J1939 document.

“Identity number” The 21-bit identity number is assigned by the manufacturer and should be used
for assuring unique names in a product line. The manufacturer can also add
more information to the identity number, such as serial number and date of
manufacture.

Table 670: “Communication Watchdog”
“Enable communication
watchdog”

 The stack checks whether the ECU transmits data within the given “Watchdog
time”. If this does not happen, then the device is classified as "not available" and
highlighted in red in the device tree.

See also
● Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800

Tab 'J1939 ECU - TX Signals'
This dialog shows the parameter groups that are transmitted to all other ECUs (broadcast) or
to a specific ECU (P2P). In this dialog, you can activate and deactivate individual groups and
modify their parameters. You can also add new groups or signals to the list.

“Enable” : The parameter group is transmitted.

 The parameter group is not transmitted for a local device. For a remote
device, the PLC does not process this group.

“Type” ● “Broadcast”: The parameter group is transmitted to all ECUs.
● “Peer-to-Peer P2P”: The parameter group is transmitted to a specific ECU.

“Add PG” Opens the “Add Parameter Groups” dialog.

“Add Signal” Opens the “Add Signal” dialog. The button is enabled only if you have selected a
parameter group.

Table 671: “General”
“PGN” The "parameter group number" is a unique number for addressing a parameter

group.

“Name” Name of the parameter group

“Description” Description of the parameter group

“Length” The length of the message data (0...1785 bytes). Due to the maximum array
length of 8 bytes, messages with over 8 bytes are transmitted as multipackages.

Parameter
group proper-
ties

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3811

Table 672: “Transmission settings”
These settings are provided only for the TX parameter groups of local devices.

“Priority” Priority of the parameter group (0..7). Priority 0 is the highest and 7 is the lowest.

“Target address” The target address is needed for P2P parameter groups only.

“Transmission mode” Determines the time when a parameter group is transmitted (for local devices).
● “Mode change”: The PG is transmitted when the value of the signal changes.
● “Cyclic”: The PG is transmitted after a specified number of PLC cycles (see

cycle time factor).
● “On request”: The PG is transmitted on request of another device.
● “Application-controlled”: The PG is transmitted when triggered by the appli-

cation.

“Cycle time factor” Number of PLC cycles after which the parameter group is transmitted.
Only applies for cyclic transmission.

Table 673: “General”
“SPN” Suspect Parameter Number. One of the numbers assigned by the SAE for a

specific parameter in a parameter group.

“Name” Name of the parameter

“Description” Description of the parameters

“Length (bits)” Length of the signal (in bits: 1...14280).

“Byte position (0..1784)” Start byte in the parameter group (0...1784).

“Bit position (0..7)” Bit position of the start byte (0..7).

Table 674: “Conversion”
“Conversion” TRUE: The value is calculated with scaling and offset.

“RAW data type” Format of the raw data: Unsigned / Signed / Float / Double

“Byte order” Little endian or big endian of the raw signal

“Scaling” Factor (for “Conversion” =TRUE)

“Offset” Offset (for “Conversion” =TRUE)

“Minimum value” Expected minimum value of the converted signal (for informational purposes
only)

“Maximum value” Expected maximum value of the converted signal (for informational purposes
only)

“Unit” Unit of the converted signal

“ICE data type” Resulting data type of the I/O channels

See also
● Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800

Signal parame-
ters

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3812

Tab 'J1939 ECU - P2P RX Signals'
This dialog is available for local ECUs only. It shows all PGs (parameter groups) that should be
received by other ECUs. In this dialog, individual groups can be activated and deactivated as
well as their parameters modified. New groups or signals can also be added to the list.
The commands and parameters of this dialog are the same as those on the “TX Signals” tab.
See also
● Ä Chapter 1.6.6.2.16.2.3.2 “Tab 'J1939 ECU - TX Signals'” on page 3811

Command 'Scan for Devices'
Function: The command establishes a brief connection to the hardware and determines the
devices in the network. Then you can apply the devices found into the device tree of your
project.
Call: Menu bar: “Project”; context menu of a device object in the device tree
Requirement: The communication settings to the controller are correct. The gateway and the
PLC are started. The device supports the scan function.
The following devices provide the scan function: EtherCAT master, EtherNet/IP Scanner
(IEC), Sercos master, CANopen Manager, CANopen Manager SIL2, PROFINET controller und
PROFIBUS DP master.

You can perform the device scan immediately if the scan function is perma-
nently implemented in the PLC. When scan function is implemented in a library,
you have to log in only one time to download the library to the controller.

The command refers to the master controller selected in the device tree. For example, an
already inserted PROFINET IO controller can be selected and the command used to determine
the I/O devices and I/O modules assigned to it.
After performing the scan operation, the “Scan Devices” dialog opens and displays the found
devices.

Dialog 'Scan
Devices'

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3813

Table 675: “Scanned Devices”
“Device name, Device type,
Address, Station name, etc.”

Data about the scanned device depending on network type.
When you change a value in the list of scanned devices, the value is shown
in italics. This indicates that the new value has been changed in the editor in
CODESYS, but not in the device. When you download the value to the device, it
is shown normally.
Value that indicate differences between the project and the scanned device are
shown in orange.
If multiple device descriptions are available for the scanned device, then the
name is displayed in bold. The selection of the matching device description is
resolved differently for different fieldbuses. For more detailed information, see
the corresponding fieldbus chapters.
If a device description cannot be found, then the following message is shown:
"Attention! The device was not found in the repository." Depending on the bus
system, additional information is displayed, such as manufacturer number and
product number. The device cannot be inserted into the project without the
installed device description.

“Show differences to project” : The table in the dialog also shows additional configured devices (in the
device tree of the project).

: The table shows all scanned devices. The configured devices are not shown.

“Scan for Devices” Starts a new search.

“Copy All Devices to Project” The device that is selected in the table is inserted into the device tree in the
project. If nothing is selected, then all scanned devices are shown.

NOTICE!
If you insert devices, which are available in the device tree, to the device tree
with “Copy All Devices to Project”, then the following should be noted. The data
of the “Process Data” and “<...> I/O Mapping” tabs of the existing devices can
be overwritten with the data of the recently inserted devices.

Table 676: “Configured Devices”
This part of the dialog is visible only when you select the “Show differences to project” option.
Differences between the scanned and configured devices are color-coded. Devices displayed in green are iden-
tical on both sides. Devices displayed in red are available only in the view of the scanned or configured devices.

If you have selected a device in both views, then the scanned devices are
inserted above the selected configured device.

If you have selected a device in both views, then the scanned devices are
inserted below the selected configured device.

If you have selected a device in both views, then the configured devices are
replaced by the selected scanned device.

All scanned devices are copied to the project.

Deletes the selected configure device.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3814

See also
● Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800

Tab 'CANbus - General'
Table 677: “General”
“Network” Number of the CAN network that is linked via the CAN bus interface. Permitted

values: 0 to 100.

“Baud rate” Baud rate (in bits per second) for transmitting data on the bus. The default value
is used from the device description file (*.devdesc) of the CAN bus device. You
can select the baud rate from the list box or type it directly into the input field.

See also
● Ä Chapter 1.6.6.2.16 “CAN onboard” on page 3800

1.6.6.2.17 EtherCAT configurator

Refer to the general description for information about the following tabs of the
device editor.

– Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854
– Ä Chapter 1.4.1.20.2.8.12 “Tab '<device name> IEC Objects'” on page 859
– Ä Chapter 1.4.1.20.2.8.3 “Tab 'Parameters'” on page 844
– Ä Chapter 1.4.1.20.2.8.18 “Tab 'Status'” on page 870
– Ä Chapter 1.4.1.20.2.8.19 “Tab 'Information'” on page 870

Only in the case of special features is there an additional help page for the
specific device editor.

If the "<device name> Parameters" tab is not shown, then select the “Show
generic device configuration editors” option in the CODESYS options (“Device
Editor” category).

The configuration of EtherCAT modules is based on the device description files for the master
and slave devices employed and can be adapted in the project in configuration dialogs. In
order to ensure the simplest and most error-free use possible, we recommend for standard
applications that you activate the option for the “Automatic Configuration” of the master, so that
the majority of the configuration settings are performed automatically.

The requirement for the combination of EtherCAT devices with a CODESYS Control Win
V3 is the installation of the program library WinPCap (freely downloadable, e.g. from
winpcap.org). Furthermore, add the following entries to the CODESYS configuration file (...\
\GatewayPLC\\CODESYSSP.cfg):
● component.<subsequent number>=CmpEt100Drv

Required only with the RTE. The RTE requires special network drivers. Available for Realtek
RTL81x9/RTL8169, Intel Pro 100 / 1000

● component.<subsequent number>=CmpRTL81x9Mpd
Required only with the RTE. Available for RTL8139.

● component.<subsequent number>=8169Mpd
Required only with the RTE. Available for Realtek RTL8169 or RTL8168 (PCIe version))

Requirements

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3815

The bus cycle task is set in the general PLC settings.

Access to the EtherCAT configuration by the application takes place via instances of the
EtherCAT master and EtherCAT slave. If the EtherCAT master or EtherCAT slaves are inserted
as objects into a project, instances are automatically created for master and slaves that can be
addressed in the application program. For example a restart, a stop or a status check of the
EtherCAT device can be performed from the application.
Furthermore, the EtherCAT library offers function blocks for the reading and writing of individual
parameters, even during bus operation.
See also
● Ä Chapter 1.6.6.2.17.1.1 “Tab 'EtherCAT Master - General' ” on page 3816
● Ä Chapter 1.4.1.20.4.13.6 “Dialog 'Options' - 'Device Editor'” on page 1190
● Ä Chapter 1.4.1.20.2.8.9 “Tab 'PLC Settings'” on page 850

EtherCAT master
1.6.6.2.17.1.1 Tab 'EtherCAT Master - General' .. 3816
1.6.6.2.17.1.2 Tab 'EtherCAT Master - Sync Unit Assignment' 3818
1.6.6.2.17.1.3 Tab 'EtherCAT Master - Parameters' 3819

Tab 'EtherCAT Master - General'
Object: EtherCAT Master
The tab is used for the configuration of the basic settings for the EtherCAT Master. The basic
settings are preset from the device description file.

NOTICE!
The auto-configuration mode (“Autoconfig master/slaves” option) is selected by
default and is adequate for standard applications. If the mode is not selected,
then all configuration settings for the master and the slave(s) have to be done
manually. Expert knowledge is required to do this. The auto-configuration mode
option has to be switched off to configure slave-to-slave communication.

“Autoconfig master/slaves” The main part of the master and slave configuration is done automatically,
based on the device description file and implicit calculations. The dialog for the
FMMU/Sync settings is not available.
Even if this option of the master is selected, an expert mode can be enabled
explicitly for each individual slave, which allows for manual editing of the auto-
matically generated process data configuration.

Settings of the
configuration
parameters

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3816

Table 678: “EtherCAT NIC Settings”
“Target address (MAC)” MAC address of the device in the EtherCAT network that is to receive the

telegrams.
Options
● “Broadcast”: A “Target address (MAC)” does not have to be specified.
● “Redundancy”: Enabled when the bus is constructed in a ring topology and

redundancy is to be supported. With this function, the EtherCAT network
remains functional even in the case of a broken cable. When this function is
enabled, the parameters have to be defined in the “Redundancy EtherCAT
NIC Settings” area.

“Source address (MAC)” MAC address of the controller (target system) or network name (name of the
adapter or PLC (target system))

“Network name ” Name or MAC of the network, depending on which of the following options is
selected:

“Select network by MAC” : The network is specified by the MAC ID. Then the project cannot be used on
another device because each network adapter has a unique MAC ID.

“Select network by name” : Network is identified by the network name and the project is device-inde-
pendent.

“Scan” Scans the network for the MAC IDs or names of the target devices that are
currently available.

Table 679: “Redundancy EtherCAT NIC Settings”
These settings are displayed only when the “Redundancy” option is selected. Here the parameters of the addi-
tional device are defined according to the description for “EtherCAT NIC Settings”.

Table 680: “Distributed Clock”
“Cycle time (µs)” Time span after which a new data telegram is dispatched on the bus. When

the “Distributed Clock” function is enabled in the slave, the master cycle time
specified here is transferred to the slave clocks. As a result, a precise synchro-
nization of the data exchange can be achieved. This is particularly important
when spatially distributed processes require simultaneous actions. An example
of a simultaneous action is applications in which multiple axes have to execute
coordinated movements at the same time. A very precise, network-wide time
base with a jitter of considerably less than 1 microsecond can be achieved in this
way.

“Sync offset” Parameter for setting the delay time between the DC time base of the EtherCAT
Slave and the cycle start of the PLC. With the default value of 20%, the PLC
cycle starts 20% of the bus cycle time after the sync interrupt of the slave.
This means in the case of
● FrameAtTaskStart = FALSE when the EtherCAT data is sent at the end of

the PLC cycle:
The PLC cycle may require 80% of the bus cycle time minus the delay time
in the runtime, and this without the master no longer placing the current
process data on the bus in time (assuming that the EtherCAT Slave expects
the new data exactly with the sync interrupt).

● FrameAtTaskStart = TRUE (default value when using CODESYS SoftMo-
tion):
For the controller program, nearly 100% of the cycle is always available.
Here the “Sync offset” determines only when the EtherCAT data of the
master is exchanged to and from the slaves relative to the time base of
the EtherCAT Slave.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3817

“Sync window monitoring” Synchronization of the slaves can be monitored.

“Sync window” Time for “Sync window monitoring”. When the synchronization of all slaves is
within this time window, the variable xSyncInWindow (IoDrvEthercat) is set
to TRUE, otherwise to FALSE.

Table 681: “Options”
“Use LRW instead of LWR/
LRD”

 Direct communication from slave to slave is possible. Combined read/write
commands (LRW) are used instead of separate read commands (LRD) and write
commands (LWR).

“Messages per task” Read and write commands (the handling of the input and output messages)
can be controlled by means of various tasks.

“Automatically restart slaves” The master immediately attempts to restart the slaves in the case of a com-
munication breakdown.

Table 682: “Master Settings”
These settings can be edited only when the “Autoconfig master/slaves” option is deactivated. Otherwise this is
done automatically and they are not visible here.

“Image In Address” First logical address of the first slave for input data

“Image Out Address” First logical address of the first slave for output data

See also
● Ä Chapter 1.6.6.2.17.2.1 “Tab 'EtherCAT Slave - General' ” on page 3819
● Ä Chapter 1.6.6.2.17 “EtherCAT configurator” on page 3815

Tab 'EtherCAT Master - Sync Unit Assignment'
Object: EtherCAT Master
The tab shows all slaves that are inserted below a specific master with an assignment to the
sync units.
With the EtherCAT sync units, multiple slaves are configured into groups and subdivided into
smaller units. For each group, the working counter can be monitored for an improved and more
exact error detection. As soon as a slave is missing in a sync unit group, the other slaves in the
group are also shown as missing. Detection occurs immediately in the next bus cycle because
the working counter is checked continuously. With the device diagnosis, the missing group can
be remedied as quickly as possible.
Unaffected groups remain operable without any interference.

Sync unit support is defined by the device description of the EtherCAT Master
and can be disabled for vendor-specific device descriptions. By default, it is
provided with a device description of version 3.5.8.0 and higher.

“Device name” Name of the slave

“Sync unit” Name of the selected sync unit. You can combine single devices or entire groups
(multiple selection) into on sync unit group.

“Add” When you type a name in the text field, you can create a new sync unit.

“Delete” Deletes the selected sync unit. When slaves are assigned to the group to be
deleted, a warning dialog opens. If you click “Yes” to acknowledge the dialog,
then these devices are reassigned to the default group.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3818

See also
● Ä Chapter 1.6.6.2.17 “EtherCAT configurator” on page 3815

Tab 'EtherCAT Master - Parameters'
Object: EtherCAT Master
The tab contains the master parameters which are defined in the device description file.
When the auto-configuration mode is selected in the “Master” dialog, the parameters are set
here automatically according to the specifications from the device description file and the net-
work topology. Nothing should be changed in the generic editor because an invalid configuration
can be set here.

“Value” Editable: A change is effective only when the auto-configuration mode is disa-
bled.
Whether or not the change becomes effective depends on the respective param-
eter.

See also
● Ä Chapter 1.6.6.2.17.2.6 “Tab 'EtherCAT Slave - Parameters' ” on page 3827
● Ä Chapter 1.6.6.2.17 “EtherCAT configurator” on page 3815
● Configuration

EtherCAT slave
1.6.6.2.17.2.1 Tab 'EtherCAT Slave - General' .. 3819
1.6.6.2.17.2.2 Tab 'EtherCAT Slave - FMMU/Sync' 3822
1.6.6.2.17.2.3 Tab 'EtherCAT Slave - Expert Mode Process Data'................. 3823
1.6.6.2.17.2.4 Tab 'EtherCAT Slave - Process Data' 3825
1.6.6.2.17.2.5 Tab 'EtherCAT Slave - Startup Parameters' 3825
1.6.6.2.17.2.6 Tab 'EtherCAT Slave - Parameters' .. 3827
1.6.6.2.17.2.7 Tab 'EtherCAT Slave - EoE Settings'....................................... 3827

Tab 'EtherCAT Slave - General'
Object: EtherCAT Slave
The basic settings for the EtherCAT Slave are configured on this tab. The basic settings are
preset from the device description file.

Table 683: “Address ”
Fields can be edited only when the auto-configuration mode of the EtherCAT Master is disabled.

“AutoInc address” Self-incrementing address (16-bit) that results from the position of the slave
in the network. The address is used only during the system boot when the
master assigns the EtherCAT addresses to its slaves. When the first message
runs through all the slaves for this purpose, each slave increments its “AutoInc
address” by 1. The slave with address 0 then gets the data. A possible input
here is "-8".

“EtherCAT address” Final address of the slaves, assigned by the master during bootup. The address
is independent of the position of the slave in the network.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3819

ms-its:codesys.chm::/_cds_edt_device_configuration.htm

Table 684: “Additional”
“Expert settings” : Additional settings are possible for the startup checking and time monitoring

(see below). The “Expert Process Data” tab is also available in the device editor.
However, expert settings are not required for standard applications. The auto-
configuration mode is recommended and sufficient for standard applications.

“Optional” At the start of the stack, the system checks whether optional devices are avail-
able.

: The slave is defined as optional and no error message is generated if the
device is missing from the bus system. If a device is not found, then it is disabled
automatically and displayed in gray in the device tree. A corresponding message
is displayed in the logger.
Note: If you define a slave as "optional", then it has to have a unique identi-
fication. You can change this by means of the three possible settings in the
“Identification” section.
Available only when the “Autoconfig master/slaves” option is selected in the
settings of the EtherCAT Master and the EtherCAT Slave supports this function.

Table 685: “Distributed Clock”
“Select DC” List box with all settings for the distributed clocks of the device description file

“Enable ” : Cycle time for the data exchange. It is displayed in the “Sync unit cycle
(µs)” input field and determined by the cycle time of the master. As a result, the
master clock can synchronize the data exchange in the network.

The “Sync0” and “Sync1” settings described below are slave-dependent:

Table 686: “Sync0”
“Enable Sync 0” : Synchronization unit “Sync0” is used. A synchronization unit describes a set

of process data that is exchanged synchronously.

“Sync unit cycle” : The master cycle time (multiplied by the factor selected from the list box) is
used as the synchronization cycle time for the slave. “Cycle time (µs)” displays
the cycle time currently set.

“User-defined” : A custom cycle time (in microseconds) can be specified in the “Cycle time
(µs)” field.

Table 687: “Sync1”
“Enable Sync 1” : Synchronization unit “Sync1” is used. A synchronization unit describes a set

of process data that is exchanged synchronously.

“Sync unit cycle” : The master cycle time (multiplied by the factor selected from the list box) is
used as the synchronization cycle time for the slave. The “Cycle time (µs)” field
displays the cycle time currently set.

“User-defined” : A custom cycle time (in microseconds) can be specified in the “Cycle time
(µs)” field.

Table 688: “Diagnosis”
This area section appears in online mode only.

“Current State” State of the slave
Possible states: “Init”, “Preoperational”, “Safe Operational”, and “Operational”

The state Operational indicates that the slave configuration has been correctly
completed and that process data (inputs and outputs) are being accepted.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3820

Table 689: “Startup Checking”
“Check vendor ID” By default the vendor ID and product ID of the device are checked against the

current configuration settings when the system boots up. If they do not agree,
then the bus is stopped and no further actions are executed. This is done to
prevent an incorrect configuration from being loaded onto the bus system.
Options for deactivating the corresponding check.

“Check product ID”

“Check revision number” : The revision number is checked during the system bootup according to your
selection in the list box.

“Download expected slot
configuration”

 For online verification of the configured and actual module configuration. If the
configurations do not match, then the device still switches to "Run". In this case,
an entry is made in the device logbook.

Table 690: “Timeouts”
By default, watchdog is not defined for the following actions. If necessary, an appropriate timeout can be specified
here (in milliseconds):

“SDO access” Transmits the SDO list at system start. Specified in milliseconds.

“I -> P” Switch from “Init” mode to “Preoperational” mode. Specified in milliseconds.

“P -> S / S -> O” Switch from “Preoperational” mode to “Safe Operational” mode, or from “Safe
Operational” mode to “Operational” mode. Specified in milliseconds.

Table 691: “DC Cyclic Unit Control: Assign to Local µC”
One or more options for the “Distributed Clock” function can be activated here that should be used on the local
microprocessor. The check is performed in the registry at 0x980 in the EtherCAT Slave. Possible settings:

“Cycle unit”

“Latch unit 0”

“Latch unit 1”

Table 692: “Watchdog”
“Set multiplier” The PDI watchdog and SM watchdog receive their impulses from the local ter-

minal clock divided by the watchdog multiplier.

“Set PDI watchdog” This watchdog triggers when there is no PDI communication with the EtherCAT
Slave controller for longer than the PDI (Process Data Interface) watchdog time
which has been set and activated.

“Set SM watchdog” This watchdog triggers when there is no EtherCAT process data communication
with the terminal for longer than the SM (SyncManager) watchdog time that has
been set and activated.

Table 693: “Identification”
In this section, you set the device identification of the slave. As a result, you can make the address of the slave
independent of its position in the bus.
The following options are visible only when the “Activate expert settings” option or “Optional” option is selected.
If you have identified the slave as “Optional”, then you have to assign a unique ID to it.

“Disabled” The identification of the slave is not checked.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3821

“Configured station alias (ADO
0x0012)”

Address that is stored in the EEPROM of the device.
You can change the value in the “Scan Devices” dialog or in online mode. For
stock devices, you need to assign this number one time. This means that you
have to connect the device one time to an EtherCAT Master and save the
number.

“Write to EEPROM” Visible in online mode only for “Configured station alias”. Writes the defined
address for “Value” to the EEPROM of the slave.

“Explicit device identification
(ADO 0x0134)”

The device identification is hard set on the hardware (for example, by DIP
switches). It is displayed in “Actual address”.

“Data Word (2 Bytes)” A 2-byte value for the identification is saved in the slave.

“Value” Expected value for the check. If the actual value does not correspond to this
setting, then an error is issued.

“ADO (hex)” Initial value from the device description. You can change this value in the “Data
word” option.

“Actual address” Visible in online mode only. Displays the address of the slave. You can use this
display for checking the success of the “Write to EEPROM” command.

See also
● Ä Chapter 1.6.6.2.17.1.1 “Tab 'EtherCAT Master - General' ” on page 3816
● Ä Chapter 1.6.6.2.17 “EtherCAT configurator” on page 3815

Tab 'EtherCAT Slave - FMMU/Sync'
Object: EtherCAT Slave
The tab shows the FMMUs and Sync Manager of the EtherCAT Slave as they are defined in the
device description file. There is an option to edit the FMMUs and Sync Manager (for example,
for the configuration of slave-to-slave communication).
Requirement: The auto-configuration mode in the EtherCAT Master is disabled.

Note that these are expert settings which are not usually required for standard
applications.

Table 694: “FMMU ”
The table shows the Fieldbus Memory Management Units of the slave, which are used for handling the process
data. In each case the allocation of the logical address (“Global Start Address”) to a physical address (“Phys. start
address”) is defined. Bit-by-bit mapping is possible.

“Modify”

“Add”

“Delete”

Table 695: “Edit FMMU”
“Global Start Address”

“Length”

“Start bit”

“End bit”

“Phys. start address”

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3822

“Phys. start bit”

“Access” “Read”

“Write”

“Flags” “Enable”

Table 696: “Sync Manager ”
Display and editing of the synchronization manager of the slave. The physical start address, the type of access,
the buffer, and the physical address to which the interrupts are to be sent (as well as others) are defined for each
available Sync Manager type (mailbox in, mailbox out, inputs, outputs).

Table 697: “Edit Syncman”
“Phys. start address”

“Length”

“Buffer” “1”

“3”

“Access” “Read”

“Write”

“Interrupts” “to EtherCAT”

“to PDI”

“Flag control” “Enable”

“Watchdog” “Trigger”

“SyncMan type” “”

See also
● Ä Chapter 1.6.6.2.17.2.1 “Tab 'EtherCAT Slave - General' ” on page 3819
● Ä Chapter 1.6.6.2.17.1.1 “Tab 'EtherCAT Master - General' ” on page 3816
● Ä Chapter 1.6.6.2.17 “EtherCAT configurator” on page 3815

Tab 'EtherCAT Slave - Expert Mode Process Data'
Object: EtherCAT Slave
The tab provides another more detailed view of the process data, which is also displayed
in the “Process Data” dialog. Moreover, the download of the PDO assignment and the PDO
configuration is enabled here.
Requirement: The expert settings for the slave are selected.
See also:
● Ä Chapter 1.6.6.2.17.2.1 “Tab 'EtherCAT Slave - General' ” on page 3819

Table 698: “Sync Manager ”
List of the Sync Managers with data size and PDO type

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3823

Table 699: “PDO assignment (16#1C12)”
List of the PDOs assigned to the selected “Sync-Manager”.

When a check box is selected, the PDOs are enabled and I/O channels are created. This is similar to the simple
PDO configuration view.

Table 700: “PDO list”
List of the PDOs assigned to the selected “Sync-Manager”.

You can add new entries or edit or delete existing entries by executing the respective commands (“Add”, “Delete”,
“Edit”) in the command bar or context menu.

Table 701: “Edit PDO list”
“Name”

“Index”

“Direction” ● “TxPDO (input)”: : The PDO is transmitted from the master to the slave.
● “RxPDO (output)”: The PDO is transmitted from the slave to the master.

“Flags” ● “Required”: The PDO is required and cannot be disabled in the “PDO
assignment”.

● “Windows contents”: The contents of the PDO are fixed and cannot be modi-
fied. It is then not possible to add entries in “PDO contents”.

● “Virtual PDO”: Reserved for future use

“Exclude PDOs” It is possible to define an exclusion list. When a PDO is enabled in the “PDO
assignment”, others are disabled and cannot be enabled.

“Sync unit” ID of the Sync Manager to which the PDO is to be assigned

Table 702: “PDO Contents”
Displays the contents of the PDOs selected in the “PDO list”. You can add new entries or edit or delete existing
entries by executing the respective commands (“Add”, “Delete”, “Edit”) in the command bar or context menu. You
can change the PDO order by clicking “Move Up” and “Move Down”.

Table 703: “Download”
“PDO assignment” : Specific CoE commands for initializing the 0x1cxx objects are generated

and written to the slave.

“PDO configuration” : The CoE commands for 0x16xx or 0x1axx are generated, and then the
PDO mapping is downloaded to the slave. Normally, the default values originate
from the ESI file and the device has to support this functionality. For example,
if a device has a fixed configuration, then these commands are regarded as
flawed.

“Load PDO info from the
device”

The current PDO configuration is read from the slave and entered into the
configuration. The lists in the upper and lower right are then deleted and filled
with the read data. This is especially useful when the ESI file is incomplete and
the configuration is available only on the slave.

See also
● Ä Chapter 1.6.6.2.17.2.1 “Tab 'EtherCAT Slave - General' ” on page 3819
● Ä Chapter 1.6.6.2.17.2.4 “Tab 'EtherCAT Slave - Process Data' ” on page 3825
● Ä Chapter 1.6.6.2.17 “EtherCAT configurator” on page 3815

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3824

Tab 'EtherCAT Slave - Process Data'
Object: EtherCAT Slave
The tab of the EtherCAT configurator displays the process data for the inputs and outputs of the
slave. The data is preset from the device description file.

Table 704: “Select the Outputs”
The table shows the outputs of the slave defined by “Start address”, “Type”, and “Index”.
If outputs of the device are enabled here (for writing), then these outputs can be assigned to project variables in
the “EtherCAT I/O Mapping” dialog.

Table 705: “Select the Inputs”
The table shows the inputs of the slave defined by “Name”, “Type”, and “Index”.
If inputs of the device are enabled here (for reading), then these inputs can be assigned to project variables in the
“EtherCAT I/O Mapping” dialog.

See also
● Ä Chapter 1.6.6.2.17.2.1 “Tab 'EtherCAT Slave - General' ” on page 3819
● Ä Chapter 1.6.6.2.17 “EtherCAT configurator” on page 3815

Tab 'EtherCAT Slave - Startup Parameters'
Object: EtherCAT Slave
On the tab, the SDOs (service data objects) for 'CAN over EtherCAT' (CoE) or the IDNs
(identification numbers) for 'Servodrive over EtherCAT' (SoE) are defined for the current slave.
These parameters are determined for the device when the system is started.
The object directory with the required data objects is described in the EtherCAT XML description
file or in an EDS file that is referenced in the XML file.
Requirement: The device supports 'CAN over EtherCAT' or 'Servodrive over EtherCAT'.

Some modules that are inserted below a slave have their own startup parame-
ters. These parameters are also displayed in this list but cannot be edited here.
The parameters are modified in the editor of the corresponding module.

List of SDOs or IDNs
The order (from top to bottom) specifies the order in which the objects are transferred to the
module.

“Line” Line number

“Index:Subindex” For CoE only

“IDN” For SoE only
Identification number

Name

“Bit length” Bit length of the SDO or IDN

“Abort on Error” : In case of error, the transfer is aborted with an error status.

“Jump to Line on Error ” : In case of error, the transfer is resumed with the SDO or IDN at
the specified “Line”.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3825

“Next Line ” : The transfer is resumed with the SDO or IDN at the next line.

“Comment” Input field for comments

“Move Up” Moves the selected line upwards by one line

“Move Down” Moves the selected line downwards by one line

“Add” Opens the “Select Item from Object Directory” dialog adding SDOs
or IDNs.

“Delete” Removes the selected entry.

“Modify” Opens the “Select Item from Object Directory” dialog for changing
the parameters of the selected SDO or IDN

The dialog lists all available object directory entries as defined in the XML file. The parameters
of the objects can be modified in this dialog. New objects can also be created. This is useful
when none or only an incomplete object directory exists.

Table 706: “CAN over EtherCAT ”
List of available object directory entries as defined in the EDS file.

Column “Index:Subindex” Identifies the entry in the object directory

Column “Name”

Column “Flags” Display of access flags: RW (read/write), RO (read only), WO (write only)

Column “Base Value” Editable (double-click to open)

Input fields

“Name” Input field for displaying and changing the name

“Index: 16#” By specifying new index/subindex entries, a new object can be added to the
SDO that is not yet described in the EDS file.“Subindex: 16#”

“Bit length” Range of values of the object

“Value” Each value may be max. one byte (0-255). It can also be a hexadecimal in IEC
syntax (for example, 16#ad).
If the “Byte array” option is enabled, then the values have to be specified as a
comma-separated list (for example, 1,2,3,4).

“Full access” The complete object is written with one access and all subindexes are set at
the same time. The time needed for the transfer is reduced because not every
subindex has to be transferred individually.

“Byte array” Values can be specified as a comma-separated byte array.

Table 707: Servodrive over EtherCAT
List of available object directory entries as defined in the XML file.

Column “IDN” Identification number

Column “Base Value” Base value of the IDN.
Double-click to modify.

Input fields

“IDN” Identification number: Composed from the subsequent parameters
● “S”: Standard data
● “P”: Product-specific data
● “PSet”: Parameter set
● “Offset”

Dialog 'Select
Item from
Object Direc-
tory'

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3826

“Bit length” List box for selecting the bit length

“Value” List box for selecting the value

“Channel” If the object has multiple subobjects, then this list box is displayed automatically.

“As list” Parameters are loaded as a list. The first four bytes indicate the length.

: The length is calculated automatically.

See also
● Ä Chapter 1.6.6.2.17.2.1 “Tab 'EtherCAT Slave - General' ” on page 3819
● Ä Chapter 1.6.6.2.17 “EtherCAT configurator” on page 3815

Tab 'EtherCAT Slave - Parameters'
Object: EtherCAT Slave
The tab contains the slave parameters which are defined in the device description file.
When the auto-configuration mode of the master is selected, the parameters are set here
automatically according to the specifications from the description file and the network topology.
For standard applications, it is also not normally required to edit them.

“Value” Only a few parameters are editable. A change is effective only when the auto-
configuration mode is disabled.
Basically, the user should not modify anything here because doing so could
create an invalid configuration, which would prevent the slave from entering into
the operational state.

● Ä Chapter 1.6.6.2.17.2.1 “Tab 'EtherCAT Slave - General' ” on page 3819
● Ä Chapter 1.6.6.2.17.1.3 “Tab 'EtherCAT Master - Parameters' ” on page 3819
● Ä Chapter 1.6.6.2.17 “EtherCAT configurator” on page 3815

Tab 'EtherCAT Slave - EoE Settings'
Object: EtherCAT Slave
This tab is used to configure the communication settings for the individual slaves that support
Ethernet over EtherCAT (EoE).
Requirement:
● When using CODESYS Control Win V3, the Microsoft Loopback Adapter has to be installed

as a virtual Ethernet adapter. Installation instructions can be found online.

Table 708: “Settings”
“Virtual Ethernet Port” : Enables the EOE functionality of the slave. A unique “Virtual MAC ID” has to

be defined.

“Virtual MAC ID” Input field for the “Virtual MAC ID”

“Switch port” : The device acts as a switch. No additional network settings are required.

“IP port” : The device acts as an IP port. The “IP Settings” have to be configured.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3827

Table 709: “IP Settings”
The Ethernet communication parameters have to be set according to the parameters of the virtual Ethernet
adapter.

“IP address” IP address of the slave in the network (length: 4 bytes)
The IP port has to be in the same range as the virtual Ethernet adapter. For
example, if the address of the network adapter is 192.168.1.1 and the subnet
mask is 255.255.255.0, then the IP port has to be in the range from 192.168.1.2
to 192.168.1.254.

“Subnet mask” Subnet mask (length: 4 bytes)

“Default gateway” Default gateway (length: 4 bytes)

“DNS server” IP address of the DNS server

“DNS name” Name of the DNS server

See also
● Ä Chapter 1.6.6.2.17.2.1 “Tab 'EtherCAT Slave - General' ” on page 3819
● Ä Chapter 1.6.6.2.17 “EtherCAT configurator” on page 3815

EtherCAT module
1.6.6.2.17.3.1 Tab 'EtherCAT Module - Startup Parameters' 3828

Tab 'EtherCAT Module - Startup Parameters'
Object: EtherCAT Module
The SDOs (Service Data Objects) or IDNs that transmit specified parameters to the device at
the system start are defined on this tab for the current module.
The object directory with the required data objects is described in the EtherCAT XML description
file or in an EDS file that is referenced in the XML file.
Requirement: The device supports CAN over EtherCAT or Servodrive over EtherCAT

Some modules have their own start parameters which are displayed on the
tab. The parameters can be modified there. Likewise, the parameters are also
displayed in the slave, but they are blocked there.

Table 710: SDO table
List of SDOs or IDNs
The order (from top to bottom) in the SDO table specifies the order in which the SDOs are
transferred to the module.

“Line” Line number

“Idn”

“Bit length” Bit length of the SDO

“Abort on Error” : In case of error, the transfer is aborted with an error status.

“Jump to Line on Error ” : The transfer is resumed with the SDO at the specified “Line” in
case of error.

“Next Line ” : The transfer is resumed with the SDO at the next line.

“Comment” Input field for comments

“Move Up” Moves the selected line upwards by one line

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3828

“Move Down” Moves the selected line downwards by one line

“Add” Opens the “Select Item from Object Directory” dialog. In this dialog
you can change the parameters of the SDO before the SDO is
added to the configuration.
By specifying new index/subindex entries, a new object can be
added to the SDO that is not yet described in the EDS file. This is
useful if only an incomplete object directory or none at all exists.

“Delete” Removes the selected entry.

“Modify” Opens the “Select Item from Object Directory” dialog for changing
the parameters of the selected SDO or IDN in the table

Table 711: “Select Item from Object Directory”
List of available object directory entries as defined in the XML file.

Column “Idn”

Column “Base Value” Base value of the IDN.
Editable (double-click to open)

Input fields

“IDN” ● “S”
● “P”

“PSet” By specifying new “PSeT”/“Offset” entries, a new object can be added to the
IDN that is not yet described in the XML file. This is useful if only an incomplete
object directory or none at all exists.

“Offset” By specifying new PSet/Offset-entries, a new object can be added to the IDN
that is not yet described in the XML file. This is useful if only an incomplete
object directory or none at all exists.

“Bit length” List box for selecting the bit length

“Value” List box for selecting the value

“Channel” If the object has multiple subobjects, then this list box is displayed automatically.

“As list” Parameters are loaded as a list. The first four bytes indicate the length.

: The length is calculated automatically.

Table 712: “Select Item from Object Directory”
List of available object directory entries as defined in the EDS file.

Column “Flags” Display of access flags: RW (read/write), RO (read only), WO (write only)

Column “Base Value” Editable (double-click to open)

Input fields

“Name” Input field for displaying and changing the name

“Index: 16#” By specifying new index/subindex entries, a new object can be added to the
SDO that is not yet described in the EDS file.“Subindex: 16#”

“Bit length” Range of values of the object

Servodrive over
EtherCAT

“CAN over
EtherCAT ”

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3829

“Value” Each value may be max. one byte (0-255). It can also be a hexadecimal in IEC
syntax (for example, 16#ad).
If the “Byte array” option is enabled, then the values have to be specified as a
comma-separated list (for example, 1,2,3,4).

“Full access” The complete object is written with one access and all subindexes are set at
the same time. The time needed for the transfer is reduced because not every
subindex has to be transferred individually.

“Byte array” Values can be specified as a comma-separated byte array.

See also
● Ä Chapter 1.6.6.2.17.2.1 “Tab 'EtherCAT Slave - General' ” on page 3819
● Ä Chapter 1.6.6.2.17 “EtherCAT configurator” on page 3815

Bus Cycle Task - EtherCAT
By "bus" it means all fieldbuses including I/O bus. There is no bus cycle task for Modbus
because it is controlled by POUs. Modbus does not provide IO mapping.
It's recommended to define a dedicated bus cycle task for each fieldbus configured in the
project. It's strongly recommended not to use "unspecified" in the "“PLC Settings”" to avoid
unexpected behavior. The task defined in “PLC Settings” determines the bus cycle task of I/O
bus and, depending on the configuration, of the additional fieldbuses (the setting is by default
inherited).
Especially in case of EtherCAT, a dedicated bus cycle task should be used which is not shared
with other fieldbuses. If [unspecified] is set in “PLC Settings”, the EtherCAT task might be
automatically used by other fieldbuses, potentially causing EtherCAT task processing to fail.
This should be avoided by specifying a task different to the EtherCAT task in “PLC Settings”.
As a rule, for each IEC task the used input data is read at the start of each task and the written
output data is transferred to the I/O driver at the end of the task . The implementation in the I/O
driver is decisive for further transfer of the I/O data. The implementation is therefore responsible
for the timeframe and the specific time when the actual transmission occurs on the respective
bus system.
Other tasks copy only the I/O data from an internal buffer that is exchanged only with the
physical hardware in the bus cycle task.

General infor-
mation

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3830

(1) Read inputs from input buffer (2) IEC task
(3) Write outputs to output buffer (4) Bus cycle
(5) Input buffer (6) Output buffer
(7) Copy data to/from bus
(9) Bus cycle task, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5
Using tasks
The “Task Deployment” provides an overview of used I/O channels, the set bus cycle task, and
the usage of channels.

WARNING!
If an output is written in various tasks, then the status is undefined, as this can
be overwritten in each case.
When the same inputs are used in various tasks, the input could change when
a task is processed. This happens if the task is interrupted by a task with a
higher priority and causes the process map to be read again. Solution: At the
beginning of the IEC task, copy the input variables to variables and then work
only with the local variables in the rest of the code.
Conclusion: Using the same inputs and outputs in several tasks does not make
any sense and can lead to unexpected reactions in some cases.

Before the IEC inputs are copied, the pending network messages of the last cycle are read.

When the “Messages per task” option is enabled in the settings of the EtherCAT Master, addi-
tional telegrams are transmitted to the devices employed per task and input or output employed.
Channels that are used in a slow task are also transmitted less frequently. As a result, the bus
load can be reduced.

Behavior of the
bus cycle for
EtherCAT

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3831

See also
● Ä Chapter 1.6.6.2.17.1.1 “Tab 'EtherCAT Master - General' ” on page 3816

1.6.6.2.18 PROFINET IO Configurator
PROFINET IO (Process Field Network) is an industrial Ethernet standard widely used in the
field of manufacturing and process automation. It is managed by the user organization PI
(PROFIBUS&PROFINET International) and is considered the successor of PROFIBUS (see
https://www.profibus.com/).

PROFINET IO controller
Controller – General

Object: PROFINET IO Controller
The PROFINET IO controller, like the slaves, is identified by the station name. For AC500
Communication Modules, you can also configure the IP settings here. Otherwise the settings
apply from the superordinate Ethernet node.

“Station name” The station name of the device. It is used for unique identification of the device in
the network.

Table 713: IP Parameters
“IP address” Note: Available for AC500 Communication Module only.

If you insert the controller below an Ethernet adapter, then you have to define the
IP parameters in the dialog of the Ethernet adapter.

“Subnet mask”

“Default gateway”

Table 714: Default Slave IP Parameter
“First IP address” Range of IP addresses that CODESYS uses by default when inserting

PROFINET IO devices into the device tree. If you use the “Auto-IP” function
in the scan dialog, then IP addresses are also used from this range. The next
free IP address is selected here.

“Last IP address”

“Subnet mask”

“Default gateway”

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3832

https://www.profibus.com/

Table 715: IO Provider / Consumer Status
“Application stop --> Substitute
values”

When the user stops the application, the provider state is set to "BAD". Then
the slaves set the inputs and outputs to predefined substitute values. For more
information, see "CODESYS default values – PROFINET IO substitute values" at
the end of this chapter.

“Add to I/O mapping” : The incoming status information is added to the I/O mapping for all modules;
provider state for the input data and consumer state for the output data.

“Substitute input data” ● “Zero”
● “Last valid value”

Table 716: Port Data
“Peer station/port” Neighboring device with port that is connected to this port.

You can accept this setting in the “PROFINET IO Controller Topology” tab.

“Check cable length” Length of the network cable (in meters)
● < 10
● < 25
● < 50
● < 100
When the cable length is specified, it is checked when the controller is powered
up. An incorrect cable length causes an error message.

“Check MAU type” Type of network cable

Table 717: Watchdog
“Activate” Note: Available for AC500 Communication Module only.

: If the AC500 Communication Module firmware is not set within the given time
(for example, in the case of an exception error in the application), then it is reset.
The connection is terminated and the slaves switch to their substitute values.
The defaults for the watchdog originate from the device description.

See also
● Ä Chapter 1.6.6.2.18 “PROFINET IO Configurator” on page 3832

PROFINET IO devices set their inputs and outputs to predefined substitute values when there
is an interruption. These values are defined in the field device in contrast with default values.
These values are usually zero, but specific substitute values can also be configured depending
on the device.
The substitute values are set in the following cases:
● The connection is interrupted.
● The controller sets the provider state for the incoming data to "BAD".
● Other interruptions occur (for example, exception in host application, incorrect parameteriza-

tion)
If the “Application stop --> Substitute values” option is enabled, then the controller sets the
provider states to "BAD" at application stop. In this case, the slaves set their substitute values.
All incoming data from the controller is ignored (including default values).
If the default values defined in the application should be set for an application stop, then you
have to disabled this option. Moreover, you should select the “Update IO while stop” option (in
the “PLC Settings”). Otherwise, the CODESYS PROFINET IO controller is stopped.

CODESYS
default values –
PROFINET IO
substitute
values

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3833

PROFINET IO Controller - Bus Cycle Task
By "bus" it means all fieldbuses including I/O bus. There is no bus cycle task for Modbus
because it is controlled by POUs. Modbus does not provide IO mapping.
It's recommended to define a dedicated bus cycle task for each fieldbus configured in the
project. It's strongly recommended not to use "unspecified" in the "“PLC Settings”" to avoid
unexpected behavior. The task defined in “PLC Settings” determines the bus cycle task of I/O
bus and, depending on the configuration, of the additional fieldbuses (the setting is by default
inherited).
Especially in case of EtherCAT, a dedicated bus cycle task should be used which is not shared
with other fieldbuses. If [unspecified] is set in “PLC Settings”, the EtherCAT task might be
automatically used by other fieldbuses, potentially causing EtherCAT task processing to fail.
This should be avoided by specifying a task different to the EtherCAT task in “PLC Settings”.
As a rule, for each IEC task the used input data is read at the start of each task and the written
output data is transferred to the I/O driver at the end of the task . The implementation in the I/O
driver is decisive for further transfer of the I/O data. The implementation is therefore responsible
for the timeframe and the specific time when the actual transmission occurs on the respective
bus system.
Other tasks copy only the I/O data from an internal buffer that is exchanged only with the
physical hardware in the bus cycle task.

(1) Read inputs from input buffer (2) IEC task
(3) Write outputs to output buffer (4) Bus cycle
(5) Input buffer (6) Output buffer
(7) Copy data to/from bus
(9) Bus cycle task, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5
Using tasks
The “Task Deployment” provides an overview of used I/O channels, the set bus cycle task, and
the usage of channels.

General infor-
mation

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3834

WARNING!
If an output is written in various tasks, then the status is undefined, as this can
be overwritten in each case.
When the same inputs are used in various tasks, the input could change when
a task is processed. This happens if the task is interrupted by a task with a
higher priority and causes the process map to be read again. Solution: At the
beginning of the IEC task, copy the input variables to variables and then work
only with the local variables in the rest of the code.
Conclusion: Using the same inputs and outputs in several tasks does not make
any sense and can lead to unexpected reactions in some cases.

PROFINET IO does not provide any additional settings. Its functionality corresponds to the
general description.

PROFINET IO device
Device – General

Object: PROFINET IO Device
In this dialog, you configure a communication link (PROFINET IO: application relation) to a
PROFINET IO Field Device.
For all settings in the present dialog, the device description determines if the values here are
editable and the values that are predefined or possible.

“Station name” The station name of the device. It is used for unique identification of the device in
the network.

“Station status” 32-bit error code compliant with the PROFINET IO specification. In case of error,
the status is provided here, for example, when establishing a connection fails or
a link is interrupted. A description is also displayed.

“IP Parameters”

“IP address”
The IP settings of the device. Set when establishing the connection to the con-
troller.“Subnet mask”

“Default gateway”

“Communication Settings”

“Send clock (ms)” Send clock (in milliseconds).

“Reduction ratio” Scaling factor
The send cycle is defined by “Send clock” * “Reduction ratio”. Therefore, a “Send
clock” of 1ms and a “Reduction ratio” of 4 means that I/O data is sent every 4ms.

“Phase” With a “Reduction ratio” of n, the send cycle is divided into phases 1 to n (where
data is sent in one phase only). You can determine in which phase the data is
sent for the purpose of load distribution.
If “Send clock” = 1 and “Reduction ratio” = 4 (as in the example above), then you
could configure phases 1–4. For four slaves with this send clock and reduction
ratio settings, you could assign one of the four phases to each of the four slaves.
In this way, only one data packet is sent in each of the four phases of the send
cycle and the load is distributed equally.

PROFINET IO
bus cycle
behavior

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3835

“Watchdog (ms)” Monitoring time. A multiple of the send cycle (send cycle = “Send Clock” *
“Reduction Ratio”). Possible values: 3 ms – 1920 ms.
A connection is terminated when the controller or the PROFINET IO Device does
not receive I/O data from the communication peer within this time period. The
device enters failure mode and switches the outputs to substitute values.

“VLAN ID” VLAN identifier: Number between 0 and 4095 for VLAN type 802.1Q.
Note: For newer devices compliant with PROFINET IOspecification V2.3, only
"0" is still permitted.

“RT class” If available, you can select the required RT class from the list (real-time commu-
nication).

“User Parameters”

“Set All Default Values” CODESYS resets all settings to default values (see default value column) from
the GSDML file.

“Read All Values” CODESYS reads the current values from the device and updates them in the
editor.

“Write All Values” CODESYS writes the current values from the editor to the IO device. Not all IO
devices support parameter updates in run mode. If not, then an error message is
displayed.

See also
● Ä Chapter 1.6.6.2.18 “PROFINET IO Configurator” on page 3832

PROFINET IO - Module
Module – General

Object: PROFINET IO Module

Table 718: “Module Information”
“ID number” Identification of the module (from the device description).

“Slot number” Position of the I/O module below the I/O device, starting at "1" for the first
module and incremented for each additional module. This results automatically
from the current structure in the device tree.

Table 719: “User Parameters”
“Set All Default Values” CODESYS resets all settings to default values (see default value column) from

the GSDML file.

“Read All Values” CODESYS reads the current values from the device and updates them in the
editor.

“Write All Values” CODESYS writes the current values from the editor to the I/O module. Not all I/O
modules support parameter updates in run mode. If not, then an error message
is displayed.

See also
● Ä Chapter 1.6.6.2.18 “PROFINET IO Configurator” on page 3832

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3836

PROFINET IO - Field Device
The configuration of the PROFINET IO field device consists of the device itself as well as the
modules inserted below.
CODESYS provides two different PROFINET IO field devices:
● A variant especially for Communication Module CM579-PNIO
● A variant which is hardware-independent, the CODESYS PROFINET IO field device This

variant runs on any number of Ethernet adapters and is also available in a purely program-
matically configurable variant.

When inserting the Ethernet-based CODESYS field device, two tasks are created implicitly that
are required by the PROFINET IO communication stack.
● “Profinet_CommunicationTask”: This task includes the acyclic communication services, such

as establishing connections and diagnostics. These services are not time-critical due to very
weak real-time demands. Therefore the task is low priority.

● “Profinet_IOTask”: This is where the actual PROFINET IO real-time data exchange takes
place. Pending I/O data packets are processed in each cycle (see Slave Configurator:
“Send clock”). Therefore, a cycle time of 1ms is required (for 1ms send clock).

(6) Ä Chapter 1.6.6.2.18.2.2 “Field Device NetX –
General” on page 3838

(3) Ä Chapter 1.6.6.2.18.1.4.1 “Module – General”
on page 3836

(4) Ethernet adapter
(7) Ä Chapter 1.6.6.2.18.2.1 “Field Device – Gen-
eral” on page 3837

For maximum IO performance with minimum delay when reading/writing, I/O data can be
updated in this task (à insert own POU that updates IOs in this task). No blocking or persisting
operations should be executed in the IO task, such as visualization or file access. If the task is
blocked too long, then the watchdog cancels the connection for communicating with the slave
(see Slave Configurator: “Watchdog”).

NOTICE!
We recommend that you activate the “Refresh I/Os in Stop” option in the PLC
settings. Otherwise the communication is canceled when the application stops
at a breakpoint.

See also
● Device Editor Options
● Ä Chapter 1.6.6.2.18.2.1 “Field Device – General” on page 3837
● Ä Chapter 1.6.6.2.18.2.2 “Field Device NetX – General” on page 3838

Field Device – General
Object: PROFINET IO Field Device
The tab displays the basic communication settings.
According to the PROFINET IO standard, the PROFINET IO device is responsible for the IP
settings of the used adapter. It has to save remanent IP settings and be able to reset or modify
at the request of the controller (IP=0.0.0.0). Initial state (Reset to factory) is with deactivated IP
suite (IP=0.0.0.0).
To allow this full reset of the IP configuration, some settings have to be done on most systems
(see chapter Ä Chapter 1.6.6.2.18 “PROFINET IO Configurator” on page 3832).

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3837

ms-its:codesys.chm::/_cds_dlg_options_device_editor.htm

However, if the PROFINET IO device is a programmable logic controller and connected with
the (CODESYS) programming environment via one and the same Ethernet adapter, then mod-
ifying and resetting the IP address is interruptive (connection termination between IDE and
PLC). Therefore, one of the modes is provided that deviates from the standard (“Use project
parameters”).

Table 720: “IP and Name Assignment”
“Use remanent data” The IP settings and the station name of the file are used. The file is stored in the

file system.
The data is set by the controller and saved to a file by the device.

“Use project parameters” The IP settings and the station name of the project are used (settings of the
Ethernet adapter).
This option must be selected for Windows, VxWorks, and WinCE, because
changing the IP address is not possible for these systems.

“Station name” Station name of the PROFINET IO Device

Table 721: “IO Provider / Consumer Status”
“Use incoming” : The I/O data for the provider and consumer states is generated which is

received by the controller.

“Use outgoing” : The I/O data for the provider and consumer states is generated which is sent
to the controller.

“Substitute values” The substitute values for the output data become active when the corresponding
provider status (Output Data PS) is set to Bad. The output data is sent by the
controller and copied to the %I area of the Profinet modules.
The following options are available for the substitute values:
● “Inactive”: The outputs are set to "inactive" (example: 0).
● “Last value”: The output data retains the last valid value (provider status =

GOOD). The value is retained even if the connection to the controller has
been interrupted.

In online mode, the station name and the IP settings are displayed “Status” tab.

See also
● Ä Chapter 1.6.6.2.18 “PROFINET IO Configurator” on page 3832

Field Device NetX – General
Object: PROFINET IO Field Device
The tab displays the basic communication settings.

“Use remanent data” The IP settings and the station name of the file are used. Initially, the IP address
is 0.0.0.0 according to the standard and the station name is blank. When
a controller sets these values with the "store remanent" option, then they are
stored here.

“Use project parameters” When starting the device, the values defined in the project for IP configuration
and station name are always used initially.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3838

“Station name” The name of the device in the network.
Note: The station name and the IP settings can deviate from the (default) set-
tings configured in the project. They can be set by the controller in runtime mode
and in some cases stored persistently (this means when this is specified for the
controller in the Set IP or Set station name commands). After a restart,
the device is configured with these values as long as the “Use remanent data”
option is set.

“IP address” Initial IP settings
Caution: This data can be modified by the PROFINET IO Controller. The rema-
nent data is stored on the file system of the controller. After the controller is
restarted, this stored data goes into effect. The settings here are then ignored.

“Subnet mask”

“Default gateway”

In online mode, the station name and the IP settings are displayed “Status” tab.

See also
● Ä Chapter 1.6.6.2.18 “PROFINET IO Configurator” on page 3832

1.6.6.3 Protocols and special servers
1.6.6.3.1 IEC60870-5-104 (Telecontrol)

General information IEC60870
Introduction

The implemented IEC60870-5-104 protocol allows link-ups between AC500 CPUs with onboard
Ethernet and external systems. The link-up takes place via the onboard Ethernet interface of the
CPU. The telecontrol protocol according to IEC60870-5 is used.
The CPU can work as both control station and substation. In control direction, setpoints and
commands can be set; in monitoring direction the control station sends status values, real
values and discrete values to the substation. Via general inquiry, the substation requests the
control station to send all status values, real values and discrete values. Otherwise, these
values are sent by the control station on a change-driven basis, cyclically or when triggered by
an application. Status values, real values and discrete values may contain timestamps. These
are filled in with the time of the process station when sent. The CPU can time-synchronize the
telecontrol link.
A module accepts the configuration of the physical interface (link layer) and the general protocol
parts (application layer).
Send and receive blocks are available for data exchange. These blocks exist for the
IEC60870-5 data types setpoint value, command value, double command value, status value,
double status value, real value and discrete value. The inputs/outputs of the send and receive
blocks are combined with the signals to be communicated. See documentation of IEC60870
library for more information.
For a better understanding on how events are processed on a AC500 V3 PLC, refer to the
application example.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3839

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010782&LanguageCode=en&DocumentPartId=&Action=Launch

AC500 V3 (Standard):
● PM5630: Support of 5 control stations and/or substations with 1.000 information objects

overall on ETH1 and ETH2.
● PM5650: Support of 10 control stations and/or substations with 5.000 information objects

overall on ETH1 and ETH2.
● PM5670: Support of 20 control stations and/or substations with 10.000 information objects

overall on ETH1 and ETH2.

AC500-eCo V3:
●
● PM5012/ PM5052: no support of IEC60870-5-104 protocol.
● PM5072: Support of 5 substations with up to 1.000 information objects overall on ETH1 and

ETH2. IEC60870 control stations are not supported.

Data flow control
Each send or receive block can only process one data message. Ideally, new data are available
at each user task run-through or new data can be sent.
If the output OV (send block only) indicates TRUE, the function block computes more quickly
than the data can be sent. This can happen if the receive block is not computed quickly enough
and has thus not collected all the data.
Alternatively, this block sends either cyclically or if the input value is changed. Ideally, the topical
data can be sent via the telecontrol link in connection with every user task run-through.

Data integrity
With IEC60870-5 protocol, a distinction is made between data transmission in the monitoring
direction (status values, real values, discrete values) and in the control direction (commands
and setpoints).
All data transmissions are acknowledged from the link communication level by the receiver. This
acknowledgement is not sent to the sender of the data in every telecontrol link.
For data transmission in control direction, additional acknowledgement (e.g. ACTTERM) is
possible. These acknowledgements are not sent by every telecontrol link either. For safe data
transmission, it is necessary, in such cases, to configure data readback. The receiver then
sends the data received back to the sender via the corresponding send blocks.
Information in the monitoring direction is acknowledged by the receiver on the lowest communi-
cation level (link level) when received. This acknowledgement is generated by the telecontrol
head itself with some telecontrol heads. In the event of overload/overrun, a data message may
be lost. For data in the control direction, so-called ACTTERM acknowledgement can be used.
This additional acknowledgement is sent back to the sender when the data have been executed
in the process. If data are to be sent in the monitoring direction with guaranteed transmission, it
is necessary to read back the sent value via another variable and, after observing a monitoring
time, resend in the event of an error.

Data transmission
Send blocks

On the basis of the communication protocol, it is sensible to restrict the data types at one
send block to one type. Therefore, there are 5 types of send blocks: send of status values,
commands, real values, setpoints and discrete values. These types are mapped to the IEC1131
data types BOOL, REAL and DINT. See documentation of IEC60870 Library for more informa-
tion.

Limits of sup-
ported devices

Limits of sup-
ported devices

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3840

Operating modes of the send blocks
The send blocks know three operating modes to send their data:
● Caused by request pin (SEND)
● Send in connection with a change of data (AUTO)
● Cyclic send of data (CYCLE)

Send via request pin
The SEND signal is evaluated on the rising edge, the RDY signal remains applied for one
computation cycle. If a rising edge is generated again at the SEND signal although no acknowl-
edgement has yet been received from the receiver, the OV pin is set in order to indicate that
an overrun has happened. The evaluation of the receive acknowledgement is carried out before
the evaluation of whether transmission is to take place. This means, assuming that there is an
appropriately fast telecontrol link, that in connection with change-driven and cyclic transmission,
a transmission job can be sent in connection with every computation of the block. In connection
with send via the request pin it is possible to send only in connection with every second
computation (send takes place only with a rising edge).

Change-driven send of data
Data are always sent when the value of the input variables changes. When changes take place,
there is an internal simulation that the SEND pin changed from 0 to 1.
In order to prevent unnecessarily frequent send in the event of mild fluctuations in the input
value, a threshold value can be configured for real values and setpoints. The input value is not
sent until it differs positively or negatively from the value last sent by more than the threshold
value.
If the input value changes again although no acknowledgement has yet been received from the
receiver, the OV pin is set in exactly the same way as in connection with send via the request
pin. If an error occurs during send, the job is automatically retried until the value has been sent
without error.

Cyclic send
The data are automatically sent after expiration of a configurable cycle time (SCANDOWN).
This cycle time is indicated in multiples of the task cycle time in which the block is computed. In
this operating mode, an overrun error can occur if the transmission is faster than the response
time of the receiver. For setpoints, it is necessary to ensure that an acknowledgement is
generated by the receiver which is not sent until the setpoint is accepted. The send block is not
ready for transmission again until after this acknowledgement has been received.

Receive blocks
In receive direction, the jobs enter the device module via the interface. The device module
selects the correct receive block using the telecontrol address. To this end, during installation
the receive blocks pass their parameterized telecontrol addresses to the device module. The
device module stores the data received and the receive blocks make the data available at their
output pins in connection with the next computation of the user task.

Configuration
Configuration changes >= Automation Builder 1.1/CBP 2.4

The IEC 60870 protocol allows link-ups between AC500 CPUs with onboard Ethernet (e.g.
PM595-4ETH and PM591-2ETH) and external systems.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3841

The link-up takes place via the onboard Ethernet interface of the CPU. As of Automation Builder
Version 1.1 telecontrol is also supported for CPUs that provide more than one Ethernet interface
(e.g. PM595-4ETH and PM591-2ETH). This allows to use different Ethernet interfaces for IEC
60870 connections, hence, telecontrol configuration is changed. Further, as of this version ter-
minology is aligned with IEC 60870 standard and provides additional features that are described
in this chapter. For a description on principle telecontrol configuration.

For further information on configuration changes, see the following chapters:
Control and Substations ≥ CBP 2.4 Ä Chapter 1.6.6.3.1.2.2 “Control station and substation
configuration” on page 3842

Import Export ≥ CBP 2.4 Ä Chapter 1.6.6.3.1.2.1 “Configuration changes >= Automation Builder
1.1/CBP 2.4” on page 3841

Validity Check of Configuration ≥ CBP 2.4 Ä Chapter 1.6.6.3.1.2.4 “Validity check of configura-
tion” on page 3862

Control station and substation configuration
The CPU can work as both, control station and substation.

Control station Client, master, controlling station: Synonyms for a higher-level sta-
tion (central station, monitors other stations)

Control direction Data transfer direction from the control station to the substation

Substation Server, slave, controlled station: synonyms for a subordinate IEC
60870-5-104 telecontrol station (which is monitored)

Monitoring direction Data transfer direction from the substation to the controlling station

Configure a control station in the device tree PLC -> Interfaces -> Ethernet -> ETHx:

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3842

1. Right-click “ETHx è Add objects”.
2. Select the control station from the list and click “Add object”. Configure substations and

further control stations in the same way. As of Automation Builder 1.1 any combination of
control stations and substations can be configured, in due consideration of a total number
of 10 stations.

3. Double-click the new control station node to open parameter configuration. In the Link
Layer tab access to the Ethernet interface is configured.

As of Automation Builder 2.2.1 the V3 PLC telecontrol station objects from
GVL IEC60870_5_104_Connection_GVL can only be used in Structured Text
by adding the namespace of the GVL as prefix.

Example:

byteValue := IEC60870_5_104_Connection_GVL.IEC_60870_5_104_Control-
station.Con;

Tab link layer

In order to provide flexible usage of control stations and substations as of Automation Builder
1.1 configuration of substations has been changed. As several substations can be operated
with several Ethernet interfaces, select the Ethernet interface to be used from the pull-down
menu. Enter the IP address to the control station and if required to another control station
(redundant connection). If no IP address is defined, the substation accepts connection to any
control station.

This field is not available in the Link Layer tab of control stations. Selection
of ETH interface is only possible for substations. The control station is always
configured on both interfaces by default.

T1, T2, T3: The values for the connection control and message replication; timeout1/2/3.Timeout set-
tings

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3843

This parameter gives the maximum number of outstanding messages and acknowledgement
behavior.
Send buffer (k): Maximum difference receive sequence number to send state variable.
Rec buffer (w): Latest acknowledge after receiving w I format APDUs.

Network settings
Network settings are available for control stations and for substations. The IP address of the
control station and if available the IP address of another control station (redundant IP address)
can be selected by the user.
For an overview on the configured Ethernet interfaces for the control stations and substations,
double-click the “Protocols” node.

Tab application layer
Settings

The application layer is the communication layer with which the send and receive blocks work.

This parameter concerns only setpoints and commands. If this parameter is checked, an
acknowledgement with set ‘actterm’ is generated as reason for transmission at the time at which
the receive block is computed and outputs its telecontrol data at its output pins. On transmission
side, the data block awaits the reception of this ACTTERM acknowledgement and reacts with its
corresponding output to the reception of this acknowledgement. For commands with execution
time, the acknowledgement is generated when the command is terminated, for commands with
continuous execution time and for setpoints, the acknowledgement is generated when the data
are output to the output pins.

If this option is not enabled (default), a message that was sent is considered as ok as soon
as transmission was successful. If you enable this option, a message that was sent is not
considered as ok until a success message (foreign acknowledge) is returned from the receiver.

Buffer settings

Use ACTTERM

ForeignAck-
nowledge

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3844

This time indicates how long an acknowledgement will be awaited on the application level. An
acknowledgement is generated only for commands and setpoints on the application level.

The station address defines which station will be subject to a count query. The values define
the 2 bytes for the common telecontrol address (Common addr.). The values concerned are as
follows:
0: The station address is not used.
1...254: The count is queried on the station defined by the station address.
255: The count is queried on all accessible stations.

After each new establishment of a link and once per hour, a ‘coarse time synchronisation’
message is generated. This time synchronisation is only supported from AC500 to external sys-
tems. Time synchronisation from an external system to AC500 is not provided! Incoming time
synchronisation messages are confirmed by the process station but not executed. Greenwich
Mean Time (GMT) is used as the time for the synchronisation.

After each establishment of a link or only in connection with the first establishment of a link and
after reconfiguration, an init end message is generated. After the init end message, there is a
general inquiry, if configured.

General inquiry
This parameter concerns only real values, discrete values and status values. The device
module generates a general inquiry message after each new establishment of a link. The other
side then generates a message with the reason for transmission ‘general inquiry’ for every data
point and subsequently an init end message. This procedure ensures that, in the event of a new
establishment of a link, all data are available on the reception side in topical form.

If general inquiry is activated the parameter values are sent.

With a general inquiry no integrated total values are sent.

Counter interrogation
General, 1 .. 4: The count inquiry is executed for a specific group of counters (1 .. 4). The count
inquiry is executed for all groups of counters.

The reset quality bit is sent along with the count inquiry.

The relocate quality bit is sent along with the count inquiry.

Tab information objects
Open the “Information object” tab to configure so called information objects and a common
address (known as 'data points' and 'Global address' in former Automation Builder versions).
In this tab different information objects and their services for transmission are defined. A data
point or information object is identified via a system-wide unambiguous address containing a
maximum 5 bytes.

Application
timeout

Station address

Timesync

Send 'Init end'
after reconnec-
tion

Activated

With parameters

Without inte-
grated totals

Group

With reset

With relocate

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3845

1. Right-click in the empty view and select “Add Information Object with ASDU” to add a data
group. Select the desired object from the list (e.g. M_SP_NA_1).

ð An information object with a corresponding ASDU (Application Service Data Unit) is
created.

2. Configure the settings in the “Information Object” tab to your convenience.

3. Double-click a table cell to modify pre-set values. For some ASDUs additional sub infor-
mation objects can be configured. For this, right-click the already existing ASDU and
select “Add Information Object” to selected ASDU option. This allows configuration of 16
data points at the most (depending on the ASDU type). With “Remove Information Object”
the selected ASDU is deleted.

● ASDU name: node name of the information object (name of the ASDU).
● Data type: Data type of the ASDU.
● ASDU type: Type of ASDU.
● Common addr: Common address of the ASDU (known as 'Global Address' in former AB

Versions). Byte 1/2 of the common telecontrol address of the block (range: 0...255).
● Info obj addr: Together with common address Info obj addr defines the endpoint (range:

0...255).
● Norm start: Low limit (0 %) of the normalized range for real values and setpoints.
● Norm end: High limit (100 %) of the normalized range for real values and setpoints.
● Threshold: Threshold limit beyond which a change of the input value referred to.
● Description: Table cell for free text. Use this field to describe your configuration settings e.g.

differences between configuration variants.

Format of common addr and info obj addr
The following adress formats of your entries in the columns Common addr and Info obj addr of
the Tab Information Objects are possible:
● 1.2 and 3.4.5 (Default format)
● 1-2 and 3-4-5
● 258 or hex 0x102 and 197637 or hex 0x30405
● 513 or hex 0x201 and 328707 or hex 0x50403
Previously you have to choose your preferred adress format:

Description of
the columns

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3846

1. Click “Tools”and then “Options...”

ð The Window Options appears

2. Select IEC 60870-5-104, make your choice and click OK.

Import options of information objects
The User can accept the imported IEC60870 information objects as single change or change as
block.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3847

IEC60870-5-104 Multiple connections
An AC500 with more than one substation connection must be able to identify the corresponding
control station clearly. This identification takes place exclusively via the control station’s IP
address. In order to make it possible for a non-redundant control station to have redundant
access to a substation with 2 Ethernet connections. The local substation address is ignored
during connection establishment.
In the following descriptions, the term station must not be confused with the individual connec-
tion. One station can have several connections. An IEC60870-5-104 communication always
takes place between a control station and a substation. A control station can manage several
substations and also simultaneously be a substation for one or several control stations. How-
ever, these must then be realized using different stations.
A PLC may not be configured for another PLC repeatedly as a substation or a control station
unless a disjunctive Ethernet infrastructure is used for this.
Redundant connections must be specified as such in the configuration.
An AC500 can be used only once as control station for another AC500, it makes no sense to
use the same AC500 repeatedly as a control station for the same substation. Such a structure
is configured as a redundant control station as long as only one AC500 exists as a control
station per substation. However, this control station may have 2 IP addresses. Therefore, this
configuration must either have the IP address 0.0.0.0 entered on the substation for the control
station, meaning that all IP addresses are accepted and no other control station can access
this AC500 or alternatively the possible control station addresses must be specified (ETH1 and
ETH2).

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3848

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
If you plan to control several substations with the AC500, they can be cascaded. This results in
a tree structure.

(1) 2 control stations
(2) Substation and 3 control stations
(3) Substation and 3 control stations
(4) Substation
(5) Substation

Structures of connections
In the following, the notation 192.168.1.0/24 is used for TCP/IP networks. Here, the figure /24
specifies the network mask with 255.255.255.0 and 192.168.1.0 describes the network. The
valid addresses for this Class C network are 192.168.1.1 to 192.168.1.254! Only the last byte of
the address is provided on the respective devices, with e.g. .10. This means that the respective
device has the address 192.168.1.10.

Tree constella-
tion

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3849

Minimal structure
A control station with an Ethernet interface is connected to a substation with an Ethernet
interface.

(1) Control station
(2) Substation

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
The respective substation IP address must be specified at the control station. For this, in the
network settings of the control station (1) enter the IP address of the substation (in the example:
192.168.1.25). Option “Enable redundant connection” must be disabled.

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
Either the control station IP address or the general address 0.0.0.0 must be specified at the
substation (2). For this, in the network settings of the substation enter the IP address of the
control station (in the example: 192.168.1.10). Option “Enable redundant connection” must be
disabled.

If the general address 0.0.0.0 is used at the substation, no further control station
can be configured on this controller for a further substation.

Configuration at
control station

Configuration at
substation

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3850

Minimal redundancy structure
The most simple redundant structure with an AC500 consists of a redundant control station
(not AC500) which is connected to the AC500 substation with 2 different IP addresses. These
redundant control stations must synchronize which control station is active.
Only one control station can be active at any given time.

(1) Control station 1A (Not AC500)
(2) Control station 1B (Not AC500)
(3) Substation
(4) Redundancy link

The respective substation IP address must be specified at the control stations 1 and 2 (not
AC500). For this, in the network settings of both control stations enter the IP address of the
substation (in the example: 192.168.1.25).

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
Either the control station IP addresses or the general address 0.0.0.0 must be specified at the
substation (3). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.1.11). Option “Enable redundant
connection” must be enabled.

If the general address 0.0.0.0 is used at the substation, no further control station
can be configured on this controller for a further substation.

Configuration at
control stations

Configuration at
substation

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3851

Network redundancy
For network redundancy a control station can reach a substation via 2 paths.
Both the control station and the substation can have 2 different IP addresses. Without special
network routing, 2 separate networks should exist, within which both the substation and the
control station each have 2 interfaces.
Possible variants of network redundancy are described in the following.

Network redundancy with 2 separate networks

(1) Control station with 2 redundant paths
(2) 1 Substation with 2 Ethernet interfaces

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 192.168.2.26). Option “Enable redundant connection” must be enabled.

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be enabled.

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Configuration at
control stations

Configuration at
substation

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3852

Network redundancy with 1 network and 2 Ethernet ports in substation

(1) Control station with 2 paths to reach substation
(2) 1 Substation with 2 Ethernet interfaces

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 192.168.1.26). Option “Enable redundant connection” must be enabled.

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be enabled.

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Configuration at
control stations

Configuration at
substation

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3853

Network redundancy with 1 network and 1 Ethernet port in substation

No online redundancy.

Only one connection will be established.

(1) Control station with 2 paths to reach substation
(2) 1 Substation with 1 Ethernet interface

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 0.0.0.0). Option “Enable redundant connection” must be disabled.

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be enabled.

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Configuration at
control stations

Configuration at
substation

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3854

Network redundancy with 2 Ethernet ports in substation

(1) Control station with 2 paths to reach substation
(2) 1 Substation with 2 Ethernet interfaces

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 192.168.1.26). Option “Enable redundant connection” must be enabled.

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses
of the control station (in the example: 192.168.1.11 and 0.0.0.0). Option “Enable redundant
connection” must be disabled.

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Configuration at
control stations

Configuration at
substation

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3855

Full control station redundancy
A control stationcan consist of two fully redundant units (not AC500s), which are connected via
a redundancy link. These control stations must ensure that only one of them at a time is actively
connected to the substation and communicates with it. The inactive control station, however,
can establish non-active connection with a substation and monitor it with keep alive packages.

(1) 2 redundant Control stations (Not AC500)
(2) 1 Substation with redundant Control station and 2 Ethernet interfaces (2nd port)
(3) Redundancy link

The substation’s IP address must be specified at the control stations (1) (not AC500). For this,
in the network settings of the control station enter the IP addresses of the substation (in the
example: 192.168.1.25 and 192.168.2.26).

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be enabled.

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Configuration at
control stations

Configuration at
substation

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3856

Multiple control stations on the same network
As of firmware version 2.4, an AC500 can be used as a substation for several control stations.
For this, the control stations must be distinguished by their IP addresses. Should a control
station have more than one IP address (redundancy), both possible IP addresses should also
be entered for the allocated substation connection. As a result, even despite being equipped
with several Ethernet interfaces, a device can only be one allocated control station at a time
for a determined substation. Thus, several substations can be configured for different control
stations on a AC500.

(1) Control station 1
(2) Control station 2
(3) 2 Substations (IEC60870-5-104 2nd Connection)

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
The substation’s IP address must be specified at the control stations. For this, in the network
settings of the control station (1 and 2) enter the IP addresses of the substation (in the example:
192.168.1.25). Option “Enable redundant connection” must be disabled.

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
Both control station's IP addresses must be specified at the substation (3). For this, in the
network settings of the substation enter the IP addresses of the control stations (in the example:
192.168.1.10 and 192.168.1.11). Option “Enable redundant connection” must be disabled.

Configuration at
control stations

Configuration at
substations

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3857

Multiple control stations on different networks
As of firmware version 2.4, an AC500 can have several local Ethernet interfaces which can
be used for separate control station connections. For this, a control station must be identified
via its IP address. The substation address used locally is not used to distinguish a connection
in order to enable a network and therefore route redundancy. On AC500, the acception of
IEC60870-5-104 connections on an interface can only be prevented.

(1) Control station 1
(2) Control station 2
(3) 2 Substations with 2 Ethernet interfaces (2nd port and 2nd connection)

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1 and 2). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 192.168.2.26). Option “Enable redundant connection” must be disabled.

PM591-ETH, PM595-ETH, PM5650-2ETH:
Both control station's IP addresses must be specified at the substation (3) under both substation
connections. For this, in the network settings of the substation enter the IP addresses of the
control stations (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be disabled.

Configuration at
control stations

Configuration at
substations

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3858

Double connection

This configuration does work.

But it is senseless!

It is possible to configure a double connection between 2 stations using 2 separate networks (at
least logically separated sub-networks).
However, such a setup has no advantages via-à-vis the minimal structure right at the start
Ä Chapter 1.6.6.3.1.2.2.6.1.1 “Minimal structure” on page 3850.
For this setup, connection data must be double configured and double resources are also
required at the stations, not providing any advantages whatsoever.
Rather the opposite is true, because such configurations are highly prone to errors.

(1) 2 Control stations with 2 Ethernet interfaces
(2) 2 Substations with 2 Ethernet interfaces

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3859

Faulty configuration

This configuration does not work!

If an AC500 is configured as a control station, the interface which is used to reach the substa-
tion is not defined.
The decision as to which interface is used for this is taken by TCP/IP when running.
It is also dependent on the current network configuration.
Here, the current link status and the order of link recognition may be decisive for the interface to
be used.
Such a scenario would not result in stable communication as both substations cannot clearly
distinguish the control stations.
Instead, the connection management for a substation will assume that the control station has
lost the connection and then establishes a connection.

(1) 2 Control stations with 2 Ethernet interfaces
(2) 2 Substations with 2 Ethernet interfaces

Export a CSV file
As an alternative many values can be modified at a time by exporting the configuration to a CSV
file. After modifying the file data, import the CSV file Ä Chapter 1.6.6.3.1.2.3 “Import/Export
functionality ” on page 3861.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3860

Import/Export functionality
As of Automation Builder 1.1 (CBP >= 2.4) configuration of control stations and substations
can be exported/imported via CSV file. Open the CSV file with a spreadsheet software (e.g.
Microsoft Excel) and modify the values within the file to your convenience:
1. Export configuration data: right-click the node of the control station or substation to be

exported.

2. Click “Export è IEC 60870-5-104 information objects (CSV)” and store the CSV file to a
desired directory.

3. Open the CSV file with a spreadsheet software (e.g. Microsoft Excel) and change the
values to your convenience. Added table columns are only accepted after the last column.

4. Import configuration data: right-click the node of the control station or substation that has
been exported previously.

5. Click “Import è IEC 60870-5-104 information objects (CSV)” and select the CSV file from
the file system. Configuration data is imported.

As of Automation Builder 1.1.1 during file import the project data is compared with the project
data that is already available. In order to prevent data from being overwritten inadvertently, you
can select the data that shall be imported in the “Project Compare - Differences” window:

Data on the left side of the window refers to already available project data. This data is dis-
played under “Control station è Information objects” tab. Data on the right side of the window
refers to new data that can be imported after your confirmation. Decide whether to import (and
overwrite) the data or not.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3861

● Data in black color means the existing data and the data to be imported is identical.
● Data in red color means the existing data and the data to be imported differ. Decide whether

to import the new data (and to overwrite the existing data) or not.
● Data in blue color means, the data to be imported is new and will be added to the existing

data.
● Data that has been confirmed for the import already is displayed in green color (after

clicking the [Accept Single] button).
In order to move data from one side of the window to another, select the data and click the
[Accept Single] button. Data is highlighted in yellow.

To confirm the import of all new data, click the top entry (here: All: ASDU name - ASDU tpye -
Common addr - ...). Then, click the [Accept Single] button.
Close the “Project Compare - Differences” tab, save your project and confirm the message. The
changes are displayed in the “Information objects” tab.

Validity check of configuration
We recommend you to verify the IEC configuration of control stations and substations: Right-
click a control station or substation -> Check configuration.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3862

The check will look for the following topics:
● Duplicate addresses.
● Stations without any Information objects.
● ASDU names, which are not unique.
When a check finds errors or incompatibilities this will be reported in a separate messages view
at the buttom of the window:

With a double-click on the error line, the part of the configuration with the violation will be
opened. Now, you can correct the error.

IEC60870 compatibility list

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3863

AC500 V2.4 IEC60870-5-104 Compatibility List

- 1-

9 Interoperability

This companion standard presents sets of parameters and alternatives from which subsets
must be selected to implement particular telecontrol systems. Certain parameter values, such
as the choice of "structured" or "unstructured" fields of the INFORMATION OBJECT ADDRESS of
ASDUs represent mutually exclusive alternatives. This means that only one value of the
defined parameters is admitted per system. Other parameters, such as the listed set of
different process information in command and in monitor direction allow the specification of
the complete set or subsets, as appropriate for given applications. This clause summarizes
the parameters of the previous clauses to facilitate a suitable selection for a specific
application. If a system is composed of equipment stemming from different manufacturers, it
is necessary that all partners agree on the selected parameters.

The interoperability list is defined as in IEC 60870-5-101 and extended with parameters used
in this standard. The text descriptions of parameters which are not applicable to this
companion standard are strike-through (corresponding check box is marked black).

NOTE In addition, the full specification of a system may require individual selection of certain parameters for
certain parts of the system, such as the individual selection of scaling factors for individually addressable
measured values.

The selected parameters should be marked in the white boxes as follows:

 Function or ASDU is not used

 Function or ASDU is used as standardized (default)

 Function or ASDU is used in reverse mode

 Function or ASDU is used in standard and reverse mode

The possible selection (blank, X, R, or B) is specified for each specific clause or parameter.

A black check box indicates that the option cannot be selected in this companion standard.

9.1 System or device
 (system-specific parameter, indicate definition of a system or a device by marking one

of the following with "X")

 System definition

 Controlling station definition (Master)

 Controlled station definition (Slave)

9.2 Network configuration
 (network-specific parameter, all configurations that are used are to be marked "X")

Point-to-point

Multiple point-to-point

Multipoint-

Multipoint-star

X

R

B

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3864

AC500 V2.4 IEC60870-5-104 Compatibility List

- 2-

9.3 Physical layer
 (network-specific parameter, all interfaces and data rates that are used are to be marked "X")

Transmission speed (control direction)

Unbalanced interchange Unbalanced interchange Balanced interchange
Circuit V.24/V.28 Circuit V.24/V.28 Circuit X.24/X.27
Standard Recommended if >1 200 bit/s

Transmission speed (monitor direction)

Unbalanced interchange Unbalanced interchange Balanced interchange
Circuit V.24/V.28 Circuit V.24/V.28 Circuit X.24/X.27
Standard Recommended if >1 200 bit/s

9.4 Link layer
(network-specific parameter, all options that are used are to be marked "X". Specify the
maximum frame length. If a non-standard assignment of class 2 messages is implemented for
unbalanced transmission, indicate the Type ID and COT of all messages assigned to class 2.)

Frame format FT 1.2, single character 1 and the fixed time out interval are used exclusively in
this companion standard.

100 bit/s

200 bit/s

300 bit/s

600 bit/s

1 200 bit/s

2 400 bit/s

4 800 bit/s

9 600 bit/s

2 400 bit/s

4 800 bit/s

9 600 bit/s

19 200 bit/s

38 400 bit/s

56 000 bit/s

64 000 bit/s

100 bit/s

200 bit/s

300 bit/s

600 bit/s

1 200 bit/s

2 400 bit/s

4 800 bit/s

9 600 bit/s

2 400 bit/s

4 800 bit/s

9 600 bit/s

19 200 bit/s

38 400 bit/s

56 000 bit/s

64 000 bit/s

Balanced transmission

Unbalanced transmission

Maximum length L
(number of octets)

Link transmission Address field of the link

not present (balanced transmission only)

One octet

Two octets

Structured

Unstructured

Frame length

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3865

AC500 V2.4 IEC60870-5-104 Compatibility List

- 3-

When using an unbalanced link layer, the following ASDU types are returned in class 2
messages (low priority) with the indicated causes of transmission:

Type identification Cause of transmission

9, 11, 13, 21 <1>

Type identification Cause of transmission

Note: (In response to a class 2 poll, a controlled station may respond with class 1 data when there is no class 2
data available).

9.5 Application layer

Transmission mode for application data
Mode 1 (Least significant octet first), as defined in 4.10 of IEC 60870-5-4, is used exclusively
in this companion standard.

Common address of ASDU
(system-specific parameter, all configurations that are used are to be marked "X")

Information object address
(system-specific parameter, all configurations that are used are to be marked "X")

Cause of transmission
(system-specific parameter, all configurations that are used are to be marked "X")

Length of APDU
(system-specific parameter, specify the maximum length of the APDU per system)

The maximum length of APDU for both directions is 253. It is a fixed system parameter.

One octet Two octets

One octet Structured
Two octets

Unstructured

Three octets

One octet Two octets (with originator
address). Originator address
is set to zero if not used

 X

X

 X

The standard assignment of ASDUs to class 2 messages is used as follows:

A special assignment of ASDUs to class 2 messages is used as follows:

 Maximum length of APDU per system in control direction

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3866

AC500 V2.4 IEC60870-5-104 Compatibility List

- 4-

Selection of standard ASDUs

Process information in monitor direction
(station-specific parameter, mark each Type ID "X" if it is only used in the standard direction,
"R" if only used in the reverse direction, and "B" if used in both directions).

In this companion standard only the use of the set <30> – <40> for ASDUs with time tag is permitted.

<1> := Single-point information M_SP_NA_1

<30> := Single-point information with time tag CP56Time2a M_SP_TB_1

<31> := Double-point information with time tag CP56Time2a M_DP_TB_1

<32> := Step position information with time tag CP56Time2a M_ST_TB_1

<33> := Bitstring of 32 bit with time tag CP56Time2a M_BO_TB_1

<34> := Measured value, normalized value with time tag CP56Time2a M_ME_TD_1

<35> := Measured value, scaled value with time tag CP56Time2a M_ME_TE_1

<36> := Measured value, short floating point value with time tag CP56Time2a M_ME_TF_1

<37> := Integrated totals with time tag CP56Time2a M_IT_TB_1

<38> := Event of protection equipment with time tag CP56Time2a M_EP_TD_1

<39> := Packed start events of protection equipment with time tag CP56Time2a M_EP_TE_1

<40> := Packed output circuit information of protection equipment with time tag CP56Time2a M_EP_TF_1

<2> := Single-point information with time tag M_SP_TA_1

<3> := Double-point information M_DP_NA_1

<4> := Double-point information with time tag M_DP_TA_1

<5> := Step position information M_ST_NA_1

<6> := Step position information with time tag M_ST_TA_1

<7> := Bitstring of 32 bit M_BO_NA_1

<8> := Bitstring of 32 bit with time tag M_BO_TA_1

<9> := Measured value, normalized value M_ME_NA_1

<10> := Measured value, normalized value with time tag M_ME_TA_1

<11> := Measured value, scaled value M_ME_NB_1

<12> := Measured value, scaled value with time tag M_ME_TB_1

<13> := Measured value, short floating point value M_ME_NC_1

<14> := Measured value, short floating point value with time tag M_ME_TC_1

<15> := Integrated totals M_IT_NA_1

<16> := Integrated totals with time tag M_IT_TA_1

<17> := Event of protection equipment with time tag M_EP_TA_1

<18> := Packed start events of protection equipment with time tag M_EP_TB_1

<19> := Packed output circuit information of protection equipment with time tag M EP TC 1

<20> := Packed single-point information with status change detection M_SP_NA_1

<21> := Measured value, normalized value without quality descriptor M_ME_ND_1

X

X

X

X

X

X

X
X

X

X
X

 Maximum length of APDU per system in monitor direction

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3867

AC500 V2.4 IEC60870-5-104 Compatibility List

- 5-

Process information in control direction
(station-specific parameter, mark each Type ID "X" if it is only used in the standard direction,
"R" if only used in the reverse direction, and "B" if used in both directions).

Either the ASDUs of the set <45> – <51> or of the set <58> – <64> are used.

System information in monitor direction
(station-specific parameter, mark with an “X” if it is only used in the standard direction, “R” if only
used in the reverse direction, and “B” if used in both directions).

System information in control direction
(station-specific parameter, mark each Type ID "X" if it is only used in the standard direction,
"R" if only used in the reverse direction, and "B" if used in both directions).

<45> := Single command C_SC_NA_1

<46> := Double command C_DC_NA_1

<47> := Regulating step command C_RC_NA_1

<48> := Set point command, normalized value C_SE_NA_1

<49> := Set point command, scaled value C_SE_NB_1

<50> := Set point command, short floating point value C_SE_NC_1

<51> := Bitstring of 32 bit C_BO_NA_1

<70> := End of initialization M_EI_NA_1

<100>:= Interrogation command C_IC_NA_1

<101>:= Counter interrogation command C_CI_NA_1

<102>:= Read command C_RD_NA_1

<103>:= Clock synchronization command (option see 7.6) C_CS_NA_1

<104>:= Test command C_TS_NA_1

<105>:= Reset process command C_RP_NA_1

<106>:= Delay acquisition command C CD NA 1

<107>:= Test command with time tag CP56Time2a C_TS_TA_1

X
X

X

X

X
X
X
X

<58> := Single command with time tag CP56Time2a C_SC_TA_1

<59> := Double command with time tag CP56Time2a C_DC_TA_1

<60> := Regulating step command with time tag CP56Time2a C_RC_TA_1

<61> := Set point command, normalized value with time tag CP56Time2a C_SE_TA_1

<62> := Set point command, scaled value with time tag CP56Time2a C_SE_TB_1

<63> := Set point command, short floating point value with time tag CP56Time2a C_SE_TC_1

<64> := Bitstring of 32 bit with time tag CP56Time2a C_BO_TA_1

X
X

X

X

X

X

X

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3868

AC500 V2.4 IEC60870-5-104 Compatibility List

- 6-

Parameter in control direction
(station-specific parameter, mark each Type ID "X" if it is only used in the standard direction,
"R" if only used in the reverse direction, and "B" if used in both directions).

File transfer
(station-specific parameter, mark each Type ID "X" if it is only used in the standard direction,
"R" if only used in the reverse direction, and "B" if used in both directions).

Type identifier and cause of transmission assignments
(station-specific parameters)

Shaded boxes: option not required.
Black boxes: option not permitted in this companion standard
Blank: functions or ASDU not used.

Mark Type Identification/Cause of transmission combinations:

"X" if only used in the standard direction;
"R" if only used in the reverse direction;
"B" if used in both directions.

Type identification Cause of transmission
 1 2 3 4 5 6 7 8 9 10 11 12 13 20

to
36

37
to
41

44 45 46 47

<1> M_SP_NA_1 X X X X

<2> M_SP_TA_1

<3> M_DP_NA_1 X X X X

<4> M_DP_TA_1

<5> M_ST_NA_1

<6> M_ST_TA_1

<7> M_BO_NA_1

<8> M_BO_TA_1

<9> M_ME_NA_1 X X X X X

<10> M_ME_TA_1

<11> M_ME_NB_1

<12> M_ME_TB_1

<110>:= Parameter of measured value, normalized value P_ME_NA_1

<111>:= Parameter of measured value, scaled value P_ME_NB_1

<112>:= Parameter of measured value, short floating point value P_ME_NC_1

<113>:= Parameter activation P_AC_NA_1

<120>:= File ready F_FR_NA_1

<121>:= Section ready F_SR_NA_1

<122>:= Call directory, select file, call file, call section F_SC_NA_1

<123>:= Last section, last segment F_LS_NA_1

<124>:= Ack file, ack section F_AF_NA_1

<125>:= Segment F_SG_NA_1

<126>:= Directory {blank or X, only available in monitor (standard) direction} F_DR_TA_1

X

<127>:= Query Log – Request archive file F_SC_NB_1

X

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3869

AC500 V2.4 IEC60870-5-104 Compatibility List

- 7-

Type identification Cause of transmission
 1 2 3 4 5 6 7 8 9 10 11 12 13 20

to
36

37
to
41

44 45 46 47

<13> M_ME_NC_1 X X X X X

<14> M_ME_TC_1

<15> M_IT_NA_1 X X

<16> M_IT_TA_1

<17> M_EP_TA_1

<18> M_EP_TB_1

<19> M_EP_TC_1

<20> M_PS_NA_1

<21> M_ME_ND_1

<30> M_SP_TB_1 X X

<31> M_DP_TB_1 X X

<32> M_ST_TB_1

<33> M_BO_TB_1

<34> M_ME_TD_1 X X

<35> M_ME_TE_1

<36> M_ME_TF_1 X X

<37> M_IT_TB_1 X X

<38> M_EP_TD_1

<39> M_EP_TE_1

<40> M_EP_TF_1

<45> C_SC_NA_1 X X X

<46> C_DC_NA_1 X X X

<47> C_RC_NA_1

<48> C_SE_NA_1 X X X

<49> C_SE_NB_1

<50> C_SE_NC_1 X X X

<51> C_BO_NA_1

<58> C_SC_TA_1 X X X

<59> C_DC_TA_1 X X X

<60> C_RC_TA_1

<61> C_SE_TA_1 X X X

<62> C_SE_TB_1

<63> C_SE_TC_1 X X X

<64> C_BO_TA_1

<70> M_EI_NA_1* X

<100> C_IC_NA_1 X X X

<101> C_CI_NA_1 X X X

<102> C_RD_NA_1 X

<103> C_CS_NA_1 X X

<104> C_TS_NA_1

<105> C_RP_NA_1 X

<106> C_CD_NA_1

<107> C_TS_TA_1

<110> P_ME_NA_1 X X X

<111> P_ME_NB_1

<112> P_ME_NC_1 X X X

<113> P_AC_NA_1

<120> F_FR_NA_1

<121> F_SR_NA_1

<122> F_SC_NA_1

<123> F_LS_NA_1

<124> F_AF_NA_1

<125> F_SG_NA_1

<126> F_DR_TA_1*

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3870

AC500 V2.4 IEC60870-5-104 Compatibility List

- 8-

Type identification Cause of transmission
 1 2 3 4 5 6 7 8 9 10 11 12 13 20

to
36

37
to
41

44 45 46 47

<127> F_SC_NB_1*

* Blank or X only

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3871

AC500 V2.4 IEC60870-5-104 Compatibility List

- 9-

9.6 Basic application functions

Station initialization
(station-specific parameter, mark "X" if function is used)

 Remote initialization

Cyclic data transmission
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions)

 Cyclic data transmission

Read procedure
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions)

 Read procedure

Spontaneous transmission
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions)

 Spontaneous transmission

Double transmission of information objects with cause of transmission spontaneous
(station-specific parameter, mark each information type "X" where both a Type ID without time
and corresponding Type ID with time are issued in response to a single spontaneous change of a
monitored object)

The following type identifications may be transmitted in succession caused by a single status
change of an information object. The particular information object addresses for which double
transmission is enabled are defined in a project-specific list.

Single-point information M_SP_NA_1, M_SP_TA_1, M_SP_TB_1 and M_PS_NA_1

Double-point information M_DP_NA_1, M_DP_TA_1 and M_DP_TB_1

Step position information M_ST_NA_1, M_ST_TA_1 and M_ST_TB_1

Bitstring of 32 bit M_BO_NA_1, M_BO_TA_1 and M_BO_TB_1 (if defined for a specific project)

Measured value, normalized value M_ME_NA_1, M_ME_TA_1, M_ME_ND_1 and M_ME_TD_1
 Measured value, scaled value M_ME_NB_1, M_ME_TB_1 and M_ME_TE_1

Measured value, short floating point number M_ME_NC_1, M_ME_TC_1 and M_ME_TF_1

X

X

X

X

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3872

AC500 V2.4 IEC60870-5-104 Compatibility List

- 10-

Station interrogation
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

Clock synchronization
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

optional, see 7.6

Command transmission
(object-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

global
group 7 group 13 group 1
group 8 group 14 group 2
group 9 group 15 group 3
group 10 group 16 group 4
group 11 group 5
group 12 group 6

Information object addresses assigned to each
group must be shown in a separate table.

Clock synchronization

Direct command transmission

Direct set point command transmission

Select and execute command

Select and execute set point command

C_SE ACTTERM used

No additional definition

Short-pulse duration (duration determined by a system parameter in the outstation)

Persistent output

Long-pulse duration (duration determined by a system parameter in the outstation)

X

X

X
X

X
X
X

Supervision of maximum delay in command direction of commands and set point commands

Maximum allowable delay of commands and set point commands

 Day of week used

 RES1, GEN (time tag substituted/ not substituted) used

 SU-bit (summertime) used

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3873

AC500 V2.4 IEC60870-5-104 Compatibility List

- 11-

Transmission of integrated totals
(station- or object-specific parameter, mark "X" if function is only used in the standard
direction, "R" if only used in the reverse direction, and "B" if used in both directions).

Parameter loading
(object-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

Parameter activation
(object-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

Test procedure
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

Counter read

Counter freeze without reset

Counter freeze with reset

Counter reset

General request
 Request counter group 1

Request counter group 3

Request counter group

Request counter group 4

Threshold value

Smoothing factor

Low limit for transmission of measured values

High limit for transmission of measured values

Act/deact of persistent cyclic or periodic transmission of the addressed object

X

X

X

X

X
X
X
X
X

X

Mode A: Local freeze with spontaneous transmission

Mode B: Local freeze with counter interrogation

Mode C: Freeze and transmit by counter-interrogation commands

Mode D: Freeze by counter-interrogation command, frozen values reported

Test procedure X

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3874

AC500 V2.4 IEC60870-5-104 Compatibility List

- 12-

File transfer
(station-specific parameter, mark "X" if function is used).
File transfer in monitor direction

File transfer in control direction

Background scan
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

Acquisition of transmission delay
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

Definition of time outs

Parameter Default value Remarks Selected value

t0 30 s Time-out of connection establishment

t1 15 s Time-out of send or test APDUs

t2 10 s Time-out for acknowledges in case of no data
messages t2 < t1

t3 20 s Time-out for sending test frames in case of a
long idle state

Maximum range for timeouts t0 to t2: 1 s to 255 s, accuracy 1 s.
Recommended range for timeout t3: 1 s to 48 h, resolution 1 s.
Long timeouts for t3 may be needed in special cases where satellite links or dialup
connections are used (for instance to establish connection and collect values only once per
day or week).

Maximum number of outstanding I format APDUs k and latest acknowledge APDUs (w)

Parameter Default value Remarks Selected value

k 12 APDUs Maximum difference receive sequence number
to send state variable

w 8 APDUs Latest acknowledge after receiving w I format
APDUs

Maximum range of values k: 1 to 32767 (215–1) APDUs, accuracy 1 APDU

Transparent file

Background scan

Acquisition of transmission delay

Transparent file
Transmission of disturbance data of protection equipment

 Transmission of sequences of events

Transmission of sequences of recorded analogue values

X

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3875

AC500 V2.4 IEC60870-5-104 Compatibility List

- 13-

Maximum range of values w: 1 to 32767 APDUs, accuracy 1 APDU (Recommendation: w
should not exceed two-thirds of k).

Portnumber

Parameter Value Remarks

Portnumber 2404 In all cases

Redundant connections

RFC 2200 suite

RFC 2200 is an official Internet Standard which describes the state of standardization of
protocols used in the Internet as determined by the Internet Architecture Board (IAB). It offers
a broad spectrum of actual standards used in the Internet. The suitable selection of
documents from RFC 2200 defined in this standard for given projects has to be chosen by the
user of this standard.

 Ethernet 802.3

 Serial X.21 interface

 Other selection from RFC 2200:

 List of valid documents from RFC 2200
 1. ...
 2. ...
 3. ...
 4. ...
 5. ...
 6. ...

7. etc.

Number N of redundancy group connections used 2

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3876

1.6.6.3.2 IEC 61850 Server
IEC 61850 Server

The package CODESYS IEC 61850 Server is a configurator for creating an IEC 61850
Server according to IEC 61850. The IEC 61850 is the communication standard for switchgear
automation of medium and high voltage technology.
The essential features of this package are::
● Configuration of data models for IEDs (Intelligent Electronic Device) with logical devices,

logical nodes, data objects and data attributes
● Generation of the corresponding IEC 61131-3 code
● Mapping of data attributes to IEC 61131-3 variables
● Configuration of dynamic data sets
● Buffered and unbuffered Reports
● Protocols implemented: MMS and GOOSE
● Import /Export of different SCL formats

The IEC 61850 Server is inserted below an Ethernet Adapter in the device tree. For this select
the Ethernet Adapter in the device tree and activate the context menu command “Add device...”.
In the opened dialog select the IEC 61850 Server in the “Miscellaneous ” category and activate
the “Add device ” button .
The configuration of the IEC 61850 Server takes place in the Ä Chapter 1.6.6.3.2.3.1 “IEC
61850 Editor” on page 3885.

Quickstart
Here, a project with an IEC 61850 Server is created as an example. After the configuration of
the Server, a data set is created and assigned to a Report. Subsequently the code is generated
for the IEC 61850 Server and the project is loaded to the PLC. On the PLC the project can be
connected with an d IEC 61850 client.

First create a new project. Select the “Standard project ” template.
Subsequently the dialog opens for selecting the PLC and the implementation language. Select
the CODESYS Control Win V3 PLC and the “Structured Text (ST)” implementation language.
Now the project is created displayed with its objects in the device tree.
In order to add the IEC 61850 Server to the PLC, first add an Ethernet Adapter:
1. Mark the PLC in the device tree and activate the context menu command “Add Device...”

2. In the “Add Device” dialog select the adapter “Ethernet ” of the “Fieldbusses è Ethernet
Adapter” category and confirm your selection by activating the “Add Device ” button.

Subsequently, add the IEC 61850 Server to the Ethernet Adapter as follows:
1. Select the Ethernet Adapter in the device tree and activate the context menu command

“Add Device...”.
2. In the “Add Device” dialog select the “IEC 61850 Server” of the “Miscellaneous ” category

and confirm your selection with the “Add Device ” button.

Inserting the
IEC 61850
Server into the
device tree

Step 1: Create a
new project and
insert the IEC
61850 Server

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3877

Fig. 311: 'Add Device' dialog

Now the IEC 61850 Server is inserted in the device tree.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3878

Fig. 312: Device tree with IEC 61850 Server

Open the editor for the configuration of the server via a double-click on the IEC 61850 Server in
the device tree.

Fig. 313: editor of the IEC 61850 Server

First a “Logical Device” is added to the server. The “Logical Device ” is the instance of an
IED.
1. Select the “Logical Device”

2. Activate the “>” button

Together with the “Logical Device” the two LNC instances () “LLN0” and “LPHD1” are added.
These two information objects are elements of every IED and can not be removed.

Step 2: Add the
Logical Device
to the server

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3879

Fig. 314: Server with Logical Device, LLN0 and LPHD1

1. Select the “Logical Device” below the server
2. On the left-hand side select the “XCBR” LNC instance below “LN [Xxxx]-Switchgear”

3. Activate the “>” button

Fig. 315: Adding the LNC instance 'XCBR'

If you select the LNC instance on the right-hand side, all of the optional and obligatory CDCs
(data objects) will be displayed on the left-hand side. .

1. Select the “XCBR” LNC instance on the right-hand side
2. Select the “MaxOpCap” CDC instance on the left-hand side
3. Activate the “>” button

Step 3: Add
another LNC
instance to the
Logical Device

Step 4: Expand
the “XCBR”
LNC instance
with the
optional
“MaxOpCap”
CDC instance

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3880

Fig. 316: XCBR1 with 'MaxOpCap' CDC

1. Select the desired attribute (in the example: “Server è LogicalDevice è XCBR1
è MaxOpCap è DA (ST I INT32) StVal ”)

2. Edit the CODESYS variable name in the input field “Monitoring Var” (in the example
Var_stVal) in the “Properties” section

The “Autom. declare” option must be activated, thus the variable is declared automatically as
global variable by theIEC 61850 Server. You can edit the initial value in the input field next to the
“Monitoring Var” field.

Step 5: Link an
attribute (DA) of
the IEC 61850
Server with a
CODESYS vari-
able

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3881

Fig. 317: Link of the attribute 'stVal' to the monitoring variable 'Var_stVal'

In this step you create a data set (Compilation of data) for the IEC 61850 configuration created
in the previous steps.
1. Open the “DataSet” tab
2. Activate the “New” button. The created “LLN0.dataSet_0” data set is displayed in the

“DataSets” section.
3. Select the “LLN0.dataSet_0” DataSet
4. Select the “MaxOpCap” data object on the left-hand side (“Server è LogicalDevice è LN

XCBR1 è FC ST è DO MaxOpCap”)
5. Activate the “>” button.

Step 6: Create a
data set

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3882

Now the data set contains the data object “LogicalDevice/XCBR1.ST.MaxOpCap”

Fig. 318: 'DataSet' tab

In this step you assign a report to the defined data set. A report transports the data assigned via
a data set to a connected client in the event of a trigger (see Ä Trigger Options).
1. Open the “Report” tab
2. Activate the “New ” button. The “RCB_1” is displayed in the “Reports” section. In the

“Name:” field you can change the name of the report.
3. Select the “LLN0.DataSet_0” data set in the “DataSet” selection list

Fig. 319: 'Report' tab with created 'RCB' report

You set options about the reporting behavior in the “General options” section, you select the
events that trigger a report in the “Trigger Options” section (for more information about these
options see Ä Trigger Options).

Step 7: Create a
Report

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3883

The “Generate code” command of the menu “IEC61850” generates code from the created
configuration and puts it into the “IEC61850 Generated POUs” folder of the device tree.

Fig. 320: device tree with 'IEC61850 Generated POUs'

The global variable “Var_stVal” created in step 5 is listed in the “IEC61850_Generated_GVL”
global variables list.

Fig. 321: IEC61850_Generated_GVL with 'Var_stVal'

Subsequent compile the application via the “Build è Build” command.

If the application was finished successfully you create a connection to an IEC 61850 client in
this step. For this, login to the PLC and start the application via the “Start” command of the
“Debug” menu. Now you connect an IEC 61850 client with the IEC 61850 Server. By the client
you can read out your IEC 61850 Server configuration and the configured data sets und reports,
as well as you can receive GOOSE messages and send GOOSE messages to the server.

Step 8: Gen-
erate code and
load the applica-
tion to the PLC

Step 9: Con-
necting with an
IEC 61850 Client

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3884

Editor of the IEC 61850 Server
IEC 61850 Editor

You open the editor of the IEC 61850 Server with the “Edit Object ” command of the “File ”
category or with a double-click on the device in the device tree.

If you move the mouse pointer over buttons, options or names of input fields in
this editor more information about the element is displayed by the tooltip.

The tabs of the editor::
● Ä Chapter 1.6.6.3.2.3.2.1 “Configuration” on page 3885
● Ä Chapter 1.6.6.3.2.3.3 “DataSet” on page 3895
● Ä Chapter 1.6.6.3.2.3.4 “Report” on page 3896
● Ä Chapter 1.6.6.3.2.3.5 “GOOSE Publisher” on page 3898
● Ä Chapter 1.6.6.3.2.3.6 “GOOSE Subscriber” on page 3900
● Ä Chapter 1.6.6.3.2.3.7 “Information” on page 3902

Configuration
Configuration

In the “Configuration” tab of the IEC 61850 editor you create, configure an parametrize the IED
from the pool of the existing LNC and CDC types.

Fig. 322: 'Configuration' tab

“Configuration” is split in 4 sections:

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3885

● Section and section are for creating the IEC 61850 Server. In section all of the
choices are displayed, which can be added to the instance currently focused or to the object
of the sever currently focused in section . In the default setting there is the Logical Device
() in section and the server () in section . For more information see Ä Chapter
1.6.6.3.2.3.2.2 “Creation of the IEC 61850 Server” on page 3886

● In the “Properties” section the following activities can be performed, depending on the
selected objects:
– Ä “Parameterization of the IEC 61850 Server” on page 3889
– Ä “Entry of a device name for the Logical Device” on page 3890
– Ä “Connecting an attribute (DA) with a CODESYS variable” on page 3890
– Ä “Entry of a node prefix for LNC instances” on page 3893

● is the status bar. For a more information see Ä Chapter 1.6.6.3.2.3.2.4 “Status bar”
on page 3893.

Creation of the IEC 61850 Server
Adding instances
You add an element to the server or to the marked instance below the server by selecting the
element in section and activating the “>” button or by a double-click on the element
Removing instances
To delete instances below the server, mark the instance an activate the“<” button..

If you create a new configuration, the default settings in the Ä Chapter 1.6.6.3.2.3.2.1 “Configu-
ration” on page 3885 tab are: the Logical Device in section and the server in , section .

First the “Logical Device” () is added to the server. The Logical Device is an instance of an
IED (intelligent field device). Together with the Logical Device the objects having the option
'mandatory' are added automatically. These objects added automatically can not be removed
from the Logical Device.

Fig. 323: Server with Logical Device an d objects 'LLN0' und ' LPHD'

Any number of logical nodes () can be added to the Logical Device.

Configure the
server

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3886

Fig. 324: 'Configuration': List of the available LACS

If you mark a LNC instance in section 2 all mandatory and all optional CDC types (data object
) will be listed in section . The mandatory CDC types (Mod, Beh, Health, NamPlt, in the

example) are already contained in the LNC instance (LN GGIO1) and can not be removed.

Fig. 325: 'Configuration' list of the CDCs (DO) available for the GGIO1

The DOs include the attributes (DAs)

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3887

Fig. 326: 'Configuration': list of attributes (DA) of the added to the CDC 'DO AnIn'

The attributes of the server can be connected with CODESYS variables (see Ä “Connecting an
attribute (DA) with a CODESYS variable” on page 3890).

Properties
: In the “Properties ” section of the Ä Chapter 1.6.6.3.2.3.2.1 “Configuration” on page 3885

tab the following functions can be performed dependent on the marked object or the marked
instance:
● Ä “Parameterization of the IEC 61850 Server” on page 3889
● Ä “Entry of a device name for the Logical Device” on page 3890
● Ä “Connecting an attribute (DA) with a CODESYS variable” on page 3890
● Ä “Entry of a node prefix for LNC instances” on page 3893

If you move the mouse pointer over an input field or the name of an input field,
you get a tooltip with a description in the window below the “Properties ” (see
the following figure).

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3888

Fig. 327: 'Properties' with tooltip of 'Max. client count'

Property Description
Server Name Name of the server,

IP I Subnetmask I Gateway Own IED IP address, I Subnetmask I own gateway address

Max.client count The maximum number of clients that can connect to the IED, possible
values: 1, 2, 3, 4, 5

Allowed IPs Allowed IPs for clients 1...5
default is 0.0.0.0, whereby an IP address that equals 0.0.0.0 means that
no IP address validity test will take place. If more than one client connec-
tion was selected above, additional IPs must be configured for each one.
As soon as an IP address is parameterized with 0.0.0.0, testing for all
connected clients is deactivated.

Parameteriza-
tion of the IEC
61850 Server

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3889

Property Description
Time synchronisation Selection: SNTP

SNTP (default): SNTP time synchronization. In addition to activation, func-
tionality must be parameterized in the device's web-based management.
Currently, the SNTP time telegram does not use milliseconds, which means
accuracy is measured in 1 second increments.
1. Input field Time zone: Offset between Greenwich (GMT)- and the local
time (for Germany 1 h, for example). The value is limited between -12 an
d+ 14
2. Input field: DLS Mode: Ratio for the mode summer/winter time change-
over. Possible values:
● 0 = No automatic summertime/wintertime changeover
● 1 = Timeover from wintertime to summertime on last the Sunday in

March, changeover from summertime to wintertime on the last Sunday
in October

Task Prio I Interval Task
1.input field: entry of the priority,
2.input field: entry of the interval in ms

TCP KeepAlive[sec] The KeepAlive is to check the connection to the client.

If the Logical Device is focused in the configured server you can entry a device name for the
Logical Device in the 'Properties' section.

1. Select the attribute of a CDC instance below the server.
2. Enter the desired CODESYS variable name into the input field “Monitoring Var” in the

properties section.
Entry optionally an initial value into the input field right-side hand of the variable name.

In case of an attribute with RW-access, a “Control Variable” (writing access) can be entered
in addition to the “Monitoring Var” variable (reading access) . For a more detailed description
about reading and writing of variables at the IEC 61850 Server see Ä Chapter 1.6.6.3.2.4
“Reading and Writing from CODESYS Variables ” on page 3902. The monitoring and control
variables declared in the “Properties” section are displayed next to the respective attribute and
at the superordinated node “DO” of the server tree.
By activating the “Autom. declare ” checkbox the variable is declared by the IEC 61850 con-
figurator and stored in the “IEC61850_Generated_GVL” (of the “IEC61850 Generated POUs”
folder) after Ä Chapter 1.6.6.3.2.5.1.1 “Generate code” on page 3903 of the IEC 61850 Server.

If you do not activate the “Autom. declare” checkbox you select the variable via
the input assistance ([F2)]) or you declare the variable yourself.

“Trigger option:” With the trigger options you set the attributes to select the events which might
trigger a report. The selected trigger option is displayed in the status bar. For a description of
the options see Ä status bar.

Entry of a
device name for
the Logical
Device
Connecting an
attribute (DA)
with a
CODESYS vari-
able

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3890

The trigger option determines whether the Ä Chapter 1.6.6.3.2.3.4 “Report”
on page 3896, assigned to the Ä Chapter 1.6.6.3.2.3.3 “DataSet”
on page 3895, is sent when the value of this attribute changes.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3891

Fig. 328: 'Properties' for the attribute(DA) 'ctlNum', input fields: 'Monitoring Var' with 'Initvalue'

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3892

Fig. 329: 'Properties' of an attribute with RW-access: in addition input : 'Control Variable'

Fig. 330: 'Properties' of the LNC instance 'GGIO1' with 'Node prefix' input field

Here you enter a prefix for the selected LNC instance. The prefix is put in front of the LN
name in the server tree. The prefix is displayed in the Ä Chapter 1.6.6.3.2.3.2.4 “Status bar”
on page 3893, too.

Status bar
In the status bar (of the Ä Further information on page 3885) of the IEC 61850 editor you
find object-specific detail information about the selected object.

Fig. 331: Status bar for the Server

Only the information “Name” is displayed for the server and the Logical Device.

Fig. 332: Status bar for the LN instance 'LPHD'

Entry of a node
prefix for LNC
instances

Object informa-
tion: Server and
Logical Device

Object informa-
tion: LN

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3893

Status Description
“Name” Name of the selected LN instance

“Description” Description of the selected LN instance

“Group” Associated group of the LN instance
Examples:
[Axxx]-Automatic
[Cxxx]-Control
[Gxxxx]-Generic
...

“Prefix” Prefix of the LNC instance, entered by the user

Fig. 333: Status bar of the CDC instance 'Beh'

Status Description
“Name” Name of the attribute

“Description” Description of the selected CDC instance

“Option” Option of the selected CDC- instance
M = mandatory
O = optional

“CDC” Type of the selected CDC instance

“Instno” Instance number of the CDC instance.
Only optional CDCs can have instance numbers. If there is
only one optional CDC, it has no instance number. Otherwise
1 to n.

Objects with the 'mandatory' options are inserted automatically when adding the
Logical Device.

Fig. 334: Status bar of the attribute 'q'

Status Description
“Name” Name of the attribute

“FC” Functional Constraint of the selected attribute

“Option” Option of the selcted attribute:
M = mandatory
O = optional

Object informa-
tion: Common
Data Class
Object (CDC
Object)

Object informa-
tion: Attribute
(DA)

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3894

Status Description
“Type” Data type of the attribute

“Trigger Option” Trigger option of the attribute
dchg = data change
dupd = data update
qchg = quality change
<empty> = no trigger option

“Value” Associated variable

“Writeable” Access for the attribute
R = Read
W = Write
RW = Read and Write

DataSet
In this tab of the IEC 61850 editor you create and delete data sets, you assign attributes (DA)
and data objects (DO) to a data set and you delete existing assignments.

Fig. 335: 'DataSet' tab with 'LLN0.DataSet_0' data set and DAs 't' and 'ctlNum'

Section displays the IEC 61850 Server created in the Ä Chapter 1.6.6.3.2.3.2.1 “Configura-
tion” on page 3885 tab.

The sections and are for creating, editing and deleting of data sets. In section the data
sets are listed. In section the attributes and data objects of the data set are listed, which is
marked in section .

For more information about section see Ä Chapter 1.6.6.3.2.3.2.4 “Status bar”
on page 3893.

Structure of the
tab

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3895

NOTICE!
The order of the attributes of a data set is important for the receiving and the
sending of GOOSE messages. Type and order of the entries from sender and
recipient must be identical for GOOSE communication. For more information
about GOOSE communication see Ä Chapter 1.6.6.3.2.3.5 “GOOSE Publisher”
on page 3898 and Ä Chapter 1.6.6.3.2.3.6 “GOOSE Subscriber” on page 3900.

Buttons:
● “New”: Create a new data set. This is displayed in the “DataSets” section and is

named “LLN0.DataSet_Suffix”. The suffix is incremented beginning with 0 (1. DataSet:
LLN0.DataSet_0 ...)

● “Delete”: Delete a data set: Select the desired data set in the “DataSets” section and
activate the “Delete”.button.

● “>”: Assign an attribute or a data object to the selected data set. First select the data set in
section 2 then select the attribute or the data object in section 1 and activate the “>” button.

● “<”: Deletes an element from a data set. First select the data set in section 2 then select the
attribute or the data object in section 1 and activate the “<” button.

● : Moves the selected entry one row up
● : Moves the selected entry one row down.
Input fields
● “Name: ” Name of the data set can be edited. The name gets the prefix “LLN0.”.

Report
In this tab of the IEC 61850 editor you create and parameterize buffered und unbuffered reports.
A report transports the data, that are assigned to it, to the connected client in the event of a
trigger. Each report a data set must be assigned to.

Fig. 336: 'Report' tab

In section the created report control blocks (RCB) are listed. The following buttons are
available:
● “New”: Create a new report control block.
● “Delete”: 'Delete the selected report control block

In section you make general settings for the reporting configuration.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3896

Table 722: General settings
Setting possibility Description
“Buffersize” Buffer size of buffered reports (in bytes).

“Name” Unique Report Block name within the logical node.

“Description” Description of the report block

“Integrity Period [ms]” Stealthy general interrogation. After this time the referenced data set will be
actuated.
Time (ms) between two messages
The messages are transferred cyclic, independent from other events.

“Buffered” Enable / disable the report buffering.
A buffered report stores the data, even if there's no connection to the client.
In the case of an unbuffered report, the messages will get lost, if there is no
connection to the client.

“Buffer Time [ms]” Buffer time is the amount of time that the server waits to transfer a report
after a given event occurs. Events that occur during this time period are
collected and then transferred as a batch.
If the buffer time is 0, the telegram will be sent immediately. For example, if
the buffer time 10s the telegram will be sent after this time period or when
the value changes the second time.

“Config Revision” Versioning is used to identify whether or not a member was deleted from
a data set or whether member order has changed. Such changes cause
values to not be transferred, or cause values to be in a different location
within the report. Such an event is communicated to the client with a new
version number.
Since all data sets are firmly defined, this identifier does not apply to the
solution described here.

“DataSet” Data set reference

Section is for the setting of the following options:
● “General options”: Control of the reporting behavior. An activated checkbox means, that the

information is transferred by the message
● “Buffered specific options”: can be activated, if the option “Buffered:” (in section 2) is acti-

vated.
● “Trigger options”: Determining of attributes to select the events which may trigger a mes-

sage.
If the checkbox is activated the information will be transferred by the message.

Table 723: General options
Setting Possibility Description
“Send Config Revision” 'Config Revision' information

“Send Data Reference” Enable/disable to transfer the complete reference information,
for example: LogicalDevice/GGIO1.ST.Mod.ctlNum

“Send DataSet name” Enable/disable to transfer the data set name

“Send Reason for Inclusion” Enable/disable to transfer the reason of transmission for each attribute

“Send Sequence Number” Enable/disable to transfer a unique sequence number for each message

“Send Time Stamp” Enable/disable to transfer the timestamp of transmission for each message

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3897

Table 724: Buffered specific options
Setting Possibility Description
“ Send Entry ID” Enable/disable to transfer the 'Entry ID'

“Send Buffer overflow” Enable/disable to transfer the message if a buffer overflow occurs.

Table 725: Trigger options
Setting Possibility Description
“Data Change ” Enable/disable to trigger the report if a 'data change' event occured

“Data Update” Enable/disable to trigger the report if a 'data update' event of an attribute
occured.

“Quality Chance” Enable/disable to trigger the report if a 'quality change' event of an attribute
occured

“Integrity” Enable/disable the cyclic transmission of the report independent of any
datachanges (Stealthy general interrogation) .
The time period has to be defined in the “Integrity Period” general setting.

“General Interrogation”

1. Activate the “New” button
2. Select the desired data set from the “DataSet” selection list

GOOSE Publisher
In the “GOOSE Publisher” tab of the IEC 61850 editor you create, edit and delete GOOSE
messages. If a value changes in the selected data set, a GOOSE message is sent.

Fig. 337: 'GOOSE Publisher' tab

NOTICE!
The order of the attributes of a DataSet is important for the receiving and the
sending of GOOSE messages. Type and order of the entries from sender and
recipient must be identical for GOOSE communication.

Create a report
control block
and assign it to
a data set

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3898

NOTICE!
To receive a GOOSE message from an IED, sender an recipient must have the
identical settings in the following input fields:
– “APPID”
– “GOOSE-ID”
– “Dataset structure (with regard to order and data type of the attributes)”

After the data set is sent, it is sent again after time interval of 500 ms. The repeat time then
doubles and the data set is sent again. The data set is sent repeatedly until the value set in
the “Repeat Time” input field is reached. The data set is then sent again at the Repeat Time
interval.
Sections of the tab:

: List of the GOOSE control blocks (GCB).
A GOOSE control block is a GOOSE message.
Buttons
● “New”: Create a new GOOSE cntrol block
● “Delete”: Delete the selected GOOSE control block.

: General settings:

Table 726: General
Setting Description
“Name” Name of the GOOSE control block., editable

“Description” Description of the GOOSE control block

“GOOSE-ID” Unique character string of the GOOSE control block, editable

“DataSet” Data set sent as a GOOSE message.

“MAC” Multicast addressing
Multicast addressing is used to send GOOSE messages. Addressing
allows a entire group of devices to exchange data with each other.
Requirement: unique address allocation of the different device groups.
Valid range of values: 01-0C-CD-01-00-00....01-0C-CD-01-01-FF

“APPID” Application-ID
Number for the system-wide unique identification of a GOOSE control
block. To exchange GOOSE telegrams, this number must be identical for
sender and recipient.
Valid range of values: 0 ... 4095

“Source Address (MAC)” “Browse...” button: looks for an Ethernet Port in the network. Require-
ment: an existing network path to the PLC (see ms-its:CODESYS.chm::/
Communication_Settings.htm).

: GOOSE Publisher settings

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3899

ms-its:CODESYS.chm::/Communication_Settings.htm
ms-its:CODESYS.chm::/Communication_Settings.htm

Table 727: Publisher
Setting Description
“Needs Commissioning” Indicates whether the control block must be checked

Value is provided from the configurator. Usage of the flag is customer-spe-
cific.

“DataSet Config Revision” Integer value with the version of the GOOSE control block.

“Repeat Time (T0)[ms]” Time interval during which the GOOSE telegram is valid.

“Max. Time [ms]” Source supervision time (heartbeat cycle)

“Min. Time [ms]” Maximum permissible send delay time of a data change

“VLAN” 'Virtual Local Area Network'
Logical subnet within a physical network. Multicast messages can be
passed through and filtered. The configuration is done in managed
ETHERNET switches.
If the “VLAN” checkbox is activated, values can be entered into the “VLAN-
ID” and “VLAN-Priority” input fields, concerning the passed through of mas-
sages via switches.

“VLAN-ID” A value of 0 is a non-configured VLAN in which the switch performs no
filtering. This value is recommended when no logical network should be set
up.
Valid range of values: 0 ... 4095.

“VLAN-Priority” Messages within a managed ETHERNET switch can be forwarded
depending on the priority
Valid range of values: : 0 … 7.
Default value for GOOSE: 4.

: Content of the data set assigned to the GOOSE control block.
1. Activate the “New” button
2. Select the desired data set from the “DataSet” selection list.

GOOSE Subscriber
In this tab of the IEC 61850 editor you make settings for the receiving of GOOSE messages.

Fig. 338: 'GOOSE Subscriber' tab

NOTICE!
The order of the attributes of a data set is important for the receiving and the
sending of GOOSE messages. Type and order of the entries from sender and
recipient must be identical for GOOSE communication.

Create an
GOOSE control
block and
assign it to a
data set

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3900

NOTICE!
To receive a GOOSE message from an IED, sender an recipient must have the
identical settings in the following input fields:
– “APPID”
– “GOOSE-ID”
– “DataSet” structure (with regard to order and data type of the attributes)

Sections of this tab:

: List of the GOOSE control blocks (GCB)
Buttons
● “New”: Create a new GOOSE control block
● “Delete”: Delete the selected GOOSE control block.
● “Import”: Import a GOOSE control block in the SCL format

: General settings:

Table 728: General
Setting Description
“Name” Name of the GOOSE control block., editable

“Description” Description of the GOOSE control block

“GOOSE-ID” Unique character string of the GOOSE control block, editable

“DataSet” Data set received as a GOOSE message.

“MAC” Multicast addressing
Multicast addressing is used to send GOOSE messages. Addressing
allows a entire group of devices to exchange data with each other.
Requirement: unique address allocation of the different device groups
Valid range of values: 01-0C-CD-01-00-00....01-0C-CD-01-01-FF

“APPID” Application-ID
Number for the system-wide unique identification of a GOOSE control
block. To exchange GOOSE telegrams, this number must be identical for
sender and recipient.
Valid range of values: 0 ... 4095

“Source Address (MAC)” “Browse...” button: looks for an Ethernet Port in the network. Require-
ment: an existing network path to the PLC (see ms-its:CODESYS.chm::/
Communication_Settings.htm).

: List to assign GOOSE messages to global variables.
All attributes within the selected data set are listed in this list. You can assign incoming GOOSE
messages to global CODESYS variables. For this, select the desired attribute in the list and edit
the name of a global variable in the “Varname” column. If you edit a new variable name a global
variable will be created, if you activate the “Use default name” checkbox, a variable name is
generated automatically. This variable will be written by incoming GOOSE messages.
The variables will be stored “IEC61850_Generated_GVL” (of the “IEC61850 Generated POUs”
folder) after Ä generating the code of the IEC 61850 Server.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3901

ms-its:CODESYS.chm::/Communication_Settings.htm
ms-its:CODESYS.chm::/Communication_Settings.htm

Fig. 339: Example for the variable list

1. Activate the “New” button
2. Select the desired data set from the “DataSet” selection list

Information
This tab of the IEC 61850 editor shows information on the IEC 61850 Server

Fig. 340: 'Information' tab'

Reading and Writing from CODESYS Variables
For reading in monitoring direction you connect an attribute (DA) with R-access (read)
a CODESYS monitoring variable (see Ä “Parameterization of the IEC 61850 Server”
on page 3889).
The following dataflow variants are possible:
● from the IEC 61850 Server to the connected IEC 61850 Client to read a CODESYS moni-

toring variable
● from an I/O module to the IEC 61850 Server to the connected IEC 61850 client to read an

I/O module pin.

For writing in control direction you connect an attribute (DA) with W-access (write) to a
CODESYS control variable (see Ä “Parameterization of the IEC 61850 Server” on page 3889).
The following dataflow variants are possible:
● from a connected IEC 61850 client to the IEC 61850 Server to write a CODESYS-variable
● form the connected IEC 61850 client to the IEC 61850 Server to an I/O module to write the

I/O module pins.

Create a GOOSE
control block
and assign it to
a data set

Monitoring
direction,
reading

Control direc-
tion, writing

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3902

It may be the case that the IEC 61850 client will read the monitoring variable of an attribute and
will write the control variable of the same attribute. Monitoring variable and control variable must
not be the sameCODESYS variable.
In monitoring direction the data flow takes place from the IEC 61850 Server to the connected
IEC 61850 client to read the CODESYS monitoring variable.
In control direction the data flow takes place from the connected IEC 61850 client to the IEC
61850 Server to write the CODESYS control variable.

Menu Command sorted by Categories
IEC61850
Generate code

Symbol:
On activating the “Generate code” command of the “IEC61850” category the code generation is
started and the generated IEC 61850 code is stored in the folder “IEC61850 Generated POUs”
in the device tree.

Export Server
This command of the “IEC61850” category exports the current configuration. In the “Safe as ”
dialog select the format filter:
● XML files: for IEC 61850 format with all specific data, variable mapping, for example
● SCL-Files: for IEC 61850 format to export data to other IEC 61850 tools
If you have changed the configuration since the latest code generation, you will be asked
whether new code should be generated before export.

Import Server
This command of the “IEC61850” category discards the current configuration and imports an
new configruation. In the “Save as ” dialog select the format filter:
● XML files: for IEC 61850 format with all specific data, variable mapping, for example
● SCL Files: for IEC 61850 format to import data from other IEC 61850 tools

Options
The “Options” command of the “IEC61850” category opens a dialog for the setting of different
display options for the IEC 61850 configurator.

Option Description
“Show FC besides data attribute” Display option, shows functional constraint of attribute as a comment.

“Show type besides data attribute” Display option, shows type of attribute as a comment

“Show trigger option besides data
attribute”

Display option, shows trigger option of attribute as a comment

“Show description besides data
objects”

Display option, shows description of attribute as a comment

“Enable SCL Private block”

Monitoring
direction + con-
trol direction,
reading an
writing

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3903

Option Description
“Select all Data Objects ” Debug-Option: Selection of all data objects (DO)

“Select all Data Attributes” Debug-Option: Selection of all data attributes (DA)

Reset
This command of the “IEC61850” category deletes the whole current configuration and all
objects of the current application created via the “Generate code” command.

Logical Name Classes (LNC)
The following LNCs are available for the configuration of the IEC 61850 Server

Name Description
 Automatic Control Functions

ATCC Automatic tap changer controller

 Control
CALH Alarm handling

CCGR Cooling group control

 Generic Functions
GAPC Generic automatic process control

GGIO Generic process I/O

GSAL Generic security application

 System
LLN0 Logical Node Zero

LPHD Physical device information

 Metering and measurement
MMTR Metering

MMXN Non phase related Measurement

MMXU Measurement

MSQI Sequence and imbalance

MSTA Metering Statistics

 Protection
PDIF Differential

PFRC Rate of change of frequency

PHAR Harmonic restraint

PHIZ Ground detector

PIOC Instantaneous overcurrent

PMRI Motor restart inhibition

PMSS Motor starting time supervision

PTOV Overvoltage

 Sensors and monitoring

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3904

Name Description
SARC Monitoring and diagnostics for arcs

SIMG Insulation medium supervision (gas)

SIML Insulation medium supervision (liquid)

 Instrument transformers
TCTR Current transformer

TVTR Voltage transformer

 Wind power plant (IEC61400-25)
WALM Wind power plant alarm information

WAPC Wind power plant active power control

WCNV Wind turbine converter information

WGEN Wind turbine generator information

WMET Wind power plant meteorological information

WNAC Wind turbine nacelle information

WROT Wind turbine rotor information

WAPC Wind power plant reactive power control information

WOW Wind turbine tower information

WTRF Wind turbine transformer information

WTRM Wind turbine transmission information

WTUR Wind turbine general information

WYAY Wind turbine yawing information

 X-Switchgear Functions
XCBR Circuit Breaker

XSWI Circuit Switch

 Y-Power Transformers
YEFN Ground fault neutralizer (Petersen Coil)

YLTC Tap Changer

YPSH Power Shunt

YPTR Power Transformer

 Further power system equipment
ZAXN Auxiliary network

ZBAT Battery

ZCAP Capacitor Bank

ZCON Converter

ZGEN Generator

ZGIL Gas Insulated Line

ZLIN Power Overhead Line

ZMOT Motor

ZREA Reactor

ZRRC Rotating reactive component

ZSAR Surge arrestor

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3905

Name Description
ZTCF Thyristor controlled frequency converter

ZTCR Thyristor controlled reactive converter

IEC 61850 Functionalities

Functionality Support Comment
Logical device yes

Logical node yes

Data yes

DataSet yes

Substitution yes

Setting group control no

Reporting
Buffered report control yes

Sequence number yes

Report time stamp yes

Reason for inclusion yes

DataSet name yes

Data reference yes

Buffer overflow yes

Entry-ID yes

Buffer Time yes

Integrity Period yes

General Interrogation yes

Config Revision yes

Unbuffered report control yes

Sequence number yes

Report time stamp yes

Reason for inclusion yes

DataSet name yes

Date reference yes

Buffer Time yes

Integrity Period yes

General Interrogation yes

Config Revision yes

Logging no

Log Control no

Models Con-
formance

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3906

Functionality Support Comment
Log no

Control yes Only Operate

GOOSE yes

GSSE no

Multicast SVC no

Unicast SVC no

Time yes

File Transfer no

Maximum number of simultaneously client connections 5 Parameter in the configu-
rator. 1...5

Maximum MMS PDU size 45 000

Time synchronisation yes SNTP

SCL File support yes Ex-/Import in CODESYS
IEC 61850 Server TOOL

Table 729: Server
Sevices Support Comment
ServerDirectory yes

Table 730: Application association
Sevices Support Comment
Associate yes

Abort yes

Release yes

Table 731: Logical Device
Sevices Support Comment
LogicalDeviceDirectory yes

Table 732: Logical Node
Sevices Support Comment
LogicalNodeDirectory yes

GetAllDataValues yes

Table 733: Data
Sevices Support Comment
GetDataValues yes

SetDataValues yes

Service Con-
formance

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3907

Sevices Support Comment
GetDataDirectory yes

GetDataDefinition yes

Table 734: DataSet
Sevices Support Comment
GetDataSetValues yes

SetDataSetValues yes

CreateDataSet no

DeleteDataSet no

GetDataSetDirectory yes

Table 735: Substitution
Sevices Support Comment
SetDataValues yes

Table 736: Reporting
Sevices Support Comment
Buffered report control block (BRCB)
Report yes

data-change (dchg) yes

qchg-change (qchg) yes

data-update (dupd) yes

GetBRCBValues yes

SetBRCBValues yes

Unbuffered report control block (URCB)

Report yes

data-change (dchg) yes

qchg-change (qchg) yes

data-update (dupd) yes

GetURCBValues yes

SetURCBValues yes

Table 737: Generic substation event model (GSE)
Sevices Support Comment
GOOSE-CONTROL-BLOCK
SendGOOSEMessage yes

GetReference no

GetGOOSEElementNumber no

GetGoCBValues yes

SetGoCBValues yes

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3908

Sevices Support Comment
GSSE-Control-Block

SendGSSEMessage no

GetReference no

GetGSSEElementNumber no

GetGsCBValues no

SetGsCBValues no

Table 738: Control
Sevices Support Comment
Select no

SelectWithValue no

Cancel no

Operate yes

Command-Termination no

TimeActivated-Operate no

Table 739: Time
Sevices Support Comment
Time resolution of internal
clock

7 nearest power of 10 ms

Time accuracy of internal
clock

 TL (ms) (low accuracy) T3 < 7 (only Ed2)

 T0 (ms) (<= 10 ms) 7 <= T3 < 10

 T1 (µs) (<= 1ms) 10 <= T3 < 13

 T2 (µs) (<= 100 µs) 13 <= T3 < 15

 T3 (µs) (<= 25 µs) 15 <= T3 < 18

 T4 (µs) (<= 25 µs) 15 <= T3 < 18

 T5 (µs) (<= 1 µs) T3 >= 20

Supported TimeStamp reso-
lution

7 nearest power of 10 ms

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3909

1.6.6.3.3 Modbus protocol
Modbus on TCP/IP protocol
Configuration of Modbus TCP/IP server

A Modbus TCP/IP Server instance can be added to any specific Ethernet interface / IP address.
Each interface supports max. one instance of “Modbus TCP/IP Server”. Other protocols can be
added in parallel.
1. Right click on ETH interface and click “Add object”.

ð The window “Add object below: ETH” appears.

2. Select “Modbus TCP/IP Server” and click “Add object”.

ð The node “Modbus_TCP_IP_Server” is added.

Byte Order

Format/Endianess for the transmission of WORD values (register) within the request/response
telegram (default: “Big Endian”).
Port

TCP Port on which the Server listens.
Startup Behaviour

Adding a
Modbus TCP/IP
server to device
tree

Setting the
parameters of
Modbus_TCP_IP
_Server

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3910

This parameter specifies how the Server behaves when configuration data is loaded (e.g. on
download). It's default value is “Active”. This means the Server is immediately addressable after
configuration has been performed. In case the Server should be activated later on during run
time by means of function block ModTcpServOnOff this parameter value has to be set to “No
activity”. Parameter Behaviour in state inactive then specifies the Server's behaviour during the
inactive phase.
Behaviour in state inactive

This parameter specifies how the Server behaves in inactive state. This state may be set at
the very beginning (parameter Startup Behaviour = “No activity”) and/or requested during run
time calling function block ModTcpServOnOff. It's default value is “No activity”. This means the
Server is not addressable at all (no listening socket on TCP/IP) when it is inactive. Using this
setting, any requests by Modbus TCP clients lead to the result Failed to connect to Server or
Timeout. All other parameter values make the Server respond with an exception code to any
requests by Modbus TCP clients.
The presentation of the icon next to the Modbus TCP Server in the device tree depends on the
state of the Server:

Attention:
Exception code 9 is actually not defined by Modbus specification. This may
cause problems using a different Modbus TCP client than AC500 V3.

Disable

Parameter Default Value Description
Disable write to %MB from 0 0 ... 65535 Disable write access starting at

%MBx

Disable write to %MB to 0 0 ... 65535 Disable write access up to %MBx

Disable read from %MB
from

0 0 ... 65535 Disable read access starting at
%MBx

Disable read from %MBx
to

0 0 ... 65535 Disable read access up at %MBx

It is possible to disable read and/or write access to individual segments. Reading/writing is
disabled beginning at the set start address and is valid up to the set end address (inclusive).

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3911

Configuration of Modbus TCP/IP client

The “Modbus_TCP_IP_Client” instance has to be added to the common Ethernet client proto-
cols’ node. This node supports max. one instance of Modbus TCP/IP client. Other protocols can
be added in parallel.
1. Right click on the node“Protocols” and click “Add object”.

ð The window“Add object below: Protocols” appears.

2. Select “Modbus TCP/IP Client” and click “Add object”.

ð Node “Modbus_TCP_IP_Client” is added.

Depending on a Server’s IP-Address the client sends it’s requests via the Ethernet interfaces
available.

Modbus TCP/IP client does not have any parameters.

Modbus on RTU protocol
Protocol description can be found in the chapter for Serial interfaces Ä Chapter 1.6.6.2.14.1
“Configuring Modbus RTU on serial interface” on page 3793.

1.6.6.3.4 NTP/SNTP protocol

Introduction of the NTP/SNTP protocol
AC500 V3 support the NTP and the SNTP protocol ((Simple) Network Time Protocol). Com-
pared to SNTP, the NTP protocol achieves higher accuracy in time synchronization, meeting
advanced requirements for accuracy and reliability of a PLC solution. In case a configured NTP
protocol cannot be used, SNTP protocol is used as a fallback solution.
The protocols NTP and SNTP provide the functionality to synchronize the clock of a PLC to an
external time source. For further information and specification of the protocol please refer to the
document RFC4330.

Adding a
Modbus TCP/IP
client to the
device tree

Setting the
parameters of
Modbus_TCP_IP
_Client

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3912

The following modes are supported by the implementation of the AC500 V3 PLC:
● (S)NTP client
● (S)NTP server
● (S)NTP client and server
The function block PmSntpInfo can be used to read diagnosis information of the protocol.
Refer to the documentation of the library ABB_Pm_AC500.lib for further information.

– If a high precision of system time is wanted, use a fully functional NTP
server or at least an SNTP server with a high-precision time-source
(e.g. DCF-77 receiver). Avoid cascading several levels of (S)NTP server /
(S)NTP clients.

– Client requests are normally sent at intervals depending on the frequency
tolerance of the client clock and the required accuracy. However, under no
conditions requests should be sent at less than one minute intervals (see
RFC 4330). Keep that in mind when setting polling-interval of the (S)NTP
client, especially if a huge amount of clients use one single server.

– Be sure not to use broadcast or multicast addresses as server or backup-
server since current (S)NTP implementation does not support manycast
mode.

Configuration of the (S)NTP protocol
(S)NTP client configuration

Implementation of (S)NTP client and (S)NTP server is based on protocol ver-
sion 4.

For (S)NTP client configuration add a new object “SNTP Client” under “Protocols (Client
Protocols)”.
For a PLC only one instance of an (S)NTP client is possible.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3913

The following parameters are available:

Not all parameters are shown in the user interface.

It should not be necessary to change the default values of the other parameters
for the most applications.

But there is the possibility to edit them in the generic parameter editor.

Parameter Default Value Description
IP address 0.0.0.0 Valid IP address IP address of a server which is

used as external time source.

Minimum polling rate 6
2^6 = 64 s

-4 ... 24 Specifies the lower limit of the
polling rate.
It is calculated as power of 2 and
has the unit [s].
The actual polling rate is deter-
mined by the protocol itself but it
will not be lower than this limit.

Maximum polling rate 10
2^10 = 1024 s

0 ... 24 Specifies the upper limit of the
polling rate.
It is calculated as power of 2 and
has the unit [s].
The actual polling rate is deter-
mined by the protocol itself but it
will not be higher than this limit.

Parameter Default Value Description
Enable FALSE TRUE or FALSE Enable server

IP address 0.0.0.0 Valid IP address IP address of a server which is
used as external time source.

Minimum polling rate 6
2^6 = 64 s

-4 ... 24 Specifies the lower limit of the
polling rate.
It is calculated as power of 2 and
has the unit [s].
The actual polling rate is deter-
mined by the protocol itself but it
will not be lower than this limit.

Maximum polling rate 10
2^10 = 1024 s

0 ... 24 Specifies the upper limit of the
polling rate.
It is calculated as power of 2 and
has the unit [s].
The actual polling rate is deter-
mined by the protocol itself but it
will not be higher than this limit.

Server 1

Server 2

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3914

Parameter Default Value Description
Enable TRUE TRUE or FALSE Enables the option 'Time jumps'

Time jump threshold 1.0 s 0 ... 3.403e+38 Specifies the threshold value for
time steps in seconds

Limit -1 -1 …
2147483647

Number of first clock updates
after that this option is deactivated,
a negative value activates this
option permanently.

Parameter Default Value Description
Enable TRUE TRUE or FALSE Enables the option 'Max change'

Maximum change
offset

3600 s 0 … 4294967295 Maximum allowed clock offset in
seconds

Start after 3 0 … 4294967295 Specifies the number of first clock
updates after that this option is
activated

Ignore after -1 -1 …
2147483647

Specifies the number of ignored
clock updates which exceed the
maximum offset.
The protocol will be stopped when
this value will be exceed.
It is never stopped when a negative
value is set.

Time jumps

Max change

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3915

(S)NTP server configuration

Implementation of (S)NTP client and (S)NTP server is based on protocol ver-
sion 4.

For (S)NTP server configuration add a new object “SNTP Server” under of the available
“Ethernet interfaces (ETH1-ETHn)”.
For a PLC only one instance of an (S)NTP server is possible.

The following parameters are available:

Not all parameters are shown in the user interface.

It should not be necessary to change the default values of the other parameters
for the most applications.

But there is the possibility to edit them in the generic parameter editor.

Parameter Default Value Description
Enable FALSE TRUE or FALSE Enables Access Control

Network address 0.0.0.0 Valid IP address Network address of allowed clients

Subnet mask 24 8 ... 32 Subnet mask of the network
address

Access control

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3916

Parameter Default Value Description
Enable FALSE TRUE or FALSE This option enables the protocol to

run as local server.
That means without synchroniza-
tion to an external time source.

Stratum 10 1 ... 15 Stratum of the server
when it is used as local server

Distance 1 s 0 … 3.403e+38 Distances in seconds of the server
when it is used as local server

Orphan FALSE TRUE or FALSE Enables or disables the orphan
mode

1.6.6.3.5 FTP server
Configuration of FTP server

As of SystemFW 3.1.0 the FTP server is listening only on the Ethernet interface, which the
protocol is configured on. It is not possible to have an FTP server on both Ethernet interfaces.

AC500 V3 PLCs only support explicit authorization. AC500 V3 PLCs do not support implicit
authorization.

1. Under “Ethernet -> ETH [1,2,...]” add a new object and select “FTP Server” from the list.
2. Double-click the “FTP_Server ” item to open FTP server configuration and change the

default settings of the parameters, if required.

Parameter Default Value Description
FTP Server

 Port 21 21 Do not change the default setting. The parameter
specifies the port which is used to connect to the
FTP server on the PLC.

 Sessions 1 1...4 Enter the max. number of allowed simultaneous
and parallel connections to the FTP server. Each
session uses one socket. Note: Some FTP cli-
ents require several connections to work.

Passwords - - Set each user’s passwords for login. No entry =
no password.

 system - - System RAM disk

 sdcard - - Inserted memory card.

 userdisk - - User section of the flash disk.

 flashdisk - - Only available with PM5675-2ETH

1.6.6.3.6 MQTT client protocol
System technology

The MQTT protocol is a lightweight communication protocol which is widely used on the internet
to connect embedded device to the cloud.

Local server

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3917

The MQTT (Message Queuing Telemetry Transport) client library allows to integrate an AC500
processor module to act as a client in the MQTT protocol. Thus, it is possible to exchange data
between the AC500 and other devices connected to the MQTT network.
In the figure below, there is an MQTT network with one broker (MQTT broker in the middle) and
five clients. The figure shows the main functions of MQTT to send and receive data: publish
and subscribe. The clients can publish messages with a specific topic to send data (e. g. the
temperature of a connected sensor with a timestamp) to the MQTT broker. For example, the
client “AC500_1” publishes a message to topic “topic/2”. On the other hand side clients can
also subscribe to topics to receive data. For example, the client “Laptop” has subscribed topic
“topic/2”. So all messages with the topic “topic/2” which has been published to the MQTT broker
will be sent immediately to the client “Laptop”. This creates a message flow from the client
"AC500_1" to the laptop.

To realize the MQTT behavior, there are several function blocks implemented in the Ä Chapter
1.5.11 “MQTT client library” on page 2376.

Table 740: Function blocks overview
Function Block Description
MqttConnectWithCertBuffer
MqttConnectWithCertFile

Every MQTT use case starts with establishing a connection to
an MQTT broker. Therefore, a connection structure needs to be
created. The connection structure is used to identify the connec-
tion for subsequent operations like publish or subscribe.
It is possible to establish an SSL connection. Using an SSL
connection, at least a certificate for the server is needed. Certif-
icates can be loaded from a buffer (program variable) or a file
which is stored on the PLC.

MqttGetReceivedPacket
MqttPing MqttPublish
MqttSubscribe
MqttUnsubscribe

These function blocks can be used on an established MQTT
connection to realize the desired use case.

MqttDisconnect This function block is the end of each use case.

One MQTT send use case could look like this:

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3918

*) It makes sense for several publish messages in a row (e. g. one message per second) not
always open a new connection.
One MQTT receive use case could look like this:

The MQTT client uses the TLS version 1.2.

For the MQTT client no configuration is needed.

All function blocks have to be called in tasks with cyclically processing.
You can use the function blocks with:
● PLC_PRG with automatic task configuration or manual task configuration.
● One single program or different programs.
● One single task or different tasks.
With different programs assigned to different tasks you can define different cycle times and
priorities.

● No persistent session. After an interrupted connection, the client needs to subscribe on
topics again in case of reconnect.

● One connection (MQTT_CONNECTION) cannot be shared between multiple tasks. Different
connections can be used by different tasks or even within the same task.

● Only one FB can operate on a single connection at the same time. Always wait for the FB
to complete before calling the next FB. To use two different FB’s in parallel (like publish and
receive) it is necessary to have two different connections, otherwise they must be called one
after the other.

The MQTT protocol requires AC500 devices with integrated Ethernet.

Examples
Example projects for the libraries can be found in the folder: \Users\Public\Documents\Automa-
tionBuilder\Examples.
MQTT can be used using the MQTT client library or JSON. An introduction to programming with
JSON is given in the application example.

TLS version

Configuration in
Automation
Builder
Configuration in
CODESYS

Limitations

Hardware

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3919

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010564&LanguageCode=en&DocumentPartId=&Action=Launch

1.6.6.3.7 AC500 V3 secure protocols
Introduction

The following protocols can be secured using certificates:
● Communication between Automation Builder and the PLC (e.g. Programming, Monitoring)
● Communication between the PLC’s webserver and visualization clients (browsers)
● Communication between the PLC’s FTP server and FTP clients
● Communication between the OPC UA server and OPC UA clients
As a prerequisite to enable secure communication on one or more protocols, the required
certificates need to be present on the PLC.

For security reasons ABB does not encourage the use of self-signed certifi-
cates. ABB shall not be held liable for any damage or loss that arises due to the
use of self-signed certificates on AC500 PLCs.

Self-signed certificates protect against eavesdropping if used correctly. They do
not offer any secure means of authentication.

Certificate handling
Automation Builder offers a convenient “Security Screen” to manage certificates on connected
PLCs.

It can be accessed through the shield icon on the lower right corner of the main window:

Use the tab “Devices” to manage certificates on the PLC.
It offers to:
● show certificates available on the PLC
● import and export certificates
● create new (self-signed) certificates
● trust or untrust certificates

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3920

Configuring secure protocols
Encrypted communication between Automation Builder and the PLC
Via tab
“Communicatio
n Settings”

Via “Security
Screen” in
Automation
Builder

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3921

Ensure the PLC clock is set to the current time and date when using certificates
on the PLC. Otherwise the certificate cannot be used to secure a protocol
(see also Ä Chapter 1.6.5.1.4.2 “AC500 battery” on page 3479 and Ä Chapter
1.6.6.3.4.2.1 “(S)NTP client configuration” on page 3913).

When trying to log in or when you set the PLC as active path, there will be a one-time pop-up
asking you to add the PLC’s certificate to the trusted certificates:

After trusting the PLC’s certificate, the communication between the Automation Builder and the
PLC is now encrypted.
This is shown by additional yellow lines around the communication path on the “Communication
Settings” page.

Secure web server
1. Generate or import a certificate for the web server

Ensure the PLC clock is set to the current time and date when using
certificates on the PLC. Otherwise the certificate cannot be used to secure
a protocol (see also Ä Chapter 1.6.5.1.4.2 “AC500 battery” on page 3479
and Ä Chapter 1.6.6.3.4.2.1 “(S)NTP client configuration” on page 3913).

2. Attach a web server node to either ETH1 or ETH2 or both and configure security mode.

ð This will automatically insert a visualization into the project.

The available modes of operation are:
● http only
● https only
● Both (http and https)
● Redirect http to https

3. Download and set the PLC to RUN.

Install a trusted
certificate

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3922

4. Connect to the web server using the configured method: https://<your PLC´s IP address>/
webvisu.htm.

In case you are using a self-signed certificate, your browser will show some
warnings.

If you are aware of the risks of self-signed certificates, this can be ignored.

Ä Further information on page 3920

Secure FTP
1. Import a certificate to the PLC for FTP or create a self-signed certificate.

Ensure the PLC clock is set to the current time and date when using
certificates on the PLC. Otherwise the certificate cannot be used to secure
a protocol (see also Ä Chapter 1.6.5.1.4.2 “AC500 battery” on page 3479
and Ä Chapter 1.6.6.3.4.2.1 “(S)NTP client configuration” on page 3913).

2. Add an FTP server to either ETH1 or ETH2
3. Set the parameter “Security Mode” to either “BOTH” or “FTPS only”.

ð You can use any FTP client that supports FTPS explicit mode (FTPES).

In case you are using a self-signed certificate, the FTP client will show some
warnings or notice that it does not know the certificate and wants you to check
it.

Ä Further information on page 3920

OPC UA secure
OPC UA uses mutual authentication, which means that both partners must have their own
certificate and know the other’s certificate, before being able to establish a connection!

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3923

1. Create a new certificate in your OPC UA client.

Ensure the PLC clock is set to the current time and date when using
certificates on the PLC. Otherwise the certificate cannot be used to secure
a protocol (see also Ä Chapter 1.6.5.1.4.2 “AC500 battery” on page 3479
and Ä Chapter 1.6.6.3.4.2.1 “(S)NTP client configuration” on page 3913).

2. Import that certificate to the “Trusted Certificates” in your PLC using the “Security Screen”.
3. Import a certificate for the OPC UA server on the PLC or create a self-signed certificate.
4. Export that cert to the PC and provide it as a trusted certificate to your OPC UA client.
5. Reboot the PLC and check that it is in RUN and both certificates are on the PLC (via the

“Security Screen”).
6. Add the PLC as OPC UA server in your OPC UA client.
7. Connect to the OPC UA Server.

ð You can interact normal with the UA server.

In case you are using a self-signed certificate, you will see some warning
message (depending on the OPC UA client).

If you are aware of the risks of self-signed certificates, this can be ignored.

Ä Further information on page 3920

The certificate warnings will only go away when using a certificate from a
trusted certification authority or a certificate derived from this by an intermediate
certification authority (e.g. a company CA).

That process is done via PLCShell command “cert-createcsr”, then getting the
file from the PLC via the filebrowser tab in “cert/export” and getting that signing
request turned into a real certificate by a certification authority.

Import the certificate generated by your certification authority using the security
screen.

1.6.6.3.8 KNX configurator

Refer to the general description for information about the following tabs of the
device editor.

– Ä Chapter 1.4.1.20.2.8.11 “Tab '<device name> I/O Mapping'” on page 854
– Ä Chapter 1.4.1.20.2.8.12 “Tab '<device name> IEC Objects'” on page 859
– Ä Chapter 1.4.1.20.2.8.3 “Tab 'Parameters'” on page 844
– Ä Chapter 1.4.1.20.2.8.18 “Tab 'Status'” on page 870
– Ä Chapter 1.4.1.20.2.8.19 “Tab 'Information'” on page 870

Only in the case of special features is there an additional help page for the
specific device editor.

If the "<device name> Parameters" tab is not shown, then select the “Show
generic device configuration editors” option in the CODESYS options (“Device
Editor” category).

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3924

With the KNX editor from CODESYS, you define the communication objects of your building
automation. The communication objects are exported and made available to the ETS5 program.
Linking the communication objects to the different KNX devices is performed exclusively in the
ETS5 program. Therefore, only the objects are generated in CODESYS. The objects are linked
to variables from the PLC program by means of “I/O mapping”.
You add an Ethernet adapter below the controller. Then you add the KNX device below the
adapter. You can insert only one KNX device per controller.

See also
● Ä Chapter 1.4.1.20.4.13.6 “Dialog 'Options' - 'Device Editor'” on page 1190

ETS5 Software - 'DCA' Plug-In
Linking the communication objects of the different KNX devices is performed exclusively in the
ETS5 program. To do this, you need the ETS5 software (light or professional version). You also
need the KNX product file available from KNX.
1. Create a project in CODESYS.
2. Download the CODESYS project to the controller.

ð The CRC is also downloaded to the controller.

3. Create an export file in CODESYS.

ð The CRC is also saved in the export file.

4. Read the export file into the configuration of ETS5.
5. Parameterize the objects in ETS5.
6. Start the program on the controller.
7. Transfer the KNX configuration to the controller.

ð The CRC is also transferred. The runtime system checks whether or not both CRCs
match. When they match, the KNX device is identified as functional by the green
arrow. If not, then an error is issued in the logger. In case of error, the process data
(inputs/outputs) is not updated.

Programming
steps

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3925

Tab 'KNX - General'
Object: KNX
The tab in the configurator of the KNX editor shows an overview of all communication objects.
The I/Os of the communication objects are applied automatically to the I/O mapping.
Entries can be edited directly in the table or in the “Communication object” dialog. Existing
entries can be copied via copy&paste. The next free channel number is used automatically in
this case.

Table 741: “Address settings”
“Add” Opens the “Communication object” dialog for adding objects

“Edit” Opens the “Communication object” dialog for editing objects

“Delete” Deletes the selected communication objects

“Export to ETS” Exports the list of communication objects in an XML file. This file can be
imported by ETS5 if ETS5 has the DCA plug-in installed.
Note: The command is also available in the context menu when the KNX node is
selected.

“Export to ETS” Exports the communication objects in a CSV file

“Import CSV” Imports the communication objects from a CSV file

“Identification” CRC of the communication object. This must be identical to the CRC in ETS5.

“Number of group object” Unique channel number. Gaps in the numbering is permitted.
If the channel number is already assigned, then an error text is displayed and the
“OK” button is disabled.

“Type” Determines whether or not the object in CODESYS is used as “Input” or
“Output”.

“Data point type” The data types (DPT = Data Point Types) are specified in the KNX standard.
In CODESYS, a selection of the most common data types is available. Only the
basic data type can be selected, without units (for example, DPT9.*).

“Name of group object” Any object name. Depending on the data type, a predefined text is automatically
added.

“Function of group object” Any function name. Depending on the data type, a predefined text is automati-
cally added.

“Watchdog Timeout” If no new message has been received after this time has elapsed, then the
status bit Timeout is set.

Tab 'I/O Mapping'
Object: KNX
The I/O channels are generated for each communication object:

Dialog 'Commu-
nication object'

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3926

Table 742: General I/Os
Signal Description
“Program LED Status” This input is set by the ETS program. The signal can be used for identifying a special

controller when several controllers are used (for example, by switching a LED).
The status is also set when the “Program Button” is set to TRUE. Then the device is
in programming mode. As soon as ETS5 has successfully set the physical address,
this input switches to FALSE.

“Program Button” The “Program Button” is needed for assigning the physical address from ETS5. If the
output is set to TRUE, then the device is in programming mode and then ETS5 can
assign the address specified there to the device.

Table 743: I/O channels of the communication object
Signal Description
“Status byte” Status byte as defined in the KNX stack. This allows you to determine in the applica-

tion whether or not data has been received. The status can be reset by means of the
ResetStatusFlags method.

“Trigger/Disable Cyclic,
send on change”

“Trigger Output”

Depending on the configuration in the ETS program, this output has the following
function:
● If at least one of the options “send on difference”, “send on change”, or “Cyclic

sending” is enabled, then the output is defined as deactivation. If it is set to
TRUE, then cyclic sending or send on change is stopped.

● If none of the options “send on difference”, “send on change”, or “Cyclic sending”
is enabled, then sending is triggered by a rising edge.

“Value” Value for the input or outputs – depending on the corresponding communication
object.

ETS5 - Tab 'Parameter'
The parameter page of the ETS5 configuration software is available only after you have
imported the CODESYS configuration file. The parameter page is where you define the sending
behavior of the values.

Table 744: “General Information”
“Default gateway” Default gateway for sending

“Telegram rate” Sending rate of telegrams
Note: This restriction should be applied in exceptional cases only, because this
causes the reaction times to be extended.

“Project title” In CODESYS, these parameters can be defined in the project information. They
are imported to ETS5 in the XML file and displayed here.
“Identifier”: CRC of the configuration. The CRC is also displayed in CODESYS
and must be identical to the CRC displayed here so that communication can be
started.

“Application date”

“Identifier”

“Version”

“Application state”

“Description”

The objects are subdivided into groups of ten (1 .. 10, 11 .. 20, 21 .. 30, etc.). A maximum of
1000 communication objects is possible.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3927

Table 745: “Object 1 .. 10”
“<type>” Type of the object

The parameter cannot be changed.

“Communication direction” “Output (PLC to KNX)”: The value is sent from the CODESYS controller to the
KNX object. For this communication direction, more settings are possible (“Send
condition”, etc.).
“Input (KNX to PLC)”: The value is sent to the CODESYS controller.
The parameter cannot be changed.

“Send condition” “No automatic sending”: No send when value is changed
“Send on change”: Send each time value is changed
“Send on difference”: Send when the change in value corresponds to at least the
value for “Sending difference”.

“Sending difference” Requirement: “Send condition” is “send on difference”.
The value is passed when its change is at least this value.

“Cyclic sending” “Disable”: No cyclic sending
“Enable (seconds)”, “Enable (minutes)”: Cyclic sending – regardless of the “Send
condition”.

“Cycle time [hh:mm:ss]” Rate for cyclic sending (in hours/minutes/seconds)
Requirement: “Cyclic sending” is set to “Enable (seconds)”.

“Cycle time [hh:mm]” Rate for cyclic sending (in hours/minutes)
Requirement: “Cyclic sending” is set to “Enable (minutes)”.

1.6.6.3.9 BACnet-BC

Introduction to BACnet
BACnet is a standardized data communication protocol for Building Automation and Control
networks as defined in the ANSI/ASHRAE standard 135 and ISO 16484-5.
The advantage is interoperability between devices of different vendors.
The BACnet protocol defines services to allow communication between devices. Examples
include 'Who is', 'I am', 'Who has' and 'I have' for device and object search and identification,
“Read Property” and “Write Property” for the exchange of data, up to more complex services for
alarm and event management, scheduling and trending.
The BACnet protocol defines a number of object types on which the services operate. Each
object is characterized by its properties.
The BACnet objects are combined in a BACnet device. A BACnet device represents the func-
tionality of a physical device.
More background information and introduction can be found here:
http://www.bacnet.org

http://www.bacnet.org/Bibliography

AC500 and BACnet
A BACnet device can be described by its “BACnet Interoperability Building Blocks” (BIBB)s,
which are needed to establish services. They are grouped in different areas:

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3928

http://www.bacnet.org/Overview/index.html
http://www.bacnet.org/Bibliography/ES-7-96/ES-7-96.htm

● “Data Sharing” (DS)
● “Alarm and Event Management”(AE)
● “Scheduling” (SCHED)
● “Trending” (T)
● “Device and Network Management” (DM)
“Data Sharing” for example contains two BIBBs which are needed for the “Service Read
Property”:
● Client side: DS-RP-A (Data Sharing - Read Property - A)
● Server side: DS-RP-B (Data Sharing - Read Property - B)
The BACnet standard defines profiles by the minimum required BIBBs, see table below.
“BACnet Simple Sensor” (B-SS) is the simplest one, only containing one BIBB. More complex
devices contain more BIBBs (from right to left).

The AC500 V2 supports BIBBs qualifying it as “BACnet Application Specific Controller” (B-
ASC), by installing the BACnet B-ASC library.
AC500 V3 supports many more BIBBs qualifying it as “BACnet Building Controller” (B-BC),
which contains a server (all BIBBs ending with -B) and a client (all BIBBs ending with -A). In
fact, the AC500 contains some more BIBBs. All BIBBs under B-BC in the table above, plus:

DS-COV-A, -B (Change of Value-A, -B)
DS-COVP-A, -B (Change of Value of Properties-A, -B)
AE-N-E-B (Alarm and Event-Notification External-B)
AE-ASUM-B (Alarm and Event-Alarm Summary-B)
SCHED-I-B (Scheduling-Internal-B)
T-VMT-E-B (Viewing and Modifying Trends External-B)

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3929

DM-TS-B (Time Synchronization-B)
DM-UTC-B (UTC Time Synchronization-B)
DM-MTS-A (Manual Time Synchronization-A)
DM-LM-B (List Manipulation-B)
DM-OCD-B (Object Creation and Deletion-B)
NM-BBMDC-B (BBMD Configuration-B)
...

A list with all details can be found in the Automation Builder pdf document ABB-B-BC-PICS-
AC500_V3.pdf. Direction: Help/Project examples/Examples.
The figure below shows a typical application for an AC500 V3, acting as B-BC.

A drive with several actuators and sensors is acting as B-ASC, for example providing a temper-
ature value as “Analog Input” (AI) object on the MS/TP network.
Ä Chapter 1.6.6.3.9.3.1 “Supported BACnet networks ” on page 3931

AC500 B-BC as client can read this temperature value, perform some processing (scaling, limit
check) and on the server side provide the processed value as “Analog Value” (AV) object and
as “Trend” object on the IP network. Higher level clients like BACnet Operator Workstation
(B-OWS) can access the processed objects “Analog Value” and “Trend” for supervision.
The following chapters describe the possible applications and how to configure an AC500 V3 as
B-BC.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3930

AC500 V3 as BACnet Building Controller (B-BC)
The BACnet integration into CODESYS implements the ANSI/ASHRAE standard 135-2012
(ISO 16484-5) protocol revision 14 and is based on the AMEV AS-A and AS-B standards.
Integration allows access to the properties of BACnet objects and the configuration parameters
of a BACnet device by means of an IEC application. You can program a dynamic BACnet
configuration and have access to the BACnet functions in the BACnet network by reading and
writing BACnet object properties.

Supported BACnet networks
BACnet can run on different local area network types. The AC500 B-BC supports the following
ones:
● MS/TP (Master Slave / Token Passing), based on serial RS-485
● BACnet IP, based on Ethernet / UDP / IP

Different networks can be combined to one common “BACnet internetwork”. The figure above
shows an example of some BACnet devices in one “BACnet internetwork”. Each device has
a device ID (10 to 15) which must be unique on application level. Services on application
level (e.g. read or write request) are working with these device IDs and need no addressing
information of the lower levels.
The example “BACnet internetwork” consists of different BACnet networks:
● BACnet MS/TP network connecting device 10, 11 and 12
● BACnet IP network (UDP port 47808), consisting of one IP subnets with IP range

192.168.0.x, connecting device 12, 13 and 14
● BACnet IP network (UDP port 47809), consisting of one IP subnet with IP range

192.168.2.x, connecting device 14 and 15
Addressing in a BACnet network is done through datalinks which must have a unique BACnet
MAC address (which is different to an Ethernet MAC address).
● In a MS/TP network the BACnet MAC address is just one octet (1, 2, 3 in the example).
Ä Chapter 1.6.6.3.9.3.4.4 “Configuration of datalinks ” on page 3939

● In an IP network the BACnet MAC address is the combination of the IP address and the
UDP port number (for example 192.168.0.130.47808 for device 13). The following 16 UDP
ports are reserved for BACnet: BAC0 (=47808 decimal) to BACF.
Ä Chapter 1.6.6.3.9.3.4.4 “Configuration of datalinks ” on page 3939

To form a common “BACnet internetwork” the single BACnet networks must be combined by
BACnet routers. AC500 can act as a BACnet router between BACnet MS/TP and IP networks
(device 12 in the figure above) or between two different BACnet IP networks (device 14).
Two IP subnets using the same UDP ports can be combined to one BACnet IP network with an
internet router.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3931

The problem is that internet routers block local broadcast messages, which are required for
BACnet communication. This can be solved by “Broadcast Management Devices” (BBDM).
AC500 V3 can be configured as BBDM. In the figure above the devices 12 and 14 should be
configured as BBDM in order to enable the BACnet communication across the internet router.
An alternative is to configure AC500 V3 as foreign BACnet device if an IP subnet contains no
BBDM device to pass broadcast messages over internet routers.
Configuring the AC500 as BBDM or foreign device is described in Ä Chapter 1.6.6.3.9.3.4.4
“Configuration of datalinks ” on page 3939.

Supported objects and properties
Communication with BACnet is done through objects and properties.
The AC500 B-BC server of the figure below is represented as a BACnet device object with “ID
12”. The device contains more objects like the Analog Input object, representing the input of a
temperature measurement device. An object contains several properties, like “ID, Description,
Present Value, Unit” etc.
Further possible objects of an AC500 B-BC are:
● “Binary Input” for example from connected to a switch
● “Analog / Binary Output” for actuators
● “Analog / Binary Values” for local variables
● “Calender”
● “Schedule”
● “Trend Log”
● ...
● A list with all details can be found in the Automation Builder pdf document ABB-B-BC-PICS-

AC500_V3.pdf. Help/Project examples/.

Fig. 341: BACnet objects, properties, services and BIBBs

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3932

Supported BIBBs and services
While objects and properties describe which data are communicated, the communication itself
is done with services between clients and servers. A certain service can only be executed if
client and server have the related BIBBs. The Fig. 341 BACnet objects, properties, services and
BIBBs shows a simple “Service Read Property” which is possible because the client on the right
supports DS-RP-A and the server on the left supports DS-RP-B. The service is executed in two
steps:
1. The client initiates a confirmed request “Read Property”, asking for the present value of

the “Analog Input” of object with “ID 1010”.
2. The server answers with an acknowledge, sending the present value which is 21,89°C in

the example.

A list of all supported BIBBs and services of AC500 V3 is given in the Automation Builder pdf
document ABB-B-BC-PICS-AC500_V3.pdf. Help/Project examples/Examples.

BACnet configuration in Automation Builder
To act as a BACnet server or client, the AC500 must be configured accordingly. The figure
below shows the basic configuration of a BACnet server (left) and a BACnet server with client
functionality (right). It is also possible to have server and client functionality in parallel.

Following objects need to be created:
1 “BACnet Server” root object. This is the root object for the server functionality, as well as for

the client functionality. It is mandatory, even if only client functionality is required. Ä Chapter
1.6.6.3.9.3.4.1 “Configuration of BACnet server root object ” on page 3934

2 BACnet server objects, for example “BACnet Analog Input” Temperature. The proper-
ties of the objects must be controlled (written or read) by the PLC logic. Ä Chapter
1.6.6.3.9.3.4.2 “Adding BACnet server objects” on page 3935

3 BACnet client objects, represented by a different symbol. For example, “BACnet Client
Read Property”. The functionality of the client objects must be programmed in the PLC logic.
Inserting the client objects below the server is optional. It is also possible to instantiate the
objects only in a PLC logic. Ä Chapter 1.6.6.3.9.3.4.3 “Adding BACnet client functionality”
on page 3936

4 Datalink for the physical layer. This object links the physical interface (Ethernet IP or serial
MS/TP) to the “BACnet Server” object. In the example above the IP address of ETH1 is
automatically retrieved by inserting the “BACnet IP datalink” below the ETH1 port. Ä “Con-
figuration of an IP datalink” on page 3940. For MS/TP refer to Ä “Configuration of an MS/TP
datalink” on page 3939.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3933

Configuration of BACnet server root object
1. Create an empty project with an AC500 V3 CPU type and call it fpr example “Device_12”.
2. Insert a “BACnet Server” object below the interfaces object in the device tree.

3. Set the device InstanceNumber in the “BACnet Parameters” of the “BACnet Server”,
e.g. to 12 and the InstanceName to Device_12 (according to Fig. 341 BACnet objects,
properties, services and BIBBs).

4. Add a datalink, IP or MS/TP. In the example an IP datalink is inserted below ETH1. Default
parameters are sufficient if only one datalink is used.
Ä “Configuration of an IP datalink” on page 3940

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3934

5. Build the project, download to the PLC and set it to [RUN]. The status of the “BACnet
Server” should be green (running). If not, please ensure that you have installed the
runtime license BACnet Protocol B-BC Runtime, verifiable by right-click on the PLC node
and select [Show license information] from the runtime licensing menu. The project is
scanned for required licenses. If you are logged in to a PLC, then the licenses available on
the PLC are displayed. A missing required license is highlighted.
Ä Chapter 1.6.6.2.2.2 “PLC runtime licensing” on page 3665

6. Start any BACnet client to find the server, for example Inneasoft BACnet Explorer.

Adding BACnet server objects
Goal is to publish an analog value as BACnet server object. This example is according to
Fig. 341 BACnet objects, properties, services and BIBBs, left part containing a temperature
value.
1. Configure a “BACnet Server” root object according to Ä Chapter 1.6.6.3.9.3.4.1 “Configu-

ration of BACnet server root object ” on page 3934.
2. Add a “BACnet Analog Input” object below the “BACnet Server”.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3935

3. Rename it to Temperature, adjust the parameters: InstanceNumber: 1010,
Description: Temperature, Units: UNIT_DEGREES_C.

4. The present value of the objects Temperature needs to be fed with the value from the
real temperature device. Alternatively, a simple PLC program can simulate this value.

5. Download the program and observe the temperature value in the BACnet client.

Adding BACnet client functionality
Goal is to configure a second AC500 controller as BACnet client which reads an analog value
from a server. This example is according to Fig. 341 BACnet objects, properties, services and
BIBBs, right part.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3936

1. Add a new controller and configure a “BACnet Server” root object according to Ä Chapter
1.6.6.3.9.3.4.1 “Configuration of BACnet server root object ” on page 3934.

2. Set InstanceNumber to 14 and InstanceName to Device 14.

3. In addition to BACnet objects, BACnet clients can also be inserted as devices under a
“BACnet Server”. Add a “BACnet Client Read Property” below the “BACnet Server” node.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3937

4. The created object “BACnet Client Read Property” generates a function block instance
which can be used to program the client read functionality. The figure below shows a
simple example.
In line 1-5 of the code part the function block is called with the following parameter:
● Device ID of the server to read from (12) Ä Chapter 1.6.6.3.9.3.2 “Supported objects

and properties ” on page 3932
● Object ID of the object to read from (1010 for the “Analog Input”)
● Object type (“Analog Input”)
● Property to read (“present value”)
● triggerRead to start the read operation

When the user (or another program part) sets the variable triggerRead from FALSE to
TRUE the edge triggered function block BACnet_Client_Read_Property starts opera-
tion and sends the read request to the server device. After receiving the reply from the
Server, the output .xDone gets TRUE (line 8) and the temperature value can be read from
the output .result (line 14).

5. Download this program to another AC500 V3 controller, which is in the same IP network
as the server. Set it to run and read the temperature value by setting triggerRead to
TRUE. In online mode the read temperature value can be observed in line 14.

Unlike BACnet objects, a BACnet client does not require a complex (static) configuration, thus a
client function block can be used without creating a BACnet client as device.

Alternative con-
figuration

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3938

There is no BACnet_Client_Read_Property object created below the “BACnet Server”.
Instead a function block BACnet_Client_Read_Property must be declared in the PRG
(line 6 in the declaration) and initially "connected" to its “BACnet Server” in IEC-code via
RegisterToServer(), and thus get activated (line 2 in the code) Ä Chapter 1.10 “Reference,
function blocks” on page 4292.

Configuration of datalinks
For communication with other BACnet devices AC500 provides two different possibilities:
MS/TP and IP.
Ä Chapter 1.6.6.3.9.3.1 “Supported BACnet networks ” on page 3931

For a non-routing device one MS/TP or IP datalink must be configured.
If more than one datalink is configured, routing between the datalinks is automatically enabled.

● Add the “BACnet MS/TP COM” object below the COM port.Configuration of
an MS/TP data-
link

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3939

In fact the empty COM port is replaced by the “BACnet MS/TP COM”. By that the COM port is
configured as RS-485 with fixed settings for MS/TP: No parity, 8 data bits, 1 stop bits.
● Below the “BACnet MS/TP COM” port object an “BACnet MS/TP datalink” is inserted auto-

matically which can be configured according to the requirements.

● NetworkNumber: Use the default value 1 if no routing is required. For routing, use a unique
network number in one controller.

● ConnectionType: Use the default value Master if no routing is required. For routing, use
“Master – answering always postponed”.

● Baudrate can be set according to requirements in the range of from 9600 to 38400 bits/s,
higher values (57600 and 115200 bits/s) are not recommended.

● DatalayerAddress: This is the MAC address as described in Ä Chapter 1.6.6.3.9.3.1
“Supported BACnet networks ” on page 3931. The MAC address must be unique in the
MS/TP network.

● For all other parameters the default values are recommended for typical applications.

● Add a “BACnet_IP_datalink” object below the Ethernet port ETH1 or ETH2.Configuration of
an IP datalink

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3940

● NetworkNumber: Use the default value if no routing is required. For routing, use a unique
network number in one controller.

● UPDport: Use the default value (47808 decimal) in the normal case. Range is possible
from BAC0 (= 47808 decimal) to BACF. UDPport + IP address form the MAC address
of the IP datalink as described in Ä Chapter 1.6.6.3.9.3.1 “Supported BACnet networks ”
on page 3931. The IP address cannot be specified here. It is automatically taken from the
parent Ethernet node (ETH1 or ETH2); its IP address is set in the communication settings of
the CPU node, “Device_14” in the example.

● ForeignDevice and BBMD: Special configuration is only needed if an internet router is
located between two BACnet devices.
Ä Chapter 1.6.6.3.9.3.1 “Supported BACnet networks ” on page 3931
AC500 can be configured as ForeignDevice or BBMD, but not the combination of both. An
example for BBDM can be found in the example folder.

Routing enables the combination of different BACnet networks to one common “BACnet
internetwork”.
Ä Chapter 1.6.6.3.9.3.1 “Supported BACnet networks ” on page 3931

BACnet devices from different BACnet networks can communicate with each other.
If more than one datalink is configured in one CPU, routing between the different networks
is automatically enabled. It must only be ensured that the network number is unique in one
controller.
Ä Chapter 1.6.6.3.9.3.1 “Supported BACnet networks ” on page 3931

For MS/TP the ConnectionType must be set to “Master – answering always postponed”. An
example for routing can be found in the example folder.

Time syncronisation
The BACnet clients expect to receive the local time. Currently the AC500 V3 does not distin-
guish between UTC time and local time and its time zone is set to 0. This will be improved in
the near future. In the meantime, it is recommended to store the local time (green color in the
following figure) in the AC500 as a workaround.

Configuration of
Routing

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3941

Using this workaround, the following time sync mechanisms can be used:
● Set local time from Automation Builder Tab “PLC Shell”:

Set the time by the command “time hh:mm:ss"

● Read the local time from the Automation Builder Tab “Statistics”:
“Current PLC Date and time” shows the PLC time as local time without conversion, if the tab
“Show PLC time in UTC” is enabled.

For storing the local time in AC500, do not use the button [Set PLC to PC Time]
(Tab “Statistics”), since this is always converting from local time to UTC time.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3942

● BACnet clients can read local or UTC time, both requests will deliver the same (local) time
information, since the timezone is 0.

● If an SNTP time sync is required (for example with a Meinberg clock), UTC times are
exchanged. For conversion of UTC to local time in AC500 a proprietary STNP client must be
programmed.
Please contact the PLC support for more information.

Package content
The BACnet package PS5607-BACnet-BC can be installed with the Installation Manager and
contains the following components:
● BACnet runtime component, part of AC500 firmware.
● Automation Builder package: CODESYS BACnet

– BACnet plug-in component
– Device descriptions for “BACnet Server”, BACnet objects, BACnet client and datalinks
– Libraries: BACnet, BACnetDefaultImpl and CmpBACnet.
Ä Chapter 1.6.6.3.9.3.5.1 “BACnet libraries” on page 3943

● Example folder
– Examples and example documentation
Ä Chapter 1.6.6.3.9.3.5.2 “Application examples” on page 3944

– Datasheet and FAQ
BACnet Protocol Implementation Conformance Statement (PICS), acting as a data-
sheet, describing all BACnet objects, services and communication capabilities.
BACnet Conformance Certificate
FAQ – Frequently Asked Questions, including AC500 specific information, performance
and limit

BACnet libraries
The IEC library CmpBACnet represents the integration of the BACnet stack into a CODESYS
IEC environment and provides the BACnet data types as well as the BACstack methods.
The sole use of the IEC library CmpBACnet (without the BACnet and BACnetDefaultImpl
libraries) would result in complex and lengthy IEC application code.
The BACnet library simplifies BACnet application development considerably as compared to the
sole use of CmpBACnet, especially in the following areas:

● Starting and stopping the BACnet stack
● Using BACnet server objects and their properties
● Triggering asynchronous requests (mainly client service requests) and processing the

request transaction
● Processing of callbacks from the BACnet stack (see IBACnetEventConsumer) and distrib-

uting the callbacks to multiple receivers in the application
Furthermore, the BACnet library provides a plug-in mechanism (BACnetServerPlugin) for
extending certain aspects of the BACnet library. BACnetServerPlugin is the basis for the
BACnetDefaultImpl library.

The BACnetDefaultImpl library is used for the additional simplification of BACnet application
development. The BACnet standard ASHRAE 135 leaves some aspects of the practical use of
BACnet open. The most notable examples include the following:
● Persistence of server objects
● Storage and persistence of Trend Log, Trend Log Multiple, and Event Log entries
● Update of the date/time information of the device object

Example folder

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3943

The IEC library BACnet is intended as a layer over the IEC library CmpBACnet. However, the
layer does not hide the library because this would require the BACnet library to have "facade"
functions for CmpBACnet functions. These facade functions would result in larger application
code and increased runtime requirements. This is difficult for the PLC to accept. For this reason,
it is necessary to know when elements from the BACnet library or CmpBACnet library are to be
used.
General rules:
● Starting and stopping the BACnet stack

Always use BACnetServer.StartBACnetStack and
BACnetServer.StopBACnetStack or AutoStart. Never directly use the corresponding
functions of the CmpBACnet library, such as CmpBACnet.BACnetServerInit.

● Using BACnet server objects and their properties
Always use the specified function blocks in IEC-lib-BACnet, such as BACnetAnalogValue.
Never directly use the corresponding functions of the BACnet library, such as
CmpBACnet.BACnetStorePropertyInstance.

● Triggering of asynchronous requests
Always use the specified client function blocks of the BACnet library, such as
BACnetClientReadProperty. Never directly use the corresponding functions of the
CmpBACnet library, such as CmpBACnet.BACnetReadProperty. All functions of the
CmpBACnet library that require a BACnetAsyncTransactionToken belong to this cate-
gory and should never be used directly.

● Processing of callbacks from the BACnet stack and distributing the callbacks to multiple
receivers in the application
Always use IBACnetEventConsumer and BACnetServer.RegisterHook/
UnregisterHook/RegisterCallback/UnregisterCallback. Never directly use the
corresponding functions of the CmpBACnet library, such as CmpBACnet.BACnetSetHook
or CmpBACnet.BACnetSetCallback.

When is it appropriate and safe to directly call the functions of the CmpBACnet library?

Basically, it is only necessary to call functions of CmpBACnet directly when a corresponding
functionality is not provided in the BACnet library. Check the BACnet library first before trying
to use CmpBACnet directly. It is possible to use blocking functions in CmpBACnet, such as
BACnet*CbCompletion, BACnetIam(Ex), or BACnetIHave(Ex), BACnetUnconf*.

Most often, you will use BACnet*CbCompletion to implement your specific
IBACnetEventConsumer.BACnetEventCallbacks. But first check whether or not the
BACnetDefaultImpl library already contains an appropriate standard implementation.

Application examples
● AC500_V3_BACnet_B-BC_Example_ABxxx.project including simple read and write

operations between client and server.
– Use case 1: AC500 as BACnet client, read and write (with priority)
– Use case 2: AC500 as “BACnet Server”, publish the analog value

● AC500_V3_BACnet_B-BC_Example_Routing_ABxxx.project
● Examples from 3S, including

– Read and write operations with more options, notification class, calendar, scheduler, etc.
– Device discovery
– BBMD
– Persistence
– Logging
– Routing

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3944

1.6.6.3.10 OPC UA
AC500 V3 controllers support the OPC UA protocol - a machine to machine communication
protocol for industrial automation. Further information on OPC UA:
● How to connect robot controllers to OPC UA:

https://new.abb.com/products/robotics/home/irc5/irc5-options/opc-ua
● Installation and configuration of an OPC UA server: Ä Chapter 1.6.6.5.2 “OPC UA server for

AC500 V3 products” on page 3981
● Configuration and handling of OPC UA in Automation Builder:

https://library.e.abb.com/public/1d1cbdc36f2d417cb455c946835d12ea/Application%20Note%203ADR010661.pdf

1.6.6.4 Data transfer and programming
1.6.6.4.1 Source download/upload

Prerequisites
● Communication settings are correct
● Project is saved on PC
● PLC is connected
1. Click “Online è Source download to connected device”.

ð Project archive will be downloaded to PLC.

2. To verify download double-click node “PLC_AC500_V3”, select view “Files” and double-
click folder “PlcLogic” of the Runtime view (if necessary click refresh button of Runtime
view).

ð File Archive.prj will appear if download was successful.

Source down-
load

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3945

https://new.abb.com/products/robotics/home/irc5/irc5-options/opc-ua
https://library.e.abb.com/public/1d1cbdc36f2d417cb455c946835d12ea/Application%20Note%203ADR010661.pdf

Prerequisite
● Project archive on PLC available (from previous source download)
● PLC is connected
1. Open Automation Builder.
2. Click “File è Source upload...”.

ð Window Pick the device from where you want to upload the source archive... appears.

If you get an error click [Scan for other devices].
3. Select your PLC with the archive and click [OK].

ð Dialog Extract Project Archive appears.

4. Select your preferred folder and click [Extract].

ð Then you are prompted to open the project archive.

5. Click [Yes].

ð The project opens.

Upload was successful.

1.6.6.4.2 Programming and testing
For information on programming see
● Ä Chapter 1.4.1.8 “Programming of Applications” on page 222
● Ä Chapter 1.4.1.10.1 “Configuring the Connection to the PLC” on page 380
● Ä Chapter 1.6.6.4.3.1 “Enter a known PLC IP address” on page 3947
● Ä Chapter 1.4.1.10 “Downloading an Application to the PLC” on page 379

For Information on testing/debugging see Ä Chapter 1.4.1.11 “Testing and Debugging”
on page 394

Source upload

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3946

1.6.6.4.3 Configuration of communication via Ethernet (TCP/IP)
Programming via Ethernet is only possible on a PC with Ethernet board and installed network.
Programming can be done via the internal (onboard) Ethernet communication module.
An application note describes the configuration of an AC500 V3 PLC for EtherNet/IP
communicationÄ Chapter 1.4.2.4 “EtherNet/IP Configurator” on page 1220.

Enter a known PLC IP address
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box Communication Settings <...> appears.

2. Enter your PLC IP Address and click [OK].

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3947

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010825&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010825&LanguageCode=en&DocumentPartId=&Action=Launch

Enter PLC IP address by scanning devices
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box Communication Settings <...> appears.

2. Click [...].

ð Dialog box Communication Settings <...> appears.

3. Click [Scan], select your desired PLC and click [OK].

ð Entry is transferred to the dialog box Communication Settings <...>.

Click [OK].

4. Click to log in the “PLC_AC500_V3” project.

Enter PLC IP address by [Advanced Settings...]
If a remote gateway instead of a local one has to be used it can be configured in the [Advanced
Settings...].

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3948

1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the
context menu.

ð Dialog box Communication Settings <...> appears.

2. Enable checkboxUse advanced settings and click [Advanced Settings...].

ð Tab “Communication Settings” opens.

3. Check gateway or change if required.

ð Successful connection is indicated by green dot on the gateway icon.

4.
Manual entry of the IP address.

Check IP adress or change if required.
5. Press ENTER to confirm changed IP address.

ð Successful communication is indicated by green dot on the PLC icon.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3949

6. Or instead of the last two steps:

Set the IP address via a scan.

Click [Scan Network], select your desired PLC and click [OK].

ð Successful connection is indicated by green dot on the gateway icon.

7. Click to log in the “PLC_AC500_V3” project.

1.6.6.4.4 PLC shell commands
The PLC shell is used for requesting specific information from the controller. By entering a
device-specific command the response is returned in a result window. The PLC shell can be
issued without login.
1. Ensure the gateway is configured properly and a connection to the controller can be

established.
2. In Automation Builder double-click the PLC node and open the tab “PLC Shell”.
3. Enter "?" in the command line of the tab window. All available PLC commands are listed.

If the gateway is able to establish a connection to the controller, an online connection to the
PLC is opened automatically.

The commands listed in online mode can differ from the commands shown
when pressing the button [...] as Automation Builder version and firmware ver-
sion can differ.

See:

Ä Chapter 1.2.6 “Further information” on page 49

Ä Chapter 1.6.6.1.4 “Firmware identification and update” on page 3652.

1.6.6.4.5 Watchlists
Ä Chapter 1.4.1.12.1.2 “Using watch lists” on page 416

Ä Chapter 1.4.1.12.2 “Changing Values with Recipes” on page 417

Proceed as fol-
lows:

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3950

1.6.6.4.6 Reference to libraries
Library configuration is described in the chapter Ä Chapter 1.5 “Libraries and solutions”
on page 2146.

1.6.6.4.7 Reference to application libraries
Application libraries can be used in AC500 V3 PLCs. The requirements for the use of the
function blocks of the application libraries and information and prerequisites for the general
handling of application libraries are described in the application examples:
● HTTP library

In order to be able to use the PLC as a client for web services, the HTTP function block
library can be used. Setup and use are described in the application example.

● MySQL library
With the help of the MySQL function block library, MySQL databases can be used to store
and access AC500 V3 data. Setup and use are described in the application example.

● MSSQL library
With the help of the MSSQL function block library, MSSQL databases can be used to store
and access AC500 V3 data. Setup and use are described in the application example

1.6.6.4.8 Programming in C code
With the C code integration plugin from CODESYS, externally implemented C code files can
be included in Automation Builder projects. For further information see CODESYS description
Ä Chapter 1.4.1.8.10 “Integrating C Modules” on page 275.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3951

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010259&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010476&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010519&LanguageCode=en&DocumentPartId=&Action=Launch

1.6.6.5 Server installation
1.6.6.5.1 OPC server for AC500 V3 products
Introduction
Architecture of the CODESYS OPC server

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3952

Essential documents
For further information see Ä Chapter 1.6.6.5.1.2 “Hints” on page 3957.

 File name Com-
ment

Where to find

REF1 OPC_V3_how_to_use_E.pd
f

OPC_V3_how_to_use_D.pd
f

OPC V3 C:\Program Files\ABB\CoDeSys OPC Server
3 AE

REF2 AeConfigurator_User-
Guide.pdf

OPC V3 C:\Program Files (x86)\3S
CODESYS\CODESYS OPC Server 3

REF3 ReadMe.rtf OPC V3 Installation ABB DM Suit 1.0.:
\PLC - AC500\OPC Server\OPC-
ServerV3.xAE\

REF4 ReleaseNotesOPCV3 AE for
HA

OPC V3 Installation ABB DM Suit 1.0.:
\PLC - AC500\OPC Server\OPC-
ServerV3.xAE\

Work flow
Consideration and preparation

*) Ä Chapter 1.6.6.5.1.2.2 “Installation of OPC server” on page 3960

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3953

Commission OPC server

*) Ä Chapter 1.6.6.5.1.2.3.1 “Define symbols” on page 3963

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3954

1) Ä Chapter 1.6.6.5.1.2.5 “Configure AlarmEvents” on page 3969
2) Ä Chapter 1.6.6.5.1.2.5.1 “Check AlarmEvents” on page 3969

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3955

Adjustment to target OPC client

1) Ä Chapter 1.6.6.5.1.1.2 “Essential documents” on page 3953 REF4.
2) Ä Chapter 1.6.6.5.1.2.6 “Configure user account for OPC server” on page 3969

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3956

Hints
Default folder and contents
Windows 7, Windows Server 2008/2016 (64-bit)

OPC Server V3 Windows 7 64-bit, Windows Server 2008
64-bit, Windows Server 2016 64-bit

WinCoDeSysOPC.exe

OPCConfig.exe

AEConfiguration.exe

CoDeSys_OPC_Server_V3_User_Guide.pdf

CoDeSys_OPC_Server_V3_Benutzerhand-
buch.pdf

AeConfigurator_UserGuide.pdf

C:\Program Files (x86)\3S CoDeSys\CoDeSys
OPC Server 3\

OPCServer.ini

OPCServerA.ini

OPCServer.log

C:\ProgramData\CoDeSysOPC\

Symbol file *.SDB, *.SYM CBP open, after project build or rebuild all: in
the project folder

Symbol file *.SDB After login in AC500:
C:\ProgramData\Gateway Files\
After starting the OPC server:
C:\ProgramData\Gateway Files\Upload\

Gateway.exe C:\Windows\SysWOW64\

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3957

Windows 7 (32-bit), Windows Server 2008/2016 (32-bit)

OPC Server V3 Windows 7 32-bit, Windows Server 2008
32-bit, Windows Server 2016 32-bit

WinCoDeSysOPC.exe

OPCConfig.exe

AEConfiguration.exe

CoDeSys_OPC_Server_V3_User_Guide.pdf

CoDeSys_OPC_Server_V3_Benutzerhand-
buch.pdf

AeConfigurator_UserGuide.pdf

C:\Program Files\3S CoDeSys\CoDeSys OPC
Server 3\

OPCServer.ini

OPCServerA.ini

OPCServer.log

C:\ProgramData\CoDeSysOPC\

Symbol file *.SDB, *.SYM CBP open, after project build or rebuild all: in
the project folder

Symbol file *.SDB After login in AC500:
C:\ProgramData\Gateway Files\
After starting the OPC server:
C:\ProgramData\Gateway Files\Upload\

Gateway.exe C:\Windows\System32\

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3958

Windows Server 2008/2016 (32-bit)

OPC Server V3 Windows Server 2008 32-bit, Windows
Server 2016 32-bit

WinCoDeSysOPC.exe

OPCConfig.exe

AEConfiguration.exe

CoDeSys_OPC_Server_V3_User_Guide.pdf

CoDeSys_OPC_Server_V3_Benutzerhand-
buch.pdf

AeConfigurator_UserGuide.pdf

OPCServer.ini

OPCServerA.ini

OPCServer.log

C:\Program Files\3S CoDeSys\CoDeSys OPC
Server 3\

Symbol file *.SDB, *.SYM CBP open, after project build or rebuild all: in
the project folder

Symbol file *.SDB After login in AC500:
C:\WINDOWS\Gateway Files\
After start CODESYS OPC server:
C:\WINDOWS\Gateway Files\Upload\

Gateway.exe C:\Windows\System32\

If folder C:\ProgramData\ is missing, select “Show hidden files, folders and
drives” at “Control Panel è All Control Panel Items è Folder Options è View
è Hidden files and folders”.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3959

Installation of OPC server

The following applications are closed:
– All OPC clients
– ABB OPC tunnel
– CODESYS gateway server

Ensure termination of the following processes:
– Gateway.exe
– CoDeSysOPC.exe
– WinCoDeSysOPC.exe
– OCTsvc.exe

Installing with Automation Builder
1. Go to homepage http://new.abb.com/plc/automationbuilder/platform/software .
2. Click button of Latest Automation Builder version (recommended) and run the installer.

3. Open “Installer Options and Additional Tools” and click [Install Additional Tools].
4. Agree to the “License Terms”.

Prerequisites

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3960

http://new.abb.com/plc/automationbuilder/platform/software

5. Select “Version 2 and/or 3” and install.

ð All required files are installed for OPC and the OPC server is registered automatically
as user application.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3961

Manual registration and unregistration
It is possible to register or to uninstall the OPC server manually either as COM server (user
application) or as a service.

Register the OPC server as interactive software in the Windows registry:

Command for OPC 3: WinCoDeSysOPC/RegServer

Register the OPC server as system service:

Command for OPC 3: WinCoDeSysOPC/Service

Unregister the OPC server from the Windows registry and from the service
entry:

Command for OPC 3: WinCoDeSysOPC/UnRegServer

Please see REF1 chapter 3 (OPC 3) Ä Table on page 3953 for details.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3962

Register OPC server V3 as a system service
● All programs, processes and services which connect to the OPC server are closed.
1. Start the “Command Prompt” with command “cmd” in the “Start è Run... ” window.

2. Go to the CoDeSysOPC V2 installation folder.
3. Unregister the OPC server with WinCoDeSysOPC/UnRegServer.

4. Register the OPC server as system service with WinCoDeSysOPC/Service.

OPC clients for tests
Free of charge test clients can be found in the web:
https://industrial.softing.com/us/downloads.html

http://www.matrikonopc.com/products/opc-desktop-tools/index.aspx

Symbol file
Define symbols

1. Right-click on “Application” in CODESYS V3 project and click “Add Object”.

2. Choose “Symbol Configuration” and click [Add object].

Prerequisites

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3963

https://industrial.softing.com/us/downloads.html
http://www.matrikonopc.com/products/opc-desktop-tools/index.aspx

3. Select your programs and/or single symbols and click [Build].

ð A symbol file will be automatically downloaded to the PLC with Project Download.

With double-click in the device tree to “Symbol Configuration” you can change the “Symbol
Configuration” settings.

To restrict traffic and load, choose only symbols you need.

Configure OPC server
Configure OPC Server V3

1. Start CODESYS/ CoDeSysOPC Server V3/OPC Configurator.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3964

2. If the configuration is needed furthermore, save the configuration.
The actual configuration at start of OPC server will always be read from OPCServer.ini.

ð
Update rate
– The Update Rate may not be 0 (ms)!
– The default value of 200 ms is a suitable value of many applica-

tions.
– The adjustment for the Update Rate depends on the number of

symbols (variables).
– For a big number of symbols it can be better to increase the

Update Rate.

The checkboxes Sync Init and Enable logging (Defaultevents) must be
enabled.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3965

3. Select “PLC_FW3”.

ð
– If the *.sdb files should be loaded from the “Gateway Files” direc-

tory on PC, the project name must be identical with project name
in CODESYS. The extension is not necessary.

– If the symbol information should be loaded from AC500 V2.x, the
project name is not required and can also be empty.

– The parameters displayed in the screenshot above are recom-
mended default settings.

– The checkbox Active must be enabled.
– Enabled checkbox “Enable logging” allows a later diagnosis.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3966

4. Select “Connection” and click [Edit].

5. Enter the TCP/IP address of the target PLC at PLC name or address and enable Use
Tcp/Ip blockdriver.

6. Enter the TCP/IP address of the target PLC at IP Address of PLC and click [OK].
7. Click “File è Save” OPCserver.ini and “File è Exit” OPCConfig.

Check OPC function with AC500

It is urgently recommended to check the function of the previous configuration
steps.

In order to check the OPC function without AC500, see Ä Chapter 1.6.6.5.1.4.1
“Test OPC function without AC500” on page 3974.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3967

Check OPC server V3
1. Start OPCExplorer.exe and connect “CoDeSys.OPC.DA”.

2. Add Group, add Items, select availabe Items in Server “CoDeSys.OPC.DA”.
Add to Tag List, close the Item browser.

ð If anything is right, then “CoDeSys.OPC.DA” is connected, is running and the “Quality”
of the items is good.

Check processes with windows task manager

Correct configuration: All processes run with the same “User Name” and with the same “Session
ID”.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3968

Configure AlarmEvents

Refer to REF2 AeConfigurator_UserGuide.pdf for details Ä Table
on page 3953.

Check AlarmEvents
The function of the “AlarmEvents” can be checked with “MatrikonOPC Explorer”.

The “AlarmEvents” can be simulated by writing the value of the Items.

Configure user account for OPC server

Please refer to REF3 ReadMe.rtf and REF4 ReleaseNotes OPCV3 AE for HA
Ä Table on page 3953.

OPC server V3 on Windows Server 2003/ 2008/ 2012/ 2016
When running the OPC server V3 on Windows Server 2003/ 2008/ 2012 /2016 multiple ses-
sions need to be supported. Therefore the installation of the OPC server as service running with
a dedicated user account is recommended.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3969

● Create specific user, no administrator account is required
● Register V3 OPC server as service
● Configure V3 OPC server as service

Register the OPC Server executable as service from the command line.

With command “WinCoDeSysOPC /Service” WinCoDeSysOPC.exe gets
installed as system service.

Started once, the service will stay “started” until the system gets terminated.

The communication to the configured PLCs survives.

Also here the service gets installed in the current position of WinCoDeSy-
sOPC.exe.

Configuration
steps

Create specific
user

Registration

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3970

At “Computer Management è Services and Applications è Services” open the “Properties” of
the “CoDeSysOPCDAService”.

Complete the Service Configuration

Configuration

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3971

Check Users and Session during Test Cases

Check the “Session ID” and “User Name” of

Testing

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3972

● Gateway.exe,
● WinCoDeSysOPC.exe and
● OPC Client
on different test cases like multi session with terminal service sessions.

Potential issues
Session isolation

With Windows Server 2003, Windows Server 2008, Windows Server 2016 the Windows 7
services are alone in session 0. User applications run in session 1 (2 and so on).
Services:

A Windows service is a computer program that operates in the background.
Windows services can be configured to start when the operating system is started or can be
started manually and run in the background as long as Windows is running. They can operate
when a user is not logged on.
Services are:

Windows operating systems include numerous services. OPC client like S+ OPC scanner
PGIM, Aspen CIM-IO Manager, ICONICS, .. can also installed as a service.
User applications are:

Microsoft Word, Notepad, MatrikonExplorer, ControlBuilderPlus.exe and Codesys.exe

Service and user application are isolated in their session. They can not communicate with each
other directly.
OPC Server uses, like the CBP and CODESYS, the gateway server from CODESYS
(gateway.exe) for the communication with the AC500 and starts the gateway in their session.
That creates undefined behavior, if the OPC Server runs as a service. The gateway server is not
able to run in multi sessions.

● Install all OPC clients and OPC Server, which use the gateway server, in the same session.
● The OPC Server as a service (session 0) may not be connected at the same time (in

parallel) with an OPC server as a user application or CBP or CODESYS (all in session 1)
with the AC500. If this function is necessary, different PC or virtual machines must be used.

● Use tools like OPC tunnel. In a DigiVis 500 setup context the OPC server must not be
registered as service. The OPC tunnel itself starts the OPC server within its service.

See also http://msdn.microsoft.com/en-us/
windows7trainingcourse_sessionisolation_unit .

Situation

Problem

Resolutions

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3973

http://msdn.microsoft.com/en-us/windows7trainingcourse_sessionisolation_unit
http://msdn.microsoft.com/en-us/windows7trainingcourse_sessionisolation_unit

Examples
Test OPC function without AC500

The example shows, how the OPC server V2/V3 can be tested/simulated without available
AC500.

AC500 project
1. Open CoDeSys Application.

2. Collect all OPC variables in a separate “Global Variables” list.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3974

3. Under “Project è Options ” select the “Symbol configuration”.
Enable checkbox “Dump symbol entries” and click [Configure symbol file].

4. Disable all the checkboxes and confirm twice with [OK].

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3975

5. Under “Project è Options ” “Symbol configuration” click [Configure symbol file] again.

6. Select the variables which should be communicated as symbol.
Enable the following checkboxes:
● Export variables of object
● Export structure components
● Export array entries
● Write access

7. Confirm twice with [OK].
8. Under “Project è Rebuild all” rebuild the project.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3976

9. In the project folder is the subfolder “OPC_test1__AC500_PM573_ETH__OPC_test1”. It
contains symbol files *.SYM and *.SDB with the time of the “Rebuild all”. The items in
the file *.SYM can be checked with Notepad. The binary file *.SDB contains the items for
the OPC server. With <Online> <Login> it will copied in the gateway files directory and
optionally on the AC500.

10. The folder “OPC_test1__AC500_PM573_ETH__OPC_test1” is a temporary folder, if the
CBP project is opened. For the simulation of the server OPC it is copied *.SDB by hand.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3977

Configure OPC server V3

1. Select Edit, append PLC and keep the default values.

2. You must specify “Project name” with the “directory name”.
Connection settings are not required for the simulation.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3978

Check OPC server with MatrikonOPCExplorer

1. OPC Server V3: “Connect CoDeSys.OPC.DA”. Add “Group”, add “Items”, select “Availabe
Tags” and add to “Tag List”.

2. The OPC Server V3 (“CoDeSys.OPC.DA”) is connected, running and the “Quality” is
good.
One OPC client can read / write the values of the items.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3979

3. Similar configuration as above.
The OPC Server V2 (“CoDeSys.OPC.02”) is connected, running and the configured items
are found. But the “Quality” is bad. One OPC client can not read / write the values of the
items.

Check processes with windows task manager

Correct configuration: All “Processes” run with the same “User Name” and with the same
“Session ID”.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3980

Summary

The correct function of OPC Server V2 and V3 can be checked without AC500.

With OPC Server V3 with the configuration “SIMULATION” the Project name
with the directory name has to be specified. The values of the items can be read
and write by one OPC client.

With OPC Server V2, as well as with OPC Server V3 in configuration
“GATEWAY”, only the project name may be specified. The configured items
are found, but the quality is bad. The values of the items can not be read and
not write by one OPC client.

Refer to REF5 Online Help of PS501 chapter OPC for details Ä Table
on page 3953.

1.6.6.5.2 OPC UA server for AC500 V3 products
General

OPC UA server can be added as an object below the Ethernet interfaces ETH1 or ETH2.
The user can access the variable interface of the PLC via a client. At the same time, communi-
cation can be protected by means of encryption.
The CODESYS OPC UA server supports the following features:
● Browsing of data types and variables
● Standard read/write services
● Notification for value changes: subscription and monitored item services
● Encrypted communication according to "OPC UA standard (profile: Basic256SHA256)"
● Imaging of the IEC application according to "OPC UA Information Model for IEC 61131-3"
● Supported profile: Micro Embedded Device server Profile
● By default, there is no restriction in the number of sessions, monitored items, and subscrip-

tions. The number depends on the performance of the respective platform.
● Sending of events according to the OPC UA standard.

Application example
The application example How to use OPC server V3 - for DA and UA is avail-
able to gain a deeper understanding of the OPC UA protocol and to configure
AC500 V3 accordingly.

Creating a project for OPC UA access
1. Click “File è New Project è AC500 project” in Automation Builder 2.1 or newer.
2. Choose a PLC - AC500 V3 and click [Add object].
3. Right-click on node ETH1 or ETH2 and “Add object”.
4. Choose OPC UA Server in the dialog and click [Add object].
5. Declare some variables of different types in the program.
6. Right-click “Application è Add object”. Choose Symbol configuration and click [Add

object].
7. Enable checkbox Support OPC UA Features in the dialog Add symbol configuration.
8. Double-click “Symbol configuration” in the Devices tree to open the editor Symbol configu-

ration.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3981

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010407&LanguageCode=en&DocumentPartId=&Action=Launch

9. Click [Build].

ð The variables are displayed in a tree structure.

10. Activate the variables that you want to publish to an OPC UA client. Specify the access
rights.

11. Download the project to the PLC.

Use node name
1. Double-click node “OPC_UA_Server”.
2. Set parameter Use node name to TRUE.
3. Double-click node “PLC_AC500_V3 <...>”.
4. Click “Device” and “Rename active device...”

5. Enter new device name in the following dialog and click [OK].

Use UaExpert client
The OPC UA client UaExpert is available for download from the Unified Automation website and
can be used free of charge (freeware license).
Using this client, you can connect to the AC500 OPC UA server.
The following description refers to this program. Other OPC UA clients work in a similar way.
1. Start the UaExpert program.

2. Click on the “blue cross symbol”.
3. Double-click on the “blue cross symbol” in the Add Server dialog.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3982

4. Enter URL and click [OK].

ð The URL appears in the Add Server dialog.

5. Select “Advanced” tab and click [OK].
6. Click [Connect] button.

7. Expand the project tree in the Address Space window.

8. Drag and drop the needed symbols to Data Access View.

Working with encryption
Creating a certificate for the OPC UA server

Prerequisite: A battery is inserted and the clock is set to actual time.
1. Double-click the Security symbol in the lower right corner of Automation Builder.
2. Select the “Devices” tab.

ð The certificate information opens.

3. Select the PLC in the left Information view.

ð All services of the PLC that require a certificate are displayed in the right Information
view.

4. Select the service “OPC UA Server”.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3983

5. Click the icon to create a new certificate for the device.

ð Certificate Settings dialog appears.

6. Define the certificate parameters according the figure above and click “[OK].

ð The certificate is created on the PLC.

7. Upload the certificate to your PC.
8. Restart the runtime system.

For further information see Ä Chapter 1.6.6.3.7.3.4 “OPC UA secure” on page 3923.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3984

Encrypted connection with UaExpert client
1. Start the UaExpert program.

2. Click on the “blue cross symbol”.
3. Double-click on the “blue cross symbol” in the Add Server dialog.
4. Enter URL and click [OK].

ð The URL appears in the Add Server dialog.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3985

5. Select “Advanced” tab.

6. Choose option “Basic256ha256” of drop-down list Security Policy and “Sign & Encrypt” of
drop-down list Message Security Mode and click [OK].

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3986

7. Click menu “Settings” and “Manage Certificates”

8. Click [Create new Application Certificate...].

ð Dialog New Application Instance Certificate opens.

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3987

9. Enter the required informations and click [OK].

ð Dialog “Manage Certificates” opens

10. Click [Copy Application Certificate To...] your PC.

11. Download the certificate to AC500 via the Security Screen view.
12. Click [Connect] button in the UaExpert client.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3988

ð Dialog Certificate Validation opens.

Working with a trusted certificate will avoid this error message.

14. Enable checkbox Accept the server certificate temporarily for this session and click [Con-
tinue].

ð Dialog Connect Error opens

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3989

15. Click [Ignore]

16. Check settings in dialog Manage Certificates.

Changing variables via UaExpert client
1. Expand in view Address Space “Objects è DeviceSet è PM5670 è Resources

è Application è PLC_PRG”.

ð The variables of the global variable list are visible.

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3990

2. Drag and drop the variables to the Data Access View.
3. Change values in the column Value.

Configuring OPC UA client
Operating modes

● Objects will be continuously updated in a defined interval
● Create higher load then Subscription
● Is recommended only for a few Symbols

Not yet supported

● Updated objects depending on the publishing interval and filters
● Method to reduce load
● Different intervals
● Filter possible (coming in AC500)

Client defines a group of sym-
bols with

Description

Publishing interval Interval, in which server publish data to client

Sampling interval Interval for sampling and storing data at server and send in
each publishing interval

Queue size Array of data to save data if sampling Interval is faster than
publishing Interval (At AC500 in the moment only 1)

Data change filter Can be used to reduce traffic from server to client.
Criteria:
● Change of data,
● Change of status
● Change of time stamp
AC500 is fix configured for change of data and change of
status.

Polling

Pub/Sub

Subscription
(recommended
mode)

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3991

Using OPC UA with subscription mode

Recommendations:

– Define only variables you need as symbols
– Do not configure publishing Intervals to short (increase load)
– Use different subscriptions with different publishing intervals in order to

decrease load
– Do not use sampling intervals faster then publishing intervals as long as

AC500 OPC UA server don‘t support Queue Size different from 1
– Be careful: Setting „0“ at sampling Interval at client will be interpreted in

server as „as fast as possible“, which is 100ms at AC500 and create a high
load.

Publishing and
sampling inter-
vals in UaExpert

PLC Automation with V3 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/213ADR010583, 3, en_US3992

1. Right-Click on an Item in Data Access View and click “Subscription Settings”.

2. Set the recommended values.
Life Time Count: Number of publishing intervals in which client has to send publish
requests to the server. After this period without request from client, subscription in server
will be deletet.
Max Keep Alive Count: If there are no new data to send, server can skip a publishing
interval. After the alive count, server has to send, even if there are no new data.
Click [OK].

3. Right-Click on an Item in Data Access View and click “Monitored Item Settings”.

4. Set the recommended values.

1.6.6.5.3 Web server
In order to be able to use the PLC as a client for web services, the HTTP function block library
can be used. Setup and use are described in an application example.

1.6.6.6 Converting an AC500 V2 project to an AC500 V3 project
A project that has been configured for an AC500 V2 PLC can be converted to a project for an
AC500 V3 PLC.
Essentially, the conversion is done in Automation Builder, however, some additional actions
have to be executed manually. The complete procedure is described in the application example

PLC Automation with V3 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3993

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010259&LanguageCode=en&DocumentPartId=&Action=Launch

Instructions on how to convert a V2 project to a V3 project and differences between V2 and V3.

1.6.7 Storage devices for AC500 V3 products
1.6.7.1 Introduction of AC500 storage devices for AC500 Products
1.6.7.1.1 Overview

AC500 PLCs offer a variety of storage devices. The following table gives a short overview and a
description on these storage devices:

IEC access means that the storage device can be accessed by function blocks
of an IEC program.

FTP access means that the device can be accessed via FTP server on the PLC
(if available).

Component Description IEC access FTP access CPUs
AC500 V3

userdisk
home/userdisk
(customer data)

User disk for
custom data
(flash)
Internal persis-
tent mass
storage placed in
the internal flash
device
Can be used for
any application
purpose

Yes Yes All

PLCLogic
home/PLCLogic
(customer data)

Internal persis-
tent mass
storage placed in
the internal flash
device
Used for configu-
ration data, user
application (boot
project), WebVisu
files, etc.

Yes Yes All

SRAM Battery-buffered
device, non-vola-
tile RAM
Used for retain/
persistent and
ProzM variables

Yes No All

system System RAM
disk (Temp direc-
tory) for storing
the firmware
For internal firm-
ware use only!

Yes No All

PLC Automation with V3 CPUs
PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/213ADR010583, 3, en_US3994

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010397&LanguageCode=en&DocumentPartId=&Action=Launch

Component Description IEC access FTP access CPUs
AC500 V3

flashdisk Internal persis-
tent mass
storage device
Can be used for
any application
purpose

Yes Yes PM5675-2ETH

memory card memory card
(removable)
Removable per-
sistent mass
storage device
Can be used for
any application
purpose

Yes Yes All

1.6.7.1.2 Functionalities

Filesystem Name As of CPU firmware Description
userdisk V3.0.0 Boot project (size deends on PLC type)

WebVisu files for web server
Symbol file for OPC server and CP600
panels
User data via CAA_File_xxx.lib *)
Files via Automation Builder file download
Files via FTP server

V3.1.0 Save persistent data

SRAM V3.1.0 Save retain and persistent data

system V3.0.0 Load / save boot project

Firmware update

Internal system files

flashdisk V3.1.0 User data via CAA_File_xxx.lib *)
Files via Automation Builder file download
Files via FTP server

sdcard V3.0.0 Firmware update,
User data via CAA_File_xxx.lib *)
Files via Automation Builder file download
Files via FTP server

V3.1.0 Save persistent data
Boot project (size depends on PLC type)

*) Examples for the filename with path (sFileName for FILE.Open) specified by the user ('mydir'
is optional, but must be an existing directory):
● 'userdisk/myfile.txt'
● 'sdcard/mydir/myfile.txt'
● 'flashdisk/myfile.txt'

PLC Automation with V3 CPUs

PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3995

The maximum number of files opened at the same time is limited to 1007.

The max. length of the user string (path and filename) is 241 characters.

Unlike the PLC's memory areas like %M or Retain, where 1 byte actually con-
sumes 1 byte, all storage device utilize a file system.

That means there is a difference between a files size and its size on the disk.

On disks the files are stored in so-called clusters which are a group of disk
sectors. "Size on disk" refers to the amount of cluster(s) a file is taking up, while
"file size" is an actual byte count of the file data. So you will usually find that
the size on disk is larger than the file size. This is not an error, but a result
of the disk organization via a file system. Since sector and cluster sizes vary
depending on a disk's size and the used file system, the ratios between the size
on disk and the file size also vary between the various storage devices.

1.6.7.1.3 Memory sizes

PLC type system RAM
disk

userdisk
PlcLogic
...

Retain, ProzM
area

flash disk memory
card

PM5012-x-
ETH

Dynamically
 /max. 7.6 MB

30 MB 8 kB
Retain and per-
sistent 4 kB (of
which 88 byte are
reserved for allo-
cation table)
ProzM 4 kB

None see
Ä Chapter
1.6.4.6.5.2
“MC5102 -
Micro
memory card
with micro
memory card
adapter”
on page 3432

PM5032-x-
ETH

32 kB
Retain and per-
sistent 16 kB (of
which 88 byte are
reserved for allo-
cation table)
ProzM 16 kB

PM5052-x-
ETH

PM5072-
T-2ETH(W)

100 kB
Retain and per-
sistent 36 kB (of
which 88 byte are
reserved for allo-
cation table)
ProzM 64 kB

AC500-eCo V3
processor
modules

PLC Automation with V3 CPUs
PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/213ADR010583, 3, en_US3996

PLC type system RAM
disk

userdisk
PlcLogic
...

SRAM
Retain, ProzM
area

flash disk memory
card

PM5630-2ET
H

Dynamically
 /max. 7.6 MB

40 MB
30 MB (as of
V3.4.0)

256 kB
Retain and per-
sistent 128 kB (of
which 24 byte are
reserved for allo-
cation table)
ProzM 128 kB

None see
Ä Chapter
1.6.4.6.5.1
“MC502 -
Memory
card”
on page 3428

Ä Chapter
1.6.4.6.5.3
“MC5141 -
Memory
card”
on page 3437

Ä Chapter
1.6.4.6.5.2
“MC5102 -
Micro
memory card
with micro
memory card
adapter”
on page 3432

PM5650-2ET
H

Dynamically
 /max. 16 MB

246 MB (as
of V3.0.x)
381 MB (as
of V3.1)
285.75 (as of
V3.4.0)

PM5670-2ET
H

Dynamically
 /max. 69 MB

858 MB
643.50 MB
(as of V3.4.0)

1536 MB
1 MB retain and
persistent (of
which 24 byte are
reserved for allo-
cation table)
512 kB ProzM

PM5675-2ET
H

8 GB

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

1.6.7.1.4 Storage device details
This section contains some details on each storage device. For further details on specific topics
please also refer to the following chapters:

Storage device sizes Ä Chapter 1.6.7.1.3 “Memory sizes”
on page 3996

FTP access Ä Chapter 1.6.6.3.5 “FTP server”
on page 3917

PLC shell commands Ä Chapter 1.6.6.4.4 “PLC shell commands”
on page 3950

SRAM
The SRAM is a battery-buffered, nonvolatile RAM and is used for the retain/persistent and the
ProzM variables. If a battery is inserted into the processor module, the data stored in the SRAM
will not get lost during a power-down cycle.
During PLC startup, the SRAM will be deleted automatically if no or an empty battery is inserted
into the processor module. In this case the information

AC500 V3 pro-
cessor modules

PLC Automation with V3 CPUs

PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3997

ABBInitSram_SetupMemory : SRAM cleared
and the warning
Retain size in config changed, or retain area got corrupted
are written into the log file.
Further information see Ä Chapter 1.6.5.1.1 “Handling of remanent variables for AC500 V3
products” on page 3456.

Memory card
The memory card is a removable persistent mass storage device and can be used for any
application purpose. Both firmware updates and boot project updates can be run from the
memory card Ä Chapter 1.6.7.2 “Memory card in AC500 V3” on page 3999.

Size Product specific, see table Memory Sizes
Ä Chapter 1.6.7.1.3 “Memory sizes”
on page 3996

Flash disk
The flash disk is an internal persistent mass storage device and can be used for any application
purpose.
It has a memory capacity of 8 GB (preformatted).
The flash disk is capable of high data throughput, however, the actual values to be achieved
depend on the use cases. If the performance seems to get insufficient, check the following:
● If the PLCs CPU load is high, reduce overall CPU load of the PLC to have more perform-

ance for file operations.
● If the device has low free space, cleanup the disk.

Please consider the cluster size of 4 kB in your application design to achieve optimal usage
of the flash disks space and access performance. For example, 10 files with 10 byte each
require 10*4 kB disk space, while 1 file with 100 byte requires only 4 kB.

Technically, the flash chip used in V3 flash disk has 20000 Erase-Cycles (Write cycles).
Due to the produced write overhead, the optimum achievable number of write cycles is 10000
(for typical payload sizes of 256 kB).

The write overhead is indicated by the write amplification factor (WAF).Example

Table 746: Rule of thumb for assessing the flash lifetime for an application:
Typical payload sizes WAF Max. write cycles

256 kB 2 10000

128 kB 4 5000

64 kB 8 2500

...

Number of max.
write cycles

PLC Automation with V3 CPUs
PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/213ADR010583, 3, en_US3998

Typical payload sizes WAF Max. write cycles
1024 Byte 512 < 40

512 Byte 1024 < 20

For monitoring the status

It is recommended to use the respective function blocks to monitor the status of
the flash disk (see Ä Chapter 1.6.7.4 “Health monitoring” on page 4010).

Since FW version 3.3.0, there is also a diagnosis event supported when the
user flash memory reaches the end of its life cycle.

Lifetime of flash disk will also depend on the operating environment.

E.g. high ambient temperatures will impose stress on the user flash memory
and reduce the total overwrites achievable.

● Max. write speed is 20 MB/s (continuous write of sequential data)
● Read cycles are unlimited.

1.6.7.2 Memory card in AC500 V3
The memory card is a removable persistent mass storage device and can be used for any
application purpose. Both firmware updates and boot project updates can be run from the
memory card.

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working. For memory card activity
the black square () is shown on PLC display as long as a file is open on
the memory card. Remove the memory card only when no black square () is
shown next to memory card in the display. Otherwise the memory card and/or
files on it might get corrupted and/or normal PLC operation might be disturbed.

1.6.7.2.1 Firmware and/or application update with memory card

ABB recommends that users carry out the firmware update via Automation
Builder. Ä Chapter 1.6.6.1.4 “Firmware identification and update” on page 3652

Not every user has an Automation Builder at his disposal with which a firmware
or boot project update can be easily realized. In this case, the user must be
provided with a prepared memory card from his client.

It is not possible to update the communication interface modules with a
memory card. The firmware of the communication interface modules can only
be updated with the IP configuration tool. Ä Chapter 1.6.6.2.9.1.2.3 “Firmware
update” on page 3728

PLC Automation with V3 CPUs

PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 3999

Preparation of memory card
Memory cards contain firmware and application. Visualizations and all related objects (like text
lists) are also added to the memory card.

The command to create boot project and/or firmware files is available in the context menu of
AC500 application nodes “Export” in the device tree. In both cases a folder location can be
chosen by the user to which the content shall be exported (any location is fine: file system,
memory card, etc.). The created folders can also later be copied to a memory card.
For more information, see also
● MC502 - memory card Ä Chapter 1.6.4.6.5.1 “MC502 - Memory card” on page 3428
● MC5141 - memory card Ä Chapter 1.6.4.6.5.3 “MC5141 - Memory card” on page 3437
● MC5102 - micro memory card with micro memory card adapter Ä Chapter 1.6.4.6.5.2

“MC5102 - Micro memory card with micro memory card adapter” on page 3432

When selecting “Boot project and firmware (SD card)” the boot project is additionally exported
to the given file location. If not yet existing it is created automatically for V3. On V2 it has to be
created before executing the export command. A corresponding error message is then shown
with instructions.

Fig. 342: Example for AC500 V3

1. Right-click “Application” in the device tree.
2. Select “Export è Boot project and firmware (SD card)...” .
3. Click [Make New Folder] and type in "SD".
4. Select [OK] to add the folder.

Export boot
project and firm-
ware

PLC Automation with V3 CPUs
PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/213ADR010583, 3, en_US4000

5. Select folder “SD”

ð The SD structure has been created and the firmware and application have been
exported.
Mark all subfolders and files of the SD folder and copy them to a memory card. Do not
copy the SD folder, only the subfolders and files!

The created SD folder does not contain user data, remanent data,
config data, safety PLC power dip data and safety PLC password!

Please add this data if required by the used application.

PLC Automation with V3 CPUs

PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 4001

When selecting “Firmware (SD card)” the firmware of the PLC as well as the communication
module is exported.
A confirmation message shows additional information on the export including the exported
firmware.

Fig. 343: Example for AC500 V3

1. Right-click “Application” in the device tree.
2. Select “Export è Firmware (SD card)...” .
3. Click [Make New Folder] and type in "SD".
4. Select [OK] to add the folder.
5. Select folder “SD”

Export firmware
(only)

PLC Automation with V3 CPUs
PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/213ADR010583, 3, en_US4002

ð The SD structure has been created and the firmware has been exported.

Mark all subfolders and files of the SD folder and copy them to a memory card. Do not copy the
SD folder, only the subfolders and files!

Execution of update via memory card
The following steps describe the procedure for updating the firmware or the boot project using a
memory card. Prerequisite is the previous download of the current firmware to the memory card
either as export from the Automation Builder as described in the previous chapter or as online
download from ABB.
Direct from https://share.library.abb.com/api/v4?cid=9AAC177288&dk=Software.
Click this link and on the next web page find the relevant firmware package and download it.
● Unpack this .zip archive file at any location of your hard disc
● Insert empty formatted (FAT16 / FAT32) memory card in the PC card reader
● Execute the unpacked *.exe file
● Select PC card reader as the final destination and confirm.
All directories, files and SDCARD.INI file will be automatically created on memory card and
properly configured. After the process is complete, one has the prepared memory card with
relevant updates.

PLC Automation with V3 CPUs

PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 4003

https://share.library.abb.com/api/v4?cid=9AAC177288&dk=Software

1. Switch off the device.
2. Insert the memory card.
3. Switch on the device.

ð The alternate flashing of the RUN and the ERR LED indicates the running update
process.
At the end of the update process a reboot is executed and the boot project and system
firmware is started for the finishing of the update process.
If RUN LED blinks (ERR LED is off), the update was successful and the display shows
“done”.
If ERR LED blinks (RUN LED is off), the update failed and the display shows “FAIL”.
The text file “SDCARD.RDY” includes the results of the different updates. If the update
fails, the file contains the reasons for the abort. Based on this, further steps can be
taken to fix the problem.

4. Switch off the device.
5. Remove the memory card.
6. Switch on the device.

ð The system starts with the new boot project and firmware on the CPU.

1. Switch off the device.
2. Insert the memory card.
3. Switch on the device.

ð The alternate flashing of the RUN and the ERR LED indicates the running update
process.
At the end of the update process a reboot is executed and the system firmware is
started for the finishing of the update process.
If RUN LED blinks (ERR LED is off), the update was successful and the display shows
done.
If ERR LED blinks (RUN LED is off), the update failed and the display shows FAIL.
The text file “SDCARD.RDY” includes the results of the different updates. If the update
fails, the file contains the reasons for the abort. Based on this, further steps can be
taken to fix the problem.

4. Switch off the device.
5. Remove the memory card.
6. Switch on the device.

ð The system starts with the new firmware on the CPU.

Description of LEDs
The LEDs below the display indicate the status of the processor module:

Boot project
and firmware
update

Firmware
update

PLC Automation with V3 CPUs
PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/213ADR010583, 3, en_US4004

LED State Color LED = ON LED = OFF LED flashes
Power LED
(PWR)

Denotes the
power supply
state of the pro-
cessor module

Green Voltage is
present (24 V
DC)

Voltage is
missing

-

Run LED
(RUN)

Denotes the
activity state of
the processor
module

Green Processor
module is in
RUN mode

Processor
module is in
STOP mode

If the LED flashes
fast (4 Hz) a firm-
ware update is
finished with no
errors.
If the Run LED
flashes fast (4 Hz),
alternating with a
flashing Run LED
the firmware is
updated.
To enforce boot
mode 1, keep the
RUN function key
pressed during the
boot procedure.
In this case, the
Run LED flashes
slowly (1 Hz). A
subsequent project
download (from
within Automation
Builder) cancels
the blinking.

Error LED
(ERR)

Denotes an
error

Red An error has
occured.

No errors or
only warnings
have
occurred.

If the Error LED
flashes slowly
(1 Hz) a firm-
ware update from
the memory card
is finished with
errors.
If the Error LED
flashes fast with
AC500 on display
a fatal system
error has occurred.
If the Error LED
flashes fast (4 Hz)
alternating with a
flashing Run LED
the firmware is
updated.

A running processor module is indicated with the state RUN on the display, a deactivated
processor module is indicated with the state STOP. In both cases the display's backlight is off.

1.6.7.2.2 Content of the memory card for firmware/application update

Only advanced users should apply the instructions in this chapter.

PLC Automation with V3 CPUs

PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 4005

Memory card file content: Firmware version V3.x

Only advanced users should apply the instructions in this chapter.

Information on the firmware: Ä Chapter 1.6.6.1.4.2 “ AC500 V3 firmware installation and
update” on page 3653

The main components of the V3 CPU firmware are:
● BootFW (boot firmware): responsible for the starting of the UpdateFW or the SystemFW
● UpdateFW (update firmware): responsible for the update of BootFW, UpdateFW, Sys-

temFW, UpdateHook and boot project
● SystemFW (system firmware, CPUFW): Runtime system of the PLC, additionally respon-

sible for the update of the DisplayFW (display firmware) and the firmware of the communica-
tion module

● DisplayFW (display firmware): Firmware of the display
Additionally the update process includes the following parts:
● Communication module (communication module firmware): Firmware of the different com-

munication module
● UpdateHook: Specific patches for the PLC
● UserProgram: Boot project of the application
● License features: Import and export of license files. The license file for the "ImportLicense"

is a Wbb or a WibuCmRaU file. The license file of the "ExportLicense" is a WibuCmRaC file.
The firmware updates are triggered by the command file SDCARD.INI. In addition a result file
of the firmware update is generated (SDCARD.RDY, identical path as SDCARD.INI). For the
group [FirmwareUpdate] the parameters 0, 11, 12 and 13 are defined. For each firmware update
two files are necessary. The firmware file and the corresponding signature file.
For example:
AC500_V3_SystemFirmware_V3.0.1.73.tar.bz2
AC500_V3_SystemFirmware_V3.0.1.73.tar.bz2.sig
AC500_V3_DisplayFirmware_V3.0.0.0.app
AC500_V3_DisplayFirmware_V3.0.0.0.app.sig
For the user program the application file and the application CRC are necessary. For example:
Application.app

Application.crc

If the signature file and the firmware file do not match, no update is performed and the corre-
spondent error result is written to the file SDCARD.RDY.
If the update firmware is running the display shows the text update. The blinking of the RUN and
the ERR LED’s indicates the update process.
The file “SDCARD.RDY” includes the results of the different updates. After an update of a
communication module CODESYS Control is started in safe mode (no download or starting of
the application is possible) and the PLC needs a reboot (power down/up; the display shows
please and reboot alternately).

As of system firmware 3.2 the compatibility file "Version.txt" (with the corresponding signature
file "Version.txt.sig", identical path as "SDCARD.INI") is necessary for the update process. The
update firmware checked the compatibility of the following parts:
● CPUFW (system firmware)
● BootFW (boot firmware

General update
process

PLC Automation with V3 CPUs
PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/213ADR010583, 3, en_US4006

● UpdateFW (update firmware)
● DisplayFW (display firmware)
A missing "Version.txt" or a missing/corrupt "Version.txt.sig" file is signalled at the component
"CPUFW" (file "SDCARD.RDY").
If the update process would result in incompatible parts of firmware no update is performed
in the update firmware. After starting of the system firmware the compatibility of the communica-
tion module firmware is checked additionally. The check of the compatibility of the firmware is
executed always (independent of the parameter for the component). Incompatibility is signalled
at the corresponding component (file SDCARD.RDY").

Command file SDCARD.INI for AC500 V3 Products

Only advanced users should apply the instructions in this chapter.

[FirmwareUpdate] 0 = No update

CPUFW=x
x= 0, 11, 12, 13

11 = Update system firmware always with the file specified in mod-
ule's section [CPU] and component's path key “CPUFW”.
12 = Update with different version, the update is only performed if the
version of the file specified by the component path key “CPUFW” in
module’s section [CPU] differs from the current version of the CPU.
13 = Update with newer version, the update is only performed if the
version of the file specified by the component path key “CPUFW” in
module’s section [CPU] is newer than the current version of the CPU.

BootFW=x
x= 0, 11, 12, 13

See description CPUFW. The component's path key for the boot firm-
ware in module’s section [CPU] is “BootFW”.

UpdateFW=x
x= 0, 11, 12, 13

See description CPUFW. The component's path key for the update
firmware in module’s section [CPU] is “UpdateFW”.

DisplayFW=x
x= 0, 11, 12, 13

See description CPUFW. The component's path key for the display
firmware in module’s section [CPU] is “DisplayFW”.

UpdateHook=x
x= 0, 11

11 = Execute UpdateHook always with the file specified in module's
section [CPU] and component's path key “UpdateHook”.

ImportLicense=x
x= 0, 12

12 = Import the license always with the file specified in module's
section [CPU] and component's path key “ImportLicense”. The license
file is a Wbb or a WibuCmRaU file. The update process imports this
file into the plc.
Note: Do not use parameter 11 for license import.

ExportLicense=x
x= 0, 12

12 = Export the license always to the file specified in module's sec-
tion [CPU] and component's path key “ExportLicense”. The exported
license file is a WibuCmRaC file.
Note: Do not use parameter 11 for license export.

PLC Automation with V3 CPUs

PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 4007

Coupler0=x
x= 0, 11, 12, 13

0 = No update.
11 = Update firmware always with the file specified in module's sec-
tion [Coupler0] and component's path key “Boot” and/or “Firmware”.
12 = Update with different version, the update is only performed if the
version of the file specified by the component path key “Boot” and/or
“Firmware” in module’s section [Coupler0] differs from the current ver-
sion of the coupler.
13 = Update with newer version, the update is only performed if the
version of the file specified by the component key “Boot” and/or “Firm-
ware” in module’s section [Coupler0] is newer than the current version
of the coupler.

Coupler1=x
x= 0, 11, 12, 13

Update module slot 1; see description Coupler0, module section is
[Coupler1]*.

Coupler2=x
x= 0, 11, 12, 13

Update module slot 2; see description Coupler0, module section is
[Coupler2]*.

Coupler3=x
x= 0, 11, 12, 13

Update module slot 3; see description Coupler0, module section is
[Coupler3]*.

Coupler4=x
x= 0, 11, 12, 13

Update module slot 4; see description Coupler0, module section is
[Coupler4]*.

Coupler5=x
x= 0, 11, 12, 13

Update module slot 5; see description Coupler0, module section is
[Coupler5]*.

Coupler6=x
x= 0, 11, 12, 13

Update module slot 6; see description Coupler0, module section is
[Coupler6]*.

[UserProg] 0 = No update.

UserProgram=x
x= 0, 11

11 = Update user program always with the file specified in module's
section [CPU] and component's path key “UserProgram”.

Example: SDCARD.INI as of CPU firmware V3.x

Only advanced users should apply the instructions in this chapter.

 [Status]
;FunctionOfCard
;0 = Perform no function when inserting the card or voltage ON
;1 = Load user program according to entry in group |UserProg|
;2 = Start firmware update according to entry in group |
FirmwareUpdate|
;3 = Update firmware according to entry in group |FirmwareUpdate|
; and load user program according to entry in |UserProg|
FunctionOfCard=0

 [FirmwareUpdate]
; 0 = No update
;11 = Update with file specified in module's section <modsec>,
component's path key <pathkey>
;12 = Like 11, but check version of file to be updated differs from
current one.

PLC Automation with V3 CPUs
PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/213ADR010583, 3, en_US4008

;13 = Like 11, but check version of file to be updated is newer than
current one.
CPUPFW=0 ;<modsec>=|CPU|, <pathkey>= CPUPFW
BootFW=0 ;<modsec>=|CPU|, <pathkey>= BootFW
UpdateFW=0 ;<modsec>=|CPU|, <pathkey>= UpdateFW
DisplayFW=0 ;<modsec>=|CPU|, <pathkey>=DisplayFW
UpdateHook=0 ;<modsec>=|CPU|, <pathkey>=UpdateHook
ImportLicense=0 ;<modsec>=|CPU|, <pathkey>=ImportLicense
ExportLicense=0 ;<modsec>=|CPU|, <pathkey>=ExportLicense
Coupler0=0 ;<modsec>=|Coupler0|, <pathkey>=Firmware
Coupler1=0 ;<modsec>=|Coupler1|, <pathkey>=Firmware
Coupler2=0 ;<modsec>=|Coupler2|, <pathkey>=Firmware
Coupler3=0 ;<modsec>=|Coupler3|, <pathkey>=Firmware
Coupler4=0 ;<modsec>=|Coupler4|, <pathkey>=Firmware
Coupler5=0 ;<modsec>=|Coupler5|, <pathkey>=Firmware
Coupler6=0 ;<modsec>=|Coupler6|, <pathkey>=Firmware

[UserProg]
; 0 = No update
;11 = Update with file specified in module's section <modsec>,
component's path key <pathkey>
UserProgram=0 ;Update user program. <modsec>=[CPU], <pathkey>=
UserProgram

[CPU];
CPUFW= ;Path/file of CPU's system firmware to update
BootFW= ;Path/file of CPU's boot firmware to update
UpdateFW= ;Path/file of CPU's update firmware to update
UpdateHook = ;Path/file of UpdateHook to update
DisplayFW= ;Path/file of Display's firmware to update
ImportLicense= ;Path/file of import license file
ExportLicense= ;Path/file for export license file
UserProgram= ;Path/File of user program to update

[Coupler0]
Firmware= ;Path/file of internal coupler's firmware to update

[Coupler1]
Firmware= ;Path/file of external coupler's firmware slot 1 to
update

[Coupler2]
Firmware= ;Path/file of external coupler's firmware slot 2 to
update

[Coupler3]
Firmware= ;Path/file of external coupler's firmware slot 3 to
update

[Coupler4]
Firmware= ;Path/file of external coupler's firmware slot 4 to
update

[Coupler5]
Firmware= ;Path/file of external coupler's firmware slot 5 to
update

[Coupler6]
Firmware= ;Path/file of external coupler's firmware slot 6 to
update

PLC Automation with V3 CPUs

PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/21 3ADR010583, 3, en_US 4009

SDCARD.INI for memory card for update only the system firmware (SystemFW):
[FirmwareUpdate]
CPUPFW=11
[CPU]
CPUFW=/SystemFirmware/ AC500_V3_SystemFirmware_V3.1.3.zzz.tar.bz2

1.6.7.3 Flash memory for AC500 V3 products
AC500 processor modules for V3 products (PM56xx) are equipped with non-removable and
non-volatile onboard user flash memory for program and data storage. The integrated flash
management, including a wear levelling algorithm and a power-fail protected file system, is
designed for robustness and operation in industrial environments and applications. The user
flash memory can be accessed from the user program using the CAA_File library.

NOTICE!
The user flash memory has a finite number of write cycles.

Important: Programmers should keep the amount of cyclic written data low to
ensure long availability.

1.6.7.4 Health monitoring
AC500 V3 products are equipped with non-removable and non-volatile onboard user flash
memory for program and data storage. The integrated flash management, including a wear lev-
elling algorithm and a power-fail protected file system, is designed for robustness and operation
in industrial environments and applications.

Keep the amount of cyclic written data low to assure long availability of the
user flash memory. The spent/remaining lifetime information of the user flash
memory can be acquired with the function block PmDiskStatus and PmDiskLife-
timeUsed.

Further information is provided in the documentation of the AC500_Pm library. Ä Chapter 1.10
“Reference, function blocks” on page 4292

Since FW version 3.3.0, there is also a diagnosis message issued when the user flash memory
reaches the end of its lifecycle. Please refer to the diagnosis documentation for more info.

Example con-
tent and
description of
the SDCARD.INI
folder

PLC Automation with V3 CPUs
PLC integration (hardware) > Storage devices for AC500 V3 products

2022/01/213ADR010583, 3, en_US4010

1.7 Diagnosis and debugging for AC500 V3 products
1.7.1 The diagnosis system

The diagnosis system enables uniform diagnosis of the CPU and its local interfaces, of the local
I/O bus with the connected S500 I/O devices and of the fieldbuses connected via communica-
tion modules, considering the special features of the various fieldbuses. The safety CPU is also
integrated into the diagnosis system.
Diagnosis data of the devices can be accessed by
● CPU display
● Automation Builder
● IEC application
To forward the information to notify them by, e.g., webserver or OPC UA server, the data
retrieved in IEC application can be stored in variables.

Fig. 344: Overview of the diagnosis system

All diagnosis data is assigned to a device. System diagnosis (e.g., battery low) is coming from
the CPU device or one of the child objects (e.g., watchdog diagnosis of a task object).
Diagnosis is available for devices with representation in the Automation Builder device tree.
Diagnosis messages include the severity of an error. Error severity can be used for defining
system behavior, e.g., activating the error LED or stop the PLC Ä Chapter 1.7.1.5.1 “Error
severity” on page 4044.

● An event describes the current state of the device. It does not have to be acknowledged.
● An alarm describes that at a certain point of time, there was a diagnosis message. It does

not say anything about the current state of the device.
Alarms must be acknowledged by the user. After acknowledging, the alarm disappears for
all consumers.

Every diagnosis message has a come time.

With reference to diagnosis, there are different device states:
● Device without events and without unacknowledged alarms.
● Device with events or unacknowledged alarms.
● Device does not respond and is not available for online connection.

Types of diag-
nosis messages

Device state

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4011

Diagnosis messages are always available for all consumers.
● ABB AC500 V3 devices:

– Events and unacknowledged alarms.
– Every diagnosis message with come time, location, error number and text.

● 3rd party devices:
– Events and unacknowledged alarms.
– Every diagnosis message with come time, location and error number.
– Clear text information if available either from a standard or from the device description.
– If available: Extended diagnosis: Additional data coming from the device for manual

analysis.

Some devices are able to provide extended diagnosis. This additional device-dependant diag-
nosis will only be collected on request and will be device type specific (e.g. bus scan request
on PROFINET I/O controller). Main intention is to cover commissioning use cases, when very
specific information is required that typically cannot be stored in error numbers in a reasonable
way.

1.7.1.1 Access to diagnosis data
● Error LED on CPU Ä Chapter 1.7.1.2 “Diagnosis in CPU display” on page 4013
● Automation Builder device tree Ä Chapter 1.7.1.3 “Diagnosis in Automation Builder”

on page 4017
● IEC application via device name Ä Chapter 1.7.1.4.3 “Device diagnosis” on page 4034
● IEC application via list of all available diagnosis Ä Chapter 1.7.1.4.2 “System diagnosis”

on page 4025
● External access via global IEC variables Fig. 344

● CPU display Ä Chapter 1.7.1.2.2 “Diagnosis descriptions” on page 4013
(for CPU, local I/O bus and connected S500 I/O modules, not for communication modules
and field buses)

● Automation Builder via “All messages” window Ä Chapter 1.7.1.3.2 “Diagnosis descriptions”
on page 4017:
– Support for (bulk) acknowledgement of alarm
– Access to extended diagnosis data of 3rd party devices devices (if available), without any

interpretation
● IEC application via a list of all current diagnosis either of a device (device object from the

Automation Builder tree) Ä Chapter 1.7.1.4.3 “Device diagnosis” on page 4034 or of the
complete PLC Ä Chapter 1.7.1.4.2 “System diagnosis” on page 4025:
– Navigation chronologically in both directions (starting either from the oldest or newest

diagnosis)
– Access to the diagnosis numerically (evaluation by IEC application), textual (use on

HMI) or to extended diagnosis data of 3rd party devices (if available)
– Acknowledgement of alarms

● External access via global IEC variables by using the IEC application features for getting all
relevant information

Extended diagnosis data will be displayed in Automation Builder via “All messages” window.
The data is displayed as it is provided from the device without any interpretation. Refer to, e.g.,
the manual of the device to get information about the extended diagnosis data.

Diagnosis
descriptions

Extended diag-
nosis

Access to
device state

Access to diag-
nosis descrip-
tions

Access to
extended diag-
nosis

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4012

1.7.1.2 Diagnosis in CPU display
1.7.1.2.1 Device state

If there is at least one active diagnosis message, the error LED ERR is on.
The behavior of the error LED depends on the setting of CPU parameter “Error LED” Ä Table
on page 3693.

Diagnosis of AC500-eCo CPUs can only be shown by LED ERR at CPU. No
display is available.

General information on the LEDs, the display and the function keys can be found in chapter
Ä Chapter 1.6.5.1.6 “LEDs, display and function keys on the front panel” on page 3486.

1.7.1.2.2 Diagnosis descriptions
Ä Chapter 1.7.1.2.3 “Reading out diagnosis messages on the CPU” on page 4015.

Entry Length
[byte]

Values Description Display

Error severity 1 0 .. 255 Used values: 1, 2, 3, 4, 11 Ä Chapter
1.7.1.5.1 “Error severity” on page 4044

Ex abc

Hardware ID (HwId) 1 0 .. 255 Location of diagnosis, e.g., subdevice, as
three-letter word Ä Further information
on page 4013

Ex abc

Error code 2 1 .. 65535 Error number (low word) 12345

SubSysteminfo byte 1 1 0 .. 255 Depends on hardware ID d1 123

SubSysteminfo byte 2 1 0 .. 255 Depends on hardware ID d2 123

SubSysteminfo byte 3 1 0 .. 255 Depends on hardware ID d3 123

SubSysteminfo byte 4 1 0 .. 255 Depends on hardware ID d4 123

CPU display does not show any communication modules or fieldbus diagnosis.
To view these diagnosis messages use Automation Builder Ä Chapter 1.7.1.3
“Diagnosis in Automation Builder” on page 4017 or IEC application Ä Chapter
1.7.1.4 “Diagnosis in IEC application” on page 4020.

This is valid for:

– all external communication modules incl. safety CPUs, CM574-RS,
FM502-CMS

– CANopen on onboard CAN interface
– fieldbuses on Ethernet interfaces ETH1/ETH2 like PROFINET IO controller,

EtherCAT master, etc.

For identification of the location of a diagnosis the hardware ID and in addition for CPU diag-
nosis the SubSysteminfo byte 1 is used.
The location is displayed with 3 characters.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4013

Hardware ID Value SubSysteminfo byte 1 Value Display
CPU 0 CPU itself 0

CPU 0 RAM 17

CPU 0 Flash 18

CPU 0 Flashdisk 19

CPU 0 SD memory card 20

CPU 0 Display 21

CPU 0 Battery 22

CPU 0 RTC (real-time clock) 23

CPU 0 FPU (floating point unit) 24

CPU 0 Power supply 25

Communication
module 1

1

Communication
module 2

2

Communication
module 3

3

Communication
module 4

4

Communication
module 5

5

Communication
module 6

6

COM1 serial interface
1

7

COM2 reserved for
serial interface 2

8

CAN interface 9

Onboard I/O (eCo) 10 No display

Option board 1 (eCo) 11 No display

Option board 2 (eCo) 12 No display

Option board 3 (eCo) 13 No display

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4014

Hardware ID Value SubSysteminfo byte 1 Value Display
I/O bus 14

Ethernet ETH1 15

Ethernet ETH2 16

1.7.1.2.3 Reading out diagnosis messages on the CPU
Table 747: Example: no diagnosis message in status list
State Display Result on pressing one of the function keys

0 The processor
module is in
RUN/STOP
mode.

State 1 is
displayed

- - - -

1 No action No action Return into RUN/STOP
mode.

Table 748: Example: diagnosis messages in status list
State Display Result on pressing one of the function keys

0 The processor
module is in
RUN/STOP
mode.

State 1 is
displayed

- - - -

1

Number of diag-
nosis mes-
sages; here 4

 Go to first/
next diag-
nosis mes-
sage in
status list
(e.g., state
2)

Go to last/
previous
diagnosis
message in
status list

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

2

Diagnosis mes-
sage example:
Error battery
empty or
missing

Toggling
between state 2
and 3

Selects
displayed
diagnosis
message
and
shows
details
Ä Table 7
49 “Exam
ple: error
battery
empty or
missing”
on page 4016

Go to first/
next diag-
nosis mes-
sage in
status list

Go to last/
previous
diagnosis
message in
status list

Return into
RUN/STOP
mode.

Acknowl-
edge and
return into
RUN/STOP
mode.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4015

State Display Result on pressing one of the function keys

3

Error ID
example
Toggling
between state 2
and 3

Table 749: Example: error battery empty or missing
State Display Result on pressing one of the function keys

0

E4 = error
severity 4
bAt = subdevice
battery
Toggling
between state 0
and 1

State 2 is
displayed

State 2 is
displayed

State 6 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

1

Error ID
example
Toggling
between state 0
and 1

2

Error number 8
Battery is
missing or
empty

 State 3 is
displayed

State 0 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Displays
state 0
Return to
diagnosis
status list

3

Detail 1
Subdevice 22:
battery

 State 4 is
displayed

State 2 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

4

Detail 2
Error type 0:
device

 State 5 is
displayed

State 3 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4016

State Display Result on pressing one of the function keys

5

Detail 3
Error type
number 0:
device itself

 State 6 is
displayed

State 4 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

6

Detail 4
Additional infor-
mation 0: none

 State 1 is
displayed

State 5 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

1.7.1.3 Diagnosis in Automation Builder
1.7.1.3.1 Device state

In Automation Builder, colored icons next to the devices’ nodes in the device tree indicate
the device state of each single device Ä Chapter 1.7.2.3 “Project tree in online mode”
on page 4047.

1.7.1.3.2 Diagnosis descriptions
For output of diagnosis messages in textual format Automation Builder and IEC application
use text lists. Both application use the same text lists. The text lists are part of the device
description. When inserting a new device in device tree of project, the corresponding text list is
loaded. This text lists are part of PLC program and will be downloaded into the PLC.

Displayed text

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4017

It is necessary to include a visualization, even if visualization will not be used.
Ä Chapter 1.4.5 “CODESYS Visualization” on page 1249

Without visualization the text lists will not be included.

The text lists are generated automatically. We recommend that you do not
change them manually because the changes can be overwritten automatically
and without prompting.

The text lists for 3rd party devices are created during reading of the device description sheets,
e.g., GSDML files for PROFINET I/O devices.
The name of a text list for a PROFINET I/O device is: Diag_PNIO_Vendor ID_Device ID

CI501-PNIO: Diag_PNIO_26_22
26 = vendor ID ABB, 22 = device ID CI501-PNIO

Example

The text list for the AC500 PROFINET I/O modules contains all text needed for PROFINET
standard diagnosis and AC500 process alarm handling.
Which texts are used, depends on parameter “Selection of diagnosis method”: Double-click on a
PROFINET I/O module and open tab “General”.

1.7.1.3.3 System diagnosis
In Automation Builder the system diagnosis is activated by default and can be deactivated in:
“Tools è Options è Diagnosis è Enable subtree diagnosis”

1.7.1.3.4 Device diagnosis
Each node in the device tree has a diagnosis view, which displays the diagnosis messages for
this device only.
The message consists of:
● Type Ä Chapter 1.7.1.3.5 “Diagnosis history” on page 4019
● Timestamp in date and time YYYY-MM-DD hh:mm:ss.ms
● Error severity
● Error code
● Diagnosis description
● Additional data
To view the diagnosis message:

Displayed text
for 3rd party
devices

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4018

1. Double-click on a device.
2. Select the tab “Diagnosis”.

Battery empty or missing.Example

Wrong module configured on I/O bus.Example

Device diagnosis is disabled by default.
To enable/disable device diagnosis:
1. Double-click on the PLC.
2. Select the tab “PLC Settings”.
3. Under “Additional Settings” enable/disable “Diagnosis for devices”.

ð When the device diganosis is disabled, this symbol will be displayed in the device
tree and no diagnosis messages will be shown.

1.7.1.3.5 Diagnosis history
Diagnosis history is available as of Automation Builder 2.4.0 / System FW 3.4.0 the diagnosis
system has been extended with diagnosis history.
The 'Diagnosis History' view provides an overview of the current and past system events that
resulted in a diagnosis event.
● Incoming diagnosis events are indicated with .

After the problem that causes a diagnosis event has been resolved, this diagnosis event is
indicated automatically with .

● Alarm events, e.g. PROFINET alarms are indicated with .
In the 'Diagnosis' view the user can acknowledge an alarm. Note that an alarm event can be
acknowledged though the problem that causes the alarm still persists.
The acknowledge action is indicated with on the concerning event entry. If the icon
changes to , the acknowledge action has been completed by the PLC.

The following buttons are available in the 'Diagnosis History' view:

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4019

● Start/Stop refresh:
Enables or disables the automatic refresh mode. In refresh mode new diagnosis events
will be displayed automatically. Only the last 100 entries are shown in this view, the latest
events on top of the list.

● Get next entries:
Adds the previous (older) 100 diagnosis events at the bottom of the list.

● Export complete history:
Creates a csv file with all events from the diagnosis history (not only the visible ones).

1.7.1.4 Diagnosis in IEC application
There are two possibilities for accessing the diagnosis messages in the IEC application:
● System diagnosis: Access to diagnosis messages of the whole PLC
● Device diagnosis: Access to the diagnosis messages of a device
For both possibilities common data types (structures and enumerations) are defined in
the library AC500_DiagTypesÄ Chapter 1.7.1.4.1 “Data types in library AC500_DiagTypes”
on page 4021. The library is automatically included in PLC project.

For output of diagnosis messages in textual format Automation Builder and IEC application
use text lists. Both application use the same text lists. The text lists are part of the device
description. When inserting a new device in device tree of project, the corresponding text list is
loaded. This text lists are part of PLC program and will be downloaded into the PLC.

Displayed text

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4020

It is necessary to include a visualization, even if visualization will not be used.
Ä Chapter 1.4.5 “CODESYS Visualization” on page 1249

Without visualization the text lists will not be included.

The text lists are generated automatically. We recommend that you do not
change them manually because the changes can be overwritten automatically
and without prompting.

The text lists for 3rd party devices are created during reading of the device description sheets,
e.g., GSDML files for PROFINET I/O devices.
The name of a text list for a PROFINET I/O device is: Diag_PNIO_Vendor ID_Device ID

CI501-PNIO: Diag_PNIO_26_22
26 = vendor ID ABB, 22 = device ID CI501-PNIO

Example

The text list for the AC500 PROFINET I/O modules contains all text needed for PROFINET
standard diagnosis and AC500 process alarm handling.
Which texts are used, depends on parameter “Selection of diagnosis method”: Double-click on a
PROFINET I/O module and open tab “General”.

1.7.1.4.1 Data types in library AC500_DiagTypes
All data types regarding diagnosis are defined in the library AC500_DiagTypes.

Structure DIAG_VAL_TYPE
This data type specifies the format of all kinds of diagnosis messages in numeric format. It
consists of one element for each detail of a diagnosis message.

Displayed text
for 3rd party
devices

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4021

Name Type Initial Comment
diTimestamp DT DATE_AND_TIME#1970-1-1-0:0 RTC time of eDiagEvent_Occured

uiMs UINT 0 Milliseconds of event

eClass teClass teClass.eDiagClass_4_Warning Error severity of diagnosis message

szDevice STRING(80) "" Name of device, max. 80 characters

eHwInterfaceId teHwId teHwId_CPU Identifier of hardware interface

dwSubSysteminfo DWORD 0 Any number describing details or loca-
tion within device, device-specific

dwAdditional DWORD 0 Additional number describing details or
location within device, optional, device-
specific

dwErrorCode DWORD 0 Error code

wSizeExtDiag DWORD 0 Number of bytes of extended diagnosis
data

Structure DIAG_TXT_TYPE
This data type specifies the format of all kinds of diagnosis messages in textual format. It
consists of a single string containing all details of a diagnosis message.

Name Type Initial Comment
szDiag STRING(512) "" Diagnosis message as text, max. 512

characters

The text consists of the following data, separated by semicolon:
● Timestamp in Date_And_Time (DT) format of eDiagEvent_Occured and added milliseconds
● Error severity
● Device name (max. 80 characters) as defined in Automation Builder device tree
● The error text itself, composed of the interpretation of dwSubSysteminfo and dwAdditional

and the error text plus remedy (if available) from Automation Builder text list according
dwErrorCode. Displayed as: error text -> remedy.

Battery empty or missing.Example

Enumeration ERROR_ID
Type of the return values of all methods and functions to request information on diagnosis.

Name Type Comment Remedy
NO_ERROR 16#0 Execution successfully completed

ERR_PARAMETER 16#1 Invalid parameter value in function call Correct parameter

ERR_NO_SINK 16#2 Failed to register as sink

ERR_NO_TEXT_LIST 16#3 Failed to get a device text list Check text lists

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4022

Name Type Comment Remedy
ERR_NO_TEXT_
CONTENT

16#4 Failed to get at least one content from text
list

ERR_COMPETING 16#5 Failed due to competing access of other
method

Try again

ERR_ASYNC 16#6 Failed to create async process

ERR_INTERNAL 16#7 Any internal error during execution

BUSY 16#FFF Busy Call again to get final result

NO_ERROR_NO_DATA 16#FFFF Execution successfully completed, no more
diagnosis messages

All values except "BUSY" are final results. In case "NO_ERROR" is returned, the requested
action has been successfully performed. "NO_ERROR_NO_DATA" also indicates a successful
completion. The only difference to "NO_ERROR" is the fact, that there is one (more) data to
be provided. All other return values (except "BUSY") are final error states. In case a method or
function returns "BUSY", it has to be called again in the following cycles until it returns a final
result.

Enumeration teClass
Specifies the error severity of diagnosis messages Ä Chapter 1.7.1.5.1 “Error severity”
on page 4044.

Name Error severity
eDiagClass_2_SeriousError 2

eDiagClass_3_Error 3

eDiagClass_4_Warning 4

eDiagClass_Parameter 11

Enumeration teEvent
The enumeration teEvent specifies the severity of diagnosis messages.

Name Type Initial Comment
eDiagEvent_Occured DINT 1 Error occurred, remains "active" until

eDiagEvent_Disappeared

eDiagEvent_Disappeared DINT 2 Error disappeared, became "active" due to
eDiagEvent_Occured earlier on

eDiagEvent_Received DINT 4 Received a diagnosis message which cannot be analyzed in
detail, cannot disappear, needs to be acknowledged

eDiagEvent_Acknowledged DINT 8 Acknowledge a diagnosis message which has been received
by eDiagEvent_Received, removes diagnosis message from
diagnosis system although error may still be present

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4023

Enumeration teHwId
The enumeration teHwId specifies the hardware component as location of a diagnosis mes-
sage.

Name Initial Comment
eDiagHwId_CPU 0 Any diagnosis message regarding CPU itself, like "battery", "sd card",

etc.

eDiagHwId_Coupler1 1 Any diagnosis message regarding communication module at slot 1.
May be indicated by any corresponding communication module driver
(instance) or a protocol driver (instance)

eDiagHwId_Coupler2 2 Any diagnosis message regarding communication module at slot 2.
May be indicated by any corresponding communication module driver
(instance) or a protocol driver (instance)

eDiagHwId_Coupler3 3 Any diagnosis message regarding communication module at slot 3.
May be indicated by any corresponding communication module driver
(instance) or a protocol driver (instance)

eDiagHwId_Coupler4 4 Any diagnosis message regarding communication module at slot 4.
May be indicated by any corresponding communication module driver
(instance) or a protocol driver (instance)

eDiagHwId_Coupler5 5 Any diagnosis message regarding communication module at slot 5.
May be indicated by any corresponding communication module driver
(instance) or a protocol driver (instance)

eDiagHwId_Coupler6 6 Any diagnosis message regarding communication module at slot 6.
May be indicated by any corresponding communication module driver
(instance) or a protocol driver (instance)

eDiagHwId_COM1 7 Any diagnosis message regarding COM1. May be indicated by any corre-
sponding interface driver (instance) or a protocol driver (instance)

eDiagHwId_COM2 8 Any diagnosis message regarding COM2. May be indicated by any corre-
sponding interface driver (instance) or a protocol driver (instance)

eDiagHwId_CAN 9 Any diagnosis message regarding CAN interface. May be indicated
by any corresponding interface driver (instance) or a protocol driver
(instance)

eDiagHwId_OnboardIO 10 Onboard I/O, AC500-eCo only

eDiagHwId_OptionBoard1 11 Option board 1, AC500-eCo only

eDiagHwId_OptionBoard2 12 Option board 2, AC500-eCo only

eDiagHwId_OptionBoard3 13 Option board 3, AC500-eCo only

eDiagHwId_IOBus 14 I/O bus

eDiagHwId_ETH1 15 Any diagnosis message regarding ETH1. May be indicated by any corre-
sponding interface driver (instance) or a protocol driver (instance)

eDiagHwId_ETH2 16 Any diagnosis message regarding ETH2. May be indicated by any corre-
sponding interface driver (instance) or a protocol driver (instance)

The hardware ID HwId is only used for diagnosis output in CPU display to identify the location of
a diagnosis message Ä Chapter 1.7.1.2 “Diagnosis in CPU display” on page 4013.

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4024

1.7.1.4.2 System diagnosis
Library AC500_Diag provides several methods and functions to access the diagnosis messages
on all devices in the PLC application. It contains also a function to convert numeric diagnosis
into a textual format.
The variables and their assigned values can be referred to within the IEC application as well as
they can be used to transfer diagnosis messages to any visualization client.

Device state
The library contains a single function block named "Diag", providing several methods to process
the device state.

Method Description
NumTotal Provides the total number of currently active diagnosis messages

NumClass Provides the number of currently active diagnosis messages related to the
error severity

Method NumTotal
This method provides the total number of currently active diagnosis messages (including param-
eter errors, etc.).

Scope Name Type Comment
Return NumTotal DWORD Number of diagnosis messages

Example

Method NumClass
This method provides the number of currently active diagnosis messages related to the error
severity.

Scope Name Type Initial Comment
Return NumClass DWORD

Input DataInVal AC500_DiagTypes.teClass eClass.eDiagClass_2
_SeriousError

Error severity
of diagnosis
message

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4025

Example

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4026

Diagnosis descriptions
The library contains a single function block "Diag", providing several methods to process diag-
nosis descriptions.
All methods for system diagnosis start with "Get...". For device diagnosis the prefix "Diag" is
added: "DiagGet...". For better readability, only the method names for system diagnosis is used
in the descriptions of the methods.

Table 750: Methods for handling diagnosis entries
Method for system
diagnosis

Method for device
diagnosis

Description

Ack DiagAck Acknowledge a diagnosis alarm previ-
ously requested by using any Get... /
DiagGet... method Ä Chapter 1.7.1.4.2.2.1
“Method Ack / DiagAck: acknowledgement”
on page 4029

GetFirstVal DiagGetFirstVal Get the first (oldest) diagnosis message,
numeric values Ä Chapter 1.7.1.4.2.2.2
“Methods Get... / DiagGet...: get and sort diag-
nosis messages” on page 4029

GetNextVal DiagGetNextVal Get the next diagnosis message, numeric
values Ä Chapter 1.7.1.4.2.2.3 “Method Get-
xxx-Val / DiagGet-xxx-Val: numeric values”
on page 4030

GetLastVal DiagGetLastVal Get the last (newest) diagnosis message,
numeric values Ä Chapter 1.7.1.4.2.2.3
“Method Get-xxx-Val / DiagGet-xxx-Val:
numeric values” on page 4030

GetPrevVal DiagGetPrevVal Get the previous diagnosis message, numeric
values Ä Chapter 1.7.1.4.2.2.3 “Method Get-
xxx-Val / DiagGet-xxx-Val: numeric values”
on page 4030

GetFirstValExt DiagGetFirstValExt Get the first (oldest) diagnosis message,
numeric and extended numeric values
Ä Chapter 1.7.1.4.2.2.4 “Method Get-xxx-
ValExt / DiagGet-xxx-ValExt: numeric values
and extended numeric values” on page 4030

GetNextValExt DiagGetNextValExt Get the next diagnosis message, numeric
and extended numeric values Ä Chapter
1.7.1.4.2.2.4 “Method Get-xxx-ValExt / Dia-
gGet-xxx-ValExt: numeric values and
extended numeric values” on page 4030

GetLastValExt Diag GetLastValExt Get the last (newest) diagnosis message,
numeric and extended numeric values
Ä Chapter 1.7.1.4.2.2.4 “Method Get-xxx-
ValExt / DiagGet-xxx-ValExt: numeric values
and extended numeric values” on page 4030

GetPrevValExt DiagGetPrevValExt Get the previous diagnosis message,
numeric and extended numeric values
Ä Chapter 1.7.1.4.2.2.4 “Method Get-xxx-
ValExt / DiagGet-xxx-ValExt: numeric values
and extended numeric values” on page 4030

GetFirstValAndTxt DiagGetFirstVa-
lAndTxt

Get the first (oldest) diagnosis message,
numeric values and text Ä Chapter
1.7.1.4.2.2.5 “Method Get-xxx-ValAndTxt /
DiagGet-xxx-ValAndTxt: numeric values and
text” on page 4031

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4027

Method for system
diagnosis

Method for device
diagnosis

Description

GetNextValAndTxt DiagGetNextVa-
lAndTxt

Get the next diagnosis message, numeric
values and text Ä Chapter 1.7.1.4.2.2.5
“Method Get-xxx-ValAndTxt / DiagGet-xxx-
ValAndTxt: numeric values and text”
on page 4031

GetLastValAndTxt DiagGetLastVa-
lAndTxt

Get the last (newest) diagnosis message,
numeric values and text Ä Chapter
1.7.1.4.2.2.5 “Method Get-xxx-ValAndTxt /
DiagGet-xxx-ValAndTxt: numeric values and
text” on page 4031

GetPrevValAndTxt DiagGetPrevVa-
lAndTxt

Get the previous diagnosis message,
numeric values and text Ä Chapter
1.7.1.4.2.2.5 “Method Get-xxx-ValAndTxt /
DiagGet-xxx-ValAndTxt: numeric values and
text” on page 4031

GetFirstValAndTxtExt DiagGetFirstVa-
lAndTxtExt

Get the first (oldest) diagnosis message,
numeric, extended numeric values and text
Ä Chapter 1.7.1.4.2.2.6 “Method Get-xxx-
ValAndTxtExt / DiagGet-xxx-ValAndTxtExt:
numeric values, extended numeric values and
text” on page 4032

GetNextValAndTxtExt DiagGetNextVa-
lAndTxtExt

Get the next diagnosis message, numeric,
extended numeric values and text Ä Chapter
1.7.1.4.2.2.6 “Method Get-xxx-ValAndTxtExt /
DiagGet-xxx-ValAndTxtExt: numeric values,
extended numeric values and text”
on page 4032

GetLastValAndTxtExt DiagGetLastVa-
lAndTxtExt

Get the last (newest) diagnosis mes-
sage, extended numeric values and text
Ä Chapter 1.7.1.4.2.2.6 “Method Get-xxx-
ValAndTxtExt / DiagGet-xxx-ValAndTxtExt:
numeric values, extended numeric values and
text” on page 4032

GetPrevValAndTxtExt DiagGetPrevVa-
lAndTxtExt

Get the previous diagnosis message,
extended numeric values and text Ä Chapter
1.7.1.4.2.2.6 “Method Get-xxx-ValAndTxtExt /
DiagGet-xxx-ValAndTxtExt: numeric values,
extended numeric values and text”
on page 4032

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4028

Method Ack / DiagAck: acknowledgement
This method can be used to acknowledge a diagnosis alarm previously requested by using any
Get... / DiagGet... method. Alternatively, you can acknowledge an alarm in Automation
Builder.
After acknowledgement, the alarm is deleted from the diagnosis system.

Scope Name for
device
diagnosis

Name for
device
diagnosis

Type Comment

Return Ack DiagAck AC500_DiagTypes.ERROR_ID

Input Data Data AC500_Dia-
gTypes.DIAG_VAL_TYPE

Variable containing
details of diagnosis
alarm to be acknowl-
edged

System diagnosis: acknowledge first diagnosis messageExample

Methods Get... / DiagGet...: get and sort diagnosis messages
All these methods can be used to get the first (oldest), next, last (newest) or previous diagnosis
message stored in diagnosis system. The only difference are the details the methods provide.
While, e.g., Get-xxx-Val just provides the basic information in numeric format, Get-xxx-
ValExt additionally provides this information by the extended diagnosis data of the entry.

The numeric format provided by these methods can be converted into textual format later on
if required Ä Chapter 1.7.1.4.2.2.7 “Function DiagValToTxt” on page 4033. Alternatively, the
methods Get-xxx-ValAndTxt and Get-xxx-ValAndTxtExt can be used for numeric and
textual format in parallel Ä Chapter 1.7.1.4.2.2.5 “Method Get-xxx-ValAndTxt / DiagGet-xxx-Val-
AndTxt: numeric values and text” on page 4031 Ä Chapter 1.7.1.4.2.2.6 “Method Get-xxx-Val-
AndTxtExt / DiagGet-xxx-ValAndTxtExt: numeric values, extended numeric values and text”
on page 4032.
All methods may need multiple cycles to process the request. Therefore, they must be
called in successive cycles until they return a final result Ä Chapter 1.7.1.4.1.3 “Enumeration
ERROR_ID” on page 4022.
1. Call any GetFirst... method until it indicates a final result.

2. If the result is not "NO_ERROR_NO_DATA": Call any GetNext... method as long as its
final result is "NO_ERROR".

1. Call any GetLast... method until it indicates a final result.

2. If the result is not "NO_ERROR_NO_DATA": Call any GetPrev... method as long as its
final result is "NO_ERROR".

All diagnosis
messages
sorted by time,
ascending

All diagnosis
messages
sorted by time,
descending

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4029

Method Get-xxx-Val / DiagGet-xxx-Val: numeric values
-xxx- = First, Next, Last, Prev. Example: GetFirstVal, DiagGetLastVal.

Scope Name for
device diag-
nosis

Name for
device diag-
nosis

Type Comment

Return Get-xxx-Val DiagGet-xxx-
Val

AC500_DiagTypes.ERROR_ID

Inout Data Data AC500_Dia-
gTypes.DIAG_VAL_TYPE

Variable to write data
to

System diagnosis: get values for first diagnosis messageExample

Online mode: battery empty or missingExample

Method Get-xxx-ValExt / DiagGet-xxx-ValExt: numeric values and extended numeric values
-xxx- = First, Next, Last, Prev. Example: GetNextValExt, DiagGetPrevValExt.

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4030

Scop
e

Name for
device diag-
nosis

Name for
device diag-
nosis

Type Comment

Retur
n

Get-xxx-ValExt DiagGet-xxx-
ValExt

AC500_Dia-
gTypes.ERROR_ID

Inout Data Data AC500_Dia-
gTypes.DIAG_VAL_TYP
E

Variable to write data
to

Input pExt pExt POINTER TO BYTE Address of buffer to
copy extended data to

Input Size Size WORD Size of buffer to copy
extended data to

Inout Length Length WORD Size of extended data
copied to buffer

System diagnosis: get numeric values and extended numeric values for first diagnosis mes-
sage

Example

Method Get-xxx-ValAndTxt / DiagGet-xxx-ValAndTxt: numeric values and text
-xxx- = First, Next, Last, Prev. Example: GetFirstValAndTxt, DiagGetPrevValAndTxt

Scop
e

Name for
device diag-
nosis

Name for
device diag-
nosis

Type Comment

Retur
n

Get-xxx-Val-
AndTxt

DiagGet-xxx-Val-
AndTxt

AC500_Dia-
gTypes.ERROR_ID

Inout DataVal DataVal AC500_Dia-
gTypes.DIAG_VAL_TYPE

Variable to write
data to

Inout DataTxt DataTxt AC500_Dia-
gTypes.DIAG_TXT_TYPE

Variable to write
text to

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4031

System diagnosis: get numeric values and text for first diagnosis messageExample

Online mode: battery empty or missingExample

Method Get-xxx-ValAndTxtExt / DiagGet-xxx-ValAndTxtExt: numeric values, extended numeric values and
text

-xxx- = First, Next, Last, Prev. Example: GetLastValAndTxtExt, DiagGetFirstValAndTxtExt

Scop
e

Name for device
diagnosis

Name for device
diagnosis

Type Initial Comment

Retur
n

Get-xxx-Val-
AndTxtExt

DiagGet-xxx-Val-
AndTxtExt

AC500_Dia-
gTypes.ERROR_ID

Inout DataVal DataVal AC500_Dia-
gTypes.DIAG_VAL_
TYPE

 Variable to write
data to

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4032

Scop
e

Name for device
diagnosis

Name for device
diagnosis

Type Initial Comment

Inout DataTxt DataTxt AC500_Dia-
gTypes.DIAG_TXT_
TYPE

 Variable to write
text to

Input pExt pExt POINTER TO BYTE 0 Address of buffer
to copy extended
data to

Input Size Size WORD 0 Size of buffer to
copy extended
data to

Inout Length Length WORD 0 Size of extended
data copied to
buffer

System diagnosis: get numeric values, extended numeric values and text of first diagnosis
message

Example

Function DiagValToTxt
Call this function to convert a numeric diagnosis message into a textual one at any time, in
case this has not yet been done using a method providing both types when requesting this
information.

Scope Name Type Comment
Return DiagValToTxt AC500_DiagTypes.ERROR_ID

Inout DataInVal AC500_DiagTypes.DIAG_VAL_TYPE Variable to convert

Inout DataOutTxt AC500_DiagTypes.DIAG_TXT_TYPE Variable to write text to

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4033

System diagnosis: convert first diagnosis message from numeric value to textExample

Battery empty or missingExample

1.7.1.4.3 Device diagnosis
Activate device diagnosis

While the notification of diagnosis messages at the display and the Automation Builder is ena-
bled by default, the functionality to access diagnosis messages from within the IEC application
needs to be explicitly enabled.
1. Double-click on the CPU in the device tree.
2. Select tab “PLC Settings”.
3. Under “Additional Settings” select “Enable Diagnosis for devices”.

ð Library CAA Device Diagnosis (namespace DED) is automatically included in the
project. This library is needed for displaying and processing the device state.

In case the functionality of diagnosis is no longer needed in IEC application, we recommend to
disable this setting.

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4034

Device state
1. Open one of the IEC application code editors.
2. Type the device's name as it is written in the device tree, followed by a dot (".").
3. Select the method GetDeviceState from the context menu or type the name of the

method on yourself.

4. Assign the function’s parameters.

Scope Name Type Comment
Return GetDeviceState DEVICE_STATE

Ä Further information
on page 4035

Current device state

Output xDiagnosisInfoAvailable BOOL If TRUE, diagnosis messages
are available regarding the
concerning device (= node).

Output eError ERROR Ä Fur-
ther information
on page 4036

Type of the return values of
all methods and functions of
library CAA Device Diagnosis

Table 751: Enumeration DEVICE_STATE (part of the library CAA Device Diagnosis (DED))
Name Type Initial Icon in AB Comment
UNKNOWN INT 0 The device is in state unknown.

Example: No supervision mechanism
active

STOPPED INT 1 The device is stopped.

RUNNING INT 2 The device is running.

ERROR INT 3 The device is in error state.

DISABLED INT 4 The device is disabled in device tree.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4035

Name Type Initial Icon in AB Comment
NOT_CONFIG-
URED

INT 5 The device has not been yet configured by
the stack.
Example: Configuration phase not yet
started

CONFIGURED INT 6 The device has been configured by the
stack.
Example: Configuration phase finished but
the device is not in running state

NOT_FOUND INT 7 The device was not found on bus.

Table 752: Enumeration ERROR (part of the library CAA Device Diagnosis (DED))
Name Type Initial Comment
NO_ERROR INT 0 No error

FIRST_ERROR INT 1300 First library-specific error

TIME_OUT INT 1301 Timeout occured.

ABORT INT 1302 Operation was aborted.

REF_INVALID INT 1303 The interface reference was invalid.

NOT_SUPPORTED INT 1304 The function is not supported.

ERROR_IO INT 1305 A general I/O configuration error occured.

PARAM_INVALID INT 1306 Invalid parameter

NODE_NOT_EXISTING INT 1307 The specified node does not exist.

NO_MEMORY INT 1308 Dynamic memory allocation is disabled, or
system is out of memory.

ADR_NOT_FOUND INT 1309 The specified I/O address is not valid.

INST_NOT_FOUND INT 1310 There is no associated [Device] instance
for the specific I/O address.

NO_DATA INT 1311 There is no data available.

OPERATION_INVALID INT 1312 Operation not possible due to the current
state

FIRST_MF INT 1350 First manufacturer-specific error

LAST_ERROR INT 1399 Last error

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4036

Diagnosis descriptions
The library contains a single function block "Diag", providing several methods to process diag-
nosis descriptions.
All methods for system diagnosis start with "Get...". For device diagnosis the prefix "Diag" is
added: "DiagGet...". For better readability, only the method names for system diagnosis is used
in the descriptions of the methods.

Table 753: Methods for handling diagnosis entries
Method for system
diagnosis

Method for device
diagnosis

Description

Ack DiagAck Acknowledge a diagnosis alarm previ-
ously requested by using any Get... /
DiagGet... method Ä Chapter 1.7.1.4.3.3.1
“Method Ack / DiagAck: acknowledgement”
on page 4039

GetFirstVal DiagGetFirstVal Get the first (oldest) diagnosis message,
numeric values Ä Chapter 1.7.1.4.3.3.2
“Methods Get... / DiagGet...: get and sort diag-
nosis messages” on page 4039

GetNextVal DiagGetNextVal Get the next diagnosis message, numeric
values Ä Chapter 1.7.1.4.3.3.3 “Method Get-
xxx-Val / DiagGet-xxx-Val: numeric values”
on page 4040

GetLastVal DiagGetLastVal Get the last (newest) diagnosis message,
numeric values Ä Chapter 1.7.1.4.3.3.3
“Method Get-xxx-Val / DiagGet-xxx-Val:
numeric values” on page 4040

GetPrevVal DiagGetPrevVal Get the previous diagnosis message, numeric
values Ä Chapter 1.7.1.4.3.3.3 “Method Get-
xxx-Val / DiagGet-xxx-Val: numeric values”
on page 4040

GetFirstValExt DiagGetFirstValExt Get the first (oldest) diagnosis message,
numeric and extended numeric values
Ä Chapter 1.7.1.4.3.3.4 “Method Get-xxx-
ValExt / DiagGet-xxx-ValExt: numeric values
and extended numeric values” on page 4040

GetNextValExt DiagGetNextValExt Get the next diagnosis message, numeric
and extended numeric values Ä Chapter
1.7.1.4.3.3.4 “Method Get-xxx-ValExt / Dia-
gGet-xxx-ValExt: numeric values and
extended numeric values” on page 4040

GetLastValExt Diag GetLastValExt Get the last (newest) diagnosis message,
numeric and extended numeric values
Ä Chapter 1.7.1.4.3.3.4 “Method Get-xxx-
ValExt / DiagGet-xxx-ValExt: numeric values
and extended numeric values” on page 4040

GetPrevValExt DiagGetPrevValExt Get the previous diagnosis message,
numeric and extended numeric values
Ä Chapter 1.7.1.4.3.3.4 “Method Get-xxx-
ValExt / DiagGet-xxx-ValExt: numeric values
and extended numeric values” on page 4040

GetFirstValAndTxt DiagGetFirstVa-
lAndTxt

Get the first (oldest) diagnosis message,
numeric values and text Ä Chapter
1.7.1.4.3.3.5 “Method Get-xxx-ValAndTxt /
DiagGet-xxx-ValAndTxt: numeric values and
text” on page 4041

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4037

Method for system
diagnosis

Method for device
diagnosis

Description

GetNextValAndTxt DiagGetNextVa-
lAndTxt

Get the next diagnosis message, numeric
values and text Ä Chapter 1.7.1.4.3.3.5
“Method Get-xxx-ValAndTxt / DiagGet-xxx-
ValAndTxt: numeric values and text”
on page 4041

GetLastValAndTxt DiagGetLastVa-
lAndTxt

Get the last (newest) diagnosis message,
numeric values and text Ä Chapter
1.7.1.4.3.3.5 “Method Get-xxx-ValAndTxt /
DiagGet-xxx-ValAndTxt: numeric values and
text” on page 4041

GetPrevValAndTxt DiagGetPrevVa-
lAndTxt

Get the previous diagnosis message,
numeric values and text Ä Chapter
1.7.1.4.3.3.5 “Method Get-xxx-ValAndTxt /
DiagGet-xxx-ValAndTxt: numeric values and
text” on page 4041

GetFirstValAndTxtExt DiagGetFirstVa-
lAndTxtExt

Get the first (oldest) diagnosis message,
numeric, extended numeric values and text
Ä Chapter 1.7.1.4.2.2.6 “Method Get-xxx-
ValAndTxtExt / DiagGet-xxx-ValAndTxtExt:
numeric values, extended numeric values and
text” on page 4032

GetNextValAndTxtExt DiagGetNextVa-
lAndTxtExt

Get the next diagnosis message, numeric,
extended numeric values and text Ä Chapter
1.7.1.4.2.2.6 “Method Get-xxx-ValAndTxtExt /
DiagGet-xxx-ValAndTxtExt: numeric values,
extended numeric values and text”
on page 4032

GetLastValAndTxtExt DiagGetLastVa-
lAndTxtExt

Get the last (newest) diagnosis mes-
sage, extended numeric values and text
Ä Chapter 1.7.1.4.2.2.6 “Method Get-xxx-
ValAndTxtExt / DiagGet-xxx-ValAndTxtExt:
numeric values, extended numeric values and
text” on page 4032

GetPrevValAndTxtExt DiagGetPrevVa-
lAndTxtExt

Get the previous diagnosis message,
extended numeric values and text Ä Chapter
1.7.1.4.2.2.6 “Method Get-xxx-ValAndTxtExt /
DiagGet-xxx-ValAndTxtExt: numeric values,
extended numeric values and text”
on page 4032

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4038

Method Ack / DiagAck: acknowledgement
This method can be used to acknowledge a diagnosis alarm previously requested by using any
Get... / DiagGet... method. Alternatively, you can acknowledge an alarm in Automation
Builder.
After acknowledgement, the alarm is deleted from the diagnosis system.

Scope Name for
device
diagnosis

Name for
device
diagnosis

Type Comment

Return Ack DiagAck AC500_DiagTypes.ERROR_ID

Input Data Data AC500_Dia-
gTypes.DIAG_VAL_TYPE

Variable containing
details of diagnosis
alarm to be acknowl-
edged

System diagnosis: acknowledge first diagnosis messageExample

Methods Get... / DiagGet...: get and sort diagnosis messages
All these methods can be used to get the first (oldest), next, last (newest) or previous diagnosis
message stored in diagnosis system. The only difference are the details the methods provide.
While, e.g., Get-xxx-Val just provides the basic information in numeric format, Get-xxx-
ValExt additionally provides this information by the extended diagnosis data of the entry.

The numeric format provided by these methods can be converted into textual format later on
if required Ä Chapter 1.7.1.4.2.2.7 “Function DiagValToTxt” on page 4033. Alternatively, the
methods Get-xxx-ValAndTxt and Get-xxx-ValAndTxtExt can be used for numeric and
textual format in parallel Ä Chapter 1.7.1.4.3.3.5 “Method Get-xxx-ValAndTxt / DiagGet-xxx-Val-
AndTxt: numeric values and text” on page 4041 Ä Chapter 1.7.1.4.3.3.6 “Method Get-xxx-Val-
AndTxtExt / DiagGet-xxx-ValAndTxtExt: numeric values, extended numeric values and text”
on page 4042.
All methods may need multiple cycles to process the request. Therefore, they must be
called in successive cycles until they return a final result Ä Chapter 1.7.1.4.1.3 “Enumeration
ERROR_ID” on page 4022.
1. Call any GetFirst... method until it indicates a final result.

2. If the result is not "NO_ERROR_NO_DATA": Call any GetNext... method as long as its
final result is "NO_ERROR".

1. Call any GetLast... method until it indicates a final result.

2. If the result is not "NO_ERROR_NO_DATA": Call any GetPrev... method as long as its
final result is "NO_ERROR".

All diagnosis
messages
sorted by time,
ascending

All diagnosis
messages
sorted by time,
descending

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4039

Method Get-xxx-Val / DiagGet-xxx-Val: numeric values
-xxx- = First, Next, Last, Prev. Example: GetFirstVal, DiagGetLastVal.

Scope Name for
device diag-
nosis

Name for
device diag-
nosis

Type Comment

Return Get-xxx-Val DiagGet-xxx-
Val

AC500_DiagTypes.ERROR_ID

Inout Data Data AC500_Dia-
gTypes.DIAG_VAL_TYPE

Variable to write data
to

System diagnosis: get values for first diagnosis messageExample

Online mode: battery empty or missingExample

Method Get-xxx-ValExt / DiagGet-xxx-ValExt: numeric values and extended numeric values
-xxx- = First, Next, Last, Prev. Example: GetNextValExt, DiagGetPrevValExt.

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4040

Scop
e

Name for
device diag-
nosis

Name for
device diag-
nosis

Type Comment

Retur
n

Get-xxx-ValExt DiagGet-xxx-
ValExt

AC500_Dia-
gTypes.ERROR_ID

Inout Data Data AC500_Dia-
gTypes.DIAG_VAL_TYP
E

Variable to write data
to

Input pExt pExt POINTER TO BYTE Address of buffer to
copy extended data to

Input Size Size WORD Size of buffer to copy
extended data to

Inout Length Length WORD Size of extended data
copied to buffer

System diagnosis: get numeric values and extended numeric values for first diagnosis mes-
sage

Example

Method Get-xxx-ValAndTxt / DiagGet-xxx-ValAndTxt: numeric values and text
-xxx- = First, Next, Last, Prev. Example: GetFirstValAndTxt, DiagGetPrevValAndTxt

Scop
e

Name for
device diag-
nosis

Name for
device diag-
nosis

Type Comment

Retur
n

Get-xxx-Val-
AndTxt

DiagGet-xxx-Val-
AndTxt

AC500_Dia-
gTypes.ERROR_ID

Inout DataVal DataVal AC500_Dia-
gTypes.DIAG_VAL_TYPE

Variable to write
data to

Inout DataTxt DataTxt AC500_Dia-
gTypes.DIAG_TXT_TYPE

Variable to write
text to

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4041

System diagnosis: get numeric values and text for first diagnosis messageExample

Online mode: battery empty or missingExample

Method Get-xxx-ValAndTxtExt / DiagGet-xxx-ValAndTxtExt: numeric values, extended numeric values and
text

-xxx- = First, Next, Last, Prev. Example: GetLastValAndTxtExt, DiagGetFirstValAndTxtExt

Scop
e

Name for device
diagnosis

Name for device
diagnosis

Type Initial Comment

Retur
n

Get-xxx-Val-
AndTxtExt

DiagGet-xxx-Val-
AndTxtExt

AC500_Dia-
gTypes.ERROR_ID

Inout DataVal DataVal AC500_Dia-
gTypes.DIAG_VAL_
TYPE

 Variable to write
data to

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4042

Scop
e

Name for device
diagnosis

Name for device
diagnosis

Type Initial Comment

Inout DataTxt DataTxt AC500_Dia-
gTypes.DIAG_TXT_
TYPE

 Variable to write
text to

Input pExt pExt POINTER TO BYTE 0 Address of buffer
to copy extended
data to

Input Size Size WORD 0 Size of buffer to
copy extended
data to

Inout Length Length WORD 0 Size of extended
data copied to
buffer

System diagnosis: get numeric values, extended numeric values and text of first diagnosis
message

Example

Function DiagValToTxt
Call this function to convert a numeric diagnosis message into a textual one at any time, in
case this has not yet been done using a method providing both types when requesting this
information.

Scope Name Type Comment
Return DiagValToTxt AC500_DiagTypes.ERROR_ID

Inout DataInVal AC500_DiagTypes.DIAG_VAL_TYPE Variable to convert

Inout DataOutTxt AC500_DiagTypes.DIAG_TXT_TYPE Variable to write text to

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4043

System diagnosis: convert first diagnosis message from numeric value to textExample

Battery empty or missingExample

1.7.1.5 Structure of error numbers
1.7.1.5.1 Error severity

Error severity Type Description Example
1 Fatal errors Safe operation of the

operating system is no
longer ensured.

Checksum error in
system flash, RAM error

2 Severe error The operating system
works correctly, but the
error-free execution of
the user program is not
ensured.

Checksum error in user
flash, task cycle times
exceeded

3 Minor errors It depends on the appli-
cation whether the user
program has to be
stopped by the operating
system or not. The user
decides which reaction is
to be done.

Flash memory cannot be
programmed, I/O module
failed

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/213ADR010583, 3, en_US4044

Error severity Type Description Example
4 Warnings Errors that occur on

peripheral devices or
that will have an effect
only in the future. The
user decides which reac-
tions are to be done.

Short circuit in an
I/O module, battery
empty/not installed

11 Parameter error Error occurred during
parameter setting

Different I/O devices in
PLC configuration and
hardware installation

Errors with error severitiy 1 - fatal errors
Errors with error severity 1 are not entered in the diagnosis system. These
errors do not allow normal operation of the PLC. These errors are detected
during PLC start-up and stop the PLC immediately.

Examples are RAM errors or checksum errors when starting the firmware.

Such errors are indicated by rapid flashing of the ERR LED.

1.7.1.6 Diagnosis history file
Diagnosis history is available as of Automation Builder 2.4.0 / System FW 3.4.0 the diagnosis
system has been extended with diagnosis history.
Diagnosis history is the entry of all diagnoses into a file according to their time of occurrence.
The diagnosis history file is in the root directory of the user disk and has the name
“DiagHistory.csv”. The max. number of entries is 2000. When 2000 entries are reached, the
oldest entry is overwritten. The max. size of the extended data is 32 bytes.

An entry consists of following data:

Name Type Comment Example
timestamp ARRAYDT OF

BYTE
RTC time of event in milliseconds
consists of diTimestamp in DT
format and uiMs milliseconds.
See Ä Chapter 1.7.1.4.1.1
“Structure DIAG_VAL_TYPE”
on page 4021 STRUCT.

1603371910177

event BYTE Event type (1=comes, 2=gone).
See Ä Chapter 1.7.1.4.1.5 “Enu-
meration teEvent” on page 4023.

1

class BYTE Severity of error event.
See Ä Chapter 1.7.1.4.1.4 “Enu-
meration teClass” on page 4023.

4

compID UDINT Component ID 270540802

conn UDINT Connector 0xb17777ac

connIdx UDINT Connector index 0

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > The diagnosis system

2022/01/21 3ADR010583, 3, en_US 4045

Name Type Comment Example
sub DWORD SubsystemID: Any number

describing detail/location within
device, device specific

369098752

addl DWORD AdditionalID: Additional number
describing detail/location within
device, optional, device specific

0

error DWORD Error code 9

extended data ARRAYDT OF
BYTE

Extended diagnosis data, max. 32
bytes

As shown in the example data of the diagnosis history file is not easily readable. The entries
must be interpreted according to device and/or fieldbus. Therefor the Automation Builder con-
sists a special view for diagnosis history Ä Chapter 1.7.1.3.5 “Diagnosis history” on page 4019.

With the entries CompID, conn and connID, the device generating the event is
clearly identified in the device tree.

If the PLC configuration is changed, the values of this entries may be changed
also.

Therefore, the diagnosis history will be deleted during each download.

1.7.2 Online diagnosis in Automation Builder
1.7.2.1 Short description and overview

To use the diagnosis system in Automation Builder, login to the online mode is required
Ä Chapter 1.7.2.2 “Entering/leaving the online mode” on page 4046. The online diagnosis in
Automation Builder consists of a set of partly animated, mostly read only views. They can be
invoked by a double-click on a project tree element which shows a circle indicating that this
element is able to show diagnosis messages Ä Chapter 1.7.2.3 “Project tree in online mode”
on page 4047.
Available online diagnosis and statistics:
● Diagnosis messages

When the Automation Builder is switched to online mode, incoming diagnosis messages are
displayed as plain-text Ä Chapter 1.7.1.3 “Diagnosis in Automation Builder” on page 4017.

● CPU/PLC diagnosis
Ä Chapter 1.7.2.4 “CPU diagnosis views” on page 4051.

● I/O module diagnosis
Ä Chapter 1.7.2.5 “Live values in views with I/O components” on page 4056.

● Communication module and fieldbus diagnosis
Ä Chapter 1.7.2.6 “Communication module and fieldbus diagnosis” on page 4056

● Diagnosis in IEC application
Ä Chapter 1.7.1.4 “Diagnosis in IEC application” on page 4020
For information on the disk status, diagnosis information can be read out with the func-
tion blocks PmDiskStatus and PmDiskLifetimeUsed. Ä Chapter 1.6.7.4 “Health monitoring”
on page 4010

1.7.2.2 Entering/leaving the online mode
Prerequisite: Set the gateway before entering the online mode. Ä Chapter 1.6.6.2.15 “Gateway
configuration” on page 3799

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/213ADR010583, 3, en_US4046

Right-click the “Application” node and select “Login”.
The Automation Builder project login to online mode updates the latest changes of the project.

The online mode can be entered or left for each PLC in the project separately.

Right-click the “Application” node and select Logout.
When online mode is active, a thread is running on Automation Builder project which sends
cyclically a message to the PLC and expects a response. If the PLC does not respond, the
online mode is left programmatically.

1.7.2.3 Project tree in online mode
When Automation Builder enters the online mode internally, it shows the state of all configured
communication modules.
The connection status can be recognized by a symbol in the device tree:

● Device without diagnosis messages
● Device with diagnosis messages or device diagnosis is disabled Ä Chapter 1.7.2.4.6

“Device diagnosis” on page 4055
● Device without diagnosis messages, but with diagnosis messages on at least one device

in the branch below
● Device with diagnosis messages and with diagnosis messages on at least one device in

the branch below
● Device does not respond to identification message and is not available for online

connection

Enter the online
mode

Leave the online
mode

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/21 3ADR010583, 3, en_US 4047

The identification is done in online mode.

● Double-click an element of the device-tree and select “Status” tab.
Diagnosis information will be available.

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/213ADR010583, 3, en_US4048

The user will be notified in the device tree with an exclamation mark beside the device having
diagnosis messages. The diagnosis messages are provided in the “Diagnosis” tab.
Alarms will be presented with a thunderbolt in the first column of the diagnosis grid.
1. Stop diagnosis refreshment by clicking [Stop refresh].
2. Select one or more alarms and click [Acknowledge selected alarms].

Diagnosis
descriptions

Acknowledging
an alarm

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/21 3ADR010583, 3, en_US 4049

Some diagnosis messages contain additional data. Click [View] button to see the additional
diagnosis (in hex) for further analysis. If [View] button is not available, no additional data is
available for this diagnosis message.
You can copy the additional data to the clipboard with [CTRL] + [C].

When building an IEC application in Automation Builder, diagnosis text lists will be generated
and added to the device tree below the diagnosis folder. These text lists contain the device
type specific diagnosis texts which are used by the diagnosis functions in the PLC application to
show corresponding texts for error numbers.

The diagnosis text lists will only be downloaded to the PLC when a visualization
is present in the project.

The text lists will be downloaded automatically to the PLC with the visualization.
If there is a problem with downloading the text lists, make sure that the settings are correct:

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/213ADR010583, 3, en_US4050

1. Right-click on a text list and select “Properties”.
2. Open the “Text List” tab. The check box “Download by visualization” has to be selected.

1.7.2.4 CPU diagnosis views
1.7.2.4.1 Version information

Information on the firmware versions of the processor modules or communication modules, is
provided on the “Version information” tab.
Remarks:
● The “Version information” tab displays the version identified on the device and the version

provided with Automation Builder.
● The firmware on the devices must match to the Automation Builder version. Upgrade or

downgrade to version supplied with Automation Builder is recommended (especially for
CPUs) to ensure correct functionality.

● The firmware type can be changed to the type required by the hardware configuration for
devices that support changing the firmware type. E.g., the onboard field bus communication
modules of PM595 that may be used as PROFINET, Ethernet or EtherCAT communication
module.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/21 3ADR010583, 3, en_US 4051

Firmware version on device matches version supplied with
Automation Builder.

Firmware version (or type) on device is different from version supplied
with Automation Builder. Upgrade/downgrade to version supplied with
Automation Builder is recommended.

Only for communication modules if CPU firmware must be updated
first. This happens when CPU firmware has version below 2.5.0.0.
Firmware version (or type) on device is different from version supplied
with Automation Builder. Upgrade/downgrade to version supplied with
Automation Builder is recommended.

Identified device is different from configured device, thus no firmware
update is possible. Happens only for Communication Modules.

No icon Firmware of device is not updateable or no newer firmware than the
initial version is available.

The [Update Firmware] button to download the new firmware is only enabled if
there is updateable firmware.

State icons

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/213ADR010583, 3, en_US4052

1.7.2.4.2 Statistics

The “Statistics” tab shows the following information:
● Date and time: The actual date and time of the PLC is shown. It can be set or synchronized

with the date/time of the PC via “Set PLC Date & Time” button.
● Overview resource usage: This tab shows all the required information (it is collected at latest

when the command “Generate Code” is executed, some of the information is not available
before then.)
For the limitation “User program code and data” a [Details] button will be available. Clicking
this button will open a modal window showing a more detailed view of the memory usage.

1.7.2.4.3 Log
You can view the PLC log in this tab. It lists the events that were recorded on the target system.
This concerns:
● Events during the startup and shutdown of the system (components loaded, with version)
● Application download and loading of the boot application
● Custom entries
● Log entries from I/O drivers
● Log entries from data sources

Offline logging : Default settings

: The PLC also records actions that are not related to the connection with the
controller.

UTC time : Standard setting; the time stamp is converted to the local time on the com-
puter as indicated by the time zone of the operating system.

: The time stamp of the runtime system is displayed.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/21 3ADR010583, 3, en_US 4053

Severity There are four categories for the severity of the event:

● : Message
● : Warning
● : Error
● : Debugging
You can show or hide each category with the help of the corresponding button
in the bar above the list. Each button shows the number of log entries of the
category concerned.

Time stamp Date and time (example: 12-01-2007 09:48)

Description Description of the event, for example Import function failed of
Component Name of the runtime system component concerned, e.g. CmpApp
Drop-down list with component
names

The log list displays only events that concern the selected component

Logger Drop-down list with all available recordings. The standard setting is the <Default
Logger> specified by the target system, at present identical to 'PlcLog' for the
CODESYS runtime system

Refreshes the log list

Exports the list contents to an XML file. You can select the file name and storage
directory.

Imports a log list from an XML file. The list is then displayed in a separate
window.

The displayed log list is emptied, i.e. all entries are deleted.

1.7.2.4.4 PLC shell commands
The PLC shell is used for requesting specific information from the controller. By entering a
device-specific command the response is returned in a result window. The PLC shell can be
issued without login.
1. Ensure the gateway is configured properly and a connection to the controller can be

established.
2. In Automation Builder double-click the PLC node and open the tab “PLC Shell”.
3. Enter "?" in the command line of the tab window. All available PLC commands are listed.

If the gateway is able to establish a connection to the controller, an online connection to the
PLC is opened automatically.

The commands listed in online mode can differ from the commands shown
when pressing the button [...] as Automation Builder version and firmware ver-
sion can differ.

See:

Ä Chapter 1.2.6 “Further information” on page 49

Ä Chapter 1.6.6.1.4 “Firmware identification and update” on page 3652.

Proceed as fol-
lows:

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/213ADR010583, 3, en_US4054

1.7.2.4.5 Status
This tab displays status information, for example 'Running' or 'Stopped', and specific diagnosis
messages from the respective device, also information about the card used and the internal bus
system.

1.7.2.4.6 Device diagnosis
Each node in the device tree has a diagnosis view, which displays the diagnosis messages for
this device only.
The message consists of:
● Type Ä Chapter 1.7.1.3.5 “Diagnosis history” on page 4019
● Timestamp in date and time YYYY-MM-DD hh:mm:ss.ms
● Error severity
● Error code
● Diagnosis description
● Additional data
To view the diagnosis message:
1. Double-click on a device.
2. Select the tab “Diagnosis”.

Battery empty or missing.Example

Wrong module configured on I/O bus.Example

Device diagnosis is disabled by default.
To enable/disable device diagnosis:
1. Double-click on the PLC.
2. Select the tab “PLC Settings”.
3. Under “Additional Settings” enable/disable “Diagnosis for devices”.

ð When the device diganosis is disabled, this symbol will be displayed in the device
tree and no diagnosis messages will be shown.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/21 3ADR010583, 3, en_US 4055

1.7.2.5 Live values in views with I/O components
“I/O mapping list” tab: In online mode, all Automation Builder views, which contain I/O compo-
nent mapping tables, show animated live values which are updated every second.

1.7.2.6 Communication module and fieldbus diagnosis
1.7.2.6.1 Fieldbus commissioning

Common online diagnosis views for all netX-based communication modules (e. g. CM579-
ETHCAT, CM579-PNIO) can be accessed whenever the related PLC is in online mode
Ä Chapter 1.7.2.2 “Entering/leaving the online mode” on page 4046.

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/213ADR010583, 3, en_US4056

Master/controller modules
Master/controller modules like CM579-ETHCAT or CM579-PNIO, provide the following diag-
nosis views:
● “Diagnostics main”: provides diagnosis messages which are common for all protocols (e.g.,

protocol state and error)
● “Diagnostics live list”: provides a list of connected slaves/devices and their state Ä Chapter

1.7.2.6.1.1.1 “ PROFINET scan and comparison view” on page 4057
● “Diagnostics eventlog”: provides diagnosis messages from the master/controller and its

connected slaves/devices

PROFINET scan and comparison view

1. After going online, double-click on “PNIO_Controller (PROFINET-IO-Controller)” in the
device tree.

ð The editor “PNIO_Controller” is displayed.

2. Select tab “Diagnostics live list” and click [Scan] to find all hardware devices that exist.

ð The found devices are listed in a table.

3. Click [Compare] to compare the found hardware I/O devices with the current project
configuration.

If any I/O hardware device is unknown:
● The devices will be marked with a red exclamation mark.
● A message box will be appear for each unknown device.
● Automation Builder generates a message with information about its vendor ID and device

ID.

PNIO_Controller

Unknown hard-
ware

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/21 3ADR010583, 3, en_US 4057

1. To display the comparison view, install the device description for the unknown device.
2. After installing the device description, click [Scan] and click [Compare].

ð The message box informs you, that the application will go offline to display the com-
parison view.

Comparison
view

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/213ADR010583, 3, en_US4058

3. Click [Yes].

ð The “Project Comparison - Differences” tab displays the difference between the
PROFINET configuration in Automation Builder (left side) and the real hardware con-
figuration (right side).

4. Click [Accept Single] to accept only a part of the differences or [Accept Block] to accept all
differences.

ð After clicking on the Button [Accept Single] or [Accept Block] the found devices will be
moved from the right side to the left side.

5. Close tab “Project Comparison - Differences”.

ð A message will be displayed to ask if you want to commit the new changes into
project.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/21 3ADR010583, 3, en_US 4059

6. Click [Yes].

ð The changes will be saved and the devices will be added to the project.

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/213ADR010583, 3, en_US4060

Slave/device communication modules
Diagnosis views for slave/device communication modules like CM589-PNIO:
● “Diagnostics main”: provides diagnosis messages which are common for all protocols
● “Diagnostics details”: provides protocol specific diagnosis messages

1.7.2.6.2 CI52x Modbus diagnosis
1. Double-click node “CI52x_MODTCP” in the device tree.
2. Select “CI52x Diagnosis” tab.

ð The button [Get Diagnosis] appears in the tab view.

3. Click on the button [Get Diagnosis].

ð One of the following use cases will be displayed:

● Device not connected Ä “Device not connected” on page 4061
● No Errors on the device Ä “No errors on the device” on page 4062
● Diagnosis list Ä “Diagnosis list” on page 4062

If there is no device connected to the project, the following dialog will be displayed:

1. Select tab “Connection Settings” and enter the IP address for the device.
2. Click again button [Get Diagnosis].

Device not con-
nected

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Online diagnosis in Automation Builder

2022/01/21 3ADR010583, 3, en_US 4061

If there are no errors on the device the following dialog will be displayed:

If the device is not correctly configured the errors will be displayed with “Error Code” and “Code
Description”.

1.7.3 Diagnosis messages
1.7.3.1 CPU diagnosis

Diagnosis messages are included in diagnosis text list “Diag_V3_PLC”.

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning R
e
m
e
d
y

Byte0 Byte1 Byte2 Byte3
Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Sub
3_x

Mea
ning

Sub
4_x

Mea
ning

2 0 CPU 2 Para
meter

0 - 0 - 0 27 Failed to set
parameter "Reboot
at powerfail"

2 14 I/O bus 0 - 0 - 0 - 0 2 Resource failure

2 14 I/O bus 0 - 0 - 0 - 0 3 Timeout

2 14 I/O bus 0 - 0 - 0 - 0 17 Error setting I/O
bus master param-
eter

2 21 Display 0 - 0 - 0 - 0 23 Wrong version of
display firmware

3 21 Display 0 - 0 - 0 - 0 22 Error at initialization
of display

4 22 Battery 0 - 0 - 0 - 0 8 Empty or missing

4 19 Flash
disk

5 Index 0...n 0...n 0 - 0 9 Medium has used
80 % of its spare
capacity

No errors on the
device

Diagnosis list

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4062

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning R
e
m
e
d
y

Byte0 Byte1 Byte2 Byte3
Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Sub
3_x

Mea
ning

Sub
4_x

Mea
ning

4 19 Flash
disk

5 Index 0...n 0...n 0 - 0 10 Medium has almost
used its complete
spare capacity or
is already dead,
action required

11 0 CPU 2 Para
meter

0 - 0 - 0 18 At least one param-
eter not found

11 0 CPU 2 Para
meter

0 - 0 - 0 19 Unable to read at
least one param-
eter value

11 0 CPU 2 Para
meter

0 - 1 or 2 'too big'
or 'too
small'

0 20 Invalid value of
parameter "LED"

11 0 CPU 2 Para
meter

0 - 1 or 2 'too big'
or 'too
small'

0 21 Invalid value of
parameter "Battery"

11 0 CPU 2 Para
meter

0 - 1 or 2 'too big'
or 'too
small'

0 26 Invalid value of
parameter "Reboot
at powerfail"

1.7.3.2 I/O bus diagnosis
Diagnosis messages are included in diagnosis text lists “Diag_IO_Bus” and
“Diag_S500_IO_Bus”.

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning Remed
yByte0 Byte1 Byte2 Byte3

Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Value Mea
ning

Value Mea
ning

2 0 Master 0 - 0 - 0 - 0 16129 Severe
error, see
log

2 0 Master 0 - 0 - 0 - 0 16130 Fatal error,
see log

2 0 Master 0 - 0 - 0 - 0 16194 Fatal error,
not running
any more

3 0 Master 0 - 0 - 0 - 0 16128 Failed Max
Wait Run

4 1...20 Module
n

0 - 0 - 0 - 0 9480 Module <n>,
removed
from hot
swap ter-
minal unit

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4063

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning Remed
yByte0 Byte1 Byte2 Byte3

Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Value Mea
ning

Value Mea
ning

4 1...20 Module
n

0 - 0 - 0 - 0 9526 Module <n>,
module on
hot swap
terminal unit
does not
support hot
swap func-
tionality

4 1...20 Module
n

0 - 0 - 0 - 0 9764 Module <n>,
defective
hot swap
terminal unit

11 1...20 Module
n

0 - 0 - 0 - 0 16133 Module <n>,
output data
size mis-
match

11 1...20 Module
n

0 - 0 - 0 - 0 16134 Module <n>,
input data
size mis-
match

11 0 Master 0 - 0 - 0 - 0 16145 Error setting
I/O bus
master
parameter

11 0 Master 0 - 0 - 0 - 0 16146 Failed to
start the
parameteri-
zation of
modules

11 1...20 Module
n

0 - 0 - 0 - 0 16147 Module <n>,
failed setting
parameters

11 1...20 Module
n

0 - 0 - 0 - 0 16149 Module <n>,
no module
data

11 1...20 Module
n

0 - 0 - 0 - 0 16158 Module <n>,
type of
present
module
does not
match con-
figuration

11 0 Master 0 - 0 - 0 - 0 16159 Configured
number of
modules dif-
fers from
found ones

11 0 Master 0 - 0 - 0 - 0 16160 At least one
module
failed during
configura-
tion

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4064

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning Remed
yByte0 Byte1 Byte2 Byte3

Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Value Mea
ning

Value Mea
ning

11 1...20 Module
n

0 - 0 - 0 - 0 16248 Module <n>,
failed setting
expected
module

11 1...20 Module
n

0 - 0 - 0 - 0 16254 Module <n>,
size of
parameters
expected by
module dif-
fers from
size pro-
vided by
configura-
tion

1.7.3.3 S500 I/O modules diagnosis
Diagnosis messages are included in diagnosis text lists “Diag_IO_Bus” and
“Diag_S500_IO_Bus”.

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning Remedy
Byte0 Byte1 Byte2 Byte3
Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Value Mea
ning

Value Mea
ning

2 1...20 Module
n

0 - - - 0 - 0 8482 Timeout,
while initial-
izing

2 1...20 Module
n

0 - - - 0 - 0 8432 Timeout
while initial-
izing an I/O
module

2 1...20 Module
n

0 - - - 0 - 0 9249 Timeout
while
waiting for
Reset

2 1...20 Module
n

0 - - - 0 - 0 9258 Breakdown,
communi-
cation lost

3 1...20 Module
n

1 Channel 0...15 0...15 0 - 0 3 Channel
<n>, dis-
crepancy
time
expired

Check
discrep-
ancy
time
value,
channel
wiring
and
sensor.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4065

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning Remedy
Byte0 Byte1 Byte2 Byte3
Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Value Mea
ning

Value Mea
ning

3 1...20 Module
n

1 Channel 0...15 0...15 0 - 0 12 Channel
<n>, test
pulse error

Check
wiring
and
sensor

3 1...20 Module
n

1 Channel 0...15 0...15 0 - 0 13 Channel
<n>, test
pulse
cross-talk
error

Check
wiring
and
sensor. If
this error
persists,
replace
I/O
module.
Contact
ABB
technical
support.

3 1...20 Module
n

1 Channel 0...15 0...15 0 - 0 18 Channel
<n>, test
error

3 1...20 Module
n

1 Channel 0...15 0...15 0 - 0 25 Channel
<n>, stuck-
at error

Check
I/O
module
wiring.
Restart
I/O
module,
if
needed.
If this
error per-
sists,
replace
I/O
module.

3 1...20 Module
n

1 Channel 0...15 0...15 0 - 0 28 Channel
<n>, cross-
talk error

Check
I/O
module
wiring.
Restart
I/O
module,
if
needed.
If this
error per-
sists,
replace
I/O
module.

3 1...20 Module
n

1 Channel 0...3 0...3 0 - 0 273 Channel
<n>, test
error

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4066

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning Remedy
Byte0 Byte1 Byte2 Byte3
Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Value Mea
ning

Value Mea
ning

3 1...20 Module
n

1 Channel 0...3 0...3 0 - 0 311 Channel
<n>, value
difference
too high

Adjust
tolerance
window
for chan-
nels.
Check
channel
wiring
and
sensor
configu-
ration.

3 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 524 Channel
<n>, stuck-
at error

3 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 525 Channel
<n>, read-
back error

Check
I/O
module
wiring.
Restart
I/O
module,
if
needed.
If this
error per-
sists,
replace
I/O
module.

3 1...20 Module
n

1 Channel 0...15 0...15 0 - 0 530 Channel
<n>, cross-
talk error

Check
I/O
module
wiring.
Restart
I/O
module,
if
needed.
If this
error per-
sists,
replace
I/O
module.

3 1...20 Module
n

1 Channel 0...15 0...15 0 - 0 540 Channel
<n>, test
error

3 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 555 Channel
<n>,
internal
error

3 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 1037 Channel
<n>, test
error

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4067

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning Remedy
Byte0 Byte1 Byte2 Byte3
Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Value Mea
ning

Value Mea
ning

3 1...20 Module
n

0 - - - 0 - 0 8480 Not sup-
ported pro-
tocol var-
iant

3 1...20 Module
n

0 - - - 0 - 0 8707 PROFIsafe
watchdog
timed out

3 1...20 Module
n

0 - - - 0 - 0 8708 Over-
voltage

3 1...20 Module
n

0 - - - 0 - 0 8711 Under-
voltage

3 1...20 Module
n

0 - - - 0 - 0 8722 Internal
error

3 1...20 Module
n

0 - - - 0 - 0 8723 Checksum
error has
occured in
iParame-
ters

3 1...20 Module
n

0 - - - 0 - 0 8724 PROFIsafe
communi-
cation error

3 1...20 Module
n

0 - - - 0 - 0 8732 Internal
error

3 1...20 Module
n

0 - - - 0 - 0 8747 Internal
runtime
error

3 1...20 Module
n

0 - - - 0 - 0 8961 Wrong
parameter
value,
check con-
figuration

3 1...20 Module
n

0 - - - 0 - 0 8979 Checksum
error has
occured in
iParameter
or F-Param-
eters

3 1...20 Module
n

0 - - - 0 - 0 8986 Invalid con-
figuration

Check
modules
and
parame-
terization

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4068

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning Remedy
Byte0 Byte1 Byte2 Byte3
Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Value Mea
ning

Value Mea
ning

3 1...20 Module
n

0 - - - 0 - 0 8988 F-Param-
eter config-
uration and
address
switch
value do
not match.

Check
I/O
module
F-
Param-
eter con-
figuration
and
module
address
switch
value.

3 1...20 Module
n

0 - - - 0 - 0 16131 Timeout Replace
I/O
module

3 1...20 Module
n

0 - - - 0 - 0 16137 Overflow
diagnosis
buffer

Restart

3 1...20 Module
n

0 - - - 0 - 0 16138 Non-safety
I/O: Voltage
overflow on
outputs
(above UP3
level),
Safety I/O:
Process
voltage too
high

Check
termi-
nals /
process
voltage

3 1...20 Module
n

0 - - - 0 - 0 16139 Process
voltage UP
or UP3 too
low

Check
process
voltage

3 1...20 Module
n

0 - - - 0 - 0 16146 Plausibility
check failed
(iPara-
meter)

Check
configu-
ration

3 1...20 Module
n

0 - - - 0 - 0 16147 Checksum
error

Non-
safety
I/O:
Replace
I/O
module
Safety
I/O:
Check
safety
configu-
ration
and
CRCs for
I- and F-
Parame-
ters.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4069

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning Remedy
Byte0 Byte1 Byte2 Byte3
Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Value Mea
ning

Value Mea
ning

3 1...20 Module
n

0 - - - 0 - 0 16148 PROFIsafe
communi-
cation error

Restart
I/O
module.
If this
error per-
sists,
contact
ABB
technical
support.

3 1...20 Module
n

0 - - - 0 - 0 16153 PROFIsafe
watchdog
timed out

Restart
I/O
module.
If this
error per-
sists,
increase
PROFIsa
fe
watchdo
g time.

3 1...20 Module
n

0 - - - 0 - 0 16154 Parameter
error

Check
configu-
ration.

3 1...20 Module
n

0 - - - 0 - 0 16156 F-Param-
eter config-
uration and
address
switch
value do
not match.

Check
I/O
module
F-
Param-
eter con-
figuration
and
module
address
switch
value.

3 1...20 Module
n

0 - - - 0 - 0 16164 Internal
data inter-
change
failure

Replace
I/O
module

3 1...20 Module
n

0 - - - 0 - 0 16168 Different
hard-/firm-
ware ver-
sions in the
module

Replace
I/O
module

3 1...20 Module
n

0 - - - 0 - 0 16171 Internal
error

Replace
I/O
module

3 1...20 Module
n

0 - - - 0 - 0 16175 Sensor
voltage too
low

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4070

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning Remedy
Byte0 Byte1 Byte2 Byte3
Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Value Mea
ning

Value Mea
ning

4 1...20 Module
n

0 - - - 0 - 0 8432 Timeout
while
waiting for
ready state

4 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 257 Channel
<n>, wrong
measure-
ment, false
tempera-
ture at the
compensa-
tion
channel

4 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 258 Channel
<n>,
AI531:
wrong
measure-
ment,
potential
difference is
too high;
CD522:
PWM duty
cycle out of
duty area

4 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 260 Channel
<n>, meas-
urement
overflow

Check
channel
wiring
and
sensor
power
supply.

4 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 263 Channel
<n>, meas-
urement
underflow
at analog
input

Check
channel
wiring
and
sensor
power
supply.

4 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 266 Channel
<n>, short
circuit and
cut wire or
"out of
range"

4 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 267 Channel
<n>, output/
process
voltage to
small/low.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4071

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning Remedy
Byte0 Byte1 Byte2 Byte3
Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Value Mea
ning

Value Mea
ning

4 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 303 Channel
<n>, short
circuit at
the analog
input

Check
channel
wiring

4 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 304 Channel
<n>, analog
value over-
flow or
broken wire
at an
analog
input.

4 1...20 Module
n

1 Channel 0...15 0...15 0 - 0 530 Internal
fuse at 0 V
is defect.
0 V not
connected
with GND.

4 1...20 Module
n

1 Channel 0...23 0...23 0 - 0 559 Channel
<n>, short
circuit at
the digital
output

Check
channel
wiring

4 1...20 Module
n

1 Channel 0...7 0...7 0 - 0 775 Channel
<n>, meas-
urement
underflow
at analog
output

Check
channel
wiring

4 1...20 Module
n

1 Channel 0 0 0 - 0 796 Different
configura-
tion

4 1...20 Module
n

0 - - - 0 - 0 8482 Timeout
while
waiting for
ready
status

4 1...20 Module
n

0 - - - 0 - 0 8483 Timeout
during
parameteri-
zation

4 1...20 Module
n

0 - - - 0 - 0 9480 I/O module
removed
from hot
swap ter-
minal unit
or defective
module on
hot swap
terminal
unit.

Plug I/O
module,
replace
I/O
module

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4072

Error
sever
ity

SubSysteminfo Addi-
tional

Error
code
Err_x

Meaning Remedy
Byte0 Byte1 Byte2 Byte3
Sub
1_x

Mea
ning

Sub
2_x

Mea
ning

Value Mea
ning

Value Mea
ning

4 1...20 Module
n

0 - - - 0 - 0 9500 Wrong I/O
module
replugged
on hot
swap ter-
minal unit

Remove
wrong
I/O
module
and plug
projected
I/O
module

4 1...20 Module
n

0 - - - 0 - 0 9514 No commu-
nication
with I/O
module on
hot swap
terminal
unit

Replace
I/O
module

4 1...20 Module
n

0 - - - 0 - 0 9526 I/O module
does not
support hot
swap

Power
off
system
and
replace
I/O
module

4 1...20 Module
n

0 - - - 0 - 0 9736 Hot swap
terminal
unit
required,
but not
found

4 1...20 Module
n

0 - - - 0 - 0 9770 No commu-
nication
with hot
swap ter-
minal unit

Restart,
if error
persists
replace
terminal
unit

4 1...20 Module
n

0 - - - 0 - 0 16172 Has not
passed fac-
tory test

4 1...20 Module
n

0 - - - 0 - 0 16173 No process
voltage UP
or UP3

Check
process
voltage

11 0 - 0 - - - 0 - 0 16159 Configured
number of
modules
differs from
found ones

11 0 - 0 - - - 0 - 0 16160 At least one
module
failed
during con-
figuration

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4073

1.7.3.4 Communication modules diagnosis
1.7.3.4.1 CM579-ETHCAT

Hexadecimal Value Definition Description
0x00000000 TLR_S_OK Status ok

0xC0650005 TLR_E_ETHERCAT_MASTER_ERR
OR_BUSSCAN_FAILED

Existing bus does not match config-
ured bus.

0xC0650006 TLR_E_ETHERCAT_MASTER_NOT
_ALL_SLAVES_AVAIL

Not all slaves are available.

0xC065000B TLR_E_ETHERCAT_MASTER_INV
ALID_BUSCYCLETIME

The requested bus cycle time is
invalid.

0xC065000C TLR_E_ETHERCAT_MASTER_INV
ALID_BROKEN_SLAVE_BEHAV-
IOUR_PARA

Invalid parameter for broken slave
behavior.

0xC065000F TLR_E_ETHERCAT_MASTER_CO
E_INVALID_SLAVEID

Invalid SlaveId was used for CoE.

0xC0650012 TLR_E_ETHERCAT_MASTER_CO
E_INVALID_INDEX

Invalid Index on slave requested.

0xC0650013 TLR_E_ETHERCAT_MASTER_CO
E_INVALID_COMMUNICA-
TION_STATE

Invalid bus communication state for
CoE-Usage.

0xC0650014 TLR_E_ETHERCAT_MASTER_CO
E_FRAME_LOST

Frame with CoE data is lost.

0xC0650015 TLR_E_ETHERCAT_MASTER_CO
E_TIMEOUT

Timeout during CoE service.

0xC0650016 TLR_E_ETHERCAT_MASTER_CO
E_SLAVE_NOT_ADDRESSABLE

Slave is not addressable (not on bus
or power down?).

0xC0650017 TLR_E_ETHERCAT_MASTER_CO
E_INVALID_LIST_TYPE

Invalid list type requested (during
GetOdList).

0xC0650018 TLR_E_ETHERCAT_MASTER_CO
E_SLAVE_RESPONSE_TOO_BIG

Data in slave response is too big for
confirmation packet.

0xC0650019 TLR_E_ETHERCAT_MASTER_CO
E_INVALID_ACCESSBITMASK

Invalid access mask selected (during
GetEntryDesc).

0xC065001A TLR_E_ETHERCAT_MASTER_CO
E_WKC_ERROR

Slave Working Counter Error during
CoE service.

0xC065001C TLR_E_ETHERCAT_MASTER_INV
ALID_COMMUNICATION_STATE

Command is not usable in the com-
munication state.

0xC065001E TLR_E_ETHERCAT_MASTER_BUS
_SCAN_CURRENTLY_RUNNING

The scan is already running. It
cannot be started twice at the same
time.

0xC065001F TLR_E_ETHERCAT_MASTER_BUS
_SCAN_TIMEOUT

Timeout during bus scan. But at
least a link is established.

0xC0650020 TLR_E_ETHERCAT_MASTER_BUS
_SCAN_NOT_READY_YET

The bus scan was not started before
or is not finish yet.

0xC0650021 TLR_E_ETHERCAT_MASTER_BUS
_SCAN_INVALID_SLAVE

The requested slave is invalid.

0xC0650022 TLR_E_ETHERCAT_MASTER_CO
E_INVALIDACCESS

Slave does not allow reading or
writing (CoE-Access).

0xC0650023 TLR_E_ETHERCAT_MASTER_CO
E_NO_MBX_SUPPORT

Slave does not support a mailbox.

Status codes

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4074

Hexadecimal Value Definition Description
0xC0650024 TLR_E_ETHERCAT_MASTER_CO

E_NO_COE_SUPPORT
Slave does not support CoE.

0xC0650025 TLR_E_ETHERCAT_MASTER_TAS
K_CREATION_FAILED

Task could not be created during run
time.

0xC0650026 TLR_E_ETHERCAT_MASTER_INV
ALID_SLAVE_SM_CONFIGURA-
TION

The Sync Manager configuration of
a slave is invalid.

0xC0650027 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TOGGLE

SDO abort code: Toggle bit not alter-
nated.

0xC0650028 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TIMEOUT

SDO abort code: SDO protocol
timed out.

0xC0650029 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_CCS_SCS

SDO abort code: Client/server com-
mand specifier not valid or unknown.

0xC065002A TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_BLK_SIZE

SDO abort code: Invalid block size
(block mode only).

0xC065002B TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_SEQNO

SDO abort code: Invalid sequence
number (block mode only).

0xC065002C TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_CRC

SDO abort code: CRC error (block
mode only).

0xC065002D TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_MEMORY

SDO abort code: Out of memory.

0xC065002E TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_ACCESS

SDO abort code: Unsupported
access to an object.

0xC065002F TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_WRITEONLY

SDO abort code: Attempt to read a
write only object.

0xC0650030 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_READONLY

SDO abort code: Attempt to write a
read only object.

0xC0650031 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_INDEX

SDO abort code: Object does not
exist in the object dictionary.

0xC0650032 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_PDO_MAP

SDO abort code: Object cannot be
mapped to the PDO.

0xC0650033 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_PDO_LEN

SDO abort code: The number and
length of the objects to be mapped
would exceed PDO length.

0xC0650034 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_P_INCOMP

SDO abort code: General parameter
incompatibility reason.

0xC0650035 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_I_INCOMP

SDO abort code: General internal
incompatibility in the device.

0xC0650036 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_HARDWARE

SDO abort code: Access failed due
to an hardware error.

0xC0650037 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_SIZE

SDO abort code: Data type does not
match, length of service parameter
does not match.

0xC0650038 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_SIZE1

SDO abort code: Data type does not
match, length of service parameter
too high.

0xC0650039 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_SIZE2

SDO abort code: Data type does not
match, length of service parameter
too low.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4075

Hexadecimal Value Definition Description
0xC065003A TLR_E_ETHERCAT_MASTER_SD

O_ABORTCODE_OFFSET
SDO abort code: Sub-index does not
exist.

0xC065003B TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_RANGE

SDO abort code: Range of values of
parameter exceeded (only for write
access).

0xC065003C TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_RANGE1

SDO abort code: Value of parameter
written too high.

0xC065003D TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_RANGE2

SDO abort code: Value of parameter
written too low.

0xC065003E TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_MINMAX

SDO abort code: Maximum value is
less than minimum value.

0xC065003F TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_GENERAL

SDO abort code: general error.

0xC0650040 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TRANSFER

SDO abort code: Data cannot be
transferred or stored to the applica-
tion.

0xC0650041 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TRANSFER1

SDO abort code: Data cannot be
transferred or stored to the applica-
tion because of local control.

0xC0650042 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TRANSFER2

SDO abort code: Data cannot be
transferred or stored to the applica-
tion because of the present device
state.

0xC0650043 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DICTIONARY

SDO abort code: Object dictionary
dynamic generation fails or no object
dictionary is present (e.g. object dic-
tionary is generated from file and
generation fails because of an file
error).

0xC0650044 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_UNKNOWN

SDO abort code: unknown code.

0xC0CC0001 ECM_ERROR_LLD_TIMEOUT LLD: Timeout

0xC0CC0003 ECM_ERROR_LLD_UNSUP-
PORTED_COMMAND

LLD: Unsupported command

0xC0CC0004 ECM_ERROR_LLD_DUPLI-
CATE_FIXED_STATION_ADDRESS

LLD: Duplicate fixed station address

0xC0CC0005 ECM_ERROR_LLD_SII_CHECKSU
M_ERROR

LLD: SII Checksum Error

0xC0CC0006 ECM_ERROR_LLD_SII_EEPROM_
LOADING_ERROR

LLD: SII EEPROM Loading Error

0xC0CC0007 ECM_ERROR_LLD_SII_MISSING_
ERROR_ACK

LLD: SII Missing Error Ack

0xC0CC0008 ECM_ERROR_LLD_STATE_CHAN
GE_FAILED

LLD: State Change Failed

0xC0CC0009 ECM_ERROR_LLD_UNEX-
PECTED_AL_STATUS

LLD: Unexpected AL Status

0xC0CC000A ECM_ERROR_LLD_UNEX-
PECTED_WKC

LLD: Unexpected WKC

0xC0CC000B ECM_ERROR_LLD_MAILBOX_NO
T_AVAILABLE

LLD: Mailbox not available

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4076

Hexadecimal Value Definition Description
0xC0CC000C ECM_ERROR_LLD_MAILBOX_ME

SSAGE_TOO_LARGE
LLD: Mailbox message too large

0xC0CC000D ECM_ERROR_LLD_CONFIGURA-
TION_IN_PROGRESS

LLD: Configuration in progress

0xC0CC000E ECM_ERROR_LLD_TOO_MANY_C
YCLIC_FRAMES

LLD: Too many cyclic frames

0xC0CC000F ECM_ERROR_LLD_CYCLIC_FRA
ME_EXCEEDS_MTU

LLD: Cyclic frame exceeds MTU

0xC0CC0010 ECM_ERROR_LLD_INVALID_CYCL
IC_TELEGRAM_CONFIG

LLD: Invalid cyclic telegram config

0xC0CC0011 ECM_ERROR_LLD_BUILDING_CO
PY_ROUTINES_FAILED

LLD: Building copy routines failed

0xC0CC0012 ECM_ERROR_LLD_UNSUP-
PORTED_SLAVE_STA-
TION_ADDRESS

LLD: Unsupported slave station
address

0xC0CC0013 ECM_ERROR_LLD_STA-
TION_ADDRESS_NOT_ALLOWED

LLD: Station Address not allowed

0xC0CC0014 ECM_ERROR_LLD_INVALID_STD_
TX_MBX_PHYS_OFFSET

LLD: Invalid Std TxMbx PhysOffset

0xC0CC0015 ECM_ERROR_LLD_INVALID_STD_
RX_MBX_PHYS_OFFSET

LLD: Invalid Std Rx Mbx PhysOffset

0xC0CC0016 ECM_ERROR_LLD_INVALID_BOO
T_TX_MBX_PHYS_OFFSET

LLD: Invalid BOOT Rx Mbx Phys-
Offset

0xC0CC0017 ECM_ERROR_LLD_INVALID_BOO
T_RX_MBX_PHYS_OFFSET

LLD: Invalid BOOT Tx Mbx Phys-
Offset

0xC0CC0018 ECM_ERROR_LLD_INVALID_STD_
TX_MBX_SM_NO

LLD: Invalid Std Tx Mbx SmNo

0xC0CC0019 ECM_ERROR_LLD_INVALID_STD_
RX_MBX_SM_NO

LLD: Invalid Std Rx Mbx SmNo

0xC0CC001A ECM_ERROR_LLD_INVALID_BOO
T_TX_MBX_SM_NO

LLD: Invalid BOOT Tx Mbx SmNo

0xC0CC001B ECM_ERROR_LLD_INVALID_BOO
T_RX_MBX_SM_NO

LLD: Invalid BOOT Rx Mbx SmNo

0xC0CC001C ECM_ERROR_LLD_UNCON-
FIGURED_SLAVE_STA-
TION_ADDRESS

LLD: Unconfigured slave station
address

0xC0CC001D ECM_ERROR_LLD_WRONG_SLAV
E_STATE

LLD: Wrong slave state

0xC0CC001E ECM_ERROR_LLD_CYCLE_TIME_
TOO_SMALL

LLD: Cycle time too small

0xC0CC001F ECM_ERROR_LLD_REPETI-
TION_COUNT_NOT_SUPPORTED

LLD: Repetition count not supported

0xC0CC0020 ECM_ERROR_LLD_INVALID_CALL
BACK_TYPE

LLD: Invalid callback type

0xC0CC0021 ECM_ERROR_LLD_INVALID_CYCL
E_MULTIPLIER

LLD: Invalid cycle multiplier

0xC0CC0022 ECM_ERROR_LLD_UNKNOWN_E
RROR

LLD: Unknown Error

0xC0CC0023 ECM_ERROR_LLD_INVALID_REG
_LENGTH

LLD: Invalid reg length

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4077

Hexadecimal Value Definition Description
0xC0CC0024 ECM_ERROR_LLD_INVALID_PARA

METER
LLD: Invalid parameter

0xC0CC0025 ECM_ERROR_LLD_IRQ_NOT_AVA
ILABLE

LLD: IRQ not available

0xC0CC0026 ECM_ERROR_LLD_IOMEM_IRQ_N
OT_AVAILABLE

LLD: IOMem Irq not available

0xC0CC0027 ECM_ERROR_LLD_HW_INIT_FAIL
ED

LLD: Hardware init failed

0xC0CC0028 ECM_ERROR_LLD_MUTEX_CRE-
ATION_FAILED

LLD: Mutex creation failed

0xC0CC0029 ECM_ERROR_LLD_DC_RX_LATC
H_COM-
MAND_REQUIRED_FOR_DC

LLD: DC Rx Latch command is not
configured within cyclic frames

0xC0CC002A ECM_ERROR_LLD_TX_PROCESS
_IMAGE_EXCEEDED

LLD: Transmit process image is
exceeded

0xC0CC002B ECM_ERROR_LLD_RX_PROCESS
_IMAGE_EXCEEDED

LLD: Receive process image is
exceeded

0xC0CC002C ECM_ERROR_LLD_MBX_STATE_I
MAGE_EXCEEDED

LLD: Mailbox State image is
exceeded

0xC0CC002D ECM_ERROR_LLD_RESULT_DUP
LICATE_BWR_RX_LATCH_CMD

LLD: Duplicate BWR Rx DC Latch
command detected in cyclic frames

0xC0CC002E ECM_ERROR_LLD_RESULT_DUP
LICATE_EXT_SYSTIME_CON-
TROL_CMD

LLD: Duplicate External Sync Sys-
Time Control command detected in
cyclic frames

0xC0CC002F ECM_ERROR_LLD_CC_PROCESS
_IMAGE_EXCEEDED

LLD: Cross Communication Process
image exceeded

0x40CD0017 ECM_INFO_EMC_BUS_IS_OFF Bus is off

0xC0CD0001 ECM_ERROR_EMC_REQUEST_D
ESTINATION_PROBLEM

Request Destination Problem

0xC0CD0002 ECM_ERROR_EMC_INVALID_SLA
VE_STATION_ADDRESS

Invalid slave station address

0xC0CD0003 ECM_ERROR_EMC_CONFIGURA-
TION_BUFFER_IS_OPEN

Configuration buffer is open

0xC0CD0004 ECM_ERROR_EMC_WRONG_STA
TE_FOR_RECONFIGURATION

Wrong state for reconfiguration

0xC0CD0005 ECM_ERROR_EMC_CONFIGURA-
TION_BUFFER_IS_NOT_OPEN

Configuration buffer is not open

0xC0CD0006 ECM_ERROR_EMC_SLAVE_STA-
TION_ADDRESS_ALREADY_IN_C
ONFIG

Slave station address already in
config

0xC0CD0007 ECM_ERROR_EMC_INVALID_STD
_MBX_PARAMETERS

Invalid Std Mbx parameters

0xC0CD0008 ECM_ERROR_EMC_INVALID_BOO
T_MBX_PARAMETERS

Invalid BOOT Mbx parameters

0xC0CD0009 ECM_ERROR_EMC_STD_MBX_S
M_ARE_OVERLAPPING

Std Mbx SMs are overlapping

0xC0CD000A ECM_ERROR_EMC_BOOT_MBX_
SM_ARE_OVERLAPPING

BOOT Mbx SMs are overlapping

0xC0CD000B ECM_ERROR_EMC_SM_PARAMS
_ALREADY_ADDED

SM Params already added

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4078

Hexadecimal Value Definition Description
0xC0CD000C ECM_ERROR_EMC_INVALID_SM_

NUMBER
Nvalid SM number

0xC0CD000D ECM_ERROR_EMC_FMMU_PARA
MS_ALREADY_ADDED

FMMU params already added

0xC0CD000E ECM_ERROR_EMC_INVALID_FMM
U_NUMBER

Invalid FMMU number

0xC0CD000F ECM_ERROR_EMC_INVALID_MIN
_STATE

Invalid min state

0xC0CD0010 ECM_ERROR_EMC_CYCLE_FRA
ME_AMOUNT_EXCEEDED

Cycle frame amount exceeded

0xC0CD0011 ECM_ERROR_EMC_INVALID_CYC
LIC_FRAME_IN_CONFIGURATION

Invalid cycle frame in configuration

0xC0CD0012 ECM_ERROR_EMC_CYCLE_FRA
ME_INDEX_NOT_VALID

Cycle frame index not valid

0xC0CD0013 ECM_ERROR_EMC_INVALID_TEL
EGRAM_LENGTH

Invalid telegram length

0xC0CD0014 ECM_ERROR_EMC_CYCLE_FRA
ME_LENGTH_EXCEEDED

Cycle frame length exceeded

0xC0CD0015 ECM_ERROR_EMC_AMOUNT_OF
_TELE-
GRAMS_IN_CYCLIC_FRAME_EXC
EEDED

Amount of telegrams in cyclic frame
exceeded

0xC0CD0016 ECM_ERROR_EMC_STATE_CHAN
GE_IN_PROGRESS

State change in progress

0xC0CD0018 ECM_ERROR_EMC_TOO_MANY_
SLAVES_GIVEN

Too many slaves given

0xC0CD0019 ECM_ERROR_EMC_DUPLI-
CATE_STA-
TION_ADDRESS_IN_LIST

Duplicate station address in list

0xC0CD001A ECM_ERROR_EMC_COM-
MAND_TYPE_NOT_ALLOWED_FO
R_SLAVE_FSM

Command type not allowed for slave
FSM

0xC0CD001B ECM_ERROR_EMC_CONFIGURA-
TION_DATA_INCORRECT

Configuration data incorrect

0xC0CD001C ECM_ERROR_EMC_VEN-
DORID_MISMATCH

VendorID mismatch

0xC0CD001D ECM_ERROR_EMC_PRODUCT-
CODE_MISMATCH

ProductCode mismatch

0xC0CD001E ECM_ERROR_EMC_REVI-
SIONNO_MISMATCH

Revision number mismatch

0xC0CD001F ECM_ERROR_EMC_SERI-
ALNO_MISMATCH

Serial number mismatch

0xC0CD0020 ECM_ERROR_EMC_LOST_CON-
NECTION

Lost connection

0xC0CD0021 ECM_ERROR_EMC_UNKNOWN_S
TATE_CHANGE_HAPPENED

Unknown state change happened

0xC0CD0022 ECM_ERROR_EMC_UNEX-
PECTED_STATE_CHANGE_HAP-
PENED

Unexpected state change happened

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4079

Hexadecimal Value Definition Description
0xC0CD0023 ECM_ERROR_EMC_SLAVE_CHAN

GED_STATE
Slave changed state

0xC0CD0026 ECM_ERROR_EMC_DC_RX_TIME-
STAMP_ERROR

DC Rx Timestamp error

0xC0CD0027 ECM_ERROR_EMC_DC_MASTER
_PORT_TIMESTAMP_ERROR

DC master port timestamp error

0xC0CD0028 ECM_ERROR_EMC_INVALID_SLA
VE_INDEX

Invalid slave index

0xC0CD0029 ECM_ERROR_EMC_WRONG_MAS
TER_STATE

0xC0CD002A ECM_ERROR_EMC_INVALID_TRA
NSFER_ID

Invalid Transfer Id

0xC0CD002B ECM_ERROR_EMC_INVALID_SEG
MENTATION

Invalid Segmentation

0xC0CD002C ECM_ERROR_EMC_IP_PARAMS_
ALREADY_ADDED

EoE IP Params already added

0xC0CD002D ECM_ERROR_EMC_EOE_SUP-
PORT_NOT_AVAILABLE

EoE support not available

0xC0CD002E ECM_ERROR_EMC_END_CON-
FIGURATION_IN_PROGRESS

End configuration in progress

0xC0CD002F ECM_ERROR_EMC_WRONG_STA
TE_FOR_RECONFIGURA-
TION_BUS_IS_ON

Wrong state for reconfiguration (Bus
Is On)

0xC0CD0030 ECM_ERROR_EMC_WRONG_STA
TE_FOR_RECONFIGURA-
TION_BUS_SCAN_ACTIVE

Wrong state for reconfiguration (Bus
Scan Active)

0xC0CD0031 ECM_ERROR_EMC_WRONG_STA
TE_FOR_RECONFIGURA-
TION_IN_PROGRESS_TO_BU
SOFF

Wrong state for reconfiguration (In
Progress to Bus off)

0xC0CD0032 ECM_EROR_EMC_NO_DIAG_ENT
RY_AVAILABLE

No Diag Entry available

0xC0CD0033 ECM_ERROR_EMC_SLAVE_SYNC
_PARAMS_NOT_POS-
SIBLE_WITHOUT_WORKING_DC

A slave has been configured to have
SYNC0 and/or SYNC1 but does not
support DC at all.

0xC0CD0034 ECM_ERROR_EMC_MANDA-
TORY_SLAVE_MISSING

At least one required slave for boot
up is missing.

0xC0CD0035 ECM_ERROR_EMC_WRONG_SLA
VE_AT_POSITION

A wrong slave at a specific position
has been detected.

0xC0CD0036 ECM_ERROR_EMC_NO_DC_REF_
CLOCK

No DC reference clock

0xC0CD0037 ECM_ERROR_EMC_DC_REF_CLO
CK_DOES_NOT_PROVIDE_64BIT

DC Reference clock does not pro-
vide 64 Bit

0xC0CD0038 ECM_ERROR_EMC_INVALID_DC_
REF_CLOCK

Invalid DC Reference clock

0xC0CD0039 ECM_ERROR_EMC_COE_SUP-
PORT_NOT_AVAILABLE

CoE support not available

0xC0CD003A ECM_ERROR_EMC_SOE_SUP-
PORT_NOT_AVAILABLE

SoE support not available

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4080

Hexadecimal Value Definition Description
0xC0CD003B ECM_ERROR_EMC_FOE_SUP-

PORT_NOT_AVAILABLE
FoE support not available

0xC0CD003C ECM_ERROR_EMC_AOE_SUP-
PORT_NOT_AVAILABLE

AoE support not available

0x40CD003E ECM_INFO_EMC_RECONNECTED Reconnected

0x80CD003F ECM_WARN_EMC_DC_STOPPED DC stopped

0xC0CD0040 ECM_ERROR_EMC_STOPPED_D
UE_SYNC_ERROR

Stopped due Sync Error

0xC0CD0041 ECM_ERROR_EMC_MANDA-
TORY_SLAVE_NOT_IN_OP

At least one mandatory slave is not
in OP

0xC0CD0042 ECM_ERROR_EMC_BUS_CYCLE_
TIME_NOT_POSSIBLE

Bus Cycle Time not possible

0xC0CD0043 ECM_ERROR_EMC_TOP-
OLOGY_ERROR_DETECTED

Topology error detected

0xC0CD0044 ECM_ERROR_EMC_TOP-
OLOGY_MISMATCH_DETECTED

Topology mismatch detected

0xC0CD0045 ECM_ERROR_EMC_NO_VALID_T
OPOLOGY_CONFIGURA-
TION_DATA

No valid topology configuration data

0xC0CD0046 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0

Unexpected slave at port 0 of slave.

0xC0CD0047 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT1

Unexpected slave at port 1 of slave.

0xC0CD0048 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT2

Unexpected slave at port 2 of slave.

0xC0CD0049 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT3

Unexpected slave at port 3 of slave.

0xC0CD004A ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_RECONNECTED

-

0xC0CD004B ECM_ERROR_EMC_UNEX-
PECTED_MISSING_SLAVE_AT_PO
RT0

Missing slave at port 0 of slave.

0xC0CD004C ECM_ERROR_EMC_UNEX-
PECTED_MISSING_SLAVE_AT_PO
RT1

Missing slave at port 1 of slave.

0xC0CD004D ECM_ERROR_EMC_UNEX-
PECTED_MISSING_SLAVE_AT_PO
RT2

Missing slave at port 2 of slave.

0xC0CD004E ECM_ERROR_EMC_UNEX-
PECTED_MISSING_SLAVE_AT_PO
RT3

Missing slave at port 3 of slave.

0xC0CD004F ECM_ERROR_EMC_SLAVE_NOT_
CHECKED

Slave is not checked.

0xC0CD0050 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_1

Unexpected slave at port 0 and 1 of
slave.

0xC0CD0051 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_2

Unexpected slave at port 0 and 2 of
slave.

0xC0CD0052 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_3

Unexpected slave at port 0 and 3 of
slave.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4081

Hexadecimal Value Definition Description
0xC0CD0053 ECM_ERROR_EMC_UNEX-

PECTED_SLAVE_AT_PORT1_2
Unexpected slave at port 1 and 2 of
slave.

0xC0CD0054 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT1_3

Unexpected slave at port 1 and 3 of
slave.

0xC0CD0055 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT2_3

Unexpected slave at port 2 and 3 of
slave.

0xC0CD0056 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_1_2

Unexpected slave at port 0, 1 and 2
of slave.

0xC0CD0057 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_1_3

Unexpected slave at port 0, 1 and 3
of slave.

0xC0CD0058 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_2_3

Unexpected slave at port 0, 2 and 3
of slave.

0xC0CD0059 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT1_2_3

Unexpected slave at port 1, 2 and 3
of slave.

0xC0CD005A ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_1

Missing slave at port 0 and 1 of
slave.

0xC0CD005B ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_2

Missing slave at port 0 and 2 of
slave.

0xC0CD005C ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_3

Missing slave at port 0 and 3 of
slave.

0xC0CD005D ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT1_2

Missing slave at port 1 and 2 of
slave.

0xC0CD005E ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT1_3

Missing slave at port 1 and 3 of
slave.

0xC0CD005F ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT2_3

Missing slave at port 2 and 3 of
slave.

0xC0CD0060 ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_1_2

Missing slave at port 0, 1 and 2 of
slave.

0xC0CD0061 ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_1_3

Missing slave at port 0, 1 and 3 of
slave.

0xC0CD0062 ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_2_3

Missing slave at port 0, 2 and 3 of
slave.

0xC0CD0063 ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT1_2_3

Missing slave at port 1, 2 and 3 of
slave.

0xC0CD0065 ECM_ERROR_EMC_HC_PARTIC-
IPANT_NOT_ALLOWED_IN_MAN-
DATORY_SLAVE_LIST

A Hot Connect group participant is
not allowed to be configured a man-
datory slave

0xC0CD0066 ECM_ERROR_EMC_HC_PARTIC-
IPANT_NOT_ALLOWED_IN_MUL-
TIPLE_HC_GROUPS

A Hot Connect group participant is
not allowed to be configured in mul-
tiple Hot Connect groups

0xC0CD0067 ECM_ERROR_EMC_GC_GROUP_
HEAD_IS_NOT_LISTED_FOR_HC_
DETECTION

Hot Connect group head is not listed
for Hot Connect detection

0xC0CD0068 ECM_ERROR_EMC_DC_SETUP_C
ALCULATION_ERROR

DC Setup calculation has encoun-
tered an error

0xC0CD0069 ECM_ERROR_EMC_NON_DC_SL
AVE_MORE_THAN_2_PORTS_IN_
DC_SETUP

A slave, which does not support DC,
has more than 2 ports in a DC setup

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4082

Hexadecimal Value Definition Description
0xC0CD006A ECM_ERROR_EMC_HC_GROUP_

CONTAINS_NOT_CONFIG-
URED_SLAVE

A Hot Connect group has been
defined to include a slave address
that has no configuration

0xC0CD006B ECM_ERROR_EMC_ALCON-
TROL_TIMEOUT

AL Control Timeout happened i.e.
a slave ESM state change was not
completed in time

0xC0CD006C ECM_ERROR_EMC_DC_MEAS-
UREMENT_ERROR

DC measurement encountered an
error

0xC0CD006D ECM_ERROR_EMC_RX_DESTINA-
TION_EXCEEDS_RX_IMAGE_SIZE

Receive destination exceeds receive
image size

0xC0CD006E ECM_ERROR_EMC_TX_SOURCE
_EXCEEDS_TX_IMAGE_SIZE

Transmit source exceeds transmit
image size

0xC0CD006F ECM_ERROR_EMC_WCSTA-
TEBIT_EXCEEDS_RX_IMAGE_SIZ
E

WcState bit placement exceeds
receive image size

0xC0CD0070 ECM_ERROR_EMC_WKC_MAP-
PING_EXCEEDS_RX_IMAGE_SIZE

Wkc value placement exceeds
receive image size

0xC0CD0071 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0

DC Latch Error detected at port 0 of
slave

0xC0CD0072 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT1

DC Latch Error detected at port 1 of
slave

0xC0CD0073 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT2

DC Latch Error detected at port 2 of
slave

0xC0CD0074 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT3

DC Latch Error detected at port 3 of
slave

0xC0CD0075 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_1

DC Latch Error detected at ports 0
and 1 of slave

0xC0CD0076 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_2

DC Latch Error detected at ports 0
and 2 of slave

0xC0CD0077 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_3

DC Latch Error detected at ports 0
and 3 of slave

0xC0CD0078 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT1_2

DC Latch Error detected at ports 1
and 2 of slave

0xC0CD0079 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT1_3

DC Latch Error detected at ports 1
and 3 of slave

0xC0CD007A ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT2_3

DC Latch Error detected at ports 2
and 3 of slave

0xC0CD007B ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_1_2

DC Latch Error detected at ports 0, 1
and 2 of slave

0xC0CD007C ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_1_3

DC Latch Error detected at ports 0, 1
and 3 of slave

0xC0CD007D ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORTS0_2_3

DC Latch Error detected at ports 0, 2
and 3 of slave

0xC0CD007E ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORTS1_2_3

DC Latch Error detected at ports 1, 2
and 3 of slave

0xC0CD007F ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORTS0_1_2_3

DC Latch Error detected at ports 0,
1, 2 and 3 of slave

0xC0CD0080 ECM_ERROR_EMC_ASSIGN_PDO
_IS_MISSING_PDO_MAPPING

AssignPDO data is missing related
PDO mapping data

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4083

Hexadecimal Value Definition Description
0xC0CD0081 ECM_ERROR_EMC_EXT_SYNC_O

BJ_IS_NOT_MAPPED_TO_SAME_
SM

Parts of Ext Sync object are not
mapped to the same SyncManager

0xC0CD0082 ECM_ERROR_EMC_DUPLI-
CATE_EXT_SYNC_OBJ

Duplicate Ext Sync object mapping

0xC0CD0083 ECM_ERROR_EMC_UNSUP-
PORTED_EXT_SYNC_OBJ_RECO
RD

Unsupported Ext Sync object record
detected

0xC0CD0084 ECM_ERROR_EMC_UNSUP-
PORTED_MAP-
PING_OF_EXT_SYNC_OBJ_RECO
RD

Unsupported mapping of Ext Sync
object record detected

0xC0CD0085 ECM_ERROR_EMC_MISSING_MA
PPING_OF_EXT_SYNC_OBJ_REC
ORD

Missing mapping of Ext Sync object
record detected

0xC0CD0086 ECM_ERROR_EMC_EXT_SYNC_O
BJ_IS_NOT_MAPPED_TO_SAME_
FMMU

Parts of Ext Sync object are not
mapped to the same FMMU

0xC0CD0087 ECM_ERROR_EMC_EXT_SYNC_O
BJ_INTERNAL_ERROR

Internal error detected regarding Ext
Sync object

0xC0CD0088 ECM_ERROR_EMC_EXT_SYNC_O
BJ_IS_NOT_MAPPED_IN_ONE_CY
CLIC_CMD

Parts of Ext Sync object are not
mapped within the same cyclic com-
mand

0xC0CD0089 ECM_ERROR_EMC_UNSUP-
PORTED_FMMU_MAP-
PING_OF_EXT_SYNC_OBJ_RECO
RD

Unsupported FMMU mapping of Ext
Sync object detected

0xC0CD008A ECM_ERROR_EMC_EXT_SYNC_R
EQUIRES_ADJUST_EXT_SYNC_C
MD

Unicast Ext Sync control (APWR/
FPWR 0x910) is required

0xC0CD008B ECM_ERROR_EMC_EXT_SYNC_C
MD_DOES_NOT_MATCH_XRMW_
CMD

Unicast Ext Sync control does not
match xRMW command

0xC0CD008C ECM_ERROR_EMC_EXT_SYNC_R
EQUIRES_XRMW_CMD

Ext Sync requires DC configuration
(xRMW command to 0x910)

0xC0CD008D ECM_ERROR_EMC_EXPLICIT_DE
V_IDENT_FAILED_ALSTATUS

Explicit Device identification via
ALSTATUS failed

0xC0CD008E ECM_ERROR_EMC_EXPLICIT_DE
V_IDENT_FAILED_REG

Explicit Device identification via reg-
ister failed

0xC0CD008F ECM_ERROR_EMC_COPY_INFOS
_FOUND_AT_UNMAPPED_RECEIV
E_DATA

CopyInfos found at unmapped
receive data

0xC0CD0090 ECM_ERROR_EMC_COPY_INFO_
RECEIVE_DATA_AREA_NOT_MAT
CHING

CopyInfo receive data area is not
matching

0xC0CD0091 ECM_ERROR_EMC_SDO_UPLOA
D_TOO_LONG

SDO Upload data too long

0xC0CD0092 ECM_ERROR_EMC_SDO_UPLOA
D_TOO_SHORT

SDO Upload data too short

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4084

Hexadecimal Value Definition Description
0xC0CD0093 ECM_ERROR_EMC_SDO_UPLOA

D_COM-
PARE_DOES_NOT_MATCH_EXPE
CTATION

SDO Upload compare does not
match expectation

0xC0CD0094 ECM_ERROR_EMC_SOE_READ_T
OO_LONG

SoE Read IDN data too long

0xC0CD0095 ECM_ERROR_EMC_SOE_READ_T
OO_SHORT

SoE Read IDN data too short

0xC0CD0096 ECM_ERROR_EMC_SOE_READ_
COM-
PARE_DOES_NOT_MATCH_EXPE
CTATION

SoE Read compare does not match
expectation

0xC0CD0097 ECM_ERROR_EMC_REG_INITCM
D_COM-
PARE_DOES_NOT_MATCH_EXPE
CTATION

Register read compare does not
match expectation

0xC0CD0098 ECM_ERROR_EMC_REDUN-
DANCY_PORT_ONLY_POS-
SIBLE_ONCE

Redundancy port can only be placed
once into configuration

0xC0CD0099 ECM_ERROR_EMC_STARTUP_SC
AN_SII_FAILED

Startup scan of SII failed

0xC0CD009A ECM_ERROR_EMC_STARTUP_VE
RIFY_SII_FAILED

Startup verification of SII failed

0xC0CD009B ECM_ERROR_EMC_MAIN_PORT_
NOT_CONNECTED

Main port not connected during top-
ology scan

0xC0CD009C ECM_ERROR_EMC_BUS_SCAN_T
OO_MANY_SLAVES

Bus scan detects too many slaves

0xC0CD009D ECM_ERROR_EMC_BUS_SCAN_S
PLIT_RING_NOT_SUPPORTED

Bus Scan detects unsupported split
ring topology

0xC0CD009E ECM_ERROR_EMC_BUS_SHUT-
DOWN

Bus is shutting down

0xC0CD009F ECM_ERROR_EMC_MASTER_AD
DRESS_NOT_ALLOWED_AS_STA-
TION_ADDRESS

Master address (0) is not allowed as
station address

0xC0CD00A0 ECM_ERROR_EMC_FIRST_STA-
TION_HAS_INVALID_PORT_0

First station has invalid port 0

0xC0CD00A1 ECM_ERROR_EMC_STA-
TION_HAS_INVALID_PORT

Station has invalid port

0xC0CD00A2 ECM_ERROR_EMC_STA-
TION_HAS_NOT_LISTED_STA-
TION_ADDRESS_IN_PORT

Station has not listed station address
in port

0xC0CD00A3 ECM_ERROR_EMC_PORT_CON-
NECTION_BETWEEN_STA-
TIONS_DOES_NOT_MATCH

Port connection between stations
does not match

0xC0CD00A4 ECM_ERROR_EMC_STA-
TION_HAS_ALREADY_USED_STA-
TION_ADDRESS_IN_PORT

Station has already used station
address in port

0xC0CD00A5 ECM_ERROR_EMC_INVALID_SM_
PHYS_START_ADDRESS

Invalid Sm physical start address

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4085

Hexadecimal Value Definition Description
0xC0CD00A6 ECM_ERROR_EMC_DC_TOP-

OLOGY_ON_REDUN-
DANCY_PORT_NOT_SUPPORTED

DC topology on redundancy port
connection not supported. DC
slaves having AutoIncrement posi-
tions behind redundancy port

0xC0CD00A7 ECM_ERROR_EMC_SM_ASSIGN_
PDO_ALREADY_ADDED

Sm AssignPdo already added

0xC0CD00A8 ECM_ERROR_EMC_BASE_SYNC_
OFFSET_PER-
CENTAGE_OUT_OF_RANGE

Base Sync Offset percentage out of
range

0xC0CF0001 ECM_ERROR_COE_INITIALIZA-
TION_ERROR

CoE: Initialization Error

0xC0CF0002 ECM_ERROR_COE_INVALID_TRA
NSFER_HANDLE

CoE: Invalid transfer handle used

0xC0CF0003 ECM_ERROR_COE_NO_MAILBOX
_AVAILABLE

CoE. No mailbox available

0xC0CF0004 ECM_ERROR_COE_INVALID_TRA
NSFER_STATE

CoE: Invalid transfer state

0xC0CF0005 ECM_ERROR_COE_TRANSFER_S
EGMENT_TOO_LONG

CoE: Transfer segment is too long

0xC0CF0006 ECM_ERROR_COE_SHUT-
TING_DOWN

CoE is shutting down.

0xC0CF0007 ECM_ERROR_COE_MAX_TOTAL_
BYTES_SMALLER_THAN_ACTUAL
_TOTAL_BYTES

CoE: Maximum total bytes is smaller
than actual total bytes.

0xC0CF0008 ECM_ERROR_COE_MAILBOX_TR
ANSMIT_FAILED

CoE: Mailbox transmit failed

0xC0CF0009 ECM_ERROR_COE_TRANSFER_A
BORTED

CoE: Transfer has been aborted.

0xC0CF000A ECM_ERROR_COE_SDOINFO_INI-
TIALIZATION_ERROR

0xC0CF000B

0xC0CF000C ECM_ERROR_COE_PRO-
TOCOL_ERROR

CoE Protocol Error

0xC0CF000D ECM_ERROR_COE_NO_AOE_AVA
ILABLE

CoE: No AoE available

0xC0CF000F ECM_ERROR_COE_INVALID_SLA
VE_STATION_ADDRESS

CoE: Invalid slave station address

0xC0CF8000 ECM_ERROR_COE_ABORT-
CODE_TOGGLE_BIT_NOT_ALTER
NATED

SDO Abort Code: Toggle Bit not
alternated

0xC0CF8001 ECM_ERROR_COE_ABORT-
CODE_COMMAND_SPECI-
FIER_NOT_VALID

SDO Abort Code: Command speci-
fier not valid

0xC0CF8002 ECM_ERROR_COE_ABORT-
CODE_PROTOCOL_TIMEOUT

SDO Abort Code: Protocol Timeout

0xC0CF8003 ECM_ERROR_COE_ABORT-
CODE_OUT_OF_MEMORY

SDO Abort Code: Out Of Memory

0xC0CF8004 ECM_ERROR_COE_ABORT-
CODE_UNSUPPORTED_ACCESS

SDO Abort Code: Unsupported
access

0xC0CF8005 ECM_ERROR_COE_ABORT-
CODE_OBJECT_IS_WRITE_ONLY

SDO Abort Code: Object is write
only

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4086

Hexadecimal Value Definition Description
0xC0CF8006 ECM_ERROR_COE_ABORT-

CODE_OBJECT_IS_READ_ONLY
SDO Abort Code: Object is read only

0xC0CF8007 ECM_ERROR_COE_ABORT-
CODE_SUB-
INDEX_CANNOT_BE_WRITTEN_SI
0_NZ

SDO Abort Code: Subindex cannot
be written if subindex 0 is not zero

0xC0CF8008 ECM_ERROR_COE_ABORT-
CODE_COM-
PLETE_ACCESS_NOT_SUP-
PORTED

SDO Abort Code: Complete access
not supported

0xC0CF8009 ECM_ERROR_COE_ABORT-
CODE_OBJECT_LENGTH_EXCEE
DS_MAILBOX_SIZE

SDO Abort Code: Object length
exceeds mailbox size

0xC0CF800A ECM_ERROR_COE_ABORT-
CODE_OBJECT_MAPPED_TO_RX
PDO_NO_WRITE

SDO Abort Code: Object mapped to
RxPDO, SDO Download blocked

0xC0CF800B ECM_ERROR_COE_ABORT-
CODE_OBJECT_DOES_NOT_EXIS
T

SDO Abort Code: Object does not
exist

0xC0CF800C ECM_ERROR_COE_ABORT-
CODE_OBJECT_CANNOT_BE_PD
O_MAPPED

SDO Abort Code: Object cannot be
mapped to PDO

0xC0CF800D ECM_ERROR_COE_ABORT-
CODE_PDO_LENGTH_WOULD_E
XCEED

SDO Abort Code: PDO Length
would exceed maximum size

0xC0CF800E ECM_ERROR_COE_ABORT-
CODE_GEN_PARAM_INCOMPATI-
BILITY

SDO Abort Code: General param-
eter incompatibility

0xC0CF800F ECM_ERROR_COE_ABORT-
CODE_ACCESS_FAILED_DUE_TO
_HW_ERROR

SDO Abort Code: Access failed due
to hardware error

0xC0CF8010 ECM_ERROR_COE_ABORT-
CODE_DATA-
TYPE_DOES_NOT_MATCH

SDO Abort Code: Data type does
not match

0xC0CF8011 ECM_ERROR_COE_ABORT-
CODE_DATA-
TYPE_LENGTH_TOO_LONG

SDO Abort Code: Data type length
too long

0xC0CF8012 ECM_ERROR_COE_ABORT-
CODE_DATA-
TYPE_LENGTH_TOO_SHORT

SDO Abort Code: Data type length
too short

0xC0CF8013 ECM_ERROR_COE_ABORT-
CODE_SUB-
INDEX_DOES_NOT_EXIST

SDO Abort Code: Subindex does not
exist

0xC0CF8014 ECM_ERROR_COE_ABORT-
CODE_RANGE_OF_PARAM-
ETER_EXCEEDED

SDO Abort Code: Range of param-
eter exceeded

0xC0CF8015 ECM_ERROR_COE_ABORT-
CODE_VALUE_OF_PARAM_WRITT
EN_TOO_HIGH

SDO Abort Code: Value of param-
eter written too high

0xC0CF8016 ECM_ERROR_COE_ABORT-
CODE_VALUE_OF_PARAM_WRITT
EN_TOO_LOW

SDO Abort Code: Value of param-
eter written too low

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4087

Hexadecimal Value Definition Description
0xC0CF8017 ECM_ERROR_COE_ABORT-

CODE_MIN_VALUE_IS_LESS_THA
N_MAX_VALUE

SDO Abort Code: Minimum value is
less than maximum value

0xC0CF8018 ECM_ERROR_COE_ABORT-
CODE_GENERAL_ERROR

SDO Abort Code: General Error

0xC0CF8019 ECM_ERROR_COE_ABORT-
CODE_NO_TRANSFER_TO_APP

SDO Abort Code: Data cannot be
transferred or stored to the applica-
tion

0xC0CF801A ECM_ERROR_COE_ABORT-
CODE_LOCAL_CONTROL

SDO Abort Code: Data cannot be
transferred or stored to the applica-
tion because of local control

0xC0CF801B ECM_ERROR_COE_ABORT-
CODE_NO_TRANSFER_DUE_TO_
CURRENT_STATE

SDO Abort Code: Data cannot be
transferred or stored to the applca-
tion because of the present device
state

0xC0CF801C ECM_ERROR_COE_ABORT-
CODE_NO_OBJECT_DIC-
TIONARY_PRESENT

SDO Abort Code: Object dictionary
dynamic generation fails or no object
dictionary is present

0xC0CF801D ECM_ERROR_COE_ABORT-
CODE_UNKNOWN_ABORT_CODE

SDO Abort Code: Unknown abort
code

0xC0CF801E ECM_ERROR_COE_ABORT-
CODE_GEN_INTERNAL_COMPAT

SDO Abort Code: General internal
incompatibility in the device

0xC0D00001 ECM_ERROR_EOE_INVALID_MAC
_ADDRESS

Invalid MAC address

0xC0D00002 ECM_ERROR_EOE_INVALID_CAL
LBACK_TYPE

Invalid callback type

0xC0D00003 ECM_ERROR_EOE_DESTINA-
TION_UNREACHABLE

Destination unreachable

0xC0D00004 ECM_ERROR_EOE_INVALID_EOE
_RESPONSE

Invalid EoE Response

0xC0D00005 ECM_ERROR_EOE_UNKNOWN_E
RROR

SetIPParam/SetFilterParam:
Unknown error

0xC0D00006 ECM_ERROR_EOE_UNSPECI-
FIED_ERROR

SetIPParam/SetFilterParam: Unspe-
cified Error

0xC0D00007 ECM_ERROR_EOE_UNSUP-
PORTED_FRAME_TYPE

SetIPParam/SetFilterParam: Unsup-
ported frame type

0xC0D00008 ECM_ERROR_EOE_NO_IP_SUP-
PORT

SetIPParam/SetFilterParam: No IP
support

0xC0D00009 ECM_ERROR_EOE_DHCP_NOT_S
UPPORTED

SetIPParam/SetFilterParam: DHCP
not supported

0xC0D0000A ECM_ERROR_EOE_NO_FILTER_S
UPPORT

SetIPParam/SetFilterParam: No filter
supported

0xC0D0000B ECM_ERROR_EOE_TIMEOUT EoE Timeout

0xC0D0000C ECM_ERROR_EOE_SHUT-
TING_DOWN

EoE is shutting down

0xC0D0000D ECM_ERROR_EOE_MASTER_AD
DRESS_NOT_ALLOWED

EoE: Master address is not allowed
to use here

0xC0D0000E ECM_ERROR_EOE_CONFIGURA-
TION_IS_NOT_OPEN

EoE: Configuration is not open

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4088

Hexadecimal Value Definition Description
0xC0D0000F ECM_ERROR_EOE_CONFIGURA-

TION_IS_ALREADY_OPEN
EoE: Configuration is already open

0xC0D00010 ECM_ERROR_EOE_DUPLI-
CATE_IP_ADDRESS

EoE: Duplicate IP address

0xC0D00011 ECM_ERROR_EOE_DUPLI-
CATE_MAC_ADDRESS_ON_MUL-
TIPLE_PORTS

EoE: Duplicate MAC address on
multiple ports

0xC0D00012 ECM_ERROR_EOE_FRAME_TOO_
LARGE

EoE: Frame too large

0xC0D00013 ECM_ERROR_EOE_IF_INITIALI-
ZATION_ERROR

EoE: Interface initialization error

0xC0D00014 ECM_ERROR_EOE_IF_NO_FRAM
E_AVAILABLE

EoE: No Frame available

0xC0D00015 ECM_ERROR_EOE_LINK_DOWN EoE: Link down

0xC0D10002 ECM_ERROR_FOE_ERROR_UNK
NOWN_ERROR

-

0xC0D10003 ECM_ERROR_FOE_INVALID_TRA
NSFER_HANDLE

FoE: Invalid transfer handle

0xC0D10004 ECM_ERROR_FOE_INVALID_TRA
NSFER_STATE

FoE: Invalid transfer state

0xC0D10005 ECM_ERROR_FOE_INVALID_SLA
VE_STATION_ADDRESS

FoE: Invalid slave station address

0xC0D10006 ECM_ERROR_FOE_WRONG_SLA
VE_STATE

FoE: Wrong slave state

0xC0D10007 ECM_ERROR_FOE_NO_MAILBOX
_AVAILABLE

FoE: No mailbox available

0xC0D10008 ECM_ERROR_FOE_TRANSFER_A
BORTED

FoE: Transfer has been aborted

0xC0D10009 ECM_ERROR_FOE_PRO-
TOCOL_TIMEOUT

FoE: Protocol Timeout

0xC0D1000A ECM_ERROR_FOE_TRANSFER_S
EGMENT_TOO_LONG

FoE: Transfer segment is too long

0xC0D1000B ECM_ERROR_FOE_MAILBOX_TR
ANSMIT_FAILED

FoE: Mailbox transmit failed

0xC0D1000C ECM_ERROR_FOE_FILE-
NAME_TOO_LONG

FoE: Filename is too long

0xC0D1000D ECM_ERROR_FOE_BUFFER_EXC
EEDED

FoE: Buffer is exceeded

0xC0D1000E ECM_ERROR_FOE_FIRST_SEG-
MENT_SHOULD_NOT_BE_EMPTY

FoE: First segment should not be
empty

0xC0D1000F ECM_ERROR_FOE_SEG-
MENT_SHOULD_BE_EMPTY

FoE: Segment should be empty

0xC0D18000 ECM_ERROR_FOE_ERROR_NOT
_DEFINED

FoE: Error Response: not defined

0xC0D18001 ECM_ERROR_FOE_ERROR_NOT
_FOUND

FoE: Error Response: Not Found

0xC0D18002 ECM_ERROR_FOE_ACCESS_DEN
IED

FoE: Error Response: Access
Denied

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4089

Hexadecimal Value Definition Description
0xC0D18003 ECM_ERROR_FOE_ERROR_DISK

_FULL
FoE: Error Response: Disk full

0xC0D18004 ECM_ERROR_FOE_ERROR_ILLE
GAL

FoE: Error Response: Illegal

0xC0D18005 ECM_ERROR_FOE_ERROR_PACK
ET_NUMBER_WRONG

FoE: Error Response: Packet
number is wrong

0xC0D18006 ECM_ERROR_FOE_ERROR_ALRE
ADY_EXISTS

FoE: Error Response: Already exists

0xC0D18007 ECM_ERROR_FOE_ERROR_NO_
USER

FoE: Error Response: No User

0xC0D18008 ECM_ERROR_FOE_ERROR_BOO
TSTRAP_ONLY

FoE: Acces to specified file is only
allowed in BOOT state

0xC0D18009 ECM_ERROR_FOE_ERROR_NOT
_BOOTSTRAP

FoE: Access to specified file is only
allowed when in PREOP, SAFEOP
or OP

0xC0D1800A ECM_ERROR_FOE_ERROR_NO_
RIGHTS

FoE: No Rights

0xC0D1800B ECM_ERROR_FOE_ERROR_PRO-
GRAM_ERROR

FoE: Program Error

0xC0D20001 ECM_ERROR_SOE_UNKNOWN_S
OE_ERROR

SoE: Unknown SoE Error

0xC0D20002 ECM_ERROR_SOE_INITIALIZA-
TION_ERROR

SoE: Initialization error

0xC0D20003 ECM_ERROR_SOE_INVALID_TRA
NSFER_HANDLE

SoE: Invalid transfer handle

0xC0D20004 ECM_ERROR_SOE_NO_MAILBOX
_AVAILABLE

SoE: No Mailbox available

0xC0D20005 ECM_ERROR_SOE_INVALID_TRA
NSFER_STATE

SoE: Invalid transfer state

0xC0D20006 ECM_ERROR_SOE_TRANSFER_S
EGMENT_TOO_LONG

SoE: Transfer segment is too long

0xC0D20007 ECM_ERROR_SOE_SHUT-
TING_DOWN

SoE is shutting down

0xC0D20008 ECM_ERROR_SOE_MAX_TOTAL_
BYTES_SMALLER_THAN_ACTUAL
_TOTAL_BYTES

SoE: Maximum total bytes is smaller
than actual total bytes

0xC0D20009 ECM_ERROR_SOE_MAILBOX_TR
ANSMIT_FAILED

SoE: Mailbox transmit failed

0xC0D2000A ECM_ERROR_SOE_INVALID_SOE
_HEADER

SoE: Invalid SoE header

0xC0D2000B ECM_ERROR_SOE_PRO-
TOCOL_TIMEOUT

SoE: Protocol Timeout

0xC0D2000C ECM_ERROR_SOE_PRO-
TOCOL_ERROR

SoE: Protocol Error

0xC0D2000D ECM_ERROR_SOE_TRANSFER_A
BORTED

SoE: Transfer has been aborted

0xC0D2000E ECM_ERROR_SOE_WRONG_SLA
VE_STATE

SoE: Wrong slave state

0xC0D2000F ECM_ERROR_SOE_NO_AOE_AVA
ILABLE

SoE: No AoE available

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4090

Hexadecimal Value Definition Description
0xC0D20010 ECM_ERROR_SOE_INVALID_SLA

VE_STATION_ADDRESS
SoE: Invalid slave station address

0xC0D21001 ECM_ERROR_SOE_SSC_NO_IDN SoE: No IDN

0xC0D21009 ECM_ERROR_SOE_SSC_INVALID
_ACCESS_TO_ELEMENT_1

SoE: Invalid access to element 1

0xC0D22001 ECM_ERROR_SOE_SCC_NO_NA
ME

SoE: IDN has no name

0xC0D22002 ECM_ERROR_SOE_SSC_NAME_T
RANSMISSION_IS_TOO_SHORT

SoE: Name transmission is too short

0xC0D22003 ECM_ERROR_SOE_SSC_NAME_T
RANSMISSION_IS_TOO_LONG

SoE: Name transmission is too long

0xC0D22004 ECM_ERROR_SOE_SSC_NAME_
CANNOT_BE_CHANGED

SoE: Name cannot be changed

0xC0D22005 ECM_ERROR_SOE_SSC_NAME_I
S_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Name is write protected at this
time

0xC0D23002 ECM_ERROR_SOE_SSC_ATTRIB
UTE_TRANSMIS-
SION_IS_TOO_SHORT

SoE: Attribute transmission is too
short

0xC0D23003 ECM_ERROR_SOE_SSC_ATTRIB
UTE_TRANSMIS-
SION_IS_TOO_LONG

SoE: Attribute transmission is too
long

0xC0D23004 ECM_ERROR_SOE_SSC_ATTRIB
UTE_CANNOT_BE_CHANGED

SoE: Attribute cannot be changed

0xC0D23005 ECM_ERROR_SOE_SSC_ATTRIB
UTE_IS_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Attribute is write protected at
this time

0xC0D24001 ECM_ERROR_SOE_SSC_NO_UNI
T

SoE: IDN has no unit

0xC0D24002 ECM_ERROR_SOE_SSC_UNIT_T
RANSMISSION_IS_TOO_SHORT

SoE: Unit transmission is too short

0xC0D24003 ECM_ERROR_SOE_SSC_UNIT_T
RANSMISSION_IS_TOO_LONG

SoE: Unit transmission is too long

0xC0D24004 ECM_ERROR_SOE_SSC_UNIT_C
ANNOT_BE_CHANGED

SoE: Unit cannot be changed

0xC0D24005 ECM_ERROR_SOE_SSC_UNIT_IS
_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Unit is write protected at this
time

0xC0D25001 ECM_ERROR_SOE_SSC_NO_MA
XIMUM_VALUE

SoE: IDN has no maximum value

0xC0D25002 ECM_ERROR_SOE_SSC_MIN-
IMUM_VALUE_TRANSMIS-
SION_IS_TOO_SHORT

SoE: Minimum value transmission is
too short

0xC0D25003 ECM_ERROR_SOE_SSC_MIN-
IMUM_VALUE_TRANSMIS-
SION_IS_TOO_LONG

SoE: Minimum value transmission is
too long

0xC0D25004 ECM_ERROR_SOE_SSC_MIN-
IMUM_VALUE_CANNOT_BE_CHA
NGED

SoE: Minimum value cannot be
changed

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4091

Hexadecimal Value Definition Description
0xC0D25005 ECM_ERROR_SOE_SSC_MIN-

IMUM_VALUE_IS_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Mimum value is write protected
at this time

0xC0D26001 ECM_ERROR_SOE_SSC_NO_MA
XIMUM_VALUE

SoE: IDN has no maximum value

0xC0D26002 ECM_ERROR_SOE_SSC_MAX-
IMUM_VALUE_TRANSMIS-
SION_IS_TOO_SHORT

SoE: Maximum value transmission is
too short

0xC0D26003 ECM_ERROR_SOE_SSC_MAX-
IMUM_VALUE_TRANSMIS-
SION_IS_TOO_LONG

SoE: Maximum value transmission is
too long

0xC0D26004 ECM_ERROR_SOE_SSC_MAX-
IMUM_VALUE_CANNOT_BE_CHA
NGED

SoE: Maximum value cannot be
changed

0xC0D26005 ECM_ERROR_SOE_SSC_MAX-
IMUM_VALUE_IS_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Maximum value is write pro-
tected at this time

0xC0D27002 ECM_ERROR_SOE_SSC_OPDATA
_TRANSMIS-
SION_IS_TOO_SHORT

SoE: OpData transmission is too
short

0xC0D27003 ECM_ERROR_SOE_SSC_OPDATA
_TRANSMISSION_IS_TOO_LONG

SoE: OpData transmission is too
long

0xC0D27004 ECM_ERROR_SOE_SSC_OPDATA
_CANNOT_BE_CHANGED

SoE: OpData cannot be changed

0xC0D27005 ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: OpData is write protected at
this time

0xC0D27006 ECM_ERROR_SOE_SSC_OPDATA
_IS_LOWER_THAN_MIN-
IMUM_VALUE

SoE: OpData is lower than minimum
value

0xC0D27007 ECM_ERROR_SOE_SSC_OPDATA
_IS_HIGHER_THAN_MAX-
IMUM_VALUE

SoE: OpData is higher than max-
imum value

0xC0D27008 ECM_ERROR_SOE_SSC_OPDATA
_IS_INVALID

SoE: OpData is invalid

0xC0D27009 ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_BY_PASSWORD

SoE: OpData is write protected by
password

0xC0D2700A ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_DUE_CYCLICALLY_CON-
FIGURED

SoE: OpData is write protected due
to being cyclically configured

0xC0D2700B ECM_ERROR_SOE_SSC_OPDATA
_INVALID_DIRECT_ADDRESSING

SoE: Invalid direct addressing

0xC0D2700C ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_DUE_OTHER_SETTINGS

SoE: OpData is write protected due
to other settings.

0xC0D2700D ECM_ERROR_SOE_SSC_OPDATA
_INVALID_FLOATING_POINT_NUM
BER

SoE: Invalid floating point number

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4092

Hexadecimal Value Definition Description
0xC0D2700E ECM_ERROR_SOE_SSC_OPDATA

_IS_WRITE_PRO-
TECTED_AT_PARAMETERIZA-
TION_LEVEL

SoE: OpData is write protected at
parameterization level

0xC0D2700F ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_AT_OPERATION_LEVEL

SoE: OpData is write protected at
operation level

0xC0D27010 ECM_ERROR_SOE_SSC_OPDATA
_PROCEDURE_COM-
MAND_ALREADY_ACTIVE

SoE: Procedure command already
active

0xC0D27011 ECM_ERROR_SOE_SSC_OPDATA
_PROCEDURE_COM-
MAND_NOT_INTERRUPTIBLE

SoE: Procedure command not inter-
ruptible

0xC0D27012 ECM_ERROR_SOE_SSC_OPDATA
_PROCEDURE_COM-
MAND_NOT_EXECUT-
ABLE_AT_THIS_TIME

SoE: Procedure command is not
executable at this time

0xC0D27013 ECM_ERROR_SOE_SSC_OPDATA
_PROCEDURE_COM-
MAND_NOT_EXECUT-
ABLE_INVALID_PARAM

SoE: Procedure command is not
executable due to invalid parameter

0xC0D4005C ECM_ERROR_ENI_NO_SLAVES_I
N_ENI

ENI does not contain any slaves

0xC0D50001 ECM_ERROR_ALSTAT-
CODE_UNSPECIFIED_ERROR

ALStatusCode: Unspecified error

0xC0D50002 ECM_ERROR_ALSTAT-
CODE_NO_MEMORY

ALStatusCode: No memory

0xC0D50003 ECM_ERROR_ALSTAT-
CODE_INVALID_DEVICE_SETUP

ALStatusCode: Invalid Device Setup

0xC0D50011 ECM_ERROR_ALSTAT-
CODE_INVALID_REQUESTED_ST
ATE_CHANGE

ALStatusCode: Invalid requested
state change

0xC0D50012 ECM_ERROR_ALSTAT-
CODE_UNKNOWN_REQUESTED_
STATE

ALStatusCode: Unknown requested
state

0xC0D50013 ECM_ERROR_ALSTAT-
CODE_BOOTSTRAP_NOT_SUP-
PORTED

ALStatusCode: Bootstrap not sup-
ported

0xC0D50014 ECM_ERROR_ALSTAT-
CODE_NO_VALID_FIRMWARE

ALStatusCode: No valid firmware

0xC0D50015 ECM_ERROR_ALSTAT-
CODE_INVALID_BOOT_MAILBOX_
CONFIGURATION

ALStatusCode: Invalid BOOT
mailbox configuration

0xC0D50016 ECM_ERROR_ALSTAT-
CODE_INVALID_PREOP_MAILBOX
_CONFIGURATION

ALStatusCode: Invalid PREOP
mailbox configuration

0xC0D50017 ECM_ERROR_ALSTAT-
CODE_INVALID_SYNC_MAN-
AGER_CONFIGURATION

ALStatusCode: Invalid sync man-
ager configuration

0xC0D50018 ECM_ERROR_ALSTAT-
CODE_NO_VALID_INPUTS_AVAIL-
ABLE

ALStatusCode: No valid inputs avail-
able

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4093

Hexadecimal Value Definition Description
0xC0D50019 ECM_ERROR_ALSTAT-

CODE_NO_VALID_OUTPUTS
ALStatusCode: No valid outputs

0xC0D5001A ECM_ERROR_ALSTAT-
CODE_SYNCHRONIZA-
TION_ERROR

ALStatusCode: Synchronization
error

0xC0D5001B ECM_ERROR_ALSTAT-
CODE_SYNC_MAN-
AGER_WATCHDOG

ALStatusCode: Sync Manager
watchdog

0xC0D5001C ECM_ERROR_ALSTAT-
CODE_INVALID_SYNC_MAN-
AGER_TYPES

ALStatusCode: Invalid Sync Man-
ager Types

0xC0D5001D ECM_ERROR_ALSTAT-
CODE_INVALID_OUTPUT_CON-
FIGURATION

ALStatusCode: Invalid output config-
uration

0xC0D5001E ECM_ERROR_ALSTAT-
CODE_INVALID_INPUT_CONFIGU-
RATION

ALStatusCode: Invalid input configu-
ration

0xC0D5001F ECM_ERROR_ALSTAT-
CODE_INVALID_WATCHDOG_CO
NFIGURATION

ALStatusCode: Invalid Watchdog
configuration

0xC0D50020 ECM_ERROR_ALSTAT-
CODE_SLAVE_NEEDS_COLD_STA
RT

ALStatusCode: Slave needs cold
start

0xC0D50021 ECM_ERROR_ALSTAT-
CODE_SLAVE_NEEDS_INIT

ALStatusCode: Slave needs INIT

0xC0D50022 ECM_ERROR_ALSTAT-
CODE_SLAVE_NEEDS_PREOP

ALStatusCode: slave needs PREOP

0xC0D50023 ECM_ERROR_ALSTAT-
CODE_SLAVE_NEEDS_SAFEOp

ALStatusCode: slave needs
SAFEOP

0xC0D50024 ECM_ERROR_ALSTAT-
CODE_INVALID_INPUT_MAPPING

ALStatusCode: Invalid Input Map-
ping

0xC0D50025 ECM_ERROR_ALSTAT-
CODE_INVALID_OUTPUT_MAP-
PING

ALStatusCode: Invalid Output Map-
ping

0xC0D50026 ECM_ERROR_ALSTAT-
CODE_INCONSISTENT_SET-
TINGS

ALStatusCode: Inconsistent settings

0xC0D50027 ECM_ERROR_ALSTAT-
CODE_FREERUN_NOT_SUP-
PORTED

ALStatusCode: FreeRun not sup-
ported

0xC0D50028 ECM_ERROR_ALSTAT-
CODE_SYNCMODE_NOT_SUP-
PORTED

ALStatusCode: SyncMode not sup-
ported

0xC0D50029 ECM_ERROR_ALSTAT-
CODE_FREERUN_NEEDS_3BUFF
ER_MODE

ALStatusCode: FreeRun needs
3Buffer mode

0xC0D5002A ECM_ERROR_ALSTAT-
CODE_BACK-
GROUND_WATCHDOG

ALStatusCode: Background
Watchdog

0xC0D5002B ECM_ERROR_ALSTAT-
CODE_NO_VALID_INPUTS_AND_
OUTPUTS

ALStatusCode: No valid Inputs and
Outputs

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4094

Hexadecimal Value Definition Description
0xC0D5002C ECM_ERROR_ALSTAT-

CODE_FATAL_SYNC_ERROR
ALStatusCode: Fatal Sync error

0xC0D5002D ECM_ERROR_ALSTAT-
CODE_NO_SYNC_ERROR

ALStatusCode: No Sync error

0xC0D50030 ECM_ERROR_ALSTAT-
CODE_INVALID_DC_SYNC_CON-
FIGURATION

ALStatusCode: Invalid DC SYNC
configuration

0xC0D50031 ECM_ERROR_ALSTAT-
CODE_INVALID_DC_LATCH_CON-
FIGURATION

ALStatusCode: Invalid DC Latch
configuration

0xC0D50032 ECM_ERROR_ALSTAT-
CODE_PLL_ERROR

ALStatusCode: PLL error

0xC0D50033 ECM_ERROR_ALSTAT-
CODE_DC_SYNC_IO_ERROR

ALStatusCode: DC Sync IO error

0xC0D50034 ECM_ERROR_ALSTAT-
CODE_DC_SYNC_TIMEOUT_ERR
OR

ALStatusCode: DC Sync Timeout
Error

0xC0D50035 ECM_ERROR_ALSTAT-
CODE_DC_INVALID_SYNC_CYCL
E_TIME

ALStatusCode: DC Invalid Sync
Cycle Time

0xC0D50036 ECM_ERROR_ALSTAT-
CODE_DC_SYNC0_CYCLE_TIME

ALStatusCode: DC Sync0 Cycle
Time

0xC0D50037 ECM_ERROR_ALSTAT-
CODE_DC_SYNC1_CYCLE_TIME

ALStatusCode: DC Sync1 Cycle
Time

0xC0D50041 ECM_ERROR_ALSTAT-
CODE_MBX_AOE

ALStatusCode: MBX_AOE

0xC0D50042 ECM_ERROR_ALSTAT-
CODE_MBX_EOE

ALStatusCode: MBX_EOE

0xC0D50043 ECM_ERROR_ALSTAT-
CODE_MBX_COE

ALStatusCode: MBX_COE

0xC0D50044 ECM_ERROR_ALSTAT-
CODE_MBX_FOE

ALStatusCode: MBX_FOE

0xC0D50045 ECM_ERROR_ALSTAT-
CODE_MBX_SOE

ALStatusCode: MBX_SOE

0xC0D5004F ECM_ERROR_ALSTAT-
CODE_MBX_VOE

ALStatusCode: MBX_VOE

0xC0D50050 ECM_ERROR_ALSTAT-
CODE_EEPROM_NO_ACCESS

ALStatusCode: EEPROM no access

0xC0D50051 ECM_ERROR_ALSTAT-
CODE_EEPROM_ERROR

ALStatusCode: EEPROM error

0xC0D50060 ECM_ERROR_ALSTAT-
CODE_SLAVE_RESTARTED_LOC
ALLY

ALStatusCode: Slave restarted
locally

0xC0D50061 ECM_ERROR_ALSTAT-
CODE_DEVICE_IDENTIFICA-
TION_VALUE_UPDATED

ALStatusCode: Device identificatin
value updated

0xC0D500F0 ECM_ERROR_ALSTAT-
CODE_APPLICATION_CON-
TROLLER_AVAILABLE

ALStatusCode: Application controller
available

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4095

Hexadecimal Value Definition Description
0xC0D58000 ECM_ERROR_ALSTAT-

CODE_VENDOR_SPE-
CIFIC_CODE_START

Begin of vendor-specific ALStatus-
Code mapping

0xC0D5FFFF ECM_ERROR_ALSTAT-
CODE_VENDOR_SPE-
CIFIC_CODE_END

End of vendor-specific ALStatus-
Code mapping

0xC0D60001 ECM_ERROR_IF_COE_SUP-
PORT_NOT_AVAILABLE

CoE support is not configured

0xC0D60002 ECM_ERROR_IF_SOE_SUP-
PORT_NOT_AVAILABLE

SoE support is not configured

0xC0D60003 ECM_ERROR_IF_FOE_SUP-
PORT_NOT_AVAILABLE

FoE support is not configured

0xC0D60004 ECM_ERROR_IF_AOE_SUP-
PORT_NOT_AVAILABLE

AoE support is not configured

0xC0D60005 ECM_ERROR_IF_INVALID_TRANS
PORT_TYPE

Invalid transfer type

0xC0D60006 ECM_ERROR_IF_SOE_INVALID_D
RIVE_NO

SoE: Invalid drive number

0xC0D60007 ECM_ERROR_IF_SOE_INVALID_E
LEMENT_FLAGS

SoE: invalid element flags

0xC0D60008 ECM_ERROR_IF_INVALID_SOE_T
RANSFER_ID

SoE: Invalid transfer ID

0xC0D60009 ECM_ERROR_IF_TRANSFER_AB
ORTED

Transfer aborted

0xC0D6000A ECM_ERROR_IF_OUT_OF_PACKE
TS

Out of packets

0xC0D6000B ECM_ERROR_IF_OUT_OF_TRAN
SFER_CONTEXTS

Out of transfer contexts

0xC0D6000C ECM_ERROR_IF_INVALID_SUB-
INDEX_FOR_COMPLETE_ACCESs

CoE: Invalid subindex for Complete
Access

0xC0D6000D ECM_ERROR_IF_INVALID_COE_T
RANSFER_ID

CoE: Invalid transfer ID

0xC0D6000E ECM_ERROR_IF_INVALID_COE_S
DOINFO_LISTTYPE

CoE: Invalid SDOINFO ListType

0xC0D6000F ECM_ERROR_IF_FILE_READ_ER
ROR

File Read Error

0xC0D60010 ECM_ERROR_IF_COULD_NOT_O
PEN_FILE

Could not open file

0xC0D60011 ECM_ERROR_IF_INVALID_CONFI
G_NXD

Invalid config.nxd detected

0xC0D60012 ECM_ERROR_IF_CONFIG_NXD_
WITHOUT_SLAVES

Config.nxd does not contain any
slaves

0xC0D60013 ECM_ERROR_IF_INVALID_FILE_N
AME

Invalid file name

0xC0D60014 ECM_ERROR_IF_INVALID_FOE_T
RANSFER_ID

Invalid FoE transfer id

0xC0D60015 ECM_ERROR_IF_INVALID_GET_T
OPOLOGY_TRANSFER_ID

Invalid GetTopology transfer id

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4096

1.7.3.4.2 CM592-DP PROFIBUS DP master diagnosis
In Automation Builder, diagnosis messages of communication module CM592-DP are displayed
at device tree node “CM592-DP” and all nodes below, slave devices and I/O modules.
Click tab “Diagnosis”.
Within PLC application, diagnosis messages can be read by diagnosis related methods of
function block type “Diag”, provided in library “Diag”. Furthermore, at CM592-DP specific I/O
driver function block and slave and I/O module specific function blocks. Ä Chapter 1.7.1.4
“Diagnosis in IEC application” on page 4020

In PLC display, diagnosis messages of CM592-DP are not shown.

Following diagnosis messages are signaled by CM592-DP.
CM592 communication module specific diagnosis messages:

Severity SubSysteminfo Additional Error code Meaning Remedy
3 0 0 655360 Watchdog error

communication
module

3 0 0 655361 Firmware version
of CM592-DP not
supported

Update firmware

3 0 0 655362 Configuration
error

Check configu-
ration and cor-
rect errors

3 0 0 655363 CM592-DP not
found

Plug correct
communication
module

3 0 0 655364 CM592-DP has
wrong type

Plug correct
communication
module

4 0 0 655365 No PROFIBUS
slave device con-
figured

Check configu-
ration

4 0 0 655366 No PROFIBUS
slave IO channel
configured

Check configu-
ration

3 0 0 655367 Configuration
version mis-
match

Use matching
CPU firmware
version

3 0 0 655368 Diagnosis lost,
could not save
additional diag-
nosis data

Check configu-
ration - too
many active
diagnosis mes-
sages received

3 0 0 655369 CM592-DP is not
communicating

Check bus con-
nection and
configuration

3 0 0 655370 CM592-DP sig-
nals communica-
tion error

Check bus con-
nection and
configuration

3 0 0 655371 Starting CM592-
DP's protocol
stack failed

Check bus con-
nection and
configuration

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4097

Severity SubSysteminfo Additional Error code Meaning Remedy
3 0 0 655372 Stopping

CM592-DP's pro-
tocol stack failed

3 0 0 655373 PLC cannot be
set to RUN due
to error at
CM592-DP

Check error log
and correct
errors

3 0 0 655374 CI54x communi-
cation interface
module is
sending not sup-
ported diagnosis
format

Check configu-
ration and FW
revision of com-
munication
interface
module

PROFIBUS standard diagnosis messages:

Severity SubSysteminfo Additional Error code Meaning Remedy
3 0 0 65536 Standard diag-

nosis message
received

Check addi-
tional data for
details

3 0 0 65537 Slave device off-
line

Check if slave
device is con-
nected physi-
cally and up
and running

3 0 0 65538 Slave device
reports error in
configuration
data

Check if slave
device descrip-
tion data (GSD)
is up-to-date

3 0 0 65539 Slave device
reports error in
parameter data

Check if slave
device descrip-
tion data (GSD)
is up-to-date

3 0 0 65540 Slave device
cannot provide
valid data

Check slave
device status

3 0 0 65541 Slave device
reports extended
diagnosis over-
flow

Start with
resolving root
causes of avail-
able diagnosis
messages

3 0 0 196608 Identifier diag-
nosis message
received

Check addi-
tional data for
details

3 0 0 262144 Device diagnosis
DPV0 format
received

Check addi-
tional data for
details

3 0 0 327680 Device diagnosis
DPV1 alarm
received

Check addi-
tional data for
details

3 0 0 393216 Device diagnosis
DPV1 status
received

Check addi-
tional data for
details

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4098

PROFIBUS channel diagnosis messages:

Severity SubSysteminfo Additional Error code Meaning Remedy
3 0 - 63 0 131072 Channel diag-

nosis, channel x,
Reserved error
code y

3 0 - 63 0 131073 Channel diag-
nosis, channel x,
Short circuit

3 0 - 63 0 131074 Channel diag-
nosis, channel x,
Undervoltage

3 0 - 63 0 131075 Channel diag-
nosis, channel x,
Overvoltage

3 0 - 63 0 131076 Channel diag-
nosis, channel x,
Overload

3 0 - 63 0 131077 Channel diag-
nosis, channel x,
Overtemperature

3 0 - 63 0 131078 Channel diag-
nosis, channel x,
Line break

3 0 - 63 0 131079 Channel diag-
nosis, channel x,
Upper limit value
exceeded

3 0 - 63 0 131080 Channel diag-
nosis, channel x,
Lower limit value
exceeded

3 0 - 63 0 131081 Channel diag-
nosis, channel x,
Error

3 0 - 63 0 131082 -
131087

Channel diag-
nosis, channel x,
Reserved error
code y

3 0 - 63 0 131088 -
131103

Channel diag-
nosis, channel x,
Manufacturer
specific error y

ABB Communication Interface Module (CI54x) specific diagnosis messages:

Severity SubSysteminfo Additional Error code Meaning Remedy

3 255 0 8722 Internal error

3 255 0 8732 Internal error

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4099

4 255 0 9480 I/O module
removed from
hot swap ter-
minal unit or
defective
module on hot
swap terminal
unit

Plug I/O
module,
replace I/O
module

4 255 0 9500 Wrong I/O
module plugged
on hot swap ter-
minal unit

Remove wrong
I/O module and
plug projected
I/O module

4 255 0 9514 No communica-
tion with I/O
module on hot
swap terminal
unit

Replace I/O
module

4 255 0 9526 I/O module does
not support hot
swap

Power off
system and
replace I/O
module

4 255 0 9736 Hot swap ter-
minal unit
required but not
found

Plug hot swap
terminal unit

4 255 0 9764 Defective hot
swap terminal
unit

4 255 0 9770 No communica-
tion with hot
swap terminal
unit

Restart, if error
persists replace
terminal unit

3 255 0 16131 Timeout Replace I/O
module

3 255 0 16137 Overflow diag-
nosis buffer

Restart

4 255 0 16138 Voltage overflow
at outputs
(above UP3
level)

Check termi-
nals / check
process supply
voltage

3/4 255 0 16139 Process voltage
UP or UP3 too
low

Check process
supply voltage

3 255 0 16145 No communica-
tion with I/O
module

Replace I/O
module

3 255 0 16147 Checksum error Replace I/O
module

3 255 0 16154 Parameter error Check configu-
ration

4 255 0 16159 At least one
module does not
support failsafe
function

Check modules
and parameteri-
zation

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4100

3 255 0 16160 Wrong I/O
module type on
socket

Replace I/O
module / check
configuration

4 255 0 16162 No response
during initializa-
tion of the I/O
module

Replace I/O
module

3 255 0 16164 Internal data
exchange failure

Replace I/O
module

3 255 0 16168 Different hard-/
firmware ver-
sions in the
module

Replace I/O
module

3 255 0 16171 Internal error Replace I/O
module

3/4 255 0 16173 No process
voltage UP or
UP3

Check process
voltage

4 255 0 16174 Voltage feed-
back on acti-
vated digital out-
puts DO0...DO7
on UP3

Check termi-
nals

4 255 0 16175 Sensor voltage
too low

3 0 - 31 0 18 Test error

4 0 - 31 0 257 Wrong measure-
ment, false tem-
perature at the
compensation
channel

4 0 - 31 0 258 AI531: Wrong
measurement;
potential differ-
ence is too high;
CD522: PWM
duty cycle out of
duty area

4 0 - 31 0 260 Measurement
overflow

 Check channel
wiring and
sensor power
supply

4 0 - 31 0 263 Measurement
underflow at
analog input

 Check channel
wiring and
sensor power
supply

4 0 - 31 0 266 Short circuit and
cut wire or "out
of range"

4 0 - 31 0 267 Output/process
voltage to
small/low

3 0 - 31 0 273 Test error

4 0 - 31 0 303 Short circuit at
an analog input

Check channel
wiring

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4101

4 0 - 31 0 304 Analog value
overflow or
broken wire at
an analog input

Check value or
check terminals

4 0 - 31 0 530 Internal fuse at
0V is defect. 0V
not connected
with GND

Check I/O
module wiring.
Restart I/O
module, if
needed. If this
error persists,
replace I/O
module

3 0 - 31 0 540 Test error

3 0 - 31 0 555 Internal error

4 0 - 31 0 558 Externally
voltage detected
on digital output
DO0...DO7

Check termi-
nals

4 0 - 31 0 559 Short circuit at
digital output

Check channel
wiring

4 0 - 31 0 772 Analog value
overflow at an
analog output

Check output
value

4 0 - 31 0 775 Analog value
underflow at an
analog output

Check output
value

4 0 - 31 0 796 Different config-
uration

3 0 - 31 0 1037 Test error

4 0 - 31 0 1070 Externally
voltage detected
on digital output
DC0...DC7

Check termi-
nals

4 0 - 31 0 1071 Short circuit at
digital output

Check termi-
nals

1.7.3.4.3 CM582-DP PROFIBUS DP slave diagnosis
The diagnosis messages of the communication module CM582-DP are displayed in the tab
“Diagnosis ” of node “CM582-DP” in the device tree of the Automation Builder. Within PLC
application they can be read with the diagnosis methods of IO driver or function block “Diag”.
In the PLC display the diagnosis messages of CM582-DP are not shown.
The following diagnosis messages are signaled by CM582-DP:

Error
severity SubSysteminfo Additional Error code Meaning Remedy

3 0 0 1000x No communication module
or wrong type found

Plug the correct com-
munication module

3 0 0 1001 Type of CM582-DP not sup-
ported

Exchange the com-
munication module

3 0 0 1002 Firmware version of CM582-
DP not supported

Update firmware of
CM582-DP

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4102

Error
severity SubSysteminfo Additional Error code Meaning Remedy

3 0 0 1003 Identification of communica-
tion module failed

Exchange the com-
munication module or
plug the correct com-
munication module

3 0 0 2000 Watchdog error -

3 0 0 2001 CM582-DP is not communi-
cating

Check bus connection
and configuration

3 0 0 2002 CM582-DP signals commu-
nication error

Check bus connection
and configuration

3 0 0 2003 Starting of CM582-DP's pro-
tocol stack failed

Check bus connection
and configuration

3 0 0 2004 Stopping of CM582-DP's
protocol stack failed

-

3 0 0 2005 PLC cannot be set to run
due to an error of CM582-
DP

Check error log and
correct errors

3 0 0 3000 Configuration error Check configuration
and correct errors

3 0 0 3001 Configuration version mis-
match

Use matching CPU
firmware version

3 0 0 3002 Writing parameters to
CM582-DP failed

Check configuration
and correct errors

3 0 0 3003 Configuration of IM0 data
failed

Check configuration
and correct errors

3 0 0 3004 Reading of a parameter
failed

Check configuration
and correct errors

3 0 0 3005 Parameter value not sup-
ported or out of limits

Check configuration
and correct errors

1.7.3.4.4 AC500-S: errors from safety CPU and safety I/O modules
Table 754: Error messages for safety CPU
Severity Error code Description Remedy
2 8235 Internal error Replace module

2 8448 Operation finished Change Safety PLC switch
address setting or remove
memory card from non-safety
PLC. Restart Safety PLC. If this
error persists, replace Safety
PLC.

2 8449 Wrong user data Delete user data from Safety
PLC. Restart Safety PLC and
write user data again.

2 8450 Internal PROFIsafe initiali-
zation error

Restart Safety PLC. If this error
persists, replace Safety PLC.
Contact ABB technical support.

2 8460 Flash read error Restart Safety PLC. If this error
persists, replace Safety PLC.
Contact ABB technical support.

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4103

Severity Error code Description Remedy
2 8466 Internal error Contact ABB technical support.

Replace Safety PLC.

2 8476 Boot project download
error

Reload boot project. If this error
persists, replace Safety PLC.

2 8488 Wrong firmware version Update Safety PLC firmware.
Restart Safety PLC. If this error
persists, replace Safety PLC.

2 8491 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8496 Overvoltage or under-
voltage detected

Restart Safety PLC. Check
Safety PLC setting for power
supply error. If this error per-
sists, replace Safety PLC.

2 8500 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8704 User program triggered
safe stop

Check user program

2 8705 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8706 Internal PROFIsafe error Restart Safety PLC. If this error
persists, replace Safety PLC.
Contact ABB technical support.

2 8707 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8714 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8717 Flash write error Restart Safety PLC. If this error
persists, replace Safety PLC.
Contact ABB technical support.

2 8721 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8722 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8723 Checksum error has
occured in Safety PLC

Restart Safety PLC. If this error
persists, replace Safety PLC.

2 8729 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8741 Cycle time error in Safety
PLC

Check Safety PLC watchdog
time.

2 8742 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8746 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8747 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8756 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8758 Internal error Contact ABB technical support.
Replace Safety PLC.

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4104

Severity Error code Description Remedy
2 8990 PROFIsafe configuration

error
Check F-Parameter configura-
tion of I/O module and reload
boot project

3 12561 Safety source addresses
cannot be checked

Check PROFIsafe F-Host
library version (2.0.0 or above).
If this error persists, contact
ABB technical support.

3 12570 Error in configuration
data, safety PLC has
not accepted configura-
tion data, e.g., mismatch
between safety and non-
safety PLC configuration.

Create new configuration data
for both safety and non-safety
PLC again, re-create and down-
load boot projects to both safety
and non-safety PLC again.

3 12571 Error in configuration data,
Safety PLC cannot read
configuration data

Create boot project

3 12598 PROFIsafe F_Dest_Add
rules are violated

Check Safety PLC configu-
ration or switch address
setting against PROFIsafe
F_Dest_Add configuration
rules. Restart Safety PLC. If
this error persists, contact ABB
technical support.

3 32770 Watchdog error communi-
cation module

3 32771 Wrong firmware version of
communication module

Update firmware

3 32772 Initialisation of safety
module on slot failed.
More than one safety
module plugged

Remove this module or Only
that one safety module plugged
-> defective, replace this
module

3 32774 Invalid configuration data Check configuration

3 32775 Safety module not found Check configuration. At Safety
PLC: Check Safety PLC switch
address setting. Restart Safety
PLC. If this error persists,
replace Safety PLC.

3 32776 Safety module has wrong
type

Check configuration

4 16640 Reserved switch address
setting.

Warning

4 16644 Boot project not loaded,
maximum power dip
reached

Restart Safety PLC

4 16648 Power dip data missed or
corrupted. Default power
dip data was flashed by
Safety PLC

Warning

4 16659 CRC error boot project Create new boot project and
restart Safety PLC

4 16909 Flash write error (produc-
tion data)

Warning

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4105

Severity Error code Description Remedy
4 16935 More than one instance of

SF_WDOG_TIME_SET or
SF_MAX_POWER_DIP_S
ET

Warning

4 16922 No or wrong configuration
data from PM5x, run state
not possible

Create correct boot project at
PM5x

4 17421 Flash write error (boot
project)

Warning

4 17677 Flash write error (boot
code)

Warning

4 17933 Flash write error (firm-
ware)

Warning

4 18189 Flash write error (pass-
word)

Warning

4 18445 Flash write error (user
data)

Warning

4 18701 Flash write error (user
data)

Warning

4 18957 Flash write error (internal) Warning

4 19213 Flash write error (internal) Warning

4 19469 Flash write error (internal) Warning

4 32777 Program not started
because of configuration
error

Check configuration

4 32778 Program not started, no
application running in
safety module

Check configuration, download
safety application to safety
module

Table 755: Error messages for safety I/O modules (channel or module reintegration is possible)
Severity Error code Description Remedy
3 3 Discrepancy time expired Check discrepancy time value,

channel wiring and sensor.

3 12 Test pulse error Check wiring and sensor.

3 13 Channel test pulse cross-
talk error

Check wiring and sensor. If
this error persists, replace I/O
module. Contact ABB technical
support.

3 25 Channel stuck-at error Check I/O module wiring.
Restart I/O module, if needed.
If this error persists, replace I/O
module.

3 28 Channel cross-talk error Check I/O module wiring.
Restart I/O module, if needed.
If this error persists, replace I/O
module.

3 260 Measurement overflow at
the I/O module

Check channel wiring and
sensor power supply.

3 263 Measurement underflow at
the I/O module

Check channel wiring and
sensor power supply.

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4106

Severity Error code Description Remedy
3 311 Channel value difference

too high
Adjust tolerance window for
channels. Check channel wiring
and sensor configuration.

3 525 Channel readback error Check I/O module wiring.
Restart I/O module, if needed.
If this error persists, replace I/O
module.

3 530 Channel cross-talk error Check I/O module wiring.
Restart I/O module, if needed.
If this error persists, replace I/O
module.

3 16138 Process voltage too high Check process voltage

3 16139 Process voltage too low Check process voltage

3 16148 PROFIsafe communica-
tion error

Restart I/O module. If this error
persists, contact ABB technical
support.

3 16153 PROFIsafe watchdog
timed out.

Restart I/O module. If this error
persists, increase PROFIsafe
watchdog time.

3 16171 Internal error in the device Replace I/O module

Table 756: Error messages for safety I/O modules (channel or module reintegration ist not
possible)
Severity Error code Description Remedy
3 16146 Plausibility check failed

(iParameter)
Check configuration

3 16147 Checksum error in the I/O
module

Check safety configuration and
CRCs for I- and F-Parameters.

3 16154 Parameter value Check master or configuration

3 16156 F-Parameter configuration
and address switch value
do not match.

Check I/O module F-Param-
eter configuration and module
address switch value.

1.7.3.4.5 CM579-PNIO – PROFINET I/O controller diagnosis
Diagnosis data for CM579-PNIO is not displayed in PLC display. In Automation Builder, we
recommend to use methods with text output to get diagnosis messages in clear text format.
E.g., DiagGetFirstValAndTxt.

Output string:
<timestamp>; <error severity>; <device name>; <error location>; error ID <id>: <error text>

If you need to access the diagnosis data directly, you have to interpret them manually. Refer
to the example to learn how to interpret them correctly Ä Chapter 1.7.3.4.5.1 “Manual interpre-
tation of CM579-PNIO diagnosis” on page 4111.
Diagnosis messages are included in diagnosis text lists “Diag_PNIO_Controller” and
“Diag_PNIO_Vendor ID_Device ID”.

For experts:
manual interpre-
tation

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4107

Erro
r
seve
rity

SubSysteminfo Additional Error code Meaning Rem
edyWord 2

(bit 16..31)
Word 1
(bit 0..15)

Word 2
(bit 16..31)
ADD_SUB
_TYPE

Word 1
(bit 0..15)
ADD_TYP
E

Word 2
(bit16...31)

Word 1
(bit0...15)

 Sub1_ Sub2_ Add_Word 1_Word 2 Err_x or
Err_Word 1_Word 2
(Word1/2 in hex format)

3 tbd tbd 0 1 (general) Err_Gen_x General error,
<Err_Gen_x_text>

3 0 0 0 2 (runtime) Err_Rt_x General error,
<Err_Rt_x_text>

3 0 0 0 2 (runtime) 1 Runtime error; com-
munication module
watchdog error

3 0 0 0 2 (runtime) 2 Runtime error;
PROFINET controller
is not communicating

3 0 0 0 2 (runtime) 3 Runtime error;
PROFINET controller
signals communica-
tion error

4 0 0 0 2 (runtime) 4 Connection error;
No connection to
PROFINET I/O device

11 tbd tbd 0 3 (configu-
ration)

Err_Cfg_x Configuration error,
<Err_Cfg_x_text>

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

1 (USI:
16#8000)
channel
diagnosis

4 (diag-
nosis
alarm)

0 Error type Subslot <subslot idx>,
channel <channel
idx>, channel diag-
nosis; <error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

1 (USI:
16#8000)
channel
diagnosis

4 (diag-
nosis
alarm)

0 Error type Subslot <subslot idx>,
channel diagnosis;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

2 (USI:
16#8002)
extended
channel
diagnosis

4 (diag-
nosis
alarm)

Extended
error Type

Error type Subslot <subslot idx>,
channel <channel
idx>, extended
channel diagnosis;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

2 (USI:
16#8002)
extended
channel
diagnosis

4 (diag-
nosis
alarm)

Extended
error Type

Error type Subslot <subslot idx>,
extended channel
diagnosis; <error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

3 (USI:
16#8003)
qualified
channel
diagnosis

4 (diag-
nosis
alarm)

Extended
error Type

Error type Subslot <subslot idx>,
channel <channel
idx>, qualified channel
diagnosis; <error text>

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4108

Erro
r
seve
rity

SubSysteminfo Additional Error code Meaning Rem
edyWord 2

(bit 16..31)
Word 1
(bit 0..15)

Word 2
(bit 16..31)
ADD_SUB
_TYPE

Word 1
(bit 0..15)
ADD_TYP
E

Word 2
(bit16...31)

Word 1
(bit0...15)

 Sub1_ Sub2_ Add_Word 1_Word 2 Err_x or
Err_Word 1_Word 2
(Word1/2 in hex format)

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

3 (USI:
16#8003)
qualified
channel

4 (diag-
nosis
alarm)

Extended
error Type

Error type Subslot <subslot idx>,
qualified channel diag-
nosis; <error text>

2, 3,
4 11

Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

0 5 (S500
process
alarm)

32 bit error code Subslot <subslot idx>,
channel <channel
idx>, S500 diagnosis;
<error text>

2, 3,
4 11

Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

0 5 (S500
process
alarm)

32 bit error code Subslot <subslot
idx>, S500 diagnosis;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

Alarm type
= (14 .. 30)
& (32 ..)

6 (alarm) Alarm type = (14 .. 30) &
(32 ..)

Subslot <subslot idx>,
channel <channel
idx>, PNIO alarm;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= (14 .. 30)
& (32 ..)

6 (alarm) Alarm type = (14 .. 30) &
(32 ..)

Subslot <subslot idx>,
PNIO alarm; <error
text>

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

Alarm type
= 1

6 (alarm) Alarm type = 1 Subslot <subslot idx>,
channel <channel
idx>, diagnosis alarm;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 1

6 (alarm) Alarm type = 1 Subslot <subslot
idx>, diagnosis alarm;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

Alarm type
= 2

6 (alarm) Alarm type = 2 Subslot <subslot idx>,
channel <channel
idx>, process alarm;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 2

6 (alarm) Alarm type = 2 Subslot <subslot idx>,
process alarm; <error
text>

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 3

6 (alarm) Alarm type = 3 Subslot <subslot idx>,
pull alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 4

6 (alarm) Alarm type = 4 Subslot <subslot idx>,
plug alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 5

6 (alarm) Alarm type = 5 Subslot <subslot idx>,
status alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 6

6 (alarm) Alarm type = 6 Subslot <subslot idx>,
update alarm

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4109

Erro
r
seve
rity

SubSysteminfo Additional Error code Meaning Rem
edyWord 2

(bit 16..31)
Word 1
(bit 0..15)

Word 2
(bit 16..31)
ADD_SUB
_TYPE

Word 1
(bit 0..15)
ADD_TYP
E

Word 2
(bit16...31)

Word 1
(bit0...15)

 Sub1_ Sub2_ Add_Word 1_Word 2 Err_x or
Err_Word 1_Word 2
(Word1/2 in hex format)

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 7

6 (alarm) Alarm type = 7 Subslot <subslot idx>,
rendundancy status
changed alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 8

6 (alarm) Alarm type = 8 Subslot <subslot idx>,
supervisor controlled
alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 9

6 (alarm) Alarm type = 9 Subslot <subslot idx>,
supervisor released
alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 10

6 (alarm) Alarm type = 10 Subslot <subslot idx>,
wrong submodule
plugged alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 11

6 (alarm) Alarm type = 11 Subslot <subslot idx>,
wrong submodule
returned alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

Alarm type
= 12

6 (alarm) Alarm type = 12 Subslot <subslot idx>,
channel <channel
idx>, diagnosis disap-
peared alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 12

6 (alarm) Alarm type = 12 Subslot <subslot idx>,
diagnosis disappeared
alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 13

6 (alarm) Alarm type = 13 Subslot <subslot idx>,
port data changed
alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 31

6 (alarm) Alarm type = 31 Used module pulled
alarm

PLC Automation with V3 CPUs
Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/213ADR010583, 3, en_US4110

Manual interpretation of CM579-PNIO diagnosis
For better understanding, we show the manual interpretation of CM579-PNIO diagnosis with an
example.
System: AC500 CM579-PNIO + CI501-PNIO + optional S500 I/O inserted as PROFINET
standard device
Error: discrepancy time expired (class 3, error ID 3) at channel 4 of first attached S500 I/O
device on CI501-PNIO
For comparison: If a method with text output is used, e.g. DiagGetFirstValAndTxt the text
output will be the string: Timestamp; E3; device name; subslot 1, channel
4, extended channel diagnosis; error ID 3: discrepancy time expired
(class 3, error ID 3)
In Automation Builder the following error entry data is displayed:

Analyze the data in the following order: Element “dwAdditional” for the type of diagnosis, ele-
ment “Error Code”, element “SubSysteminfo”.
1. Analyze element “dwAdditional”, column "Additional" in error lists.

Convert the given value from decimal to hexadecimal format.
“dwAdditional” = 131076 = 16#20004

2. Interpretation:
Word 2 = 2
Word 1 = 4

3. Generate error text Add_Word 1_Word 2 = Add_4_2
4. Look up which error type it is.

Add_4_2 = extended channel diagnosis

1. Analyze element “Error Code”:
“dwErrorCode” = 196867 = 16#30103 ®

Word 2 (extended error type) = 16#0003
Word 1 (error type) = 16#0103
➔ Error text: Err_Word 1 (hex)_Word 2 (hex)
➔ Err_0103_0003 ®

Error ID 3 – discrepancy time expired (class 3, error ID 3)
2. Analyze “SubSysteminfo”

“dwSubSysteminfo” = 65540 = 16#10004 ®

Word 2 (subslot index) = 1
Word 1 (channel index) = 4

Type of diag-
nosis

Data analysis

PLC Automation with V3 CPUs

Diagnosis and debugging for AC500 V3 products > Diagnosis messages

2022/01/21 3ADR010583, 3, en_US 4111

Erro
r
seve
rity

SubSysteminfo Additional Error code Meaning Rem
edyWord 2

(bit 16..31)
Word 1
(bit 0..15)

Word 2
(bit 16..31)
ADD_SUB
_TYPE

Word 1
(bit 0..15)
ADD_TYP
E

Word 2
(bit16...31)

Word 1
(bit0...15)

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

2 (USI:
16#8002)
extended
channel
diagnosis

4 (diag-
nosis
alarm)

Extended
error type

Error type Subslot <subslot idx>,
channel <channel
idx>, extended
channel diagnosis;
<error text>

3 1 4 2 4 16#0003 16#0103 Subslot 1, channel
4, extended channel
diagnosis; <error text>

 dwSubSysteminfo Add_Word 1_Word 2 dwErrorCode Entries in Diag values

3 Sub2_ =
Subslot

Sub1_ =
Channel

Add_4_2 = extended
channel diagnosis

Err_Word 1_Word 2
Err_0103_0003 = error
ID 3: Discrepancy time
expired (class 3, error ID
3)

Text search criteria
(ID) in text list
Diag_PNIO_26_22
Text from Automation
Builder error list
(default) in text list
Diag_PNIO_26_22

1.8 Engineering interfaces and tools
1.8.1 Export and import interfaces
1.8.1.1 Exporting and importing ECAD data (PBF)

Automation Builder provides an ECAD interface for exchanging the PLC configuration data with
EPLAN Electric P8 and Zuken E3. This feature removes double data entry between electrical
engineering in the ECAD tool and the control logic programming in Automation Builder by
synchronizing the PLC hardware including topology and I/O signals between these tools.
Automation Builder - ECAD interface supports various flexible workflows:
● Enables PLC hardware planning and configuration in the ECAD tool and allows importing

the exported data from the ECAD tool through the PBF file (process integration bus
interchange format) into the Automation Builder project with diff and merge functionality,
providing full control on selective import/merge.

● Enables PLC hardware configuration in Automation Builder and allows exporting the config-
uration to the ECAD tool through a PBF file.

● Supports bi-directional roundtrip engineering with loss less data exchange between
Automation Builder and the ECAD tool.

Automation Builder uses the rack information to identify the relations between:
● PLC and devices plugged to I/O bus or extension bus.
● Fieldbus slave and attached IO devices.
It is recommended to assign the PLC, IO devices, communication modules and fieldbus slaves
properly to the rack in the ECAD project. If the rack information is missing, devices will be
imported to the device pool and must be arranged manually in the Automation Builder project or
mapped to already existing devices.

PLC Automation with V3 CPUs
Engineering interfaces and tools > Export and import interfaces

2022/01/213ADR010583, 3, en_US4112

1.8.1.1.1 Requirements on EPLAN electric P8
● EPLAN Electric P8 with PLC and Bus Extension. It is recommended to use version 2.3 or

later.
● Use of appropriate part data and macros for ABB devices. This can be achieved by getting

the part data and macros from the EPLAN data portal.

1.8.1.1.2 Importing PLC data from the ECAD tool
You can create a new Automation Builder PLC project from the existing PLC hardware configu-
ration in your ECAD tool, by importing the exported PBF file to Automation Builder.
1. From the main menu, select “Project è Import è ECAD (PBF)”.
2. From the file system, select the PBF file.

Automation Builder starts importing the devices and its associated signals from the PBF
file. After a successful import, the result is displayed in the Project Compare –Differ-
ences view. You can now decide and selectively merge the differences.
Ä Chapter 1.4.1.20.3.4.21 “Command 'Compare'” on page 1010

3. Select the DevicePool node and click “Accept Block” to accept the complete PLC structure
in the ECAD tool.

4. Select the PLC node and click “Accept Block” to accept all child device nodes.

The DevicePool node holds all devices coming from the ECAD tool
without any hierarchy information. The missing hierarchy information can
be defined after closing the editor.

5. Close the Project Compare – Differences view to accept the changes.
6. Arrange unassigned devices in the DevicePool to the PLC hardware structure by drag-

and-drop.

ð The I/O signals assigned to I/O devices in the PBF file are imported and allocated to
IO devices. IO signals can be viewed in I/O mapping editor of the I/O devices.

Import PBF file
to Automation
Builder

PLC Automation with V3 CPUs

Engineering interfaces and tools > Export and import interfaces

2022/01/21 3ADR010583, 3, en_US 4113

1.8.1.1.3 Importing third party devices
Prerequisite: To import third party devices from ECAD to Automation Builder, install third party
fieldbus devices (for example, GSD, GSDML and EDS files) using “Tools è Device repository”
in Automation Builder.
1. From the main menu, select “Project è Import è ECAD (PBF)”.
2. From the file system, select the ECAD pbf file which consists of third party devices.

ð When the device identifier of the third party device installed in Automation Builder
does not match with the device identifier of the device imported from ECAD, an error
window is shown with the devices which are failed to import with error identifier 14.
To import third party devices, it is required to assign ECAD identifier (PLC type desig-
nation/order number) in Automation Builder in “Tools è Device ECAD data”. Click the
link in the Import window to see the error messages in a text file.

3. Click “Continue” in the Import window to import valid devices to the project that are
imported successfully or click “Cancel” to cancel the import process.

4. In Automation Builder, click “Tools è Device ECAD data”.
5. In the Device ECAD data editor, add the ECAD identifier for the devices shown in the

import errors window with error identifier 14, to enable these devices for export and
import.

ð Also, add the ECAD identifiers for all devices which need to support export/import in
ECAD.

6. Reimport the pbf file to import the third party devices.

1.8.1.1.4 Exporting PLC data to ECAD tool
1. Open the existing PLC project.
2. In the device tree, right-click “PLC è Export è ECAD (PBF)”.
3. Select the desired location in the file system to save the PBF file.

The ECAD user can import the exported PBF file from Automation Builder and can use the
imported PLC data for electrical engineering purpose. If the user modifies imported PLC
data in the ECAD project, the data can be imported back to the Automation Builder project
which supports the round trip engineering efficiently with loss less synchronization of the
data.

PLC Automation with V3 CPUs
Engineering interfaces and tools > Export and import interfaces

2022/01/213ADR010583, 3, en_US4114

1.8.1.1.5 Exporting third party devices
1. Right-click on a PLC device, click “Export” and select “ECAD (PBF)”.
2. Save the file to the desired location in the file system.

If the third party devices does not contain assigned ECAD identifiers, a message is
displayed showing which devices cannot be exported.

ð To add ECAD identifiers to the devices, see Importing third party devices Ä Chapter
1.8.1.1.3 “Importing third party devices” on page 4114.
After adding ECAD identifiers to the third party devices, execute “Export” to export the
devices including third party devices.

1.8.1.1.6 Importing ECAD PLC data to existing AB project
Automation Builder ECAD interface supports concurrent engineering by importing the ECAD
data to the existing Automation Builder PLC project.
1. From the main menu, select “Project è Import è ECAD (PBF)”.
2. Select the PBF file which has been created during the export from the ECAD tool.
3. Select the PLC from the list and click “OK”.

ð A dialog window is displayed if the Automation Builder project provides PLCs of the
identical type as defined in the PBF file.
By selecting “None” in the dialog window a new PLC is defined in the ECAD tool.

4. In the Project Compare – Differences view, click to merge device signals.

ð The differences between the current PLC hardware configuration in Automation
Builder and the ECAD PLC data are displayed.

5. Select the differences as desired and click “Accept Single” to accept the selected differ-
ence block.

6. Close the Project Compare – Differences view to accept the changes.

1.8.1.1.7 Arrange or map devices imported to the device pool
Devices that are imported to the device pool because of missing hierarchy information (mainly
rack information) must be arranged manually in the Automation Builder project or mapped to
already existing devices.

Arrange the unassigned devices in the DevicePool to the PLC hardware structure by drag-and-
drop.

If the devices are already added to the Automation Builder project prior to the import, you have
to map the instances of the same type manually (one instance in the Automation Builder project
tree and one instance in the DevicePool).
After mapping the devices, you can selectively merge the device parameter or signal in the
difference view.
To map pool devices, proceed as follows:

Arrange devices
imported to the
device pool

Map devices
imported to the
device pool

PLC Automation with V3 CPUs

Engineering interfaces and tools > Export and import interfaces

2022/01/21 3ADR010583, 3, en_US 4115

1. In the device tree, select the Device Pool node, click “Project” and select “Map pool
devices”.

2. Map the device pool instances of identical types in the project from the drop-down list and
click “OK”.

ð Pool devices which are mapped are removed from the device pool and mapped to
the corresponding Automation Builder device. Differences between the signals of the
mapped I/O devices are displayed. e.g. AI523_1 device:

1.8.1.1.8 Limitations
The following limitations are considered when working with the Automation Builder ECAD inter-
face:
● The scope of a PBF file is limited to one single PLC including all connected devices.
● There is no representation of XC variants of devices in Automation Builder. Therefore,

always use the standard variant for export. This might lead to part data mismatch when
importing into the ECAD tool.

● In reimport or round trip import cases, if any changes are made in ECAD by adding a
new communication module with connecting to one of the PLC slot or replacing existing
communication module, then those device changes to the communication modules are not
displayed as connected to PLC slots during the import in Automation Builder diff and import,
instead those CM modules are added under the device pool. After merging and importing is
completed, to work with device pool devices Ä Chapter 1.8.1.1.7 “Arrange or map devices
imported to the device pool” on page 4115.

● IO mapping data cannot be imported for IO devices plugged to an EtherCAT slave when
they are imported individually to the device pool because of missing hierarchy information.
After arranging the devices properly in the device tree, the import can be done again to
import also the IO mapping data.

1.8.1.2 Exporting and importing I/O mapping (CSV)
The I/O module mappings of an Automation Builder project can be exported to CSV for bulk
editing in MS Excel or other documentation purposes. I/O mappings can be exported at single
I/O module level or at PLC level.

PLC Automation with V3 CPUs
Engineering interfaces and tools > Export and import interfaces

2022/01/213ADR010583, 3, en_US4116

Further, the I/O module mappings can be imported with the option of displaying differences and
merging each single changed or import all signals at once by overwriting existing I/O module
signals.

1.8.1.2.1 Exporting IO mapping data to CSV
To export I/O mappings to a CSV signal list, proceed as follows:
1. In the device tree, right-click “PLC è Export è IO mapping (CSV)”.
2. Save the IO mappings CSV to the desired location in the file system.

If the CSV signal list has been exported successfully, a success message is displayed.
The status of the export is shown in the dialog.

3. In the export dialog, click the link to open the exported IO mapping CSV file in MS Excel.

The template can only be opened if MS Excel is installed and configured
to open .csv files.

4. In the IO mapping (CSV) file, change Variable and Description fields to edit I/O map-
pings.

ð
Do not modify other field’s data in IO mapping (CSV) file.

PLC Automation with V3 CPUs

Engineering interfaces and tools > Export and import interfaces

2022/01/21 3ADR010583, 3, en_US 4117

1.8.1.2.2 Importing I/O mapping data from CSV
To import an edited I/O mapping (CSV) file, proceed as follows:
1. From the main menu, select “Project è Import è IO mapping (CSV) è Open”.
2. A CSV signal list import dialog is displayed.

ð With “YES”, all I/O mappings will be imported without difference view. With “NO”, the
difference view is displayed with the I/O mapping differences.

3. In the Project Compare – Differences view, click to merge I/O mappings.
4. Select the signal row for which the difference is to be accepted. Select the Variable field

and click “Accept Single” to merge the I/O mappings.
5. Close the Project compare – Differences view to accept the changes and merge the I/O

mappings with the Automation Builder project.

1.8.1.3 Exporting and importing device list (CSV)
The Automation Builder project devices can be exported to CSV for bulk device renaming or
adding device tag labels to devices in MS Excel or other documentation purposes. A devices
export is only possible at PLC level.
Automation Builder provides importing devices in bulk based on device type, instance and
hierarchy information provided in the CSV file.

1.8.1.3.1 Exporting device list to CSV
To export a CSV device list, proceed as follows:
1. In the device tree, right-click “PLC è Export è Device list (CSV)”.
2. Select the desired location in the file system to save the Device list (CSV).

If the CSV device list is exported successfully, a success message is displayed.

PLC Automation with V3 CPUs
Engineering interfaces and tools > Export and import interfaces

2022/01/213ADR010583, 3, en_US4118

3. In the Export dialog, click the link to open the exported CSV device list.
The exported CSV device list consists of all devices connected to the PLC that is
exported. Each row represents a device with its device type and hierarchy information.

1.8.1.3.2 Creating CSV device list
To create the devices in CSV, use the device list template provided in Automation Builder.

In the main menu, click “Tools è Create CSV Device list”.

ð The device list template is opened in the MS Excel.

The template can only be opened if MS Excel is installed and config-
ured to open .csv files.

In this file, add each device in a separate row with device information like Device Type
(Order Num or Device Type Name) and instance details (name, tag) and hierarchy
information (parent Device name, parent Device Tag, position). The mandatory infor-
mation required to import CSV is only Device Type. All other fields are optional. After
editing the device list CSV file, save it in the file system and close.

PLC Automation with V3 CPUs

Engineering interfaces and tools > Export and import interfaces

2022/01/21 3ADR010583, 3, en_US 4119

1.8.1.3.3 Importing a device list from CSV
To import devices from CSV in bulk, proceed as follows:
1. From the main menu, click “Project è Import è Device list (CSV)”.
2. Select the device list CSV file from the file system and click “Open” in the Import dialog.

All devices that are defined in the CSV are imported. The Project Compare – Differ-
ences view displays the current project and the project that has been updated by the
import file.

3. Select the desired devices and click “Accept Block” to accept all the devices and its child
device nodes or “Accept Single” to accept only a single device.

4. After closing the Project Compare – Differences view, the devices are imported to the
Automation Builder project.

ð The devices (except PLC) are placed under the device pool if the valid device hier-
archy information is not provided in the CSV device list file. By drag-and-drop devices
can be assigned to the desired PLC hardware structure Ä Chapter 1.8.1.1.7 “Arrange
or map devices imported to the device pool” on page 4115.
If a device tag is provided for a device in CSV, it appears next to each device node in
the device tree.

1.8.1.3.4 Renaming devices
To rename the devices, proceed as follows:
1. In the device tree, right-click “PLC è Export è Device list (CSV)”.
2. Select the desired location from the file system to save the CSV device list.

PLC Automation with V3 CPUs
Engineering interfaces and tools > Export and import interfaces

2022/01/213ADR010583, 3, en_US4120

3. Rename the device names in the column Device Name:

4. Click “Project è Import è Device list (CSV)”.
5. Select the updated CSV file from the file system.

Open the Project Compare – Differences view. If only the device names have been
changed in the CSV file, the difference view does not show the changes.

Device Name changes are not displayed as changes in the difference
view.

6. Close the Project Compare – Differences view. The Renamed Devices dialog is dis-
played with the current name and the new name provided in the CSV file.

7. In the Rename Devices window, select the desired devices and click “OK”.
The device names are updated in the Automation Builder project.

PLC Automation with V3 CPUs

Engineering interfaces and tools > Export and import interfaces

2022/01/21 3ADR010583, 3, en_US 4121

1.8.2 CODESYS Security Agent
1.8.2.1 Integration in CODESYS Development System

At this time, you can configure and create certificates of the controller with the CODESYS
Security Agent. You can then configure encrypted communication with the controller, as well as
encrypt the boot application, download, and online change.
See also
● Ä Chapter 1.8.2.2 “Encrypted Communication with Devices via Controller Certificates”

on page 4122
● Ä Chapter 1.8.2.3 “Encryption of the Boot Application, Download, and Online Change”

on page 4123

1.8.2.2 Encrypted Communication with Devices via Controller Certificates
Details on how to encrypt and to sign the application on the controller is described in an
application note:AC500 V3 - Encrypt and Sign your Application

Requirement: A digital signature for certificate exchange is configured.
Ä Chapter 1.4.1.8.17 “Encrypting an application” on page 294

No certificate use in live system
Self-signed certificates should never be used on production or public websites.
The certificates that are created in the following steps are self signed.

We assume that there is still no certificate on the controller that is intended for encrypted
communication. In the following steps, you generate this kind of certificate and encrypt commu-
nication:
1. Configure the active path to the controller.
2. Open the “Security Screen” view by double-clicking the symbol in the status bar or by

clicking “View è Security Screen”. Select the “Devices” tab.
3. Click the button to refresh the list of available devices and their certificate stores.
4. Select the corresponding device on the left side.

ð On the right side, there is still no license listed for the “Encrypted communication” use
case.

5. On the right side, select “Encrypted Communication” and click the button to create a
new certificate on the device.
Change the default key length to 4096. Otherwise an error occurs that is only visible in the
log of the PLC.

ð The certificate is generated and listed in the table with its properties. The symbol
before “Encrypted communication” now appears as such: . The field in the "Valid
until" column is highlighted in green because the remaining time is still at least two-
thirds of the entire validity period.

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Security Agent

2022/01/213ADR010583, 3, en_US4122

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010707&LanguageCode=en&DocumentPartId=&Action=Launch

6. In this step, you activate encrypted communication with the controller.
Open the “Security Screen” view of CODESYS (“Users” tab). In the “Security Level” group,
select the “Enforce encrypted communication” option.

ð As of this point, communication with all controllers is possible only as long as the
certificate is valid on the controller and you have a key for it.
The connecting line between the development system, the gateway, and the controller
is displayed in yellow on the “Communication Settings” tab of the device editor of the
controller.
As an alternative to the “Enforce encrypted communication” option that was just
described and which applies to all controllers, you can also encrypt communication
with a specific controller only. To do this, open the “Communication” tab in the device
editor of the controller. Click “Encrypted Communication” in the “Device” list box.

7. Now log back in again to the controller.

ð A dialog opens with the notification that the certificate of the controller is not signed
by a trusted source. In addition, the dialog displays information about the certificate
and prompts for you to install it as a trustworthy certificate in the local store in the
"Controller Certificates" folder.

8. Confirm the dialog.

ð The certificate is installed in the local store and you are logged in to the controller.

In the future, communication with the controller will be encrypted automatically with
this control certificate.
Note: When logging in to the controller, the expiration date of the certificate currently in
use is checked. You get a warning if the remaining time is just one-third of the entire
time or less. Then you can renew the certificate in time in the security screen.

See also
● Ä Chapter 1.8.2.4.1 “View 'Security Screen' - 'Devices'” on page 4125
● Ä Chapter 1.8.2.1 “Integration in CODESYS Development System” on page 4122

1.8.2.3 Encryption of the Boot Application, Download, and Online Change
Details on how to encrypt and to sign the application on the controller is described in an
application note:AC500 V3 - Encrypt and Sign your Application

Aim: You want to encrypt boot applications, downloads, and online changes with a certificate
to make sure that the application on the controller cannot be exchanged at will. To do this,
you need to download a corresponding certificate of the type "Encrypted Application" from the
controller and install it to the "Windows Certificate Store" of your computer. This certificate is
required for all development environments that need to make changes to the application on the
controller. For example, if this application has to be downloaded from another computer, then
the certificate also has to exist on this computer.
See also
● Ä Chapter 1.8.2.1 “Integration in CODESYS Development System” on page 4122
● CODESYS Help: "Security", "Encryption", "Certificate"

Requirement: The active path to the controller is configured.Encrypting the
boot applica-
tion, download,
and online
change with the
encryption
wizard

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Security Agent

2022/01/21 3ADR010583, 3, en_US 4123

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010707&LanguageCode=en&DocumentPartId=&Action=Launch

1. Open the “Properties” dialog of the application.
2. Click the “Encryption” tab. Set “ Encryption Technology” to “Encryption with certificates”.

ð The “Encryption Wizard” button is available in the “Certificates” field.

3. Click the “Encryption Wizard” button.

ð The “Encryption Wizard” dialog opens. The status is Not connected and under
“Details” is Ready.

4. Click the “Start” button.

ð The wizard searches for suitable certificates on the controller. If necessary, the con-
troller creates a new certificate which is registered in the Certificate Store of your
computer.
NOTE: A certificate obtained this way is automatically accepted as trusted.
If a certificate for application encryption already exists on the controller, then it is used.
If a new certificate has to be created on the controller for your CODESYS, then the
“Certificate Settings” dialog opens for configuring the key length for the private key
and the validity period.

5. In the “Certificate Settings” dialog, click “OK” to confirm the default or edited values for key
length and validity period.

ð CODESYS saves the values in the CODESYS options as the default for the next
certificate configuration of this kind.
In the “Details” of the wizard, you see a description of the performed actions and the
thumbprint of the recently created certificate.

6. When the status reaches “Wizard finished”, close the wizard.

ð The new certificate is listed in the “Certificates” field of the properties dialog. In the
“Certificate Store”, it is listed under “Controller Certificates”. In the “Security Screen”
view, on the “Devices” tab, the certificate is displayed in the right window with the
“Encrypted Application” information.

7. Confirm the “Properties” dialog of the application.
8. Open the “Security Screen” view.

ð On the “Project” tab, in the “Encryption of boot application, download and online
change” group, the certificate is displayed with the “Encrypted Application” informa-
tion.
Boot application, download, and online change are therefore encrypted and only pos-
sible as long as the configured certificate and signature are valid.

See also
● Ä Chapter 1.8.2.4.2 “Dialog 'Encryption Wizard'” on page 4128
● CODESYS Help: Dialog "Properties" "Encryption"
● CODESYS Help: "Security", "Encryption", "Certificate"

Requirement: The active path to the controller is configured. There is still no certificate on the
controller that is suitable and valid for encryption.

1. Open the “Security Screen” view by double-clicking the symbol in the status bar or by
clicking “View è Security Screen”. Open the “Devices” tab.

2. Click the “Refresh the list of available devices and their certificate stores” button.
3. Select the device listed on the left side.

Encrypting the
boot applica-
tion, download,
and online
change without
the encryption
wizard

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Security Agent

2022/01/213ADR010583, 3, en_US4124

4. Select “Encrypted Application” on the right side and click the “Create a new certificate on
the device” button.
Change the default key length to 4096. Otherwise an error occurs that is only visible in the
log of the PLC.

ð The certificate is created and listed in the table with the symbol.

5. Double-click the certificate entry.

ð The Windows “Certificate” default dialog opens.

6. Click the “Install certificate” button on the “General” tab.

ð The “Certificate Import Wizard” opens.

7. In the “Certificate Store” dialog, select the “Place all certificates in the following store”
option and select the “Controller Certificates” folder for “Certificate Store”.

ð The controller certificate is imported to the “Controller Certificates” directory and it
is immediately available for the encryption of downloads, online changes, and boot
applications.

8. Open the “Project” tab and double-click the application entry in the “Encryption of boot
application, download and online change” group.

ð The “Properties” dialog of the application opens.

9. Click the “Encryption” tab and set “Encryption Technology” to “Encryption with certificates”.
Then click . Note: If the “Enforce encryption of downloads, online changes and boot
applications” option is selected in the “Security Screen”, then “Encryption with certificates”
is already preset.

10. In the “Certificate Selection” dialog, select the corresponding certificate from the
“Controller Certificates” folder and click .

11. Click “OK” to confirm the dialog.

ð The certificate is displayed in the properties dialog.

12. As above when using the wizard, steps 7 and 8.

Open the “Users” tab in the “Security Screen”. In the “Security level” group, select the
“Enforce encryption of downloads, online changes and boot applications” option.

ð Only with a valid certificate is it possible to change the application on the controller.

See also
● CODESYS Help: "Security-Screen"

1.8.2.4 Reference, User Interface
1.8.2.4.1 View 'Security Screen' - 'Devices'.. 4125
1.8.2.4.2 Dialog 'Encryption Wizard'... 4128

1.8.2.4.1 View 'Security Screen' - 'Devices'
Symbol:

Enforcing the
encryption of
boot applica-
tions, down-
loads, and
online changes

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Security Agent

2022/01/21 3ADR010583, 3, en_US 4125

Function: The tab allows for the configuration and the transfer of controller certificates for
encrypted communication with the controller.
Call: Menu bar: “View”

The “Devices” tab shows all PLC devices configured in the project and their certificate store.
If the communication path to the controller is configured, then you see the certificates that are
stored in memory. Here you can create and configure new certificates on the controller. If a
certificate currently in use is about to expire, then you get a warning when you log in to the
device. From there you can also switch directly to the “Security Screen” to renew the certificate.

Left side: “Information” Devices and certificate store

Shows the individual devices as expandable nodes, each with the controller-
specific certificate store below it.

Toolbar (left side) : Refresh the display

: Download: Transfer the selected certificate to the PLC

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Security Agent

2022/01/213ADR010583, 3, en_US4126

Right side:
“Information”

If the active path to the controller is set and a device node is selected, then every
use case for controller certificates is displayed on the right side.
● “OPC UA Server”: Encrypted communication over an OPC UA server
● “Encrypted Communication”: Encrypted communication between the devel-

opment system and the controller
● “Encrypted Communication”: Encryption of the boot application
● “Web server”: Encrypted communication with the web server
As long as a certificate is not available for one of these use cases, it is displayed
with the symbol as “(not available)”.
When a certificate store is selected on the left side, all certificates in it are
displayed on the right side with the following information:
“Information”: Use case (currently the controller component in question is dis-
played: for example “CmpSecureChannel”.)
“Created for”: Name of the computer for which the certificate was created (for
example, “MyLocalPC”)
“Created by”: Name of the computer on which the certificate was created (for
example, “MyLocalPC”)
“Valid as of”: Date (for example, “07/20/2017 15:09:29”)
“Valid until”: Date (example: “07/20/2022 00:00:00”. Depending on the remaining
time of the certificate, the highlight color of the field changes: green -> yellow
(two-thirds expired) -> orange (nine-tenths expired) -> red (expired). Note: When
logging in to the controller, you get a warning when two-thirds or more of the
validity period have expired. Then you can renew the certificate here in the
“Security Screen”.
“Thumbprint”: Hash value from specific properties of the certificate for purposes
of identification (for example, “279e1a46b86bd636c8e6f19fd51c222469ec49a8”)
This thumbprint can be used together with the Mqtt library. Refer to the Mqtt
library documentation in the Library Manager.
Double-clicking a certificate entry opens the default Windows “Certificate” dialog.
As a result, you can import a controller certificate into the Windows Certificate
Store in the “Controller Certificates” folder, so that it is available for the encryp-
tion of boot applications, downloads, and online changes.
If multiple certificates are available for one use case, then the system follows the
steps below to determine the certificate that is used:
● Certificate that was created directly by the user (currently not supported)
● Filtering of existing certificates by:

– 1. Subject (user of the certificate)
– 2. Key usage
– 3. Extended key usage
– 4. Valid time stamp

● Dividing of detected, valid certificates as "signed" and "self-signed"
● Filtering of signed certificates, and the self-signed certificates by the fol-

lowing criteria:
– 1. Longest validity period
– 2. Strongest key

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Security Agent

2022/01/21 3ADR010583, 3, en_US 4127

 Drag&Drop: Moving of the certificate to another certificate store of the same
device
Double-clicking a certificate entry opens the default Windows dialog for dis-
playing all certificate information.

Toolbar (right side) : Creates a new certificate for a specific use case
The “Certificate Settings” dialog opens for configuring the “Validity period” of
the certificate and the “Key length” for the private key. Clicking “OK” saves the
specified values in the CODESYS options. The values are reset at the next
operation.
As long as the certificate is being created, "“(computing)”" is shown after the use
case. You cannot cancel the creation operation, but you can close and continue
working with the “Security Screen”.

: Delete the selected certificate.

: Upload and save the selected certificate to the local file system.

I : Details about the selected certificate: Opens the “Certificate” dialog with the
“General” tab, “Details” tab, and “Certification Path” tab.

: Renew the selected certificate. Opens the “Certificate Settings” dialog to
create an additional new certificate for a certificate that will expire soon, with the
same purpose and specified key length. The predefined values in the dialog are
adapted, if necessary, depending on the selected certificate.

1.8.2.4.2 Dialog 'Encryption Wizard'
Function: The wizard makes sure that a certificate for the encryption of downloads, online
changes, and boot applications is downloaded from the controller. If a valid certificate does not
exist on the controller for this purpose, then the wizard makes sure that a certificate is created.
Changes to the application on the controller (download, online change, boot application) are
possible only when this certificate exists.
Call: “Properties” dialog of an application, “Encryption” tab, “Encryption with certificates” setting,
“Encryption Wizard” button
Requirement: “Encryption Technology” is set to “Encryption with certificates”.

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Security Agent

2022/01/213ADR010583, 3, en_US4128

“Status” Statuses while the wizard:is in action:
● “Not connected”: The connection to the controller has not been established

yet or the device cannot be reached.
● “Error connecting to the device”: The network path to the controller has not

been set correctly.
● “Connecting...”: A connection to the controller is being established.
● “Processing request...”: The wizard is checking for available certificates

and if necessary makes sure that the controller creates a new certificate.
The certificate downloaded from the controller is automatically classified as
"trusted" and registered in the Certificate Store of the computer.

● “Wizard finished”

“Details” Description of the individual actions of the wizard with corresponding notices in
the case of failures

“Start” If the connection path to the controller is set correctly in the device editor,
then the wizard starts the necessary actions for encrypting downloads, online
changes, and boot applications with a certificate.
If an expired certificate exists, then a corresponding warning is displayed with
a dialog prompt whether or not a new certificate should be created by the con-
troller. When this is confirmed, the new certificate is created and loaded to the
local Certificate Store. In this case, the existing boot application may not start
anymore and must be created again with the new certificate.
The “Certificate Settings” dialog opens when a new certificate is to be created
on the device. Here you configure the “Key length (bit)” and the “Validity period
(days)” for the certificate.

See also
● Ä Chapter 1.8.2.3 “Encryption of the Boot Application, Download, and Online Change”

on page 4123
● CODESYS Help: "Security", "Encryption", "Certificate"

1.8.3 CODESYS Static Analysis
Already when programming in CODESYS, CODESYS Static Analysis helps to write more read-
able code and to detect contradictory or unsupported settings. In particular, potential sources of
error can be identified, such as test code or pointers that have not been checked for 0 before
dereferencing. With specific checks, you can make sure that the code is portable. Example: The
analysis should report the use of language resources for object orientation because the code is
to run on platforms that do not support object orientation.
The analysis checks the source code of the CODESYS project and reports any deviations from
certain coding rules, naming conventions, or permitted keywords and identifiers. CODESYS
Static Analysis is based on the rule set defined in the PLCopen Coding Guidelines and extends
it with additional test options.
You can display the detected deviations as errors or warnings in the message view before the
project is downloaded to the target system. For errors that are reported by Static Analysis based
on precompile information, there is support for an immediate error handling ("Quickfix").
You activate Static Analysis either explicitly by clicking “Build è Run Static Analysis”, or you let
it execute automatically at each code generation. You activate the automatic execution in the
“Static Analysis” dialog of the projects settings. In this dialog, you also configure what is to be
checked in detail. You can use pragma statements to exclude individual parts of the code from
the check.
To evaluate the code quality, you can also display selected metrics that CODESYS Static
Analysis detects in your code in a separate view. An example of this is the McCabe metric,
which measures the cyclomatic complexity and indicates the number of execution paths that
can be processed during code execution.

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4129

NOTICE!
The analysis is performed only for the code of the applications in the current
project. Libraries are not taken into consideration.

The CODESYS development system contains a light version of Static Analysis
that is extended by CODESYS Static Analysis.

See also
● Ä Chapter 1.8.3.2.2.1 “Dialog 'Static Analysis Settings' - 'Settings'” on page 4138
Ä Chapter 1.8.3.2.1 “Commands” on page 4133

● Ä Chapter 1.8.3.3.1 “Pragmas and Attributes” on page 4149
● Usage and benefits of code optimizations are described in the application example.

1.8.3.1 Configuring and Running Static Analysis
Using a basic sample project below, you will find the most important steps and options for
configuring and running a static analysis.
Requirements: CODESYS Static Analysis is installed.

If you want to reproduce the example project, create a standard project and insert the POUs
below the application in the device tree. Then configure the communication settings for the
connection to your local CODESYS Control Win V3.
FUNCTION_BLOCK fb1
VAR_INPUT
 iVar_fb1in1 : INT;
 ivar_fb1in2 : INT;
 rVar_fb1in3 : REAL;
END_VAR
VAR_OUTPUT
 iVar_fb1out:INT;
END_VAR
VAR
 P_fSampleProperty : INT;
 rVar : REAL;
 PRO : BOOL;
END_VAR
iVar_fb1out:=iVar_fb1in1 + 1;

FUNCTION_BLOCK fb2
VAR_INPUT
 iVar_fb2in:INT;
END_VAR
VAR_OUTPUT
 iVar_fb2out:INT;
END_VAR
VAR
END_VAR

Sample project

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4130

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010652&LanguageCode=en&DocumentPartId=&Action=Launch

PROGRAM PLC_PRG
VAR
 fb1_inst: fb1;
 fb2_inst: fb2;
END_VAR
fb1_inst(iVar_fb1in1 := 99);
fb2_inst(iVar_fb2in := 22);
fb2_inst(iVar_fb2in := 1);

1. Click “Build è Static Analysis è Settings”. Switch to the “Rules” tab.

ð A list is displayed containing all possible rule checks. They are organized in a tree
structure by topical category. The rule number is added in parentheses (for example,
“Unused variables (33)” in category “Unused objects”).

2. Click the check box of the first line a few times (“Rules” node).

ð Clicking toggles the activation status. The check boxes in the entire tree have a red or
orange check mark, or no check mark at all.

3. In this way, activate all entries with a red check mark. This means that CODESYS Static
Analysis should report any detected rule violations as errors.

4. Click “Build è Static Analysis è Run Static Analysis”.

ð Errors are reported in the message view. The message texts are tagged with a and
begin with the error number "SA<rule number>".

5. Double-click the first message SA0033: Unused variables 'iVar_fb2out'.

ð The focus moves to the declaration part of function block fb2 and the relevant vari-
able is selected. The variable is declared, but not used. This is checked in Rule 33
(“Unused variables”). In the code, the relevant locations are underlined with a wavy
line.

6. To test the automatic execution of the analysis, click “Build è Static Analysis è Settings”.
On the “Settings” tab, select the “Perform static analysis automatically” option. Click “OK”
to exit the dialog.

7. Click “Online è Login”.

ð A dialog prompt indicates that compile errors exist. The errors reported by the code
analysis are displayed again in the message view.

8. Click “Build è Static Analysis è Settings”. Switch to the “Rules” tab.Now clear all of
the rules in the dialog. In the “Unused Objects” category, explicitly activate Rule SA0035
(“Unused input variables (35)”) with an orange-colored check mark to report a warning.
See the tooltip for the rule text: “This rule corresponds to the following PLCopen rules:
CP24”). Click “OK” to exit the dialog.
In the project settings, click “OK”.

9. Click “Build è Generate Code”.

ð The analysis is performed automatically. Two errors are reported in the message view:
§ SA0035: Unused input variable 'iVar_fb1in2 and § SA0035: Unused
input variable 'iVar_fb1in3.

10. Double-click the message and comment or remove the declaration. Perform the code
analysis again.

ð No error messages are displayed.

Checking for
compliance to
rules

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4131

See also
● Ä Chapter 1.8.3.2.2.1 “Dialog 'Static Analysis Settings' - 'Settings'” on page 4138
● Ä Chapter 1.8.3.2.2.2 “Dialog 'Static Analysis Settings' - 'Rules'” on page 4139

1. Click “Build è Static Analysis è Settings”. Click the “Naming Conventions” tab.

ð You see a table in a tree structure that is divided into expandable categories of
variables and program blocks.

2. Expand the “Prefixes for Variables” - “Prefixes for Types” category, and in the “Prefix”
column, specify I for “INT (14)”.

Expand the “Prefixes for POUs” - “Prefixes for POU Type” category: In the “Prefix”column,
specify the prog for “PROGRAM (122)” and fb for “FUNCTIONBLOCK (103)”.

3. Select the “First character after prefix should be an upper case letter” option. Clear all
other options.

4. Click “Build è Static Analysis è Run Static Analysis”.

ð Error messages:

● NC0102: Invalid name 'PLC_PRG': Expect prefix 'prog' because
PLC_PRG does not have the required prefix

● First character after prefix should be uppercase:
'ivar_fb1in2' because ivar_fb1in2 : INT; in fb1

● NC0014: Invalid variable name P_fSampleProperty: Expect
prefix 'i' because this integer variable does not have the required prefix

See also
● Ä Chapter 1.8.3.2.2.3 “Dialog 'Static Analysis Settings' - 'Naming Conventions'”

on page 4140

1. Click “Build è Static Analysis è Settings”. Click the “Forbidden Symbols” tab.

ð A line editor allows for specifying character strings that should not to be used in the
code.

2. As an example, double-click the blank line and type in the invalid character string PRO
directly. Double-click the next blank line and click to open the input assistance. From
“Standard Types”, select “REAL”. Click “OK” to exit the dialog.

3. Click “Build è Static Analysis è Run Static Analysis”.

ð The error messages Forbidden symbol 'REAL' and Forbidden symbol
'PRO' are displayed in the message view. Double-click the message text to jump
to the relevant line of code.

See also
● Ä Chapter 1.8.3.2.2.5 “Dialog 'Static Analysis Settings' - 'Forbidden Symbols'”

on page 4148

Checking for
compliance to
defined naming
conventions

Checking for
forbidden sym-
bols

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4132

CODESYS Static Analysis performs selected tests on the code, and you can display the results
in a view.
1. Click “Build è Static Analysis è Settings”. Click the “Metrics” tab.

ð The metrics that CODESYS Static Analysis applies to the code are listed in a table.

2. For this example, activate the “Number of inputs variables” metric and specify the per-
mitted range of values: lower limit 1 and upper limit 2. Activate some more metrics, for
example “Code size” and “Number of calls”.

3. Click “Build è Static Analysis è View Standard Metrics”.

ð The view includes a table with a line for each “Program unit” of the sample program.
For each activated metric, there is a column showing the measured values. Values
that are outside of the range of values defined in the settings are highlighted in red. In
the case of this specific example, this is at least the “PLC_PRG/Inputs” field because
the number of input variables in this POU is greater than the defined upper limit of 2.

See also
● Ä Chapter 1.8.3.2.2.4 “Dialog 'Static Analysis Settings' - 'Metrics'” on page 4147

See also
● Ä Chapter 1.8.3.2.1 “Commands” on page 4133

1.8.3.2 Reference, User Interface
1.8.3.2.1 Commands.. 4133
1.8.3.2.2 Dialogs... 4138

1.8.3.2.1 Commands
1.8.3.2.1.1 Command 'Settings'.. 4133
1.8.3.2.1.2 Command 'Run Static Analysis'.. 4133
1.8.3.2.1.3 Command 'View Standard-Metrics'.. 4134
1.8.3.2.1.4 Command 'Extract function'.. 4136
1.8.3.2.1.5 Command 'Detect clones'... 4137

Command 'Settings'
Function: The command opens the “Static Analysis Settings” dialog.
Call: Menu bar: “Build è Static Analysis”

Requirement:
● The CODESYS Static Analysis package is installed.
● A project is open.
See also
● Ä Chapter 1.8.3.2.2.1 “Dialog 'Static Analysis Settings' - 'Settings'” on page 4138

Command 'Run Static Analysis'
Symbol:
Function: The command starts the static analysis for the active application and displays the
results in the message view.

Displaying of
metrics

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4133

Call: Menu bar: “Build è Static Analysis”

During the code analysis, CODESYS generates code just like the “Build è Generate Code”
command. The results of the analysis are displayed as errors and warnings in the mes-
sage view (“Build” category). The numbers refer to the corresponding rules as they are defined
in the project settings. The syntax for the displayed messages is “SA<rule number:<rule text>”.
See also
● Ä Chapter 1.8.3.3.2 “Rules” on page 4154

Command 'View Standard-Metrics'
Symbol:
Function: The command starts the static analysis for the active application and displays the
metrics for all POUs in a table.
Call: Menu bar: “Build è View Standard Metrics”

The metrics (code numbers) to be displayed are activated in the project settings. You can
access the configuration by clicking “Configure” in the context menu of the displayed table. If a
value is outside of the configured upper and lower limits, then the field in the table is highlighted
in red.
See also
● Ä Chapter 1.8.3.2.2.4 “Dialog 'Static Analysis Settings' - 'Metrics'” on page 4147

Metric Description
“Code size” Number of bytes

“Variable size” Number of bytes

“Stack size” Number of bytes

“Calls” Number of calls

“Tasks” Number of calls from tasks

“Global” Number of different global variables

“I/Os” Number of direct object accesses

“Local” Number of local variables

“Inputs” Number of input variables

“Outputs” Number of output variables

“NOS” Number of statements

“Comments” Percentage of comments

“McGabe” McGabe complexity

“Prather” Prather complexity of nesting

“DIT” Depth of inheritance tree

“NOC” Number of children

“RFC” Response for class

“Elshof” Elshof complexity of reference

“CBO” Coupling between objects

“LCOM” Lack of cohesion in methods

“n1 (Halstead)” Number of different used Halstead (n1) opera-
tors

Standard Met-
rics

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4134

Metric Description
“N1 (Halstead)” Number of Halstead (N1) operators

“n2 (Halstead)” Number of different used Halstead (n2) oper-
ands

“N2 (Halstead)” Number of operands (N2)

“HL (Halstead)” Halstead length (HL)

“HV (Halstead)” Halstead volume (HV)

“D (Halstead)” Halstead difficulty (D)

“ SFC branches” Number of SFC branches

“SFC steps” Number of SFC steps

The following commands are provided in the context menu of the table:
● “Calculate”: The values are refreshed.
● “Copy Table”: The table is copied to the clipboard. The separators are tabs.
● “Print Table”: The default dialog for setting up a print job opens.
● “Export Table”: The table is exported as a CSV file. The separators are semicolons.
● “Kiviat Diagram”: Requirement: At least three metrics have defined upper and lower limits.

A radar chart is created for the selected POU. This visualizes the quality of POU code with
respect to a given standard.
Each metric is depicted as an axis with its origin at the center (value 0) which radiates
outward into three concentric ring zones. The inner ring zone represents the range of values
below the lower limit defined for the metric. The outer ring represents the range of values
above the upper limit. The axes of the metrics are distributed uniformly around the circle.
The current values of the individual metrics on the axes are connected by a line. In the ideal
case, the complete line is located in the middle zone.

● “Configure”: The table for selecting the desired metrics opens. This corresponds to the table
in the project settings.

● “Open POU”: The POU opens in the editor.

Commands in
the context
menu

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4135

The name of the metric is displayed at the end of the respective axis and the name of the POU
is displayed in the upper right corner of the diagram.

Example of a
Kiviat diagram
for five metrics

See also
● Ä Chapter 1.8.3.2.2.4 “Dialog 'Static Analysis Settings' - 'Metrics'” on page 4147

Command 'Extract function'
Function: The command opens the “Extract Function Configuration” dialog.
The command extracts selected code from the ST editor and creates a new method or function
containing this code. The affected code in the ST editor is replaced by a correct call. When code
is extracted from a function block or the child of a function block, a new method is created from
the code. When code is extracted from a program or a function, a new function is created from
the code.
Call: Context menu: “Refactoring”

Requirements: When the selected code consists of one or more statements:
● The selected code does not contain any compile errors.
● The selected code is located in the implementation part of an ST POU.
● The selected code does not contain any exiting jumps

Examples of exiting jumps include the following:
– Using RETURN to exit the enclosing function
– Using CONTINUE or EXIT to exit a loop enclosing the code

You can undo the changes that the “Extract function” command made in your
project by positioning the cursor in the device tree and clicking “Edit è Undo”.

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4136

Table 757: Dialog “Extract Function Configuration”
“Name” Name of the recently created function or method

The default name can be changed.

“Return value” Determines the return value of a function if there are multiple output and/or input/
output parameters

“Parameter” Display of the available POUs
Configuration whether the parameters are used as input, output, or input/output
variables

 : Input variables

 : Output variables

 : Input/Output variables

The changes made for “Name”, “Return value”, or “Parameter” are undone.

Upper code window Recently created code of the call location

Lower code window Recently created code of the function or method

“OK” The displayed code changes are accepted in the ST POUs and the dialog is
closed.

“Cancel” The displayed code changes are rejected and the dialog is closed.

Command 'Detect clones'
Function: The command scans the program code of the open CODESYS project for copied
code, and opens the “Clone detection results” view to display the detected cloned code blocks.
In the process, only code blocks larger than a specific size are considered to be clones. Very
small chunks of code are not displayed as clones.
Call:
● Menu bar: “Build è Static Analysis”
● Context menu: “Static Analysis”

Requirement: The CODESYS project is open.
Two code positions are considered clones if they have the following properties:
● Same structural composition
● Variables have the same data type.
● Variable names may be different (exception: component access). However, an identifier that

is contained multiple times in the code has to be in the same place in both code positions.
● Literals have the same data type.
● Literals may be different. A literal that occurs multiple times in the code has to occur at the

same place in both code positions.

Table 758: View “Clone detection results”
 “Summary” Tab to display the search results

● “Number of found cloned code sequences”
● “Number of statements compared”
● “Number of statements in cloned code”
● “Clone ratio”: Specified as a percentage: “Number of statements in cloned

code” / “Number of statements compared”

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4137

 “Results” The tab displays the code clones in a tree view and provides commands and
filter options.
The first occurrence of a duplicate from the set of duplicates is taken as the root
node. The background color of the child nodes indicates whether the code is dif-
ferent or completely identical. Same colors mean the "same code". The contents
of the tree view are sorted in descending order by the number of statements of
the duplicated code.

Commands and filters on the
“Results” tab

“Subnodes/Clone” Number of subnodes (statements) in the code block
If the number of subnodes is less than 20, then the code clone is not considered.

“Filter on Object” Input field for an “Object”, by which the clone list is filtered

“Show selected clones” Requirement: Two child nodes of the same parent node are selected.
Both programming objects are displayed in the upper part of the view for com-
parison. In the process, the code duplicates are highlighted and differences (for
example, different variable names) are highlighted in a different color.

List of code clones Columns
● “Description”
● “Subnodes/Clone”
● “Object”
● “Position”

Double-clicking a child node opens the corresponding programming object, and
the duplicated code block is selected there.

1.8.3.2.2 Dialogs
1.8.3.2.2.1 Dialog 'Static Analysis Settings' - 'Settings'.................................. 4138
1.8.3.2.2.2 Dialog 'Static Analysis Settings' - 'Rules'...................................... 4139
1.8.3.2.2.3 Dialog 'Static Analysis Settings' - 'Naming Conventions'.............. 4140
1.8.3.2.2.4 Dialog 'Static Analysis Settings' - 'Metrics'................................... 4147
1.8.3.2.2.5 Dialog 'Static Analysis Settings' - 'Forbidden Symbols'................ 4148

For the dialogs for the configuration of static code analysis, click “Build è Static Analysis
è Settings”. Requirement: A CODESYS project is open.

Dialog 'Static Analysis Settings' - 'Settings'
Function: In the dialog, you select automatic static analysis, and save or load the project
settings for static analysis as a CSA file.
Call:
● Menu bar: “Project è Project Settings”, “Static Analysis” category, “Open configuration

dialog” link
● Menu bar: “Build è Static analysis è Settings”

Requirement:
● The CODESYS Static Analysis package is installed.
● A project is open.

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4138

“Perform static analysis
automatically”

: CODESYS performs the code check automatically at each code generation
(for example, when the “Build è Generate Code” command is executed or
before a download.

: The code check is not performed automatically, but it can be performed
explicitly by means of the “Build è Static Analysis è Run Static Analysis”
command.

“Load” Opens the “Load Static Analysis Configuration” dialog for selecting the project
settings for the static analysis as a CSA file in the file system. When you click the
“Open” button, the selected CSA file is loaded.

“Save” Opens the “Save Static Analysis Configuration” dialog for saving all project set-
tings in the “Static Analysis” category as a CSA file in the file system.

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

Dialog 'Static Analysis Settings' - 'Rules'
Function: In the dialog, you select the rules that are checked during the static analysis of the
source code of a project.
Call:
● Menu bar: “Project è Project Settings”, “Static Analysis” category, “Open configuration

dialog” link
● Menu bar: “Build è Static analysis è Settings”

Requirement:
● The CODESYS Static Analysis package is installed.
● A project is open.
This tab shows a tree structure of all rules that can be checked during static analysis. By
default, every rule is activated, with the exception of SA0016, SA0024, SA0073, SA0101,
SA0105, SA0106, SA0133, SA0134, SA0150, SA0162, and all strict IEC rules.
Each rule has a unique number. When the rule is checked and a violation is detected, the rule
number and an error description are shown in the message view in the “Build” category in the
following format: SA<rule number>, where SA stands for "Static Analysis" (example: "SA003"
for rule 3).

The list of available rules can be extended by specific plug-ins.

Some rules that are activated in the dialog can be deactivated temporarily in the application by applying a
pragma.

When you click the check box, the setting toggles between , , and .
When you activate or deactivate a parent node, all child rules are also activated or deactivated, respectively.

“Filter”: ● Input field for the strings to be searched for
● : Rules are grouped by category.

– “Structured by Importance”: Sorting by “Importance High”, “Importance
Medium”, and “Importance Low”

– “Default”: Default structuring of the rules in CODESYS Static Analysis
● : Rules are displayed as a flat list. By clicking on the corresponding column

header, the list can be sorted by rule number, activation/deactivation, rule-
specific configuration, or importance.

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4139

Columns

“Rules” List of rules with rule number

Rule check ● : The rule is not checked.
● : If the result of the check is positive, then an error () for the static

analysis is displayed in the message view.
● : If the result of the check is positive, then a warning () for the static

analysis is displayed in the message view.

“Precompile” Rules which can be checked during precompile are identified by a check mark
 in this column.

An immediate bugfix (Quickfix) is possible for these rules. You can execute an
automatic, immediate error handling directly at the affected code positions.

“Rule specific configuration” For some rules, you can double-click the field to open a rule-specific dialog to
configure the rule.

“Importance”: Importance of the rule:
● 3 red stars: High
● 2 orange stars: Medium
● 1 gray star: Low

See also
● Ä Chapter 1.8.3.3.2 “Rules” on page 4154
● Ä Chapter 1.8.3.3.1 “Pragmas and Attributes” on page 4149
● Ä “Checking for compliance to rules” on page 4131

Dialog 'Static Analysis Settings' - 'Naming Conventions'
Function: In the dialog, you define the prefixes for the data types and scopes of variables,
as well as prefixes for POUs and user-defined data types (DUTs). Static analysis checks com-
pliance with the naming conventions. When a convention is not observed, the static analysis
reports an error message in the “Messages” view.
Call:
● Menu bar: “Project è Project Settings”, “Static Analysis” category, “Open configuration

dialog” link
● Menu bar: “Build è Static analysis è Settings”

Requirement:
● The CODESYS Static Analysis package is installed.
● A project is open.

The error messages are displayed in the following format: NC <prefix convention
number> : <message text>. NC stands for "Naming Convention". For example, the error
message " “NC0102: Invalid name...”" means a violation of naming convention 102 for POUs of
type PROGRAM.

You can use the pragma 'naming' to deactivate naming conventions for indi-
vidual identifiers. The identifiers can begin with anything, not necessarily with
the prefix.

“Filter” Input field for strings to be searched for

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4140

Table with the naming conventions

“Names” Nodes and elements for which a prefix can be defined.
The number in parentheses after each element (for example, “PROGRAM
(102)”) is the prefix convention number that is reported in the case of noncompli-
ance with a naming convention.

“Prefix” Input field of the prefix
● Multiple prefixes can be specified by means of comma separation.

Example:
“Prefix for POUs”, PROGRAM (102): prog, PRG_
“Prefix for POUs”, FUNCTION (103): fun, FUN_

● Regular expressions (RegEx) are also possible for prefixes. To do this, an @
has to be prepended.
Example:
The name has to begin with x and may contain one character from the scope
a-dA-D: @x[a-dA-D].

● For variables of type “Alias” and POUs of type “Property”, the prefix can be
defined with the placeholder {datatype}.

“Prefixes for variables” Organizational node for all variables for which a prefix can be defined dependent
on data type or scope.

“Prefixes for POUs” Organizational node for all POU types and method scopes for which a prefix can
be defined

“Prefixes for DUTs” Organizational node for the DUT data types (structure, enumeration, alias, or
union) for which a prefix can be defined

“Prefixes for custom types” Organizational node for special custom types (particularly those from libraries)
You can extend the list with conventions: Click the blank space below it. In the
“Input Assistant” dialog, specify the name of a custom type or select a custom
type.
To delete a convention, select it and press the [Del] key.
Note: These conventions have priority over the prefixes which are defined with
the attribute {attribute 'nameprefix' := '<prefix>'}.

Options

“First character after prefix
should be an upper case letter”

: Static analysis reports an error for a variable when the first character of the
variable name after the defined prefix is not an uppercase letter.

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4141

“Combine scope prefix with
data type prefix”

: As its namespace, a variable must have the defined prefix followed by the
defined prefix for its data type.
Example: The following prefixes are defined: g_ for “VAR_GLOBAL”, and r for
the data type “REAL”. The code analysis reports errors for global REAL variables
that do not have the prefix g_r.

: If conventions for the namespace are specified for a variable, then these
conventions are taken into account. As a result, any data type conventions are
ignored.
Example: The following prefixes are defined: g_ for “VAR_GLOBAL”, and r for
the data type “REAL”. The code analysis reports exclusively errors for global
REAL variables that do not have the prefix g_.

“Recursive prefixes for
combinable data types”

: Variables of combined data types have to have compound prefixes that follow
the defined naming conventions.
Example:
ppiVariable : POINTER TO POINTER TO INT;
The prefix p was defined for variables of data type POINTER, and the prefix I
was defined for the data type INT. Static analysis reports errors for all variables
of type POINTER TO POINTER TO INT which do not have the prefix ppi.
refaiVar : REFERENCE TO ARRAY[1..3] OF INT;
The prefix ref was defined for the data type REFERENCE TO, the prefix a for an
array, and the prefix I for the data type INT. Static analysis reports errors for all
variables of type REFERENCE TO ARRAY[1..3] OF INT which do not have
the prefix refai.

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4142

The following naming convention corresponds for the most part to the recommendations
described in the "Identifiers" chapter.

Example

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4143

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4144

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4145

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4146

The naming convention (1) refers to the standard POU TON. As a result, declarations of the
special library POU are checked for the prefix "ton_". Click the blank space (2) to insert more
naming conventions.

Example

See also
● Ä “Checking for compliance to defined naming conventions” on page 4132
● Ä Chapter 1.8.3.3.1.3 “Attribute 'naming'” on page 4150
● Ä Chapter 1.8.3.3.1.4 “Attribute 'nameprefix'” on page 4151
● Identifiers
● Data Type Alias
● PROPERTY

Dialog 'Static Analysis Settings' - 'Metrics'
Function: In the dialog, you select the metrics to be displayed for each POU in the “Standard
Metrics” view by means of the “Build è Static Analysis è View Standard Metrics” command.
Call:
● “Open configuration dialog” button in the menu “Project è Project Settings”, “Static

Analysis” category
● Menu bar: “Build è Static analysis è Settings”

Requirement:
● The CODESYS Static Analysis package is installed.
● A project is open.

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4147

ms-its:codesys.chm::/_cds_identifiers.htm
ms-its:codesys.chm::/_cds_datatype_alias.htm
ms-its:codesys.chm::/_cds_obj_property.htm

The “Code size”, “Variable size”, “Stack size”, and “Calls” metrics are reported
only for POUs from libraries which are integrated in the project.

Violations of the upper and lower limits of the activated metrics can be reported
as build errors by means of static analysis rule SA0150.

“Metrics” All selectable metrics are displayed in the column.

“Active” : The metric is displayed for each POU in the “Standard Metrics” view following
the “Build è Static Analysis è View Standard Metrics” command.

: The metric is not displayed in the “Standard Metrics” view following the “Build
è Static Analysis è View Standard Metrics” command.

“ Lower limit” Lower value from which the “Metric” is displayed

“Upper Limit” Upper value to which the “Metric” is displayed

See also
● Ä “Displaying of metrics” on page 4133
● Ä Chapter 1.8.3.3.2.52 “SA0150: Violations of lower or upper limits or the metrics”

on page 4220

Dialog 'Static Analysis Settings' - 'Forbidden Symbols'
Function: In the dialog, you define the keywords and symbols that must not be used in the
project code.
Call:
● “Open configuration dialog” button in the menu “Project è Project Settings”, “Static

Analysis” category
● Menu bar: “Build è Static analysis è Settings”

Requirement:
● The CODESYS Static Analysis package is installed.
● A project is open.

Input line Double-clicking the line opens the line editor for specifying a keyword or symbol.

: The Input Assistant opens for selecting the keyword or symbol.

See also
● Ä “Checking for forbidden symbols” on page 4132

1.8.3.3 Reference, Programming
1.8.3.3.1 Pragmas and Attributes... 4149
1.8.3.3.2 Rules... 4154

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4148

1.8.3.3.1 Pragmas and Attributes
CODESYS Static Analysis provides pragmas and attributes for activating or deactivating indi-
vidual rules or naming conventions for static code analysis.
Requirement: The rules or conventions are activated or defined in the project settings.
Attributes are inserted in the declaration part of a POU to deactivate specific rules for an entire
programming object.
Pragmas are used in the implementation part of a POU to deactivate specific rules for individual
lines of code. One exception is Rule 164, which can also be switched off in the declaration part.

Rules that are deactivated in the project settings cannot be activated by means
of pragmas or attributes.

Rule SA0004 cannot be deactivated by means of a pragma or an attribute.

See also
● Ä Chapter 1.8.3.3 “Reference, Programming” on page 4148

Pragma 'analysis'
This pragma is used to deactivate the code rules for individual code lines of a POU. You
deactivate code rules by specifying the rule numbers with a prepended minus sign ("-"). A
prepended plus sign ("+") activates the rule. You can specify any number of rules in the pragma.
Insert location: Deactivation: In the implementation part, with {analysis - ...} before the
first code line where the code analysis is deactivated. Activation: With {analysis + ...}
after the last line of the deactivation. For Rule 164, the pragma can also be inserted in the
declaration part before a comment.
Syntax:
Deactivation of rules:

{analysis -<rule number> (, -<additional rule number>)* }
* : optional none, one or more additional rule numbers
Activation of rules:

{analysis +<rule number> (, +<additional rule number>)* }
* : none, one or more additional rule numbers

Rule 24 is deactivated for two lines and then reactivated. As a result, rule 24 is not checked in
these lines so that nTest:=DINT#99 is allowed for example.
 {analysis -24}
nTest := 99;
iVar := INT#2;
{analysis +24}

Deactivating multiple rules:

{analysis -10, -24, -18}

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4149

Attribute 'analysis'
The attribute deactivates specific rules for an entire programming object. You deactivate the
code rules by specifying the rule numbers with a prepended minus sign ("-"). You can specify
any number of rules in the attribute.
Insert location: In the declaration part of a POU, in the first line.
Syntax:
{attribute 'analysis' := '-<rule number> (, -<additional rule
number>)* '}
* : none, one or more additional rule numbers

Rules 33 and 31 are deactivated for the entire structure:

{attribute 'analysis' := '-33, -31'}
TYPE My_Structure :
STRUCT
 iLocal : INT;
 uiLocal : UINT;
 udiLocal : UDINT;
END_STRUCT
END_TYPE

Rule 100 is deactivated for the array:

{attribute 'analysis' := '-100'}
PROGRAM PLC_PRG
VAR
 aBigData: ARRAY[1..10000] OF DWORD;
 aBigDATA_2: ARRAY[1..10000] OF DWORD;
END_VAR
;

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

Attribute 'naming'
The attribute marks the code lines that are excluded from the analysis of naming convention.
An off is assigned to the pragma attribute before the first code line where the code analysis is
deactivated. An on is assigned after the last line. When an omit is assigned, only the next code
line is ignored.
Insert location: Deactivation: In the declaration part of POUs and DUTs, above the affected
lines. Activation: Below the affected lines.
Syntax:
{attribute 'naming' := '<switch state>'}
<switch state> : on | off | omit
on : naming is switched on
off : naming is switched off
omit : only next code line is switched off

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4150

Defined naming conventions: 1) INT variable names must be prepended with "int" as the
identifier prefix, for example "intVar1". 2) Program names must begin with "prog".
For the code presented below, the static analysis issues messages only for the following
variables: cccVar, aVariable, and bVariable.

VAR
{attribute 'naming' := 'off'}
 iVarA : INT;
 iVarB : INT;
{attribute 'naming' := 'on'}
 iVarC : INT;
END_VAR

VAR
 ...
{attribute 'naming' := 'omit'}
 iVarC : INT;
...
END_VAR

{attribute 'naming' := 'omit'}
PROGRAM PLC_PRG
VAR
...
END_VAR

{attribute 'naming' := 'off'}
PROGRAM DoSomethingA
VAR
{attribute 'naming' := 'on'}
 iVarA : INT;
 iVarB : INT;
 …
VAR_END

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

Attribute 'nameprefix'
The attribute defines a prefix for variables of a structured data type. The prefix must be pre-
pended to the identifier of variables that are declared by this type.
Insert location: In the line before the declaration of a structured data type
Syntax:
{attribute 'nameprefix' := '<prefix>'}

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4151

In the following example, Static Analysis issues a message for pB because the variable name
does not begin with "point".

{attribute 'nameprefix' := 'point'}
TYPE DATAPOINT :
STRUCT
 iX: INT;
 iY: INT;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 pointA : DATAPOINT;
 pB : DATAPOINT;
END_VAR
pointA.iX := 1;
pointA.iY := 10;
pB.iX := 2;
pB.iY := 20;

Error message after static analysis: “Invalid variable name 'pB'. Expect prefix 'point'”

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

Attribute 'analysis:report-multiple-instance-calls'
The attribute marks a function block for checking for rule 105: Only function blocks with this
attribute are checked whether the function block instances are called more than one time. If rule
105 is deactivated in the project settings, then the attribute does not have any effect.
Insert location: Top line in the declaration part of a function block.
Syntax:
{attribute 'analysis:report-multiple-instance-calls'}

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4152

// {attribute 'analysis:report-multiple-instance-calls'} Deactivated
FUNCTION_BLOCK FB_DoA
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iA : INT;
END_VAR
iA := iA + 1;

{attribute 'analysis:report-multiple-instance-calls'}
FUNCTION_BLOCK FB_DoB
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iB : INT;
END_VAR
iB := iB +1;

PROGRAM PLC_PRG
VAR
 fbA : FB_DoA;
 fbB : FB_DoB;
ND_VAR

fbA();
fbB(); // SA0105
fbA();
fbB(); // SA0105

--> SA0105: Instance 'fbB' called more than once

Example

See also
● Ä Chapter 1.8.3.3.2.46 “SA0105: Multiple instance calls” on page 4206
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4153

1.8.3.3.2 Rules
1.8.3.3.2.1 SA0001: Unreachable code... 4155
1.8.3.3.2.2 SA0002: Empty objects.. 4155
1.8.3.3.2.3 SA0003: Empty statements.. 4156
1.8.3.3.2.4 SA0004: Multiple write access on output..................................... 4156
1.8.3.3.2.5 SA0006: Write access from several tasks.................................... 4157
1.8.3.3.2.6 SA0007: Address operator on constants...................................... 4158
1.8.3.3.2.7 SA0008: Check subrange types... 4158
1.8.3.3.2.8 SA0009: Unused return values.. 4159
1.8.3.3.2.9 SA0010: Arrays with only one component................................... 4160
1.8.3.3.2.10 SA0011: Useless declarations.. 4160
1.8.3.3.2.11 SA0012: Variable which could be declared as constants........... 4161
1.8.3.3.2.12 SA0013: Declarations with the same variable name.................. 4161
1.8.3.3.2.13 SA0014: Assignment of instances.. 4162
1.8.3.3.2.14 SA0015: Access to global data via FB_Init................................ 4163
1.8.3.3.2.15 SA0016: Gaps in structures... 4163
1.8.3.3.2.16 SA0017: Non-regular assignments.. 4164
1.8.3.3.2.17 SA0018: Unusual bit access.. 4164
1.8.3.3.2.18 SA0020: Possibly assignment of truncated value to REAL vari-

able... 4165
1.8.3.3.2.19 SA0021: Transporting the address of a temporary variable....... 4166
1.8.3.3.2.20 SA0022: (Possibly) unassigned return value............................. 4166
1.8.3.3.2.21 SA0023: Complex return values... 4167
1.8.3.3.2.22 SA0024: Untyped literals / constants... 4167
1.8.3.3.2.23 SA0025: Unqualified enumeration constants............................. 4168
1.8.3.3.2.24 SA0026: Possible truncated strings... 4168
1.8.3.3.2.25 SA0027: Multiple uses of identifiers... 4169
1.8.3.3.2.26 SA0028: Overlapping memory areas... 4169
1.8.3.3.2.27 SA0029: Notation in code different to declaration...................... 4170
1.8.3.3.2.28 Unused Objects.. 4170
1.8.3.3.2.29 SA0034: Enumerations with incorrect assignment..................... 4173
1.8.3.3.2.30 SA0037: Write access to input variable...................................... 4173
1.8.3.3.2.31 SA0038: Read access to output variable................................... 4174
1.8.3.3.2.32 SA0040: Possible division by zero... 4175
1.8.3.3.2.33 SA0041: Detect possible loop invariant code............................. 4176
1.8.3.3.2.34 SA0042: Usage of different access paths.................................. 4177
1.8.3.3.2.35 SA0043: Use of a global variable in only one POU.................... 4177
1.8.3.3.2.36 SA0044: Declarations with reference to interface...................... 4178
1.8.3.3.2.37 Conversions... 4179
1.8.3.3.2.38 Use of Direct Addresses... 4184
1.8.3.3.2.39 Rules for Operators.. 4186
1.8.3.3.2.40 Rules for Statements.. 4196
1.8.3.3.2.41 SA0095: Assignments in conditions... 4202
1.8.3.3.2.42 SA0100: Variables greater than <n> bytes................................. 4203
1.8.3.3.2.43 SA0101: Names with invalid length.. 4204
1.8.3.3.2.44 SA0102: Access to program/fb variables from the outside........ 4204
1.8.3.3.2.45 SA0103: Concurrent access on not atomic data........................ 4205
1.8.3.3.2.46 SA0105: Multiple instance calls.. 4206
1.8.3.3.2.47 SA0106: Virtual method calls in FB_INIT................................... 4207
1.8.3.3.2.48 SA0107: Missing formal parameters.. 4208
1.8.3.3.2.49 Checking Strict IEC Rules.. 4209

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4154

1.8.3.3.2.50 SA0140: Statements commented out... 4217
1.8.3.3.2.51 Possible Use of Uninitialized Variables...................................... 4217
1.8.3.3.2.52 SA0150: Violations of lower or upper limits or the metrics......... 4220
1.8.3.3.2.53 SA0160: Recursive calls.. 4220
1.8.3.3.2.54 SA0161: Unpacked structure in packed structure...................... 4221
1.8.3.3.2.55 SA0162: Missing comments... 4222
1.8.3.3.2.56 SA0163: Nested comments.. 4223
1.8.3.3.2.57 SA0164: Multiline comments.. 4224
1.8.3.3.2.58 SA0165: Tasks calling other POUs than programs.................... 4224
1.8.3.3.2.59 SA0166: Max. number of input/output/in-out variables.............. 4225
1.8.3.3.2.60 SA0167: Temporary function block instances............................ 4225
1.8.3.3.2.61 SA0168: Unnecessary Assignments ... 4226
1.8.3.3.2.62 SA0169: Ignored outputs.. 4227

SA0001: Unreachable code
Detects lines of code that are not executed, for example due to a RETURN or CONTINUE
statement
Justification: Unreachable code should always be avoided. The test often indicates that test
code still exists which should be removed.
Importance: High
PLCopen rule: CP2

PROGRAM PLC_PRG
VAR
 xReturn_Before_End: BOOL;
 xContinue_In_Loop_FUN: BOOL;
 iCounter: INT;
END_VAR

xContinue_In_Loop_FUN := FALSE;
FOR iCounter := INT#0 TO INT#5 BY INT#1 DO
 CONTINUE;
 xContinue_In_Loop_FUN := FALSE;
END_FOR

--> SA0001: Unreachable code detected in 'PLC_PRG'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0002: Empty objects
Detects POUs, GVLs, data type declarations, or interfaces that do not contain any code
Justification: Empty objects should be avoided. They are often a sign that an object has not
been implemented completely. Exception: In some cases, no code is specified in the body of a
function block when it should be used by interfaces only. In other cases, a method is created
only because it is required by an interface without a sensible implementation being possible for
the method. No matter the case, this kind of situation should be commented.
Importance: Medium
See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4155

SA0003: Empty statements
Detects lines of code that have a semicolon (;) but not a statement

Justification: An empty statement can be a sign for missing code.
Note: There are good reasons for using empty statements. For example, in a CASE statement
it can make sense to explicitly program out all cases, even those where there is nothing to
do. When this kind of empty CASE statement contains a comment, Static Analysis does not
generate an error message.
Importance: Low

CASE value OF
1:DoSomething();
2:;
3:DoSomethingElse();
END_CASE

--> SA0003: Empty statements
CASE value OF
1:DoSomething();
2:; //nothing to do
3:DoSomethingElse();
END_CASE

--> No SA error

Examples

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0004: Multiple write access on output
Detects outputs that are written to more than one location
Justification: The maintainability is degraded when an output is written in different locations in
the code. Then it is uncertain which write access is the one that actually has an effect in the
process. Good practice is to calculate the output variables in auxiliary variables and assign the
calculated value at one location at the end of the cycle.
Importance: High
PLCopen rule: CP12

An error is not issued when an output variable (VAR_IN_OUT) is written in
different branches of IF and CASE statements.

A pragma cannot deactivate this rule.

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4156

VAR_GLOBAL
 g_xVar AT %QX0.0 : BOOL ;
 g_iTest AT %QW0 : INT ;
END_VAR

PROGRAM PLC_PRG
IF g_iCondition < INT#0 THEN
 g_xVar := TRUE;
 g_iTest := INT#12;
END_IF

CASE g_iCondition OF
 INT#1:
 g_xVar := FALSE;
 INT#2:
 g_iTest := INT#11;
 ELSE
 g_xVar := TRUE;
 g_iTest := INT#9;
END_CASE

--> SA0004: Multiple write access on output '%QX0.0'
--> SA0004: Multiple write access on output '%QW0'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0006: Write access from several tasks
Detects variables that are written by more than one task
Justification: A variable that is written in multiple tasks may change its value unexpectedly.
This can lead to confusing situations. String variables (and on some 32-bit systems also 64-bit
integer variables) can even reach an inconsistent state if the variable is written to two tasks
simultaneously.
Exception: In specific cases, it may be necessary for several tasks to write a variable. For
example, use semaphores to make sure that access does not lead to an inconsistent state.
Importance: High
PLCopen rule: CP10

VAR_GLOBAL
 g_iTemp1: INT;
END_VAR

PROGRAM PLC_PRG // Controlled by MainTask
g_iTemp1 := g_iTemp1 + INT#2;

PROGRAM PLC_PRG_1 //Controlled by SubTask
g_iTemp1 := g_iTemp1 - INT#3;

--> SA0006: Concurrent write access to 'g_iTemp1' in Tasks
MainTask, SubTask

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4157

SA0007: Address operator on constants
Detects lines of code where the operator ADR is applied for a constant

Justification: Using a pointer to a constant variables overrides the CONSTANT property of the
variable. The variable can be changed by means of the pointer without any notification from the
compiler.
Exception: In rare cases, it might be useful to pass a pointer to a constant to a function.
However, you have to make sure that this function does not change the transferred value.
Whenever possible, use VAR_IN_OUT CONSTANT.

Importance: High

When the “replace constants” option is selected in the “Compiler options” of
the project settings, the address operator is not permitted for scalar constants
(integer, BOOL, REAL) and a complie error is issued. (Constant strings, struc-
tures, and arrays always have an address.)

PROGRAM PLC_PRG
VAR CONSTANT
 c_iValue : INT := INT#15;
END_VAR
VAR
 poiValue : POINTER TO INT;
END_VAR
poiValue := ADR(c_iValue); // SA0007

--> SA0007: Address to constant variable 'c_iValue'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0008: Check subrange types
Detects out-of-range violations of subrange types. Assigned literals are already checked by
the compiler. When constants are assigned, then the values must be within the defined range.
When variables are assigned, then the data types must be identical.
Justification: If subrange types are used, then make sure that this subrange is not exited. The
compiler checks for these kinds of subrange violations only for assignments of constants.
Importance: Low

The check is not performed for CFC objects because the code structure does
not allow for it.

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4158

VAR_GLOBAL
 iVarGlob:INT;
END_VAR

PROGRAM PLC_PRG
VAR
 iSubr1: INT (INT#1..INT#10);
 iSubr2: INT (INT#1..INT#1000);
 iCount: INT;
 by_SubType : BYTE (BYTE#0..BYTE#11);
 iVar : INT (-4095..4095);
END_VAR
 iSubr1 := nCount; // SA0008
 iSubr1 := subr2; // SA0008
 iSubr1 := gvl.iVarGlob; // SA0008
 //byBYTE_SubType := BYTE#123; //already detected by compiler,
error "Cannot convert type..."

--> SA0008: Subrange variable 'iSubr1' maybe out of allowed range

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0009: Unused return values
Detects function, method and property calls in which the return value is not used
Justification: When a function or method returns a return value, it should also be evaluated. The
return value often indicates whether or not the function was executed successfully. If not, then
you will not be able to identify later whether the return value was forgotten or if it is actually not
needed.
Exception: If a return value is irrelevant to the call, then you can document this and omit the
assignment. Error returns should never be ignored.
Importance: Medium
PLCopen rule: CP7 / CP17

FUNCTION Return_BOOL : BOOL
VAR_INPUT
END_VAR
VAR
 xTest : BOOL;
END_VAR
xTest := FALSE;
Return_BOOL := xTest;

PROGRAM PLC_PRG

Return_BOOL (); // SA0009

--> SA0009: Ignoring return value of 'Return_Bool'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4159

SA0010: Arrays with only one component
Detects arrays with only one element
Justification: An array with one element can be replaced by a base-type variable. Access to this
variable is considerably faster than access by index to the variable.
Exception: The length of an array is often determined by a constant and is a parameter for a
program. Then the program can work with arrays of different lengths and does not have to be
changed if the length is only 1. This kind of situation should be documented accordingly.
Importance: Low

PROGRAM PLC_PRG
VAR
 aoiEmpty : ARRAY [22..22] OF INT;
 aorEmpty : ARRAY [1..1] OF REAL;
END_VAR

aoiEmpty;
aorEmpty;

--> SA0010: Vacuous array element in variable 'aoiEmpty'
--> SA0010: Vacuous array element in variable 'aorEmpty'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0011: Useless declarations
Detects structures or enumerations with only one component
Justification: This kind of declaration can be confusing for the reader. A structure with only
one element can be replaced by an alias type. An enumeration with only one element can be
replaced by an constant.
PLCopen rule: CP22 / CP24
Importance: Low

TYPE SingleStruct :
STRUCT
 iPart : INT;
END_STRUCT
END_TYPE

TYPE myUnion :
UNION
 lrValue : LREAL;
END_UNION
END_TYPE

TYPE SingleEnum :
(
 OnlyOne := 1
);
END_TYPE

--> Useless declaration 'SingleStruct'
--> Useless declaration 'myUnion'
--> Useless declaration 'SingleEnum'

Example

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4160

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0012: Variable which could be declared as constants
Detects variables that are not accessed with write permission and therefore could be declared
as constants
Justification: If a variable is written only at the declaration point and is otherwise used only
for reading, then the static analysis assumes that the variable should also not to be changed.
Firstly, a declaration as a constant results in checking that the variable is not changed when the
program is changed. Secondly, the declaration as a constant may result in faster code.

NOTICE!
If multiple applications exist in one project, then only the objects below the
currently active application are affected. If there is only one application, then the
objects in the common POU pool are also affected.

Importance: Low

PROGRAM PLC_PRG
VAR
 iVar : INT := INT#17;
 iTest : INT;
END_VAR
iTest := iTest + iVar; // SA0012: iVar could be declared as
constant

--> SA0012: Variable 'iVar' could be declared as constant

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0013: Declarations with the same variable name
Detects variables with names that are already used by other variables (for example, global and
local variables with the same name). Also detects variables with names of functions, actions,
methods, or properties which are used in the same access scope. Variables are also detected
that are declared in a GVL in the “Devices” view or in the POUs pool. For this, however, the
GVL of the “POUs” view have to be used in the application program.
Justification: The same names can be confusing when reading the code, and they can cause
errors if the wrong object is accessed unintentionally. We recommend that you use naming
conventions to avoid these situations.
PLCopen rule: N5 / N9
Importance: Medium

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4161

VAR_GLOBAL
 xVar1 : BOOL;
 iVar3 : INT;
END_VAR

PROGRAM PLC_PRG
VAR
 xVar1 : BOOL; // SA0013
 iVar3 : INT; // SA0013
END_VAR

xVar1 := NOT GVL.xVar1;
iVar3 := iVar3 + INT#2;
iVar3 := GVL.iVar3;

--> SA0013: Declaration of 'iVar1' hides symbol 'GVL.iVar1
--> SA0013: Declaration of 'xVar3' hides symbol 'GVL.xVar3

Example

The function block POU has the action ACT and the method METH.

FUNCTION_BLOCK POU
VAR
 ACT : UINT; // SA0013
 METH : BYTE; // SA0013
END_VAR

--> SA0013: Declaration of 'ACT' hides symbol 'POT.ACT'
--> SA0013: Declaration of 'METH' hides symbol 'POT.METH'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0014: Assignment of instances
Detects assignments to function block instances. In the case of instances with pointer or refer-
ence variables, these assignments are potentially risky.
Justification: This is a performance warning. When an instance is assigned to another instance,
all elements and subelements are copied from the one instance to the other instance. Pointers
to data are also copied, but not their referenced data, so that the target instance and the source
instance contain the same data after the assignment. Depending on the size of the instances,
this kind of assignment could last a long time. For example, if an instance should be passed
to a function for processing, then it is much more efficient to pass a pointer to the instance. If
you want to selectively copy values from one instance to another, then a copy method is useful:
inst_First.Copy_From(inst_Second).

Importance: Medium

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4162

PROGRAM PLC_PRG
VAR
 inst_First : My_FB;
 inst_Second : My_FB;
END_VAR
inst_First();
inst_Second := inst_First; // SA0014

--> SA0014: Assignment of instances

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0015: Access to global data via FB_Init
Detects the access of a function block to global variables by means of the method FB_Init.
The value of this variable depends on the order of initializations.
Justification: Depending on the declaration location of the POU instance, an uninitialized vari-
able could be accessed if the rule is violated.
Importance: High

VAR_GLOBAL
 g_xTest1 : BOOL;
 g_iTest3 : INT;
END_VAR

METHOD PUBLIC fb_init : BOOL
VAR_INPUT
 bInitRetains : BOOL; // If TRUE, the retain variables are
initialized (warm start / cold start)
 bInCopyCode : BOOL; // If TRUE, the instance afterwards gets
moved into the copy code (online change)
END_VAR
g_xTest1 := NOT g_xTest1; // SA0015
g_iTest3 := g_iTest3 + INT#1; // SA0015

--> SA0015: FB_Init method of function block 'POU' accesses global
data

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0016: Gaps in structures
Detects gaps in structures or function blocks that are caused by the alignment requirements
of the currently set target system. If possible, you should remove the gaps by resorting the
structure elements or filling them with a dummy element. If this is not possible, then you can
deactivate the rule for the affected structures by means of the analysis pragma.

Justification: Due to different alignment requirements on different platforms, there may be a dif-
ferent layout in the memory for these kinds of structures. Then the code can perform differently,
depending on the platform.
Importance: Low

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4163

PROGRAM PLC_PRG
VAR
 myStruct : Unpadded_Structure;
END_VAR
myStruct.iTest := 0;

TYPE Unpadded_Structure :
STRUCT
 xTest : BOOL;
 iTest : INT; // SA0016
 byTest : BYTE;
 wTest : WORD;
END_STRUCT
END_TYPE

--> SA0016: Structure 'Unpadded_Structure' must be padded (pack-
mode=8)

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0017: Non-regular assignments
Detects assignments to pointers that are neither addresses (ADR operator, pointer variables) nor
constants 0
Justification: If a pointer contains a value that is not a valid address, then an access violation
exception occurs when dereferencing the pointer.
Importance: High

PROGRAM PLC_PRG
VAR
 pInt : POINTER TO INT;
 dwAddress : DWORD;
END_VAR
dwAddress := dwAddress + DWORD#1;
pInt := dwAddress; // SA0017

--> SA0017: Non-regular assignment

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0018: Unusual bit access
Detects bit access to signed variables. However, the IEC 61131-3 standard permits only bit
access and bit shift operations on bitfields. See also the strict rules SA0147 and SA0148.
Justification: Signed data types should not be used as bitfields and the other way around. The
IEC 61131-3 standard does not provide for this kind of access, and therefore you should comply
with this rule when you write portable code.
Importance: Medium

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4164

Exception for flag enumerations: When an enumeration is declared as a flag by
means of the {attribute 'flags'} pragma attribute, the SA0018 error is
not issued for bit access with the OR, AND or NOT operators.

PROGRAM PLC_PRG
VAR
 iTemp1 : INT;
 diTemp3 : DINT;
 uliTemp4 : ULINT;
 siTemp5 : SINT;
 usiTemp6 : USINT;
 byTemp2 : BYTE;
END_VAR
iTemp1.3 := TRUE; // SA0018
diTemp3.4 := TRUE; // SA0018
uliTemp4.18 := FALSE; // no error because this is an unsigned data
type
siTemp5.2 := FALSE; // SA0018
usiTemp6.3 := TRUE; // no error because this is an unsigned data
type
byTemp2.5 := FALSE; // no error because the byte is a bitfield

--> SA0018: Unusual bit access

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130
● Ä Chapter 1.8.3.3.2.49.12 “SA0147: Unusual shift operation - strict” on page 4214
● Ä Chapter 1.8.3.3.2.49.13 “SA0148: Unusual bit access - strict” on page 4215

SA0020: Possibly assignment of truncated value to REAL variable
Detects operations on integer variables for which a truncated value could be assigned to a
REAL data type variable

Justification: Static analysis issues an error when the result of an integer calculation is assigned
to a REAL or LREAL variable. The programmer should be alerted to a possible incorrect inter-
pretation of this kind of assignment: lrealvar := dintvar1 * dintvar2. Because the
range of values of LREAL is greater than that of DINT, one could assume that the result
of the calculation could always be represented in LREAL. But that is not the case. The pro-
cessor calculates the result of the multiplication as an integer and then casts the result to
LREAL. An overflow in the integer calculation would be lost. To work around the problem, the
calculation has to be done as a REAL operation: lreal_var := TO_LREAL(dintvar1) *
TO_LREAL(dintvar2).

Importance: High

PROGRAM PLC_PRG
VAR
 rx : LREAL;
 di : DINT;
END_VAR
rx := di * di // SA0020
rx := TO_LREAL(di) * TO_LREAL(di) // No message

--> SA0020: Possibly assignment of truncated value to REAL variable

Example

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4165

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0021: Transporting the address of a temporary variable
Detects address assignments of temporary variables (on the stack) to non-temporary variables
Justification: Local variables of a function or method are created on the stack and they exist only
while the function or method is being processed. If a pointer points to this kind of variable after
processing the method or function, then you can use this pointer to access undefined memory,
or to access an incorrect variable in another function. This situation should be avoided at all
costs.
Importance: High

FUNCTION TempVarInFUNC : DWORD
VAR
 uiTemp : UINT;
END_VAR
TempVarInFUNC := ADR(uiTemp); // SA0021

PROGRAM PLC_PRG
VAR
 dwTest : DWORD;
END_VAR
dwTest := TempVarInFUNC();

--> SA0021: Transporting address of temporary variable to outer
scope symbol

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0022: (Possibly) unassigned return value
Detects all functions and methods that include an execution thread without an assignment to the
return value
Justification: An unassigned return value in a function or method is an indication of missing
code. Even if the return value always has a default value, it is always useful to assign it again
explicitly to avoid confusion.
Importance: Medium

FUNCTION FUN : DINT
VAR_INPUT
 bTest : BOOL;
END_VAR

IF bTest THEN
 RETURN;
END_IF
FUN := 99;

--> SA0022: (Possibly) unassigned return value

Example

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4166

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0023: Complex return values
Determines complex return values that cannot be returned with a simple registry copy of the
processor. This includes structures, arrays, and return values of type STRING (regardless of the
size of the used memory).
Justification: This is a performance warning. If large values are returned as the result of a
function, method, or property, then the processor copies them multiple times when executing the
code. This can lead to runtime problems and should be avoided whenever possible. Perform-
ance can be improved by passing a structured value as VAR_IN_OUT to a function or method
and filling it in the function or method.
Importance: Medium

TYPE LargeStructure :
STRUCT
 a : LINT;
 b : BOOL;
END_STRUCT
END_TYPE

FUNCTION Large_Return_Value_FUNC : LargeStructure // SA0023

--> SA0023: Complex return values

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0024: Untyped literals / constants
Detects untyped literals and constants
Justification: CODESYS assigns types for literals depending on their use. In some cases, this
can cause unexpected problems, which should be resolved better with a typed literal. For
example: dw := ROL(DWORD#1, i)
Importance: Low

PROGRAM PLC_PRG
VAR
 iTemp1 : INT = 10; // SA0024
 diTemp2 : DINT;
 liTemp3 : LINT;
 rTemp4 : REAL;
 lrTemp5 : LREAL;
END_VAR
iTemp1 := iTemp1 + INT#34;
diTemp2 := diTemp2 + 23; // SA0024
liTemp3 := liTemp3 + 124; // SA0024
rTemp4 := rTemp4 + 1.1; // SA0024
lrTemp5 := lrTemp5 + 3.4; // SA0024

--> SA0024: Untyped literal found

Example

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4167

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0025: Unqualified enumeration constants
Detects enumeration constants for which a qualified name does not prepend the enumeration
Justification: Qualified access makes the code more readable and easier to maintain. Without
forcing qualified variable names, an additional enumeration could be inserted when the program
is extended. This enumeration contains a constant with the same name as an existing enumer-
ation (see the example below: "red"). This would result in ambiguous access to this piece of
code. We recommend to always use only enumerations with the {attribute 'qualified-only'}.
Importance: Medium

TYPE COLOR
(red,green,blue);
END_TYPE

PROGRAM PLC_PRG
enumVar : COLOR;

enumVar := COLOR.red; // SA0025
enumVar := red; // SA0025

--> SA0025: Enumeration constant 'red' not qualified

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0026: Possible truncated strings
Detects string assignments and string initializations that do not use sufficient string length
Justification: When strings of different lengths are assigned, a string could be truncated. This
can have unexpected results.
Importance: Medium

PROGRAM PLC_PRG
VAR
 strVar1 : STRING[10];
 strVar2 : STRING[6];
 strVar3 : STRING[6] := 'abcdefghi'; // SA0026
END_VAR

strVar2 := strVar1; // SA0026

--> SA0026: Truncation of string 'abcdefghi'
--> SA0026: Possible truncation of string 'strVar1'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4168

SA0027: Multiple uses of identifiers
Detects multiple uses of a name/identifier for a variable or an object (POU) within the scope of a
project
Justification: Same names can be confusing when reading the code. They can cause errors if
the wrong object is accessed accidentally. Define and follow naming conventions to avoid any
situation like this.
The following cases are detected:
● The name of an enumeration is identical to the name of another enumeration in the applica-

tion or in an integrated library.
● The name of a variable is identical to the name of another object in the application or in an

integrated library.
● The name of a variable is identical to the name of an enumeration constant in an enumera-

tion in the application or in an integrated library.
● The name of an object is identical to the name of another object in the application or in an

integrated library.
Importance: Medium

The Standard library is integrated in the project and provides the TON function.
PROGRAM PLC_PRG
VAR
ton : INT;
END_VAR

--> Variable name 'ton' in 'PLC_PRG' already used for an object in
library 'standard, ...'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0028: Overlapping memory areas
Detects the lines of code where two or more variables reserve the same memory
Justification: When two variables reserve the same memory, the code may behave with unex-
pected results. This situation should be avoided at all costs. If you cannot avoid using a value
in different interpretations (for example, one time as DINT and another time as REAL), then
you should define a UNION. You can also use a pointer to access a value with a different type
without the value being converted.
Importance: High

PROGRAM PLC_PRG
VAR
iVvar1 AT %QB21: INT;
dwVar2 AT %QD5: DWORD;
END_VAR

--> The following variables access the same memory:
--> SA0028: iVar1 AT %QB21
--> SA0028: dwVar2 AT %QD5

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4169

SA0029: Notation in code different to declaration
Detects the code locations where the notation of an identifier is different from the notation in its
declaration
Justification: The IEC 61131-3 standard defines identifiers as not case-sensitive. This means
that a variable declared as "varx" can also be used as "VaRx" in the code. However, this is
confusing and misleading and should be avoided.
Importance: Medium

A POU PLC_PRG and a POU fnc (function) exist in the device tree.
PROGRAM PLC_PRG
VAR
 iVar: INT;
 _123test_var_: INT;
END_VAR

ivar := iVar + 1; // SA0029
_123TEST_var_ := _123test_var_; // SA0029
Fnc(); // SA0029

--> SA0029: Notation in code (ivar) must equal declaration (iVar)
--> SA0029: Notation in code (_123TEST_var_) must equal declaration
(_123test_var_)
--> SA0029: Notation in code (Fnc) must equal declaration (fnc)

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

Unused Objects
1.8.3.3.2.28.1 SA0031: Unused signatures.. 4170
1.8.3.3.2.28.2 SA0032: Unused enumeration constants................................ 4171
1.8.3.3.2.28.3 SA0033: Unused variables.. 4171
1.8.3.3.2.28.4 SA0035: Unused input variables... 4172
1.8.3.3.2.28.5 SA0036: Unused output variables... 4172

SA0031: Unused signatures
Detects programs, function blocks, functions, data types, interfaces, methods, properties, and
actions that are not called within the compiled program code
Justification: Unused objects unnecessarily increase the size of the project and can be con-
fusing when reading the code.
Importance: Low
PLCopen rule: CP2

If multiple applications exist in a project, then only the objects below the cur-
rently active applications are affected. If there is only one application, then the
objects in the POU pool are also affected.

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4170

SA0032: Unused enumeration constants
Detects enumeration constants that are not used in the compiled program code
Justification: Unused enumeration constants unnecessarily increase the size of the enumeration
definition and can be confusing when reading the program.
PLCopen rule: CP24
Importance: Low

If multiple applications exist in a project, then only the objects below the cur-
rently active applications are affected. If there is only one application, then the
objects in the common POU pool are also affected.

TYPE My_Enum :
(
 one := 1, two := 2
);
END_TYPEE

--> SA0032: Unused enumeration constant 'one'
--> SA0032: Unused enumeration constant 'two'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0033: Unused variables
Detects variables that are declared but not used within the compiled program code
Justification: Unused variables make a program less readable and maintainable. Unused varia-
bles unnecessarily fill memory and unnecessarily waste runtime during initialization.
Importance: Medium
PLCopen rule: CP22 / CP24

For GVL variables:If multiple applications exist in a project, then only the objects
below the currently active applications are affected. If there is only one applica-
tion, then the objects in the common POU pool are also affected.

PROGRAM PLC_PRG
VAR
 iCounter1 : INT;
 iCounter2 : INT; // SA0035
END_VAR

ICounter1 := 100;

--> SA0035: Unused Variable 'iCounter2'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4171

SA0035: Unused input variables
Detects input variables that are not used by any function block instance
Justification: Unused variables make a program less readable and maintainable. Unused varia-
bles unnecessarily fill memory and unnecessarily waste runtime during initialization.
Importance: Medium
PLCopen rule: CP24

FUNCTION_BLOCK AFB
VAR_INPUT
 iIn1: INT;
 iIn2: INT;
END_VAR
VAR_OUTPUT
 iOut1: INT;
END_VAR

PROGRAM PLC_PRG
VAR
 Fb1: AFB;
END_VAR

Fb1(iIn1 := 99)

--> SA0035: Unused input 'iIn2'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0036: Unused output variables
Detects output variables that are not used by any function block instance
Justification: Unused variables make a program less readable and maintainable. Unused varia-
bles unnecessarily fill memory and unnecessarily waste runtime during initialization.
Importance: Medium
PLCopen rule: CP24

FUNCTION_BLOCK AFB
VAR_INPUT
 iIn1: INT;
 iIn2: INT;
END_VAR
VAR_OUTPUT
 iOut1: INT;
END_VAR

PROGRAM PLC_PRG
VAR
 Fb1: AFB;
END_VAR
Fb1(iIn1 := 99)

--> SA0036: Unused output 'iOut1'

Example

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4172

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0034: Enumerations with incorrect assignment
Detects values that are assigned to an enumeration variable. Only defined enumeration con-
stants of an enumeration variable are permitted to be assigned.
Justification: A variable of the enumeration type should have only the intended values, other-
wise the code that uses this variable may not work correctly. We recommend to always use
enumerations with the {attribute 'strict'}. Then the compiler already checks the cor-
rect use of the enumeration components.
Importance: High

TYPE COLOR :
(
 Red := 0,
 Green,
 Yellow
);
END_TYPE

PROGRAM PLC_PRG
VAR
 eColor1: COLOR;
END_VAR

eColor1 := COLOR.Red;
eColor1 := 1; // SA0034

--> SA0034: Use enumeration value instead of 'INT#1'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0037: Write access to input variable
Detects input variables (VAR_INPUT) that are accessed with write permission within the POU
Justification: According to the IEC 61131-3 standard, an input variable must not be changed
within a POU. This kind of access is also a cause for errors and makes the code poorly
maintainable. This is an indication that a variable is used as both an input variable and an
auxiliary variable. This kind of dual use should be avoided.
Importance: Medium

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4173

VAR_GLOBAL
 g_xGlob AT %QX0.0 : BOOL;
END_VAR

PROGRAM PLC_PRG
VAR_INPUT
 xVarIn1:BOOL;
 xVarIn2:BOOL;
END_VAR
VAR
 iCondition : INT;
END_VAR

iCondition := iCondition + INT#1;
CASE iCondition OF
 INT#1:
 g_xGlob := xVarIn1;
 INT#2:
 g_xGlob := xVarIn2;
ELSE
 g_xGlob := FALSE;
 xVarIn1 := FALSE; // SA0037
END_CASE

--> SA0037: Write access to input variable 'xVarIn1'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0038: Read access to output variable
Detects output variables (VAR_OUTPUT) that are accessed with read permission within the
POU
Justification: According to the IEC 61131-3 standard, it is prohibited to read an output within a
POU. This is an indication that the output is not only used as an output but also as a temporary
variable for intermediate results. This kind of dual use should be avoided.
Importance: Low

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4174

VAR_GLOBAL
 g_xGlob AT %QX0.0 : BOOL ;
 g_iGlob AT %QW1 : INT ;
END_VAR

PROGRAM PLC_PRG
VAR_OUTPUT
 xVarOut1:BOOL;
 xVarOut2:INT;
 xVarOut3:INT;
END_VAR
VAR
 iCondition : INT;
END_VAR

iCondition := iCondition + INT#1;
CASE iCondition OF
 INT#1:
 xVarOut1 := g_xGlob;
 xVarOut2 := g_iGlob;
 INT#2:
 xVarOut3 := xVarOut2; // SA0038
 ELSE
 xVarOut1 := FALSE;
 g_xGlob := xVarOut1; // SA0038
 xVarOut2 := INT#0;
 xVarOut3 := INT#-1;
END_CASE

--> SA0038: Read access to output variable 'xVarOUT2'
--> SA0038: Read access to output variable 'xVarOUT1'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0040: Possible division by zero
Detects code locations where there is possible division by zero
Justification: Division by zero should never occur, and a variable denominator should always be
checked for 0 first.
Importance: High

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4175

VAR_GLOBAL
 g_iVar AT %QW1 : INT ;
END_VAR

PROGRAM PLC_PRG
VAR
 iCounter : INT;
 iSumme:INT;
 iMid:INT;
 iVal1:INT := INT#2;
 iVal2:INT;
 iVal3:INT := INT#3;
 iVal4:INT := INT#4;
 iVal5:INT;
END_VAR

IF iVal2 <> 0 THEN
iVal1 := iVal1/iVal2; // no error
END_IF;
iMid := iSumme / iCounter; // SA0040
iCounter := iCounter + INT#1;
iSumme := g_iVar + iSumme;
IF iMid < INT#100 THEN
 iVal1 := iVal1 / iVal2; // SA0040
END_IF

--> SA0040: Possible division by zero
--> SA0040: Possible division by zero

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0041: Detect possible loop invariant code
Detects assignments in loops that calculate the same value for each loop cycle. These lines of
code could possibly be inserted outside of the loop.
Justification: This is a performance warning. Code that is executed in a loop, but does the same
thing in each loop cycle, can be executed outside of the loop.
Importance: Medium

PROGRAM PLC_PRG
VAR
 iCounter, iVar1, iVar2: INT;
END_VAR

FOR iCounter := 0 TO 10 DO
 iVar1 := 100; // SA0041
 iVar2 := iVar2 + iVar1;
END_FOR

--> SAN0041: Possible loop invariant code 'iVar1 := 100'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4176

SA0042: Usage of different access paths
Detects the usage of different access paths for the same variable
Justification: Different access to the same element decreases the readability and maintainability
of a program. We recommend the consistent usage of {attribute 'qualified-only'} for
libraries, global variable lists, and enumerations. This forces a fully qualified access.
Importance: Low

VAR_GLOBAL
 iTemp:INT;
 instPOU:POU;
END_VAR

FUNCTION_BLOCK POU
VAR
 a:INT;
END_VAR
a := INT#1;

PROGRAM SA0042
VAR
 ptiTemp:POINTER TO INT;
 sTemp:STRING;
END_VAR

ptiTemp := ADR(iTemp);

ptiTemp^:= INT#1;
iTemp:= INT#2; // SA0042 - direct access
on variable
GVL.iTemp := INT#3; // SA0042 - access on
variable via GVL

sTemp := CONCAT('ab', 'cd'); // SA0042 - direct access on
function
sTemp := Standard.CONCAT('ab', 'cd'); // SA0042 - access on
function via Standard

instPOU(); // SA0042 - direct access
on POU instance
GVL.instPOU(); // SA0042 - access via GVL

--> SA0042: Different access paths for 'CONCAT'
--> SA0042: Different access paths for 'Standard.CONCAT'
--> SA0042: Different access paths for 'instPOU'
--> SA0042: Different access paths for 'GVL.instPOU'
--> SA0042: Different access paths for 'iTemp'
--> SA0042: Different access paths for 'GVL.iTemp'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0043: Use of a global variable in only one POU
Detects the use of a global variable in only a single POU
Justification: A global variable that is used in only one location should also only be declared at
this location.
Importance: Medium

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4177

PLCopen rule: CP26

VAR_GLOBAL
 g_xVar AT %QX0.0 : BOOL ;
 g_iTest AT %QW1 : INT ;
 g_wTest AT %QW2 : WORD;
END_VAR

PROGRAM prog1
VAR
 iCondition : INT;
 bTemp :BOOL;
END_VAR
iCondition := iCondition + INT#1;
IF iCondition < INT#0 THEN
 bTemp := g_xVar; // SA0043 - g_xVar only read in this POU
ELSIF iCondition = INT#0 THEN
 bTemp := g_xVar; // SA0043 - g_xVar only read in this POU
ELSE
 bTemp := g_xVar; // SA0043 - g_xVar only read in this POU
 g_wTest := WORD#4; // g_WTest used also in prog2 -> OK
END_IF

PROGRAM prog2
VAR
 iCondition : INT;
END_VAR
iCondition := iCondition + INT#1;

CASE iCondition OF
 INT#1:
 g_iTest := WORD_TO_INT(g_wTest); // SA0043 - g_iTest only
written in this POU
 INT#2:
 g_iTest := INT#2; // SA0043 - g_iTest only
written in this POU
 ELSE
 g_iTest := INT#3; // SA0043 - g_iTest only
written in this POU
END_CASE

--> SA0043: Global variable 'g_xVar' only used in 'prog1'
--> SA0043: Global variable 'g_iTest' only used in 'prog2'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0044: Declarations with reference to interface
Detects declarations with REFERENCE TO interfaces and declarations of VAR_IN_OUT variables
with interfaces (implicitly implemented by means of REFERENCE TO)

Justification: An interface type is always implicitly a reference to an instance of a function block
that implements this interface. A reference to an interface is therefore a reference to a reference
and can result in unwanted behavior.
Importance: High

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4178

ITF is an interface that is defined in the project.
PROGRAM PLC_PRG
VAR
 inst:POU;
 itf_inst1 : ITF;
 itf_ref : REFERENCE TO ITF; // SA0044
END_VAR FUNCTION_BLOCK POU
VAR_INPUT
 inst_itf2 : ITF;
END_VAR
VAR_OUTPUT
 inst_itf3 : ITF;
END_VAR
VAR_IN_OUT
 inst_itf4 : ITF; // SA0044
END_VAR

--> SA0044: Reference to interface 'itf_ref'
--> SA0044: Reference to interface 'itf4_ref'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

Conversions
1.8.3.3.2.37.1 SA0019: Implicit pointer conversions...................................... 4179
1.8.3.3.2.37.2 SA0130: Implicit expanding conversions................................. 4180
1.8.3.3.2.37.3 SA0131: Implicit narrowing conversions................................. 4181
1.8.3.3.2.37.4 SA0132: Implicit signed/unsigned conversions....................... 4182
1.8.3.3.2.37.5 SA0133: Explicit narrowing conversions................................. 4182
1.8.3.3.2.37.6 SA0134: Explicit signed/unsigned conversions....................... 4183

SA0019: Implicit pointer conversions
Detects implicitly generated pointer conversions
Justification: In CODESYS, pointers are not strictly typed and they can be assigned to each
other in any way. This is often used and therefore not reported by the compiler. However, it can
also accidentally cause unexpected access. If you assign a POINTER TO BYTE to a POINTER
TO DWORD, then you can unintentionally overwrite memory using the latter pointer. Therefore,
always check this rule and block the message for cases in which you intentionally want to
access a value with a different type.
Implicit data type conversions are reported with a different message.
Importance: High
PLCopen rule: CP25
Exception: BOOL <-> BIT

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4179

PROGRAM PLC_PRG
VAR
 pINT : POINTER TO INT;
 byteVar : BYTE;
END_VAR

pINT := ADR(byteVar);

--> SA0019: Implicit conversion from pointer to 'POINTER TO BYTE'
to pointer to 'POINTER TO INT'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0130: Implicit expanding conversions
Detects implicit conversions from smaller data types to larger data types
Justification: The compiler permits any assignments of different types when the value range of
the source type is completely contained within the value range of the target type. However, the
compiler will build a conversion into the code as late as possible. For an assignment of type
lint := dint * dint, the compiler performs the implicit conversion only after multiplication:
lint := TO_LINT(dint * dint). An overflow is therefore truncated. To prevent this, you
can already convert the elements: lint := TO_LINT(dint) * TO_LINT(dint). There-
fore, it may be useful to report locations where the compiler implements implicit conversions in
order to check whether these are exactly what is intended. Furthermore, explicit conversions
can be used to improve portability to other systems when those systems have more restrictive
type checks.
Importance: Low

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4180

PROGRAM PLC_PRG
VAR
 byTemp : BYTE;
 usiTemp : USINT;
 uiTemp: UINT;
 iTemp : INT;
 udiTemp: UDINT;
 diTemp : DINT;
 uliTemp : ULINT;
 liTemp : LINT;
 lwTemp : LWORD;
 lrTemp : LREAL;
END_VAR

liTemp := iTemp; // SA0130
uliTemp := usiTemp; // SA0130
lwTemp := udiTemp; // SA0130
lrTemp := byTemp; // SA0130
diTemp := uiTemp; // SA0130

byTemp.5 := FALSE; // OK (BIT_BOOL conversion)

--> SA0130: Implicit widening conversion from type 'INT' to type
'LINT'
--> SA0130: Implicit widening conversion from type 'USINT' to type
'ULINT'
--> SA0130: Implicit widening conversion from type 'UDINT' to type
'LWORD'
--> SA0130: Implicit widening conversion from type 'BYTE' to type
'LREAL'
--> SA0130: Implicit widening conversion from type 'UINT' to type
'DINT'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0131: Implicit narrowing conversions
Detects implicit conversions from larger data types to smaller data types
Justification: This message is obsolete now because it is already reported as a warning by the
compiler.
Importance: Low

PROGRAM PLC_PRG
VAR
 rTemp : REAL;
 lrTemp : LREAL;
END_VAR
rTemp := lrTemp; // SA0131

--> SA0131: Implicit narrowing conversion from type 'LREAL' to type
'REAL'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4181

SA0132: Implicit signed/unsigned conversions
Detects implicit conversions from signed data types to unsigned data types or the other way
around.

This message is obsolete now because it is already reported as a warning by
the compiler.

Importance: Low

PROGRAM PLC_PRG
VAR
 byTest :BYTE;
 udiTest: UDINT;
 ulktest: ULINT;
 wTest : WORD;
 lwTest : LWORD;
 siTest : SINT;
 iTest : INT;
 diTest : DINT;
 liTest :LINT;
END_VAR
liTest := ulktest; // SA0132
udiTest:= diTest; // SA0132
siTest := byTest; // SA0132
wTest := iTest; // SA0132
lwTest := siTest; // SA0132

--> SA0132: Implicit signed/unsigned conversion from type 'ULINT'
to type 'LINT'
--> SA0132: Implicit signed/unsigned conversion from type 'DINT' to
type 'UDINT'
--> SA0132: Implicit signed/unsigned conversion from type 'BYTE' to
type 'SINT'
--> SA0132: Implicit signed/unsigned conversion from type 'INT' to
type 'WORD'
--> SA0132: Implicit signed/unsigned conversion from type 'SINT' to
type 'LWORD'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0133: Explicit narrowing conversions
Detects explicit conversions from a larger data type to a smaller data type
Justification: A large number of type conversions may indicate that you have chosen the wrong
data types for variables. For this reason, there are programming guidelines that require an
explicit justification for data type conversions.
Importance: Low

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4182

PROGRAM SA0133
VAR
 siVar:SINT;
 diVar:DINT;
 liVar:LINT;
 byVar:BYTE;
 uiVar:UINT;
 dwVar:DWORD;
 lwVar:LWORD;
 rVar:REAL;
 lrVar:LREAL;
END_VAR
siVar := LINT_TO_SINT(liVar); // SA0133
byVar := DINT_TO_BYTE(diVar); // SA0133
siVar := DWORD_TO_SINT(dwVar); // SA0133
uiVar := LREAL_TO_UINT(lrVar); // SA0133
rVar := LWORD_TO_REAL(lwVar); // SA0133

--> SA0133: Explicit narrowing conversion from type 'LINT' to type
'SINT'
--> SA0133: Explicit narrowing conversion from type 'DINT' to type
'BYTE'
--> SA0133: Explicit narrowing conversion from type 'DWORD' to type
'SINT'
--> SA0133: Explicit narrowing conversion from type 'LREAL' to type
'UINT'
--> SA0133: Explicit narrowing conversion from type 'LWORD' to type
'REAL'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0134: Explicit signed/unsigned conversions
Detects explicit conversions from signed data types to unsigned data types and the other way
around
Justification: Excessive use of type conversions may indicate that you have chosen the wrong
data types for variables. For this reason, there are programming guidelines that require an
explicit justification for data type conversions.
Importance: Low

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4183

PROGRAM PLC_PRG
VAR
 byVar :BYTE;
 udiVar : UDINT;
 uliVar : ULINT;
 lwVar : LWORD;
 wVar : WORD;
 siVar : SINT;
 iVar : INT;
 diVar : DINT;
 liVar : LINT;
END_VAR
liVar := ULINT_TO_LINT(uliVar);
udiVar := DINT_TO_UDINT(diVar);
siVar := BYTE_TO_SINT(byVar);
wVar := INT_TO_WORD(iVar);
lwVar := SINT_TO_LWORD(siVar);

--> SA0134: Explicit signed/unsigned conversion from type 'ULINT'
to type 'LINT'
--> SA0134: Explicit signed/unsigned conversion from type 'DINT' to
type 'UDINT'
--> SA0134: Explicit signed/unsigned conversion from type 'BYTE' to
type 'SINT'
--> SA0134: Explicit signed/unsigned conversion from type 'INT' to
type 'WORD'
--> SA0134: Explicit signed/unsigned conversion from type 'SINT' to
type 'LWORD'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

Use of Direct Addresses
1.8.3.3.2.38.1 SA0005: Invalid addresses and data types............................. 4184
1.8.3.3.2.38.2 SA0047: Accesses to direct address....................................... 4185
1.8.3.3.2.38.3 SA0048: AT-declarations on direct addresses......................... 4185

SA0005: Invalid addresses and data types
Detects invalid addresses and data type specifications. Valid size prefixes in addresses: X for
BOOL B for 1-byte data types, W for 2-byte data types, and D for 4-byte data types.

Justification: Variables located on direct addresses should preferably be associated with an
address that corresponds to their data type width. It can be confusing for the reader of the code,
for example, if a DWORD is assigned to a BYTE address.

Importance: Low

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4184

PROGRAM Check_Address_Type_PRG
VAR
 iVar AT %QB0 : INT ; // OK e. g.: %QW0
 xTest AT %QW1 : BOOL ; // OK e. g.: %QX1.0
END_VAR

iVar := iVar + INT#1;
xTest := NOT xTest;

--> SA0005: Invalid address for data type 'iVar'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0047: Accesses to direct address
Detects direct address access in the implementation code
Justification: Symbolic programming is always preferable. A variable has a name that can also
have a meaning. An address cannot indicate what it is used for.
Importance: High
PLCopen rule: N1 / CP1

PROGRAM PLC_PRG
VAR
 xVar : BOOL;
 byVar : BYTE;
END_VAR

xVar := %IX0.0;
%QX0.0 := xVar;
%MX0.1 := xVar;
%MB1 := byVar;

--> Access to direct address '%IX0.0'
--> Access to direct address '%QX0.0'
--> Access to direct address '%MX0.1'
--> Access to direct address '%MB1'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0048: AT-declarations on direct addresses
Detects AT declarations on direct addresses

Justification: The use of direct addresses in the code is problematic because the address
then appears in multiple locations: first in the controller configuration where the assignment
of a physical object to an address is defined, and second in the program where variables
are assigned to these addresses. If the addresses are relocated because the configuration is
changed, then you have to reassign variables to addresses at a completely different location in
the program. This is a cause of error and results in poorer readability and maintainability of the
code. Therefore, it is best to perform all assignments in the I/O mapping of the device editor.
Importance: High

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4185

PLCopen rule: N1 / CP1
Note: We recommend that you use direct addresses ONLY in the “I/O Mapping” tab of the
device editor.

PROGRAM PLC_PRG
VAR
 xVar1 AT %IX0.0 : BOOL;
 byVar1 AT %IB1 : BYTE;
 xVar2 AT %QX0.0 : BOOL;
END_VAR

--> SA0048: Declaration uses direct address '%IX0.0'
--> SA0048: Declaration uses direct address '%IB1
--> SA0048: Declaration uses direct address '%QX0.0'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

Rules for Operators
1.8.3.3.2.39.1 SA0051: Comparison operations on BOOL variables............. 4186
1.8.3.3.2.39.2 SA0052: Unusual shift operation... 4187
1.8.3.3.2.39.3 SA0053: Too big bitwise shift.. 4187
1.8.3.3.2.39.4 SA0054: Comparisons of REAL/LREAL for equality /

inequality... 4188
1.8.3.3.2.39.5 SA0055: Unnecessary comparisons of unsigned operands.... 4189
1.8.3.3.2.39.6 SA0056: Constant out of valid range....................................... 4189
1.8.3.3.2.39.7 SA0057: Possible loss of decimal places................................ 4190
1.8.3.3.2.39.8 SA0058: Operations on enumeration variables....................... 4190
1.8.3.3.2.39.9 SA0059: Comparison operations always returning TRUE or

FALSE... 4192
1.8.3.3.2.39.10 SA0060: Zero used as invalid operand................................. 4192
1.8.3.3.2.39.11 SA0061: Unusual operation on pointer.................................. 4192
1.8.3.3.2.39.12 SA0062: Uses of TRUE or FALSE in expressions................ 4193
1.8.3.3.2.39.13 SA0063: Possibly not 16-bit-compatible operations.............. 4193
1.8.3.3.2.39.14 SA0064: Addition of pointer... 4194
1.8.3.3.2.39.15 SA0065: Incorrect pointer addition to base size.................... 4194
1.8.3.3.2.39.16 SA0066: Uses of temporary results....................................... 4195

SA0051: Comparison operations on BOOL variables
Detects comparison operations on variables of type BOOL
Justification: CODESYS permits these kinds of comparison, but they are very unusual and can
be confusing. The IEC 61131-3 standard does not provide for these comparisons. By avoiding
them, you increase the portability of the code to other development systems.
Importance: Medium

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4186

PROGRAM PLC_PRG
VAR
 xBool1, xBool2 : BOOL;
 xResult : BOOL;
END_VAR
xResult := xBool1 > xBool2; // SA0051
xBool1 := NOT xBool1; // OK!
xBool2 := xBool2 XOR xBool1; // OK!

--> SA0051: Comparison operations on BOOL varables

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0052: Unusual shift operation
Detects shift operations (bit shift) on signed variables. In the case of shift operations on bitfield
data types (Byte, DWORD, LWORD, WORD), an error is not reported.

Justification: CODESYS permits shift operations on signed data types. However, these opera-
tions are unusual and can be confusing. The IEC 61131-3 standard does not provide for these
kinds of operations. Therefore, they should be avoided in order to increase the portability of the
code to other development systems.
Importance: Medium

PROGRAM PLC_PRG
VAR
 iTemp : INT;
 dwTemp1 : DWORD;
 byTemp2 : BYTE;
 diTemp3 : DINT;
 siTemp4 : SINT;
 liTemp5 : LINT;
END_VAR

//the following lines each will cause an SA0052:
iTemp := SHL(iTemp, BYTE#2);
diTemp3 := SHR(diTemp3, BYTE#4);
siTemp4 := ROL(siTemp4, BYTE#2);
liTemp5 := ROR(liTemp5, BYTE#2);

//no error SA0052 because DWORD and BYTE are bit field data types:
dwTemp1 := SHL(dwTemp1, BYTE#3);
byTemp2 := SHR(byTemp2, BYTE#1);

---> SA0052: Unusual shift operation

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0053: Too big bitwise shift
Detects whether or not the data type width of the operand has been exceeded in the case of a
bitwise shift (bit shift) of operands

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4187

Justification: If a shift operation exceeds the data type width, then a constant 0 is generated. If a
rotation shift exceeds the data type width, then it is difficult to read. Therefore, the rotation value
should be shortened.
Importance: High

PROGRAM PLC_PRG
VAR
 byTemp1 : BYTE;
 wTemp2 : WORD;
 dwTemp3 : DWORD;
 lwTemp4 : LWORD;
END_VAR
byTemp1 := SHR(byTemp1, BYTE#25);
wTemp2 := SHL(wTemp2, BYTE#45);
dwTemp3 := ROR(dwTemp3, BYTE#78);
lwTemp4 := ROL(lwTemp4, BYTE#111);

--> SA0053: Too big bitwise shift

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0054: Comparisons of REAL/LREAL for equality / inequality
Detects whether or not the comparison operators = (equality) and <> (inequality) compare the
operands of type REAL or LREAL
Justification: REAL/LREAL values are implemented as floating-point numbers according to the
IEEE 754 standard. This standard implies that specific, apparently simple decimal numbers
cannot be represented with precision. As a result, there may be different representations as
LREAL for the same decimal number.

Consider the following lines of code:
lr11 := 1.1;
lr33 := 3.3;
lrVar1 := lr11 + lr11;
lrVar2 := lr33 - lr11;
botest := lrVar1 = lrVar2;
In this case, botest returns FALSE, even if the variables lrVar1 and lrVar2 both return the
monitoring value of 2.2. This is not an error of the compiler, but a property of the floating point
units of all conventional processors. You can avoid this by specifying a minimum value by which
the values may differ: botest := ABS(lrVar1 - lrVar2) < 0.1;
Exception: A comparison with 0.0 is not reported by this analysis. For the 0, there is an exact
representation in the IEEE 754 standard, and therefore the comparison functions normally as
expected. Therefore, for better performance, it makes sense to permit a direct comparison here.
Importance: High
PLCopen rule: CP54

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4188

PROGRAM PLC_PRG
VAR
 rTest1 : REAL;
 rTest2 : REAL;
 lrTest3 : LREAL;
 lrTest4 : LREAL;
 xResult : BOOL;
END_VAR

//the following lines each will cause an SA0054:
xResult := rTest1 = rTest1;
xResult := rTest1 = rTest2;
xResult := rTest1 <> rTest2;
xResult := lrTest3 = lrTest3;
xResult := lrTest3 = lrTest4;
xResult := lrTest3 <> lrTest4;
//the following lines each will not cause an SA0054:
xResult := rTest1 > rTest2;
xResult := lrTest3 < lrTest4;

--> SA0054: Comparisons of REAL/LREAL for equality / inequality

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0055: Unnecessary comparisons of unsigned operands
Detects unnecessary comparisons with unsigned operands. An unsigned data type is never less
than zero. This can be used as a sign check.
Justification: A comparison detected with this check yields a constant result and is an indication
of an error in the code.
Importance: High

PROGRAM PLC_PRG
VAR
 byTest: BYTE;
END_VAR

WHILE byTest >= 0 DO
 byTest := byTest - 1;
END_WHILE;

--> SA0055: Unnecessary comparisons of unsigned operands

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0056: Constant out of valid range
Detects literals (constants) outside of the valid range of the operator
Justification: The message is issued in cases when a value is compared with a constant that is
outside of the range of this value. Then the comparison constantly returns TRUE or FALSE. This
is an indication of a programming error.

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4189

Importance: High

PROGRAM PLC_PRG
VAR
 byTestVar: BYTE;
END_VAR

WHILE byTestVar >= 260 DO
 byTestVar := byTestVar + 1;
END_WHILE

--> SA0056: Constant out of valid range

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0057: Possible loss of decimal places
Detects statements with possible loss of decimal places
Justification: A piece of code of the following type (diTemp2 := 1 rTemp1 :=
TO_REAL(diTemp2 / DINT#2)) can cause a misinterpretation. The author or reader of this
line of code can assume that the division would be performed as a REAL operation, and in this
case the result would be REAL#0.5. However, this is not true. It is an integer operation. The
result is cast to REAL and rTemp1 gets the value REAL#0. To avoid this, use a cast to make
sure that the operation is performed as a REAL operation: rTemp1 := TO_REAL(diTemp2) /
REAL#2.

Importance: Medium

PROGRAM PLC_PRG
VAR
 rTemp1 : REAL;
 diTemp2 : DINT;
 liTemp3 : LINT;
END_VAR

diTemp2 := diTemp2 + DINT#11;
rTemp1 := DINT_TO_REAL(diTemp2 / DINT#3); // SA0057
rTemp1 := DINT_TO_REAL(diTemp2) / REAL#3.0;
liTemp3 := liTemp3 + LINT#13;
rTemp1 := LINT_TO_REAL(liTemp3 / LINT#7); // SA0057
rTemp1 := LINT_TO_REAL(liTemp3) / REAL#7.0;

--> SA0057: Possible loss of decimal places

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0058: Operations on enumeration variables
Detects operations on variables of the enumeration data type Assignments are permitted.
Justification: Enumerations should not be used as ordinary integer values. You can also define
an alias data type or use a subrange type.

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4190

Importance: Medium
Exception: If an enumeration is tagged with the pragma {attribute 'strict'}, then the
compiler already reports this kind of operation.
If an enumeration is declared as a flag by the pragma {attribute 'flags'}, then an error
is not issued for AND, OR, NOT, or oder XOR operations.

TYPE My_Enum :
(
 red := 1, blue := 2, green := 3, black := 4
);
END_TYPE

PROGRAM PLC_PRG
VAR
 iTemp1 : INT;
 abc : My_Enum;
END_VAR
iTemp1 := iTemp1 + INT#1;
abc := My_Enum.red; // OK
iTemp1 := My_Enum.black / My_Enum.blue; // SA0058
iTemp1 := My_Enum.green / My_Enum.red; // SA0058

--> SA0058: Operations on enumeration variables

Example

{attribute 'flags'} // declaring the enumeration as a "flag"
TYPE Flags :
(
 Unknown := 16#00000001,
 Stopped := 16#00000002,
 Running := 16#00000004
) DWORD;
END_TYPE

PROGRAM PLC_PRG
VAR
 iTemp1 : INT;
 abc : Flags;
 batate : BYTE;
 dwFlags : DWORD;
 dwState : DWORD;
END_VAR

// OK for the following
IF (dwFlags AND Flags.Unknown) <> DWORD#0 THEN
 dwState := dwState AND Flags.Unknown;
ELSIF (dwFlags OR Flags.Stopped) <>DWORD#0 THEN
 dwState := dwState OR Flags.Running;
END_IF

Example with a
pragma
{attribute
'flags'}

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4191

SA0059: Comparison operations always returning TRUE or FALSE
Detects comparisons with literals that always have the result TRUE or FALSE, and can already
be processed during at the compile.
Justification: An operation that consistently yields TRUE or FALSE is an indication of a program-
ming error.
Importance: High

PROGRAM PLC_PRG
VAR
 byTemp1 : BYTE;
END_VAR

WHILE byTemp1 <= 255 DO
 byTemp1 := byTemp1 + 1;
END_WHILE;

--> SA0059: Relational operator '<=' always evaluates 'TRUE'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0060: Zero used as invalid operand
Detects operations where an operand with the value "0" causes an invalid or a nonsense
operation
Justification: This kind of expression could be an indication of a programming error. In any case,
it unnecessarily wastes runtime.
Importance: Medium

PROGRAM PLC_PRG
VAR
 byTemp1 : BYTE;
 wTemp2 : WORD;
 dwTemp3 : DWORD;
END_VAR

byTemp1 := byTemp1 + 0;
wTemp2 := wTemp2 - WORD#0;
dwTemp3 := dwTemp3 * DWORD#0;

--> SA0060: Zero used as invalid operand

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0061: Unusual operation on pointer
Detects operations one variables of type POINTER TO which are not = (equality), <>
(inequality), + (addition), or ADR.

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4192

In CODESYS, pointer arithmetic is generally permitted and can also be used appropriately.
Therefore, the addition of a pointer with an integer value is considered a common operation on
pointers. This makes it possible to use a pointer to process an array of variable length. All other
(unusual) operations with pointers are reported with SA0061.
Importance: High
PLCopen rule: E2 / E3

PROGRAM PLC_PRG
VAR
 piTemp : POINTER TO INT;
 iTemp : INT;
END_VAR

iTemp := iTemp + INT#1;
piTemp := ADR(iTemp);
piTemp := piTemp * DWORD#5; // SA0061
piTemp := piTemp / DWORD#2; // SA0061
piTemp := piTemp MOD DWORD#3; // SA0061
piTemp := piTemp + DWORD#1;
piTemp := piTemp - DWORD#1; // SA0061

--> SA0061: Unusual operation on pointer

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0062: Uses of TRUE or FALSE in expressions
Detects the use of the literals TRUE or FALSE in expressions

Justification: This kind of expression is obviously unnecessary and may indicate an error. In any
case, the expression unnecessarily affects the runtime.
Importance: Medium

PROGRAM PLC_PRG
VAR
 xTemp1, xTemp2 : BOOL;
END_VAR
xTemp1 := xTemp1 AND NOT TRUE;
xTemp2 := xTemp1 OR TRUE;
xTemp2 := xTemp1 OR NOT FALSE;
xTemp2 := xTemp1 AND FALSE;

--> Uses of TRUE or FALSE in expressions

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0063: Possibly not 16-bit-compatible operations
Detects 16-bit operations with temporary results. Background: On 16-bit systems, 32-bit tempo-
rary results can be truncated. Example: (int+10) can exceed 16 bits.

Justification: In the very rare case that you have to write code which should run on a 16-bit
processor as well as on a 32-bit processor, this message should help to prevent any problems.

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4193

Importance: Low

PROGRAM PLC_PRG
VAR
 iVar : INT;
END_VAR
iVar := (iVar + 10) / 2;

--> SA0063: Compatibility for 16 Bit - Possible truncated
intermediate result

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0064: Addition of pointer
Detects the addition of pointers
Justification: In CODESYS, pointer arithmetic is generally permitted and can also be used
appropriately. However, it is also a source of errors. Therefore, programming rules exist that
generally prohibit pointer arithmetic. This test can check such a requirement.
Importance: Medium

PROGRAM PLC_PRG
VAR
 iTest:INT;
 ariTest:ARRAY[0..10] OF INT;
 {attribute 'analysis':='-111'}
 piTest:POINTER TO INT;
 i:INT;
END_VAR

piTest := ADR(ariTest[0]); // OK
piTest^:= 0;
piTest := ADR(ariTest) + SIZEOF(INT); // SA0064
piTest^:= 1;
piTest := ADR(ariTest) + 6; // SA0064
piTest^:= 3;
piTest := ADR(ariTest[10]);
FOR i:=0 TO 10 DO
 piTest^ := i;
 piTest := piTest + 2; // SA0064
END_FOR

--> SA0064: Addition of pointer

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0065: Incorrect pointer addition to base size
Detects pointer additions for which the value to be added does not match the base size of the
pointer. Only literals of the base size can be added. Also multiplication products of the base size
cannot be added.

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4194

Justification: In CODESYS (in contrast to C and C++), when adding a pointer with an integer
value, only this integer value is added as the number of bytes, and not the integer value
multiplied by the base size. Example in ST:
pINT := ADR(array_of_int[0])
pINT := pINT + 2 ; // In CODESYS, pINT then points to
array_of_int[1]
This code would function differently in C:
short* pShort
pShort = &(array_of_short[0])
pShort = pShort + 2; // In C, pShort then points to array_of_short[2]
Therefore, in CODESYS, you should always add a multiple of the base size of the pointer to
a pointer. Otherwise, the pointer may point to non-aligned memory which (depending on the
processor) can lead to an alignment exception when accessing it.
Importance: High

VAR
 pudiTest:POINTER TO UDINT;
 udiTest:UDINT;
 prTest:POINTER TO REAL;
 rTest:REAL;
END_VAR

pudiTest := ADR(udiTest) + 4; // OK
pudiTest := ADR(udiTest) + (2 + 2); // OK
pudiTest := ADR(udiTest) + SIZEOF(UDINT); // OK
pudiTest := ADR(udiTest) + 3; // SA0065
pudiTest := ADR(udiTest) + 2*SIZEOF(UDINT); // SA0065
pudiTest := ADR(udiTest) + (3 + 2); // SA0065
prTest := ADR(rTest);
prTest := prTest + 4; // OK
prTest := prTest + (2 + 2); // OK
prTest := prTest + SIZEOF(REAL); // OK
prTest := prTest + 1; // SA0065
prTest := prTest + 2; // SA0065
prTest := prTest + 3; // SA0065
prTest := prTest + (SIZEOF(REAL) - 1); // SA0065
prTest := prTest + (1 + 4); // SA0065

--> SA0065: Incorrect pointer addition to base size

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0066: Uses of temporary results
Detects the use of temporary results in statements with a data type that is less than the registry
size. The implicit cast in this case may lead to unwanted results.
Justification: For performance reasons, CODESYS performs operations on the register width
of the processor. Intermediate results are not truncated. This can lead to misinterpretations
as in the following case: usintTest := 0; xError := usintTest - 1 <> 255;. In
CODESYS, xError is TRUE in this case because the operation usintTest - 1 is typically
executed as a 32-bit operation and the result is not cast to the byte size. Then the value
16#ffffffff (not equal to 255) is located in the registry. To avoid this, you have to cast the
intermediate result explicitly: xError := TO_USINT(usintTest - 1) <> 255;

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4195

NOTICE!
If this message is activated, then many less problematic locations in the code
will be reported. Although a problem can only occur when the operation pro-
duces an overflow or underflow in the data type, the static analysis cannot
differentiate between the individual locations.
If you include an explicit typecast in all reported locations, then the code will be
much slower and less readable.

Importance: Low

PROGRAM PLC_PRG
VAR
 byTest:BYTE;
 liTest:LINT;
 xError:BOOL;
END_VAR

//type size smaller than register size;
byTest := 0;
IF (byTest - 1) <> 255 THEN //use of temporary result + implicit
casting -> SA0066
 xError := TRUE;
ELSE
 xError := FALSE;
END_IF

//type size equal to or bigger than register size;
liTest := 0;
IF (liTest - 1) <> -1 THEN // use of temporary result and no
implicit casting -> OK
 xError := TRUE;
ELSE
 xError := FALSE;
END_IF

--> SA0066: Use of temporary result: (byTest - USINT #1)

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

Rules for Statements
1.8.3.3.2.40.1 SA0072: Invalid uses of counter variable................................ 4197
1.8.3.3.2.40.2 SA0073: Uses of inadequate counter variable........................ 4197
1.8.3.3.2.40.3 SA0080: Loop index variable for array index exeeds array

range... 4197
1.8.3.3.2.40.4 SA0081: Upper border is not a constant................................. 4198
1.8.3.3.2.40.5 SA0075: Missing ELSE... 4199
1.8.3.3.2.40.6 SA0076: Missing enumeration constant.................................. 4200
1.8.3.3.2.40.7 SA0077: Type mismatches with CASE expression................. 4201
1.8.3.3.2.40.8 SA0078: Missing CASE branches... 4201
1.8.3.3.2.40.9 SA0090: Return statement before end of function.................. 4202

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4196

SA0072: Invalid uses of counter variable
Detects the use of a counter variable in a FOR loop

Justification: Manipulation of the counter variable in a FOR loop can easily result in an infinite
loop. To prevent the execution of the loop for specific values of the counter variable, use
CONTINUE or simply an IF.

Importance: High
PLCopen rule: L12

PROGRAM PLC_PRG
VAR_TEMP
 iIndex : INT;
END_VAR
FOR iIndex := INT#0 TO INT#20 BY INT#1 DO
 iIndex := iIndex - INT#1;
END_FOR

--> SA0072: Invalid use of counter variable 'iIndex'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0073: Uses of inadequate counter variable
Detects the use of non-temporary variables in FOR loops.

Justification: This is a performance warning. A counter variable is always initialized each time a
POU is called. You can create this variable as a temporary variable (VAR_TEMP). Access to it
may be faster and the variable does not take up any permanent memory.
Importance: Medium
PLCopen rule: CP21 / L13

PROGRAM PLC_PRG
VAR
 nIndex : INT;
 iVar : INT;
END_VAR
FOR nIndex := INT#0 TO INT#20 BY INT#1 DO
 iVar := iVar + nIndex;
END_FOR

--> SA0073: Inadequate counter variable

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0080: Loop index variable for array index exeeds array range
Detects the FOR statements where the index variable is used to access an array index and
exceeds the range of the array index

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4197

Justification: Arrays are typically processed in FOR loops. The start and end value of the counter
variable should typically match (or at least not exceed) the upper and lower bounds of the array.
A typical cause of error is detected here when array bounds are changed and constants are not
carefully used; or when a different value is used accidentally in the FOR loop than in the array
declaration.
Importance: High

PROGRAM PLC_PRG
VAR
 iIndex1,iIndex2,iIndex3 : INT;
 arWord : ARRAY[1..100] OF WORD;
 arararINT : ARRAY[1..9,1..9,1..9] OF INT;
 arUSINT : ARRAY[0..99] OF USINT;
END_VAR

//1 violation of the rule(lower range is exeeded): SA0080
FOR iIndex1 := INT#0 TO INT#100 DO
 arWord[iIndex1] := INT_TO_WORD(iIndex1);
END_FOR

//6 violations (lower and upper range is exceeded for each array
dimension): 3SA0080
FOR iIndex2 := INT#0 TO INT#10 DO
 arararINT[iIndex2, iIndex2, iIndex2] := iIndex2;
END_FOR

//1 violation (upper range is exceeded by the end result of the
index), previous expressions on index are not evaluated -> OK
FOR iIndex3 := INT#0 TO INT#50 DO
 arUSINT[iIndex3 * INT#2] := INT_TO_USINT(iIndex3);
END_FOR

--> SA0080: Loop index range of 'Index1' exceeds array range
--> SA0080: Loop index range of 'Index2' exceeds array range

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0081: Upper border is not a constant
Detects the FOR statements where the upper bound is not defined with a constant value
Justification: If the upper bound of a loop is a variable value, then it is no longer possible to see
how often a loop is executed. This can result in serious problems at runtime. The worst case is
an infinite loop.
Importance: High

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4198

PROGRAM PLC_PRG
VAR
 i:INT;
 iBorder1: INT := 10;
 iBorder2: INT := 10;
 iCounter: INT;
END_VAR
VAR CONSTANT
 ciBorder:INT := 10;
END_VAR

FOR i:=0 TO 10 DO //OK
 iCounter := i;
END_FOR

FOR i:=0 TO ciBorder DO // OK
 iCounter := i;
END_FOR

FOR i:=0 TO iBorder1 DO // SA0081
 iCounter := i;
END_FOR

FOR i:=0 TO iBorder2 DO // SA0081
 iCounter := i;
 IF iCounter = 10 THEN
 iBorder2 := 50;
 END_IF
END_FOR

--> SA0081: Upper border of a for loop must be a constant value

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0075: Missing ELSE
Detects CASE statements without an ELSE branch

Justification: Defensive programming requires the inclusion of an ELSE branch in every CASE
statement. If there is nothing to do in the ELSE branch, then include a comment to indicate this.
It is then clear to the reader of the code that the case was not simply forgotten.
Importance: Low
PLCopen rule: L17

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4199

PROGRAM PLC_PRG
VAR
 iVar : INT;
 xTemp : BOOL;
END_VAR

iVar := iVar + INT#1;
CASE iVar OF
 INT#1:
 xTemp := FALSE;
 INT#2:
 xTemp := TRUE;
END_CASE

--> SA0075: Missing ELSE in CASE statement

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0076: Missing enumeration constant
Detects whether or not an enumeration variable is used as a condition and not all enumeration
values are treated as CASE branches

Justification: Defensive programming requires the processing of all possible values of an enu-
meration. If an action is not required for a particular enumeration value, then you should add a
comment to indicate this explicitly. It is then clear to the reader of the code that the value was
not simply forgotten.
Importance: Low

TYPE My_Enum :
(
 red := 1, blue := 2, green := 3, black := 4
);
END_TYPE

PROGRAM PLC_PRG
VAR
 iVar : My_Enum;
 xTemp : BOOL;
END_VAR
iVar := My_Enum.black;

CASE iVar OF
 My_Enum.red:
 xTemp := FALSE;
 My_Enum.blue, My_Enum.green:
 xTemp := TRUE;
 ELSE
 xTemp := NOT xTemp;
END_CASE

--> SA0076: Missing enumeration constant 'black' in CASE statement

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4200

SA0077: Type mismatches with CASE expression
Detects code locations where the data type of a condition does not match that of the CASE
branch
Justification: If the data types between the CASE variable and the CASE itself do not match, then
this could indicate an error.
Importance: Low

TYPE My_Enum :
(
 eins := 1, zwei := 2, drei := 3, vier := 4
);
END_TYPE

PROGRAM PLC_PRG
VAR
 diVar : DINT;
 xTemp : BOOL;
END_VAR
diVar := diVar + DINT#1;
CASE diVar OF
 DINT#1:
 xTemp := FALSE;
 My_Enum.zwei, DINT#3: //SA0077
 xTemp := TRUE;
 ELSE
 xTemp := NOT xTemp;
END_CASE

--> SA0077: Type mismatches with CASE expression

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0078: Missing CASE branches
Detects CASE statements without CASE branches and only one ELSE statement

Justification: A CASE statement without cases wastes execution time and it is difficult to read.

Importance: Medium

PROGRAM PLC_PRG
VAR
 iVar : INT;
 xTemp : BOOL;
END_VAR

iVar := iVar + INT#1;
//in the following the case descriptions are missing:
CASE iVar OF
 ELSE
 xTemp := NOT xTemp;
END_CASE

--> SA0078: CASE-Missing CASE branches

Example

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4201

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0090: Return statement before end of function
Detects whether or not the RETURN statement is not the last statement in a function, method,
property, or program.
Justification: A RETURN in the code results in worse maintainability, testability, and readability of
the code. A RETURN in the code is easily overlooked. Before each RETURN, it is often forgotten
to insert code that should always be executed when exiting a function.
Importance: Medium
PLCopen rule: CP14

FUNCTION FUN : DINT
VAR_INPUT
 bTest : BOOL;
END_VAR

IF bTest THEN
 RETURN;
END_IF
FUN := 99;

--> SA0090: Return statement before end of function

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0095: Assignments in conditions
Detects assignments in conditions of IF, CASE, or REPEAT constructs

Justification: An assignment (:=) and a comparison (=) can easily be mistaken. As a result, an
assignment in a condition can easily be unintentional, and it is therefore reported. This can also
confuse the reader of the code.
Importance: High

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4202

PROGRAM PLC_PRG
VAR
 iCond1:INT := INT#1;
 iCond2:INT := INT#2;
 xCond:BOOL := FALSE;
 iVar : INT;
END_VAR

IF INT_TO_BOOL(iCond1 := iCond2) THEN // SA0095
 iCond1 := INT#1;
 iCond2 := INT#2;
ELSIF (iCond1 := 11) = 11 THEN // SA0095
 iCond1 := INT#1;
 iCond2 := INT#2;
END_IF

IF xCond := TRUE THEN // SA0095
 xCond := FALSE;
END_IF

IF (xCond := FALSE) OR (iCond1 := iCond2) = 12 THEN // SA0095
 xCond := FALSE;
 iCond1 := INT#1;
 iCond2 := INT#2;
END_IF

IF (iVar := iVar + 1) = 120 THEN //
SA0095 (can be valid, but is not reparable very well
iVar := 0;
END_IF

WHILE (xCond = TRUE) OR (iCond1 := iCond2) = 12 DO // SA0095
 xCond := FALSE;
END_WHILE

//Error: assignment in repeat loop
REPEAT
 xCond := FALSE;
UNTIL
 (xCond = TRUE) OR (iCond1 := iCond2) = 12 //
SA0095
END_REPEAT

--> SA0095: Assignment in condition: '...'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0100: Variables greater than <n> bytes...
Detects variables that use more than n bytes, where n is defined by the current configuration.
Default value: 1024 bytes. The value can be changed by double-clicking the line.
Justification: Some programming guidelines specify a maximum size for a single variable. This
can be checked with this.
Importance: Low

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4203

PROGRAM PLC_PRG
VAR
 aobyTest : ARRAY [0..1024] OF BYTE;
END_VAR

aobyTest[INT#0] := aobyTest[INT#0] + BYTE#1;

--> SA0100: Variable 'aobyTest' greater 1024 bytes

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0101: Names with invalid length
Detects names with invalid lengths. In the “Project Settings”, double-click the rule entry to open
a dialog where you can define the length of the name and define any exception.
Justification: Some programming guidelines specify a minimum length for variable names. This
analysis can be used to check compliance.
Importance: Low
PLCopen rule: N6

PROGRAM PLC1 // SA0101
VAR
 iVar1: INT; // SA0101
END_VAR

--> SA0101: Incorrect length of name 'PLC1'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0102: Access to program/fb variables from the outside
Detects external access to local variables of programs or function blocks
Justification: CODESYS permits external read access to local variables of programs or function
blocks. This contradicts the principle of data encapsulation (hiding data) and does not comply
with the IEC 61131-3 standard.
Importance: Medium

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4204

PROGRAM PLC_PRG
VAR
 iCounter : INT;
 afb_Instance : AFB;
 bfb_Instance : BFB;
END_VAR
iCounter := A_PRG.iLocal; // SA0102
iCounter := bfb_Instance.iLocal; // SA0102
A_PRG();

FUNCTION_BLOCK AFB
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iLocal: INT;
END_VAR
METHOD METH : INT
VAR_INPUT
END_VAR
iLocal := iLocal + 1;

FUNCTION_BLOCK BFB EXTENDS AFB
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
END_VAR
METHOD METH : INT
VAR_INPUT
END_VAR
iLocal := iLocal + 1;

PROGRAM A_PRG
VAR
 iLocal: INT;
END_VAR
iLocal := iLocal + 1;

--> SA0102: Access to program/fb variable 'iLocal' from the outside

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0103: Concurrent access on not atomic data
Detects whether or not non-atomic variables (for example, with data type STRING, WSTRING,
ARRAY, STRUCT, FB instances, 64-bit data types) are used in more than one task

Justification: When there is no synchronization during access, inconsistent values can be read
when reading in one task and writing in another task at the same time.
Importance: Medium

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4205

For some data types, especially 64-bit integers, it depends on the platform
whether or not access is atomic. Static analysis reports a problem only when
the controller does not support atomic access to 64-bit integer data types.

This rule does not apply in the following cases:
● If the target system has a floating point unit (FPU), then access of multiple tasks to LREAL

variables is not detected
● If the target system is a 64-bit processor or the corresponding target setting is set for the

target device, then the rule does not apply to 64-bit data types

The project contains both programs, PRG1 and PRG2: The program PRG1 is called by the task
MainTask_1. The program PRG2 is called by the task MainTask_2.
GVL
VAR_GLOBAL
 lrTest : LREAL; // Since the target system has an FPU, SA0103
does apply.
 lint1 : LINT;
 sTest : STRING; // SA0103
 wsTest : WSTRING; // SA0103
END_VAR

PROGRAM PRG1
GVL.lrTest := 5.0;
GVL.sTest := 'welt';
GVL.wsTest := "welt";
GVL.lint1 := 99;

PROGRAM PRG2
GVL.lrTest := 5.0;
GVL.sTest := 'hallo';
GVL.wsTest := "hallo";
GVL.lint1 := 88;

--> SA0103: Concurrent access on not atomic data 'sTest'
--> SA0103: Concurrent access on not atomic data 'wsTest'

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

SA0105: Multiple instance calls
Detects the instances of function blocks that are called multiple times. To do this, the function
blocks haves to be marked with the pragma {attribute 'analysis:report-multiple-
instance-calls'}.

Justification: Some function blocks are designed in such as way that they can be called only
one time in the cycle. This test checks whether or not a call is made in multiple locations.
Importance: Low
PLCopen rule: CP16 / CP20

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4206

// {attribute 'analysis:report-multiple-instance-calls'} Deactivated
FUNCTION_BLOCK FB_DoA
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iA : INT;
END_VAR
iA := iA + 1;

{attribute 'analysis:report-multiple-instance-calls'}
FUNCTION_BLOCK FB_DoB
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iB : INT;
END_VAR
iB := iB +1;

PROGRAM PLC_PRG
VAR
 fbA : FB_DoA;
 fbB : FB_DoB;
ND_VAR

fbA();
fbB(); // SA0105
fbA();
fbB(); // SA0105

--> SA0105: Instance 'fbB' called more than once

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0106: Virtual method calls in FB_INIT
Detects method calls in the FB_Init method of a base function block, which are overwritten by
a function block derived from a base function block
Justification: In these cases, it could be that the variables in the overwritten methods are not
initialized in the base FB.
Importance: High

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4207

The function block FB_A includes the methods FB_Init and Meth_MyInit. FB_Init calls
Meth_MyInit for initialization. The function block FB_B is derived from FB_A. PLC_PRG
calls FB_B and therefore uses its mbMyDintB variable before it has been initialized.
FB_B.Meth_MyInit overwrites FB_A.Meth_MyInit.
FUNCTION_BLOCK FB_A
VAR
 mbMyDintA : DINT;
END_VAR FUNCTION_BLOCK FB_B EXTENDS FB_A
VAR
 mbMyDintB : DINT;
END_VAR METHOD FB_Init : BOOL
VAR_INPUT
 bInitRetains:BOOL;
 bInCopyCode:BOOL;
END_VAR
VAR
 diDummy:DINT; // SA0106
END_VAR
mbMyDintA := 123;
diDummy := Meth_MyInit(); METHOD Meth_MyInit : DINT
VAR_INPUT
END_VAR
mbMyDintB := 123; // access to member of FB_B PROGRAM PLC_PRG
VAR
 g_BInst : FB_B;
 xVar : BOOL;
END_VAR
xVar := g_BInst.fb_init(TRUE, TRUE);
//this instruction causes the following order of initializations:
//FB_A.fb_init
//FB_B.Meth_MyInit // SA0106
//FB_B.fb_init
//FB_B.Meth_MyInit

--> SA0106: Virtual method call 'Meth_MyInit' in FB_INIT

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0107: Missing formal parameters
Detects whether or not formal parameters are missing
Justification: Code becomes more readable when formal parameters are specified in the call.
Importance: Low

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4208

FUNCTION FUNA : BOOL
VAR_INPUT
 bDo: BOOL;
 bInit: BOOL;
 bManual : BOOL;
END_VAR
VAR
 iInit: INT;
 iLocal: INT;
 iManual: INT;
END_VAR

IF bInit = TRUE THEN
 iInit := iInit + 1;
END_IF
IF bDo = TRUE THEN
 iLocal := iLocal + 1;
END_IF
IF bManual = TRUE THEN
 iManual:= iManual + 1;
END_IF
FUNA := TRUE;

PROGRAM PLC_PRG
VAR
END_VAR

FUNA(bInit := TRUE, bDo := TRUE, bManual := FALSE); // OK
FUNA(TRUE, TRUE, bManual:= FALSE); // SA0107

--> SA0107: Missing formal parameter for input 'TRUE'

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

Checking Strict IEC Rules
1.8.3.3.2.49.1 SA0111: Pointer variables... 4210
1.8.3.3.2.49.2 SA0112: Reference variables.. 4210
1.8.3.3.2.49.3 SA0113: Variables with data type WSTRING.......................... 4210
1.8.3.3.2.49.4 SA0114: Variables with data type LTIME................................. 4211
1.8.3.3.2.49.5 SA0115: Variables with data type UNION................................ 4211
1.8.3.3.2.49.6 SA0117: Variables with data type BIT...................................... 4211
1.8.3.3.2.49.7 SA0119:Object-oriented features.. 4212
1.8.3.3.2.49.8 SA0120: Program calls.. 4212
1.8.3.3.2.49.9 SA0121: Missing VAR_EXTERNAL declarations.................... 4213
1.8.3.3.2.49.10 SA0122: Array index defined as expression......................... 4214
1.8.3.3.2.49.11 SA0123: Usages of INI, ADR or BITADR.............................. 4214
1.8.3.3.2.49.12 SA0147: Unusual shift operation - strict................................ 4214
1.8.3.3.2.49.13 SA0148: Unusual bit access - strict....................................... 4215
1.8.3.3.2.49.14 SA0118: Initialisations not using constants........................... 4216
1.8.3.3.2.49.15 SA0124: Pointer dereferences in declarations...................... 4216
1.8.3.3.2.49.16 SA0125: References in initializations.................................... 4216

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4209

SA0111: Pointer variables
Detects variables of type POINTER TO
Justification: The IEC 61131-3 standard does not permit pointers.
Importance: Low

VAR
 piTemp : POINTER TO INT;
 pbyTemp : POINTER TO BYTE;
END_VAR

--> SA0111: Data type POINTER not allowed

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0112: Reference variables
Detects variables of type REFERENCE TO
Justification: The IEC 61131-3 standard does not permit references.
Importance: Low

VAR
 ref_int : REFERENCE TO INT;
 ref_dw : REFERENCE TO DWORD;
END_VAR

--> Data type REFERENCE not allowed

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0113: Variables with data type WSTRING
Detects variables of type WSTRING
Justification: Not all systems support WSTRING. The code is more easily portable without
WSTRING.

VAR
 wstrTemp : WSTRING;
END_VAR

--> SA0113: Data type WSTRING not allowed

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4210

SA0114: Variables with data type LTIME
Detects variables of type LTIME.

Justification: Not all systems support LTIME The code is more easily portable without LTIME.

Importance: Low

VAR
 ltVar : LTIME; // SA0114
END_VAR

--> SA0114: Data type LTIME not allowed

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0115: Variables with data type UNION
Detects declarations of a UNION data type and variable declarations of the UNION type

Justification: The IEC 61131-3 standard does not include unions. The code is more easily
portable without unions.
Importance: Low

TYPE u1: UNION
 lrTemp : LREAL;
 liTemp : LINT;
END_UNION
END_TYPE

PROGRAM PLC_PRG
VAR
 uVar: u1;
END_VAR

--> SA0115: Unions not allowed

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0117: Variables with data type BIT
Detects variable declarations of data type BIT (possible within structure definitions)
Justification: The IEC 61131-3 standard does not include the data type BIT. The code is more
easily portable without BIT.

Importance: Low

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4211

TYPE Struct1 :
STRUCT
 bitVar : BIT;
 iVar : INT;
 bVar : BOOL;
END_STRUCT
END_TYPE

--> SA0117: Variables with data type BIT

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0119:Object-oriented features
Detects the use of object-oriented features, such as function block declarations with EXTENDS
and IMPLEMENTS, or property and interface declarations. This rule is useful when you write
code that is intended to be ported to other IEC 61131-3-compliant systems.
Justification: Not all systems support object-oriented programming. The code is more easily
portable without object-orientation.
Importance: Low

//Function block extended by another and implementing an interface:
FUNCTION_BLOCK POU EXTENDS CTD IMPLEMENTS ITF //SA0119
...

// Declaration parts of property methods assigned to a function
block:
POU.Prop.Get //SA0119
POU.Prop.Set //SA0119

--> SA0119: Object-oriented features not allowed

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0120: Program calls
Detects program calls
Justification: According to the IEC 61131-3 standard, programs can be called in the task con-
figuration only. The code is more easily portable when you do not call programs from other
locations.
Importance: Low

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4212

PROGRAM prog_control
VAR
END_VAR

PROGRAM PLC_PRG
VAR
END_VAR

prog_control();

--> SA0120: Program call to 'prg_control' not allowed

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0121: Missing VAR_EXTERNAL declarations
Detects the use of a global variable in function blocks without them being declared there as
“VAR_EXTERNAL”

Justification: According to the IEC 61131-3 standard, access to global variables is permitted
only by an explicit import by means of a VAR_EXTERNAL declaration.

Importance: Low
PLCopen rule: CP18

VAR_GLOBAL
 iGlob1:INT;
END_VAR

PROGRAM PLC_PRG
VAR
 ivar:INT;
END_VAR

ivar:=iGlob1; // SA0121

--> SA0121: EXTERNAL declaration required for variable ''iGlob1'

Example

VAR_GLOBAL
 iGlob1:INT;
END_VAR

PROGRAM PLC_PRG
VAR
 ivar:INT;
END_VAR
VAR_EXTERNAL
 iGlob1:INT;
END_VAR

ivar:=iGlob1; // OK

Example:
Avoid error

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4213

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0122: Array index defined as expression
Detects the use of expressions in the declaration of array indexes
Justification: Not all systems permit expressions as array limits.
Importance: Low

PROGRAM PLC_PRG
VAR CONSTANT
 c_iValue : INT := INT#15;
END_VAR
VAR
 arr: ARRAY[0..c_iValue + 1] OF INT;
END_VAR

--> SA0122: Only constants allowed for array definition 'arr'

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0123: Usages of INI, ADR or BITADR
Detects the use of the CODESYS-specific operators INI, ADR, and BITADR
Justification: CODESYS-specific operators prevent the portability of code.
Importance: Low

PROGRAM PLC_PRG
VAR
 uiTemp: UINT;
 TempVarInFUNC: DWORD;
END_VAR

TempVarInFUNC := ADR(uiTemp); //SA0123

--> SA0123: Operator 'ADR' not allowed

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0147: Unusual shift operation - strict
Detects bit shift operations that are not made to bitfield data types (BYTE, WORD, DWORD, LWORD)

Justification: The IEC 61131-3 standard permits bit access only to bitfield data types. However,
the CODESYS compiler also permits bit shift operations with unsigned data types.
Importance: Low

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4214

See also the strict rule SA0018.

PROGRAM PLC_PRG
VAR
 in_byte : BYTE := 16#45; // 2#01000101
 in_word : WORD := 16#0045; // 2#0000000001000101
 in_uint : UINT;
 in_dint : DINT;
 erg_byte : BYTE;
 erg_word : WORD;
 erg_uint : UINT;
 erg_dint : DINT;
 n: BYTE := 2;
END_VAR

erg_byte := SHL(in_byte,n); // no error because BYTE is a bit field
erg_word := SHL(in_word,n); // no error because WORD is a bit field
erg_uint := SHL(in_uint,n); // SA0147
erg_dint := SHL(in_dint,n); // SA0147

--> SA0147: Unusual shift operation - strict

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152
● Ä Chapter 1.8.3.3.2.17 “SA0018: Unusual bit access” on page 4164

SA0148: Unusual bit access - strict

Detects bit access that is not made to bitfield data types (BYTE, WORD, DWORD, and LWORD). The
IEC 61131-3 standard permits only bit access to bitfield data types. However, the CODESYS
compiler also permits bit access to unsigned data types.

PROGRAM PLC_PRG
VAR
 iTemp1 : INT;
 diTemp3 : DINT;
 uliTemp4 : ULINT;
 siTemp5 : SINT;
 usiTemp6 : USINT;
 byTemp2 : BYTE;
END_VAR

iTemp1.3 := TRUE; // SA0148
diTemp3.4 := TRUE; // SA0148
uliTemp4.18 := FALSE; // SA0148
siTemp5.2 := FALSE; // SA0148
usiTemp6.3 := TRUE; // SA0148
byTemp2.5 := FALSE; // no error because BYTE is a bit field

--> SA0148: Unusual bit access - strict

Example

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4215

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0118: Initialisations not using constants
Detects initializations that do not assign constants
Justification: Initializations should be constant if possible and should not refer to other variables.
In particular, you should avoid function calls during initialization because this can allow access
to uninitialized data.
Importance: Medium

PROGRAM PLC_PRG
VAR
 dwTemp : DWORD := 22;
 dwTest : DWORD := dwTemp; // SA0118
 dwVar : DWORD := TempVarInFUNC(); // SA0118
END_VAR

--> SA0118: Initialisations not using constants

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0124: Pointer dereferences in declarations
Detects pointer dereferences that are used for initialization in the declaration part
Justification: Pointers and references should not be used for initializations because this can lead
to access violations if the pointer has not been initialized.
Importance: Medium

FUNCTION_BLOCK FB_Test
VAR_INPUT
 refStruct: REFERENCE TO ST_Test;
END_VAR
VAR
 xPointer : BOOL := refStruct.a; // SA0124
 iCount : INT;
END_VAR

--> SA0124: Dereference access in initialisation

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0125: References in initializations
Detects reference variables that are used for initialization in the declaration part
Justification: Pointers and references should not be used for initializations because this can lead
to access violations if the pointer has not been initialized.
Importance: Medium

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4216

PROGRAM PLC_PRG
VAR
 xRef: REFERENCE TO INT;
 iCount: INT := xRef;
END_VAR

--> SA0125: Reference used in initializations

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0140: Statements commented out
Detects commented-out statements
Justification: Code is often commented out for debugging purposes. When this kind of comment
is released, it is not always clear at a later time whether the code should be deleted, or whether
it has been commented out for debugging purposes and unintentionally not uncommented.
Importance: High
PLCopen rule: C4

PROGRAM PLC_PRG
VAR
 iValue1: INT;
 iValue2: INT;
END_VAR

iValue1 := 100;
iValue2 := 200;
// iValue2 := 300;

--> SA0140: Statement commented out:: iValue2 := 300

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

Possible Use of Uninitialized Variables
1.8.3.3.2.51.1 SA0039: Possible null-pointer deferences.............................. 4217
1.8.3.3.2.51.2 SA0046: Possible use of not initialised interface..................... 4218
1.8.3.3.2.51.3 SA0145: Possible use of not initialised reference................... 4219

SA0039: Possible null-pointer deferences
Detects code locations where a null pointer is possibly dereferenced
Justification: A pointer should be checked before each dereferencing to make sure it is not
equal to zero. Otherwise an access violation may occur at runtime.
Importance: High

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4217

PROGRAM PLC_PRG
VAR
 ptiVar1:POINTER TO INT;
 ptiVar2:POINTER TO INT;
 ptiVar3:POINTER TO INT;
 iVar:INT;
 iCount :INT;
 iCondition: INT;
END_VAR

iCount := iCount + INT#1;
ptiVar1 := ADR(iVar);
ptiVar1^ := iCondition; // OK - valid reference
ptiVar2^ := iCondition; // SA0039 - null pointer dereferenciation
iVar := ptiVar3^; // SA0039 - null pointer dereferenciation

--> SA0039: Possible null pointer dereference 'ptiVar2^'
--> SA0039: Possible null pointer dereference 'ptiVar3^'

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0046: Possible use of not initialised interface
Detects the use of interfaces that were not initialized before being used
Justification: An interface reference should be checked for <> 0 before it is used. Otherwise an
access violation may occur during access.
Importance: High

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4218

//declaration of INTERFACE ITF and assigned METH2:
METHOD METH2 : BOOL
VAR_INPUT
 iInput2:INT;
END_VAR
//declaration of INTERFACE Master_ITF1 and assigned METH:
METHOD METH : BOOL
VAR_INPUT
 iInput:INT;
END_VAR

PROGRAM PLC_PRG
VAR
 instPOU:POU;
 instITF:ITF;
 instMasterITF1:Master_ITF1;
 instMasterITF2:Master_ITF2;
 iDummy:INT;
 xDummy:BOOL;
 instNoInitITF:ITF;
 instNoInitITF2:ITF;
 instNoInitMasterITF1:Master_ITF1;
 instNoInitMasterITF2:Master_ITF2;
END_VAR

instITF := instPOU;
xDummy := instITF.METH(iInput := iDummy); // OK
instMasterITF1 := instPOU;
xDummy := instMasterITF1.METH(iInput := iDummy); // OK

xDummy := instNoInitITF.METH(iInput := INT#1); // SA0046
xDummy := instNoInitITF.METH2(iInput2 := INT#2); // SA0046
xDummy := instNoInitMasterITF1.METH(iInput := INT#3); // SA0046
iDummy := instNoInitMasterITF2.Prop; // SA0046

IF instNoInitITF <> 0 THEN
 instNoInitITF.Prop; // OK, weil das Interface nicht 0
sein kann
END_IF

--> SA0046: Possible use of not initialised interface
'instNoInitITF'
--> SA0046: Possible use of not initialised interface
'instNoInitITF'
--> SA0046: Possible use of not initialised interface
'instNoInitMasterITF1'
--> SA0046: Possible use of not initialised interface
'instNoInitMasterITF2

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0145: Possible use of not initialised reference
Detects any reference variables that may not be initialized before use and are not checked by
the operator __ISVALIDREF. This rule is applied in the implementation part of POUs. Rule
SA0124 applies to the declaration.

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4219

Justification: A reference should be checked for its validity before access because an access
violation may occur during access.
Importance: High

PROGRAM PLC_PRG
VAR_INPUT
 ref_iTest : REFERENCE TO INT;
END_VAR

ref_iTest := 99; // SA0145
IF __ISVALIDREF(ref_iTest) THEN
 ref_iTest := 88;
END_IF

--> SA0145: Possible use of not initialised reference 'ref_iTest'

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152
● Ä Chapter 1.8.3.3.2.49.15 “SA0124: Pointer dereferences in declarations” on page 4216

SA0150: Violations of lower or upper limits or the metrics
Detects the POUs that violate the activated metrics at the lower or upper limits
Justification: Code that complies with certain metrics is easier to read, easier to maintain, and
easier to test.
Importance: High
PLCopen rule: CP9

Initial situation: The “Number of calls” metric is selected in “Project Settings è Static Analysis
è Metrics”. Lower limit: 0; upper limit: 3. Prog_1 is called five times.

When running the static analysis, the “SA0150: Metric violation for Prog_1. Report for metric
calls (5) > 2” error is issued in the message view, in the “Build” category.

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0160: Recursive calls
Detects recursive calls in actions, methods, and properties of function blocks. Also detects
possible recursions from virtual function calls and interface calls.
Justification: Recursions lead to non-deterministic behavior and are therefore a source of errors.
Importance: Medium
PLCopen rule: CP13

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4220

The following method Call is assigned to the function block FB_Test:
FUNCTION_BLOCK FB_Test
VAR
 bParameter: BOOL;
END_VAR

METHOD Call : BOOL
VAR_INPUT
END_VAR
Call := THIS^.Call(); //SA0160

The program PLC_PRG calls FB_Test:
PROGRAM PLC_PRG
VAR
 fbTest : FB_Test;
 bValue : BOOL;
END_VAR
bValue := fbTest.bParameter;
fbTest.Call();

--> SA0160: Recursive call detected: 'PLC_PRG -> FB_Test.Call ->
FB_Test.Call

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0161: Unpacked structure in packed structure
Detects unpacked structures that are used in packed structures
Justification: The compiler typically sets an unpacked structure to an address that allows aligned
access to all elements within the structure. If you create this structure in a packed structure,
then aligned access is no longer possible. Furthermore, access to an element in the unpacked
structure can lead to a misalignment exception.
Importance: High

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4221

The structure structSingleDataRecord is packed, but it contains the unpacked structures
struct4Byte and struct9Byte.
{attribute 'pack_mode' := '1'}
TYPE structSingleDataRecord :
STRUCT
 str9ByteData: struct9Byte; (* 9 BYTE *)
 str4ByteData: struct4Byte; (* 4 BYTE *)
 udi1: UDINT;
 udi2: UDINT;
 udi3: UDINT;
 usi4: USINT;
END_STRUCT
END_TYPE (* 9 BYTE *)
TYPE struct9Byte :
STRUCT
 usiRotorSlots: USINT; (* 1 BYTE *)
 uiMaxCurrent: UINT; (* 2 BYTE *)
 usiVelocity: USINT; (* 1 BYTE *)
 uiAcceleration: UINT; (* 2 BYTE *)
 uiDeceleration: UINT; (* 2 BYTE *)
 usiDirectionChange: USINT; (* 1 BYTE *)
END_STRUCT
END_TYPE TYPE struct4Byte :
STRUCT
 //udiDummy : UDINT;
 rRealDummy : REAL;
END_STRUCT
END_TYPE

--> SA0161: Declaration of an unpacked struct 'struct9ByteData'
inside a packed struct 'structSingleDataRecord'
--> SA0161: Declaration of an unpacked struct 'struct4ByteData'
inside a packed struct 'structSingleDataRecord'

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0162: Missing comments
Detects uncommented locations in the program
Justification: Complete commenting is required by many programming guidelines, and it
increases the readability and maintainability of the code.
Importance: Low
PLCopen rule: C2
Comments are required in the following cases:
● Declaration of variables (Comments are located either above the declaration or to the right

of the declaration.)
● Declaration of programs, function blocks, or methods (Comments are located above the

declaration in the first line.)

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4222

PROGRAM PLC_PRG
VAR
 iMaxValue: INT;
END_VAR

--> SA0162: Missing comment for 'PLC_PRG'
--> SA0162: Missing comment for 'iMaxValue'

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0163: Nested comments
Detects nested comments
Justification: Nested comments should be avoided because they are difficult to read.
Importance: Low
PLCopen rule: C3

{attribute 'do-analysis'}
(* That is
(* nested comment 1 *)
*)
PROGRAM PLC_PRG
VAR
(* That is
// nested comment 2
comment *)
 iVal1: INT;
 iVal2: INT;

(* That is
(* nested comment 3 *) *)
 pVal3: POINTER TO DWORD;
 hugo: INT;
END_VAR

(* That is
// nested comment 4
comment *)

iVal1 := iVal1 + 1;

(* That is
(* nested comment 5 *)
*)

(* Not that one *)

--> SA0163: Nested comment 'nested comment 1'
--> SA0163: Nested comment 'nested comment 2'
--> SA0163: Nested comment 'nested comment 3'
--> SA0163: Nested comment 'nested comment 4'
--> SA0163: Nested comment 'nested comment 5'

Example

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4223

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0164: Multiline comments
Detects multiline comments that are coded as (* comment *). Only single-line comments
that are coded as // comment are permitted.

Justification: Some programming guidelines prohibit multiline comments in code because the
beginning and end of a comment could get lost and the closing comment bracket could be
deleted by accident.

You can deactivate this check by means of the pragma analysis, also for
comments in the declaration part.

Importance: Low
PLCopen rule: C5

{attribute 'do-analysis'}
(*
 This is a multi-line comment // SA0164
*)
PROGRAM PLC_PRG
VAR
// This is a single line comment
 a: DINT;
END_VAR

(* This is not a single line comment *) // SA0164
a := a + 1;

Example

See also
● Ä Chapter 1.8.3.3.1.2 “Attribute 'analysis'” on page 4150

SA0165: Tasks calling other POUs than programs
Detects tasks that call function blocks or functions instead of a program
Justification: This rule is part of the PLCopen Coding Guidelines. Therefore, compliance is also
checked in CODESYS. We do not see any problems with data consistency in CODESYS if
tasks would call POUs other than programs. However, problems can occur if the code is to be
ported to other platforms.
Importance: Low
PLCopen rule: CP16
Tasks are inserted below the task configuration. The POUs to be called are configured in the
tasks. The POUs must be the “Program” type. The “Function block” and “Function” types are not
permitted.

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4224

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0166: Max. number of input/output/in-out variables...
Detects whether or not a defined number of input variables (VAR_INPUT), output variables
(VAR_OUTPUT) or VAR_IN_OUT variables is exceeded in a POU. In the “Project Settings”,
double-click the rule entry to open a dialog where you define the maximum number.
Justification: This is about checking individual programming guidelines. Many programming
guidelines provide for a maximum number of POU parameters. Too many parameters make the
code unreadable and the POUs difficult to test.
Importance: Medium
PLCopen rule: CP23

In the project settings, for Rule 166, you have defined a maximum number of 1 for
VAR_IN_OUT variables.
FUNCTION_BLOCK FB1
VAR_INPUT
 xIn : BOOL;
END_VAR
VAR_IN_OUT
 xInOut1 : BOOL;
 xInOut2 : BOOL;
END_VAR

--> SA0166: Too many VAR_IN_OUT variables in POU 'FB1'

Example

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0167: Temporary function block instances
Detects function block instances that are declared as temporary variables. This affects
instances that are declared in a method or function or as VAR_TEMP, and therefore are reinitial-
ized in each processing cycle or for each POU call.
Justification: Function blocks have a state that is usually maintained over multiple PLC cycles.
An instance on the stack exists only for the duration of the function call. Therefore, it rarely
makes sense to create an instance as a temporary variable. Secondly, function block instances
are often large and need a lot of space on the stack (which is usually restricted to controllers).
Thirdly, the initialization and often also the scheduling of a function block can take a long time.

PLC Automation with V3 CPUs

Engineering interfaces and tools > CODESYS Static Analysis

2022/01/21 3ADR010583, 3, en_US 4225

Importance: Medium

PROGRAM PLC_PRG
VAR
END_VAR
VAR_TEMP
 yafb: AFB;
END_VAR

FUNCTION Fun : INT
VAR_INPUT
END_VAR
VAR
 funafb: AFB;
END_VAR

METHOD METH : INT
VAR_INPUT
END_VAR
VAR
 methafb: AFB; // SA0167
END_VAR

--> SA0167: Temporary function block instance: 'methafb'

Examples

See also
● Ä Chapter 1.8.3.3.1.5 “Attribute 'analysis:report-multiple-instance-calls'” on page 4152

SA0168: Unnecessary Assignments
Detects assignments to variables which do not have any effect in the code.
Justification: When values are assigned to a variable multiple times without the variable being
evaluated between assignments, the first assignments do not have any effect on the program.
Importance: Low

PROGRAM PLC_PRG
VAR
 dwVal1 : DWORD;
 dwVal2 : DWORD;
END_VAR

dwVal1 := 1; // unnecessary assignment
IF dwVal2 > 100 THEN
 dwVal2 := 0;
 dwVal2 := dwVal2 + 1;
END_IF
dwVal1 := 2;

--> SA0168: The variable 'dwVal1' is assigned but its value is
never used.

Example

See also
● Ä Chapter 1.8.3.1 “Configuring and Running Static Analysis” on page 4130

PLC Automation with V3 CPUs
Engineering interfaces and tools > CODESYS Static Analysis

2022/01/213ADR010583, 3, en_US4226

SA0169: Ignored outputs
Detects the outputs of methods and functions that are not specified when calling the method or
function.
Justification: Ignored outputs can be a notice about an unhandled error or meaningless function
calls because results are not used.
Importance: Medium

FUNCTION Fun1
VAR_INPUT
 bIn : BOOL;
VAR_END
VAR_OUTPUT
 bOut : BOOL;
END_VAR

PROGRAM PLC_PRG
VAR
 bValue :BOOl;
END_VAR

Fun1(bIn : TRUE);

 --//SA0169: The output 'bOut' is ignored when called.

Example

See also
● Ä Chapter 1.8.3.3.2.28.5 “SA0036: Unused output variables” on page 4172

1.8.4 Drive composer pro integration
Drive Composer Pro is a start-up and maintenance tool for ABB's common architecture drives.
The tool is used to view and set drive parameters, and to monitor and tune process perform-
ance.
Drive Composer Pro provides:
● Setting parameters,
● taking local control of the drive from the PC,
● event logger handling
● control diagrams,
● fast monitoring,
● working with multiple drives on the PC tool network,
● macro script editing for parameters and much more.

1. Add “Drive Composer Pro” object into the tree via add object dialog.
2. Open the “Drive Composer Pro” with double-click on the object.

In the following section important functions are described.

PLC Automation with V3 CPUs

Engineering interfaces and tools > Drive composer pro integration

2022/01/21 3ADR010583, 3, en_US 4227

1. Import of FSO backup files (*.dcsafety) and Drive Parameters backup files
(*.dcparamsbak) into Automation Builder project via the Drive Composer Pro object in
the device tree.

2. View of integrated FSO backup files and Drive Parameters backup files in Automation
Builder project - refer to figure below.

ð
Drive Composer Pro can't be launched directly with integrated “FSO
backup files” but they have to be loaded manually via context menu
on the drive in Drive Composer Pro ® “Safety Settings”.

Import of
backup files

PLC Automation with V3 CPUs
Engineering interfaces and tools > Drive composer pro integration

2022/01/213ADR010583, 3, en_US4228

1. Select the FSO and Drive Parameters backup files.
2. Export the selected file by clicking [Export].

ð Select the desired storage path.

Export of
backup files

PLC Automation with V3 CPUs

Engineering interfaces and tools > Drive composer pro integration

2022/01/21 3ADR010583, 3, en_US 4229

1. Select the FSO and Drive Parameter backup files from Automation Builder project.
2. Remove the selected files by clicking [Remove].

Remove of
backup files

PLC Automation with V3 CPUs
Engineering interfaces and tools > Drive composer pro integration

2022/01/213ADR010583, 3, en_US4230

1. Open the “Crane_follower12.dcparamsbak” with double-click.
2. The “Drive Composer Pro” starts automatically.

Standard Drive Parameter backup files (*.dcparamsbak) are automatically
displayed under “File Drives”.

3. Saved changes in the standard drive parameter backup file are automatically updated in
the Automation Builder project.

1.8.5 Professional Version Control
Professional Version Control allows for the development of CODESYS projects under version
control by Apache™ Subversion®. Professional Version Control provides an SVN client inte-
grated in CODESYS. The objects of your project are versioned in a central SVN repository.
As a rule, the SVN repository should be created in a server configuration and located on a
server. For testing purposes, you can create a local SVN repository where you can access via
file://.

Professional Version Control requires a valid license and can be installed using the Automation
Builder Installer or the Automation Builder Installation Manager.

View standard
drive parameter
backup files

SVN integration
in CODESYS

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4231

1.8.5.1 Getting Started
The following steps are required in order to develop your CODESYS project with Professional
Version Control with version control by Apache™ Subversion®:
1. Install the Professional Version Control package in CODESYS.
2. Install an SVN server.
3. Create an SVN repository.
4. Open your CODESYS project in CODESYS.
5. Import the CODESYS project into the SVN project archive.

ð The CODESYS project is saved in the SVN repository.

6. To edit and further develop the project with SVN version control, the project is edited in
CODESYS and then committed to the SVN repository.

A detailed description of these individual steps is located in the following sections.
See also
● Ä Chapter 1.8.5.3 “Using an SVN Repository” on page 4232
● Ä Chapter 1.8.5.4 “Using Working Copies” on page 4234

1.8.5.2 Version control
Apache™ Subversion® (SVN) is a tool for version and revision management of current and
previous versions of files, such as source code, websites, and documentation. Apache™ Sub-
version® is a registered trademark of the Apache Software Foundation.
Revision management (also known as version control, version management, and source code
management) is the management of changes to documents, programs, and other information
that is stored as computer files. Version control is employed frequently in software development
when a team of employees works on the same files.
Tasks
● Co-writing of changes in revisions: At any time, you can show who made which changes at

which time.
● Restoring of old revisions of individual files: At any time, you can reverse accidental

changes to files.
● Archiving of special revisions of a project: At any time, you can revert to older versions.
● Coordination of common access of developers to data
● Development of a project simultaneously in multiple branches

Professional Version Control provides a scripting-interface for SVN.

1.8.5.3 Using an SVN Repository
An SVN repository usually saves information as a file system tree, a hierarchy of files, and
directories. Any number of clients connects to the SVN repository and reads or writes changes
to the files in revisions.

What is version
control?

Script Engine
SVN Add-on API

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4232

NOTICE!
Consult with your IT specialists for more information, for example how to create
an SVN repository. For production purposes, we recommend a strictly dedicated
administrative SVN server.
We recommend that you create the suggested default directory structure in the
SVN repository.
See also
– http://svnbook.red-bean.com/en/1.8/

svn.tour.importing.html#svn.tour.importing.layout

NOTICE!
Use the file:// access method for testing purposes only.

You can reach SVN repositories that were created in format 1.8 or 1.9 via the
file:// protocol.

For testing purposes, you can create a local SVN repository without installing your own server.
The SVN repository is accessed via file:// and provides the same functionality as a server.

Requirement: The SVN client TortoiseSVN 1.9 is installed on the development system.
1. Create a new, empty folder on your local file system. The test repository will be created

there.

ð Example: D:\SVN repository
2. Click “TortoiseSVN è Create repository here”.

ð The dialog “Create repository” opens.

3. Click “Create directory tree”.

ð The SVN repository is created.

See also
● Documentation TortoiseSVN Documentation TortoiseSVN

Table 759: SVN repository URLs
file:/// Direct access to an SVN repository (on local hard drive)
http:// Access via WebDAV protocol to Apache server that is sup-

ported by SVN
https:// As http://, but with SSL encryption

svn:// Access via own protocol to an svnserve server

svn+ssh:// As svn://, but tunneled via SSH

Creating an SVN
repository

Creating an SVN
repository for
testing pur-
poses

Creating a test
repository with
TortoiseSVN

Accessing the
SVN repository

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4233

http://svnbook.red-bean.com/en/1.8/svn.tour.importing.html#svn.tour.importing.layout
http://svnbook.red-bean.com/en/1.8/svn.tour.importing.html#svn.tour.importing.layout
https://tortoisesvn.net/docs/release/TortoiseSVN_de/index.html

1. Open the CODESYS project that you want to save in the SVN repository.

ð Example: A.project is open.

2. Click “Project è SVN è Import project to SVN”.

ð The “Browse SVN repository” dialog opens.

3. Select the directory file:///D:/SVN repository/trunk in the directory tree.

4. Select the command.

ð The “Create remote directory” dialog opens.

5. Specify the URL for the new directory.
Note: Because the new directory should contain the CODESYS project, specify the project
name with extension here.

ð file:///D:/SVN%20repository/trunk/A.project
6. Click “OK” to close the dialog.
7. Select the new project and click “OK” to exit the “Browse SVN repository” dialog.

ð The “Import Project to SVN” dialog opens. The directory file:///D:/SVN
repository/trunk/A.project is specified in “URL of SVN repository”.

See also
● Ä Chapter 1.8.5.5.1 “Overlay Icons” on page 4235

1.8.5.4 Using Working Copies
You can copy CODESYS projects to your development system that are saved in the SVN
repository.
1. Open CODESYS.
2. Click “Project è SVN è Checkout”.

ð The “Checkout” dialog opens.

3. Specify the URL of the SVN repository and select a project in the SVN repository tree.
If a CODESYS project has the extension .project or _project, then it is recognized
automatically as a project at checkout. If it has the extension .library or _library,
then it is recognized as a library project.

4. In “Checkout to”, specify the name and location of the working copy on your development
system.

5. Click “OK” to close the dialog.

ð The project opens in CODESYS. In the object tree of the project, the SVN link is
shown with overlaid icons. Now the project is saved as a working copy on your
development system.

See also
● Ä Chapter 1.8.5.5.1 “Overlay Icons” on page 4235

Import the
project into the
SVN repository.

Checking out a
project
Creating a
working copy

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4234

Update the working copy before you start editing, especially if the project is
revised by a team. This is how you avoid conflicts.

1. Open the working copy.
2. Click “Project è SVN è Update project” (symbol:).

ð You working copy is current.

3. Revise your project.
4. Click “Project è SVN è Edit SVN working copy”.

ð The dialog opens. There you can browse your changes.

5. Close the dialog.
6. If necessary, you can click “SVN è Revert” in the context menu.

ð The file is reverted back to the base revision and your changes are discarded.

7. If necessary, you can click “Compare” in the context menu of an edited object.

ð The compare dialog opens. You can resolve any conflicts here.

8. Close the compare dialog.
9. Click “Project è SVN è Commit project” (symbol:).

ð The “Commit” dialog opens.

10. In “Message”, specify a log entry that describes your changes. Example: Changes for
customer ABC, request 1234.
ð Your changes are saved in the SVN repository as a revision with a revision number.

See also
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 4238

For projects in version Professional Version Control V4.1.0.0 and later, the working directory
(working copy) has a new format.
If you open a project that was created with V4.0.4.0 or earlier, then the project is updated
automatically to the new format when it is opened.
If you open a project that was created with V4.0.4.0 or earlier and the project is based on an
older SVN version of 1.7.x or earlier, then you are prompted whether or not CODESYS should
update the format. If you decline the update, then the SVN link of the project is deactivated. You
can still load and edit the project.
The update does not have an effect on saving to the SVN server. You can also checkout proj-
ects with earlier versions of the client. The new format affects only the local working directory.
See also
● http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.upgrade.html

1.8.5.5 Reference, User Interface
1.8.5.5.1 Overlay Icons

Every object in CODESYS has a status value in the SVN repository. This status value is
displayed in the object tree (in the “POUs”, “Devices”, or “Modules” views) for each object by
overlay icons.

Editing the
working copy

Changed
working copy
format in Pro-
fessional Ver-
sion Control
V4.1.0.0 and
later

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4235

http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.upgrade.html

Table 760: Overlay icons
Object is planned to be added to the SVN repository.

Object conflicted

Object deleted

Object modified

Object with modification in the metadata

Object with modifications in the memory format

Object normal

Object write-protected (read-only)

Object locked

Object with deleted subobjects

Object ignored on commit

External object

Ignored object

Unversioned object

Object with modified subobjects

The object is not saved in the SVN repository. It will be created again when
loaded from SVN.

SVN_VERSION_INFO temporarily unavailable, for example as with inter-
face libraries

The status of the object is not updated.

The object was modified on the server (Update available).

The object was locked on the server by another user (or in another working
directory).

Tree conflict by changes to the structure of the project

1.8.5.5.2 Commands
Not all commands are available in the logged in state because some SVN commands of the
project could be changed.

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4236

Table 761: Availability of commands
Command Not Logged In Logged In

Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repo-
sitory Browser'” on page 4238

X X

Ä Chapter 1.8.5.5.2.2 “Command 'Edit SVN
working copy'” on page 4239

X

Ä Chapter 1.8.5.5.2.3 “Command 'Import
project to SVN'” on page 4242

X X

Ä Chapter 1.8.5.5.2.4 “Command 'Checkout'”
on page 4242

X X

Ä Chapter 1.8.5.5.2.5 “Command 'Commit',
Command 'Commit Project'” on page 4244

X X

Ä Chapter 1.8.5.5.2.6 “Command 'Compare'”
on page 4247

X

Ä Chapter 1.8.5.5.2.7 “Command 'Compare
with HEAD revision'” on page 4247

X

Ä Chapter 1.8.5.5.2.8 “Command 'Compare
with revision'” on page 4247

X

Ä Chapter 1.8.5.5.2.9 “Command 'Compare
to remote project...'” on page 4248

X

Ä Chapter 1.8.5.5.2.10 “Command 'Include
externals to project', Command 'Include exter-

nals'” on page 4249

X

Ä Chapter 1.8.5.5.2.11 “Command 'Ignore on
commit'” on page 4251

X X

Ä Chapter 1.8.5.5.2.12 “Command 'SVN Info'”
on page 4251

X X

Ä Chapter 1.8.5.5.2.13 “Command 'Show
properties'” on page 4252

X X

Ä Chapter 1.8.5.5.2.14 “Command 'Get lock'”
on page 4252

X X

Ä Chapter 1.8.5.5.2.15 “Command 'Steal
locks'” on page 4253

X X

Ä Chapter 1.8.5.5.2.16 “Command 'Release
lock'” on page 4253

X X

Ä Chapter 1.8.5.5.2.17 “Command 'Release
locks recursively'” on page 4253

X X

Ä Chapter 1.8.5.5.2.18 “Command 'Show log',
Command 'Show project log'” on page 4253

X X

Ä Chapter 1.8.5.5.2.19 “Command 'Revert',
Command 'Revert project'” on page 4255

X

Ä Chapter 1.8.5.5.2.20 “Command 'Revert
to revision', Command 'Revert project to revi-

sion'” on page 4256

X

Ä Chapter 1.8.5.5.2.21 “Command 'Update',
Command 'Update project' ” on page 4256

X

Ä Chapter 1.8.5.5.2.22 “Command 'Update to
revision'” on page 4257

X

Ä Chapter 1.8.5.5.2.23 “Command 'Update
only this'” on page 4258

X

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4237

Command Not Logged In Logged In
Ä Chapter 1.8.5.5.2.24 “Command 'Discon-

nect project from SVN'” on page 4258
X X

Ä Chapter 1.8.5.5.2.25 “Command 'Switch'”
on page 4258

X

Ä Chapter 1.8.5.5.2.26 “Command 'Un-Ignore
on commit'” on page 4259

X X

Ä Chapter 1.8.5.5.2.27 “Command 'SVN
Cleanup'” on page 4259

X X

Ä Chapter 1.8.5.5.2.28 “Command 'Clear
authentication data' ” on page 4260

X X

Ä Chapter 1.8.5.5.2.29 “Command 'Merge
changes'” on page 4260

X

Ä Chapter 1.8.5.5.2.30 “Command 'Connect
to existing project'” on page 4261

X X

Ä Chapter 1.8.5.5.2.31 “Command 'Resolve
conflict' ” on page 4262

X

Ä Chapter 1.8.5.5.2.32 “Command 'Work in
offline mode'” on page 4262

X X

Ä Chapter 1.8.5.5.2.33 “Command 'Copy
(Branch/Tag)'” on page 4263

X

Ä Chapter 1.8.5.5.2.34 “Command 'Pending
Changes'” on page 4264

X X

Command 'SVN Repository Browser'
Symbol:
Function: This command opens the SVN repository browser. The contents of an SVN reposi-
tory is shown in a tree structure here. You can search through the repository in the browser.
Call: Menu bar: “Project è SVN”.
Depending on the selected object, the following commands are available in the context menu:
● “Show log”
● “Checkout”
● “Create folder”
● “Copy to”
● “Rename”
● “Delete”

Double-clicking the object with the right mouse button opens the log dialog.

Dialog 'SVN
Repository
Browser'

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4238

“URL” URL in SVN repository
Example: https://svnserver/repository/trunk/
ControlABC.project
Tip: As soon as a valid SVN repository is specified, you can browse and select a
specific project by means of the adjacent button.

Opens the dialog “Select revision”.
The button is labeled with the currently selected revision:
● “HEAD”: Top revision (latest). Preset
● “3”: Revision number of the selected revision
● “23.12.2016 11:59:59 (UTC)”: Change date of the selected revision (UTC)
Note: The dialog provides the same options as the “Revision” group.

Updates the browser view by rescanning the SVN repository.

Navigates the URL address up by one folder.

Left area Directory tree in the SVN repository. Project nodes are shown in bold.

Note: In this view, you can directly edit the project name and the name of the
superordinate folder.

Right area List of objects of the selected directory

“Close” Closes the dialog

See also
● Ä Chapter 1.8.5.5.3.3 “Dialog 'Select revision'” on page 4267

Command 'Edit SVN working copy'
Symbol:
Function: This command opens the dialog “Edit SVN working copy” and displays the working
copy in a browser from the SVN view.
Call: Menu bar: “Project è SVN”.
The functionality of the browser allows for:
● Access to and actions on objects that are not displayed in the “Devices” view.
● Actions on objects that can lead to exceptions in the “Devices” view.
● Editing of global objects that are modified, in conflict, or blocked.

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4239

Table 762: “Edit SVN working copy: <project name> - <project URL>”
“Path in SVN repository” Display of working copy from SVN view. The file and folder structure of the

objects in the project are presented in a tree view. In this way, the recursion
depth of an object is clear.

: Object selected for the following menu command

“Name of object” File name of the object
Example: Application

“ Node type” The top node is the project root directory.

“Text status” Object status:
● “modified”
● “added”
● “deleted”
● “non-versioned”
● “Conflicted”

“Property status” Status in SVN repository:
● “modified”
● “added”
● “deleted”
● “Conflicted”
● “normal”

“Revision” Revision number

“Conflict information” File conflict, property conflict, or tree conflict

“Lock” For locked objects, the user who applied the lock is displayed.
Example: b.mayer

“Lock comment” Lock message. Implicit, normal, or stolen lock.

“URL” URL of the object

Table 763: Menu commands

“Select è All” Selects all files.

“Select è None” Deselects all files.

“Select è Modified” Selects the modified files.

“Select è Conflicted” Selects the conflicted files.

“Select è Locked” Selects the locked files.

Updates the working copy. Changes made by others are added from the SVN
repository to your working copy.

“Update è Project” Updates all files of the project.

“Update è Selected nodes” Updates only the selected files.

“Update è Selected nodes
and children”

Updates the selected files and subordinate files.

 “Reset” Discards your changes to the working copy. Then the object corresponds to the
revision in the repository.

Dialog ‘Edit SVN
working copy'

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4240

“Delete è Selected nodes” Deletes the selected objects from the working copy.

 “Commit” Commits your changes to the SVN repository. Any locked objects will be
unlocked.

“Commit è Project” Commits all files in the project.

“Commit è Selected nodes” Commits only the selected files.

“Commit è Selected nodes
and children”

Commits the selected files and subordinate files.

Commands for managing locks.

“Locks è Revalidate all” Checks the validity of locks in the working copy. Any invalid locks will be
unlocked.

“Locks è Release locks” Releases the lock.

“Locks è Acquire locks” Locks the object from editing by others.

“Locks è Steal locks” Locks the file for you and removes the lock of another user.
Tip: Avoid stealing a lock because the changes made by another user can be
lost.

Commands to resolve conflicts.

“Conflicts è Mark as resolved” Indicates a displayed conflict in the SVN repository as marked and resolved.
Note: Select the command if you edited and resolved the displayed conflict.
Then you can commit changes again.

“Conflicts è Resolve using
theirs”

Resolves the conflict: In the SVN repository, the changes are accepted that were
committed by other users. Your changes are discarded.

“Conflicts è Resolve using
mine”

Resolves the conflict: In the SVN repository, the changes to your working copy
are accepted and the changes by other users are discarded.

 “Show log” Opens the dialog “Log - Application”. The history of the selected node is shown
here. The previous revisions are displayed with the respective actions.

 “Change location” Changes the storage location of the selected object within the working copy.
Example: You can resolve a tree conflict by saving the local object to another
location. Then update the parent object to apply it to the locked children.

 “Update” Updates the browser view by rescanning the working copy.

 “Cleanup” Executes an SVN cleanup operation on the working copy.

See also
● Ä Chapter 1.8.5.5.2.21 “Command 'Update', Command 'Update project' ” on page 4256
● Ä Chapter 1.8.5.5.2.19 “Command 'Revert', Command 'Revert project'” on page 4255
● Ä Chapter 1.8.5.5.2.5 “Command 'Commit', Command 'Commit Project'” on page 4244
● Ä Chapter 1.8.5.5.2.31 “Command 'Resolve conflict' ” on page 4262
● Ä Chapter 1.8.5.5.2.14 “Command 'Get lock'” on page 4252
● Ä Chapter 1.8.5.5.2.16 “Command 'Release lock'” on page 4253
● Ä Chapter 1.8.5.5.2.15 “Command 'Steal locks'” on page 4253
● Ä Chapter 1.8.5.5.2.25 “Command 'Switch'” on page 4258
● Ä Chapter 1.8.5.5.2.18 “Command 'Show log', Command 'Show project log'” on page 4253
● Ä Chapter 1.8.5.5.2.27 “Command 'SVN Cleanup'” on page 4259

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4241

Command 'Import project to SVN'
Symbol:
Function: This command opens the “Import Project to SVN” dialog for importing a CODESYS
project to the SVN repository.
Call: Menu bar: “Project è SVN”.
Requirement
● You have access to an SVN repository and you know its URL.
● You have read access to the entire project.

NOTICE!
Projects are always saved unencrypted on the server. Therefore, take appro-
priate security measures (for example, respective access rights to the SVN
server) for protecting your projects.

See also
● User and access management in Protect and save project

“URL of SVN repository” URL of the SVN repository with the new project folder where the files are
imported
Example: https://svnserver/repository/trunk/
ControlABC.project
Hint: When importing libraries, specify the extension .library or _library.
For projects, specify the extension .project or _project. Then the project
type is recognized automatically at checkout and the options are set accordingly
in the “Checkout” dialog.

Opens the “SVN Repository Browser” dialog The previous project structure is
displayed and you can edit them here.

“Import message” Text for use as log message
Example: Control project for customer A

“Recent messages” Opens the “Recent Messages” dialog. There you can reuse the last log mes-
sages.

“Generate
SVN_VERSION_INFO”

: The object SVN_VERSION_INFO is not created automatically during the
import operation. Therefore, the project does not get any global constants or
variables for the project metadata.

“OK” Creates the current project in the SVN repository and imports the project objects.
The local project in CODESYS Development System is linked to the SVN reposi-
tory. Overlay icons show this in the object trees.

See also
● Ä Chapter 1.8.5.5.2.4 “Command 'Checkout'” on page 4242
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 4238
● Ä Chapter 1.8.5.5.1 “Overlay Icons” on page 4235

Command 'Checkout'
Symbol:
Function: This command opens the “Checkout” dialog. Here you can checkout a project stored
in the SVN repository as a working copy.

Dialog 'Import
Project to SVN'

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4242

ms-its:codesys.chm::/_cds_struct_project_protection_storage.htm

Call: Menu bar: “Project è SVN”.

Table 764: “URL of SVN repository”
URL of the project in the SVN repository
Example: https://svnserver/repository/trunk/
ControlABC.project
Tip: As soon as a valid SVN repository is specified, you can click the adjacent
button or use the options to browse in “Revision” and select a specific project.

Opens the dialog “Select revision”.
The button is labeled with the currently selected revision:
● “HEAD”: Top revision (latest). Preset
● “15”: Revision number of the selected revision
● “23.12.2016 11:59:59 (UTC)”: Change date of the selected revision (UTC)
Note: The dialog provides the same options as the “Revision” group.

Opens the “SVN repository browser” dialog Here you can browse the SVN repo-
sitory.

Table 765: “Checkout to”
“Name” Name of the working copy

Example: ControlABC.project
“Location” Storage location of the working copy

Example: /D:/svn/repository/trunk/ControlABC.project

Table 766: “Checkout as”
“Project” The project is saved as a CODESYS project "<project name>.project".

“Library” The project is saved as a CODESYS library file "<project name>.library".

“Auto-detect” CODESYS attempts to recognize the project type by means of the extension.
The current implementation checks whether the URL of the project ends with
"_library" or ".library". In this case, the project is recognized as a library
or a project.

Table 767: “Checkout options”
“Omit externals”: : Externals (external objects) are not copied to the working directory.

Table 768: “Revision”
For a description, refer to the section "Dialog 'Select revision'".
Note: The group provides the same options as the “Revision” dialog.

“OK” Checks out the project from the SVN repository, saves it locally to the specified
location, and opens it in CODESYS as the primary project.

Dialog 'Check-
out'

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4243

If files were encrypted when imported to the SVN repository, or if they have
been committed, then note the following:

When committing to the SVN repository, the information about an encrypted
project file is included. However, the type of encryption is not included (pass-
word, Wibu security key, X509 certificate). Therefore, it may be necessary to
encrypt the working copy again in the project settings. In this case, a dialog
opens when exiting the command to notify you of this. Then you are able to
switch directly to the project settings.

See also
● Ä Chapter 1.8.5.5.3.3 “Dialog 'Select revision'” on page 4267
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 4238
● "Version control with Subversion", Section "Revision identifier"

Command 'Commit', Command 'Commit Project'
Symbol:
Function: The command commits changes that were made in CODESYS to the SVN reposi-
tory. The “Commit” dialog opens for this purpose.
Call:
● Context menu: “SVN” to commit exactly this object
● “Project è SVN è Commit Project” to commit all changes in the project at the same time
Requirement: At least one object was modified. An object whose contents have been modified
is overlaid in the object tree with the , , or symbol.
When you execute the command, the lock on the objects to be committed is lifted automatically.
See also
● Ä Chapter 1.8.5.5.1 “Overlay Icons” on page 4235

Table 769: “Commit to: <URL project/object>”
 URL in SVN repository

Example: file:///D:/SVN repository/trunk/ControlABC.project
“Log message” Type in a log message that comments your change.

Example: Bug fix error 123
“Recent Messages” Opens the “Recent Messages” dialog for displaying the last log messages. You

can click a log message to accept it.

Dialog 'Commit'

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4244

http://svnbook.red-bean.com/de/1.8/svn.tour.revs.specifiers.html

Table 770: “Changes made (double-click on object for compare, right-click on object for more operations)”
List of objects that were changed and can therefore be committed. The SVN
URLs mirror the hierarchy of the object in the SVN repository.
The objects are highlighted in color according to the object status:
● Blue: Modified
● Green: Added
● Dark red: Deleted
● Red: Conflicted
● Black: Non-versioned (not in SVN repository)

Note: These objects are displayed when the “Show non-versioned objects”
option is selected.

● Gray: Excluded from commit
Note: This is the case when the “Ignore during commit” option is selected.

The list also contains objects which have not been modified but have a lock. This
helps to prevent locking from going unnoticed in the repository.
Double-click an object in order to open the compare dialog. The revision of
the working copy is compared with the base revision. The compare dialog also
opens when you click “Compare” in the context menu.
Right-click an object in order to open the context menu.
Note: When the “Commit Project” command has been executed, a list of objects
is shown here. When the “Commit” command is applied to a specific object,
only this object is shown (if modified or locked) and its modified or locked child
objects.

“Object” : The object is selected for the commit.

Example:

“Text status” Object status in CODESYS
● “Modified”
● “Added”
● “Deleted”
● “Non-versioned”
● “Conflicted”

“Property status” Status of the metadata of the object
● “Modified”
● “Added”
● “Deleted”
● “Conflicted”
● “Normal”

“Lock” If the object has a lock, then it is shown here the user who applied the lock.
Example: b.mayer

“Description” Display of the log message

“Select/Deselect All” : All objects in the list are selected.

“Keep Locks” : Your locked object remains in locked after the commit.

“Keep Change Lists”: : The change list also remains after the commit.

: The change list is not deleted after the commit.

“Update After Commit
(recommended)”

: The object/project is updated after the commit. Select this check box to
ensure that the project is up-to-date and to prevent conflicts resulting from mixed
revisions of working copies.

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4245

Button “Update Project” Updates the project
Hint: Prevent conflicts by committing a previously updated project/object.

“OK”

Keyboard shortcut [Ctrl]+
[Enter]

Keyboard shortcut [Ctrl]+
[Enter]

Checks the working copy first. Starts the commit of changes when the working
copy is current.
Opens a dialog when the working copy is outdated. You can then select from the
following:
● “Abort the commit, I want to investigate the issue.”
● “Yes, I want to update this project now.”
● “Continue with the commit, I know what I do.”

Note: The history of the commit is displayed in the “Messages” view.
The messages are highlighted in color.
● Blue: Commit a change
● Green: Add an object
● Dark red: Delete/replace an object
● Black: Other messages (summary)

Handling external objects
If the external object is in the same SVN repository, then changes in this
external object are listed in the commit dialog and committed together with the
internal project. If an external object is in another SVN repository, then you are
notified about changes in the external project and you have to commit these
separately.

An external object has the “externals” property.

See also
● Ä Chapter 1.8.5.5.2.6 “Command 'Compare'” on page 4247
● SVN help: http://svnbook.red-bean.com/en/1.7/svn.basic.in-action.html#svn.basic.in-

action.mixedrevs)

 “Compare” Opens the compare dialog to compare the working copy with the top-level revi-
sion.

 “Compare with HEAD
version”

Opens the compare dialog to compare the working copy with the HEAD revision.

“Compare with Revision” The list entries are highlighted in color according to the object status:
● Blue: Modified
● Green: Added
● Dark red: Deleted
● Red: Conflicted
● Black: Non-versioned (not in SVN repository)

Note: These objects are displayed when the “Show non-versioned objects”
option is selected.

● Gray: Excluded from commit
Note: This is the case when the “Ignore during commit” option is selected for
the object.

“Revert” Discards your changes to the working copy. Then the object corresponds to the
revision in the SVN repository.

“Show log” Shows the version history of the selected object.

Context menu
(right-click on
object)

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4246

http://svnbook.red-bean.com/de/1.7/svn.basic.in-action.html#svn.basic.in-action.mixedrevs)
http://svnbook.red-bean.com/de/1.7/svn.basic.in-action.html#svn.basic.in-action.mixedrevs)

“Properties” Opens the “SVN Properties” dialog. The properties are displayed there and you
can edit them.

Move to change list Note: This command has not been implemented yet.

Command 'Compare'
Symbol:
Function: This command opens a tab that shows the result of the comparison of your working
copy and the BASE revision. The base revision is the top-level revision in the SVN repository.
Call:
● Menu bar: “Project è SVN”.
● Context menu
Requirement: The object is versioned, it was modified locally, and it does not contain any
conflicts.
Multiple tabs can be open at the same time with the comparison of different objects.

Comparison by object type
The comparison dialog makes use of the functionality of the CODESYS com-
mand “Project è Compare”. In this way, objects are compared according to
their object type.

See also
● Ä Chapter 1.6.6.1.1.6 “Comparing projects” on page 3640

Command 'Compare with HEAD revision'
Symbol:
Function: This command opens a tab that shows the result of the comparison of your working
copy and the HEAD revision. The HEAD revision is the top-level revision in the branch. You can
revert specific changes that were committed to the HEAD revision.
Call: Context menu: “SVN”

Requirement: The object is versioned and not conflicted.
Multiple tabs can be open at the same time with the comparison of different objects.

Comparison by object type
The comparison dialog makes use of the functionality of the CODESYS com-
mand “Project è Compare”. In this way, objects are compared according to
their object type.

See also
● Ä Chapter 1.4.1.20.3.4.21 “Command 'Compare'” on page 1010

Command 'Compare with revision'
Symbol:

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4247

Function: This command opens the “Project log” dialog or “Log - <object> ” where the version
history is displayed from the project or an object of the CODESYS project. Here you can select
a revision. A tab opens and shows the result of the comparison of your working copy and the
revision.
Call: Context menu: “SVN”

Requirement: The object is versioned and not conflicted.
Multiple tabs can be open at the same time with the comparison of different objects.

Comparison by object type
The comparison dialog makes use of the functionality of the CODESYS com-
mand “Project è Compare”. In this way, objects are compared according to
their object type.

See also
● Ä “Tab 'Project log', Dialog 'Log - <object>'” on page 4254
● Ä Chapter 1.4.1.20.3.4.21 “Command 'Compare'” on page 1010

Command 'Compare to remote project...'
Symbol:
Function: This command opens the dialog “Select Remote Project for Comparison”.
Call: Menu bar: “Project è SVN”.
See also
● Ä Chapter 1.4.1.20.3.4.21 “Command 'Compare'” on page 1010

Table 771: “URL of SVN repository”
URL of the project in the SVN repository that is compared.
Example: file:///D:/SVN repository/trunk/ControlDEF.project
As soon as a valid SVN repository is specified, you can click the adjacent button
or use the options to browse in “Revision” and select a project.

The label on the button corresponds to the selected revision:
● “HEAD”: Top revision (latest).
● “15”: Revision number of the selected revision
● “23.12.2016 11:59:59 (UTC)”: Change date of the selected revision (UTC)
After clicking the button, the dialog “Select revision” opens.
Note: The dialog provides the same options as the “Revision” group.

Opens the dialog “Browse SVN repository” to search the SVN repository.

Table 772: “Checkout options”
“Omit externals”: : External objects are not compared.

Dialog 'Select
Remote Project
for Comparison'

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4248

Table 773: “Revision”
Options for selecting a specific revision
Note: the current valid selection is also displayed next to the SVN repository URL.

“HEAD” : The HEAD revision is selected. This is the latest revision (top revision) within
a branch.

“Revision” : A specific revision is selected by the revision number.
Example: 3

“Date” : The specific revision is selected by the modification date.
Example: 12/23/2016 11:59:59

“Use UTC Time”: : Modification date in universal time.

Table 774: “compare options”
“Ignore Whitespace” : No comparison of whitespace characters. Semantically relevant whitespaces,

such as in strings, are compared anyway.

“Ignore Comments” : No comparison of comments.

“Ignore Properties” : No comparison of properties. Folders, the property “Exclude from build”, and
POU images are not compared.
See: Dialog 'Properties'

“OK” Compares the SVN project with the working copy.

See also
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 4238
● Ä Chapter 1.4.1.20.4.10 “Dialog 'Properties'” on page 1157

Command 'Include externals to project', Command 'Include externals'
Symbol:
Function: These commands open the dialog “Include externals”.
Call:
● Menu bar: “Project è SVN”.
● Context menu: “SVN”

Requirement: An object is selected in the object tree. The external objects are linked below
that. If you have selected nothing or the project root directory, then the command “Include
externals to project” is available. If you have selected an object, then the command “Include
externals” is available.

The same external objects cannot be linked multiple times at different locations
in the same project. This leads to problems in CODESYS because of conflicts
with the internal identification of the object.

Dialog 'Include
externals'

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4249

Table 775: “URL of SVN repository”
URL of the external object that is linked. The object to be linked is versioned and
can have sub-objects.
External objects are located at another location in the SVN repository than the
project. It can even be in another SVN repository.
Example: file:///D:/SVN repo A/trunk/DSTest.project/
GlobalTextList
Note: The objects that should be linked below the selected object must have a
matching object type. For example, only a task can be linked below the “Task
configuration” object.

Opens the dialog “Select revision”. Here you can select a revision.
The button is labeled with the currently selected revision:
● “HEAD”: Top revision (latest). Preset
● “15”: Revision number of the selected revision
● “23.12.2016 11:59:59 (UTC)”: Change date of the selected revision (UTC)
Note: The dialog provides the same options as the “Revision” group.

Opens the “SVN repository browser” dialog Here you can browse the SVN repo-
sitory.

Table 776: “Revision”
Options for selecting a revision
Note: the current valid selection is also displayed in the buttons next to the SVN repository URL.

“HEAD” : Latest revision (top revision) selected in a branch.

“Revision” : A specific revision by the revision number.
Example: 3

“Date” : A specific revision by the modification date.
Example: 12/23/2016 11:59:59

“Use UTC Time”: : Modification date in universal time.

“OK” Adds the external object and its sub-objects with the property svn:externals
to your project (below the selected object). The working copy is updated and the
external object is overlaid with the symbol.

Example: (external device Source)

Note: If the linking fails (for example when adding a device below a task configu-
ration), then the complete operation fails and reverts back.
Note: Renaming or moving individual external objects is permitted inly within an
external tree, whereby it is not permitted to move the top object.
To move a complete tree, you have to remove it and link it to another location.

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4250

“... You should seriously consider using explicit revision numbers in all of your
externals definitions. Doing so means that you get to decide when to pull down
a different snapshot of external information, and exactly which snapshot to pull.
Besides avoiding the surprise of getting changes to third-party repositories that
you might not have any control over, using explicit revision numbers also means
that as you backdate your working copy to a previous revision, your externals
definitions will also revert to the way they looked in that previous revision, which
in turn means that the external working copies will be updated to match the
way they looked back when your repository was at that previous revision. For
software projects, this could be the difference between a successful and a failed
build of an older snapshot of your complex codebase. ...”

This is a quote from:

http://svnbook.red-bean.com/nightly/en/svn.advanced.externals.html).

Command 'Ignore on commit'
Function: This command identifies an object and adds it to the "ignore-on-commit” list. Then it
is deactivated in the commit dialog by default.
Call: Menu bar: “SVN”

Requirement: At least one object is available that is not in the change list ignore-on-
comment.

Objects of the "ignore-on-commit” list are overlaid with the symbol in the object tree. By
default, they are not selected in the commit dialog, unless a dependency of a selected object
requires it. These objects can always be selected manually in the dialog.
See also
● Ä Chapter 1.8.5.5.2.26 “Command 'Un-Ignore on commit'” on page 4259

Command 'SVN Info'
Function: This command provides information about the selected object in the SVN repository.
The “SVN Information” dialog opens for this purpose.
Call: Context menu: “SVN”

Requirement: A versioned object (with SVN link) is selected in the object tree.

Name: Device_4\Plc Logic\Application\PLC_PRG
URL: file:///D:/SVN repository/trunk/ControlABC.project/Device/Plc
Logic/Application/PLC_PRG/svnobj
Repository Root: file:///D:/SVN repository/
Repository UUID: 185325d7-73eb-e54b-ab50-206aa23c8b42
Revision: 29
Node Kind: File
Schedule: Normal
Last Changed Author: a.mayer
Last Changed Rev: 8
Last Changed Date: 17.01.2017 12:33:51
Text Last Updated: 17.01.2017 12:33:51
Checksum: d5fb4d91ebaea06f26bcdb15942724d57932b6a3

Example

Dialog 'SVN
Information'

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4251

http://svnbook.red-bean.com/nightly/de/svn.advanced.externals.html

Command 'Show properties'
Symbol:
Function: This command opens the “SVN Properties” dialog. Here you can edit the properties
of the versioned object.
Call: Context menu: “SVN”

Requirement: A versioned, unlocked object is selected.

Table 777: “properties for: <object name>”
“Name” Name of the property

Example: myprop:customer-number
Note: SVN has some reserved properties. Example: svn:mime-type

“Value” Example: 1234
Double-click in the field to edit the value.

“Add” Opens a dialog to define another property with its value.

“Remove” Deletes the selected property.

“Show binary properties” : The binary properties are also displayed.

“Reset” Resets the changes displayed in green.

“OK” Accepts the changes.

See also
● http://svnbook.red-bean.com.

Command 'Get lock'
Symbol:
Function: This command locks the object explicitly for you. The “Lock Message” dialog opens
for this purpose.
Call: Context menu: “SVN”

Requirement: The versioned object is not locked (not overlaid with the symbol).

“Enter the reason why you lock
the object:”

Lock message
Example: Locked for processing task 123

Button “Recent Message” Shows message in the dialog that have already been used. There you select one
in order to use the lock message.

“Recursive” : The object is locked with all subordinate child objects.

“OK” Locks the object

When the lock is successful, the object (in the object tree) is overlaid with the
symbol.

Dialog 'SVN
Properties'

Dialog 'Lock
Message'

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4252

http://svnbook.red-bean.com

Command 'Steal locks'
Symbol:
Function: This command steal the lock of the object. The “Lock Message” dialog opens for this
purpose.
Call: Context menu: “SVN”

Requirement: The versioned object is locked by someone else (overlaid with the symbol).

“Enter the reason why you lock
the object:”

Lock message
Example: a.mayer had to steal the lock because the changes
need to be implemented so urgently.

“Recent Message” Shows message in the dialog that have already been used. There you select one
in order to use the lock message.

“Recursive” : The lock is stolen by the object and all subordinate child objects.

“OK” Steals the lock.
When the stolen lock is successful, the object (in the object tree) is overlaid with
the symbol.

Command 'Release lock'
Symbol:
Function: This command releases the lock of an object.
Call: “Context menu è SVN”

Requirement: The object is locked.

Command 'Release locks recursively'
Symbol:
Function: This command releases the lock of an object explicitly with all of its subordinate
objects.
Call: “Context menu è SVN”

Requirement: The object is locked.

Command 'Show log', Command 'Show project log'
Symbol:
Function: These commands open the tab “Project log” or “Log - <object>”. The version history
of the project or an object of the CODESYS project is displayed in the tab.
Call:
● Menu bar: “Project è SVN”.
● “Context menu è SVN”

If you select nothing or the base node in the object tree, then the history of the entire project
is displayed (“Show project log”). If you select one or more objects, then the history of these
elements is displayed (“Show log”).
Multiple tabs can be open at the same time with the version history of different objects.

Dialog 'Lock
Message'

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4253

Upper area
● “Revision”: Revision

number
● “Author”
● “Date”
● “Message”: Message

entered at commit

List of all revisions of the project or the selected objects in the information. The
first 100 revisions are displayed by default. The “Next 100” and “All” buttons are
provided for displaying more or all revisions.
Several commands are available in the context menu of each revision. These
context menu commands are described below.

Middle area Display of the “Message” of the revision that is selected in the upper area.

Lower area
● “Action”
● “Path”: Object path in SVN
● “Copy from path”
● “Copy from revision”

List of actions that were performed on the objects of the project in the selected
revision:

“Hide unrelated changed
paths”

: All changes of this revision are hidden that do not have any relevance to the
object.

“Stop on copy/rename” : If the object was copied from another location in the SVN repository, then no
more log messages are retrieved. This is especially beneficial when branches or
tags are monitored and only changes within the branch are relevant.

“Filter/Range” Opens the “Filter” dialog

“All” All revisions are listed.

“Next 100” The next 100 revisions are listed.

Table 778: Dialog “Filter”
“Revision range” The displayed revisions can be filtered by “Head”, “Revision”, or “Date”.

: The option fields for “Start revision” and “End revision” are editable.
“Use UTC time”: Date display in universal time.
For more detailed information, refer to the description “Dialog ‘Select revision’“.

“Message contains” Display of revision logs that contain a special text in the “Message”

“ Author contains” Display of revision logs of the specified author

“Path contains” Display of revision logs of the specified path

Table 779: Context menu commands of the revisions
“Compare with base working
copy”

Compares the selected revision of the object with the base working copy (without
local changes).

“Com with working copy” Compares the selected revision of the object with the working copy.

“Compare with HEAD revision” Compares the selected revision of the object with the HEAD revision.

“Compare with previous
revision”

Compares the selected revision of the object with the previous revision.

“Update item to revision” Updates the object to the selected revision.
Note: Changes of the project by this command cannot be committed.
For VSS users: This is comparable to loading an older version without checkout.
To revert a previous commit, the command “Revert to this revision” has to be
used.

Tab 'Project log',
Dialog 'Log -
<object>'

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4254

“Revert to this revision” Reverts the object to the selected revision.
This command does not have an effect on the SVN repository as long as the
changes are not committed. Internally, SVN reverts the merges for all changes
that were made after the selected revision in order to revert the changes of the
preceding commits.

“Edit author” Opens a dialog for changing the author of the revision.

“Edit log message” Opens a dialog for changing the log message of the revision.

“Revision properties” Opens the dialog “Revision properties” where the properties are displayed.
In the dialog, you can activate the “Add” and “Remove” properties and the option
“Show binary properties”.

“Create branch/tag from this
revision”

Creates a branch or tag from the selected revision.

“Browse SVN repository” Opens the “SVN repository browser” dialog

“Copy to clipboard” Copies log details of the selected revision to the clipboard This is the revision
number, author, date of revision, log message, and the list of changes objects for
each revision.

See also
● Ä Chapter 1.8.5.5.2.6 “Command 'Compare'” on page 4247
● Ä Chapter 1.8.5.5.2.7 “Command 'Compare with HEAD revision'” on page 4247
● Ä Chapter 1.8.5.5.2.8 “Command 'Compare with revision'” on page 4247
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 4238
● Ä Chapter 1.8.5.5.3.3 “Dialog 'Select revision'” on page 4267

Command 'Revert', Command 'Revert project'
Symbol:
Function: This command opens the “Revert” dialog. In the dialog, select the objects whose
local changes should be reverted, and those that are reverted to the state of the base revision
of the working copy.
Call:
● Menu bar: “Project è SVN”.
● “Context menu è SVN”

If you select nothing or the main node in the device tree, then all modified objects are listed in
this dialog (“Revert project”). If you selected one or more objects, then only the changes to this
object are listed and recursively their sub-objects (“Revert”).

“Group externals” : The external definitions are grouped by their external storage locations.

“Keep locks” : The lock is retained for all files that are modified by the revert command.

“Select/deselect all”

When external objects are deleted, Professional Version Control cannot restore this data in SVN
offline mode. The user is prompted how to proceed:
● Switch back to SVN online mode and call the external objects.
● Connect now to the SVN server one time in order to complete the current operation, but

afterwards switch back to SVN offline mode.
● Skip the retrieval of the external objects. They can be fetched later by updating the project.

Dialog 'Revert'

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4255

See also
● Ä Chapter 1.8.5.5.2.20 “Command 'Revert to revision', Command 'Revert project to revi-

sion'” on page 4256

Command 'Revert to revision', Command 'Revert project to revision'
Symbol:
Function: This command opens the “Select revision” dialog. In this dialog, you select the
revision to which the project or the selected objects revert.
Call:
● “Project è SVN”
● “Context menu è SVN”

If nothing or the base node is marked in the object tree, then the entire project is reverted to
a specific revision (“Revert project to revision”). If one or more objects are selected, then these
objects and their sub-objects are reverted (“Revert to revision”).

For a description of the dialog, refer to the section "Select revision".
See also
● Ä Chapter 1.8.5.5.3.3 “Dialog 'Select revision'” on page 4267
● Ä Chapter 1.8.5.5.2.19 “Command 'Revert', Command 'Revert project'” on page 4255
● Ä Chapter 1.8.5.5.2.18 “Command 'Show log', Command 'Show project log'” on page 4253

Command 'Update', Command 'Update project'
Symbol:
Function: This command commits changes in the SVN repository to the project. The update is
performed with the HEAD revision.
Call:
● Menu bar: “Project è SVN”.
● “Context menu è SVN”

If nothing or the main node is selected, then the entire project is updated (“Update project”).
If one or more objects are selected, then these objects and their sub-objects are updated
(“Update SVN”).

Dialog 'Select
revision'

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4256

The following cases are possible:
● Projects are added to the project that are present in the SVN repository, but not in the

project. In this case, the message "Added <object>" is issued to the message view.
● Objects that no longer exist in the SVN repository, but are present in the project locally

(and not marked as "added”), are treated according to the Subversion standard procedure:
If local changes are present, then the object remains in the project as unversioned. If there
are no local changes, then the object is also deleted locally because the user can retrieve
the object from an older version at any time. In this case, "Deleted object" is issued to the
message view.

● Versioned objects that exist in both the SVN repository and the project are updated if they
are different. Three cases to observe:
– No local changes have been made since the last update: In this case, the local object is

overwritten by the contents from the SVN repository. The message “Object updated” is
issued to the message view.

– Local changes have been made since the last update and the corresponding object type
can be merged. When versions have been merged successfully, the message “Objects
merged” is issued to the message view. If the command is not executed successfully,
then the object is marked as "Conflicted object" in the object tree and the message
“Conflicted object” is issued.

– Local changes have been made since the last update and the corresponding object type
cannot be merged. In this case, the object is marked as "Conflicted object" in the object
tree and the message “Conflicted object” is issued.

If only some of the objects are updated, it may be that objects with the same name already
exist. For example, this situation can come from moving objects to a folder.
For this conflict, you can react in the following ways:
● Do nothing and leave the conflict-causing objects as they are.
● Update (and remove) the conflicting objects in order to correct the conflict.
● Update the entire project in order to remove all conflicting objects and correct the conflict.
See also
● Ä Chapter 1.8.5.5.2.22 “Command 'Update to revision'” on page 4257

Command 'Update to revision'
Symbol:
SFunction: This command opens the “Update” dialog. In the dialog, the revision is defined for
updating the project.
Call:
● “Project è SVN”
● “Context menu è SVN”

If you select nothing or the base node in the object tree, then the entire project is updated to a
revision (“Update project to revision”). If you select one or more objects, then these objects are
updated and their sub-objects are updated recursively (“Update to revision”). As an option, you
can define that the sub-objects are not updated.
The behavior of the updating process (for example merging of conflicts) is similar to the “Update
project” and “Update” commands.

“HEAD” : This command behaves the same as the “Update” and “Update project”
commands.

“Revision” : The revision to which was last updated is selected by the revision number.

: Opens the dialog “Log” for selecting the revision.

Dialog 'Update'

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4257

“Date” : The revision to which was last updated is selected by the modification date.

“Use UTC time”: : The date is displayed in universal time.

“Recursive” : Default setting. The selected part is updated recursively. This means that all
elements below the selected object are also updated.

“Omit external objects” : External objects are not updated.

See also
● Ä Chapter 1.8.5.5.2.21 “Command 'Update', Command 'Update project' ” on page 4256
● Ä Chapter 1.8.5.5.3.3 “Dialog 'Select revision'” on page 4267

Command 'Update only this'
Symbol:
Function: The command updates the selected objects. In contrast to the “Update” and “Update
to Revision” commands, the child objects are not updated.
Call: “Context menu è SVN”

See also
● Ä Chapter 1.8.5.5.2.21 “Command 'Update', Command 'Update project' ” on page 4256
● Ä Chapter 1.8.5.5.2.22 “Command 'Update to revision'” on page 4257

Command 'Disconnect project from SVN'
Symbol:
Function: This command deletes all connections of the current project to SVN by converting the
project into a non-versioned project.
Call: Menu bar: “Project è SVN”.

Because this operation cannot be reversed, the operation must be confirmed
before the command is executed.

Use the command "Connect to existing project” to connect to the SVN reposi-
tory again at a later time.

See also
● Ä Chapter 1.8.5.5.2.30 “Command 'Connect to existing project'” on page 4261

Command 'Switch'
Symbol:
Function: This command opens the “SVN switch” dialog. In this dialog, you specify a URL in
the SVN repository to which the current working copy of the project is updated. The command
switches a project from a branch or tag to another.
Call: Menu bar: “Project è SVN”.
Requirement: The project is versioned.

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4258

“From” Current SVN URL of the project

“To” Input field for the target URL in SVN
● “HEAD”: The “Select revision” dialog opens.
● : The “SVN Repository Browser” dialog opens. There you select the target

URL in the SVN repository.

See also
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 4238

Command 'Un-Ignore on commit'
Function: This command removes an unversioned object from the ignore list so that the object
is checked by default on commit.
Call: Context menu: “SVN”

Requirement: The command “Ignore on commit” was executed for the object. The object is
marked with the symbol.
See also
● Ä Chapter 1.8.5.5.2.11 “Command 'Ignore on commit'” on page 4251

Command 'SVN Cleanup'
Function: This command opens the “SVN Cleanup” dialog. In the dialog, you define actions that
are performed when cleaning up the SVN working copy.
Call: Menu bar: “Project è SVN”.

Table 780
“Internal SVN working copy”

“Update time stamps (speeds
up SVN status display)”

: Corrects recorded time stamps for unchanged files in the working directory.
This leads to a reduction in the compare time for future checks. It is not neces-
sary to execute this in regular intervals in the normal workflow.

“Vacuum cached pristine
copies (may reduce the size of
your project file)”

: Cleans the buffer for the original copies by deleting older versions that are no
longer referenced by the current project. Advantage: The size of the project file
is reduced. Disadvantage: If you downgrade to older revisions, or if you switch
between different branches, then the retrieved data size will become larger.

“Clear work queue and force
unlock of SVN internal data
structures (emergency only!)”

: Cleans up the internal SVN task queues and unlocks internal SVN data
structures. This should never be necessary during normal work by Professional
Version Control.
Note: Use this option only if errors occur for SVN commands due to locked
working copies. When this is the case, it refers to an error in Professional
Version Control. Then please send us an error report (if possible with steps to
repeat) to the CODESYS support.
Info: These are administrative locks that are internal locks in the SVN working
copy. These locks are not set up by context menu commands. For more infor-
mation, refer to the section "The three meanings of locks" in: http://svnbook.red-
bean.com/en/1.8/svn.advanced.locking.html

“Project contents”

Dialog 'SVN
switch'

Dialog 'SVN
Cleanup'

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4259

http://svnbook.red-bean.com/en/1.8/svn.advanced.locking.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.locking.html

“Revert all local changes (use
with care!)”

Reverts all local changes to the original status in the SVN repository.

“Release all locks” Releases all advisory locks in the project (locks visible to the user). These locks
are activated by “Acquire lock” and “Steal lock”.

“Revalidate all locks against
the repository (they could have
been stolen)”

Checks whether the locally available advisory locks are still valid or have been
stolen by someone else for example. All invalid locks are removed.

“Status caches”

“Clear all caches and refresh
status icons”

Deletes all internal caches that Professional Version Control has and updates
the status icons. Required only if it issues an error in Professional Version
Control through which the caches or the status display are inconsistent.

Command 'Clear authentication data'
Function: This command opens the “CODESYS” dialog. In this dialog, define the caches that
will be deleted.
Call: Menu bar: “Project è SVN”.

The authentication memory contains the authentication data of all SVN repositories for which the user has
selected for saving the authorization data. This memory is deleted completely by this command.

“Clear the shared on-disk
cache.”

: The data saved on the computer is deleted.

“Clear the RAM cache of this
instance.”

: The data saved in the RAM is deleted.

The authentication data saved on the computer is stored in %APPDATA%
\Subversion\auth. This memory path is also used for most other Subver-
sion client applications (for example, TortoiseSVN and AnkhSVN). Therefore,
deleting the authentication data affects these applications as well.

Command 'Merge changes'
Symbol:
Function: This command opens the “Merge” dialog. In this dialog, you determine the revisions
with the changes to be merged with the working copy of the project.
Call: Menu bar: “Project è SVN”.
Requirement: The project is linked to SVN.

Dialog 'CODE-
SYS'

Dialog 'Merge'“”

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4260

“Kind of merge” ● “Sync/Reintegrate/Symmetric merge”: Synchronizes all missing changes
from trunk (or a different branch) into this branch.

● “Cherry pick”: Integrates specifically selected revisions from one branch to
another branch. This is necessary, for example, if any error trapping has to
be ported back to an older version.

“Merge source” SVN URL of the SVN repository
● Input field
● “HEAD”: HEAD revision
● : Dialog “SVN Repository Browser” opens for selecting the SVN repository.

“Define start and end revision” Select this option to merge a cohesive range of revisions with the working copy.

“Start revision” Defines the range of revisions that are merged with the working copy:
● “HEAD”: HEAD revision
● “Revision”: Start and end revision of the range
● “Date”: Date of the start and end revisions

“End revision”

“Define revision range” Select this option to merge individual revisions with the working copy. You can
also highlight the individual revisions in the “Log” dialog.
Note: When defining ranges, CODESYS SVN behaves like other graphical cli-
ents, such as Tortoise SVN), and not like the command-line client. Example: For
a range of 4-7, revisions 4, 5, 6, and 7 are merged.

See also: Merging a Range of Revisions

“Dry run (simulation)” : This command is executed without changing the working copy. Files that are
changed during an actual merge are displayed, as well as ranges where conflicts
occur.

“Record only” : The revision is marked as "merged" without actually performing the merge.

“Ignore ancestry ” : SVN uses path-based differences only, not history-based differences.

See also
● Ä Chapter 1.8.5.5.3.3 “Dialog 'Select revision'” on page 4267
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 4238

Command 'Connect to existing project'
Symbol:
Function: This command opens the “Connect to SVN repository” dialog. In the dialog, you
define the URL and the revision of the SVN repository with which the unversioned project is
connected.
Call: Menu bar: “Project è SVN”.
Requirement: The project is disconnected from SVN.

NOTICE!
Only users who have read access to the entire project (see the CODESYS user
and access management) can import the project into the SVN repository or can
link to an existing database project.

NOTICE!
This command functions reliably only when the project has already been
imported into SVN and then disconnected with the command “Disconnect
project from SVN”.

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4261

https://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-dug-merge.html#tsvn-dug-merge-range

“URL of existing project” URL of the SVN repository
“HEAD”: Selection of the revision in the “Select revision” dialog

: Selection of the SVN repository in the “SVN Repository Browser”

“Checkout options” “Omit externals”: External objects are not checked out.

“Revision” ● “HEAD”: HEAD revision
● “Revision”: Number of the revision
● “Date”: Date of the revision

“Use UTC time”: : Date display in universal time.

See also
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 4238

Command 'Resolve conflict'
Symbol:
Function: This command opens the “<object>” dialog. In the dialog, the conflicts are displayed
and functions for resolving conflicts are prepared in order to merge changes.
Call: Context menu of the object.
Requirement: The object has a conflict that has occurred by updating the object with local
changes.

“Compare” The local objects are displayed on the left side, and the version from the SVN
repository is displayed on the right side.

“Use mine” A local change is used.

“Use yours” A change of the version from the SVN repository is changed.

“Apply” All changes are accepted that you made in this dialog. The status of the object is
changed.

“Cancel” Cancels all changes that you made in this dialog. But the object keeps the
conflicted status.

Command 'Work in offline mode'
Function: This command switches to SVN offline mode. In SVN offline mode, the implicit
locking and all commands that access the SVN repository are not possible.
Call:
● Menu bar: “Project è SVN”.
● Context menu: “SVN”

Requirement: The project is linked to SVN.
When switching back to SVN online mode, all present locks on the working copy are checked
against the server. If this locking is invalid, then it is released.

Dialog 'Connect
to SVN reposi-
tory'

Dialog '<object>'

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4262

The user on a machine wants to make changes to the project without disconnecting the connec-
tion. At the moment, there is not connection to the server. Despite this, when automatic locking
is activated, work is possible because the SVN offline mode deactivates the automatic lock
temporarily.

Command 'Copy (Branch/Tag)'
Symbol:
Function: This command opens the “SVN Copy Branch/Tag” dialog. There you can “Branch” or
“Tag” a revision of your project. A specific revision of your project is saved there at this position.
A branch is normally used in order to save changes isolated in one version. A tag is used for
marking a specific state, for example a shipping version. Internally, it is copied not in the actual
sense, but more refers to the revision.
Call: Menu bar: “Project è SVN”.
Requirement: The project is versioned.

Table 781: “SVN repository”
“From” SVN path of the current project

Example: https://svnserver/repository/trunk/
ControlABC.project

“To” Target path in the SVN repository for the copy operation
Example of tag: https://svnserver/repository/tags/V4.4.4.4/
ControlABC.project

: Dialog “SVN Repository Browser” opens for selecting the target path.

Table 782: “Log message”
Input field Comment the change in a log message.

Example: Tag for version 4.4.4.4 created.
“ Recent Messages” Opens the dialog “Recent Messages” to display the last log messages. You can

click a log message to accept it.

Table 783: “Create copy from”
“Working copy (including local
changes)”

The new branch/tag refers to the working copy including all local changes. The
local changes are committed to the SVN repository for this purpose.

“Base revision of working copy
(<revision number>)”

The new branch/tag refers to the base revision of your working copy whose
revision number is displayed in the parentheses. If the working copy already
contains local changes, then these are not committed to the SVN repository.

“HEAD revision of the
repository”

The new branch/tag refers to the HEAD revision of your project.

“Specific revision in SVN
repository”

The new branch/tag refers to a revision that is displayed on the adjacent button.
Click the button to change the revision. The “ dialog opens.”.

Uses case

Dialog 'SVN
Copy (Branch/
Tag)'

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4263

“Switch to new location ” : After the dialog is confirmed, the working copy switches to the new branch/
tag.

“OK” The target path is created (as a new tag ../repository/tags/V4.4.4.4
or as a new branch ../repository/branches/new_feature). Then the
revision specified in “Create copy from” is copied there.

See also
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 4238

Command 'Pending Changes'
Symbol:
Function: The command opens the “Pending Changes” view. All objects are listed there which
have changed from the base revision or which are locked.
Call: “View è Pending Changes”

The modified or locked objects are shown in the lower half of the view. You can use the
“Commit”, “Revert”, and “Update” commands on single or multiple objects. You will find com-
mands for comparing and displaying the version history in the context menu of a selected
object.
Double-clicking the object opens the project comparison.

“Select” Selection or clearing of all objects

“Commit” Commits local changes to the SVN repository

“Revert” Reverts the local changes to the state of the base revision of the working copy

“Update” The command commits changes in the SVN repository to the project. The
update is performed with the HEAD revision.

“Keep Locks” Lock is not released automatically after commit

“Recent Messages” Shows the last used log messages. You can click a log message to accept it.

“Messages” Type in a log message that comments your change. Example: Bug fix error
123

See also
● Ä Chapter 1.8.5.5.2.5 “Command 'Commit', Command 'Commit Project'” on page 4244
● Ä Chapter 1.8.5.5.2.19 “Command 'Revert', Command 'Revert project'” on page 4255
● Ä Chapter 1.8.5.5.2.21 “Command 'Update', Command 'Update project' ” on page 4256

1.8.5.5.3 Dialogs
1.8.5.5.3.1 Dialog 'Options' - 'SVN Settings'... 4265
1.8.5.5.3.2 Dialog 'Project Settings' - 'SVN Settings'...................................... 4266
1.8.5.5.3.3 Dialog 'Select revision'.. 4267
1.8.5.5.3.4 Dialog 'Subversion Authentication'... 4267
1.8.5.5.3.5 Dialog 'Automatic locking failed'... 4270

View 'Pending
Changes'

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4264

Dialog 'Options' - 'SVN Settings'
Symbol:
Function: This tab includes the basic settings for Professional Version Control.
Call: Menu bar: “Tools è Options”.

Table 784: “Automatic locking and merging”
“Merge” Behavior for the commands “Update”, “Merge”, or “Switch”, when both sides

(working copy and SVN repository) have changed from the base version.
● “Mark all colliding changes as conflicts”: The objects are not merged auto-

matically. All changes with a conflict are marked as "With conflict", even if
some of them can be merged automatically.

● “Merge mergeable changes, mark the others as conflicts”: Changes that
can be merged are merged automatically. All others are marked as "With
conflict".

● “Merge mergeable changes, ask the user for the others”: Changes that can
be merged are merged automatically. The user is prompted for all others.

● “Always ask the user, even for mergeable changes”: For all changed objects,
the user is prompted, even if some of them can be merged automatically.

“Locks” Behavior such as Professional Version Control objects when they are changed
locally.
● “Always try to lock before modification”: All objects are locked before they

are changed, even if they can be merged.
● “Only lock the objects which don't support merging”: Only those objects are

locked that cannot be merged automatically.
● “Never acquire a lock automatically”: No objects are locked, not even if they

can be merged automatically.

“Marker” ● “Use conflict markers when merging objects”: If objects with conflicts exist
that cannot be merged, then these conflicts are marked in the source code
with conflict markers. In addition, the object itself is marked as being merged
successfully (no conflict).

● “Leave non-mergeable objects as conflicted”: No conflict marker is set.
Objects that cannot be merged remain in the status "With conflict".

“Prompt the user when
automatic locking fails.”

: If it is not possible, to lock the object, then the dialog “Automatic locking
failed” opens (see dialog description).

Foo();
>>>>>>>>>>>>>>>
I := I + 1;
===============
I := I + 2;
<<<<<<<<<<<<<<<

Example of
conflict
markers

Table 785: “Server check”
“Check server for updates and
locks”

: Professional Version Control checks in the specified time interval that objects
have been updated on the server. In addition, it checks whether objects are
locked or locks have been stolen.

“Check interval (minutes)” Example: 10

Tab 'General'

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4265

Table 786: “Ignore for comparison”
Ignore whitespace : Whitespace differences between the current project and the reference project

are ignored.

Ignore comments : Comments in the programming code are excluded from the comparison.

Ignore Properties : Object properties are excluded from the comparison.

Some of the SVN options can be overwritten by the project-specific settings.

Project-specific settings are defined in the menu “Project è Project settings”,
category “SVN Settings”.

See also
● Ä Chapter 1.8.5.5.3.5 “Dialog 'Automatic locking failed'” on page 4270
● Ä Chapter 1.8.5.5.3.2 “Dialog 'Project Settings' - 'SVN Settings'” on page 4266

Symbol:
Function: This tab contains the settings for the SSH protocol.
Call: Menu bar: “Tools è Options”.

Table 787: “SSH client implementation”
“libssh2 (recommended)” Professional Version Control uses Libssh2 for establishing a connection via SSH

protocol. This is the recommended setting.

“SharpPlink (backwards
compatibility)”

Professional Version Control uses plink.exe for establishing a connection with
SSH servers. This option is required only for communication with outdated
servers that support the deprecated SSH-1 protocol.

The SSH configuration can be overwritten by means of the environment vari-
able SVN_SSH or server-specific by means of the SVN configuration file.

See also
● Tunneling via SSH

Dialog 'Project Settings' - 'SVN Settings'
Symbol:
Function: The behavior of the integrated SVN version control system is configured in this
dialog.
Call: Menu bar: “Project è Project Settings” (“SVN Settings”).
Requirement: A project is open.

Table 788: “Automatic locking and merging”
With these settings, you can overwrite the default settings that were made in the dialog “Tools è Options”,
category “SVN Settings”.

“Merge” Behavior for the commands “Update”, “Merge”, or “Switch”, when both sides
(working copy and SVN repository) have changed from the base version.

Tab 'SSH'

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4266

http://svnbook.red-bean.com/nightly/en/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.sshauth

“Locks” Behavior such as Professional Version Control objects when they are changed
locally.

“Marker” Behavior for conflicts

Table 789: “Settings SVN version info”
“Create SVN_VERSION_INFO
constants for IEC access”

: The object SVN_VERSION_INFO is created and includes global constants or
variables for the project metadata.

: The object SVN_VERSION_INFO is not available.

When you activate the option, the object is created automatically. When you
deactivate the option, the object is removed from the project automatically.

See also
● Ä Chapter 1.8.5.5.3.1 “Dialog 'Options' - 'SVN Settings'” on page 4265

Dialog 'Select revision'
Function: This dialog shows the currently selected revision. You can edit the selection there.

“Revision”

“HEAD” : The latest revision (top revision) within a branch is displayed.

“Revision” : A specific revision is displayed by the revision number.
Example: 3
Tip: Click to show the revisions. Then the “Log” dialog opens to display
the revisions and the associated actions. The revision that you select there is
applied.

“Date” : A specific revision is checked out by the modification date. This is the highest
revision at the given time (the last revision before that time).
Example: 12/23/2016 11:59:59
Tip: See section "Revision identifiers" in "Version control with Subversion"

“Use UTC Time”: : Modification date in universal time is used.

“Reset recursively” : All objects below the selected object are also reset.
The action fails if
● Objects have been moved in or out of the hierarchy below
● Objects outside of the hierarchy would be changed by implicit dependencies

See also
● Ä Chapter 1.8.5.5.2.18 “Command 'Show log', Command 'Show project log'” on page 4253
● "Version control with Subversion", Section "Revision identifier"

Dialog 'Subversion Authentication'
The dialogs are used for authenticating the server/client connection. A server or client authenti-
cation is performed depending on the initial situation and protocol.

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4267

http://svnbook.red-bean.com/de/1.8/svn.tour.revs.specifiers.html

Overview of possible protocols and dialogs
● svn://: The SVN protocol; either unencrypted or SSL/TLS encrypted

– Can prompt for user name and password (even for an unencrypted connection)
– Can prompt for a server certificate from the dialog for authentication in order to confirm

the server if a certificate is unknown, defective, or invalid (for TLS/SSL encryption)
– As an alternative or in addition to the user name and password prompt, the client can

also be authenticated with client certificates (for TLS/SSL encryption). The dialogs for
authentication open with the client certificate.

● http://: SVN via http, unencrypted
– Can prompt for user name and password

● https://: SVN via http, SSL/TLS encrypted.
– Can prompt for user name and password
– Can prompt for a server certificate from the dialog for authentication in order to confirm

the server if a certificate is unknown, defective, or invalid.
– As an alternative or in addition to the user name and password, the client can also be

authenticated with client certificates. The dialogs for authentication open with the client
certificate.

● svn+ssh://: The SVN protocol, encrypted through an SSH tunnel. SSH (Secure Shell) is
the usual networking tool in Linux/Unix for accessing other computers.
– Can prompt for user name and password
– Prompts for server certificate in the dialog for authentication if the server is still unknown

in order to be sure that it is the correct server.

Initial situation: CODESYS (as a client) receives an unknown or defective server certificate.
This dialog shows information about the certificate. There you can confirm the identity of the
server.

“Authentication area” Connection that is secured
Example: https://svn repository:443

Table 790: “Certificate information” (for SSL/TLS connections)
“Host name” Example: svn repository
“Thumbprint”

“Valid from”

“Valid to”

“Issuer” Example: ABB AG
“Certificate”

Table 791: “SSH server key information” (for SSH connections)
“Key type”

“Key size (bits)”

“Key thumbprint”

Dialog for
authentication
with a server
certificate

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4268

“Save information to RAM” : The certificate is saved to the working memory. Then the client recognizes in
the current CODESYS session for future connections.
If you restart CODESYS, then you have to accept the certificate again.

“Save to disk” : The certificate is saved on the computer and it is available for future connec-
tions.
If you restart CODESYS, then the saved certificate is used.

“OK” Authenticates and established the connection.

The certificate memory is secured cryptographically and distributed with other
SVN clients.

See also
● Version Control with Subversion

Initial situation: The SVN server requires a client certificate for authentication.
In this dialog, you select the client certificate in order to confirm the identity.

“Authentication area” Connection that is secured
Example: https://svn repository:443

Table 792: “The SSL server requires a client certificate file.”
“File” Client certificate file

“Save information to RAM” : The certificate is saved to the working memory. Then the client recognizes in
the current CODESYS session for future connections.
If you restart CODESYS, then you have to accept the certificate again.

“Save to disk” : The certificate is saved on the computer and it is available for future connec-
tions.
If you restart CODESYS, then the saved certificate is used.

“OK” Authenticates and established the connection.

Initial situation: The SVN server is configured so that it demands a client certificate for authenti-
cation. The applied certificate is protected by a pass phrase.

“Authentication area” Connection that is secured
Example: https://svn repository:443

Dialog for
authentication
with a client cer-
tificate

Dialog for
authentication
with a pass
phrase

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4269

http://svnbook.red-bean.com/en/1.7/svn.serverconfig.netmodel.html

Table 793: “A pass phrase is needed to unlock the certificate.”
“Pass phrase” Example: ***

“Save information to RAM” : The pass phrase is saved to the working memory. Then the client recognizes
in the current CODESYS session for future connections.
If you restart CODESYS, then you have to accept the certificate again.

“Save to disk” : The pass phrase is saved on the computer and it is available for future
connections.
If you restart CODESYS, then the saved certificate is used.

“OK” Authenticates with client certificates by means of a pass phrase and establishes
the connection.

Initial situation: The SVN server is configured so that it demands a user name and password for
authentication.

“Authentication area” Connection that is secured
Example: https://svn repository:443

“User name” Example: a.mayr
“Password” Example: ***

“Save information to RAM” : Saved to the working memory. Then the client recognizes in the current
CODESYS session for future connections.
If you restart CODESYS, then you have to accept the certificate again.

“Save to disk” : Saved on the computer and it is available for future connections.
If you restart CODESYS, then the saved certificate is used.

“OK” Establishes the connection and authenticates it.

Dialog 'Automatic locking failed'
The dialog shows a list of all objects for which an automatic locking was not possible. In the
optoins you define how Professional Version Control will resolve the confilict.

Dialog for
authentication
with a user
name and pass-
word

PLC Automation with V3 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/213ADR010583, 3, en_US4270

Table 794: “Automatic Locking and Merging”
● “Try to steal the lock for the

affected objects”
● “Activate the "Offline Mode"

to temporarily suppress
locking”

These options are displayed if another user has locked the object.

● “Update the affected
objects to the newest
revision”

● “Update the whole project
to the newest revision”

● “Activate the "Offline Mode"
to temporarily suppress
locking”

These options are displayed if there exists a more current version of the object
on the server.

● “Activate the "Offline Mode"
to temporarily suppress
locking”

These options are displayed if no connection can be established to the server.

“SVN Project Settings” Opens the SVN project settings dialog (menu “Project è Project Settings”).
There you can change the settings for the automatic locking.

“SVN Settings” Opens the general SVN project settings dialog (menu “Tools è Options”).

See also
● Ä Chapter 1.8.5.5.3.1 “Dialog 'Options' - 'SVN Settings'” on page 4265
● Ä Chapter 1.8.5.5.3.2 “Dialog 'Project Settings' - 'SVN Settings'” on page 4266

1.8.5.5.4 Objects
1.8.5.5.4.1 Object 'SVN_VERSION_INFO'... 4271

Object 'SVN_VERSION_INFO'
Symbol:
The object contains the SVN metadata of the project as global constants or variables in a
variable list. It is located in the “POUs” view. You can specifically retrieve the data of the global
constants or variables by the application. By calling specific data, you can also reduce the
memory usage on the controller.
The SVN metadata is provided for this purpose, subdivided over multiple global variable lists
(GVLs):
● “SVN_VERSION_INFO”
● “SVN_Info_Summary”
● “SVN_Info_SummaryW”
● “SVN_Info_URI”
● “SVN_Info_Revisions”
● “SVN_Info_Flags”
● “SVN_info_LastChange”

The SVN_VERSION_INFO object is created automatically when a project is imported to a SVN
repository. To do so the option “Create SVN_VERSION_INFO” in the dialog “Import project to
SVN” must be activated.
Furthermore you can create the object or remove it from the project with the option “Generate
SVN_VERSION_INFO constants for IEC Access” (Dialog “Project è Project Settings”, category
“SVN Settings”).

PLC Automation with V3 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/21 3ADR010583, 3, en_US 4271

Table 795: Global Constants
Name Data type Description
MINREVISIO
N

LINT Lowest revision number of the working copy

MAXREVISIO
N

LINT Highest revision number of the working copy

PARTIAL BOOL TRUE: The working copy is incomplete.

Example: Cancellation during the last update due to a net-
work error or a checkout.

MODIFIED BOOL TRUE: Local changes were made.

SWITCHED BOOL TRUE: Parts of the project were branched (with the “Switch”
command).

VERSION STRING Version identification, similar to Apache™ Subversion®
(subversion.exe)

Example: 12:34M, means MINREVISION = 12,
MAXREVISION = 34, MODIFIED = TRUE
For more information, refer to the documentation for
Apache™ Subversion®.

CLEAN BOOL TRUE: The version is clean.

This is the case when MINREVISION is equal to
MAXREVISION, the working copy is complete, and non-ver-
sioned, and is was not switched.

URL WSTRING SVN-URL of the project
Example: https://svnserver/repository/trunk/
ControlABC.project

If a controller does not support the data type WSTRING, then a compiler error is
issued when accessing the object SVN_VERSION_INFO.

See also
● Ä Chapter 1.8.5.5.3.2 “Dialog 'Project Settings' - 'SVN Settings'” on page 4266
● Ä Chapter 1.8.5.5.2.3 “Command 'Import project to SVN'” on page 4242

1.8.6 Subversion
1.8.6.1 Project Version Control with Subversion

Automation Builder projects can be stored in Subversion (SVN) repositories by using the Project
Version Control. The Project Version Control can be used to track changes on a project and
to have access to historic versions of the whole project or objects in the project. It is possible
to hold different versions of a project in branches and to compare these versions. The Project
Version Control enables multiple engineers to work collaboratively on the same project.

Make yourself familiar with the concepts of SVN.
This manual about Project Version Control is additionally to the following information and
describes mainly the specific behavior of Subversion in Automation Builder.
● Homepage of Subversion: http://subversion.apache.org/
● Online user manual for Subversion: http://svnbook.red-bean.com/
● Documentation on SVN integration in Automation Builder: Refer to subfolder .

Introduction

Basic knowl-
edge

PLC Automation with V3 CPUs
Engineering interfaces and tools > Subversion

2022/01/213ADR010583, 3, en_US4272

http://subversion.apache.org/
http://svnbook.red-bean.com/

1.8.6.1.1 Preconditions
● In Automation Builder, the Project Version Control must be installed.
● A valid license for the Project Version Control must be activated.
● All collaborating users working on the same project need:

– Automation Builder installed in the same version with the same features.
– License for same edition.
– Same set of optional third party device descriptions.
– Same set of optional customer specific packages.

The Project Version Control can be used in combination with an SVN server in version 1.6 or
newer, the repository format should be 1.5, 1.6 or 1.7. Newer repository formats are not yet
supported.
The usage of local repositories in the local file system or even on a network share is strongly
discouraged.

1.8.6.1.2 Working with Project Version Control
● All objects in the device tree or POU tree are represented by an object in the SVN reposi-

tory, there might be hidden objects that are not visible in the tree but that exist in SVN.
● The smallest unit in the SVN repository is one object including all its data like name,

parameters, device identification.
● Objects are identified in the SVN repository by their name. Renaming one object in

Automation Builder means to delete it from the SVN repository and add a new one to the
SVN repository. Renaming an object causes a break in the history of that object.

● By default objects are locked before they are changed to prevent other users from changing
the object. The locking strategy can be changed in the user options.

● Objects can be compared to other versions of the same object, many differences/changes
between the current object in the Automation Builder project and the compared object can
be merged into the object in the Automation Builder project. Merging changes could be used
to resolve conflicts in case concurrent changed can not be avoided.

● To ensure consistency it is required and also enforced that some changes can be committed
or reverted only together.
– All changes to device objects in the hardware tree that are sub-nodes to the same top

level device. Note: Objects that are not devices are excluded, e.g. the application node.
– All changes below the AC500 PLC application node.

● Most SVN operations can not be performed while other external applications like CODESYS
or Panel Builder work on files that are embedded in Automation Builder project.

● Some operations like changing the target or updating the project to the latest device
(description) versions do a recursive lock of the whole AC500 PLC. If the lock can’t be
obtained the operation is aborted.

● Some objects contain internal data that has no meaning to the end user but is also impor-
tant. Changes on such data are not shown in the compare dialog or are summarized by a
placeholder like "There are hidden changes".

● Including externals is not supported.

Automation
Builder

SVN server

PLC Automation with V3 CPUs

Engineering interfaces and tools > Subversion

2022/01/21 3ADR010583, 3, en_US 4273

1.8.6.1.3 Recommendations on Working with Project Version Control
● Multiple users that work collaboratively on the same project should agree on their respon-

sibility for certain parts of the project where they do changes to avoid conflicts and tree
conflicts.

● Agree on locking strategy used by all users working on the same project.
● Distribute the work between multiple users meaningful.

– It is suggested to setup the hardware structure at first before other users checkout a
project to work on it and limit structure changes in the hardware tree to the minimum.

– Before adding objects, especially top level objects, users should agree that only one
user adds objects at top level or below the same parent, or agree on unique names for
the objects to add. The default naming scheme for new objects bears the risk of name
conflicts. These conflicts could be resolved only by reverting the changes of the user
who later tried to commit the changes.

● The SVN integration (and also project compare) gives lot of power to the user, users should
be sure to do only things they fully understand. Especially by merging changes incomplete it
is possible to create inconsistent data.

● Adding devices, removing devices or even changing parameters can have side effects to
other devices, do not change objects/parameters to their original state by merging that were
not done explicitly.

● Commit changes frequently to SVN.
– To release locks that you don’t longer need.
– To reduce the risk of conflict with co-workers.
– To keep the sets of changes to commit small.

● Do frequent updates when collaborating in a team.
– To be up-to date.
– To keep the sets of changes to get from SVN small.
– To reduce the risk of losing work results in case of conflicts.

● To avoid conflicts, it is suggested to stay with the default setting to automatically lock objects
before doing changes. Consider explicit recursive locks of sub-trees where you plan bigger
changes.

● Prefer a clean checkout over using the switch command to change between different
branches.

● Do not use the switch command to change between unrelated projects, this could corrupt
the Automation Builder project (local copy, not in SVN) easily.

● Commit local changes to the SVN repository before creating a branch.

● Give objects good/correct names after adding them and use renaming of objects already
committed to SVN sparely to maintain a continuous history in the SVN repository.

● The goal to revert only single changes of all changes done that must be committed/reverted
together, could be achieved by using project compare or the object compare dialog.

● If changes can’t be committed to the SVN repository because of locks hold by other users,
it is possible to create a branch, use the switch command to change to this branch and
commit the changes there. The branch and base line could be merged together later.

1.8.6.1.4 Known Issues and Troubleshooting
Not all changes are shown for all objects, but hidden changes are also important.
The device pool may be changed as side effect of several operations, including opening the
project.
When a project was corrupted (by performing an update that tried to add an AC500 Communi-
cation Module) it is possible to save this project and merge changes to a project that has been
cleanly checked out by project compare.

Be collaborative

Be careful

Be effective

PLC Automation with V3 CPUs
Engineering interfaces and tools > Subversion

2022/01/213ADR010583, 3, en_US4274

1.8.6.2 SVN Support Examples
1.8.6.2.1 Importing Automation Builder Project to SVN Repository

1. In the Automation Builder main menu, go to “Project è SVN è Import Project to
Subversion”.

2. Enter user credentials and click “OK”.
3. Select SVN server repository to import Automation Builder project and click “OK”.

ð The Automation Builder project is imported into the selected repository and connected
automatically to the repository. The imported project nodes are identified with green
indicators.

1.8.6.2.2 Logging in User2
1. In the Automation Builder main menu, go to “Project è SVN è Checkout”.
2. Enter user credentials and click OK.
3. Select the repository location, project folder and revision if any and click “OK”.

ð The project will checked out of the repository, saved in the selected location and
opened as a primary project.

The tables below provide the descriptions of the options availlable in the check-out dialog.

Checkout options
Omit externals Do not checkout external objects.

As library project Saves the project as a CODESYS library file.

PLC Automation with V3 CPUs

Engineering interfaces and tools > Subversion

2022/01/21 3ADR010583, 3, en_US 4275

Revisions
HEAD Checks out the Head revision.

Revision Allows to select the required revision of the
project.

Date Allows to select a revision date of the project.

The following instances can occur in the workflow.

● If the project contains any updates, the specific project level node is indicated with .
● If a new object is added to the project, the newly added node is indicated with .
● If the project node is deleted, the specific node is indicated with .

1.8.6.2.3 Examples
If User1 modifies Panel_CP600 project, then the node indicator turns to orange with lock
symbols. If User2 need to modify the same Panel_CP600 project, the Panel_CP600 project
appears with a lock symbol.

To steal the lock of an affected object, proceed as follows:
1. Double-click “Panel_CP600” project.

ð Automatic lock failed dialog is displayed.

2. Enable “Try to steal the lock for the affected objects” and click “OK” to steal the lock.
3. In the Lock Message window, enter the reason to steal the lock and click “OK”.
4. User2 can modify and commit the project.

If User1 adds a new object to the project and commit the changes, then User2 can update the
project to see the latest modifications.

Example 1

Example 2

PLC Automation with V3 CPUs
Engineering interfaces and tools > Subversion

2022/01/213ADR010583, 3, en_US4276

The user can revert to any of the available project revisions.
1. Right-click on object node and select “SVN è Revert to Revision”.
2. Select or enter the revision number and click “OK”.

ð The revision command reverts local changes of this object back to the specific revision
of the working copy.

3. Right-click on the object node and select “SVN è Commit”.
4. In the commit window, enter the reason to change the project and click “OK” to make the

changes.

ð The project node is updated with the latest changes.

SVN server allows to select the required revisions of Automation Builder project. You can
checkout the project using “Project è SVN è Checkout” and then enter the credentials and
click “OK”.
In the check-out dialog, do the following:
1. Select the project repository.
2. Activate “Revision” and select or enter the revision number and click “OK”.

The user can work on the selected revision. To commit the changes to the project, right-click on
project and select “SVN è Commit Project”.

1.8.7 Python
1.8.7.1 Python script support

Scripting allows python scripts to be used to automate project configuration in Automation
Builder. Parameters can be added to scripts, so that a generic script can be customized before
execution. The user can add a script to most parts of the device tree. A script can be started
either from the user interface (by a command or with the python scripting editor) or from the
Windows command line and is saved with the project.
With the scripting feature commands or complex program operations can be automated.
Examples of use cases:

Example 3

Example 4

Using scripts

PLC Automation with V3 CPUs

Engineering interfaces and tools > Python

2022/01/21 3ADR010583, 3, en_US 4277

● Integration of Automation Builder in automatic build server environments:
– continuous integration (CI)
– continuous delivery (CD)
– continuous testing

● Integration with third-party software, for example:
– code generators
– creation of projects that are custom tailored to a specific machine configuration

● Creation of documentation
● Updating of libraries: Setting of project information during the release process
● Automatic testing: Mostly in connection with the Professional Test Manager
● Outputting variables via monitoring APIs

A valid license is required to use the scripting. If you open a project with the existing script
object without a valid license, you are not allowed to add or edit the scripts. However, the scripts
are not removed from the project.

The Automation Builder scripting language is modular and based on IronPython. For this pur-
pose, the Automation Builder “ScriptEngine” component combines the IronPython interpreter
with the Automation Builder development environment which makes the extensive python
framework libraries available including file access in networks and much more.

1.8.7.2 Working with script objects
Scripts to execute can be added to and stored in the Automation Builder project. Additionally,
parameters can be added to scripts, so that generic scripts can be customized before execution.

1. In the device tree, right-click on a node (e.g. a PLC node) and click “Add object”.
2. Under “Scripting category” select “Script è Add object”.

ð The 'Add Script' dialog is displayed.

3. Browse and select a script from the file system or create a new script by clicking [Add].

ð A script is added below the selected node and the editor is opened.

Licensing

Scripting lan-
guage

Adding a script
object to the
project

PLC Automation with V3 CPUs
Engineering interfaces and tools > Python

2022/01/213ADR010583, 3, en_US4278

4. The default parameter values are read from the script. The user can edit the default
values as required.

Editing scripts within Automation Builder is not supported. You can use an
external editor to edit the script and then import it to Automation Builder.

The script objects can be reused within the project via copy-and-paste around
the device tree.

The user can execute the script with the parameter values via the execute button in the editor or
via right-click on the script object in the device tree by selecting “Script è Execute”.

The user can import the script from the file system. This will replace the contents of the
current script object with the contents of the imported file. Optionally, parameter values will be
preserved if the imported script has a matching named parameter. In the device tree, right-click
on a script object and select “Script è Import”.

The user can export the selected script and saved it as a new file in the file system. The
exported file does not include any edited parameter values. In the device tree, right-click on a
script object and select “Script è Export”.

The following instructions help the user to create parameters in the python script:
● Parameters must be defined in the script.
● Parameters and values are optional.
● The ParameterName and the ParameterValue must be delimited with symbols. The

format must be as follows:
"#AutomationBuilder_Parameter {"ParameterName"} {= "ParameterValue"}

● {ParameterName} is the name given to the parameter. This allows the values to be refer-
enced in the python script.

● {ParameterValue} is the default value given to the parameter. This value can be modified in
the editor.

The example below shows the format of the ParameterName and ParameterValue in the
script.
● #AutomationBuilder_Parameter "numWidgets": creates a new parameter called

numWidgets.
● #AutomationBuilder_Parameter "numWidgets" = "4": creates a new parameter called

numWidgets and initializes to the value 4.

Using parameters within the python script:
● Parameters can be used in the script by creating an instance of the parameter helper:

parameterHelper = AutomationBuilder_Parameters.create()
● Individual parameters are retrieved by calling:

GetParameter(parameterName). devicename = parameterHelper.GetParameter("Name")

A set of python script examples are available in the path %Public%\Documents\Automation-
Builder\Examples\Python scripts.

Execution

Import

Export

Parameters

Python script
examples

PLC Automation with V3 CPUs

Engineering interfaces and tools > Python

2022/01/21 3ADR010583, 3, en_US 4279

1.8.7.3 Python script editor
In Automation Builder a browser-based python script editor is integrated. This allows the user
to modify the existing python script, to create a python script from the scratch and to finally
execute the script. Moreover, it assists the user in writing the script with the following features:
● Auto suggest

– IntelliSense suggestions for the python syntax during typing.
– IntelliSense for CODESYS script engine and Automation Builder injected script objects.
– Built-in language service that provides complete code intelligence for objects, properties

and methods.
– Details of the object with [CTRL] + [spacebar].

● Auto completion
Press the Enter key on a function suggested by IntelliSense in order to insert it.

● Python syntax highlighting (basic syntax colorization)
The function and its respective namespace is automatically colored in order to match colors.

● Matching brackets
Matching brackets are highlighted as soon as the cursor is near to one of them using the
command palette.

● Zoom
Changes the font size of the editor's content.

● Find and replace
Support of 'Find' (search for a keyword) and 'Find and replace' (search and replace a
keyword). This feature is supported in the editor, however not integrated in Automation
Builder platform.

● Minimap
High level overview of the script for a quick navigation and code understanding.

● Copy/paste
Support of 'copy and paste' of the script text within and into the editor.

● Undo/redo
Support of 'undo/redo' for editing actions. This feature is supported in the editor, however
not integrated in Automation Builder platform.

● Keyboard shortcuts
Keyboard shortcuts allow to perform most tasks directly from the keyboard (e.g. [CTRL]
+ [Z], [CTRL] + [Y]) including copy and paste. For further keyboard shortcuts refer to the
command palette ([F1]).

● Folding
Support of folding and expanding script regions.

● Comment/uncomment the code
Support of commenting ([CTRL] + [K]) and uncommenting ([CTRL] + [C]) code through
shortcuts.

● 'Execution' button
Executes the script directly in the editor window.

● In order to start a new script from the scratch the user can start with an empty editor. This
can be done via the 'Add script' dialog without script file selection.

For further features that can be used in the python script editor refer to the command palette
([F1]).

● No IntelliSense available for return type of a property.
● No support of IntelliSense for keyword “None”.
● No IntelliSense support for method overloading.
● No IntelliSense support for methods that return an object.
● Private methods are also part of IntelliSense. Refer to the CODESYS script engine docu-

ment to verify the access modifier.

Limitations with
CODESYS script
engine Intelli-
Sense

PLC Automation with V3 CPUs
Engineering interfaces and tools > Python

2022/01/213ADR010583, 3, en_US4280

1.9 Human machine interface
1.9.1 Panel Builder interface

This document describes HMI CP600 Control Panel configuration in Automation Builder and
starting HMI configuration and programming software Panel Builder 600 from Automation
Builder. The Panel Builder project created for the HMI CP600 is stored within the Automation
Builder project.

1.9.1.1 Adding desired AC500 PLC to the project

1. In the Automation Builder device tree, right-click the “Application” node and click “Add
object”

2. Click on “Symbol Configuration” and click “Add object”

ð A “Symbol Configuration” object is added to the “Application” node.

Configuring the
Symbol File

PLC Automation with V3 CPUs

Human machine interface > Panel Builder interface

2022/01/21 3ADR010583, 3, en_US 4281

3. Double-click on the “Symbol Configuration” object , then click on “Build”

ð A list of all variables in the project is generated. Single variables or groups of variables
can be selected by checking the corresponding item in the list.

4. After the symbols have been configured, download the project or click “Build è Generate
code” in the Automation Builder to create an .xml file containing all the variables read to
be imported in the Tag Editor.

1.9.1.2 Creating a Panel Builder project

1. Right-click in the Automation Builder device tree and click “Add object è Panel-CP600”

2. Click on “CP600 Control Panel” and click “Add object”

ð A Control Panel object is added to the Automation Builder device tree.

1. In the device tree, double-click “Panel CP600” object to start Panel CP600 screen.

2. Select the required PLC and enable the checkbox in the 'Use Standard Connection Set-
tings' column to use it as a standard gateway connection.
You can set communication settings using the application program or by creating custom
communication settings. Custom communication settings can be configured by clicking the
button in the 'Details' column.

Adding a panel
object

Starting a Panel
Builder project

PLC Automation with V3 CPUs
Human machine interface > Panel Builder interface

2022/01/213ADR010583, 3, en_US4282

3. Enable the “Update Panel Builder project on launch” checkbox and click [Launch Panel
Builder Editor].

If you update Automation Builder project with new variables and data
types or if there are changes in existing Automation Builder project varia-
bles and data types (new, modified, deleted), recompile CODESYS appli-
cation to refresh the symbol file, then launch Panel Builder editor.

4. Select “New” and click “Open” to create a new HMI project.

ð A project wizard is displayed.

If you want to import an already existing Panel Builder project file from
the file system, select “Import existing project file” and proceed.

5. Select the required panel type and orientation and click “Finish”.

ð A new project wizard starts only if the Panel project is empty.

The panel projects can be compared in Automation Builder using the “Compare
Objects” option.

PLC Automation with V3 CPUs

Human machine interface > Panel Builder interface

2022/01/21 3ADR010583, 3, en_US 4283

1. In the Panel project, double-click “Project properties” to change the panel type to the panel
which is used.

ð The Properties dialog is displayed.

2. In the Properties dialog, expand “Project” and click “Project Type ”.

ð A project wizard dialog is displayed.

3. Select the desired panel type and click “Finish”.

The project information view provides an overview of the Panel Builder project without opening
the project. To open the project information, double-click the “Panel_CP600” object.
The project information is updated every time the Panel Builder project is edited. You can
rename the Panel Builder project via context menu.

The project name is internally used as a base for the Panel Builder project
file name. Therefore, the project name has to comply with general file name
restrictions.

Changing panel
type

Project informa-
tion

PLC Automation with V3 CPUs
Human machine interface > Panel Builder interface

2022/01/213ADR010583, 3, en_US4284

The Panel Builder project information shows the list of PLCs added to the project.

1.9.1.3 Configuring Panel Builder

The user can configure a panel project manually in Panel Builder editor when
there is a need to create individual panel projects. Otherwise, the configura-
tion is updated in the panel project while launching Panel Builder editor in
Automation Builder.

1. In the Panel Builder project structure, double-click “Config è Protocols”.
2. Click to add a protocol.

3. Select “OPC UA Client” to ensure an encrypted communication between AC500 V3
devices and the control panels. This is necessary to protect passwords and other data
in terms of cyber security.
Set the IP address, port, protocol type and PLC models. Click [OK].

1. In the Panel project view, click “Config è Tags”.
2. Select the protocol from the drop-down list and click to import tags.

If the Panel Builder contains multiple tag importers, a dialog is displayed
to select the required importer type.

Configuring
communication
protocols

Importing tags

PLC Automation with V3 CPUs

Human machine interface > Panel Builder interface

2022/01/21 3ADR010583, 3, en_US 4285

3. Select the symbol file which was exported to the file system.
4. In the lower part of the tag editor, mark the desired tags and click “Import Tag (s)” to

import the tags to the Panel Builder project.

1. In the project view, expand “Pages” and double-click Page1.
2. In the Panel Builder 600 main menu, select “View è Toolbars and Docking Windows

è Widget Gallery”.
3. Drag-and-drop the desired widget to the page editor.

Attaching tags
to widgets

PLC Automation with V3 CPUs
Human machine interface > Panel Builder interface

2022/01/213ADR010583, 3, en_US4286

4. Right-click on the widget value and select “Attach To” to attach a tag to the widget.

5. Select the desired tag and select the desired option for the authorization “Read Only” or
“Read/ Write” or “Write Only”. Then, click [OK].

1. In the Panel Builder main menu, click “Run è Download To Target”.
2. Select the CP600 project from the drop-down list and click “Download”.

1. In the Automation Builder device tree, right-click the Panel project and click “Import è
Panel Builder Project”.
System prompts to overwrite the exiting project object data.

2. Click “Yes” to confirm.
3. Select the existing Panel Builder 600 project from the file system and click “Open”.

ð The imported project is displayed.

Downloading a
project to panel

Importing an
existing Panel
Builder project

PLC Automation with V3 CPUs

Human machine interface > Panel Builder interface

2022/01/21 3ADR010583, 3, en_US 4287

1. In the Automation Builder device tree, right-click the Panel Builder 600 project and click
“Export è Panel Builder Project”.

2. Click “Browse” and select the desired location in the file system and save the project file.

ð A success message is displayed, if the project file exports successfully.

When you double-click the Panel Builder project node, the compressed informa-
tion of the node is extracted into a temporary folder and then the external Panel
Builder program is started. After the external Panel Builder program is closed,
the corresponding Panel Builder files can be compressed back into the node
and saved in the Automation Builder project.

We recommend to edit the Panel Builder project by starting Panel Builder
through the Automation Builder. You can also export a Panel Builder project
to the file system to edit the project by using the external Panel Builder. Then,
reimport it to Automation Builder.

1.9.2 SCADA Integration
This document describes SCADA integration configuration in Automation Builder using zenon
editor. The configured device network address information and variables are synchronized with
zenon editor to avoid double entry.
The Automation Builder supports both standard and multi-user functionality.

1.9.2.1 Creating Workspace and Project
1. In the device tree, double-click “zenon_Project”.

ð To launch the zenon editor, click [Launch Zenon Editor].

To update the zenon project with latest changes of application program, click [Update
zenon project].

Exporting Panel
Builder project

Overview

PLC Automation with V3 CPUs
Human machine interface > SCADA Integration

2022/01/213ADR010583, 3, en_US4288

2. Select the required PLC and select the “Use Standard Conn. Settings” option to use as a
standard gateway connection.
This enables the user to use the same communication settings that Automation Builder
uses to communicate to the PLC.

The configured gateway communication settings made in Automation
Builder are displayed in the column 'Connection Type'.

As an alternative you can create custom communication settings: Deselect the “Use
Standard Conn. Settings” option and click the button in the 'Details' column.

3. Click [Launch Zenon Editor] to create a new workspace and project.

Fig. 345: Connect to zenon project

ð
If Zenon Editor is already running, then select the “Use current
workspace” option.

4. Select the “Create a new workspace” option and select the file location to create a new
workspace.

5. Select the “Create new project” option to create a project.

ð ABB zenon editor is displayed.

If you update or change an Automation Builder project with new variables or
data types (new, modified, deleted), recompile the application to refresh the
symbol file and click [Update zenon project].

PLC Automation with V3 CPUs

Human machine interface > SCADA Integration

2022/01/21 3ADR010583, 3, en_US 4289

After creating the project and workspace in Automation Builder, it is not required to set it again
for the zenon object. A double-clicking on the zenon project shows the previously configured
zenon project and the workspace.

1.9.2.2 Loading existing Workspace and Project
You can load an existing workspace and project to ABB zenon supervisor.
1. In the zenon_Project screen, click [Update zenon project].

ð Connection to the zenon project dialog is displayed.

2. In the workspace area, enable “Load existing workspace” and select the location.
3. In the project area, enable “Select loaded project” and click [OK].

ð Zenon editor loads the selected existing workspace and the project.

1.9.2.3 Checking the Gateway Settings in a Zenon Project
The gateway settings configured in Automation Builder can be checked in a zenon project. The
IP address configured in Automation Builder are displayed in the zenon driver configuration.
In the Project Manager structure of the zenon editor, click “Variables è Drivers” to configure the
driver configuration.

The “Settings” tab shows all gateway settings based on the number of configured PLCs
in Automation Builder. The IP address should be similar to the project gateway settings in
Automation Builder.

In the zenon project window, the Connect column should be checked to
transfer the desired number of PLC connection settings to the zenon editor.

PLC Automation with V3 CPUs
Human machine interface > SCADA Integration

2022/01/213ADR010583, 3, en_US4290

1.9.2.4 Generating a Symbol File
Before generating the symbol file, define the variables in theCODESYS application.
1. In the CODESYS application main menu, click “Project è Options”.
2. In the “Options” dialog, click “Symbol configuration”. Enable “Dump symbol entries” and

“Dump XML symbol table” and click “Configure symbol file”.

ð Set object attributes dialog is displayed.

3. Enable “Export variables of object”. If this option has a gray background, double-click on it
to activate.

4. In the CODESYS application window, click at the bottom of the window and click
“Resources è Tools è Target settings”.

5. In the target settings dialog, open the “General” tab and enable “Download symbol file”.
6. From the CODESYS application main menu, select “Project è Build” to compile the

project.

Precondition to generate a symbol file is to create the application and perform a
PLC program build in CODESYS application.

The symbol file is generated after the build. The data exchange can be transferred to the zenon
project by clicking [Update zenon project] in Automation Builder.

1.9.2.5 Updating Standard Data Types
The standard data types created in CODESYS application can be updated to the zenon project
by clicking on “Update zenon project”.

Data types and variables can be updated from the desired number of PLCs
configured in the zenon project of Automation Builder.

In the zenon project, double-click “Variables” and check the updated standard data type.

PLC Automation with V3 CPUs

Human machine interface > SCADA Integration

2022/01/21 3ADR010583, 3, en_US 4291

1.9.2.6 Creating Data Types
1. In the CODESYS application open the “Data types” tab. Right-click “Data types è Add

object” to create a new data type.
2. Enter the user defined data type name.
3. In “POUs” tab, add the user defined variable data type and compile.

ð The user defined data type is created and can be imported in the zenon editor.

If you modify or delete the data types in CODESYS application, compile with
“Rebuild all option”.

1.9.2.7 Importing Data Types in zenon Editor
1. In the zenon project, click [Update zenon project] to update the data types.
2. Click “Update” to update the variables and data types to the zenon project.

ð The user defined variables and data types are imported to the zenon project.

Fig. 346: User defined variables

1.10 Reference, function blocks
Reference documentation

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4292

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/index.html

● _BlockGetData
● _BlockGetPool
● _CloneMessage
● _CreateArrayReceiver
● _CreateIdAreaReceiver
● _CreateMaskReceiver
● _CreateMessage
● _CreateSingleIdReceiver
● _DeleteReceiver
● _DisableSyncService
● _DriverClose
● _DriverGetSize
● _DriverOpenH
● _DriverOpenP
● _EnableSyncService
● _FlatCreateH
● _FlatCreateP
● _FlatDelete
● _FlatDisable
● _FlatEnable
● _FlatGetSize
● _FlatRead
● _FlatTest
● _FlatUpdate
● _FreeMessage
● _GetBaudrate
● _GetBusAlarm
● _GetBusload
● _GetBusState
● _GetCiAState
● _GetDiagnosis
● _GetLostCounter
● _GetMessageDataPointer
● _GetMessageId
● _GetMessageLength
● _GetMsgCount
● _GetNetId
● _GetReceiveCounter
● _GetReceiveErrorCounter
● _GetReceivePoolSize
● _GetReceiveQueueLength
● _GetTimeStamp
● _GetTransmitCounter
● _GetTransmitErrorCounter
● _GetTransmitPoolSize
● _GetTransmitQueueLength
● _Is29BitIdMessage
● _IsRTRMessage
● _IsSendingActive
● _IsTransmitMessage
● _JobAbort
● _JobClose
● _JobExecute
● _JobGetId
● _JobGetParams

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4293

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_BlockGetData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_BlockGetPool.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_CloneMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_CreateArrayReceiver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_CreateIdAreaReceiver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_CreateMaskReceiver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_CreateMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_CreateSingleIdReceiver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_DeleteReceiver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Extended-Functionality/_DisableSyncService.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_DriverClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_DriverGetSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_DriverOpenH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_DriverOpenP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Extended-Functionality/_EnableSyncService.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatCreateH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatCreateP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatDisable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatEnable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatGetSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatTest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatUpdate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_FreeMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetBaudrate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetBusAlarm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetBusload.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetBusState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Indicator-Services/_GetCiAState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetLostCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_GetMessageDataPointer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_GetMessageId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_GetMessageLength.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_GetMsgCount.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_GetNetId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetReceiveCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetReceiveErrorCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetReceivePoolSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetReceiveQueueLength.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_GetTimeStamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetTransmitCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetTransmitErrorCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetTransmitPoolSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetTransmitQueueLength.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_Is29BitIdMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_IsRTRMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_IsSendingActive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_IsTransmitMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobAbort.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobExecute.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobGetId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobGetParams.html#index-0

● _JobGetState
● _JobOpen
● _JobOpenEx
● _JobReset
● _JobSetState
● _LostMessages
● _MsgAddRef
● _MsgClone
● _MsgGetData
● _MsgReceive
● _MsgRelease
● _MsgReleaseEx
● _MsgSend
● _PoolCreateH
● _PoolCreateP
● _PoolDelete
● _PoolExtendH
● _PoolGetBlock
● _PoolGetBlockSize
● _PoolGetCurCapacity
● _PoolGetNumBlocksLeft
● _PoolGetSize
● _PoolPutBlock
● _Read
● _ReadArrayReceiver
● _RegisterIdArea
● _ResetBusAlarm
● _RLstAddPrio
● _RLstCheckPrio
● _RLstCreateH
● _RLstCreateP
● _RLstDelete
● _RLstGetHighestPrio
● _RLstGetSize
● _RLstRemovePrio
● _SDOServerClose
● _SDOServerDoCycle
● _SDOServerOpen
● _SetCiAState
● _StorageGetIndexId
● _StorageGetTableId
● _UnregisterIdArea
● _WorkerRegister
● _WorkerUnregister
● _Write
● _XChgCreateH
● _XChgCreateP
● _XChgDelete
● _XChgExtendH
● _XChgGetSize
● _XChgIsEmpty
● _XChgMsgLeft
● AbbETrig
● AbbLCon
● AbbLConA

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4294

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobGetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobOpenEx.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobReset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobSetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_LostMessages.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgAddRef.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgClone.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgGetData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgReceive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgRelease.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgReleaseEx.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgSend.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolCreateH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolCreateP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolExtendH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolGetBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolGetBlockSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolGetCurCapacity.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolGetNumBlocksLeft.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolGetSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolPutBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_Read.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_ReadArrayReceiver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_RegisterIdArea.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_ResetBusAlarm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstAddPrio.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstCheckPrio.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstCreateH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstCreateP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstGetHighestPrio.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstGetSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstRemovePrio.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/SDO%20Server.library_Library/Functions/Internal/_SDOServerClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/SDO%20Server.library_Library/Functions/Internal/_SDOServerDoCycle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/SDO%20Server.library_Library/Functions/Internal/_SDOServerOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Indicator-Services/_SetCiAState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/3S%20Storage.library_Library/_3SStorage/External/Functions/Storage/_StorageGetIndexId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/3S%20Storage.library_Library/_3SStorage/External/Functions/Storage/_StorageGetTableId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_UnregisterIdArea.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_WorkerRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_WorkerUnregister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_Write.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgCreateH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgCreateP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgExtendH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgGetSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgIsEmpty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgMsgLeft.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.5.2_Library/ETrig/AbbETrig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.5.2_Library/LCon/AbbLCon.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.5.2_Library/LCon/AbbLConA.html#index-0

● AbbLConC
● AbbLConCA
● ABORT_CODE
● AbstrTreeNode
● AC500DeviceDiag
● ACAlarmExtender
● ACCESS_MODE
● AccessRights
● ACCESSTYPES
● AcknowledgeRequestBuilder
● ActionController
● active_low
● AdapterDiagnosis
● ADAPTERSTATE
● AdapterState
● AddBrowseInfo
● AddLogger
● AddMultiplicatedVector
● AddPoints
● ADDR
● ADDR_TO_ID
● ADDR_TYPE
● AddressArea
● AddressLeafTreeNode
● AdjustData_LocalToOpc
● AdjustData_OpcToLocal
● AffectedSourcesHelp
● AINFO_TYPE
● ALARM_ID
● AlarmFctWriteLatchVariable
● ALARMGROUP_ID
● AlarmIndices
● AlarmInfo
● AlarmingCall
● AlarmLatchAdapter
● AlarmSelectionInfo
● AlarmSelectionInfoDefault
● AlarmState
● AlarmStateTransition
● AlarmStorageConvertFromTimestamp
● AlarmStorageConvertToTimestamp
● AlarmStorageConvertValueToLREAL
● AlarmStorageConvertValueToREAL
● AlarmStorageConvertValueToString
● AlarmStorageGetDefaultText
● AlarmStorageGetMessageCount
● AlarmStorageGetTextId
● AlarmStorageGetTextListName
● AlarmStorageLatchVariable
● AlarmStorageReader
● AlarmStorageRow
● AlarmStorageStaticData
● AlarmType
● AllocAndCopyPString
● AllScalarsUnion

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4295

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.5.2_Library/LCon/AbbLConC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.5.2_Library/LCon/AbbLConCA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/Enums/ABORT_CODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/AbstrTreeNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/DiagUtil_1.3.6.9_Library/Function-Blocks/AC500DeviceDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Composer/AC_Alarming.library_Library/ExtenderFB/ACAlarmExtender.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCharDevice_Itfs.library_Library/CmpCharDevice-Interfaces/ACCESS_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/AccessRights.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/Structs/ACCESSTYPES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/HMI/AcknowledgeRequestBuilder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/ActionController.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvGPIOSysfs.library_Library/Functions/active_low.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Function-Blocks/Diagnosis/AdapterDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Enums/ADAPTERSTATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIP.library_Library/IoDrvEtherNetIP/Enums/AdapterState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/AddBrowseInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXEthernetIP.library_Library/Functions/AddLogger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/AddMultiplicatedVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Animation/AddPoints.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/DP-Address/ADDR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/ADDR_TO_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/ADDR_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/AddressArea.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/AddressLeafTreeNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/AdjustData_LocalToOpc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/AdjustData_OpcToLocal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/AffectedSourcesHelp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/AINFO_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/ALARM_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Service/AlarmFctWriteLatchVariable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/ALARMGROUP_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Service/AlarmIndices.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Composer/AC_Alarming.library_Library/ExtenderFB/AlarmInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Composer/AC_Alarming.library_Library/ExtenderFB/AlarmingCall.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Optimized-placeholder-replacement/AlarmLatchAdapter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/public/AlarmSelectionInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/public/AlarmSelectionInfoDefault.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/AlarmState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/AlarmStateTransition.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageConvertFromTimestamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageConvertToTimestamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageConvertValueToLREAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageConvertValueToREAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageConvertValueToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageGetDefaultText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageGetMessageCount.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageGetTextId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageGetTextListName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Service/AlarmStorageLatchVariable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageReader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageRow.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageStaticData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DataTypes/AlarmType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Functions/AllocAndCopyPString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/AllScalarsUnion.html#index-0

● AnalogDeviceDescType
● AnalyzeExpression
● AnalyzeExpressionCombined
● AnalyzeExpressionTable
● APP_MEMORY_SEGMENT
● APP_NAME
● AppCallGetProperty
● AppCallGetProperty2
● AppCallGetProperty2Release
● AppCallGetProperty3
● AppCallSetProperty
● AppCallSetProperty2
● AppendToString
● AppFindApplicationByName
● AppGenerateException
● AppGetApplicationByAreaAddress
● AppGetApplicationFlags
● AppGetApplicationInfo
● AppGetAreaAddress
● AppGetAreaOffsetByAddress
● AppGetAreaPointer
● AppGetAreaSize
● AppGetCurrent
● AppGetFirstApp
● AppGetNextApp
● AppGetProjectInformation
● AppGetSegment
● AppGetSegmentAddress
● AppGetSegmentSize
● APPLICATION
● APPLICATION_INFO
● ApplicationSoftwareVersion
● Apply_Attributes
● AppNumOfActiveSessions
● AppRegisterPropAccessFunctions
● AppReset
● AppRestoreRetainsFromFile
● AppStartApplication
● AppStopApplication
● AppStoreRetainsInFile
● AR_Info
● AREA_TYPE
● AreaRegister
● ARInfo
● ARP_Packet
● ARRAY_RECV_ENTRY
● ArrayDimension
● AsciiUpper
● AskCredentialsHelper
● ASM_IWORKER
● ASM_STATE
● Assert
● AssignerBase
● AsyncAdd
● AsyncBase

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4296

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvAnalogOptionBoard_1.1.1.6_Library/Structs/AnalogDeviceDescType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SFC/Analyzation.library_Library/POUs/AnalyzeExpression.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SFC/Analyzation.library_Library/POUs/AnalyzeExpressionCombined.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SFC/Analyzation.library_Library/POUs/AnalyzeExpressionTable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/APP_MEMORY_SEGMENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Types/APP_NAME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppCallGetProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppCallGetProperty2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppCallGetProperty2Release.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppCallGetProperty3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppCallSetProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppCallSetProperty2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Breakpoint%20Logging%20Functions.library_Library/WatchpointSupport/Functions/AppendToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppFindApplicationByName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGenerateException.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetApplicationByAreaAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetApplicationFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetApplicationInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetAreaAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetAreaOffsetByAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetAreaPointer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetAreaSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetCurrent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetFirstApp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetNextApp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetProjectInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetSegment.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetSegmentAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppGetSegmentSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/APPLICATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/APPLICATION_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/ApplicationSoftwareVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/Apply_Attributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppNumOfActiveSessions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppRegisterPropAccessFunctions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppReset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppRestoreRetainsFromFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppStartApplication.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppStopApplication.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/AppStoreRetainsInFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Device/AR_Info.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy_Itfs.library_Library/CmpRedundancy-Interfaces/Enums/AREA_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy%20Implementation.library_Library/Redundancy-Implementation/Functions/AreaRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/ARInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/ARP.library_Library/Structs/ARP_Packet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Imp%20Extern.library_Library/CAA-Can-Low-Level-Imp/Structures/ARRAY_RECV_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ArrayDimension.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/AsciiUpper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/AskCredentialsHelper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Structs/ASM_IWORKER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Structs/ASM_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Logging/Assert.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Assigners/AssignerBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpAsyncMgr.library_Library/AsyncAdd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Utils/PlcHandlerAccess/AsyncBase.html#index-0

● AsyncBaseClass
● AsyncGetJobReturnValue
● ASYNCJOB_EVENTPARAM
● ASYNCJOB_HOOKPARAM
● ASYNCJOB_PARAM
● ASYNCJOB_TASKPARAM
● AsyncKill
● AsyncProperty
● AsyncRemove
● AsyncRemoveAll
● AsyncWrapper
● atan2
● AtomicReadLInt
● AtomicReadLReal
● AtomicReadLTime
● AtomicReadLWord
● AtomicReadULInt
● AtomicWriteLInt
● AtomicWriteLReal
● AtomicWriteLTime
● AtomicWriteLWord
● AtomicWriteULInt
● ATTRIB
● AutomaticTimeSync
● BackgroundTask
● BackgroundTaskFactoryArgs
● BackgroundTaskFactoryBase
● BackupRestore
● BACNET_READ_FILE_RESULT_RECORD
● BACNET_READ_FILE_RESULT_STREAM
● BACnetAccessCredentialDisableReasonString
● BACnetAccessCredentialDisableString
● BACnetAccessDoorPVString
● BACnetAccessEventString
● BACnetAccessPassbackModeString
● BACnetAccessUserTypeString
● BACnetAccessZoneOccupancyStateString
● BACnetAccumulator
● BACnetAccumulatorStatusString
● BACnetAcknowledgeAlarm
● BACnetAcknowledgeInternalAlarm
● BACnetActionString
● BACnetAddListElement
● BACnetAlarmSummResponseCbCompletion
● BACnetAnalogInput
● BACnetAnalogOutput
● BACnetAnalogValue
● BACnetAsyncTransactionToken
● BACnetAttachUserDataToObjectHandle
● BACnetAttachUserDataToObjectPropertyOverObjectHandle
● BACnetAuthenticationStatusString
● BACnetAuthorizationModeString
● BACnetAveraging
● BACnetBackupBACnetDevice
● BACnetBackupStateString

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4297

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpAsyncMgr.library_Library/AsyncBaseClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpAsyncMgr.library_Library/AsyncGetJobReturnValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpAsyncMgr.library_Library/ASYNCJOB_EVENTPARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpAsyncMgr.library_Library/ASYNCJOB_HOOKPARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpAsyncMgr.library_Library/ASYNCJOB_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpAsyncMgr.library_Library/ASYNCJOB_TASKPARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpAsyncMgr.library_Library/AsyncKill.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/AsyncProperty/AsyncProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpAsyncMgr.library_Library/AsyncRemove.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpAsyncMgr.library_Library/AsyncRemoveAll.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Utils/PlcHandlerAccess/AsyncWrapper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/trigonometrical-functions/atan2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicReadLInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicReadLReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicReadLTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicReadLWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicReadULInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicWriteLInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicWriteLReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicWriteLTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicWriteLWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicWriteULInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Enums/ATTRIB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/AutomaticTimeSync.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Asynchronous%20Job%20%20Manager.library_Library/AsyncManager/Function-Blocks/BackgroundTask.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Asynchronous%20Job%20%20Manager.library_Library/AsyncManager/Function-Blocks/BackgroundTaskFactoryArgs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Asynchronous%20Job%20%20Manager.library_Library/AsyncManager/Function-Blocks/BackgroundTaskFactoryBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/BackupRestore.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/BACNET_READ_FILE_RESULT_RECORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/BACNET_READ_FILE_RESULT_STREAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetAccessCredentialDisableReasonString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetAccessCredentialDisableString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetAccessDoorPVString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetAccessEventString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetAccessPassbackModeString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetAccessUserTypeString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetAccessZoneOccupancyStateString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/Accumulator/BACnetAccumulator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetAccumulatorStatusString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetAcknowledgeAlarm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetAcknowledgeInternalAlarm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetActionString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetAddListElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetAlarmSummResponseCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/AnalogInput/BACnetAnalogInput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/AnalogOutput/BACnetAnalogOutput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/AnalogValue/BACnetAnalogValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetAsyncTransactionToken.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetAttachUserDataToObjectHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetAttachUserDataToObjectPropertyOverObjectHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetAuthenticationStatusString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetAuthorizationModeString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/Averaging/BACnetAveraging.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetBackupBACnetDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetBackupStateString.html#index-0

● BACnetBinaryInput
● BACnetBinaryOutput
● BACnetBinaryPVString
● BACnetBinaryValue
● BACnetBitStringGetBit
● BACnetBitStringSetBit
● BACnetCalendar
● BACnetCancelPendingConfirmedRequest
● BACnetChangeListErrorCbCompletion
● BACnetClientAcknowledgeAlarm
● BACnetClientAddListElement
● BACnetClientBackupBACnetDevice
● BACnetClientBase
● BACnetClientConfPrivateTransfer
● BACnetClientConfTextMessage
● BACnetClientCreateObject
● BACnetClientDeleteObject
● BACnetClientDeviceCommControl
● BACnetClientGetAlarmSummary
● BACNetClientGetEnrollmentSummary
● BACnetClientGetEventInfo
● BACnetClientLifeSafetyOperation
● BACnetClientReadAllPropertyDataContents
● BACnetClientReadProperty
● BACnetClientReadPropertyMultiple
● BACnetClientReadRange
● BACnetClientReadStreamFile
● BACnetClientReinitializeDevice
● BACnetClientRemoveListElement
● BACnetClientRestoreBACnetDevice
● BACnetClientSubscribeCOV
● BACnetClientSubscribeCOVProperty
● BACnetClientTimeSynchronization
● BACnetClientUTCTimeSynchronization
● BACnetClientWriteProperty
● BACnetClientWritePropertyMultiple
● BACnetClientWriteStreamFile
● BACnetClose
● BACnetCloseClientCustomer
● BACnetCommand
● BACnetConfCOVNotification
● BACnetConfEventNotification
● BACnetConfPrivateTransfer
● BACnetConfTextMessage
● BACnetConstructObject
● BACnetControlStackInternalObjectActions
● BACnetCopyPropertyContents
● BACnetCreateObject
● BACnetCreateObjectErrorCbCompletion
● BACnetCreateObjectResponseCbCompletion
● BACnetCreateObjectResult
● BACnetDataTypeString
● BACnetDateRange
● BACnetDateTime
● BACnetDateTimeCmp

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4298

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/BinaryInput/BACnetBinaryInput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/BinaryOutput/BACnetBinaryOutput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetBinaryPVString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/BinaryValue/BACnetBinaryValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/BitStrings/BACnetBitStringGetBit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/BitStrings/BACnetBitStringSetBit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/Calendar/BACnetCalendar.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetCancelPendingConfirmedRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetChangeListErrorCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientAlarmsEvents/BACnetClientAcknowledgeAlarm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientProperty/BACnetClientAddListElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientBackupBACnetDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientConfirm/BACnetClientConfPrivateTransfer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientConfirm/BACnetClientConfTextMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientCreateObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientDeleteObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientDeviceCommControl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientAlarmsEvents/BACnetClientGetAlarmSummary.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientAlarmsEvents/BACNetClientGetEnrollmentSummary.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientAlarmsEvents/BACnetClientGetEventInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientLifeSafetyOperation/BACnetClientLifeSafetyOperation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientProperty/BACnetClientReadAllPropertyDataContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientProperty/BACnetClientReadProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientProperty/BACnetClientReadPropertyMultiple.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientProperty/BACnetClientReadRange.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientFile/BACnetClientReadStreamFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientReinitializeDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientProperty/BACnetClientRemoveListElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientRestoreBACnetDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientProperty/BACnetClientSubscribeCOV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientProperty/BACnetClientSubscribeCOVProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientTimeSynchronization.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientUTCTimeSynchronization.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientProperty/BACnetClientWriteProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientProperty/BACnetClientWritePropertyMultiple.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/BACnetClientFile/BACnetClientWriteStreamFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetCloseServer/BACnetClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetCloseClientCustomer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/Command/BACnetCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetConfCOVNotification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetConfEventNotification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetConfPrivateTransfer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetConfTextMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetConstructObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetControlStackInternalObjectActions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetCopyPropertyContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetCreateObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetCreateObjectErrorCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetCreateObjectResponseCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetCreateObjectResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetDataTypeString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Structs/BACnetDateRange.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Structs/BACnetDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/BACnetDateTimeCmp.html#index-0

● BACnetDateTimeToString
● BACnetDayOfWeekBitsString
● BACnetDayOfWeekString
● BACnetDeleteDeviceAddressBindings
● BACnetDeleteObject
● BACnetDeleteObjectIdNameBindings
● BACnetDestroyObject
● BACnetDevice
● BACnetDeviceAddressToInstNumber
● BACnetDeviceCommControl
● BACnetDevObjPropReference
● BACnetDevStatusString
● BACnetDoesObjectExist
● BACnetDoesObjectNameExist
● BACnetDoorAlarmStateString
● BACnetDoorSecuredStatusString
● BACnetDoorStatusString
● BACnetDoorValueString
● BACnetDumpStackInformation
● BACnetEnableStackLogging
● BACnetEnrollmentSummResponseCbCompletion
● BACnetEnumString
● BACnetEventEnrollment
● BACnetEventInfoResponseCbCompletion
● BACnetEventLog
● BACnetEventStateString
● BACnetEventTransitionString
● BACnetEventTypeString
● BACnetFile
● BACnetFileAccessString
● BACnetFindUpdateDeviceAddressBindings
● BACnetFindUpdateObjectIdNameBindings
● BACnetFreeStackAllocatedMemory
● BACnetGetAlarmSummary
● BACnetGetBACstackTaskPriority
● BACnetGetCheckInvalidDateResponses
● BACnetGetCheckInvalidDateWrites
● BACnetGetCheckInvalidEnumResponses
● BACnetGetCheckInvalidEnumWrites
● BACnetGetCheckInvalidUnsignedResponses
● BACnetGetCheckInvalidUnsignedWrites
● BACnetGetClientDeviceCommunication
● BACnetGetDatabaseObjectDescription
● BACnetGetDatabaseObjectPropertyDescription
● BACnetGetDccValue
● BACnetGetDeviceAddressBindingList
● BACnetGetDeviceAddressBindingsCacheOptions
● BACnetGetEnrollmentSummary
● BACnetGetEventInfo
● BACnetGetObjectHandle
● BACnetGetObjectIdentifierFromHandle
● BACnetGetObjectIdNameBindingList
● BACnetGetObjectIdNameBindingsCacheOptions
● BACnetGetPropertyAccessRight
● BACnetGetPropertyCallbackAttachment

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4299

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/ToString/BACnetDateTimeToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetDayOfWeekBitsString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetDayOfWeekString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetDeleteDeviceAddressBindings.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetDeleteObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetDeleteObjectIdNameBindings.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetDestroyObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/Device/BACnetDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetDeviceAddressToInstNumber.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetDeviceCommControl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Structs/BACnetDevObjPropReference.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetDevStatusString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetDoesObjectExist.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetDoesObjectNameExist.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetDoorAlarmStateString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetDoorSecuredStatusString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetDoorStatusString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetDoorValueString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetDumpStackInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetEnableStackLogging.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetEnrollmentSummResponseCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetEnumString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/EventEnrollment/BACnetEventEnrollment.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetEventInfoResponseCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/EventLog/BACnetEventLog.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetEventStateString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetEventTransitionString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetEventTypeString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/File/BACnetFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetFileAccessString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetFindUpdateDeviceAddressBindings.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetFindUpdateObjectIdNameBindings.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/Mem/BACnetFreeStackAllocatedMemory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetGetAlarmSummary.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetGetBACstackTaskPriority.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetGetCheckInvalidDateResponses.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetGetCheckInvalidDateWrites.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetGetCheckInvalidEnumResponses.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetGetCheckInvalidEnumWrites.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetGetCheckInvalidUnsignedResponses.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetGetCheckInvalidUnsignedWrites.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetGetClientDeviceCommunication.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetGetDatabaseObjectDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetGetDatabaseObjectPropertyDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetGetDccValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetGetDeviceAddressBindingList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetGetDeviceAddressBindingsCacheOptions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetGetEnrollmentSummary.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetGetEventInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetGetObjectHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetGetObjectIdentifierFromHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetGetObjectIdNameBindingList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetGetObjectIdNameBindingsCacheOptions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetGetPropertyAccessRight.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetGetPropertyCallbackAttachment.html#index-0

● BACnetGetPropertyCallbackAttachmentByHandle
● BACnetGetStackApiVersion
● BACnetGetStackApiVersionParts
● BACnetGetUserDataFromObjectHandle
● BACnetGetUserDataFromObjectPropertyOverObjectHandle
● BACnetGlobalGroup
● BACnetGroup
● BACnetIam
● BACnetIAmEx
● BACnetIHave
● BACnetIHaveEx
● BACnetInitMidnightTimer
● BACnetInstnumberToDeviceAddress
● BACnetIntegerValue
● BACnetIPdatalink
● BACnetIPdatalinkExt
● BACnetIsPropertyWriteable
● BACnetLargeAnalogValue
● BACnetLifeSafetyModeString
● BACnetLifeSafetyOperation
● BACnetLifeSafetyOpString
● BACnetLifeSafetyPoint
● BACnetLifeSafetyStateString
● BACnetLifeSafetyZone
● BACnetLimitEnableString
● BACnetLockStatusString
● BACnetLoggingTypeString
● BACnetLoop
● BACnetMaintenanceString
● BACnetMonthString
● BACnetMSTPdatalink
● BACnetMultistateInput
● BACnetMultistateOutput
● BACnetMultistateValue
● BACnetNodeTypeString
● BACnetNotificationClass
● BACnetNotifyTypeString
● BACnetObjectBase
● BACnetObjectIdToText
● BACnetObjTypeString
● BACnetOpenClientCustomer
● BACnetPDUtypeToText
● BACnetPersistenceInfo
● BACnetPolarityString
● BACnetPositiveIntegerValue
● BACnetPrivateTransferErrorCbCompletion
● BACnetPrivateTransferResponseCbCompletion
● BACnetProgram
● BACnetProgramErrorString
● BACnetProgramRequestString
● BACnetProgramStateString
● BACnetPropertyAttributeExistent
● BACnetPropertyAttributePersistent
● BACnetPropertyAttributes
● BACnetPropertyAttributeWritable

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4300

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetGetPropertyCallbackAttachmentByHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetGetStackApiVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetGetStackApiVersionParts.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetGetUserDataFromObjectHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetGetUserDataFromObjectPropertyOverObjectHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/Global-Group/BACnetGlobalGroup.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/Group/BACnetGroup.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetIam.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetIAmEx.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetIHave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetIHaveEx.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetInitMidnightTimer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetInstnumberToDeviceAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/IntegerValue/BACnetIntegerValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetServer/BACnetIPdatalink.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/BACnetExt_1.0.1.4_Library/Function-Blocks/BACnetIPdatalinkExt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetIsPropertyWriteable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/LargeAnalogValue/BACnetLargeAnalogValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetLifeSafetyModeString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetLifeSafetyOperation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetLifeSafetyOpString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/LifeSafetyPoint/BACnetLifeSafetyPoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetLifeSafetyStateString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/LifeSafetyZone/BACnetLifeSafetyZone.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetLimitEnableString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetLockStatusString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetLoggingTypeString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/Loop/BACnetLoop.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetMaintenanceString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetMonthString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetServer/BACnetMSTPdatalink.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/MultistateInput/BACnetMultistateInput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/MultistateOutput/BACnetMultistateOutput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/MultistateValue/BACnetMultistateValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetNodeTypeString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/NotificationClass/BACnetNotificationClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetNotifyTypeString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/BACnetObjectBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetObjectIdToText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetObjTypeString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetOpenClientCustomer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetPDUtypeToText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Persistence/BACnetPersistenceInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetPolarityString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/PositiveIntegerValue/BACnetPositiveIntegerValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetPrivateTransferErrorCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetPrivateTransferResponseCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/Program/BACnetProgram.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetProgramErrorString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetProgramRequestString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetProgramStateString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Enums/BACnetPropertyAttributeExistent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Enums/BACnetPropertyAttributePersistent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Structs/BACnetPropertyAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Enums/BACnetPropertyAttributeWritable.html#index-0

● BACnetPropertyIdToText
● BACnetPropIDString
● BACnetPulseConverter
● BACnetReadAllPropertyDataContents
● BACnetReadFile
● BACnetReadFileResponseCbCompletion
● BACnetReadProperty
● BACnetReadPropertyMultiple
● BACnetReadPropMultipleResponseCbCompletion
● BACnetReadPropResponseCbCompletion
● BACnetReadRange
● BACnetReadRangeResponseCbCompletion
● BACnetRegisterAddressBindingsChangeCallback
● BACnetRegisterClientCommunicationStateCallback
● BACnetRegisterClientDataPoint
● BACnetRegisterClientEventNotification
● BACnetRegisterClientUnsubscribeCompletionCallback
● BACnetRegisterInternalActionErrorCallback
● BACnetRegisterObjectIdNameBindingsChangeCallback
● BACnetRegisterTimeProviderFunction
● BACnetReinitializeDevice
● BACnetReliabilityString
● BACnetRemoveListElement
● BACnetRestartAllClients
● BACnetRestoreBACnetDevice
● BACnetRetrievePropertyInstance
● BACnetRetrievePropertyInstanceByHandle
● BACnetSchedule
● BACnetSecurityLevelString
● BACnetSegmentString
● BACnetSendNetworkManagementMessage
● BACnetServer
● BACnetServerConfCOVNotification
● BACnetServerConfEventNotification
● BACnetServerInit
● BACnetServerPluginBase
● BACnetServerPluginCallbackBase
● BACnetServerPluginHookBase
● BACnetServiceChoiceToText
● BACnetServiceString
● BACnetSetBACstackTaskPriority
● BACnetSetCallback
● BACnetSetCheckInvalidDateResponses
● BACnetSetCheckInvalidDateWrites
● BACnetSetCheckInvalidEnumResponses
● BACnetSetCheckInvalidEnumWrites
● BACnetSetCheckInvalidUnsignedResponses
● BACnetSetCheckInvalidUnsignedWrites
● BACnetSetClientDeviceCommunication
● BACnetSetClientDeviceFixAddress
● BACnetSetClientGlobalCommTimingParameters
● BACnetSetClientGlobalMaxDeviceActions
● BACnetSetComponentLoggingLevel
● BACnetSetDccValue
● BACnetSetDeviceAddressBindingsCacheOptions

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4301

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetPropertyIdToText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetPropIDString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/PulseConverter/BACnetPulseConverter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetReadAllPropertyDataContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetReadFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetReadFileResponseCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetReadProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetReadPropertyMultiple.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetReadPropMultipleResponseCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetReadPropResponseCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetReadRange.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetReadRangeResponseCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetRegisterAddressBindingsChangeCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetRegisterClientCommunicationStateCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetRegisterClientDataPoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetRegisterClientEventNotification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetRegisterClientUnsubscribeCompletionCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetRegisterInternalActionErrorCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetRegisterObjectIdNameBindingsChangeCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetRegisterTimeProviderFunction.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetReinitializeDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetReliabilityString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetRemoveListElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetRestartAllClients.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetRestoreBACnetDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetRetrievePropertyInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetRetrievePropertyInstanceByHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/Schedule/BACnetSchedule.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetSecurityLevelString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetSegmentString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetSendNetworkManagementMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetServer/BACnetServer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetServer/Async/BACnetServerConfCOVNotification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetServer/Async/BACnetServerConfEventNotification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetServerInit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetServerPlugin/BACnetServerPluginBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetServerPlugin/BACnetServerPluginCallbackBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetServerPlugin/BACnetServerPluginHookBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetServiceChoiceToText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetServiceString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetSetBACstackTaskPriority.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetSetCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetSetCheckInvalidDateResponses.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetSetCheckInvalidDateWrites.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetSetCheckInvalidEnumResponses.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetSetCheckInvalidEnumWrites.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetSetCheckInvalidUnsignedResponses.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetServerInitialization/BACnetSetCheckInvalidUnsignedWrites.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetSetClientDeviceCommunication.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetSetClientDeviceFixAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetSetClientGlobalCommTimingParameters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetSetClientGlobalMaxDeviceActions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetSetComponentLoggingLevel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetSetDccValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetSetDeviceAddressBindingsCacheOptions.html#index-0

● BACnetSetHook
● BACnetSetObjectIdNameBindingsCacheOptions
● BACnetSetpointReference
● BACnetSetPropertyAccessRight
● BACnetSetPropertyCallbackAttachment
● BACnetSetPropertyCallbackAttachmentByHandle
● BACnetShedStateString
● BACnetSilencedStateString
● BACnetSrvcAbortCbCompletion
● BACnetSrvcErrorCbCompletion
● BACnetSrvcIgnoreCbCompletion
● BACnetSrvcRejectCbCompletion
● BACnetSrvcResponseCbCompletion
● BACnetStackControl
● BACnetStatusFlagString
● BACnetStorePropertyInstance
● BACnetStorePropertyInstanceByHandle
● BACnetStructuredView
● BACnetSubscribeCOV
● BACnetSubscribeCOVProperty
● BACnetTimeProviderTimeChangedTrigger
● BACnetTimeStamp
● BACnetTimeStampUnion
● BACnetTimeSynchronization
● BACnetTrendLog
● BACnetTrendLogMultiple
● BACnetUnconfCOVNotification
● BACnetUnconfEventNotification
● BACnetUnconfPrivateTransfer
● BACnetUnconfTextMessage
● BACnetUnitsString
● BACnetUnregisterClientDataPoint
● BACnetUnregisterClientEventNotification
● BACnetUpdateAccumulatorDataSourceValue
● BACnetUTCTimeSynchronization
● BACnetVtClassesSupportedString
● BACnetWhoHas
● BACnetWhoIs
● BACnetWriteFile
● BACnetWriteFileResponseCbCompletion
● BACnetWriteGroup
● BACnetWriteProperty
● BACnetWritePropertyInstance
● BACnetWritePropertyInstanceByHandle
● BACnetWritePropertyMultiple
● BACnetWritePropMultipleErrorCbCompletion
● BASE64
● BaseMap
● BaseVector
● BBMD_Info
● BCD_TO_BYTE
● BCD_TO_DWORD
● BCD_TO_INT
● BCD_TO_WORD
● BehaviourModel

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4302

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetSetHook.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetSetObjectIdNameBindingsCacheOptions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Structs/BACnetSetpointReference.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetSetPropertyAccessRight.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetSetPropertyCallbackAttachment.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetSetPropertyCallbackAttachmentByHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetShedStateString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetSilencedStateString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetSrvcAbortCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetSrvcErrorCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetSrvcIgnoreCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetSrvcRejectCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetSrvcResponseCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetStackControl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetStatusFlagString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetStorePropertyInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetStorePropertyInstanceByHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/StructuredView/BACnetStructuredView.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetSubscribeCOV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetSubscribeCOVProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetTimeProviderTimeChangedTrigger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Structs/BACnetTimeStamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Structs/BACnetTimeStampUnion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetTimeSynchronization.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/TrendLog/BACnetTrendLog.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/TrendLogMultiple/BACnetTrendLogMultiple.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetUnconfCOVNotification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetUnconfEventNotification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetUnconfPrivateTransfer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetUnconfTextMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetUnitsString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetUnregisterClientDataPoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/advanced/BACnetUnregisterClientEventNotification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetUpdateAccumulatorDataSourceValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/BACnetUTCTimeSynchronization.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetCommonAPI/String_ToText/BACnetVtClassesSupportedString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetWhoHas.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetWhoIs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetWriteFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetWriteFileResponseCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetWriteGroup.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetWriteProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetWritePropertyInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetWritePropertyInstanceByHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetClientAPI/BACnetWritePropertyMultiple.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetServerAPI/BACnetWritePropMultipleErrorCbCompletion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Encoding/BASE64.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/BaseMap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/BaseVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Structs/BBMD_Info.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/BCD_TO_BYTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/BCD_TO_DWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/BCD_TO_INT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/BCD_TO_WORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/BehaviourModel.html#index-0

● BehaviourModelBase
● BIT_AS_BYTE
● BIT_AS_DWORD
● BIT_AS_WORD
● BitCpy
● BitmapEntry
● BitmapProcessing
● BLINK
● BlkClass
● BLOB
● BlobAlloc
● BlobCopyToData
● BlobFree
● BlockGetData
● BmpPoolBegin
● BmpPoolEnd
● BmpPoolRegister
● BmpPoolUnRegister
● BOLT
● BoolElement
● BoolElementFactory
● BranchNamedTreeNode
● BranchTreeNode
● BranchTreeNodeOpcUA
● BrushStyle
● BTagAlignment
● BTagElementType
● BTagReaderCreate
● BTagReaderCreateDynamic
● BTagReaderDestroy
● BTagReaderGetComplexContent
● BTagReaderGetContent
● BTagReaderGetString
● BTagReaderGetTagId
● BTagReaderGetTagLen
● BTagReaderInit
● BTagReaderIsDataTag
● BTagReaderMoveNext
● BTagReaderPeekNext
● BTagReaderSkipContent
● BTagSwapHeader
● BTagWriterAppendBlob
● BTagWriterAppendDummyBytes
● BTagWriterAppendFillBytes
● BTagWriterAppendRaw
● BTagWriterAppendWString
● BTagWriterCreate
● BTagWriterCreateDynamic
● BTagWriterCreateSavePoint
● BTagWriterCreateSavePointDynamic
● BTagWriterDestroy
● BTagWriterDestroySavePoint
● BTagWriterEndTag
● BTagWriterFinish
● BTagWriterInit

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4303

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/ImplementationBase/BehaviourModelBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/BIT_AS_BYTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/BIT_AS_DWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/BIT_AS_WORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Functions/BitCpy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/BitmapEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/BitmapProcessing.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Signals/BLINK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Internal/BlkClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Structs/BLOB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/BLOB/BlobAlloc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/BLOB/BlobCopyToData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/BLOB/BlobFree.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/BlockGetData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBitmapPool.library_Library/BmpPoolBegin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBitmapPool.library_Library/BmpPoolEnd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBitmapPool.library_Library/BmpPoolRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBitmapPool.library_Library/BmpPoolUnRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Function-Blocks/BOLT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/BoolElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/BoolElementFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/BranchNamedTreeNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/BranchTreeNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/BranchTreeNodeOpcUA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Enums/BrushStyle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/BTagAlignment.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/BTagElementType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderCreateDynamic.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderDestroy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderGetComplexContent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderGetContent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderGetString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderGetTagId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderGetTagLen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderInit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderIsDataTag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderMoveNext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderPeekNext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderSkipContent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/BTagSwapHeader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterAppendBlob.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterAppendDummyBytes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterAppendFillBytes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterAppendRaw.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterAppendWString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterCreateDynamic.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterCreateSavePoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterCreateSavePointDynamic.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterDestroy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterDestroySavePoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterEndTag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterFinish.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterInit.html#index-0

● BTagWriterInit2
● BTagWriterRestoreSavePoint
● BTagWriterStartTag
● BTagWriterSwitchBuffer
● Buffer
● BufferPool
● BufferPoolFactoryArgs
● BufferPoolFactoryBase
● BufferToString
● BuildAndEnqueueV3Request
● BUS_INFO
● BUS_STATE
● BUS_TYPE
● BusScanConfHeader
● BusSpecific
● BUSSTATE
● BYTE_AS_BIT
● BYTE_TO_BCD
● BYTE_TO_GRAY
● BYTE_TO_HEXinASCII
● ByteBuffer
● ByteOrder
● C_TS_Type
● CAADiagDeviceDefault
● CAADiagTreeBase
● CAAReconfigureBase
● CalcCCIT16
● CalcHesseRepresentation
● CalcRootLin
● CalcRootParable
● CalculateCenter
● CalculatePropertyBufferSize
● CallbackNetVar
● CallbackTaskCodeNC
● CallFunctionByIndex
● CallGlueDeserializeParameters
● CallGlueFunctionParameterSet
● CallGlueSerializeReturnValues
● CANbus
● CANbus_Diag
● CANDiagnosis
● CANOPEN_DIAGNOSIS_INFO
● CANOPEN_KERNEL_ERROR
● CANOPEN_KERNEL_STATE
● CANOPEN_STATE
● CANopenDevice
● CANopenDevice_Diag
● CANopenDeviceSIL2
● CANopenDeviceUnsafe
● CANOpenDiagnosisInfo
● CANopenEvent
● CANopenManager
● CANopenManager_Diag
● CANopenManagerSIL2
● CANopenManagerUnsafe

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4304

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterInit2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterRestoreSavePoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterStartTag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterSwitchBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/Buffer/Function-Blocks/Buffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/BufferPool/Function-Blocks/BufferPool.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/BufferPool/Function-Blocks/BufferPoolFactoryArgs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/BufferPool/Function-Blocks/BufferPoolFactoryBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/StringConversions/BufferToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/BuildAndEnqueueV3Request.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Structs/BUS_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Enums/BUS_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Enums/BUS_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Services/NetxEcatAsync/BusScanConfHeader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/BusSpecific.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Enums/BUSSTATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/BYTE_AS_BIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/BYTE_TO_BCD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Gray-Conversions/BYTE_TO_GRAY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/HEXASCII-Functions/BYTE_TO_HEXinASCII.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Util/ByteBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Enums/ByteOrder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Enums/C_TS_Type.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Internal/Diag-Base/CAADiagDeviceDefault.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Internal/Diag-Base/CAADiagTreeBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Internal/Diag-Base/CAAReconfigureBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Functions/Memory-Functions/CalcCCIT16.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Plane-Functions/CalcHesseRepresentation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analytical-functions/CalcRootLin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analytical-functions/CalcRootParable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Animation/CalculateCenter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/CalculatePropertyBufferSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/NetVar-POUs/CallbackNetVar.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/NetVar-POUs/CallbackTaskCodeNC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Indirect-Functioncall/CallFunctionByIndex.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/CallGlueDeserializeParameters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/CallGlueFunctionParameterSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/CallGlueSerializeReturnValues.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANbusDevice.library_Library/CANbusDevice/Function-Blocks/CANbus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANbusDevice.library_Library/CANbusDevice/Function-Blocks/CANbus_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/Debugging/CANDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/Structs/CANOPEN_DIAGNOSIS_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/CANOPEN_KERNEL_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Enums/CANOPEN_KERNEL_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/Enums/CANOPEN_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/CANopenDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/Diagnosis/CANopenDevice_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSafety%20Slave.library_Library/_3SCANopenSafetySlave/Function-Blocks/CANopenDeviceSIL2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack%20Unsafe.library_Library/_3SCANopenSlaveUnsafe/Function-Blocks/CANopenDeviceUnsafe.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Structs/CANOpenDiagnosisInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Enums/CANopenEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/CANopenManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Device-Diagnosis/CANopenManager_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSafety.library_Library/_3SCANopenSafety/Function-Blocks/CANopenManagerSIL2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStackUnsafe.library_Library/_3SCANopenStackUnsafe/Function-Blocks/CANopenManagerUnsafe.html#index-0

● CANopenSafetyBase
● CanReconfigure
● CANRemoteDevice
● CANRemoteDevice_Diag
● CANRemoteDeviceSafe
● CANRemoteDeviceUnsafe
● CANRemoteModule_Diag
● CartesianToPolar
● CaseSensitiveNamedTreeNode
● CB_CALLBACK
● CCB
● CD522DoubleWordCounter
● CD522Encoder32Bit
● CD522FreqOut
● CD522FreqScan
● CD522FreqScan_PLUS
● CD522In
● CD522OneWordCounter
● CD522Out
● CD522PulseOut
● CD522PwmOut
● CD522ReadInput
● CD522SsiCnt
● CD522SsiCnt_PLUS
● CD522TwoWordCounters
● CD522WriteOutput
● CDClose
● CDIoctl
● CDLseek
● CDMmap
● CDMunmap
● CDOpen
● CDRead
● CDSV3Request
● CDWrite
● Ceil
● CeilF
● CERT_INFO
● CertCreate
● CertificateStoreOwner
● CertRemove
● ChainBuffer
● ChannelDiagnosisData
● ChannelErrorType
● ChannelProperties
● ChannelProperties_Type
● CharBufferPtr
● CharBufferString
● CHARCURVE
● CharCurve_DINT
● CharCurve_LREAL
● CharToUpper
● CHCAddressComponent
● CHCAddressType
● CHCPeerAddress

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4305

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Function-Blocks/CANopenSafetyBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/CanReconfigure.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/CANRemoteDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Device-Diagnosis/CANRemoteDevice_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSafety.library_Library/_3SCANopenSafety/Function-Blocks/CANRemoteDeviceSafe.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStackUnsafe.library_Library/_3SCANopenStackUnsafe/Function-Blocks/CANRemoteDeviceUnsafe.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Device-Diagnosis/CANRemoteModule_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Polar-coordinates/CartesianToPolar.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/CaseSensitiveNamedTreeNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Structs/CB_CALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CmpHilscherCIFX/CCB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522DoubleWordCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522Encoder32Bit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522FreqOut.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522FreqScan.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522FreqScan_PLUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Structs/CD522In.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522OneWordCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Structs/CD522Out.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522PulseOut.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522PwmOut.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522ReadInput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522SsiCnt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522SsiCnt_PLUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522TwoWordCounters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.2.4_Library/Function-Blocks/CD522WriteOutput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCharDevice%20Implementation.library_Library/CDClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCharDevice%20Implementation.library_Library/CDIoctl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCharDevice%20Implementation.library_Library/CDLseek.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCharDevice%20Implementation.library_Library/CDMmap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCharDevice%20Implementation.library_Library/CDMunmap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCharDevice%20Implementation.library_Library/CDOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCharDevice%20Implementation.library_Library/CDRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Requests/CDSV3Request.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCharDevice%20Implementation.library_Library/CDWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/Functions/Ceil.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/Functions/CeilF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Structs/CERT_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Functions/CertCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/CertificateStoreOwner.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Functions/CertRemove.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Segmented%20Buffer%20Manager%20Extern.library_Library/CAA-Segemented-Buffer-Manager/Functions/Buffer/ChainBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/ChannelDiagnosisData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/ChannelErrorType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/ChannelProperties.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/ChannelProperties_Type.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/CharBufferPtr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/CharBufferString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Function-Manipulators/CHARCURVE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/function-manipulators/CharCurve_DINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/function-manipulators/CharCurve_LREAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/CharToUpper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Structures/CHCAddressComponent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Structures/CHCAddressType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Structures/CHCPeerAddress.html#index-0

● CHCProtocolDataUnit
● Check
● CheckConfigSRDO
● CheckExpSubmodule
● CheckInverseData
● CheckReceivedSRDO
● CheckSymbolValidity
● CheckThumbString
● CIF_MemCpy
● CIF_MemSet
● CIF_StrLen
● CIFEXTMESSAGEHEADERtyp
● CIFFMSANYMESSAGEtyp
● CIFMESSAGEHEADERtyp
● CIFMESSAGERAWtyp
● CIFX_APPLICATION_CHANNEL_INFO
● CIFX_BOARD
● CIFX_BOARD_INFORMATION
● CIFX_CHANNEL
● CIFX_CHANNEL_INFO_BLOCK
● CIFX_CHANNEL_INFORMATION
● CIFX_COM_DIAGNOSTICS
● CIFX_COMMON_STATUS_BLOCK
● CIFX_COMMON_STATUS_BLOCK_MASTER
● CIFX_COMMUNOICATION_CHANNEL_INFO
● CIFX_DEV_INFO
● CIFX_DIRECTORY_ENTRY
● CIFX_ERROR_FIELD
● CIFX_GetBusActivationBeforeReset
● CIFX_GETSLAVECONNECTINFO_REQ
● CIFX_GETSLAVEHANDLE_CONF
● CIFX_GETSLAVEHANDLE_REQ
● CIFX_HANDSHAKE_CHANNEL_INFO
● CIFX_INDICATION_PARAM
● CIFX_MASTER_DIAG
● CIFX_MAX_PACKET
● CIFX_MEMORY_INFORMATION
● CIFX_PACKET
● CIFX_ResetConfigApplication
● CIFX_SYSTEM_CHANNEL_INFO
● CIFX_SYSTEM_INFO_BLOCK
● CIFX_xChannelBusState
● CIFX_xChannelClose
● CIFX_xChannelCommonStatusBlock
● CIFX_xChannelConfigLock
● CIFX_xChannelControlBlock
● CIFX_xChannelDownload
● CIFX_xChannelExtendedStatusBlock
● CIFX_xChannelFindFirstFile
● CIFX_xChannelFindNextFile
● CIFX_xChannelGetMBXState
● CIFX_xChannelGetPacket
● CIFX_xChannelGetPacketTimeout
● CIFX_xChannelGetSendPacket
● CIFX_xChannelHostState

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4306

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Structures/CHCProtocolDataUnit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/Check.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Functions/Validation-Checks/CheckConfigSRDO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Device/CheckExpSubmodule.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Functions/Validation-Checks/CheckInverseData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Functions/Validation-Checks/CheckReceivedSRDO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/CheckSymbolValidity.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Functions/CheckThumbString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/Help-Functions/CIF_MemCpy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/Help-Functions/CIF_MemSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/Help-Functions/CIF_StrLen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/CIFEXTMESSAGEHEADERtyp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/CIFFMSANYMESSAGEtyp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/CIFMESSAGEHEADERtyp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/CIFMESSAGERAWtyp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/CIFX_APPLICATION_CHANNEL_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_BOARD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_BOARD_INFORMATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_CHANNEL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/CIFX_CHANNEL_INFO_BLOCK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_CHANNEL_INFORMATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_COM_DIAGNOSTICS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_COMMON_STATUS_BLOCK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_COMMON_STATUS_BLOCK_MASTER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/CIFX_COMMUNOICATION_CHANNEL_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_DEV_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_DIRECTORY_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_ERROR_FIELD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/CIFX_GetBusActivationBeforeReset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/CIFX_GETSLAVECONNECTINFO_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/CIFX_GETSLAVEHANDLE_CONF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/CIFX_GETSLAVEHANDLE_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/CIFX_HANDSHAKE_CHANNEL_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_INDICATION_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_MASTER_DIAG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/CIFX_MAX_PACKET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_MEMORY_INFORMATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_PACKET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/CIFX_ResetConfigApplication.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/CIFX_SYSTEM_CHANNEL_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/CIFX_SYSTEM_INFO_BLOCK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelBusState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelCommonStatusBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelConfigLock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelControlBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelDownload.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelExtendedStatusBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelFindFirstFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelFindNextFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelGetMBXState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelGetPacket.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelGetPacketTimeout.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelGetSendPacket.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelHostState.html#index-0

● CIFX_xChannelInfo
● CIFX_xChannelIOInfo
● CIFX_xChannelIORead
● CIFX_xChannelIOReadSendData
● CIFX_xChannelIOWrite
● CIFX_xChannelOpen
● CIFX_xChannelOpen2
● CIFX_xChannelPLCActivateRead
● CIFX_xChannelPLCActivateWrite
● CIFX_xChannelPLCIsReadReady
● CIFX_xChannelPLCIsWriteReady
● CIFX_xChannelPLCMemoryPtr
● CIFX_xChannelPutPacket
● CIFX_xChannelReset
● CIFX_xChannelSetPacketTimeout
● CIFX_xChannelUpload
● CIFX_xChannelUserBlock
● CIFX_xChannelWatchdog
● CIFX_xDriverClose
● CIFX_xDriverEnumBoards
● CIFX_xDriverEnumChannels
● CIFX_xDriverGetErrorDescription
● CIFX_xDriverGetInformation
● CIFX_xDriverMemoryPointer
● CIFX_xDriverOpen
● CIFX_xMemCpy
● CIFX_xSysdeviceClose
● CIFX_xSysdeviceDownload
● CIFX_xSysdeviceFindFirstFile
● CIFX_xSysdeviceFindNextFile
● CIFX_xSysdeviceGetMBXState
● CIFX_xSysdeviceGetPacket
● CIFX_xSysdeviceInfo
● CIFX_xSysdeviceOpen
● CIFX_xSysdevicePutPacket
● CIFX_xSysdeviceReset
● CIFX_xSysdeviceUpload
● CIFXProfinetController
● CIFXProfinetControllerDiag
● CiModCi52x
● CiModCiClusterDiag
● CiModClusterDiag
● CiModClusterStatus
● CiModCmdQueueInput
● CiModDataAI523
● CiModDataAI531
● CiModDataAI561
● CiModDataAI562
● CiModDataAI563
● CiModDataAO523
● CiModDataAO561
● CiModDataAX521
● CiModDataAX522
● CiModDataAX561
● CiModDataCI521

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4307

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelIOInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelIORead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelIOReadSendData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelIOWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelOpen2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelPLCActivateRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelPLCActivateWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelPLCIsReadReady.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelPLCIsWriteReady.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelPLCMemoryPtr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelPutPacket.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelReset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelSetPacketTimeout.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelUpload.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelUserBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelWatchdog.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverEnumBoards.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverEnumChannels.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverGetErrorDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverGetInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverMemoryPointer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xMemCpy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceDownload.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceFindFirstFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceFindNextFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceGetMBXState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceGetPacket.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdevicePutPacket.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceReset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceUpload.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetIRT.library_Library/IoDrvCIFXProfinetIRT/Function-Blocks/CIFXProfinetController.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetIRT.library_Library/IoDrvCIFXProfinetIRT/Diagnosis/CIFXProfinetControllerDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Function-Blocks/CiModCi52x.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/Internal-Structures/CiModCiClusterDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/Internal-Structures/CiModClusterDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/Internal-Structures/CiModClusterStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/Internal-Structures/CiModCmdQueueInput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataAI523.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataAI531.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataAI561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataAI562.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataAI563.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataAO523.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataAO561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataAX521.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataAX522.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataAX561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataCI521.html#index-0

● CiModDataCI522
● CiModDataDA501
● CiModDataDA502
● CiModDataDC522
● CiModDataDC523
● CiModDataDC532
● CiModDataDC561
● CiModDataDC562
● CiModDataDI524
● CiModDataDI561
● CiModDataDI562
● CiModDataDI571
● CiModDataDI572
● CiModDataDO524
● CiModDataDO526
● CiModDataDO561
● CiModDataDO562
● CiModDataDO571
● CiModDataDO572
● CiModDataDO573
● CiModDataDX522
● CiModDataDX531
● CiModDataDX561
● CiModDataDX571
● CiModDiag
● CiModDiagModInfo
● CiModDiagTableType
● CiModInput
● CiModParaAI523
● CiModParaAI531
● CiModParaAI561
● CiModParaAI562
● CiModParaAI563
● CiModParaAO523
● CiModParaAO561
● CiModParaAX521
● CiModParaAX522
● CiModParaAX561
● CiModParaCI521
● CiModParaCI522
● CiModParaDA501
● CiModParaDA502
● CiModParaDC522
● CiModParaDC523
● CiModParaDC532
● CiModParaDC561
● CiModParaDC562
● CiModParaDI524
● CiModParaDI561
● CiModParaDI562
● CiModParaDI571
● CiModParaDI572
● CiModParaDO524
● CiModParaDO526
● CiModParaDO561

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4308

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataCI522.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDA501.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDA502.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDC522.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDC523.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDC532.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDC561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDC562.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDI524.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDI561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDI562.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDI571.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDI572.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDO524.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDO526.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDO561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDO562.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDO571.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDO572.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDO573.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDX522.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDX531.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDX561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Structures/CiModDataDX571.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Function-Blocks/CiModDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/DIAG/CiModDiagModInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/DIAG/CiModDiagTableType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/Internal-Structures/CiModInput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaAI523.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaAI531.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaAI561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaAI562.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaAI563.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaAO523.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaAO561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaAX521.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaAX522.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaAX561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaCI521.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaCI522.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDA501.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDA502.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDC522.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDC523.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDC532.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDC561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDC562.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDI524.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDI561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDI562.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDI571.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDI572.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDO524.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDO526.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDO561.html#index-0

● CiModParaDO562
● CiModParaDO571
● CiModParaDO572
● CiModParaDO573
● CiModParaDX522
● CiModParaDX531
● CiModParaDX561
● CiModParaDX571
● CIP_Attribute
● CIPClass
● CIPCommonService
● CIPHER_LIST
● CLASS_INFO
● ClassCreate
● ClassDelete
● ClassFree
● CLClient
● CLClientOptions
● CLClientState
● Client
● CLIENT_ACCEPT
● CLIENT_REPLY
● ClientCreatableObjects
● ClientRequest
● ClientRequestMaskWriteRegister
● ClientRequestRead
● ClientRequestReadBits
● ClientRequestReadCoils
● ClientRequestReadDiscreteInputs
● ClientRequestReadHoldingRegisters
● ClientRequestReadInputRegisters
● ClientRequestReadRegisters
● ClientRequestReadWriteMultipleRegisters
● ClientRequestWriteMultiple
● ClientRequestWriteMultipleCoils
● ClientRequestWriteMultipleRegisters
● ClientRequestWriteSingle
● ClientRequestWriteSingleCoil
● ClientRequestWriteSingleRegister
● ClientSerial
● ClientSide
● ClientTCP
● CLOCK
● CLOCK_DT
● CloneMessage
● Close
● CLRequestState
● CLServer
● CLServerOptions
● CM579EtherCATDeviceInfoType
● CM582ProfibusDeviceInfoType
● CM589ProfinetDeviceInfoType
● CM592CommErrorInfo
● CM592CommStatus
● CM592Control

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4309

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDO562.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDO571.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDO572.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDO573.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDX522.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDX531.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDX561.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/IO-Module-Parameter-Structure/CiModParaDX571.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvCIPService_Itfs.library_Library/CIP_Attribute.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Enums/CIPClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Enums/CIPCommonService.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Structs/CIPHER_LIST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Structs/CLASS_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/ClassCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/ClassDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/ClassFree.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Function-Blocks/CLClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/CLClientOptions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/State-Machines/CLClientState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/Client.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/CLIENT_ACCEPT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/CLIENT_REPLY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/ClientCreatableObjects.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestMaskWriteRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestReadBits.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestReadCoils.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestReadDiscreteInputs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestReadHoldingRegisters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestReadInputRegisters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestReadRegisters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestReadWriteMultipleRegisters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestWriteMultiple.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestWriteMultipleCoils.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestWriteMultipleRegisters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestWriteSingle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestWriteSingleCoil.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientRequestWriteSingleRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientSerial.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Execution/Client/ClientSide.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Client/ClientTCP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Realtime-clock/CompatibleV23/CLOCK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Realtime-clock/CompatibleV23/CLOCK_DT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/CloneMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/Close.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/State-Machines/CLRequestState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Function-Blocks/CLServer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/CLServerOptions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579EtherCAT_1.0.2.5_Library/Structs/CM579EtherCATDeviceInfoType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM582Profibus_1.0.1.4_Library/Structs/CM582ProfibusDeviceInfoType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM589Profinet_2.2.0.3_Library/Structs/CM589ProfinetDeviceInfoType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Structs/CM592CommErrorInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Function-Blocks/Diagnosis/CM592CommStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Function-Blocks/Control/CM592Control.html#index-0

● CM592DPV1Masc1Read
● CM592DPV1Masc1Write
● CM592ExtDiagData
● CM592ProfibusDeviceInfoType
● CM592ReadInput
● CM592ReadOutput
● CM592SlaveDiagnosis
● CM592SlaveStates
● CM592StateBits
● CM592StationStatus_1
● CM592StationStatus_2
● CM592StationStatus_3
● CM592SystemDiagnosis
● Cm598Base
● Cm598CanInfo
● Cm598CanInfoType
● Cm598CanMessageType
● Cm598CanMsgRec
● Cm598CanMsgRecEvt
● Cm598CanMsgSend
● Cm598CanopenComErrorType
● Cm598CanopenNmt
● Cm598CanopenSdoRead
● Cm598CanopenSdoWrite
● Cm598CanopenState
● Cm598CanopenStateBitsType
● Cm598CanopenStateType
● CM598DeviceInfoType
● Cm598NmtCmd
● CMAddComponent
● CMAddComponent2
● CMExitComponent
● CMGetComponentByName
● CMGetCoreVersion
● CMInitComponent
● CmpIoDrvC
● CmpIoDrvWrapper
● CmpLogAsyncFB
● CmpTlsAccept
● CmpTlsBufferDataReceived
● CmpTlsBufferDataSent
● CmpTlsBufferDataToSendAvailable
● CmpTlsBufferOpen
● CmpTlsClose
● CmpTlsConnect
● CmpTlsCreateContext
● CmpTlsCreateContext2
● CmpTlsFreeContext
● CmpTlsMethod
● CmpTlsRead
● CmpTlsShutdown
● CmpTlsWrite
● CMRemoveComponent
● CMShutDown
● CMUtlcwstrcpy

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4310

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Function-Blocks/Data/DPV1/CM592DPV1Masc1Read.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Function-Blocks/Data/DPV1/CM592DPV1Masc1Write.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Structs/CM592ExtDiagData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM592Profibus_1.0.1.4_Library/Structs/CM592ProfibusDeviceInfoType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Function-Blocks/Data/CM592ReadInput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Function-Blocks/Data/CM592ReadOutput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Function-Blocks/Diagnosis/CM592SlaveDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Structs/CM592SlaveStates.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Structs/CM592StateBits.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Structs/CM592StationStatus_1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Structs/CM592StationStatus_2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Structs/CM592StationStatus_3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Function-Blocks/Diagnosis/CM592SystemDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Function-Blocks/Internal/Cm598Base.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Function-Blocks/CAN2ACAN2B/Cm598CanInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Structs/Cm598CanInfoType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Structs/Cm598CanMessageType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Function-Blocks/CAN2ACAN2B/Cm598CanMsgRec.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Function-Blocks/CAN2ACAN2B/Cm598CanMsgRecEvt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Function-Blocks/CAN2ACAN2B/Cm598CanMsgSend.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Structs/Cm598CanopenComErrorType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Function-Blocks/Control/Cm598CanopenNmt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Function-Blocks/Data/Cm598CanopenSdoRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Function-Blocks/Data/Cm598CanopenSdoWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Function-Blocks/Diagnosis/Cm598CanopenState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Structs/Cm598CanopenStateBitsType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Structs/Cm598CanopenStateType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM598_1.4.1.4_Library/Structs/CM598DeviceInfoType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.3.1.3_Library/Structs/Cm598NmtCmd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMAddComponent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMAddComponent2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMExitComponent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMGetComponentByName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMGetCoreVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMInitComponent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/CmpIoDrvC.library_Library/CmpIoDrvC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/CmpIoDrvC.library_Library/CmpIoDrvWrapper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpLogAsync.library_Library/CmpLogAsyncFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsAccept.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsBufferDataReceived.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsBufferDataSent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsBufferDataToSendAvailable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsBufferOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsConnect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsCreateContext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsCreateContext2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsFreeContext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls_Itfs.library_Library/CmpTlsMethod.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsShutdown.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMRemoveComponent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMShutDown.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMUtlcwstrcpy.html#index-0

● CMUtlSafeStrCpy
● CMUtlStrICmp
● CMUtlUtf8ToW
● CMUtlwstrcpy
● CMUtlWToUtf8
● CNCT
● COBID
● CodeMClose
● CodeMDecrypt
● CodeMEncrypt
● CodeMGetContentByFirmcode
● CodeMGetContentByFirmcode2
● CodeMGetExpirationTime
● CodeMGetFeatureMapByFirmcode
● CodeMGetFirst
● CodeMGetInfo
● CodeMGetName
● CodeMGetNext
● CodeMGetQuantity
● CodeMGetUnitCounter
● CodeMOpen
● CodeWriter
● COLLECTION_ERROR
● COM_CFG_FORMAT_ENUM
● COM_MOD_FCT22_TYPE
● COM_MOD_FCT23_TYPE
● COM_PORT_ID
● CombineDateTime
● ComGetCaaSerialComConfig
● ComGetIdByName
● CommAbbxUsrMsgGet
● CommAbbxUsrMsgRec
● CommAbbxUsrMsgSend
● CommandHandler
● CommandManager
● CommStatus
● CommunicationErrorCIFX
● Compare
● CompareString
● CompareWString
● CompatibilitySafeGetPrepareExitCommProcessingLastCall
● CompatibilitySafeSetPrepareExitCommProcessingFurtherCallNecessary
● ComponentBase
● ComponentManager
● ComponentPseudo
● ComponentRenamed
● ComponentSimple
● CONCAT
● CONFIG_SRDO
● ConfigError
● ConfigGetConnector
● ConfigGetFirstChild
● ConfigGetFirstConnector
● ConfigGetNextChild
● ConfigGetNextConnector

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4311

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMUtlSafeStrCpy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMUtlStrICmp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMUtlUtf8ToW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMUtlwstrcpy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMUtlWToUtf8.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/CNCT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Imp%20Extern.library_Library/CAA-Can-Low-Level-Imp/Types/COBID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMDecrypt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMEncrypt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetContentByFirmcode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetContentByFirmcode2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetExpirationTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/internal-functions/CodeMGetFeatureMapByFirmcode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetFirst.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetNext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetQuantity.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetUnitCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Communication/Monitoring/CodeWriter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Enums/COLLECTION_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/Serial%20Communication/ComBase_1.0.1.2_Library/Enums/COM_CFG_FORMAT_ENUM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Types/COM_MOD_FCT22_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Types/COM_MOD_FCT23_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/Serial%20Communication/ComBase_1.0.1.2_Library/Types/COM_PORT_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/CombineDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/Com_1.0.1.2_Library/Function-blocks/ComGetCaaSerialComConfig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/Com_1.0.1.2_Library/Functions/ComGetIdByName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/AbbxBase_1.0.1.2_Library/Communication/Function-Blocks/CommAbbxUsrMsgGet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/AbbxBase_1.0.1.2_Library/Communication/Function-Blocks/CommAbbxUsrMsgRec.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/AbbxBase_1.0.1.2_Library/Communication/Function-Blocks/CommAbbxUsrMsgSend.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPlcShell.library_Library/CommandHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuCommandInterface.library_Library/CommandManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/CommStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfibus.library_Library/FunctionBlocks/CommunicationErrorCIFX.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/ARRAY-and-MemoryBlock/Compare.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Functions/CompareString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Functions/CompareWString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Functions/CompatibilitySafeGetPrepareExitCommProcessingLastCall.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Functions/CompatibilitySafeSetPrepareExitCommProcessingFurtherCallNecessary.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Components/ComponentBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/ComponentManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Components/ComponentPseudo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Components/ComponentRenamed.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Components/ComponentSimple.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/CONCAT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyTypes.library_Library/CANopenSafetyTypes/Structures/CONFIG_SRDO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/ConfigError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetConnector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetFirstChild.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetFirstConnector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetNextChild.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetNextConnector.html#index-0

● ConfigGetParameter
● ConfigGetParameterLength
● ConfigGetParameterValueByte
● ConfigGetParameterValueDword
● ConfigGetParameterValuePointer
● ConfigGetParameterValueWord
● ConfigureByString
● Connect
● Connect2
● ConnectionHandler
● ConnectionSetup
● Connector
● ConnectorFlagController
● ConnectorState
● ContentFeatureFlags
● ControllerConfigUtil
● ControllerState
● ConvertNSecToTick
● ConvertSystimedateToUTC
● ConvertSystimedateUsingLDate
● ConvertSysTimeValueToLWord
● ConvertTickToNSec
● ConvertTickToUSec
● ConvertTimestampToLDateAndTime
● ConvertUSecToTick
● ConvertUTF16toUTF8
● ConvertUTF8toUTF16
● ConvThumbToBytes
● ConvThumbToString
● Copy
● CopyBufferData
● COUNT
● COUNT_TO_UDINT
● COUNT_TO_UINT
● COUNT_TO_ULINT
● CPU_PROD_READ_ASYNC
● CpuCoreBindingDesc
● CpuCoreBits
● CRC16_CCITT
● CRC16_generic
● CRC16_Modbus
● CRC16_standard
● CRC16Finish
● CRC16Init
● CRC16Update
● CRC32
● CRC32Finish
● CRC32Init
● CRC32Update
● CRC32Update2
● CREATE_ID
● CreateBuffer
● CreateIdAreaReceiver
● CreateInstance
● CreateMaskReceiver

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4312

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetParameterLength.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetParameterValueByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetParameterValueDword.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetParameterValuePointer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetParameterValueWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/ConfigureByString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/Connect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/Connect2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/StateHelpers/ConnectionHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Configuration/ConnectionSetup.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/TCP.library_Library/TCP/Function-Blocks/Connector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvUtility.library_Library/IoDrvUtility/ConnectorFlagController/FunctionBlocks/ConnectorFlagController.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvUtility.library_Library/IoDrvUtility/ConnectorFlagController/Enums/ConnectorState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ContentFeatureFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/ControllerConfigUtil.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/Profinet.library_Library/ControllerState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20TickUtil%20Extern.library_Library/CAA-TickUtil/Functions/ConvertNSecToTick.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/DateTimeCalculations/ConvertSystimedateToUTC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/DateTimeCalculations/ConvertSystimedateUsingLDate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/DateTimeCalculations/ConvertSysTimeValueToLWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20TickUtil%20Extern.library_Library/CAA-TickUtil/Functions/ConvertTickToNSec.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20TickUtil%20Extern.library_Library/CAA-TickUtil/Functions/ConvertTickToUSec.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/ConvertTimestampToLDateAndTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20TickUtil%20Extern.library_Library/CAA-TickUtil/Functions/ConvertUSecToTick.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/UTF8/ConvertUTF16toUTF8.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/UTF8/ConvertUTF8toUTF16.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Functions/ConvThumbToBytes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Functions/ConvThumbToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/Copy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Segmented%20Buffer%20Manager%20Extern.library_Library/CAA-Segemented-Buffer-Manager/Functions/Buffer/CopyBufferData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/COUNT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/COUNT/COUNT_TO_UDINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/COUNT/COUNT_TO_UINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/COUNT/COUNT_TO_ULINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Production-data/CompatibleV23/CPU_PROD_READ_ASYNC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/CpuCoreBindingDesc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/CpuCoreBits.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Checksum/CRC16_CCITT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Checksum/CRC16_generic.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Checksum/CRC16_Modbus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Checksum/CRC16_standard.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC16Finish.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC16Init.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC16Update.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Checksum/CRC32.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC32Finish.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC32Init.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC32Update.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC32Update2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/CREATE_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Segmented%20Buffer%20Manager%20Extern.library_Library/CAA-Segemented-Buffer-Manager/Functions/Buffer/CreateBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/CreateIdAreaReceiver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/CreateInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/CreateMaskReceiver.html#index-0

● CreateMessage
● CreateSingleIdReceiver
● CreateTextFromString
● CreateTextFromWString
● CreateXMLParser2
● CredentialsHandling
● CrossProduct
● CrossProductNormed
● CryptoAsymmetricDecrypt
● CryptoAsymmetricEncrypt
● CryptoDeletePrivateKey
● CryptoDeriveKey
● CryptoExportAsymmetricKey
● CryptoGenerateAsymmetricKeyPair
● CryptoGenerateHash
● CryptoGenerateRandomNumber
● CryptoGetAlgorithmById
● CryptoGetAsymmetricKeyLength
● CryptoGetFirstAlgorithm
● CryptoGetNextAlgorithm
● CryptoHMACSign
● CryptoHMACVerify
● CryptoImportAsymmetricKey
● CryptoKeyExit
● CryptoKeyInit
● CryptoLoadPrivateKey
● CryptoRtsByteStringExit
● CryptoRtsByteStringInit
● CryptoRtsByteStringInit2
● CryptoSignatureGenerate
● CryptoSignatureVerify
● CryptoStorePrivateKey
● CryptoSymmetricDecrypt
● CryptoSymmetricEncrypt
● CSMD_SVC_ERROR_CODES
● CTD
● CTU
● CTUD
● CustomRequestQueue
● CustomRequestResponse
● CustomRequestState
● CWCHAR
● DATA
● DATA_TYPE
● DataCopyToBlob
● DataItem
● DataItemAndPtrVectors
● DataItemBase
● DataItemItfVector
● DataItemList
● DataItemListPublic
● DataItemListPublicPersistant
● DataItemLocation
● DataItemPtrVector
● DataItemVector

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4313

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/CreateMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/CreateSingleIdReceiver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TEXT/CreateTextFromString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TEXT/CreateTextFromWString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpXMLParser.library_Library/CreateXMLParser2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/CredentialsHandling.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/CrossProduct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/CrossProductNormed.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoAsymmetricDecrypt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoAsymmetricEncrypt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoDeletePrivateKey.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Key-Derivation/CryptoDeriveKey.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoExportAsymmetricKey.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoGenerateAsymmetricKeyPair.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Symmetric-Cryptography/CryptoGenerateHash.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoGenerateRandomNumber.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoGetAlgorithmById.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoGetAsymmetricKeyLength.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoGetFirstAlgorithm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoGetNextAlgorithm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Symmetric-Cryptography/CryptoHMACSign.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Symmetric-Cryptography/CryptoHMACVerify.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoImportAsymmetricKey.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Key-Handling/CryptoKeyExit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Key-Handling/CryptoKeyInit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoLoadPrivateKey.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoRtsByteStringExit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoRtsByteStringInit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoRtsByteStringInit2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoSignatureGenerate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoSignatureVerify.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoStorePrivateKey.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Symmetric-Cryptography/CryptoSymmetricDecrypt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Symmetric-Cryptography/CryptoSymmetricEncrypt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/CoSeMa/StructsEnums/CSMD_SVC_ERROR_CODES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Counter/CTD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Counter/CTU.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Counter/CTUD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/CustomRequestQueue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Requests/CustomRequestResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Requests/CustomRequestState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTypes2_Itfs.library_Library/CWCHAR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Imp%20Extern.library_Library/CAA-Can-Low-Level-Imp/Types/DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/Enums/DATA_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/BLOB/DataCopyToBlob.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DataItem.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DataItemAndPtrVectors.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DataItemBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Utils/Collections/DataItemItfVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DataItemList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DataItemListPublic.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DataItemListPublicPersistant.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DataItemLocation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DataItemPtrVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DataItemVector.html#index-0

● DataRepresentation
● Datasource
● DataSourceError
● DataSourceMonitoringState
● Datasources
● DatasourcesAction
● DatasourcesActionRecord
● DatasourceShutdownInfo
● DatasourcesMgr
● DataSourcesQualityChecker
● DataSourceState
● DateConcat
● DateSplit
● DateTime
● DATETIME_TO_RTS_SYSTIMEDATE
● DateTimeFromWeek
● DateTimeProvider
● DateTimeToString
● DateTimeToTimestamp
● DAY
● DayOfWeek
● DAYS
● DCC_SvcAppHook
● DCP_DeviceData
● DCP_DeviceRole
● DCP_Error
● DCP_FilterData
● DCP_FilterMode
● DCP_FilterOptions
● DCP_Get
● DCP_GetOptions
● DCP_Identify
● DCP_Reset
● DCP_ResetMode
● DCP_Service
● DCP_Set
● DCP_SetData
● DCP_SetOptions
● DeallocStackAllocatedContentBuffer
● DebugItfAddrToItfPtr
● Decode
● DECODE_IOL_STATUS
● DecodeClass
● DecodeEmcyCOBID
● DecodeEvent
● DecodeHeartbeatConsumerSettings
● DecodeLastRune
● DecodePDOCOBID
● DecodePDOMappingEntry
● DecodeRune
● DecodeSyncCOBID
● DefaultAlarmFilterCriteria
● DefaultIParameterDB
● DefaultIParData
● Deg2Rad

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4314

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/DataRepresentation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Datasource.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Enums/DataSourceError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Enums/DataSourceMonitoringState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/Datasources.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Enums/DatasourcesAction.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DatasourcesActionRecord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DatasourceShutdownInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DatasourcesMgr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/DataSourcesQualityChecker.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Enums/DataSourceState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/DateConcat.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/DateSplit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Structs/DateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/DATETIME_TO_RTS_SYSTIMEDATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/DateTimeFromWeek.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/FunctionBlocks/DateTimeProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/DateTimeToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/DateTimeToTimestamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/DAY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/DayOfWeek.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/DAYS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/DCC_SvcAppHook.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_DeviceData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_DeviceRole.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_Error.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_FilterData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_FilterMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_FilterOptions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DCP_Get.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_GetOptions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DCP_Identify.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DCP_Reset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_ResetMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/Services/DCP_Service.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DCP_Set.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_SetData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_SetOptions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/Mem/DeallocStackAllocatedContentBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Debugging/DebugItfAddrToItfPtr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Manipulation/Decode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DECODE_IOL_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Helper/DecodeClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/CANopen-Help-Functions/EMCY/DecodeEmcyCOBID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Helper/DecodeEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/CANopen-Help-Functions/Heartbeat/DecodeHeartbeatConsumerSettings.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/UTF-8%20Encoding%20Support.library_Library/utf8/Functions/DecodeLastRune.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/CANopen-Help-Functions/PDO/DecodePDOCOBID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/CANopen-Help-Functions/PDO/DecodePDOMappingEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/UTF-8%20Encoding%20Support.library_Library/utf8/Functions/DecodeRune.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/CANopen-Help-Functions/SYNC/DecodeSyncCOBID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Function-blocks/DefaultAlarmFilterCriteria.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/iParServer.library_Library/iParServer/Data/DefaultIParameterDB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/iParServer.library_Library/iParServer/Data/DefaultIParData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Animation/Deg2Rad.html#index-0

● DELETE
● Delete
● DeleteBuffer
● DeleteInstance
● DeleteReceiver
● DERIVATIVE
● Derivative
● DeserializeHexReal
● DEVICE
● DEVICE_INFO
● DEVICE_STATE
● DEVICE_TRANSITION_STATE
● DEVICE_TYPE
● DeviceAR
● DeviceAR_State
● DeviceConfigUtil
● DeviceDateTime
● DeviceIdentification
● DeviceInfo
● DeviceIterator
● DeviceState
● DeviceStatusT
● DEVINFO
● Diag
● DIAG_HISTORY_TXT_TYPE
● DIAG_TXT_TYPE
● DIAG_VAL_TYPE
● DiagHistory
● DiagHistoryValToTxt
● DiagMessageFactory
● DIAGNOSIS_INFO
● DiagnosisDataBuffer
● DiagnosisDataReader
● DiagnosisDirection
● DiagnosisInformationUSI
● DiagnosisRecordIndex
● DiagnosisSeverity
● DiagnosisSource
● DiagValToTxt
● DiagVerifyTextListCallback
● DINT_TO_SIGNED
● DintElement
● DintElementFactory
● DintSetBitBased
● DintSetFull
● DintToDintMap
● DintVector
● DirClose
● DirCopy
● DirCreate
● DirectAssigner
● DirectIOBits16
● DirectIOBits8
● direction
● Directory

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4315

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/DELETE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/Delete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Segmented%20Buffer%20Manager%20Extern.library_Library/CAA-Segemented-Buffer-Manager/Functions/Buffer/DeleteBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/DeleteInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/DeleteReceiver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/DERIVATIVE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analytical-functions/Derivative.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/HexReal/DeserializeHexReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Types/DEVICE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Structs/DEVICE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/DEVICE_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Enums/DEVICE_TRANSITION_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Enums/DEVICE_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Device/DeviceAR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Device/DeviceAR_State.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/DeviceConfigUtil.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/DeviceDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ProfinetDeviceConfig.library_Library/ProfinetDeviceConfig/DataTypes/DeviceIdentification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/DeviceInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/DeviceIterator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/Profinet.library_Library/DeviceState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusTCPSlave.library_Library/DeviceStatusT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/DEVINFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/Diag_1.3.5.3_Library/Function-Blocks/Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagTypes_1.2.5.5_Library/Types/DIAG_HISTORY_TXT_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagTypes_1.2.5.5_Library/Types/DIAG_TXT_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagTypes_1.2.5.5_Library/Types/DIAG_VAL_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagHistory_1.0.0.4_Library/Function-Blocks/DiagHistory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagHistory_1.0.0.4_Library/Functions/DiagHistoryValToTxt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DiagMessageFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Structures/DIAGNOSIS_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DiagnosisDataBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DiagnosisDataReader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/DiagnosisDirection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/DiagnosisInformationUSI.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/DiagnosisRecordIndex.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/DiagnosisSeverity.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/DiagnosisSource.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/Diag_1.3.5.3_Library/Functions/DiagValToTxt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/DiagUtil_1.3.6.9_Library/Functions/Internal/Textlist/DiagVerifyTextListCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIGNED/DINT_TO_SIGNED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/DintElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/DintElementFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DintSetBitBased.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DintSetFull.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/DintToDintMap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/DintVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirCopy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Assigners/DirectAssigner.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/DirectIoAccess/DirectIOBits16.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/DirectIoAccess/DirectIOBits8.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvGPIOSysfs.library_Library/Functions/direction.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/Directory.html#index-0

● DirFileTime
● DirInfo
● DirList
● DirOpen
● DirRemove
● DirRename
● DisableSyncService
● Disconnect
● DM1_Read
● DM1_Write
● DM2_Read
● DM2_Write
● DownloadDestination
● DP_ADDR
● DP_AINFO
● DP_DEVICE_ID
● DP_DIAG
● DP_StationStatus1
● DP_StationStatus1_Diag
● DP_StationStatus2
● DP_StationStatus2_Diag
● DP_StationStatus3
● DP_StationStatus3_Diag
● DPM
● DPM_2KB
● DPM_8KB
● DPM_BUS_DP
● DPM_CARD_DESC
● DPM_COM
● DPM_DIAGNOSTICS
● DPM_INIT_PARAMETERS
● DPM_SL
● DPM_SL_DIAG
● DPM_SL_PRM_ADD_TAB
● DPM_SL_PRM_CFG_DATA
● DPM_SL_PRM_DATA
● DPM_SL_PRM_SET
● DPM_SL_PRM_USR_DATA
● DPSlaveDiag
● DPT10
● DPT10_IEC_to_KNX
● DPT10_KNX_to_IEC
● DPT16_IEC_to_KNX
● DPT16_KNX_to_IEC
● DPT19
● DPT19_IEC_to_KNX
● DPT19_KNX_to_IEC
● DrawBitmapByID
● DrawBitmapByIndex
● DrawPolygon
● DrawRect
● DrawText
● Driver
● DriverCfg
● DriverClose

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4316

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/DirFileTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/DirInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirRemove.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirRename.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Extended-Functionality/DisableSyncService.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/Disconnect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Receive/DM1_Read.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Transmit/DM1_Write.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Receive/DM2_Read.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Transmit/DM2_Write.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5120_1.1.1.3_Library/Enums/DownloadDestination.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/DP_ADDR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/DP_AINFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/DP_DEVICE_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/DP_DIAG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DP_StationStatus1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DP_StationStatus1_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DP_StationStatus2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DP_StationStatus2_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DP_StationStatus3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DP_StationStatus3_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/DPM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/DPM_2KB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/DPM_8KB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6731.library_Library/DPM_BUS_DP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/DPM_CARD_DESC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/DPM_COM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/DPM_DIAGNOSTICS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/Profibus-DP/DPM_INIT_PARAMETERS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/Profibus-DP/DPM_SL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6731.library_Library/DPM_SL_DIAG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/Profibus-DP/DPM_SL_PRM_ADD_TAB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/Profibus-DP/DPM_SL_PRM_CFG_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/Profibus-DP/DPM_SL_PRM_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/Profibus-DP/DPM_SL_PRM_SET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/Profibus-DP/DPM_SL_PRM_USR_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DPSlaveDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/IoDrvKNX/Structs/DPT10.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/IoDrvKNX/KNXConvertFunctions/DPT10_IEC_to_KNX.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/IoDrvKNX/KNXConvertFunctions/DPT10_KNX_to_IEC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/IoDrvKNX/KNXConvertFunctions/DPT16_IEC_to_KNX.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/IoDrvKNX/KNXConvertFunctions/DPT16_KNX_to_IEC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/IoDrvKNX/Structs/DPT19.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/IoDrvKNX/KNXConvertFunctions/DPT19_IEC_to_KNX.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/IoDrvKNX/KNXConvertFunctions/DPT19_KNX_to_IEC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/Draw/DrawBitmapByID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/Draw/DrawBitmapByIndex.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/Draw/DrawPolygon.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/Draw/DrawRect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/Draw/DrawText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Driver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Configuration/DriverCfg.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/DriverClose.html#index-0

● DriverDiag
● DriverGetSize
● DriverOpenH
● DriverOpenP
● DRV_PDRIVE_PRM_REQ_ERROR
● DRV_PDRIVE_PRM_TYPE
● DrvControlACS
● DrvControlCANCiA402
● DrvControlDCS
● DrvControlModbusACS
● DrvControlModbusDCS
● DrvControlModbusEng
● DrvDataType
● DrvDataTypeInternal
● DrvModbusRead
● DrvModbusReadWrite23
● DrvModbusRtu
● DrvModbusRtuBroadcast
● DrvModbusTcp
● DrvModbusWrite
● DrvModFct23Type
● DrvModMastType
● DrvModPara32Bit
● DrvPdPrmDpv1DataType
● DrvPnRead
● DrvPnWrite
● DrvScaling
● DS_DISK_STATUS
● DS_EOL_INFO
● DS_LIFETIME_USED
● DT_TO_INT64
● DT_TO_ISO8601
● DT_TO_REAL8
● DT_to_Timestamp
● DT_to_Timestamp2
● DTC
● DTCBufferWriter
● DTCLogger
● DTConcat
● DTCProvider
● DTR_CONTROL
● DTSplit
● DTToOpcDate
● DTU_GETDATEANDTIME_PARAMS
● DTU_GETTIMEZONEINFORMATION_PARAMS
● DTU_SETDATEANDTIME_PARAMS
● DTU_SETTIMEZONEINFORMATION_PARAMS
● Dummy
● DummyJob
● DURATION
● DURATION_TO_LTIME
● DURATION_TO_TIME
● DUT_GPIOPin
● DWORD_AS_BIT
● DWORD_SEQ_LET

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4317

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/DriverDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/DriverGetSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/DriverOpenH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/DriverOpenP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Enums/DRV_PDRIVE_PRM_REQ_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Enums/DRV_PDRIVE_PRM_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Basic-FBs/DrvControlACS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/CANopen-CiA402/DrvControlCANCiA402.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Basic-FBs/DrvControlDCS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Modbus/DrvControlModbusACS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Modbus/DrvControlModbusDCS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Modbus/DrvControlModbusEng.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Structs/Data-Types/DrvDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Structs/Data-Types/Internal-Data-Types/DrvDataTypeInternal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Modbus/DrvModbusRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Modbus/DrvModbusReadWrite23.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Modbus/DrvModbusRtu.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Modbus/DrvModbusRtuBroadcast.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Modbus/DrvModbusTcp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Modbus/DrvModbusWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Structs/Data-Types/Internal-Data-Types/DrvModFct23Type.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Structs/Data-Types/Internal-Data-Types/DrvModMastType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Functions/DrvModPara32Bit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Structs/Data-Types/DrvPdPrmDpv1DataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Profinet/DrvPnRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Profinet/DrvPnWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Function-Blocks/Basic-FBs/DrvScaling.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Structs/DS_DISK_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Enum/DS_EOL_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Enum/DS_LIFETIME_USED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/DT_TO_INT64.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/DT_TO_ISO8601.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/DT_TO_REAL8.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/DT_to_Timestamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/DT_to_Timestamp2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/DTC/DTC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Receive/DTC-Processing-DTC-Handler/DTCBufferWriter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Receive/DTC-Processing-DTC-Handler/DTCLogger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/DTConcat.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Transmit/DTCProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20SerialCom.library_Library/CAA-SerialCom/Enums/DTR_CONTROL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/DTSplit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/DTToOpcDate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Structs/DTU_GETDATEANDTIME_PARAMS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Structs/DTU_GETTIMEZONEINFORMATION_PARAMS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Structs/DTU_SETDATEANDTIME_PARAMS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Structs/DTU_SETTIMEZONEINFORMATION_PARAMS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/Dummy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Functions/Async/DummyJob.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/DURATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/DURATION/DURATION_TO_LTIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/DURATION/DURATION_TO_TIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvGPIOSysfs.library_Library/Structs/DUT_GPIOPin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/DWORD_AS_BIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Functions/Time-Functions/DWORD_SEQ_LET.html#index-0

● DWORD_SEQ_LT
● DWORD_TO_BCD
● DWORD_TO_GRAY
● DWORD_TO_HANDLE
● DWORD_TO_IDENT
● DWORD_TO_PVOID
● DwordVector
● DynamicTextChangeLanguage
● DynamicTextGetCurrentLanguage
● DynamicTextGetDefaultText
● DynamicTextGetDefaultTextW
● DynamicTextGetText
● DynamicTextGetTextW
● DynamicTextIterateIndices
● DynamicTextLoadDefaultTexts
● DynamicTextRegisterFile
● DynamicTextRegisterPath
● DynamicTextReloadTexts
● DynamicTextUnRegisterFile
● DynamicTraceLoader
● DynamicTraceLoaderRemote
● EAlarmStorageReaderErrors
● EAlarmTableParts
● EAlarmType
● ECAT_402ParameterHoming_APP
● ECAT_CiA_Object_App
● ECAT_CiA402_Control_App
● ECAT_CiA402_TouchProbe_App
● ECAT_HomingOnTouchProbe_APP
● ECAT_Read_Byte_App
● ECAT_Read_Coe_List_App
● ECAT_Read_DInt_App
● ECAT_Read_Int_App
● ECAT_Write_Byte_App
● ECAT_Write_Coe_List_App
● ECAT_Write_DInt_App
● ECAT_Write_Int_App
● EcatBusDiag
● EcatBusGetDCMaxDeviation
● EcatBusSetState
● EcatCoeRead
● EcatCoeWrite
● EcatDeviceIdentification
● EcatDeviceInfoData
● EcatDeviceTypeIdentification
● EcatGetExtSyncInfo
● EcatMasterGetCPULoad
● EcatMasterGetFrameLossCount
● EcatMasterGetMemInfo
● EcatMasterGetThresholdCount
● EcatMasterGetTimingInfo
● EcatRegisterRead
● EcatRegisterWrite
● EcatScanTopology
● EcatScanTopologyStop

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4318

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Functions/Time-Functions/DWORD_SEQ_LT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/DWORD_TO_BCD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Gray-Conversions/DWORD_TO_GRAY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/HANDLE/DWORD_TO_HANDLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/IDENT/DWORD_TO_IDENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/PVOID/DWORD_TO_PVOID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/DwordVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextChangeLanguage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextGetCurrentLanguage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextGetDefaultText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextGetDefaultTextW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextGetText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextGetTextW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextIterateIndices.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextLoadDefaultTexts.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextRegisterFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextRegisterPath.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextReloadTexts.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextUnRegisterFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/DynamicTraceLoader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/DynamicTraceLoaderRemote.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/EAlarmStorageReaderErrors.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/Enumerations/EAlarmTableParts.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/EAlarmType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/POUs/Homing/ECAT_402ParameterHoming_APP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/Data-types/CiA/ECAT_CiA_Object_App.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/POUs/Drive/ECAT_CiA402_Control_App.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/POUs/TouchProbe/ECAT_CiA402_TouchProbe_App.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/POUs/Homing/ECAT_HomingOnTouchProbe_APP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/POUs/CoE/ECAT_Read_Byte_App.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/POUs/CoE/ECAT_Read_Coe_List_App.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/POUs/CoE/ECAT_Read_DInt_App.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/POUs/CoE/ECAT_Read_Int_App.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/POUs/CoE/ECAT_Write_Byte_App.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/POUs/CoE/ECAT_Write_Coe_List_App.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/POUs/CoE/ECAT_Write_DInt_App.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/POUs/CoE/ECAT_Write_Int_App.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/EcatBusDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Extended/EcatBusGetDCMaxDeviation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Control/EcatBusSetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Acyclic-Services/CoE-CAN-over-EtherCAT/EcatCoeRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Acyclic-Services/CoE-CAN-over-EtherCAT/EcatCoeWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.1.8_Library/DeviceIdentifikation/EcatDeviceIdentification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Types/EcatDeviceInfoData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.1.8_Library/DeviceIdentifikation/EcatDeviceTypeIdentification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Extended/EcatGetExtSyncInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Extended/EcatMasterGetCPULoad.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Extended/EcatMasterGetFrameLossCount.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Extended/EcatMasterGetMemInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Extended/EcatMasterGetThresholdCount.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Extended/EcatMasterGetTimingInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Acyclic-Services/Register-access/EcatRegisterRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Acyclic-Services/Register-access/EcatRegisterWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Commissioning/EcatScanTopology.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Commissioning/EcatScanTopologyStop.html#index-0

● EcatSlvDiag
● EcatSlvGetDCInfo
● EcatSlvGetMDPModules
● EcatSlvGetState
● EcatSlvReadESCVersion
● EcatSlvReadLostLinkCnt
● EcatSlvReadRxErrorCnt
● EcatSlvSetState
● EcatSoeRead
● EcatSoeWrite
● EcatStartCom
● EcatState
● EcatStopCom
● EcatSync
● EcatVendor
● EcatVendorIDList
● EcatVendorName2Device
● ECM_IF_DC_CONTROL_STATUS_E
● ECM_IF_GET_SLAVE_DC_INFO_FLAGS_E
● EColorSetting
● ECUSTATE
● EDBActiveIndex
● EDBType
● eDeviceState
● EdgeTriggeredBehaviourModelBase
● EdgeTriggeredTimingControlledBehaviourModelBase
● EEthernetState
● eFastCounter
● EFillingStyle
● EFilterCriteriaActivity
● EFilterLatchContent
● EFilterTimeRangeType
● EImageStyle
● EIP_CloseClass3Connection
● EIP_OpenClass3Connection
● EIP_SendClass3ConnectedMessage
● EIP_SendUnconnectedMessage
● ElaborateLatchFilterCriteria
● ElaborateTimeRangeFilterCriteria
● Element
● EMCY_DATA
● EMCY_ERROR
● eModulName
● EnableSyncService
● Encode
● EncodeEmcyCOBID
● EncodeHeartbeatConsumerSettings
● EncodePDOCOBID
● EncodePDOMappingEntry
● EncodeRune
● EncodeSpec
● EncodeSyncCOBID
● ENDIANESS
● EndpointDescriptionToString
● EndpointReceiver

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4319

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/EcatSlvDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Extended/EcatSlvGetDCInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Commissioning/EcatSlvGetMDPModules.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Control/EcatSlvGetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Commissioning/EcatSlvReadESCVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Commissioning/EcatSlvReadLostLinkCnt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/Commissioning/EcatSlvReadRxErrorCnt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Control/EcatSlvSetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Acyclic-Services/SoE-Sercos-over-EtherCAT/EcatSoeRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Acyclic-Services/SoE-Sercos-over-EtherCAT/EcatSoeWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Control/EcatStartCom.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Legacy/EcatState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Control/EcatStopCom.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.3.2.5_Library/Function-Blocks/Diagnosis/EcatSync.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.1.8_Library/DeviceIdentifikation/EcatVendor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.1.8_Library/DeviceIdentifikation/EcatVendorIDList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.1.8_Library/DeviceIdentifikation/EcatVendorName2Device.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Services/DC/ECM_IF_DC_CONTROL_STATUS_E.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Services/DC/ECM_IF_GET_SLAVE_DC_INFO_FLAGS_E.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Enums/EColorSetting.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Enum/ECUSTATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/EDBActiveIndex.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/EDBType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/DIAG/eDeviceState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/ImplementationBase/EdgeTriggeredBehaviourModelBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/ImplementationBase/EdgeTriggeredTimingControlledBehaviourModelBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet_Itfs.library_Library/IIoDrvEthernet_Itfs/Enums/EEthernetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/DIAG/eFastCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Enums/EFillingStyle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/Enumerations/EFilterCriteriaActivity.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/EFilterLatchContent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/EFilterTimeRangeType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Enums/EImageStyle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvEIPAcyclicService_Itfs.library_Library/ConnectedMessages/EIP_CloseClass3Connection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvEIPAcyclicService_Itfs.library_Library/ConnectedMessages/EIP_OpenClass3Connection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvEIPAcyclicService_Itfs.library_Library/ConnectedMessages/EIP_SendClass3ConnectedMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvEIPAcyclicService_Itfs.library_Library/UnconnectedMessages/EIP_SendUnconnectedMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/Filters/ElaborateLatchFilterCriteria.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/Filters/ElaborateTimeRangeFilterCriteria.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/Element/Element.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/EMCY_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/EMCY_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/DIAG/eModulName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Extended-Functionality/EnableSyncService.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Manipulation/Encode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/CANopen-Help-Functions/EMCY/EncodeEmcyCOBID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/CANopen-Help-Functions/Heartbeat/EncodeHeartbeatConsumerSettings.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/CANopen-Help-Functions/PDO/EncodePDOCOBID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/CANopen-Help-Functions/PDO/EncodePDOMappingEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/UTF-8%20Encoding%20Support.library_Library/utf8/Functions/EncodeRune.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Helper/EncodeSpec.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/CANopen-Help-Functions/SYNC/EncodeSyncCOBID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Enums/ENDIANESS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Logging/EndpointDescriptionToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/StateHelpers/EndpointReceiver.html#index-0

● EnqueuedRequest
● ENUM61850_BASIC_TYPES
● ENUM61850_CLOCK_SYNC_MODE
● ENUM61850_DataPoint_Type
● ENUM61850_SIM_MODE
● EnumAttributes
● EnumCommand
● EnumErrors
● EnumUnitTest
● EnumValues
● EnXYChartClientActity
● EnXYChartDataProviderAxisVar
● EnXYChartDataProviderCurveVar
● EnXYChartDataProviderVar
● EnXYChartUpdateType
● EOF
● eParaState
● ERectSetting
● ERROR
● Error
● ERROR_ID
● ERROR_INFO
● ErrorCode
● ErrorCode1_RW
● ErrorCodesOB
● ErrorInjection
● ErrorPLCHToString
● ErrorToString
● EShadowStyle
● ESpecial_FP_Value
● ETC_ADS_IoLinkRead
● ETC_ADS_IoLinkWrite
● ETC_CO_Emergency
● ETC_CO_ERROR
● ETC_CO_MODE
● ETC_CO_SdoInfoGeEntryDescription
● ETC_CO_SdoInfoGetObjectDescription
● ETC_CO_SdoInfoGetODList
● ETC_CO_SdoRead
● ETC_CO_SdoRead_Access
● ETC_CO_SdoRead_Channel
● ETC_CO_SdoRead4
● ETC_CO_SdoReadDWord
● ETC_CO_SdoWrite
● ETC_CO_SdoWrite_Access
● ETC_CO_SdoWrite4
● ETC_CO_SdoWriteDWord
● ETC_FoE_Download
● ETC_FoE_Upload
● ETC_LASTERROR
● ETC_MASTER_STATE
● ETC_SDO_INFO_LIST_TYPE
● ETC_SDO_INFO_OBJECT_CODE
● ETC_SLAVE_STATE
● ETC_SoE_Cmd

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4320

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/EnqueuedRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ENUM61850_BASIC_TYPES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ENUM61850_CLOCK_SYNC_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM61850_DataPoint_Type.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM61850_SIM_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/EnumAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/EnumCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/EnumErrors.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/Functions/EnumUnitTest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/EnumValues.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Enums/EnXYChartClientActity.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Enums/EnXYChartDataProviderAxisVar.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Enums/EnXYChartDataProviderCurveVar.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Enums/EnXYChartDataProviderVar.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Enums/EnXYChartUpdateType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/EOF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/CI52x_1.4.0.8_Library/Types/DIAG/eParaState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Enums/ERectSetting.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Enums/ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Enums/Error.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Enums/ERROR_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Structs/ERROR_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/ErrorCode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/ErrorCode1_RW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvAnalogOptionBoard_1.1.1.6_Library/Enums/ErrorCodesOB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/CertificateTest/ErrorInjection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Utils/Logging/ErrorPLCHToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Logging/ErrorToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Enums/EShadowStyle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/ESpecial_FP_Value.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ADS_over_Ethercat/ETC_ADS_IoLinkRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ADS_over_Ethercat/ETC_ADS_IoLinkWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/STRUCTS/ETC_CO_Emergency.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ENUMS/ETC_CO_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ENUMS/ETC_CO_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/SdoInfo/ETC_CO_SdoInfoGeEntryDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/SdoInfo/ETC_CO_SdoInfoGetObjectDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/SdoInfo/ETC_CO_SdoInfoGetODList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoRead_Access.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoRead_Channel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoRead4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoReadDWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoWrite_Access.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoWrite4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoWriteDWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/File_over_EtherCAT/ETC_FoE_Download.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/File_over_EtherCAT/ETC_FoE_Upload.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Structs/ETC_LASTERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Structs/ETC_MASTER_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ENUMS/ETC_SDO_INFO_LIST_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ENUMS/ETC_SDO_INFO_OBJECT_CODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Structs/ETC_SLAVE_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ServoDrive_over_Ethercat/ETC_SoE_Cmd.html#index-0

● ETC_SOE_ERROR
● ETC_SoE_IDNRead
● ETC_SoE_IDNRead4
● ETC_SoE_IDNWrite
● ETC_SoE_IDNWrite4
● ETC_VoE_SendReceive
● ETCDeviceIdentMode
● ETCERRORCODES
● ETCMasterStack
● ETCSlave
● ETCSlave_Diag
● ETCSlaveStack
● ETH_MOD_FCT22_TYPE
● ETH_MOD_FCT23_TYPE
● EthDNSResolve
● EtherCATDevice
● EthercatMaster_GetVersion
● EthernetState
● EthIcmpPing
● EthOwnIP
● EthOwnIPInfo
● EthSetOwnIP
● EthSetRtoMin
● ETHx_ICMP_PING
● ETHx_MOD_CONFIG
● ETHx_MOD_INFO
● ETHx_MOD_MAST
● ETHx_OWN_IP
● ETHx_OWN_IP_INFO
● ETraceGradientType
● ETrendStorageGraphType
● ETrendStoragePenStyle
● ETrendStorageReaderErrors
● ETrendStorageReaderStep
● ETrig
● ETrigA
● ETrigATl
● ETrigATlTo
● ETrigATo
● ETrigTl
● ETrigTlA
● ETrigTlTo
● ETrigTo
● ETrigToA
● ETrigToTl
● ETrigToTlA
● EVENT
● EVENT_CLASS
● EVENT_SOURCE
● EventClose2
● EventCreate
● EventCreate2
● EventCreateEventID
● EventDelete2
● EventElementData

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4321

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ServoDrive_over_Ethercat/ENUMS/ETC_SOE_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ServoDrive_over_Ethercat/ETC_SoE_IDNRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ServoDrive_over_Ethercat/ETC_SoE_IDNRead4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ServoDrive_over_Ethercat/ETC_SoE_IDNWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ServoDrive_over_Ethercat/ETC_SoE_IDNWrite4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Vendor_over_Ethercat/ETC_VoE_SendReceive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Structs/ETCDeviceIdentMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/File_over_EtherCAT/Enums/ETCERRORCODES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/EtherCATStack/ETCMasterStack.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IODrvEtherCATDriver.library_Library/ETCSlave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IODrvEtherCATDriver.library_Library/Diagnosis/ETCSlave_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/EtherCATStack/ETCSlaveStack.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.7.2_Library/Types/ETH_MOD_FCT22_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.7.2_Library/Types/ETH_MOD_FCT23_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.3.0.7_Library/Function-Blocks/DNS/EthDNSResolve.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.1.8_Library/DeviceIdentifikation/EtherCATDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IODrvEtherCATDriver.library_Library/EthercatMaster_GetVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Enums/EthernetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.3.0.7_Library/Function-Blocks/ICMP/EthIcmpPing.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.3.0.7_Library/Function-Blocks/General/EthOwnIP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.3.0.7_Library/Function-Blocks/General/EthOwnIPInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.3.0.7_Library/Function-Blocks/General/EthSetOwnIP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.3.0.7_Library/Function-Blocks/General/EthSetRtoMin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.3.0.7_Library/Function-Blocks/ICMP/CompatibleV23/ETHx_ICMP_PING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.7.2_Library/Function-Blocks/CompatibleV23/ETHx_MOD_CONFIG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.7.2_Library/Function-Blocks/CompatibleV23/ETHx_MOD_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.7.2_Library/Function-Blocks/CompatibleV23/ETHx_MOD_MAST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.3.0.7_Library/Function-Blocks/General/CompatibleV23/ETHx_OWN_IP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.3.0.7_Library/Function-Blocks/General/CompatibleV23/ETHx_OWN_IP_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TraceMgr2_Itfs.library_Library/ETraceGradientType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/ETrendStorageGraphType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/ETrendStoragePenStyle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/ETrendStorageReaderErrors.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/ETrendStorageReaderStep.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/ETrigATl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/ETrigATlTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/ETrigATo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigTl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigTlA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/ETrigTlTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigToA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigToTl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigToTlA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Enums/EVENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Enums/EVENT_CLASS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Enums/EVENT_SOURCE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventClose2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventCreate2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventCreateEventID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventDelete2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/EventQueuePerClient/EventElementData.html#index-0

● EventGetClass
● EventGetEvent
● EventIdToString
● EventListener
● EventOpen
● EventParam
● EventParam2
● EventPost
● EventPost2
● EventPostByEvent
● EventPostByEvent2
● EventQueueAndElement
● EventRegisterCallback
● EventRegisterCallback2
● EventRegisterCallbackFunction
● EventRegisterCallbackFunction2
● EventRegisteredCallbacks
● EventUnregisterCallback
● EventUnregisterCallbackFunction
● EventUnregisterCallbackFunction2
● EVT_BACNET_ACKALARM
● EVT_BACNET_ADDELEMENT
● EVT_BACNET_ADDRESSCHANGECALLBACK
● EVT_BACNET_BACKUPRESTOREPROGRESSCALLBACK
● EVT_BACNET_CHANGEOFVALUEEVENTS
● EVT_BACNET_CLIENTEVENTCALLBACK
● EVT_BACNET_CLIENTSTATUSCALLBACK
● EVT_BACNET_CLIENTUNSUBSCRIBECOMPLETECALLBACK
● EVT_BACNET_CLIENTVALUECALLBACK
● EVT_BACNET_CONFCOVNOTIFICATION
● EVT_BACNET_CONFEVENTNOTIFICATION
● EVT_BACNET_CONFPRIVATEXFER
● EVT_BACNET_CONFTEXTMESSAGE
● EVT_BACNET_CREATEOBJECT
● EVT_BACNET_DCC
● EVT_BACNET_DELETEOBJECT
● EVT_BACNET_GETALARMSUMMARY
● EVT_BACNET_GETENROLLMENTSUMMARY
● EVT_BACNET_GETEVENTINFO
● EVT_BACNET_IACTIONERRCALLBACK
● EVT_BACNET_IAM
● EVT_BACNET_IHAVE
● EVT_BACNET_INTRINSICEVENTS
● EVT_BACNET_LIFESAFETYOPERATION
● EVT_BACNET_NETWORKEVENTS
● EVT_BACNET_OBJECTIDCHANGECALLBACK
● EVT_BACNET_OSTIMEPROVIDERCALLBACK
● EVT_BACNET_READFILE
● EVT_BACNET_READPROPERTY
● EVT_BACNET_READPROPERTY_TO_STRING
● EVT_BACNET_READPROPERTYCALLBACK
● EVT_BACNET_READPROPERTYMULT
● EVT_BACNET_READPROPERTYRELEASECALLBACK
● EVT_BACNET_READRANGE
● EVT_BACNET_REINITDEV

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4322

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventGetClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventGetEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/ToString/EventIdToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/DownloadSeamLess/EventListener.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr_Itfs.library_Library/EventParam.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr_Itfs.library_Library/EventParam2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventPost.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventPost2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventPostByEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventPostByEvent2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/EventQueueAndElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventRegisterCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventRegisterCallback2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventRegisterCallbackFunction.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventRegisterCallbackFunction2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventRegisteredCallbacks.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventUnregisterCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventUnregisterCallbackFunction.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventUnregisterCallbackFunction2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_ACKALARM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_ADDELEMENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_ADDRESSCHANGECALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_BACKUPRESTOREPROGRESSCALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_CHANGEOFVALUEEVENTS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_CLIENTEVENTCALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_CLIENTSTATUSCALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_CLIENTUNSUBSCRIBECOMPLETECALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_CLIENTVALUECALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_CONFCOVNOTIFICATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_CONFEVENTNOTIFICATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_CONFPRIVATEXFER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_CONFTEXTMESSAGE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_CREATEOBJECT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_DCC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_DELETEOBJECT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_GETALARMSUMMARY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_GETENROLLMENTSUMMARY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_GETEVENTINFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_IACTIONERRCALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_IAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_IHAVE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_INTRINSICEVENTS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_LIFESAFETYOPERATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_NETWORKEVENTS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_OBJECTIDCHANGECALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_OSTIMEPROVIDERCALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_READFILE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_READPROPERTY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/TO_STRING/EVT_BACNET_READPROPERTY_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_READPROPERTYCALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_READPROPERTYMULT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_READPROPERTYRELEASECALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_READRANGE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_REINITDEV.html#index-0

● EVT_BACNET_REMOVEELEMENT
● EVT_BACNET_STACKACTION
● EVT_BACNET_SUBSCRIBECOV
● EVT_BACNET_SUBSCRIBECOVPROPERTY
● EVT_BACNET_TIMESYNC
● EVT_BACNET_UNCONFCOVNOTIFICATION
● EVT_BACNET_UNCONFEVENTNOTIFICATION
● EVT_BACNET_UNCONFPRIVATEXFER
● EVT_BACNET_UNCONFTEXTMESSAGE
● EVT_BACNET_UTCTIMESYNC
● EVT_BACNET_WHOHAS
● EVT_BACNET_WHOIS
● EVT_BACNET_WRITEFILE
● EVT_BACNET_WRITEGROUP
● EVT_BACNET_WRITEPROPERTY
● EVT_BACNET_WRITEPROPERTY_TO_STRING
● EVT_BACNET_WRITEPROPERTYCALLBACK
● EVT_BACNET_WRITEPROPERTYCALLBACK2
● EVT_BACNET_WRITEPROPERTYMULT
● EVTPARAM_BeforeCheckFirmware
● EVTPARAM_CIFX_GetFirmware
● EVTPARAM_CIFX_LoadFirmware
● EVTPARAM_CIFX_xChannelClose
● EVTPARAM_CIFX_xChannelOpen
● EVTPARAM_CmpApp
● EVTPARAM_CmpAppAllBootAppsLoaded
● EVTPARAM_CmpAppComm
● EVTPARAM_CmpAppCommCycle
● EVTPARAM_CmpAppConfig
● EVTPARAM_CmpAppDeny
● EVTPARAM_CmpAppDenyDelete
● EVTPARAM_CmpAppDenyLoadBootproject
● EVTPARAM_CmpAppDenyStart
● EVTPARAM_CmpAppDenyStop
● EVTPARAM_CmpAppException
● EVTPARAM_CmpAppExit
● EVTPARAM_CmpAppOEMServiceTag
● EVTPARAM_CmpAppOperatingStateChanged
● EVTPARAM_CmpAppPrepareLoadBootproject
● EVTPARAM_CmpAppRegisterBootproject
● EVTPARAM_CmpAppReset
● EVTPARAM_CmpAppResetAllApplications
● EVTPARAM_CmpAppRetainBackupState
● EVTPARAM_CmpAppSourceDownload
● EVTPARAM_CmpAppStateChanged
● EVTPARAM_CmpAppStop
● EVTPARAM_CmpChS_ChannelClosed
● EVTPARAM_CmpChS_ChannelOpened
● EVTPARAM_CmpIecTask
● EVTPARAM_CmpIecTask2
● EVTPARAM_CmpIoMgr
● EVTPARAM_CmpLogAdd
● EVTPARAM_CmpMgr_DisableOperation
● EVTPARAM_CmpMgr_LicenseRequest
● EVTPARAM_CmpMgr_PrepareExitCommProcessing

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4323

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_REMOVEELEMENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_STACKACTION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_SUBSCRIBECOV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_SUBSCRIBECOVPROPERTY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_TIMESYNC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_UNCONFCOVNOTIFICATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_UNCONFEVENTNOTIFICATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_UNCONFPRIVATEXFER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_UNCONFTEXTMESSAGE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_UTCTIMESYNC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_WHOHAS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_WHOIS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_WRITEFILE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_WRITEGROUP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_WRITEPROPERTY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/TO_STRING/EVT_BACNET_WRITEPROPERTY_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_WRITEPROPERTYCALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_WRITEPROPERTYCALLBACK2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/EVT_BACNET_WRITEPROPERTYMULT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_BeforeCheckFirmware.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_CIFX_GetFirmware.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_CIFX_LoadFirmware.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_CIFX_xChannelClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_CIFX_xChannelOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpApp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppAllBootAppsLoaded.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppComm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppCommCycle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppConfig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppDeny.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppDenyDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppDenyLoadBootproject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppDenyStart.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppDenyStop.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppException.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppExit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppOEMServiceTag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppOperatingStateChanged.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppPrepareLoadBootproject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppRegisterBootproject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppReset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppResetAllApplications.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppRetainBackupState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppSourceDownload.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppStateChanged.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppStop.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelServer.library_Library/EventParameter/EVTPARAM_CmpChS_ChannelClosed.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelServer.library_Library/EventParameter/EVTPARAM_CmpChS_ChannelOpened.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/EventParameter/EVTPARAM_CmpIecTask.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/EventParameter/EVTPARAM_CmpIecTask2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr_Itfs.library_Library/ICmpEventMgr/EVTPARAM_CmpIoMgr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/EVTPARAM_CmpLogAdd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/EventParameter/EVTPARAM_CmpMgr_DisableOperation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/EventParameter/EVTPARAM_CmpMgr_LicenseRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/EventParameter/EVTPARAM_CmpMgr_PrepareExitCommProcessing.html#index-0

● EVTPARAM_CmpMgr_Shutdown
● EVTPARAM_CmpOPCUAServerSessionsChanged
● EVTPARAM_CmpSrv
● EVTPARAM_CmpSupervisor_StateChanged
● EVTPARAM_CmpTraceMgr_Packet
● EVTPARAM_CmpTraceMgr_Record
● EVTPARAM_CmpXMLData
● EVTPARAM_CmpXMLEnd
● EVTPARAM_CmpXMLStart
● EVTPARAM_DownloadProgress
● EVTPARAM_PacketConfirmation
● EVTPARAM_PacketIndication
● EVTPARAM_PacketUnhandled
● EVTPARAM_PlcShellCommand
● EVTPARAM_UploadProgress
● ExampleDataModel
● ExceptionCodes
● export
● ExpressionResult
● ExpSubmodule
● EXTRACT
● F_TRIG
● FactoryBase
● FailureReadRequest
● FaultStatus
● FbChangeVisu
● FbCloseDialog
● FBFileTransfer
● fbIEC61850_Subs_ASN1_CheckData
● fbIEC61850_Subs_ASN1_Decoder
● fbIEC61850_Subs_ASN1_Decoder_CheckDataNum
● fbIEC61850_Subs_ASN1_Decoding_Data
● fbIEC61850_Subscriber
● FbIterateClients
● FbOpenDialog
● FbOpenDialogExtended
● FctIncreaseElemRectForLine
● FctPointIntersectsRectangle
● FD_CLR
● FILE_DIR_ENTRY
● FILENAME
● FileNameString
● FillNodeInfoInt
● FIND
● Find2
● FindBlock
● FindByte
● FIRMWAREINFO
● FlatClass
● FlatCreateH
● FlatCreateP
● FlatDelete
● FlatDisable
● FlatEnable
● FlatGetSize

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4324

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/EventParameter/EVTPARAM_CmpMgr_Shutdown.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/EVTPARAM_CmpOPCUAServerSessionsChanged.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSrv.library_Library/EventParameter/EVTPARAM_CmpSrv.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/EventParameter/EVTPARAM_CmpSupervisor_StateChanged.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/EventParameter/EVTPARAM_CmpTraceMgr_Packet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/EventParameter/EVTPARAM_CmpTraceMgr_Record.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpXMLParser.library_Library/EventParameter/EVTPARAM_CmpXMLData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpXMLParser.library_Library/EventParameter/EVTPARAM_CmpXMLEnd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpXMLParser.library_Library/EventParameter/EVTPARAM_CmpXMLStart.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_DownloadProgress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_PacketConfirmation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_PacketIndication.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_PacketUnhandled.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPlcShell.library_Library/EVTPARAM_PlcShellCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_UploadProgress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Server/ExampleDataModel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Enums/ExceptionCodes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvGPIOSysfs.library_Library/Functions/export.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SFC/Analyzation.library_Library/Data-types/ExpressionResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Device/ExpSubmodule.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/EXTRACT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Trigger/F_TRIG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20FB%20Factory.library_Library/Factory/FactoryBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Requests/FailureReadRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/FaultStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Function-Blocks/FbChangeVisu.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Function-Blocks/FbCloseDialog.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Function-Blocks/FBFileTransfer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/Tools/fbIEC61850_Subs_ASN1_CheckData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/Tools/fbIEC61850_Subs_ASN1_Decoder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/Tools/fbIEC61850_Subs_ASN1_Decoder_CheckDataNum.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/Tools/fbIEC61850_Subs_ASN1_Decoding_Data.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/fbIEC61850_Subscriber.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Function-Blocks/FbIterateClients.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Function-Blocks/FbOpenDialog.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Function-Blocks/FbOpenDialogExtended.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/FctIncreaseElemRectForLine.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Calendar/FctPointIntersectsRectangle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Functions/FD_CLR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Structs/FILE_DIR_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/FILENAME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Types/FileNameString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/FillNodeInfoInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/FIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/Find2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/ARRAY-and-MemoryBlock/FindBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/ARRAY-and-MemoryBlock/FindByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/FIRMWAREINFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Internal/FlatClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatCreateH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatCreateP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatDisable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatEnable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatGetSize.html#index-0

● FlatRead
● FlatTest
● FlatUpdate
● FLOAT
● FLOAT_TO_LREAL
● FLOAT_TO_REAL
● Floor
● FloorF
● Flush
● FMI
● fmod
● FORMAT_MODE
● FormatDateTime
● FormatTimestamp
● FormatTimestamp2
● FormatTypedValue
● FrameManager
● FrameRegistrationData
● FreeMessage
● FreeStackAllocatedMemory
● FreeXMLParser
● FREQ_MEASURE
● FromBACnetBitString
● FromBACnetBoolean
● FromBACnetDate
● FromBACnetDateRange
● FromBACnetDateTime
● FromBACnetDevObjPropReference
● FromBACnetSetpointReference
● FromBACnetString
● FromBACnetTime
● FromBACnetTimeStamp
● FSLState
● FunctionCodes
● funIEC61850_GetReportHeaderLen
● funIEC61850_MMSTYPE_TO_STRING
● funIEC61850_Subs_Bits_SwapRight
● funIEC61850_Subs_InitDatapoint
● funIEC61850_SubsCheckDataNum
● GEN
● GEN_MODE
● Generic_Service
● Get_Attribute_Single
● Get_Attributes_All
● GET_CANOPEN_KERNEL_STATE
● GET_LOCAL_NODE_ID
● GET_STATE
● GetAttribute
● GetBACnetDataTypeSize
● GetBACnetPropertyDataType
● GetBaudrate
● GETBIT
● GetBitStringFromContents
● GetBitValue
● GetBooleanProperty

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4325

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatTest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatUpdate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/FLOAT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/FLOAT/FLOAT_TO_LREAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/FLOAT/FLOAT_TO_REAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/Functions/Floor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/Functions/FloorF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/Flush.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/DTC/FMI.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/Transformations/fmod.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Enums/FORMAT_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/IECStringUtils.library_Library/FormatDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/deprecated/FormatTimestamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/FormatTimestamp2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/FormatTypedValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Frameswitching/FrameManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/FrameRegistrationData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/FreeMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/Mem/FreeStackAllocatedMemory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpXMLParser.library_Library/FreeXMLParser.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Signals/FREQ_MEASURE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetBitString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetBoolean.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetDate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetDateRange.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetDevObjPropReference.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetSetpointReference.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetTimeStamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvAnalogOptionBoard_1.1.1.6_Library/Enums/FSLState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Enums/FunctionCodes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Reporting/funIEC61850_GetReportHeaderLen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/Tools/funIEC61850_MMSTYPE_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/Tools/funIEC61850_Subs_Bits_SwapRight.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/Tools/funIEC61850_Subs_InitDatapoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/Tools/funIEC61850_SubsCheckDataNum.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Signals/GEN.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Datatypes/GEN_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/DataExchange/Generic_Service.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/DataExchange/Get_Attribute_Single.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/DataExchange/Get_Attributes_All.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/Query-state/GET_CANOPEN_KERNEL_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/Own-node-id/GET_LOCAL_NODE_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/Query-state/GET_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/GetAttribute.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/BACnetProperties/GetBACnetDataTypeSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/BACnetProperties/GetBACnetPropertyDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetBaudrate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/GETBIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetBitStringFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/GetBitValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetBooleanProperty.html#index-0

● GetBoolFromContents
● GetBufferSize
● GetBusAlarm
● GetBusError
● GetBusload
● GetBusScan
● GetBusState
● GetCallback
● GetCallbackTypeOfEventId
● GetCBTypeOfEventId
● GetCertHandle
● GetCertRenewTime
● GetChar
● GetCiAState
● GetClass
● GetClassInfo
● GetCompany
● GetConfigType
● GetConnectionInfo
● GetConnectionState
● GetControllerNode
● GetCurrentUtcOffset
● GetDateAndTime
● GetDateFromContents
● GetDateRangeFromContents
● GetDateTime
● GetDateTimeFromContents
● GetDayOfWeek
● GetDeviceError
● GetDeviceInfo
● GetDeviceNode
● GetDevObjPropReferenceFromContents
● GetDiagnosis
● GetElapsedTimeInNSec
● GetElapsedTimeInUSec
● GetEventIdOfCallbackType
● GetEventIdOfCBType
● GetHandleOfCallback
● GetHostname
● GetID
● GetIDeviceInstByIoAddr
● GetInfo
● GETIO_PART
● GetIPAddress
● GetLatchVarColumnID
● GetLibVersion
● GetLibVersionNumber
● GetLINTValue
● GetLINTValue2
● GetLINTValue3
● GetLocalDateTime
● GetLocalTime
● GetLostCounter
● GetLrealFromContents
● GetLRealSpecialVal

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4326

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetBoolFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Segmented%20Buffer%20Manager%20Extern.library_Library/CAA-Segemented-Buffer-Manager/Functions/Buffer/GetBufferSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetBusAlarm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Function-Blocks/Bus/GetBusError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetBusload.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Function-Blocks/Stack/GetBusScan.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetBusState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Callback-Info/GetCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/GetCallbackTypeOfEventId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/GetCBTypeOfEventId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Functions/GetCertHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Functions/GetCertRenewTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Functions/GetChar.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Indicator-Services/GetCiAState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/GetClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/GetClassInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetCompany.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/GetConfigType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpRedundancyConnection%20Implementation.library_Library/CmpRedundancyConnection-Implementation/Functions/GetConnectionInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy%20Implementation.library_Library/Redundancy-Implementation/Functions/GetConnectionState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/GetControllerNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Functions/GetCurrentUtcOffset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Function-Blocks/Time-and-Date/GetDateAndTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetDateFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetDateRangeFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/GetDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetDateTimeFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/GetDayOfWeek.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Function-Blocks/Device/GetDeviceError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/GetDeviceInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/GetDeviceNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetDevObjPropReferenceFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20TickUtil%20Extern.library_Library/CAA-TickUtil/Functions/GetElapsedTimeInNSec.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20TickUtil%20Extern.library_Library/CAA-TickUtil/Functions/GetElapsedTimeInUSec.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/GetEventIdOfCallbackType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEventStructs/GetEventIdOfCBType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Callback-Info/GetHandleOfCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/GetHostname.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/GetID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Function-Blocks/Utility/GetIDeviceInstByIoAddr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/GetInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/GETIO_PART.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Udp-specific/GetIPAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Access-to-alarm-storage-internal/only-internal/GetLatchVarColumnID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/Library-Information/GetLibVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/Library-Information/GetLibVersionNumber.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/GetLINTValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/GetLINTValue2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/GetLINTValue3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/GetLocalDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/GetLocalTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetLostCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetLrealFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/LREAL/GetLRealSpecialVal.html#index-0

● GetMessageDataPointer
● GetMessageId
● GetMessageLength
● GetMsgCount
● GetNetId
● GetNextNode
● GetNodeDepth
● GetNumberActiveCallbacks
● GetNumberProperty
● GetObjectIDFromContents
● GetParent
● GetPlcIdent
● GetPos
● GetProperty
● GetRealFromContents
● GetRealSpecialVal
● GetReceiveCounter
● GetReceiveErrorCounter
● GetReceivePoolSize
● GetReceiveQueueLength
● GetRedundancyState
● GetRoot
● GetSetpointReferenceFromContents
● GetSignedFromContents
● GetSize
● GetSpecificDeviceError
● GetState
● GetSubmoduleDiagnosis
● GetSupplierVersion
● GetSyncInformation
● GetSystemTimeZone
● GetText
● GetTextListInfo
● GetTextProperty
● GetTextProperty2
● GetTextW
● GetTick
● GetTime
● GetTimeFromContents
● GetTimeStamp
● GetTimeStampsDifference
● GetTimeZoneInformation
● GetTitle
● GetTransmitCounter
● GetTransmitErrorCounter
● GetTransmitPoolSize
● GetTransmitQueueLength
● GetUnitTestStatus
● GetUnsignedFromContents
● GetVersion
● GetVersionProperty
● GetWStringFromContents
● GlobalTextList
● GPIOSysfs
● GPIOSysfsDiag

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4327

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/GetMessageDataPointer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/GetMessageId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/GetMessageLength.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/GetMsgCount.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/GetNetId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/GetNextNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/GetNodeDepth.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Callback-Info/GetNumberActiveCallbacks.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetNumberProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetObjectIDFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/GetParent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy%20Implementation.library_Library/Redundancy-Implementation/Functions/GetPlcIdent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/GetPos.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/Properties/GetProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetRealFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/REAL/GetRealSpecialVal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetReceiveCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetReceiveErrorCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetReceivePoolSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetReceiveQueueLength.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy%20Implementation.library_Library/Redundancy-Implementation/Functions/GetRedundancyState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/GetRoot.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetSetpointReferenceFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetSignedFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/GetSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Function-Blocks/Device/GetSpecificDeviceError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/GetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/GetSubmoduleDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/GetSupplierVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy%20Implementation.library_Library/Redundancy-Implementation/Functions/GetSyncInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/GetSystemTimeZone.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/TextListUtils.library_Library/TextListUtils/GetText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/TextListUtils.library_Library/TextListUtils/GetTextListInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetTextProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Informazioni-sul-progetto/GetTextProperty2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/TextListUtils.library_Library/TextListUtils/GetTextW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Tick%20Extern.library_Library/CAA-Tick/Functions/GetTick.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/GetTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetTimeFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/GetTimeStamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/GetTimeStampsDifference.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Function-Blocks/Time-Zone-Information/GetTimeZoneInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetTitle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetTransmitCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetTransmitErrorCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetTransmitPoolSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetTransmitQueueLength.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/Functions/GetUnitTestStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetUnsignedFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetVersionProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetContents/GetWStringFromContents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/GlobalTextList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvGPIOSysfs.library_Library/GPIOSysfs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvGPIOSysfs.library_Library/GPIOSysfsDiag.html#index-0

● GRAY_TO_BYTE
● GRAY_TO_DWORD
● GRAY_TO_WORD
● GuidHelper
● HaModAIO
● HaModCallbackStop
● HaModControl
● HaModCtd
● HaModCtu
● HaModCtud
● HaModDataSync
● HaModDerivative
● HaModDiag
● HaModDIO
● HaModEthFrame
● HaModEthFrameHeader
● HaModIntegral
● HaModPid
● HaModPidFixCycle
● HaModRampInt
● HaModRampReal
● HaModStatus
● HaModStatusLifecom2
● HaModStatusPlc
● HaModTof
● HaModTon
● HaModVisuData
● HANDLE
● HANDLE_TO_DWORD
● HANDLE_TO_LWORD
● HANDLE_TO_WORD
● HandleChannelError
● HandleReply
● HandleStore
● HasAlarmStorageRecordLimit
● HashCodeFromString
● HashCodeFromWString
● HashTable
● HashTableFactory
● HEADER_TAG
● HeapInspectionInfo
● HEXinASCII_TO_BYTE
● HexStrToLReal
● HexStrToReal
● HighByte
● HighWord
● HIL_LiveList
● HilscherCardMgr
● HistoricalActiveAlarmRowID
● history
● HOSTNAME
● HOUR
● HYSTERESIS
● Hysteresis_DINT
● Hysteresis_LREAL

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4328

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Gray-Conversions/GRAY_TO_BYTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Gray-Conversions/GRAY_TO_DWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Gray-Conversions/GRAY_TO_WORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/GuidHelper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModAIO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Functions/CALLBACK/HaModCallbackStop.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Control/HaModControl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModCtd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModCtu.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModCtud.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Control/HaModDataSync.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModDerivative.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Control/HaModDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModDIO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Types/Internal-data-types/HaModEthFrame.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Types/Internal-data-types/HaModEthFrameHeader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModIntegral.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModPid.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModPidFixCycle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModRampInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModRampReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Types/Internal-data-types/HaModStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Types/HaModStatusLifecom2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Types/HaModStatusPlc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModTof.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Function-Blocks/Utility/HaModTon.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.12_Library/Types/Internal-data-types/HaModVisuData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/HANDLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/HANDLE/HANDLE_TO_DWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/HANDLE/HANDLE_TO_LWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/HANDLE/HANDLE_TO_WORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Test/HandleChannelError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Test/HandleReply.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/HandleStore.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/HasAlarmStorageRecordLimit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Functions/HashCodeFromString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Functions/HashCodeFromWString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/HashTable/HashTable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/HashTable/HashTableFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSrv.library_Library/Structs/HEADER_TAG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Tests/HeapInspectionInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/HEXASCII-Functions/HEXinASCII_TO_BYTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/HexStrToLReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/HexStrToReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/simple-TYPE/HighByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/simple-TYPE/HighWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvHilscher_Itfs.library_Library/HIL_LiveList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/HilscherCardMgr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Service/HistoricalActiveAlarmRowID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/AbbxBase_1.0.1.2_Library/history.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Types/HOSTNAME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/HOUR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Analog-Monitors/HYSTERESIS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analog-monitors/Hysteresis_DINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analog-monitors/Hysteresis_LREAL.html#index-0

● IAbortable
● IAC500Diag
● IAC500DiagGet
● IACAlarmExtender
● IACAlarmExtender2
● IACAlarmExtender3
● IActionController
● IActionController2
● IActionProvider
● IAddressResolver
● IAlarm
● IAlarm2
● IAlarm3
● IAlarm4
● IAlarm5
● IAlarmClass
● IAlarmConfiguration7
● IAlarmGroup
● IAlarmGroup3
● IAlarmHandler
● IAlarmHandler2
● IAlarmHandler3
● IAlarmHandler4
● IAlarmHandler5
● IAlarmHandlerRemoteMonitor
● IAlarmManagerClient
● IAlarmManagerClient2
● IAlarmNotifiable
● IAlarmRemote
● IAlarmStateChangedEventListener
● IAlarmStateChangedListener
● IAlarmStateChangedListener2
● IAlarmStorageListener
● IAlarmStorageReaderConsumer
● IAlarmStorageReaderConsumer2
● IApplicationRectangleProvider
● IARPCallback
● IARPEthernetClient
● IArrayNotifiable
● IAsyncActionProvider
● IAsyncProperty
● IBackgroundTask
● IBACnetClient
● IBACnetEventConsumer
● IBACnetObjectBase
● IBACnetPersistence
● IBACnetPropertyConfiguration
● IBACnetServer
● IBACnetServerPlugin
● IBACnetServerPluginCallback
● IBACnetServerPluginHook
● IBACnetStaticObjectBase
● IBase
● IBehaviourModel
● IBoolElement

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4329

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/IAbortable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/DiagUtil_1.3.6.9_Library/Interfaces/IAC500Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/DiagUtil_1.3.6.9_Library/Interfaces/IAC500DiagGet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Composer/AC_Alarming.library_Library/ExtenderFB/IACAlarmExtender.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Composer/AC_Alarming.library_Library/ExtenderFB/IACAlarmExtender2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Composer/AC_Alarming.library_Library/ExtenderFB/IACAlarmExtender3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionController.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionController2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/IActionProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/IAddressResolver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarm2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarm3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarm4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarm5.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmConfiguration7.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmGroup.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmGroup3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmHandler2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmHandler3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmHandler4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmHandler5.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmHandlerRemoteMonitor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmManagerClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmManagerClient2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmNotifiable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmRemote.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmStateChangedEventListener.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmStateChangedListener.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmStateChangedListener2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/IAlarmStorageListener.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/IAlarmStorageReaderConsumer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/IAlarmStorageReaderConsumer2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IApplicationRectangleProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/ARP.library_Library/Interfaces/IARPCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/ARP.library_Library/Interfaces/IARPEthernetClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/IArrayNotifiable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Asynchronous%20Job%20%20Manager.library_Library/AsyncManager/Interfaces/IAsyncActionProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/AsyncProperty/IAsyncProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Asynchronous%20Job%20%20Manager.library_Library/AsyncManager/Interfaces/IBackgroundTask.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetClient/IBACnetClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetHooksCallbacks/IBACnetEventConsumer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/IBACnetObjectBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Persistence/IBACnetPersistence.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/PropertyConfiguration/IBACnetPropertyConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetServer/IBACnetServer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetServerPlugin/IBACnetServerPlugin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetServerPlugin/IBACnetServerPluginCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetServerPlugin/IBACnetServerPluginHook.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/BACnetObjects/IBACnetStaticObjectBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/Base_Itfs.library_Library/IBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IBehaviourModel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IBoolElement.html#index-0

● IBranchTreeNode
● IBuffer
● IBufferPool
● IBufferPoolFactoryArgs
● IBus
● ICallOnDialogBlocks
● ICallOnVisuBlocks
● ICANopenEventHandler
● ICanOpenStack
● ICascadedDisposalProvider
● ICDSV3RequestBuilder
● ICDSV3RequestCallback
● ICertificateVerifier
● ICleanupActionProvider
● IClient
● IClientObjectInfo
● IClippingLayer
● ICmpEventCallback
● ICmpIoDrv
● ICmpIoDrvBusControl
● ICmpIoDrvBusControl2
● ICmpIoDrvCIPServices
● ICmpIoDrvLiveList
● ICmpIoDrvParameter
● ICmpIoDrvParameter2
● ICmpIoDrvPbSlaveActivation
● ICmpIoDrvProfibus
● ICmpIoDrvProfibusConfig
● ICmpIoDrvProfiNet
● ICollection
● ICompactTextListInfo2
● ICompleteSurroundingRectInfo
● IConfigurationProvider
● IConfigurationProvider2
● IConnection
● IContainerPaintSelf
● IContainsValue
● ICursor
● ICursor2
● ICursor3
● ICursorAsync
● ICustomAlarmToOpcUaMapping
● ICustomEventHandler
● ICyclicActionProvider
● ID
● ID_TO_ADDR
● IData
● IDataItemCompound
● IDataItemListInternal
● IDatasourcesActionRecordInternal
● IDatasourcesResourceEntryAllocator
● IDateTimeLanguageTextTarget
● IDateTimeProvider
● IDENT
● IDENT_TO_DWORD

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4330

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/IBranchTreeNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/Buffer/Interfaces/IBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/BufferPool/Interfaces/IBufferPool.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/BufferPool/Interfaces/IBufferPoolFactoryArgs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/IBus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ICallOnDialogBlocks.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ICallOnVisuBlocks.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Interfaces/ICANopenEventHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Interfaces/ICanOpenStack.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Interfaces/ICascadedDisposalProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ICDSV3RequestBuilder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ICDSV3RequestCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TLS/ICertificateVerifier.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/ICleanupActionProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/IClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/IClientObjectInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IClippingLayer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr_Itfs.library_Library/ICmpEventCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDriver2_Itfs.library_Library/ICmpIoDrv.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvBusControl_Itfs.library_Library/ICmpIoDrvBusControl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvBusControl_Itfs.library_Library/ICmpIoDrvBusControl2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvCIPService_Itfs.library_Library/ICmpIoDrvCIPServices.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvHilscher_Itfs.library_Library/ICmpIoDrvLiveList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvParameter2_Itfs.library_Library/ICmpIoDrvParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvParameter2_Itfs.library_Library/ICmpIoDrvParameter2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/ICmpIoDrvPbSlaveActivation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/ICmpIoDrvProfibus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/ICmpIoDrvProfibusConfig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfiNet2_Itfs.library_Library/ICmpIoDrvProfiNet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/ICollection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/ICompactTextListInfo2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/ICompleteSurroundingRectInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IConfigurationProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IConfigurationProvider2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/IConnection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/IContainerPaintSelf.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IContainsValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ICursor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ICursor2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ICursor3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncStorage/ICursorAsync.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAProviderAlarmConfiguration.library_Library/Curstom-Mapping/ICustomAlarmToOpcUaMapping.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ICustomEventHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/ICyclicActionProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/DP-Address/ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/ID_TO_ADDR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20FB%20Factory.library_Library/Interfaces/IData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IDataItemCompound.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IDataItemListInternal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IDatasourcesActionRecordInternal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Allocation/IDatasourcesResourceEntryAllocator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/IDateTimeLanguageTextTarget.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Interfaces/IDateTimeProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/IDENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/IDENT/IDENT_TO_DWORD.html#index-0

● IDENT_TO_WORD
● IDevice
● IDevice2
● IDeviceCM579EtherCAT
● IDeviceCM582Profibus
● IDeviceCM589Profinet
● IDeviceCM592Profibus
● IDeviceCM598Can
● IDeviceSM560
● IDialogCloseListener
● IDialogCloseListenerWithTag
● IDialogManager2
● IDialogManager3
● IDialogManager4
● IDialogManager5
● IDialogManager6
● IDialogManager7
● IDialogManager8
● IDintElement
● IDintSet
● IDisposable
● IDoubleLinkedList
● IDrawSequentially
● IEC_BACNET_ABORT_REASON
● IEC_BACNET_ACCESS
● IEC_BACNET_ACCESS_AUTHENTICATION_FACTOR_DISABLE
● IEC_BACNET_ACCESS_CREDENTIAL_DISABLE
● IEC_BACNET_ACCESS_CREDENTIAL_DISABLE_REASON
● IEC_BACNET_ACCESS_EVENT
● IEC_BACNET_ACCESS_PASSBACK_MODE
● IEC_BACNET_ACCESS_RULE
● IEC_BACNET_ACCESS_RULE_LOCATION_SPECIFIER
● IEC_BACNET_ACCESS_RULE_RANGE_SPECIFIER
● IEC_BACNET_ACCESS_USER_TYPE
● IEC_BACNET_ACCESS_ZONE_OCCUPANCY_STATE
● IEC_BACNET_ACCUMULATOR_RECORD
● IEC_BACNET_ACCUMULATOR_STATUS
● IEC_BACNET_ACK_ALARM_INFO
● IEC_BACNET_ACK_FILTER
● IEC_BACNET_ACTION
● IEC_BACNET_ACTION_COMMAND
● IEC_BACNET_ACTION_LIST
● IEC_BACNET_ADDRESS
● IEC_BACNET_ADDRESS_BINDING
● IEC_BACNET_ADDRESS_TO_STRING
● IEC_BACNET_ALARM_INFO
● IEC_BACNET_ALARM_SUMMARY
● IEC_BACNET_APDU_PROPERTIES
● IEC_BACNET_ARRAY_INDEX
● IEC_BACNET_ASSIGNED_ACCESS_RIGHTS
● IEC_BACNET_AUTHENTICATION_FACTOR
● IEC_BACNET_AUTHENTICATION_FACTOR_FORMAT
● IEC_BACNET_AUTHENTICATION_FACTOR_TYPE
● IEC_BACNET_AUTHENTICATION_POLICY
● IEC_BACNET_AUTHENTICATION_POLICY_DATAINPUT

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4331

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/IDENT/IDENT_TO_WORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/IDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/IDevice2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579EtherCAT_1.0.2.5_Library/Interfaces/IDeviceCM579EtherCAT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM582Profibus_1.0.1.4_Library/Interfaces/IDeviceCM582Profibus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM589Profinet_2.2.0.3_Library/Interfaces/IDeviceCM589Profinet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM592Profibus_1.0.1.4_Library/Interfaces/IDeviceCM592Profibus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM598_1.4.1.4_Library/Interfaces/IDeviceCM598Can.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvSM560_1.3.1.5_Library/Interfaces/IDeviceSM560.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogCloseListener.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogCloseListenerWithTag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager5.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager6.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager7.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager8.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IDintElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/IDintSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/IDisposable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IDoubleLinkedList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/IDrawSequentially.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ABORT_REASON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACCESS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACCESS_AUTHENTICATION_FACTOR_DISABLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACCESS_CREDENTIAL_DISABLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACCESS_CREDENTIAL_DISABLE_REASON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACCESS_EVENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACCESS_PASSBACK_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ACCESS_RULE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACCESS_RULE_LOCATION_SPECIFIER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACCESS_RULE_RANGE_SPECIFIER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACCESS_USER_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACCESS_ZONE_OCCUPANCY_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ACCUMULATOR_RECORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACCUMULATOR_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ACK_ALARM_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACK_FILTER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ACTION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ACTION_COMMAND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ACTION_LIST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ADDRESS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ADDRESS_BINDING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/TO_STRING/IEC_BACNET_ADDRESS_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ALARM_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ALARM_SUMMARY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_APDU_PROPERTIES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_ARRAY_INDEX.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ASSIGNED_ACCESS_RIGHTS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_AUTHENTICATION_FACTOR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_AUTHENTICATION_FACTOR_FORMAT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_AUTHENTICATION_FACTOR_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_AUTHENTICATION_POLICY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_AUTHENTICATION_POLICY_DATAINPUT.html#index-0

● IEC_BACNET_AUTHENTICATION_STATUS
● IEC_BACNET_AUTHORIZATION_MODE
● IEC_BACNET_BACKUP_STATE
● IEC_BACNET_BACKUPRESTORE_INFO
● IEC_BACNET_BINARY_PV
● IEC_BACNET_BIT_STRING
● IEC_BACNET_BOOLEAN
● IEC_BACNET_BUFFER
● IEC_BACNET_BVLL_BDT_ENTRY
● IEC_BACNET_BVLL_DELETE_FDT
● IEC_BACNET_BVLL_DISTRIBUTE_NPDU
● IEC_BACNET_BVLL_FDT_ENTRY
● IEC_BACNET_BVLL_FORWARDED_NPDU
● IEC_BACNET_BVLL_READ_BDT
● IEC_BACNET_BVLL_READ_FDT
● IEC_BACNET_BVLL_RESULT_CODE
● IEC_BACNET_BVLL_TYPE
● IEC_BACNET_BVLL_WRITE_BDT
● IEC_BACNET_BYTE
● IEC_BACNET_CALENDAR_ENTRY
● IEC_BACNET_CALENDAR_ENTRY_TYPE
● IEC_BACNET_CALLBACK_STATUS
● IEC_BACNET_CALLBACK_TYPE
● IEC_BACNET_CB_STATUS
● IEC_BACNET_CB_TYPE
● IEC_BACNET_CHANGE_LIST_INFO
● IEC_BACNET_CHANNEL_VALUE
● IEC_BACNET_CLI_INIT
● IEC_BACNET_CLIENT_COV
● IEC_BACNET_CLIENT_DEVICE_COMM_STATE
● IEC_BACNET_CLIENT_SUBSCRIBE_MODE
● IEC_BACNET_CONF_SERV_REQUEST
● IEC_BACNET_CONTROL_RANGECHK
● IEC_BACNET_CONTROL_REDUNDANT
● IEC_BACNET_CONTROL_STATS
● IEC_BACNET_COV_NOTIF_INFO
● IEC_BACNET_COV_SUBSCRIPTION
● IEC_BACNET_CREATE_OBJECT_INFO
● IEC_BACNET_CREATE_OBJECT_TYPE
● IEC_BACNET_CREDENTIAL_AUTHENTICATION_FACTOR
● IEC_BACNET_DAILY_SCHEDULE
● IEC_BACNET_DATA_TYPE
● IEC_BACNET_DATABASE_INFO
● IEC_BACNET_DATE
● IEC_BACNET_DATE_RANGE
● IEC_BACNET_DATE_TIME
● IEC_BACNET_DATE_TIME_TO_STRING
● IEC_BACNET_DATE_TO_STRING
● IEC_BACNET_DAY_OF_WEEK
● IEC_BACNET_DAY_OF_WEEK_BITS
● IEC_BACNET_DCC_INFO
● IEC_BACNET_DCC_VALUE
● IEC_BACNET_DDX_DDV_SIZE
● IEC_BACNET_DESTINATION
● IEC_BACNET_DEV_OBJ_PROP_REFERENCE

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4332

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_AUTHENTICATION_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_AUTHORIZATION_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_BACKUP_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_BACKUPRESTORE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_BINARY_PV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_BIT_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_BOOLEAN.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_BUFFER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_BVLL_BDT_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_BVLL_DELETE_FDT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_BVLL_DISTRIBUTE_NPDU.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_BVLL_FDT_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_BVLL_FORWARDED_NPDU.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_BVLL_READ_BDT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_BVLL_READ_FDT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_BVLL_RESULT_CODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_BVLL_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_BVLL_WRITE_BDT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_BYTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_CALENDAR_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_CALENDAR_ENTRY_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_CALLBACK_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_CALLBACK_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_CB_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_CB_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_CHANGE_LIST_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_CHANNEL_VALUE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_CLI_INIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_CLIENT_COV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_CLIENT_DEVICE_COMM_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_CLIENT_SUBSCRIBE_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_CONF_SERV_REQUEST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_CONTROL_RANGECHK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_CONTROL_REDUNDANT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_CONTROL_STATS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_COV_NOTIF_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_COV_SUBSCRIPTION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_CREATE_OBJECT_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_CREATE_OBJECT_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_CREDENTIAL_AUTHENTICATION_FACTOR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_DAILY_SCHEDULE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_DATA_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_DATABASE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_DATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_DATE_RANGE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_DATE_TIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/TO_STRING/IEC_BACNET_DATE_TIME_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/TO_STRING/IEC_BACNET_DATE_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_DAY_OF_WEEK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_DAY_OF_WEEK_BITS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_DCC_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_DCC_VALUE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_DDX_DDV_SIZE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_DESTINATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_DEV_OBJ_PROP_REFERENCE.html#index-0

● IEC_BACNET_DEV_OBJ_PROP_VALUE
● IEC_BACNET_DEV_OBJ_REFERENCE
● IEC_BACNET_DEVICE_STATUS
● IEC_BACNET_DOOR_ALARM_STATE
● IEC_BACNET_DOOR_SECURED_STATUS
● IEC_BACNET_DOOR_STATUS
● IEC_BACNET_DOOR_VALUE
● IEC_BACNET_DOUBLE
● IEC_BACNET_DUMP_REPORT_FLAGS
● IEC_BACNET_DUMP_STATE
● IEC_BACNET_DWORD
● IEC_BACNET_ELEMENT_COUNT
● IEC_BACNET_EN_CONDITIONAL
● IEC_BACNET_EN_MANDATORY
● IEC_BACNET_EN_MANDATORY_TO_STRING
● IEC_BACNET_ENGINEERING_UNITS
● IEC_BACNET_ENROLLMENT_FILTER
● IEC_BACNET_ENROLLMENT_INFO
● IEC_BACNET_ENROLLMENT_SUMMARY
● IEC_BACNET_ENUM
● IEC_BACNET_EP_ACCESS_EVENT_PARAM
● IEC_BACNET_EP_BUF_READY_PARAM
● IEC_BACNET_EP_CHG_OF_BITS_PARAM
● IEC_BACNET_EP_CHG_OF_CHARSTRING_PARAM
● IEC_BACNET_EP_CHG_OF_STAT_FLG_PARAM
● IEC_BACNET_EP_CHG_OF_STATES_PARAM
● IEC_BACNET_EP_CMD_FAIL_PARAM
● IEC_BACNET_EP_COLS_PARAM
● IEC_BACNET_EP_COV_CRITERIA_TYPE
● IEC_BACNET_EP_COV_PARAM
● IEC_BACNET_EP_DBL_OUT_OF_RANGE_PARAM
● IEC_BACNET_EP_E_PARAMETER
● IEC_BACNET_EP_EXT_PARAM
● IEC_BACNET_EP_FLOAT_LIMIT_PARAM
● IEC_BACNET_EP_OUT_OF_RANGE_PARAM
● IEC_BACNET_EP_SIG_OUT_OF_RANGE_PARAM
● IEC_BACNET_EP_UNS_OUT_OF_RANGE_PARAM
● IEC_BACNET_EP_URANGE_PARAM
● IEC_BACNET_EPFP_E_PARAMETER
● IEC_BACNET_ERROR
● IEC_BACNET_ERROR_CLASS
● IEC_BACNET_ERROR_CODE
● IEC_BACNET_ERROR_TO_STRING
● IEC_BACNET_ERROR_TYPE
● IEC_BACNET_EVENT_INFO
● IEC_BACNET_EVENT_INFO_INFO
● IEC_BACNET_EVENT_LOG_RECORD
● IEC_BACNET_EVENT_LOG_RECORD_TYPE
● IEC_BACNET_EVENT_NOTIF_INFO
● IEC_BACNET_EVENT_NOTIFICATION_SUBSCRIPTION
● IEC_BACNET_EVENT_PARAMETER
● IEC_BACNET_EVENT_STATE
● IEC_BACNET_EVENT_SUMMARY
● IEC_BACNET_EVENT_TRANSITION_BITS
● IEC_BACNET_EVENT_TYPE

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4333

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_DEV_OBJ_PROP_VALUE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_DEV_OBJ_REFERENCE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_DEVICE_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_DOOR_ALARM_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_DOOR_SECURED_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_DOOR_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_DOOR_VALUE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_DOUBLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_DUMP_REPORT_FLAGS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_DUMP_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_DWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_ELEMENT_COUNT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EN_CONDITIONAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EN_MANDATORY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/TO_STRING/IEC_BACNET_EN_MANDATORY_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ENGINEERING_UNITS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ENROLLMENT_FILTER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ENROLLMENT_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ENROLLMENT_SUMMARY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_ENUM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_ACCESS_EVENT_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_BUF_READY_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_CHG_OF_BITS_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_CHG_OF_CHARSTRING_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_CHG_OF_STAT_FLG_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_CHG_OF_STATES_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_CMD_FAIL_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_COLS_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_EP_COV_CRITERIA_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_COV_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_DBL_OUT_OF_RANGE_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_EP_E_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_EXT_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_FLOAT_LIMIT_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_OUT_OF_RANGE_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_SIG_OUT_OF_RANGE_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_UNS_OUT_OF_RANGE_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EP_URANGE_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EPFP_E_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ERROR_CLASS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_ERROR_CODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/ToString/IEC_BACNET_ERROR_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_ERROR_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EVENT_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EVENT_INFO_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EVENT_LOG_RECORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_EVENT_LOG_RECORD_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EVENT_NOTIF_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EVENT_NOTIFICATION_SUBSCRIPTION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EVENT_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_EVENT_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_EVENT_SUMMARY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_EVENT_TRANSITION_BITS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_EVENT_TYPE.html#index-0

● IEC_BACNET_FAILURE_TYPE
● IEC_BACNET_FAULT_PARAM_TYPE
● IEC_BACNET_FAULT_PARAMETER
● IEC_BACNET_FILE_ACCESS_METHOD
● IEC_BACNET_FILE_ACCESS_TYPE
● IEC_BACNET_FP_CHARSTRING_PARAM
● IEC_BACNET_FP_COLS_PARAM
● IEC_BACNET_FP_E_PARAMETER
● IEC_BACNET_FP_EXT_PARAM
● IEC_BACNET_FP_STAT_FLG_PARAM
● IEC_BACNET_FP_STATES_PARAM
● IEC_BACNET_FRAME_PARAM
● IEC_BACNET_FRAME_PART
● IEC_BACNET_FRAME_PART_TYPE
● IEC_BACNET_GROUP_CHANNEL_VALUE
● IEC_BACNET_HANDLE
● IEC_BACNET_I_AM_INFO
● IEC_BACNET_I_HAVE_INFO
● IEC_BACNET_INST_NUMBER
● IEC_BACNET_IP_BBMD_ENTRY
● IEC_BACNET_KEY_ID_ALGORITHM
● IEC_BACNET_KEY_ID_NUMBER
● IEC_BACNET_KEY_IDENTIFIER
● IEC_BACNET_KEY_REVISION
● IEC_BACNET_LIFE_SAFETY_INFO
● IEC_BACNET_LIFE_SAFETY_MODE
● IEC_BACNET_LIFE_SAFETY_OPERATION
● IEC_BACNET_LIFE_SAFETY_STATE
● IEC_BACNET_LIGHTING_COMMAND
● IEC_BACNET_LIGHTING_IN_PROGRESS
● IEC_BACNET_LIGHTING_OPERATION
● IEC_BACNET_LIGHTING_TRANSITION
● IEC_BACNET_LIMIT_ENABLE
● IEC_BACNET_LOCK_STATUS
● IEC_BACNET_LOG_RECORD
● IEC_BACNET_LOG_RECORD_M_DATA
● IEC_BACNET_LOG_RECORD_M_DATA_TYPE
● IEC_BACNET_LOG_RECORD_M_ENTRY
● IEC_BACNET_LOG_RECORD_MULTIPLE
● IEC_BACNET_LOG_RECORD_MULTIPLE_TYPE
● IEC_BACNET_LOG_RECORD_TYPE
● IEC_BACNET_LOG_STATUS_BITS
● IEC_BACNET_LOGGING_TYPE
● IEC_BACNET_MAC_ETH
● IEC_BACNET_MAC_IP
● IEC_BACNET_MAC_IP_TO_STRING
● IEC_BACNET_MAC_LON
● IEC_BACNET_MAC_MSTP
● IEC_BACNET_MAC_PTP
● IEC_BACNET_MAINTENANCE
● IEC_BACNET_MESSAGE_CLASS
● IEC_BACNET_MESSAGE_CLASS_TYPE
● IEC_BACNET_MESSAGE_PRIORITY
● IEC_BACNET_MONTH
● IEC_BACNET_NETWORK_MANAGEMENT_MESSAGE

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4334

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_FAILURE_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_FAULT_PARAM_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_FAULT_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_FILE_ACCESS_METHOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_FILE_ACCESS_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_FP_CHARSTRING_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_FP_COLS_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_FP_E_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_FP_EXT_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_FP_STAT_FLG_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_FP_STATES_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_FRAME_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_FRAME_PART.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_FRAME_PART_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_GROUP_CHANNEL_VALUE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_HANDLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_I_AM_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_I_HAVE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_INST_NUMBER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_IP_BBMD_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_KEY_ID_ALGORITHM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_KEY_ID_NUMBER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_KEY_IDENTIFIER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_KEY_REVISION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_LIFE_SAFETY_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LIFE_SAFETY_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LIFE_SAFETY_OPERATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LIFE_SAFETY_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_LIGHTING_COMMAND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LIGHTING_IN_PROGRESS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LIGHTING_OPERATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LIGHTING_TRANSITION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LIMIT_ENABLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LOCK_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_LOG_RECORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_LOG_RECORD_M_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LOG_RECORD_M_DATA_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_LOG_RECORD_M_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_LOG_RECORD_MULTIPLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LOG_RECORD_MULTIPLE_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LOG_RECORD_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LOG_STATUS_BITS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_LOGGING_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_MAC_ETH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_MAC_IP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/TO_STRING/IEC_BACNET_MAC_IP_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_MAC_LON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_MAC_MSTP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_MAC_PTP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_MAINTENANCE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_MESSAGE_CLASS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_MESSAGE_CLASS_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_MESSAGE_PRIORITY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_MONTH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NETWORK_MANAGEMENT_MESSAGE.html#index-0

● IEC_BACNET_NETWORK_MANAGEMENT_MSG_TYPE
● IEC_BACNET_NETWORK_SECURITY_POLICY
● IEC_BACNET_NMM_BVLL
● IEC_BACNET_NMM_CONFIRM_TO_NETWORK
● IEC_BACNET_NMM_ESTABLISH_TO_NETWORK
● IEC_BACNET_NMM_EVENT
● IEC_BACNET_NMM_EVENT_REASON
● IEC_BACNET_NMM_IAM_ROUTER_TO_NETWORK
● IEC_BACNET_NMM_ICOULDBE_ROUTER_TO_NETWORK
● IEC_BACNET_NMM_INDICATE_TO_NETWORK
● IEC_BACNET_NMM_INIT_ROUTINGTABLE
● IEC_BACNET_NMM_MESSAGE_ID
● IEC_BACNET_NMM_NETWORK
● IEC_BACNET_NMM_NETWORK_NUMBER_IS
● IEC_BACNET_NMM_REJECT_REASON
● IEC_BACNET_NMM_REJECT_TO_NETWORK
● IEC_BACNET_NMM_ROUTER_AVAIL_TO_NETWORK
● IEC_BACNET_NMM_ROUTER_BUSY_TO_NETWORK
● IEC_BACNET_NMM_ROUTINGTABLE_ACK
● IEC_BACNET_NMM_ROUTINGTABLE_ENTRY
● IEC_BACNET_NMM_TIMESTAMP
● IEC_BACNET_NMM_TYPE
● IEC_BACNET_NODE_TYPE
● IEC_BACNET_NOTIFICATION_PARAMETERS
● IEC_BACNET_NOTIFY_TYPE
● IEC_BACNET_NP_ACCESS_EVENT_PARAM
● IEC_BACNET_NP_BUF_READY_PARAM
● IEC_BACNET_NP_BUF_READY_PARAM2
● IEC_BACNET_NP_CHG_OF_BITS_PARAM
● IEC_BACNET_NP_CHG_OF_CHARSTRING_PARAM
● IEC_BACNET_NP_CHG_OF_RELIABTY_PARAM
● IEC_BACNET_NP_CHG_OF_STAT_FLG_PARAM
● IEC_BACNET_NP_CHG_OF_STATE_PARAM
● IEC_BACNET_NP_CMD_FAIL_PARAM
● IEC_BACNET_NP_COLS_PARAM
● IEC_BACNET_NP_COMPLEX_PARAM
● IEC_BACNET_NP_COV_PARAM
● IEC_BACNET_NP_COV_TYPE
● IEC_BACNET_NP_DBL_OUT_OF_RANGE_PARAM
● IEC_BACNET_NP_E_PARAMETER
● IEC_BACNET_NP_EXT_PARAM
● IEC_BACNET_NP_FLOAT_LIMIT_PARAM
● IEC_BACNET_NP_OUT_OF_RANGE_PARAM
● IEC_BACNET_NP_SIG_OUT_OF_RANGE_PARAM
● IEC_BACNET_NP_UNS_OUT_OF_RANGE_PARAM
● IEC_BACNET_NP_URANGE_PARAM
● IEC_BACNET_NPDU_REJECT_REASON
● IEC_BACNET_NPDU_TYPE
● IEC_BACNET_OBJ_PROP_REFERENCE
● IEC_BACNET_OBJECT_ID
● IEC_BACNET_OBJECT_ID_TO_STRING
● IEC_BACNET_OBJECT_SPECIFIER
● IEC_BACNET_OBJECT_TYPE
● IEC_BACNET_OBJECT_TYPES_BITS
● IEC_BACNET_OCTET_STRING

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4335

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_NETWORK_MANAGEMENT_MSG_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NETWORK_SECURITY_POLICY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NMM_BVLL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NMM_CONFIRM_TO_NETWORK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NMM_ESTABLISH_TO_NETWORK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_NMM_EVENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_NMM_EVENT_REASON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NMM_IAM_ROUTER_TO_NETWORK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NMM_ICOULDBE_ROUTER_TO_NETWORK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NMM_INDICATE_TO_NETWORK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NMM_INIT_ROUTINGTABLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_NMM_MESSAGE_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NMM_NETWORK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NMM_NETWORK_NUMBER_IS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_NMM_REJECT_REASON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NMM_REJECT_TO_NETWORK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_NMM_ROUTER_AVAIL_TO_NETWORK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_NMM_ROUTER_BUSY_TO_NETWORK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_NMM_ROUTINGTABLE_ACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NMM_ROUTINGTABLE_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_NMM_TIMESTAMP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_NMM_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_NODE_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NOTIFICATION_PARAMETERS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_NOTIFY_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_ACCESS_EVENT_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_BUF_READY_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_BUF_READY_PARAM2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_CHG_OF_BITS_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_CHG_OF_CHARSTRING_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_CHG_OF_RELIABTY_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_CHG_OF_STAT_FLG_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_CHG_OF_STATE_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_CMD_FAIL_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_COLS_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_COMPLEX_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_COV_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_NP_COV_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_DBL_OUT_OF_RANGE_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_E_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_EXT_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_FLOAT_LIMIT_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_OUT_OF_RANGE_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_SIG_OUT_OF_RANGE_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_UNS_OUT_OF_RANGE_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_NP_URANGE_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_NPDU_REJECT_REASON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_NPDU_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_OBJ_PROP_REFERENCE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_OBJECT_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/TO_STRING/IEC_BACNET_OBJECT_ID_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_OBJECT_SPECIFIER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_OBJECT_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_OBJECT_TYPES_BITS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_OCTET_STRING.html#index-0

● IEC_BACNET_OPTIONAL_STRING
● IEC_BACNET_OS_TIME_PROVIDER
● IEC_BACNET_OS_TIME_PROVIDER_TIME
● IEC_BACNET_PDU_TYPE
● IEC_BACNET_PERIOD_TYPE
● IEC_BACNET_POLARITY
● IEC_BACNET_PORT_PERMISSION
● IEC_BACNET_PRESCALE
● IEC_BACNET_PRIORITY_ARRAY_ITEM
● IEC_BACNET_PRIORITY_LEVEL
● IEC_BACNET_PRIVATE_TRANSFER_INFO
● IEC_BACNET_PROCESS_ID_SELECTION
● IEC_BACNET_PROGRAM_ERROR
● IEC_BACNET_PROGRAM_REQUEST
● IEC_BACNET_PROGRAM_STATE
● IEC_BACNET_PROP_STATES_TYPE
● IEC_BACNET_PROPERTY_ACCESS_RESULT
● IEC_BACNET_PROPERTY_CONTENTS
● IEC_BACNET_PROPERTY_DESCRIPTION
● IEC_BACNET_PROPERTY_DESCRIPTION_LIST
● IEC_BACNET_PROPERTY_ID
● IEC_BACNET_PROPERTY_INSTANCE
● IEC_BACNET_PROPERTY_REFERENCE
● IEC_BACNET_PROPERTY_STATES
● IEC_BACNET_PROPERTY_VALUE
● IEC_BACNET_RANGE_FLAGS
● IEC_BACNET_RANGE_TYPE
● IEC_BACNET_RAW_ASN1_VALUE
● IEC_BACNET_READ_ACCESS_RESULT
● IEC_BACNET_READ_ACCESS_SPEC
● IEC_BACNET_READ_FILE_INFO
● IEC_BACNET_READ_FILE_RANGE
● IEC_BACNET_READ_FILE_RESULT
● IEC_BACNET_READ_INFO
● IEC_BACNET_READ_INFO_TO_STRING
● IEC_BACNET_READ_LIST
● IEC_BACNET_READ_MUL_INFO
● IEC_BACNET_READ_RANGE_INFO
● IEC_BACNET_READ_RANGE_RANGE
● IEC_BACNET_READ_RANGE_RESULT
● IEC_BACNET_READ_RAW_RESULT_LIST
● IEC_BACNET_READ_RESULT_ITEM
● IEC_BACNET_READ_RESULT_LIST
● IEC_BACNET_REAL
● IEC_BACNET_RECIPIENT
● IEC_BACNET_RECIPIENT_PROCESS
● IEC_BACNET_RECIPIENT_TYPE
● IEC_BACNET_REINIT_DEV_INFO
● IEC_BACNET_REINIT_TYPE
● IEC_BACNET_REJECT_REASON
● IEC_BACNET_RELATION_TYPE
● IEC_BACNET_RELIABILITY
● IEC_BACNET_REMOTE_DEVICE_CAPS
● IEC_BACNET_RESTART_REASON
● IEC_BACNET_SCALE

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4336

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_OPTIONAL_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_OS_TIME_PROVIDER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_OS_TIME_PROVIDER_TIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_PDU_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_PERIOD_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_POLARITY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PORT_PERMISSION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PRESCALE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PRIORITY_ARRAY_ITEM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_PRIORITY_LEVEL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PRIVATE_TRANSFER_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PROCESS_ID_SELECTION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_PROGRAM_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_PROGRAM_REQUEST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_PROGRAM_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_PROP_STATES_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PROPERTY_ACCESS_RESULT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PROPERTY_CONTENTS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PROPERTY_DESCRIPTION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PROPERTY_DESCRIPTION_LIST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_PROPERTY_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PROPERTY_INSTANCE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PROPERTY_REFERENCE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PROPERTY_STATES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_PROPERTY_VALUE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_RANGE_FLAGS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_RANGE_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_RAW_ASN1_VALUE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_READ_ACCESS_RESULT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_READ_ACCESS_SPEC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_READ_FILE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/IEC_BACNET_READ_FILE_RANGE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_READ_FILE_RESULT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_READ_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/TO_STRING/IEC_BACNET_READ_INFO_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_READ_LIST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_READ_MUL_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_READ_RANGE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/IEC_BACNET_READ_RANGE_RANGE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_READ_RANGE_RESULT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_READ_RAW_RESULT_LIST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_READ_RESULT_ITEM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_READ_RESULT_LIST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_REAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_RECIPIENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_RECIPIENT_PROCESS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_RECIPIENT_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_REINIT_DEV_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_REINIT_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_REJECT_REASON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_RELATION_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_RELIABILITY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_REMOTE_DEVICE_CAPS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_RESTART_REASON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_SCALE.html#index-0

● IEC_BACNET_SECURITY_KEY_SET
● IEC_BACNET_SECURITY_LEVEL
● IEC_BACNET_SECURITY_POLICY
● IEC_BACNET_SECURITY_RESPONSE_CODE
● IEC_BACNET_SEGMENTATION
● IEC_BACNET_SELECTION_LOGIC
● IEC_BACNET_SERVICES_BITS
● IEC_BACNET_SESSION_KEY
● IEC_BACNET_SETPOINT_REFERENCE
● IEC_BACNET_SHED_LEVEL
● IEC_BACNET_SHED_LEVEL_TYPE
● IEC_BACNET_SHED_STATE
● IEC_BACNET_SIGNED
● IEC_BACNET_SILENCED_STATE
● IEC_BACNET_SPECIAL_EVENT
● IEC_BACNET_SRVR_INIT
● IEC_BACNET_STACK_CONTROL
● IEC_BACNET_STACK_CONTROL_TYPE
● IEC_BACNET_STACK_DATALINK
● IEC_BACNET_STACK_DATALINK_CONFIG
● IEC_BACNET_STACK_DATALINK_TYPE
● IEC_BACNET_STACK_ETHERNET_DATALINK
● IEC_BACNET_STACK_IERROR
● IEC_BACNET_STACK_IERROR_TYPE
● IEC_BACNET_STACK_IP_DATALINK
● IEC_BACNET_STACK_LONTALK_DATALINK
● IEC_BACNET_STACK_MSTP_DATALINK
● IEC_BACNET_STACK_PTP_DATALINK
● IEC_BACNET_STACK_VIRTUAL_DATALINK
● IEC_BACNET_STATE_FILTER
● IEC_BACNET_STATUS
● IEC_BACNET_STATUS_FLAG_BITS
● IEC_BACNET_STRING
● IEC_BACNET_STRING_TABLE_ENTRY
● IEC_BACNET_STRING_TABLE_INFO
● IEC_BACNET_STRING_TYPE
● IEC_BACNET_SUBSCRIBE_COV_INFO
● IEC_BACNET_SUBSCRIBE_COVP_INFO
● IEC_BACNET_TAG
● IEC_BACNET_TEMPLATE_DEVICE
● IEC_BACNET_TEMPLATE_OBJECT
● IEC_BACNET_TEXT_MESSAGE_INFO
● IEC_BACNET_TIME
● IEC_BACNET_TIME_STAMP
● IEC_BACNET_TIME_STAMP_TYPE
● IEC_BACNET_TIME_SYNC_INFO
● IEC_BACNET_TIME_TO_STRING
● IEC_BACNET_TIME_VALUE
● IEC_BACNET_UNCONF_SERV_REQUEST
● IEC_BACNET_UNSIGNED
● IEC_BACNET_VT_CLASS
● IEC_BACNET_VT_SESSION
● IEC_BACNET_WEEK_AND_DAY
● IEC_BACNET_WEEK_OF_MONTH
● IEC_BACNET_WHO_HAS_IND_OBJ_SPEC_TYPE

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4337

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_SECURITY_KEY_SET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_SECURITY_LEVEL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_SECURITY_POLICY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_SECURITY_RESPONSE_CODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_SEGMENTATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_SELECTION_LOGIC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_SERVICES_BITS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_SESSION_KEY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_SETPOINT_REFERENCE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_SHED_LEVEL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_SHED_LEVEL_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_SHED_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_SIGNED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_SILENCED_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_SPECIAL_EVENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_SRVR_INIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STACK_CONTROL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_STACK_CONTROL_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STACK_DATALINK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STACK_DATALINK_CONFIG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_STACK_DATALINK_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STACK_ETHERNET_DATALINK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STACK_IERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_STACK_IERROR_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STACK_IP_DATALINK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STACK_LONTALK_DATALINK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STACK_MSTP_DATALINK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STACK_PTP_DATALINK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STACK_VIRTUAL_DATALINK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_STATE_FILTER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_STATUS_FLAG_BITS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STRING_TABLE_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_STRING_TABLE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_STRING_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_SUBSCRIBE_COV_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_SUBSCRIBE_COVP_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_TAG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_TEMPLATE_DEVICE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_TEMPLATE_OBJECT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_TEXT_MESSAGE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_TIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_TIME_STAMP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_TIME_STAMP_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_TIME_SYNC_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/TO_STRING/IEC_BACNET_TIME_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_TIME_VALUE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_UNCONF_SERV_REQUEST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_UNSIGNED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_VT_CLASS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_VT_SESSION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_WEEK_AND_DAY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_WEEK_OF_MONTH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_WHO_HAS_IND_OBJ_SPEC_TYPE.html#index-0

● IEC_BACNET_WHO_HAS_INFO
● IEC_BACNET_WHO_HAS_PARAM
● IEC_BACNET_WHO_HAS_TYPE
● IEC_BACNET_WHO_IS_INFO
● IEC_BACNET_WORD
● IEC_BACNET_WRITE_FILE_DATA
● IEC_BACNET_WRITE_FILE_INFO
● IEC_BACNET_WRITE_FILE_RESULT
● IEC_BACNET_WRITE_GROUP_INFO
● IEC_BACNET_WRITE_INFO
● IEC_BACNET_WRITE_INFO_TO_STRING
● IEC_BACNET_WRITE_ITEM
● IEC_BACNET_WRITE_LIST
● IEC_BACNET_WRITE_MUL_INFO
● IEC_BACNET_WRITE_STATUS
● IEC_CYCLE_STRUCT
● IEC_STATE
● IEC60870_5_104_Connection
● IEC60870_BACKGROUND_SCAN
● IEC60870_DISABLE
● IEC60870_DoubleCommand
● IEC60870_DoublePointInformation
● IEC60870_GET_ADDRESS
● IEC60870_IntegratedTotal
● IEC60870_MeasuredValue
● IEC60870_REC_C_DC
● IEC60870_REC_C_SC
● IEC60870_REC_C_SE
● IEC60870_REC_C_TS_NA_1
● IEC60870_REC_M_DP
● IEC60870_REC_M_IT
● IEC60870_REC_M_ME
● IEC60870_REC_M_ME_1
● IEC60870_REC_M_SP
● IEC60870_REC_P_ME
● IEC60870_SEND_C_CI_NA_1
● IEC60870_SEND_C_CI_NA_1_2
● IEC60870_SEND_C_CS_NA_1
● IEC60870_SEND_C_CS_NA_1_2
● IEC60870_SEND_C_DC
● IEC60870_SEND_C_IC_NA_1
● IEC60870_SEND_C_IC_NA_1_2
● IEC60870_SEND_C_RD_NA_1
● IEC60870_SEND_C_RP_NA_1
● IEC60870_SEND_C_RP_NA_1_2
● IEC60870_SEND_C_SC
● IEC60870_SEND_C_SE
● IEC60870_SEND_C_TS_NA_1_ACT
● IEC60870_SEND_C_TS_NA_1_ACTCON
● IEC60870_SEND_DISABLE
● IEC60870_SEND_M_DP
● IEC60870_SEND_M_DP_ET
● IEC60870_SEND_M_EI_NA_1
● IEC60870_SEND_M_IT
● IEC60870_SEND_M_IT_1

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4338

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_WHO_HAS_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_WHO_HAS_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_WHO_HAS_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_WHO_IS_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetTypedefs/IEC_BACNET_WORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/IEC_BACNET_WRITE_FILE_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_WRITE_FILE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_WRITE_FILE_RESULT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_WRITE_GROUP_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_WRITE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/TO_STRING/IEC_BACNET_WRITE_INFO_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_WRITE_ITEM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_WRITE_LIST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/IEC_BACNET_WRITE_MUL_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetEnums/IEC_BACNET_WRITE_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IEC_CYCLE_STRUCT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Enums/IEC_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Structs/IEC60870_5_104_Connection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/General/IEC60870_BACKGROUND_SCAN.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/General/IEC60870_DISABLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Structs/IEC60870_DoubleCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Structs/IEC60870_DoublePointInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/General/IEC60870_GET_ADDRESS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Structs/IEC60870_IntegratedTotal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Structs/IEC60870_MeasuredValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Rec_control_direction/IEC60870_REC_C_DC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Rec_control_direction/IEC60870_REC_C_SC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Rec_control_direction/IEC60870_REC_C_SE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Rec_monitored_direction/IEC60870_REC_C_TS_NA_1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Rec_monitored_direction/IEC60870_REC_M_DP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Rec_monitored_direction/IEC60870_REC_M_IT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Rec_monitored_direction/IEC60870_REC_M_ME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Rec_monitored_direction/IEC60870_REC_M_ME_1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Rec_monitored_direction/IEC60870_REC_M_SP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Parameter_setting/IEC60870_REC_P_ME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_CI_NA_1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_CI_NA_1_2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_CS_NA_1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_CS_NA_1_2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_control_direction/IEC60870_SEND_C_DC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_IC_NA_1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_IC_NA_1_2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_RD_NA_1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_RP_NA_1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_RP_NA_1_2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_control_direction/IEC60870_SEND_C_SC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_control_direction/IEC60870_SEND_C_SE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_TS_NA_1_ACT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_monitored_direction/IEC60870_SEND_C_TS_NA_1_ACTCON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/General/IEC60870_SEND_DISABLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_DP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_DP_ET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_monitored_direction/IEC60870_SEND_M_EI_NA_1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_IT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_IT_1.html#index-0

● IEC60870_SEND_M_IT_1_ET
● IEC60870_SEND_M_IT_16
● IEC60870_SEND_M_IT_16_ET
● IEC60870_SEND_M_ME
● IEC60870_SEND_M_ME_1
● IEC60870_SEND_M_ME_1_ET
● IEC60870_SEND_M_ME_16
● IEC60870_SEND_M_ME_16_ET
● IEC60870_SEND_M_SP
● IEC60870_SEND_M_SP_1_ET
● IEC60870_SEND_M_SP_16
● IEC60870_SEND_M_SP_16_ET
● IEC60870_SEND_P_ME
● IEC60870_SetPoint
● IEC60870_SingleCommand
● IEC60870_SinglePointInformation
● IEC60870_STATE
● IEC60870_TIME
● IEC60870Commands
● IEC60870Disable
● IEC60870DisableSend
● IEC60870GetConfigAddress
● IEC60870GetConfigValues
● IEC60870GetConnectionStatistics
● IEC60870GetPinData
● IEC60870GetStatesOfPinParam
● IEC60870GetStatesOfPins
● IEC60870GetTestInformation
● IEC60870SendCommand
● IEC60870SendPinData
● IEC60870SetParameterValues
● IEC60870SetPinData
● IEC60870StartScan
● IEC61850_ArrayBits_SwapLeft
● IEC61850_ASN1_Decoder
● IEC61850_ASN1_DECODING
● IEC61850_ASN1_Decoding_Data
● IEC61850_ASN1_EncodingBlock
● IEC61850_ASN1_EncodingSize
● IEC61850_ASN1_EncodingSpecific
● IEC61850_ASN1_EncodingStruct
● IEC61850_ASN1_GetNextTag
● IEC61850_ASN1_NewDecoder
● IEC61850_ByteBits_SwapLeft
● IEC61850_ByteBits_SwapRight
● IEC61850_CDC_ACD
● IEC61850_CDC_ACT
● IEC61850_CDC_ALM
● IEC61850_CDC_APC
● IEC61850_CDC_ASG
● IEC61850_CDC_ASS
● IEC61850_CDC_BCR
● IEC61850_CDC_BRCB
● IEC61850_CDC_BSC
● IEC61850_CDC_CMD

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4339

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_IT_1_ET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_IT_16.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_IT_16_ET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_ME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_ME_1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_ME_1_ET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_ME_16.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_ME_16_ET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_SP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_SP_1_ET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_SP_16.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_SP_16_ET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Parameter_setting/IEC60870_SEND_P_ME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Structs/IEC60870_SetPoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Structs/IEC60870_SingleCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Structs/IEC60870_SinglePointInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/General/IEC60870_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Structs/IEC60870_TIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Enums/IEC60870Commands.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870Disable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870DisableSend.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870GetConfigAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870GetConfigValues.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870GetConnectionStatistics.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870GetPinData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870GetStatesOfPinParam.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870GetStatesOfPins.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870GetTestInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870SendCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870SendPinData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870SetParameterValues.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870SetPinData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Functions/IEC60870StartScan.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_ArrayBits_SwapLeft.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_ASN1_Decoder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_ASN1_DECODING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_ASN1_Decoding_Data.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/ASN1/IEC61850_ASN1_EncodingBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/ASN1/IEC61850_ASN1_EncodingSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/ASN1/IEC61850_ASN1_EncodingSpecific.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/ASN1/IEC61850_ASN1_EncodingStruct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_ASN1_GetNextTag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_ASN1_NewDecoder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_ByteBits_SwapLeft.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_ByteBits_SwapRight.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_ACD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_ACT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_ALM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Controllable-Analogue-Information/IEC61850_CDC_APC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Controllable-Analogue-Information/IEC61850_CDC_ASG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_ASS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_BCR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Reporting/IEC61850_CDC_BRCB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Controllable-Status-Information/IEC61850_CDC_BSC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_CMD.html#index-0

● IEC61850_CDC_CMV
● IEC61850_CDC_CSD
● IEC61850_CDC_CTE
● IEC61850_CDC_CURVE
● IEC61850_CDC_DEL
● IEC61850_CDC_DPC
● IEC61850_CDC_DPL
● IEC61850_CDC_DPS
● IEC61850_CDC_GoCB
● IEC61850_CDC_HDEL
● IEC61850_CDC_HMV
● IEC61850_CDC_HWYE
● IEC61850_CDC_INC
● IEC61850_CDC_ING
● IEC61850_CDC_INS
● IEC61850_CDC_ISC
● IEC61850_CDC_LPL
● IEC61850_CDC_MV
● IEC61850_CDC_ORG
● IEC61850_CDC_SAV
● IEC61850_CDC_SEC
● IEC61850_CDC_SEQ
● IEC61850_CDC_SPC
● IEC61850_CDC_SPG
● IEC61850_CDC_SPS
● IEC61850_CDC_SPV
● IEC61850_CDC_STV
● IEC61850_CDC_TMS
● IEC61850_CDC_URCB
● IEC61850_CDC_WDPL
● IEC61850_CDC_WYE
● IEC61850_Check_HexString
● IEC61850_CheckBufferIx
● IEC61850_CheckByteOrder
● IEC61850_CheckClients
● IEC61850_CheckDataPoint
● IEC61850_CheckDoubleDP
● IEC61850_CheckEntryID
● IEC61850_CheckEnumRange
● IEC61850_CheckTrgOp
● IEC61850_CLIENT_ACCEPT
● IEC61850_ClientConnectionFB
● IEC61850_CONCAT3
● IEC61850_CONCAT4
● IEC61850_CONCAT5
● IEC61850_CONCAT6
● IEC61850_CpyAndSwap
● IEC61850_CreateBasicNames
● IEC61850_DatasetFB
● IEC61850_DateTime
● IEC61850_DecodeNull
● IEC61850_DeleteDataSet
● IEC61850_DWORD_TO_HEXSTRING
● IEC61850_Encoding_Array_Count
● IEC61850_Encoding_Array_Struct

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4340

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_CMV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Description-Information/IEC61850_CDC_CSD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_CTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Controllable-Analogue-Information/IEC61850_CDC_CURVE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_DEL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Controllable-Status-Information/IEC61850_CDC_DPC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Description-Information/IEC61850_CDC_DPL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_DPS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/IEC61850_CDC_GoCB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_HDEL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_HMV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_HWYE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Controllable-Status-Information/IEC61850_CDC_INC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Status-Settings/IEC61850_CDC_ING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_INS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Controllable-Status-Information/IEC61850_CDC_ISC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Description-Information/IEC61850_CDC_LPL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_MV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Status-Settings/IEC61850_CDC_ORG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_SAV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_SEC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_SEQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Controllable-Status-Information/IEC61850_CDC_SPC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Status-Settings/IEC61850_CDC_SPG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_SPS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_SPV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_STV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_TMS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Reporting/IEC61850_CDC_URCB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_WDPL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_WYE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_Check_HexString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Reporting/IEC61850_CheckBufferIx.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_CheckByteOrder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_CheckClients.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/DataSet/IEC61850_CheckDataPoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Reporting/IEC61850_CheckDoubleDP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_CheckEntryID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_CheckEnumRange.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Reporting/IEC61850_CheckTrgOp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/IEC61850_CLIENT_ACCEPT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/BASIC/IEC61850_ClientConnectionFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_CONCAT3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_CONCAT4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_CONCAT5.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_CONCAT6.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_CpyAndSwap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_CreateBasicNames.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/DataSet/IEC61850_DatasetFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850_DateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_DecodeNull.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/DataSet/IEC61850_DeleteDataSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_DWORD_TO_HEXSTRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_Array_Count.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_Array_Struct.html#index-0

● IEC61850_Encoding_Component
● IEC61850_Encoding_Component_Struct
● IEC61850_Encoding_ComponentSingle
● IEC61850_Encoding_DirectoryNames
● IEC61850_Encoding_ListOfData
● IEC61850_Encoding_ListOfData_Struct
● IEC61850_Encoding_ListOfVariable
● IEC61850_Encoding_Value
● IEC61850_ENUM_ASN1_TAGS
● IEC61850_ENUM_ATTR_NAMES
● IEC61850_ENUM_DA_ALM_STATE
● IEC61850_ENUM_DA_ANGID
● IEC61850_ENUM_DA_ANGIDCMV
● IEC61850_ENUM_DA_ANGLEREFERENCEKIND
● IEC61850_ENUM_DA_ASS_STVAL
● IEC61850_ENUM_DA_BEH
● IEC61850_ENUM_DA_CBOPCAP
● IEC61850_ENUM_DA_CMDQUAL
● IEC61850_ENUM_DA_CONTROLOUTPUTKIND
● IEC61850_ENUM_DA_CTE_HISRS
● IEC61850_ENUM_DA_CTE_RSPER
● IEC61850_ENUM_DA_CTLMODELKIND
● IEC61850_ENUM_DA_CTLMODELS
● IEC61850_ENUM_DA_CURVECHARKIND
● IEC61850_ENUM_DA_DAWEEKDAYKIND
● IEC61850_ENUM_DA_DBPOS
● IEC61850_ENUM_DA_DIR
● IEC61850_ENUM_DA_DIRMOD
● IEC61850_ENUM_DA_ENUMERATED
● IEC61850_ENUM_DA_FAILMOD
● IEC61850_ENUM_DA_FANCTL
● IEC61850_ENUM_DA_FAULTDIRECTIONKIND
● IEC61850_ENUM_DA_GNST
● IEC61850_ENUM_DA_HEALTH
● IEC61850_ENUM_DA_HVID
● IEC61850_ENUM_DA_HVREFERENCEKIND
● IEC61850_ENUM_DA_LEVMOD
● IEC61850_ENUM_DA_LIVDEAMOD
● IEC61850_ENUM_DA_MOD
● IEC61850_ENUM_DA_MONTHKIND
● IEC61850_ENUM_DA_MULTIPLIER
● IEC61850_ENUM_DA_MULTIPLIERKIND
● IEC61850_ENUM_DA_OCCURRENCEKIND
● IEC61850_ENUM_DA_OPMOD
● IEC61850_ENUM_DA_ORCAT
● IEC61850_ENUM_DA_ORIGINATORCATEGORYKIND
● IEC61850_ENUM_DA_PERIODKIND
● IEC61850_ENUM_DA_PHASEANGLEREFERENCEKIND
● IEC61850_ENUM_DA_PHASEFAULTDIRECTIONKIND
● IEC61850_ENUM_DA_PHASEREFERENCEKIND
● IEC61850_ENUM_DA_PHSID
● IEC61850_ENUM_DA_POLQTY
● IEC61850_ENUM_DA_POWCAP
● IEC61850_ENUM_DA_RANGE
● IEC61850_ENUM_DA_RANGEKIND

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4341

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_Component.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_Component_Struct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_ComponentSingle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_DirectoryNames.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_ListOfData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_ListOfData_Struct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_ListOfVariable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_Value.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/IEC61850_ENUM_ASN1_TAGS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/DataClass/IEC61850_ENUM_ATTR_NAMES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ALM_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ANGID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ANGIDCMV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ANGLEREFERENCEKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ASS_STVAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_BEH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CBOPCAP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CMDQUAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CONTROLOUTPUTKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CTE_HISRS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CTE_RSPER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CTLMODELKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CTLMODELS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CURVECHARKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_DAWEEKDAYKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_DBPOS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_DIR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_DIRMOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ENUMERATED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_FAILMOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_FANCTL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_FAULTDIRECTIONKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_GNST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_HEALTH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_HVID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_HVREFERENCEKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_LEVMOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_LIVDEAMOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_MOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_MONTHKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_MULTIPLIER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_MULTIPLIERKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_OCCURRENCEKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_OPMOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ORCAT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ORIGINATORCATEGORYKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_PERIODKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_PHASEANGLEREFERENCEKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_PHASEFAULTDIRECTIONKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_PHASEREFERENCEKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_PHSID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_POLQTY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_POWCAP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_RANGE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_RANGEKIND.html#index-0

● IEC61850_ENUM_DA_RETRMOD
● IEC61850_ENUM_DA_RSTMOD
● IEC61850_ENUM_DA_RVAMOD
● IEC61850_ENUM_DA_SBOCLASSES
● IEC61850_ENUM_DA_SBOCLASSKIND
● IEC61850_ENUM_DA_SCHTYP
● IEC61850_ENUM_DA_SEQT
● IEC61850_ENUM_DA_SEQUENCEKIND
● IEC61850_ENUM_DA_SETCHARACT
● IEC61850_ENUM_DA_SEV
● IEC61850_ENUM_DA_SEVERITYKIND
● IEC61850_ENUM_DA_SHOPCAP
● IEC61850_ENUM_DA_SIUNIT
● IEC61850_ENUM_DA_SIUNITKIND
● IEC61850_ENUM_DA_SPV_CHAPERRS
● IEC61850_ENUM_DA_SPV_SPACS
● IEC61850_ENUM_DA_SWOPCAP
● IEC61850_ENUM_DA_SWTYP
● IEC61850_ENUM_DA_TCMD
● IEC61850_ENUM_DA_TMS_HISRS
● IEC61850_ENUM_DA_TMS_RSPER
● IEC61850_ENUM_DA_TRGMOD
● IEC61850_ENUM_DA_TRMOD
● IEC61850_ENUM_DA_TYPRSCRV
● IEC61850_ENUM_DA_UNBLKMOD
● IEC61850_ENUM_DA_WEIMOD
● IEC61850_ENUM_ELEMENTTYP
● IEC61850_ENUM_FC
● IEC61850_ENUM_MMS_CONFIRMED_REQ_PDU
● IEC61850_ENUM_MMS_CONFIRMED_RESP_PDU
● IEC61850_ENUM_MMS_DataType
● IEC61850_ENUM_MMS_OBJECTCLASS
● IEC61850_ENUM_MMS_PDU
● IEC61850_ENUM_QUALITY
● IEC61850_ENUM_SERVICES
● IEC61850_ENUM_TRGOPT
● IEC61850_EthernetAdapter
● IEC61850_GetDatapoint
● IEC61850_GetDataPointLen
● IEC61850_GetDatapointRef
● IEC61850_GetDefinition
● IEC61850_GetDirectory
● IEC61850_GetDirectory_All
● IEC61850_GetFC
● IEC61850_GetReportLen
● IEC61850_GetURCBDataLen
● IEC61850_GetValue
● IEC61850_GetValues_All
● IEC61850_Goose_ASN1_Decoder
● IEC61850_GOOSE_MReq
● IEC61850_GooseDecodeData
● IEC61850_HEXSTRING_TO_DWORD
● IEC61850_HistDataBuffer_In
● IEC61850_HistDataBufferFB
● IEC61850_Init_BReportBlock

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4342

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_RETRMOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_RSTMOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_RVAMOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SBOCLASSES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SBOCLASSKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SCHTYP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SEQT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SEQUENCEKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SETCHARACT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SEV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SEVERITYKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SHOPCAP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SIUNIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SIUNITKIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SPV_CHAPERRS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SPV_SPACS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SWOPCAP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SWTYP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_TCMD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_TMS_HISRS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_TMS_RSPER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_TRGMOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_TRMOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_TYPRSCRV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_UNBLKMOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_WEIMOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/IEC61850_ENUM_ELEMENTTYP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/IEC61850_ENUM_FC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/MMS/IEC61850_ENUM_MMS_CONFIRMED_REQ_PDU.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/MMS/IEC61850_ENUM_MMS_CONFIRMED_RESP_PDU.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/IEC61850_ENUM_MMS_DataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/MMS/IEC61850_ENUM_MMS_OBJECTCLASS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/MMS/IEC61850_ENUM_MMS_PDU.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/MMS/IEC61850_ENUM_QUALITY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/IEC61850_ENUM_SERVICES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/IEC61850_ENUM_TRGOPT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/IEC61850_EthernetAdapter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetDatapoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Reporting/IEC61850_GetDataPointLen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetDatapointRef.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetDefinition.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetDirectory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetDirectory_All.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_GetFC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850_GetReportLen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Reporting/IEC61850_GetURCBDataLen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetValues_All.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/IEC61850_Goose_ASN1_Decoder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/GOOSE/IEC61850_GOOSE_MReq.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/Tools/IEC61850_GooseDecodeData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_HEXSTRING_TO_DWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/IEC61850_HistDataBuffer_In.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Reporting/IEC61850_HistDataBufferFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Reporting/IEC61850_Init_BReportBlock.html#index-0

● IEC61850_Init_DataPoints
● IEC61850_Init_GoCB
● IEC61850_Init_UBReportBlock
● IEC61850_InitDSLastValPtr
● IEC61850_INT_TO_STRING
● IEC61850_MMS_Data_InterpreterFB
● IEC61850_MMS_ErrorPDU
● IEC61850_MMS_InterpreterFB
● IEC61850_MMSGetBlockLen
● IEC61850_ReadDWord
● IEC61850_ReadISOHeader
● IEC61850_ReadString
● IEC61850_ReadWord
● IEC61850_SetDatasetVal
● IEC61850_SetDSError
● IEC61850_SetISOEntry
● IEC61850_SetISOLen
● IEC61850_SetReportValue
● IEC61850_SetStructIndex
● IEC61850_SetTrgOpt
● IEC61850_SetValue
● IEC61850_SimpleClock
● IEC61850_STR_TO_BYTE
● IEC61850_String_Split
● IEC61850_SWAP_2_BYTE
● IEC61850_SWAP_3_BYTE
● IEC61850_SWAP_4_BYTE
● IEC61850_SysMemCpy
● IEC61850_TimeStampR
● IEC61850_Version
● IEC61850_WordBits_SwapLeft
● IEC61850_WordBits_SwapRight
● IEC61850ServerFB
● IecTaskCreate
● IecTaskCreate2
● IecTaskDelete2
● IecTaskDisableScheduling
● IecTaskDisableWatchdog
● IecTaskDisableWatchdog2
● IecTaskEnableScheduling
● IecTaskEnableWatchdog
● IecTaskEnableWatchdog2
● IecTaskGetCurrent
● IecTaskGetDesc
● IecTaskGetFirst
● IecTaskGetInfo3
● IecTaskGetNext
● IecTaskGetProfiling
● IecTaskReload
● IecTaskResetStatistics
● IecVarAccBrowseCallback
● IecVarAccBrowseDirection
● IecVarAccBrowseDown2
● IecVarAccBrowseGetNext2
● IecVarAccBrowseRecursive

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4343

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_Init_DataPoints.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/IEC61850_Init_GoCB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Reporting/IEC61850_Init_UBReportBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/DataSet/IEC61850_InitDSLastValPtr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_INT_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850_MMS_Data_InterpreterFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850_MMS_ErrorPDU.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850_MMS_InterpreterFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/GOOSE/IEC61850_MMSGetBlockLen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/ISO/TOOLS/IEC61850_ReadDWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/ISO/TOOLS/IEC61850_ReadISOHeader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/ISO/TOOLS/IEC61850_ReadString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/ISO/TOOLS/IEC61850_ReadWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/DataSet/IEC61850_SetDatasetVal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/DataSet/IEC61850_SetDSError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/ISO/TOOLS/IEC61850_SetISOEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/ISO/TOOLS/IEC61850_SetISOLen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Reporting/IEC61850_SetReportValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_SetStructIndex.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/DataSet/IEC61850_SetTrgOpt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_SetValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850_SimpleClock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_STR_TO_BYTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_String_Split.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_SWAP_2_BYTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_SWAP_3_BYTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_SWAP_4_BYTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_SysMemCpy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/IEC61850_TimeStampR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850_Version.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_WordBits_SwapLeft.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/IEC61850/Tools/IEC61850_WordBits_SwapRight.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/IEC61850ServerFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskCreate2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskDelete2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskDisableScheduling.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskDisableWatchdog.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskDisableWatchdog2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskEnableScheduling.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskEnableWatchdog.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskEnableWatchdog2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetCurrent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetDesc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetFirst.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetInfo3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetNext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetProfiling.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskReload.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskResetStatistics.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess_Itfs.library_Library/IecVarAccBrowseCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess_Itfs.library_Library/IecVarAccBrowseDirection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccBrowseDown2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccBrowseGetNext2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccBrowseRecursive.html#index-0

● IecVarAccBrowseUp2
● IecVarAccess
● IecVarAccessUaInformationModelMetaData
● IecVarAccExitVarInfo
● IecVarAccGetFirstInterface
● IecVarAccGetFirstInterface2
● IecVarAccGetNextInterface
● IecVarAccGetNextInterface2
● IecVarAccGetNode4
● IecVarAccGetNodeFullPath4
● IecVarAccGetNodeName4
● IecVarAccGetSymbolSetMask
● IecVarAccInitVarInfo
● IecVarAccInitVarInfo2
● IecVarAccInvalidateNode
● IecVarAccNodeInfoAddBrowseInfo
● IecVarAccNodeInfoAddReference
● IecVarAccNodeInfoGetBrowseInfo
● IecVarAccNodeInfoGetReference
● IecVarAccNodeInfoRemoveBrowseInfo
● IecVarAccNodeInfoRemoveReference
● IecVarAccRegisterInstance
● IecVarAccRegisterInstance2
● IecVarAccRegisterInstance3
● IecVarAccRegisterInstanceBase
● IecVarAccRegisterInstanceBase2
● IecVarAccSetSymbolconfigCrc
● IecVarAccSymbolSetDescription
● IecVarAccUnregisterInstance
● IecVarAccUpdateSymbolSets
● IEdgeTriggered
● IElement
● IEthernet
● IETrig
● IETrigA
● IETrigATl
● IETrigATlTo
● IETrigATo
● IETrigTl
● IETrigTlTo
● IETrigTo
● IExitActionProvider
● IExpandSubNodeAdapterSingleRelease
● IExternalUserDatabaseProvider
● IExternalUserDatabaseProvider2
● IFactory
● IFBCommand
● IFrame
● IFrameElement2
● IFrameElement3
● IFrameManager
● IFrameManager2
● IFrameManagerBase
● IGeneralCommand
● IGestureEventHandler

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4344

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccBrowseUp2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess.library_Library/IecVarAccess.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess.library_Library/IecVarAccessUaInformationModelMetaData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccExitVarInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetFirstInterface.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetFirstInterface2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetNextInterface.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetNextInterface2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetNode4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetNodeFullPath4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetNodeName4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetSymbolSetMask.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccInitVarInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccInitVarInfo2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccInvalidateNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccNodeInfoAddBrowseInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccNodeInfoAddReference.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccNodeInfoGetBrowseInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccNodeInfoGetReference.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccNodeInfoRemoveBrowseInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccNodeInfoRemoveReference.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccRegisterInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccRegisterInstance2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccRegisterInstance3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccRegisterInstanceBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccRegisterInstanceBase2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccSetSymbolconfigCrc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IecVarAccSymbolSetDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccUnregisterInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccUpdateSymbolSets.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/IEdgeTriggered.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/Element/IElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/ARP.library_Library/Interfaces/IEthernet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigATl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigATlTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigATo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigTl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigTlTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/IExitActionProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IExpandSubNodeAdapterSingleRelease.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt2_Itfs.library_Library/ExternalUserDatabase/Interfaces/IExternalUserDatabaseProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt2_Itfs.library_Library/ExternalUserDatabase/Interfaces/IExternalUserDatabaseProvider2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20FB%20Factory.library_Library/Interfaces/IFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Interfaces/IFBCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Interfaces/IFrame.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/IFrameElement2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/IFrameElement3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IFrameManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IFrameManager2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IFrameManagerBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuCommandInterface.library_Library/IGeneralCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IGestureEventHandler.html#index-0

● IGestureEventHandler2
● IGestureEventHandler3
● IGridProvider
● IHasContinuousBehaviour
● iIEC61850_LogicalDevice
● IIecVarAccess
● IIecVarAccess10
● IIecVarAccess11
● IIecVarAccess12
● IIecVarAccess13
● IIecVarAccess14
● IIecVarAccess15
● IIecVarAccess2
● IIecVarAccess3
● IIecVarAccess4
● IIecVarAccess5
● IIecVarAccess6
● IIecVarAccess7
● IIecVarAccess8
● IIecVarAccess9
● IIecVarAccessOpcUaMetaData
● IInputOnElementEventHandler
● IInputRectangle
● IInputRectangleMgr
● IInputRectangleProvider
● IInstance
● IIntElement
● IIoDrvEIPAcylicServices
● IIPAddress
● IIPAddressSet
● IIParameterData
● IIPv4Address
● IIterator
● IKeyEventHandler
● ILayeredVisualElement
● ILayerManager
● ILCon
● ILConC
● ILConTl
● ILConTlC
● ILConTlTo
● ILConTo
● ILeafTreeNode
● ILevelControlled
● ILinkedListIterator
● ILintElement
● IList
● IList2
● IListIterator
● ILocalAssigner
● ILocalizedDateTimeNames
● ILogger
● ILRealToStringFormatter
● IMap
● IMap2

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4345

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IGestureEventHandler2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IGestureEventHandler3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IGridProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/IHasContinuousBehaviour.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/iIEC61850_LogicalDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess_Itfs.library_Library/IIecVarAccess.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess10.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess11.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess12.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess13.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess14.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess15.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess_Itfs.library_Library/IIecVarAccess2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess5.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess6.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess7.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess8.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess9.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccessOpcUaMetaData_Itfs.library_Library/IIecVarAccessOpcUaMetaData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IInputOnElementEventHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/Multitouch/IInputRectangle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/Multitouch/IInputRectangleMgr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/Multitouch/IInputRectangleProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20FB%20Factory.library_Library/Interfaces/IInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IIntElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvEIPAcyclicService_Itfs.library_Library/IIoDrvEIPAcylicServices.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/IP/IIPAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/IP/IIPAddressSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/iParServer.library_Library/iParServer/Data/IIParameterData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/IP/IIPv4Address.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Iterators/IIterator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IKeyEventHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ILayeredVisualElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ILayerManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/Interfaces/ILCon.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Continuous-Behaviour-without-xDone/Interfaces/ILConC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/Interfaces/ILConTl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Continuous-Behaviour-without-xDone/Interfaces/ILConTlC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/Interfaces/ILConTlTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/Interfaces/ILConTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/ILeafTreeNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/ILevelControlled.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Iterators/ILinkedListIterator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/ILintElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/List/IList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IList2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Iterators/IListIterator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Assigners/ILocalAssigner.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/ILocalizedDateTimeNames.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/ILogger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Interfaces/ILRealToStringFormatter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IMap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IMap2.html#index-0

● IMemberIndex
● IMemoryManager
● IModuleAlarming
● IMouseEventHandler
● IMultitouchElement
● INADDR
● INetworkInterface
● INFO
● InfoValues
● InitializeBACnetBitString
● InitializeBACnetBoolean
● InitializeBACnetDate
● InitializeBACnetDateRange
● InitializeBACnetDateTime
● InitializeBACnetDateTimeUnspecified
● InitializeBACnetDevObjPropReference
● InitializeBACnetSetpointReference
● InitializeBACnetString
● InitializeBACnetTime
● InitializeBACnetTimeStamp
● InitializeEmptyPropertyInstance
● InitializePropertyInstance
● INode
● INode_TO_IBus
● INode_TO_IDevice
● INode_TO_IDevice2
● INode_TO_IStack
● INodeId
● INodeName
● InputDataSave
● INSERT
● Inspect_Heap
● InstanceBase
● InstanceData
● InstancePathBuildingBranchNode
● InstancePathBuildingNode
● InstancePathNodeFinder
● INT_TO_BCD
● INT_TO_SIGNED
● INT64
● INT64_TO_DT
● INT64_TO_ISO8601
● INT64_TO_LOCALTIME
● INT64_TO_LTIME
● INT64_TO_REAL8
● INT64_TO_TIME
● INT64_TO_UTC
● INTEGRAL
● Integral
● IntElement
● IntElementFactory
● InterfaceEthernetStatistic
● InterfaceVersion
● InternalConnectionState
● InternalState

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4346

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/IMemberIndex.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CoDeSys%20Memory%20Manager.library_Library/MemoryManager/IMemoryManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Composer/AC_Alarming.library_Library/ModuleInterface/IModuleAlarming.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IMouseEventHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/Multitouch/IMultitouchElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/INADDR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet_Itfs.library_Library/IIoDrvEthernet_Itfs/Interfaces/INetworkInterface.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Structs/INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/General-Types/InfoValues.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetBitString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetBoolean.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetDate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetDateRange.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetDateTimeUnspecified.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetDevObjPropReference.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetSetpointReference.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetTimeStamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/BACnetProperties/InitializeEmptyPropertyInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/BACnetProperties/InitializePropertyInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/INode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/INode_TO_IBus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/INode_TO_IDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/INode_TO_IDevice2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/INode_TO_IStack.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/INodeId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/DiagUtil_1.3.6.9_Library/Interfaces/INodeName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/InputDataSave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/INSERT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Tests/Inspect_Heap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20FB%20Factory.library_Library/Instance/InstanceBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20FB%20Factory.library_Library/Instance/InstanceData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/InstancePathBuildingBranchNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/InstancePathBuildingNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/InstancePathNodeFinder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/INT_TO_BCD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIGNED/INT_TO_SIGNED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Types/INT64.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/INT64_TO_DT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/INT64_TO_ISO8601.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TIMEZONE/INT64_TO_LOCALTIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/INT64_TO_LTIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/INT64_TO_REAL8.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/INT64_TO_TIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TIMEZONE/INT64_TO_UTC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/INTEGRAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analytical-functions/Integral.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/IntElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/IntElementFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ProfinetDeviceConfig.library_Library/ProfinetDeviceConfig/DataTypes/InterfaceEthernetStatistic.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/InterfaceVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/StateHelpers/InternalConnectionState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Enums/InternalState.html#index-0

● INullElement
● InverseMemCopy
● IO_SYSTEM_TYPE
● IObjectDictionary
● IOBus_Download
● IOBus_GetBusInfo
● IOBus_GetBusStatistcis
● IOBus_GetDownloadState
● IOBus_GetHotplugOK
● IOBus_GetIODriverVersion
● IOBus_GetModState
● IOBus_GetModuleInfo
● IOBus_GetModuleLinkStatistics
● IOBus_GetModuleStatistics
● IOBus_GetModuleVersion
● IOBus_GetPlugged
● IOBus_GetProductionData
● IOBus_GetRun
● IOBUS_INFO
● IOBUS_LINKSTATISTICS
● IOBUS_MOD_STATE
● IOBUS_MODUL_STATE
● IOBUS_MODULINFO
● IOBUS_PARA_STATE
● IOBUS_PRODDATA
● IOBUS_STATISTICS
● IOBus_SwitchLinkStatistics
● IOBUS_TU_STATE
● IOBUS_VERSIONINFO
● IoConfigChannelMap
● IoConfigConnector
● IoConfigConnectorMap
● IoConfigParameter
● IoConfigTaskMap
● IoCopyIn
● IoCopyOut
● IODCallback
● IODObject
● IoDrvAL1030
● IoDrvAL1x3x
● IoDrvAnalogBase
● IoDrvBase
● IoDrvCIFX
● IoDrvCIFXEthernetIP
● IoDrvCIFXEthernetIP_Diag
● IoDrvCIFXProfibus
● IoDrvCIFXProfibusDevice
● IoDrvCIFXProfibusDeviceDiag
● IoDrvCIFXProfibusDiag
● IoDrvCIFXProfinetDevice
● IoDrvCIFXProfinetDeviceDiag
● IoDrvCM579EtherCAT
● IoDrvCM579EtherCATDiag
● IoDrvCM579Profinet
● IoDrvCM579ProfinetDiag

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4347

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/INullElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Functions/Memory-Functions/InverseMemCopy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/IO_SYSTEM_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/Interfaces/ObjectDictionary/IObjectDictionary.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_Download.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetBusInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetBusStatistcis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetDownloadState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetHotplugOK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetIODriverVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetModState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetModuleInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetModuleLinkStatistics.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetModuleStatistics.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetModuleVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetPlugged.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetProductionData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_GetRun.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Structs/IOBUS_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Structs/IOBUS_LINKSTATISTICS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Structs/IOBUS_MOD_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Enums/IOBUS_MODUL_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Structs/IOBUS_MODULINFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Enums/IOBUS_PARA_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Structs/IOBUS_PRODDATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Structs/IOBUS_STATISTICS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Functions/IOBus_SwitchLinkStatistics.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Enums/IOBUS_TU_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.1.2_Library/IOBus_Ext_Ref/Structs/IOBUS_VERSIONINFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr_Itfs.library_Library/Config-Types/IoConfigChannelMap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr_Itfs.library_Library/Config-Types/IoConfigConnector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr_Itfs.library_Library/Config-Types/IoConfigConnectorMap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr_Itfs.library_Library/Config-Types/IoConfigParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr_Itfs.library_Library/Config-Types/IoConfigTaskMap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Functions/Memory-Functions/IoCopyIn.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Functions/Memory-Functions/IoCopyOut.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/Interfaces/ObjectDictionary/IODCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/Interfaces/ObjectDictionary/IODObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvAL1030.library_Library/IoDrvAL1030.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvAL1x3x.library_Library/IoDrvAL1x3x.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvAnalogOptionBoard_1.1.1.6_Library/Function-Blocks/IoDrvAnalogBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvBase.library_Library/IoDrvBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXBase.library_Library/FunctionBlocks/IoDrvCIFX.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXEthernetIP.library_Library/FunctionBlocks/IoDrvCIFXEthernetIP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXEthernetIP.library_Library/FunctionBlocks/Diagnosis/IoDrvCIFXEthernetIP_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfibus.library_Library/FunctionBlocks/IoDrvCIFXProfibus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfibusDevice.library_Library/FunctionBlocks/IoDrvCIFXProfibusDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfibusDevice.library_Library/FunctionBlocks/IoDrvCIFXProfibusDeviceDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfibus.library_Library/Diag/IoDrvCIFXProfibusDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/FunctionBlocks/IoDrvCIFXProfinetDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/FunctionBlocks/IoDrvCIFXProfinetDeviceDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579EtherCAT_1.0.2.5_Library/Function-Blocks/IoDrvCM579EtherCAT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579EtherCAT_1.0.2.5_Library/Function-Blocks/IoDrvCM579EtherCATDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579Profinet_1.0.2.3_Library/Function-Blocks/IoDrvCM579Profinet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579Profinet_1.0.2.3_Library/Function-Blocks/IoDrvCM579ProfinetDiag.html#index-0

● IoDrvCM582Profibus
● IoDrvCM582ProfibusDiag
● IoDrvCM589Profinet
● IoDrvCM589ProfinetDiag
● IoDrvCM592Profibus
● IoDrvCM592ProfibusDiag
● IoDrvCM598
● IoDrvCM598Diag
● IoDrvCpuModuleDiag
● IoDrvDigitalOptionBoardBase
● IoDrvEL6224
● IoDrvEL6631
● IoDrvEL6631_0010
● IoDrvEL6631_0010_Diag
● IoDrvEL6631Diag
● IoDrvEL6731
● IoDrvEL6731_0010
● IoDrvEL6731_0010_Diag
● IoDrvEL6731Diag
● IoDrvEtherCAT
● IoDrvEthercat_Diag
● IoDrvEthernet
● IoDrvEthernetAC500
● IoDrvEthernetAC500Diag
● IoDrvEthernetDiag
● IoDrvEtherNetIP
● IoDrvEtherNetIP_diag
● IoDrvEtherNetIPAdapter
● IoDrvEtherNetIPAdapter_Diag
● IoDrvGpioSysfs
● IoDrvGpioSysfsDiag
● IoDrvHilscher
● IoDrvHilscherProfibus
● IoDrvHilscherProfibusWrapper
● IoDrvInfo
● IoDrvIoBusModuleDiag
● IoDrvJ1939Diag
● IoDrvKNX
● IoDrvKNXDiag
● IoDrvModbusComPort
● IoDrvModbusComPort_Diag
● IoDrvModbusSerialSlave
● IoDrvModbusTCP
● IoDrvModbusTCP_Diag
● IoDrvModbusTCPSlave
● IoDrvOnboardIO
● IoDrvOnboardIODiag
● IoDrvS500ModuleDiag
● IoDrvSafetySp
● IoDrvSercos3
● IoDrvSercos3_Diag
● IoDrvSM560
● IoDrvSM560Diag
● IoDrvTA5101
● IoDrvTA5101Diag

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4348

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM582Profibus_1.0.1.4_Library/Function-Blocks/IoDrvCM582Profibus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM582Profibus_1.0.1.4_Library/Function-Blocks/IoDrvCM582ProfibusDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM589Profinet_2.2.0.3_Library/Function-Blocks/IoDrvCM589Profinet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM589Profinet_2.2.0.3_Library/Function-Blocks/IoDrvCM589ProfinetDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM592Profibus_1.0.1.4_Library/Function-Blocks/IoDrvCM592Profibus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM592Profibus_1.0.1.4_Library/Function-Blocks/IoDrvCM592ProfibusDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM598_1.4.1.4_Library/Function-Blocks/IoDrvCM598.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM598_1.4.1.4_Library/Function-Blocks/IoDrvCM598Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/DiagCpu_1.2.1.3_Library/Function-Blocks/IoDrvCpuModuleDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvDigitalOptionBoard_1.1.2.3_Library/Generic/Function-Blocks/IoDrvDigitalOptionBoardBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6224.library_Library/IoDrvEL6224.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6631.library_Library/Functionblocks/IoDrvEL6631.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6631_0010.library_Library/Functionblocks/IoDrvEL6631_0010.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6631_0010.library_Library/Functionblocks/IoDrvEL6631_0010_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6631.library_Library/Functionblocks/IoDrvEL6631Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6731.library_Library/IoDrvEL6731.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6731_0010.library_Library/Functionblocks/IoDrvEL6731_0010.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6731_0010.library_Library/Functionblocks/IoDrvEL6731_0010_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6731.library_Library/Diag/IoDrvEL6731Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IODrvEtherCATDriver.library_Library/IoDrvEtherCAT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IODrvEtherCATDriver.library_Library/Diagnosis/IoDrvEthercat_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Function-Blocks/IoDrvEthernet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvEthernet_1.0.1.4_Library/Function-Blocks/IoDrvEthernetAC500.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvEthernet_1.0.1.4_Library/Function-Blocks/IoDrvEthernetAC500Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Function-Blocks/IoDrvEthernetDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIP.library_Library/IoDrvEtherNetIP/Function-Blocks/IoDrvEtherNetIP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIP.library_Library/IoDrvEtherNetIP/Function-Blocks/Device-Diagnosis/IoDrvEtherNetIP_diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Function-Blocks/IoDrvEtherNetIPAdapter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Function-Blocks/Diagnosis/IoDrvEtherNetIPAdapter_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvGPIOSysfs.library_Library/IoDrvGpioSysfs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvGPIOSysfs.library_Library/IoDrvGpioSysfsDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/IoDrvHilscher.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/IoDrvHilscherProfibus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/IoDrvHilscherProfibusWrapper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDriver2_Itfs.library_Library/IoDrvInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/DiagIoBus_1.2.1.2_Library/Function-Blocks/IoDrvIoBusModuleDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Device-Diagnosis/IoDrvJ1939Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/IoDrvKNX/Function-Blocks/IoDrvKNX.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/IoDrvKNX/Function-Blocks/IoDrvKNXDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/ModbusComPort/IoDrvModbusComPort.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/ModbusComPort/IoDrvModbusComPort_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusSerialSlave.library_Library/IoDrvModbusSerialSlave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusTCP.library_Library/IoDrvModbusTCP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusTCP.library_Library/IoDrvModbusTCP_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusTCPSlave.library_Library/IoDrvModbusTCPSlave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvOnboardIO_1.0.6.5_Library/Generic/Function-Blocks/IoDrvOnboardIO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvOnboardIO_1.0.6.5_Library/Generic/Function-Blocks/IoDrvOnboardIODiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/DiagS500_1.2.1.2_Library/Function-Blocks/IoDrvS500ModuleDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSafetySp.library_Library/IoDrvSafetySp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/IoDrvSercos/IoDrvSercos3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/Diagnosis/IoDrvSercos3_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvSM560_1.3.1.5_Library/Function-Blocks/IoDrvSM560.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvSM560_1.3.1.5_Library/Function-Blocks/IoDrvSM560Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5101_1.0.2.3_Library/Function-Blocks/IoDrvTA5101.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5101_1.0.2.3_Library/Function-Blocks/IoDrvTA5101Diag.html#index-0

● IoDrvTA5105
● IoDrvTA5105Diag
● IoDrvTA5110
● IoDrvTA5110Diag
● IoDrvTA5120
● IoDrvTA5120Diag
● IoDrvTA5122
● IoDrvTA5122Diag
● IoDrvTA5123
● IoDrvTA5123Diag
● IoDrvTA5126
● IoDrvTA5126Diag
● IODSubObject
● IOL_AdditionalCode
● IOL_AdjustableSwitchingSensor
● IOL_AdSS_Function
● IOL_AdSS_Status
● IOL_AdSS_TeachFunction
● IOL_AdSS_TeachMode
● IOL_CALL
● IOL_DataStorage
● IOL_DiagEntry
● IOL_Error
● IOL_ErrorCode
● IOL_Event
● IOL_EventCode
● IOL_EventCode_Device
● IOL_EventCode_Port
● IOL_EventQualifier
● IOL_EventQualifier_Instance
● IOL_EventQualifier_Mode
● IOL_EventQualifier_Source
● IOL_EventQualifier_Type
● IOL_FieldbusStatus
● IOL_GetEvent_ChannelDiagnosis
● IOL_GetEvent_UDINT
● IOL_IdentificationAndDiagnosis
● IOL_IdentificationAndDiagnosis_Function
● IOL_IdentificationObjects
● IOL_Index
● IOL_IOLM_Info
● IOL_IOLM_InfoRecord
● IOL_IQ_Behavior
● IOL_MasterIdent
● IOL_MasterIdent_Features_1
● IOL_MasterType
● IOL_MeasurementDataChannel
● IOL_PN_PortControl
● IOL_PortConfigList
● IOL_PortConfiguration
● IOL_PortConfigurationRecord
● IOL_PortError
● IOL_PortMode
● IOL_PortQualityInfo
● IOL_PortStatus

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4349

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5105_1.0.2.3_Library/Function-Blocks/IoDrvTA5105.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5105_1.0.2.3_Library/Function-Blocks/IoDrvTA5105Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5110_1.0.2.3_Library/Function-Blocks/IoDrvTA5110.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5110_1.0.2.3_Library/Function-Blocks/IoDrvTA5110Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5120_1.1.1.3_Library/Function-Blocks/IoDrvTA5120.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5120_1.1.1.3_Library/Function-Blocks/IoDrvTA5120Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5122_1.1.1.3_Library/Function-Blocks/IoDrvTA5122.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5122_1.1.1.3_Library/Function-Blocks/IoDrvTA5122Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5123_1.1.1.3_Library/Function-Blocks/IoDrvTA5123.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5123_1.1.1.3_Library/Function-Blocks/IoDrvTA5123Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5126_1.1.1.3_Library/Function-Blocks/IoDrvTA5126.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5126_1.1.1.3_Library/Function-Blocks/IoDrvTA5126Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/Interfaces/ObjectDictionary/IODSubObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DataTypes/IOL_AdditionalCode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/SmartSensorProfile/IOL_AdjustableSwitchingSensor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/SmartSensorProfile/DataTypes/IOL_AdSS_Function.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/SmartSensorProfile/DataTypes/IOL_AdSS_Status.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/SmartSensorProfile/DataTypes/IOL_AdSS_TeachFunction.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/SmartSensorProfile/DataTypes/IOL_AdSS_TeachMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL_CALL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL_DataStorage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_DiagEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DataTypes/IOL_Error.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DataTypes/IOL_ErrorCode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_Event.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventCode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventCode_Device.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventCode_Port.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventQualifier.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventQualifier_Instance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventQualifier_Mode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventQualifier_Source.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventQualifier_Type.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_FieldbusStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_GetEvent_ChannelDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_GetEvent_UDINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL_IdentificationAndDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DataTypes/IOL_IdentificationAndDiagnosis_Function.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DataTypes/IOL_IdentificationObjects.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_Index.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL_IOLM_Info.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_IOLM_InfoRecord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_IQ_Behavior.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_MasterIdent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_MasterIdent_Features_1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_MasterType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/SmartSensorProfile/IOL_MeasurementDataChannel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PN_PortControl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortConfigList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL_PortConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortConfigurationRecord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DataTypes/IOL_PortError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortQualityInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL_PortStatus.html#index-0

● IOL_PortStatusInfo
● IOL_PortStatusList
● IOL_PortStatusRecord
● IOL_PortType
● IOL_PQI
● IOL_ProfileIdentifier
● IOL_TransmissionRate
● IOL_ValidationBackup
● IoLinkService
● IOLINKSERVICEHEADER
● IOLinkServices
● IoMgrConfigGetConnector
● IoMgrConfigGetConnectorByDriver
● IoMgrConfigGetConnectorList
● IoMgrConfigGetDriver
● IoMgrConfigGetFirstChild
● IoMgrConfigGetFirstConnector
● IoMgrConfigGetFirstParameter
● IoMgrConfigGetNextChild
● IoMgrConfigGetNextConnector
● IoMgrConfigGetNextParameter
● IoMgrConfigGetParameter
● IoMgrConfigGetParameterValueByte
● IoMgrConfigGetParameterValueDword
● IoMgrConfigGetParameterValuePointer
● IoMgrConfigGetParameterValueWord
● IoMgrConfigResetDiagnosis
● IoMgrConfigSetDiagnosis
● IoMgrCopyInputBE
● IoMgrCopyInputLE
● IoMgrCopyOutputBE
● IoMgrCopyOutputLE
● IoMgrGetBusCycleType
● IoMgrGetConfigApplication
● IoMgrGetDriverProperties
● IoMgrGetFirstDriverInstance
● IoMgrGetModuleDiagnosis
● IoMgrGetNextDriverInstance
● IoMgrIdentify
● IoMgrLockEnter
● IoMgrLockLeave
● IoMgrReadInputs
● IoMgrReadParameter
● IoMgrReconfigure
● IoMgrRegisterConfigApplication
● IoMgrRegisterInstance2
● IoMgrScanModules
● IoMgrSetDriverProperties
● IoMgrSetDriverProperty
● IoMgrStartBusCycle
● IoMgrStartBusCycle2
● IoMgrUnregisterConfigApplication
● IoMgrUnregisterInstance
● IoMgrUpdateConfiguration
● IoMgrUpdateConfiguration2

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4350

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortStatusInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortStatusList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortStatusRecord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PQI.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_ProfileIdentifier.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_TransmissionRate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_ValidationBackup.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvAL1030.library_Library/Services/IoLinkService.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvAL1030.library_Library/Services/IOLINKSERVICEHEADER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvAL1030.library_Library/Services/IOLinkServices.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetConnector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrConfigGetConnectorByDriver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrConfigGetConnectorList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrConfigGetDriver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetFirstChild.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetFirstConnector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoMgr_1.0.1.4_Library/Functions/IoMgrConfigGetFirstParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetNextChild.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetNextConnector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoMgr_1.0.1.4_Library/Functions/IoMgrConfigGetNextParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetParameterValueByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetParameterValueDword.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetParameterValuePointer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetParameterValueWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigResetDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigSetDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrCopyInputBE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrCopyInputLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrCopyOutputBE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrCopyOutputLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrGetBusCycleType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrGetConfigApplication.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrGetDriverProperties.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrGetFirstDriverInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrGetModuleDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrGetNextDriverInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrIdentify.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrLockEnter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrLockLeave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrReadInputs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrvParameter/IoMgrReadParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrReconfigure.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrRegisterConfigApplication.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrRegisterInstance2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrScanModules.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrSetDriverProperties.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrSetDriverProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrStartBusCycle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrStartBusCycle2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrUnregisterConfigApplication.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrUnregisterInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrUpdateConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrUpdateConfiguration2.html#index-0

● IoMgrUpdateMapping
● IoMgrUpdateMapping2
● IoMgrWatchdogTrigger
● IoMgrWriteOutputs
● IoMgrWriteParameter
● IOMODULEDESC
● IOnlineChangeSafeLinkedListElement
● IOPCUAClientConnectionCallback
● IOPCUAClientDataAccessCallback
● IOPCUAClientDiscoveryCallback
● IOPCUAClientMethodCallback
● IOPCUAClientMonitoredItemCallback
● IOPCUAClientSubscriptionCallback
● IOPCUAClientViewCallback
● IOpcUaDataTypeMetaData
● IOpcUaInstanceMetaData
● IOptionalMultitouchElement
● IOxStatus
● IP_ADDR
● IP_ADR_DWORD_TO_STRING
● IP_ADR_STRING_TO_DWORD
● IPAADialog
● IPacket
● IPacketPool
● IPacketQueue
● IPADDRESS
● IPAddressSet
● IPaintAfterAll
● IPaintAfterAll2
● IPaintAfterAllRectangleProvider
● IPaintAfterAllSelection
● IPaintSelectionInElement
● IPARRAY_TO_INADDR
● IPARRAY_TO_IPSTRING
● IPARRAY_TO_UDINT
● iParServer
● iParServerError
● IPBSlaveDiag
● IPeer
● IPersistantRecipeListSupportsAdd
● IPParameterValue
● IProvidesBitOffset
● IProvidesDifferentRemoteName
● IProvidesRootInfo
● IProvidesTabOrder
● IProxyMonitor
● IPseudoNode
● IPSTRING_TO_UDINT
● IPStringAndIntElement
● IPStringElement
● IPv4Address
● IQueryInterfaceElement
● IQueue
● IQueue2
● IQueueableNode

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4351

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrUpdateMapping.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrUpdateMapping2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrWatchdogTrigger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrWriteOutputs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrvParameter/IoMgrWriteParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSafetySp.library_Library/IOMODULEDESC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IOnlineChangeSafeLinkedListElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientConnectionCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientDataAccessCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientDiscoveryCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientMethodCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientMonitoredItemCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientSubscriptionCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientViewCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/IOpcUaDataTypeMetaData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/IOpcUaInstanceMetaData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/Multitouch/IOptionalMultitouchElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IOxStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Structs/IP_ADDR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.3.0.7_Library/Functions/IP-Conversions/IP_ADR_DWORD_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.3.0.7_Library/Functions/IP-Conversions/IP_ADR_STRING_TO_DWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IPAADialog.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/UDP/IPacket.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/UDP/IPacketPool.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/UDP/IPacketQueue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Types/IPADDRESS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/IP/IPAddressSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IPaintAfterAll.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IPaintAfterAll2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IPaintAfterAllRectangleProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IPaintAfterAllSelection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Selection-Management/IPaintSelectionInElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Functions/IPARRAY_TO_INADDR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Functions/IPARRAY_TO_IPSTRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Functions/IPARRAY_TO_UDINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/iParServer.library_Library/iParServer/iParServer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/iParServer.library_Library/iParServer/iParServerError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/IPBSlaveDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/UDP/IPeer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/Interfaces/IPersistantRecipeListSupportsAdd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/IPParameterValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IProvidesBitOffset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IProvidesDifferentRemoteName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IProvidesRootInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IProvidesTabOrder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/IProxyMonitor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IPseudoNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Functions/UDP/IPSTRING_TO_UDINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/IPStringAndIntElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/IPStringElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/IP/IPv4Address.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/ClientObjectInfo/IQueryInterfaceElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IQueue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IQueue2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedQueue/Interfaces/IQueueableNode.html#index-0

● IRdtProt
● IRdtProtClient
● IRdtProtServer
● IReadableSharedArea
● IRecipeCheckOnStart
● IRecipeDefinition2
● IReconfigureProvider
● IRectangleListManager
● IRectangleListManager2
● IRectangleListManager3
● IRectangleListManager4
● IRectangleProvider
● IRequest
● IRequestNoSyncReleaseDuringShutdown
● IRequestResult
● IRequiresInitMeasureString
● IResetActionProvider
● IResolveCallbackHandler
● IRow
● IRow2
● IRow3
● IRowAsync
● IRowBase
● IRowIdIterator
● IRowPlanchet
● IRowPlanchetAsync
● IRPCCLClient
● IRPCCLClientCallback
● IRPCProvider
● IRPCProviderCallback
● IRtsServiceHandler
● IRtsServiceHandler2
● IS_MULTICAST_GROUP
● Is29BitIdMessage
● IsAcceptedLeafNode
● IsAddressInArea
● IsaInterrupt
● ISampleActionProvider
● ISavepoint
● ISavepointAsync
● IsBACnetBACnetDateTimeUnspecified
● IsBACnetDateTimeUnspecified
● IsBACnetObjectAMEVCreatable
● IsBACnetPropertyAMEVASBWritable
● IsBroadcast
● IScrollValueProvider
● ISDOHandler
● ISearchCallbacks
● ISegment
● ISegmentPool
● ISelectableInside
● ISelectionManager
● IServer
● IServerCommand
● IServiceReader

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4352

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/Interfaces/IRdtProt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/Interfaces/IRdtProtClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/Interfaces/IRdtProtServer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedArea/Interfaces/IReadableSharedArea.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/Interfaces/IRecipeCheckOnStart.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/Interfaces/IRecipeDefinition2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/IReconfigureProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IRectangleListManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IRectangleListManager2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IRectangleListManager3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IRectangleListManager4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IRectangleProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Requests/IRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Requests/IRequestNoSyncReleaseDuringShutdown.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/IRequestResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IRequiresInitMeasureString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/IResetActionProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/IResolveCallbackHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IRow.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IRow2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IRow3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncStorage/IRowAsync.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IRowBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/IRowIdIterator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IRowPlanchet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncStorage/IRowPlanchetAsync.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Interfaces/IRPCCLClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Interfaces/IRPCCLClientCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Interfaces/IRPCProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Interfaces/IRPCProviderCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Rts%20Service%20Handler.library_Library/RtsServiceHandler/Interfaces/IRtsServiceHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Rts%20Service%20Handler.library_Library/RtsServiceHandler/Interfaces/IRtsServiceHandler2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Functions/UDP/IS_MULTICAST_GROUP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/Is29BitIdMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/IsAcceptedLeafNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy%20Implementation.library_Library/Redundancy-Implementation/Functions/IsAddressInArea.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/IsaInterrupt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/ISampleActionProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Transaction/ISavepoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncTransaction/ISavepointAsync.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/IsBACnetBACnetDateTimeUnspecified.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/IsBACnetDateTimeUnspecified.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/BACnetProperties/IsBACnetObjectAMEVCreatable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/BACnetProperties/IsBACnetPropertyAMEVASBWritable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Help-Functions/Parser/IsBroadcast.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/Multitouch/IScrollValueProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/SDO%20Server.library_Library/Interfaces/ISDOHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/ISearchCallbacks.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/ISegment.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/ISegmentPool.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/ISelectableInside.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ISelectionManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/IServer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/Interfaces/IServerCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/IServiceReader.html#index-0

● IServiceWriter
● IsFullRune
● IsHandleValid
● ISharedArea
● ISharedAreaObserver
● ISharedAreaRef
● ISharedAreaUtilities
● ISharedPointer
● ISharedQueue
● ISimpleList
● ISimpleTree
● IsInvalidMemoryAddress
● IsLeapYear
● IsLegalUTF8
● IsLibReleased
● IsLRealNaN
● IsLRealNegInfinity
● IsLRealNumber
● IsLRealPosInfinity
● ISO8073_FB
● ISO8327_FB
● ISO8327_ReadHeader
● ISO8601
● ISO8601_TO_DT
● ISO8601_TO_LTIME
● ISO8601_TO_TIME
● ISO8650_FB
● ISO8823_FB
● ISOLayer_FB
● ISortedList
● ISortedList2
● IsP2P
● ISpecialEventHandler
● IsRealNaN
● IsRealNegInfinity
● IsRealNumber
● IsRealPosInfinity
● IsRTRMessage
● IsRuneStart
● IsSendingActive
● IStack
● IStack2
● IStartActionProvider
● IStorage
● IStorage2
● IStorageAsync
● IsTransmitMessage
● IStream
● IStringElement
● ISupportsRealDrawing
● IsValid
● IsValidRune
● ISysInt
● ITable
● ITable2

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4353

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/IServiceWriter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/UTF-8%20Encoding%20Support.library_Library/utf8/Functions/IsFullRune.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Callback-Info/IsHandleValid.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedArea/Interfaces/ISharedArea.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedArea/Interfaces/ISharedAreaObserver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedArea/Interfaces/ISharedAreaRef.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedArea/Interfaces/ISharedAreaUtilities.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedPointer/Interfaces/ISharedPointer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedQueue/Interfaces/ISharedQueue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/List/ISimpleList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/Tree/ISimpleTree.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/IsInvalidMemoryAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/IsLeapYear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/UTF8/IsLegalUTF8.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.2.4_Library/Library-Information/IsLibReleased.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/LREAL/IsLRealNaN.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/LREAL/IsLRealNegInfinity.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/LREAL/IsLRealNumber.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/LREAL/IsLRealPosInfinity.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/ISO/ISO8073_FB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/ISO/ISO8327_FB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/ISO/TOOLS/ISO8327_ReadHeader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Types/ISO8601.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/ISO8601_TO_DT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/ISO8601_TO_LTIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/ISO8601_TO_TIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/ISO/ISO8650_FB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/ISO/ISO8823_FB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/POUs/ISO/ISOLayer_FB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/ISortedList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/ISortedList2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Help-Functions/Parser/IsP2P.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ISpecialEventHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/REAL/IsRealNaN.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/REAL/IsRealNegInfinity.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/REAL/IsRealNumber.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/REAL/IsRealPosInfinity.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/IsRTRMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/UTF-8%20Encoding%20Support.library_Library/utf8/Functions/IsRuneStart.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/IsSendingActive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/IStack.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IStack2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/IStartActionProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IStorage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IStorage2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncStorage/IStorageAsync.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/IsTransmitMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/IStream.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IStringElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ISupportsRealDrawing.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/UTF-8%20Encoding%20Support.library_Library/utf8/Functions/IsValid.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/UTF-8%20Encoding%20Support.library_Library/utf8/Functions/IsValidRune.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/ISysInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ITable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ITable2.html#index-0

● ITable3
● ITable4
● ITableAsync
● ITargetVisuLight
● ITaskFinishedCallback
● ITCPProcessor
● ITextListInfo
● ITextListWrapper
● ITimeElement
● ITimeLimited
● ITimeOutConstraint
● ITimingControlled
● ITimingController
● ITLSContext
● ITransaction
● ITransactionAsync
● ITransformationImplProvider
● ITree
● ITreeNode
● ITreeWalker
● ITrendRootPageManager2
● ITrendStorageAccessReadOperator
● ITrendStorageAccessReadOperator2
● ITrendStorageReaderConsumer
● ITrendStorageWriterListener
● ITSNContext
● ITypedElement
● ITypeDesc
● ITypeDesc2
● ITypeDesc3
● ITypeDesc4
● ITypeDescExecutable
● ITypeDescSubrange
● ITypeDescWithAttributes
● ITypeDescWithBaseType
● ITypeDescWithReferenceType
● ITypedList
● ITypedTree
● IUdintElement
● IUDPProcessor
● IUintElement
● IUlintElement
● IUseDataContextSubNodes
● IUserMgmtEventHandler
● IValueChangedListener
● IVariableInformation
● IVariableInformation2
● IVariableInformation3
● IVariableInformation4
● IVariableInformation5
● IVerifyCertCallback
● IVisualElementLayer
● IVisualElementOfflineScaling
● IVisualElementProvidesSubElements
● IVisualElementWithoutBlobInit

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4354

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ITable3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ITable4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncStorage/ITableAsync.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/ITargetVisuLight.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/ITaskFinishedCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/ITCPProcessor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/TextListUtils.library_Library/TextListUtils/TextListInfo/ITextListInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/ITextListWrapper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/ITimeElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/ITimeLimited.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/ITimeOutConstraint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/ITimingControlled.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/ITimingController.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TLS/ITLSContext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Transaction/ITransaction.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncTransaction/ITransactionAsync.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/ITransformationImplProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/Tree/ITree.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/ITreeNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/ITreeWalker.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/ITrendRootPageManager2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/ITrendStorageAccessReadOperator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/ITrendStorageAccessReadOperator2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/ITrendStorageReaderConsumer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/ITrendStorageWriterListener.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TSN/ITSNContext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/Element/ITypedElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDesc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDesc2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDesc3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDesc4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDescExecutable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDescSubrange.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDescWithAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDescWithBaseType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDescWithReferenceType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/List/ITypedList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/Tree/ITypedTree.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IUdintElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/UDP/IUDPProcessor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IUintElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IUlintElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IUseDataContextSubNodes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IUserMgmtEventHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IValueChangedListener.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IVariableInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IVariableInformation2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IVariableInformation3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IVariableInformation4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IVariableInformation5.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTls_Itfs.library_Library/IVerifyCertCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisualElementLayer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisualElementOfflineScaling.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisualElementProvidesSubElements.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/IVisualElementWithoutBlobInit.html#index-0

● IVisualisationAccessRights
● IVisualizationClient
● IVisualizationClientFilter
● IVisualizationClientIteration
● IVisuManager
● IVisuManager2
● IVisuManagerBase
● IVisuStreamFileNameInfo
● IVisuStreamHandler
● IVisuStreamReader
● IVisuStreamSetFileName
● IVisuStreamWriter
● IVisuUserEventManager
● IVisuUserManagement
● IVisuUserManagement2
● IVisuUserMgmtCyclicCall
● IWORKER
● IWriteableSharedArea
● IWStringElement
● IXYChartDataProvider
● IXYChartDataProvider2
● IXYChartDataProvider3
● IXYChartDataProviderAxis
● IXYChartDataProviderCurve
● IXYChartFont
● IXYChartGenericVariable
● IXYChartGenericVariable2
● IXYChartStringApproxMeasurer
● IXYChartVisuStructLevelLine
● J1939ECUBase
● J1939LocalECU
● J1939LocalECUDiag
● J1939RemoteECU
● J1939RemoteECUDiag
● Jitter_Distribution
● JOB_STATE
● JobAbort
● JobClass
● JobClose
● JobExecute
● JobGetId
● JobGetParams
● JobGetState
● JobOpen
● JobOpenEx
● JobReset
● JobSetState
● JoinDateTime
● JSON_ARR_REF
● JSON_OBJ_REF
● JsonAddArray
● JsonAddBool
● JsonAddInt
● JsonAddObject
● JsonAddReal

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4355

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisualisationAccessRights.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Interfaces/IVisualizationClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Interfaces/IVisualizationClientFilter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Interfaces/IVisualizationClientIteration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuManager2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuManagerBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuStreamFileNameInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuStreamHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuStreamReader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuStreamSetFileName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuStreamWriter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuUserEventManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt2_Itfs.library_Library/VisuUserManagement/IVisuUserManagement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt2_Itfs.library_Library/VisuUserManagement/IVisuUserManagement2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/IVisuUserMgmtCyclicCall.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Structs/IWORKER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedArea/Interfaces/IWriteableSharedArea.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IWStringElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartDataProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartDataProvider2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartDataProvider3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartDataProviderAxis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartDataProviderCurve.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartFont.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartGenericVariable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartGenericVariable2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartStringApproxMeasurer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartVisuStructLevelLine.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/J1939ECUBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/J1939LocalECU.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Device-Diagnosis/J1939LocalECUDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/J1939RemoteECU.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Device-Diagnosis/J1939RemoteECUDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/Jitter_Distribution.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Enums/JOB_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobAbort.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Internal/JobClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobExecute.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobGetId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobGetParams.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobGetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobOpenEx.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobReset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobSetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/JoinDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Types/JSON_ARR_REF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Types/JSON_OBJ_REF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Creating/JsonAddArray.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Creating/JsonAddBool.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Creating/JsonAddInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Creating/JsonAddObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Creating/JsonAddReal.html#index-0

● JsonAddString
● JsonArrayAddArray
● JsonArrayAddBool
● JsonArrayAddInt
● JsonArrayAddObject
● JsonArrayAddReal
● JsonArrayAddString
● JsonArrayGetArray
● JsonArrayGetBool
● JsonArrayGetInt
● JsonArrayGetObject
● JsonArrayGetReal
● JsonArrayGetString
● JsonArrayRemoveEntry
● JsonCreateArray
● JsonCreateObject
● JsonFreeArray
● JsonFreeObject
● JsonGetArray
● JsonGetBool
● JsonGetInt
● JsonGetObject
● JsonGetReal
● JsonGetString
● JsonParseArrayFromString
● JsonParseObjectFromString
● JsonRemoveEntry
● JsonSerializeArray
● JsonSerializeObject
● KeyValuePair
● LAMP_FLASH
● LAMP_INFO
● LAMP_STATUS
● LatchVariable
● LCon
● LConC
● LConTl
● LConTlC
● LConTlTo
● LConTo
● LCTD
● LCTU
● LCTUD
● LeafTreeNode
● LeafTreeNodeOpcUA
● LeafTreeNodeTypeMember
● LeafTreeNodeTypeMemberOpcUA
● LED_ID
● LEFT
● LegacyRTSVisuStructEvent2
● LEN
● LicenseFunctions
● LIMITALARM
● LimitAlarm_DINT
● LimitAlarm_LREAL

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4356

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Creating/JsonAddString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Creating/JsonArrayAddArray.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Creating/JsonArrayAddBool.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Creating/JsonArrayAddInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Creating/JsonArrayAddObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Creating/JsonArrayAddReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Creating/JsonArrayAddString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Parsing/JsonArrayGetArray.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Parsing/JsonArrayGetBool.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Parsing/JsonArrayGetInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Parsing/JsonArrayGetObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Parsing/JsonArrayGetReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Parsing/JsonArrayGetString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Creating/JsonArrayRemoveEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Creating/JsonCreateArray.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Creating/JsonCreateObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Cleanup/JsonFreeArray.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Cleanup/JsonFreeObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Parsing/JsonGetArray.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Parsing/JsonGetBool.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Parsing/JsonGetInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Parsing/JsonGetObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Parsing/JsonGetReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Parsing/JsonGetString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Parsing/JsonParseArrayFromString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Parsing/JsonParseObjectFromString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Creating/JsonRemoveEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Array/Creating/JsonSerializeArray.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.1.2_Library/Function-Blocks/JSON-Object/Creating/JsonSerializeObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Structs/KeyValuePair.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/DTC/Lamps/LAMP_FLASH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/DTC/Lamps/LAMP_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/DTC/Lamps/LAMP_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Structures/LatchVariable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/LCon.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Continuous-Behaviour-without-xDone/LConC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/LConTl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Continuous-Behaviour-without-xDone/LConTlC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/LConTlTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/LConTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Counter/LCTD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Counter/LCTU.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Counter/LCTUD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/LeafTreeNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/LeafTreeNodeOpcUA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/LeafTreeNodeTypeMember.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/LeafTreeNodeTypeMemberOpcUA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Enum/LED_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/LEFT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/LegacyRTSVisuStructEvent2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/LEN.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/LicenseFunctions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Analog-Monitors/LIMITALARM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analog-monitors/LimitAlarm_DINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analog-monitors/LimitAlarm_LREAL.html#index-0

● LimitDeviceObjectPropertyReferencesToCertainTypes
● LIN_TRAFO
● LINE_3D
● LinearMemoryManager
● LinearTrafo
● LinkedList
● LinkedListElementBase
● LinkedListFactory
● LinkedListIterator
● LinkState_Link
● LINT_TO_SIGNED
● LintElement
● LintElementFactory
● List
● ListBase
● Listener
● ListFactory
● ListIterator
● ListNewClient
● ListNewFrame
● ListNewLogin
● ListNewPage
● ListOfDevices
● ListRemoveClient
● ListValueChanged
● ListVisuClient
● ListVisuClientDwnSL
● LMMBlock
● LocalDateTime
● LOG_ENTRY
● LogAdd
● LogAdd2
● LogClose
● LogComponent
● LogCreate
● LogDelete
● LogGeneric_Input
● LogGeneric_Output
● LOGGER_MODE
● LoggingHelper
● LoggingInit
● LoggingOptions
● LogHandling
● LogIec60870_Input
● LogIec60870_Output
● LogManager
● LogMessage
● LogObjectBaseFileHandleTableEntry
● LogObjectsBase
● LogOpen
● LogOptions
● LogToDevice
● LostMessages
● LowByte
● LowWord

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4357

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/LimitDeviceObjectPropertyReferencesToCertainTypes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/LIN_TRAFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Structs/LINE_3D.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CoDeSys%20Memory%20Manager.library_Library/MemoryManager/LinearMemoryManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/Transformations/LinearTrafo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/LinkedList/LinkedList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/LinkedListElementBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/LinkedList/LinkedListFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Iterators/LinkedListIterator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/Profinet.library_Library/Ethernet/LinkState_Link.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIGNED/LINT_TO_SIGNED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/LintElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/LintElementFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/List/List.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/List/ListBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/TCP.library_Library/TCP/Function-Blocks/Listener.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/List/ListFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Iterators/ListIterator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Execution/Client/ListNewClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Execution/Client/ListNewFrame.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Execution/Client/ListNewLogin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Execution/Client/ListNewPage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/ListOfDevices.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Execution/Client/ListRemoveClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Execution/Client/ListValueChanged.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Execution/ListVisuClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/DownloadSeamLess/ListVisuClientDwnSL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CoDeSys%20Memory%20Manager.library_Library/MemoryManager/LMMBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/LocalDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Structs/LOG_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogAdd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogAdd2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Utils/Logging/LogComponent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/DataLoggerEco_1.0.0.11_Library/Function-Blocks/LogGeneric_Input.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/DataLoggerEco_1.0.0.11_Library/Function-Blocks/LogGeneric_Output.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Enums/LOGGER_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/LoggingHelper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/LoggingInit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Enums/LoggingOptions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/DataLoggerEco_1.0.0.11_Library/Function-Blocks/LogHandling.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/DataLoggerEco_1.0.0.11_Library/Function-Blocks/LogIec60870_Input.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/DataLoggerEco_1.0.0.11_Library/Function-Blocks/LogIec60870_Output.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/Functions/LogManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/LogMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/LoggingObjects/Internal/LogObjectBaseFileHandleTableEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/LoggingObjects/Internal/LogObjectsBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogOptions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Breakpoint%20Logging%20Functions.library_Library/WatchpointSupport/Functions/LogToDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/LostMessages.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/simple-TYPE/LowByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/simple-TYPE/LowWord.html#index-0

● LREAL_TO_FLOAT
● LRealToHexStr
● LRealToStr
● LTIME_TO_DURATION
● LTIME_TO_INT64
● LTIME_TO_ISO8601
● LTIME_TO_REAL8
● LTOF
● LTON
● LTP
● LTrig
● LWORD_TO_HANDLE
● LWORD_TO_PVOID
● MAC_ADDRESS_COMPARE
● MAKE_EVENTID
● MakeNormed3D
● MapErrorCode
● MapErrorCodeFailedAsConnLost
● MapIECResult
● MapNetBaseServiceError
● MapOpcUaStatus
● MappingDesc_ArrayArbitrary
● MappingDesc_ArraySubRange
● MAUType
● MB_AccessTypes
● MB_ErrorCodes
● MB_MasterParameter
● MB_Medium
● MB_Parity
● MB_PortParameter
● MB_SlaveParameter
● MB_Transmission
● MB_TriggerType
● MBFunctionCode
● MD5
● MD5_FF
● MD5_GG
● MD5_HH
● MD5_II
● MD5_Transform
● MeasureFrequence
● MeasuringPoint
● MemBuffer
● MemCmp
● MemCopy
● MemCopySwap
● MemCpy
● MemFill
● MemForceSwap
● MemMove
● MemoryBarrier
● MemoryManager
● MemSet
● MESSAGE
● MessageBox_Struct

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4358

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/FLOAT/LREAL_TO_FLOAT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/LRealToHexStr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/LRealToStr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/DURATION/LTIME_TO_DURATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/LTIME_TO_INT64.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/LTIME_TO_ISO8601.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/LTIME_TO_REAL8.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Timer/LTOF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Timer/LTON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Timer/LTP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/LTrig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/HANDLE/LWORD_TO_HANDLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/PVOID/LWORD_TO_PVOID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/ARP.library_Library/Functions/MAC_ADDRESS_COMPARE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/MAKE_EVENTID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/MakeNormed3D.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Utils/MapErrorCode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Utils/MapErrorCodeFailedAsConnLost.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/ErrorHandling/MapIECResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/ErrorHandling/MapNetBaseServiceError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/ErrorHandling/MapOpcUaStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Mappings/MappingDesc_ArrayArbitrary.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Mappings/MappingDesc_ArraySubRange.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/Profinet.library_Library/Ethernet/MAUType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/Structs/MB_AccessTypes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/Structs/MB_ErrorCodes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusBase.library_Library/IoDrvModbusBase/Serial/MB_MasterParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/Structs/MB_Medium.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/Structs/MB_Parity.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/Structs/MB_PortParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusBase.library_Library/IoDrvModbusBase/Serial/MB_SlaveParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/Structs/MB_Transmission.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/Structs/MB_TriggerType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusBase.library_Library/IoDrvModbusBase/Enums/MBFunctionCode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Checksum/MD5.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Internal-functions/MD5_FF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Internal-functions/MD5_GG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Internal-functions/MD5_HH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Internal-functions/MD5_II.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Internal-functions/MD5_Transform.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/signals/MeasureFrequence.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIP.library_Library/IoDrvEtherNetIP/Enums/MeasuringPoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/MemBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Functions/Memory-Functions/MemCmp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Functions/Memory-Functions/MemCopy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyBase.library_Library/CANopenSafetyBase/Functions/Memory-Functions/MemCopySwap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/MemCpy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Manipulation/MemFill.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Functions/Swapping/MemForceSwap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Manipulation/MemMove.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/MultiCore/MemoryBarrier.library_Library/MemoryBarrier.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Functionblocks/MemoryManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/MemSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Imp%20Extern.library_Library/CAA-Can-Low-Level-Imp/Structures/MESSAGE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/General-Types/MessageBox_Struct.html#index-0

● METRICS
● MID
● Mid2
● MILLISECOND
● MINUTE
● MMAP_PROT
● MMAPS_FLAGS
● ModbusChannel
● ModbusCommand
● ModbusRequest
● ModbusRequest2
● ModbusSerialDeviceDiag
● ModbusSerialSlaveBase
● ModbusServer
● ModbusSlaveComPort
● ModbusSlaveComPort_Diag
● ModbusTCPComSettings
● ModbusTCPComState
● ModbusTCPDeviceDiag
● ModbusTCPSlave
● ModbusTCPSlave_Diag
● ModbusTCPSlaveBase
● ModbusTCPSlaveUnit
● ModbusTCPSlaveUnit_Diag
● MODE
● ModRtuGenDevDataType
● ModRtuGenDevDataTypeInternal
● ModRtuMast
● ModRtuMastTypeInternal
● ModRtuRead
● ModRtuReadWrite23
● ModRtuToken
● ModRtuTokenType
● ModRtuWrite
● ModTcpConfig
● ModTcpInfo
● ModTcpMast
● ModTcpMast2
● ModTcpServOnOff
● Module
● Module_Diag
● ModuleAlarmInfo
● ModuleCall
● ModuleEvent
● MODULESTATE
● ModuleState
● MonitorDBStatus
● MonitoredItem
● MonitoredItemState
● MonitoredReadRequest
● MonitoredReadRequestState
● MonitorFilterByDateTime
● MonitorFilterByLatch
● Monitoring2ByteCode
● Monitoring2ByteCodeUnion

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4359

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Structs/METRICS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/MID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/Mid2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/MILLISECOND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/MINUTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCharDevice_Itfs.library_Library/CmpCharDevice-Interfaces/MMAP_PROT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCharDevice_Itfs.library_Library/CmpCharDevice-Interfaces/MMAPS_FLAGS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/ModbusComPort/ModbusChannel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/Structs/ModbusCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/ModbusComPort/ModbusRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/ModbusComPort/ModbusRequest2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusSerialSlave.library_Library/ModbusSerialDeviceDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusBase.library_Library/IoDrvModbusBase/Serial/ModbusSerialSlaveBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusSerialSlave.library_Library/ModbusServer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/ModbusComPort/ModbusSlaveComPort.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/ModbusComPort/ModbusSlaveComPort_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusTCP.library_Library/ModbusTCPComSettings.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusTCP.library_Library/ModbusTCPComState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusTCPSlave.library_Library/ModbusTCPDeviceDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusTCP.library_Library/ModbusTCPSlave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusTCP.library_Library/ModbusTCPSlave_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusTCP.library_Library/ModbusTCPSlaveBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusTCP.library_Library/ModbusTCPSlaveUnit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbusTCP.library_Library/ModbusTCPSlaveUnit_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Enums/MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Types/ModRtuGenDevDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Types/Internal-Data-Types/ModRtuGenDevDataTypeInternal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Function-Blocks/ModRtuMast.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Types/Internal-Data-Types/ModRtuMastTypeInternal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Function-Blocks/ModRtuRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Function-Blocks/ModRtuReadWrite23.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Function-Blocks/ModRtuToken.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Types/ModRtuTokenType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Function-Blocks/ModRtuWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.7.2_Library/Function-Blocks/ModTcpConfig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.7.2_Library/Function-Blocks/ModTcpInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.7.2_Library/Function-Blocks/ModTcpMast.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.7.2_Library/Function-Blocks/ModTcpMast2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.7.2_Library/Function-Blocks/ModTcpServOnOff.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Function-Blocks/Module.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Function-Blocks/Diagnosis/Module_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Composer/AC_Alarming.library_Library/ExtenderFB/ModuleAlarmInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Composer/AC_Alarming.library_Library/ExtenderFB/ModuleCall.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Composer/AC_Alarming.library_Library/ExtenderFB/ModuleEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Enums/MODULESTATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Status/ModuleState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Structures/MonitorDBStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Requests/MonitoredReadRequest/MonitoredItem.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Requests/MonitoredReadRequest/MonitoredItemState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Requests/MonitoredReadRequest/MonitoredReadRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Requests/MonitoredReadRequest/MonitoredReadRequestState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Structures/MonitorFilterByDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Structures/MonitorFilterByLatch.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/Monitoring2ByteCode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/Monitoring2ByteCodeUnion.html#index-0

● MonitoringService
● MonitoringServiceHelper
● MonitorPopulateFilterCriteria
● MONTH
● MoveAbsolute
● MoveAbsoluteData
● MoveRelative
● MQTT_CONNECTION
● MQTT_MESSAGE
● MQTT_QOS
● MqttConnectWithCertBuffer
● MqttConnectWithCertFile
● MqttConnectWithCertStore
● MqttDisconnect
● MqttGetReceivedPacket
● MqttPing
● MqttPublish
● MqttSubscribe
● MqttUnsubscribe
● MsgAddRef
● MsgClass
● MsgClone
● MsgGetData
● MsgReceive
● MsgRelease
● MsgReleaseEx
● MsgSend
● MSK_ECM_IF_EXT_SYNC_INFO_FLAGS
● NamedTreeNode
● NamespaceIdFixer
● NamespaceNodeFlags
● NamespaceTable
● NCAPDUFaultStatus
● NestingPathEntry
● NestingPathInformation
● NET_INFO
● NetClientCloseChannel
● NetClientOpenChannel
● NetClientOpenChannelResult
● NetClientSend
● NetDiagnosis
● NetVarDataItem_Udp
● NetVarManager_Udp_FB
● NetVarOD_Service_Udp
● NetVarPDO_Rx_Udp
● NetVarPDO_Tx_Udp
● NetVarTelegramm_Udp
● NetVarTlgHeader_Udp
● NetVarUDPDiagStruct
● NetVarUDPError
● NETX_DEV_DIAG
● NETX_SYSTEM_CHANNEL
● NETX_UDINT_TO_STRINGHEX
● NetxEcatInit
● NetxEcatIsCompatible

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4360

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/MonitoringService.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Communication/Monitoring/MonitoringServiceHelper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/MonitorPopulateFilterCriteria.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/MONTH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Animation/MoveAbsolute.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Animation/MoveAbsoluteData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Animation/MoveRelative.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.1.4_Library/Structs/MQTT_CONNECTION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.1.4_Library/Structs/MQTT_MESSAGE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.1.4_Library/Enums/MQTT_QOS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.1.4_Library/Function-Blocks/MqttConnectWithCertBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.1.4_Library/Function-Blocks/MqttConnectWithCertFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.1.4_Library/Function-Blocks/MqttConnectWithCertStore.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.1.4_Library/Function-Blocks/MqttDisconnect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.1.4_Library/Function-Blocks/MqttGetReceivedPacket.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.1.4_Library/Function-Blocks/MqttPing.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.1.4_Library/Function-Blocks/MqttPublish.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.1.4_Library/Function-Blocks/MqttSubscribe.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.1.4_Library/Function-Blocks/MqttUnsubscribe.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgAddRef.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Internal/MsgClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgClone.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgGetData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgReceive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgRelease.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgReleaseEx.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgSend.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Services/ExtSync/MSK_ECM_IF_EXT_SYNC_INFO_FLAGS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/NamedTreeNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/StateHelpers/NamespaceIdFixer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/NamespaceNodeFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/NamespaceTable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/NCAPDUFaultStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/NestingPathEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/NestingPathInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/NET_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/NetClientCloseChannel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/NetClientOpenChannel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/NetClientOpenChannelResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/NetClientSend.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Structs/NetDiagnosis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/NetVarDataItem_Udp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/NetVar-POUs/NetVarManager_Udp_FB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/NetVarOD_Service_Udp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/NetVar-POUs/NetVarPDO_Rx_Udp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/NetVar-POUs/NetVarPDO_Tx_Udp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/NetVarTelegramm_Udp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/NetVarTlgHeader_Udp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/NetVarUDPDiagStruct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/NetVarUDPError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/NETX_DEV_DIAG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/NETX_SYSTEM_CHANNEL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/NETX_UDINT_TO_STRINGHEX.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Device/NetxEcatInit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Device/NetxEcatIsCompatible.html#index-0

● NetxEcatJobBusScanStart
● NetxEcatJobBusScanStop
● NetxEcatJobGetDevStatistics
● NetxEcatJobGetExtSyncInfo
● NetxEcatJobGetInfo
● NetxEcatJobGetMasterCPULoad
● NetxEcatJobGetMasterDcInfo
● NetxEcatJobGetMasterFrameLossCount
● NetxEcatJobGetMasterMemInfo
● NetxEcatJobGetMasterThresholdCount
● NetxEcatJobGetMasterTimingInfo
● NetxEcatJobGetSlaveDcInfo
● NetxEcatJobGetSlaveDiag
● NetxEcatJobGetSlaveMDPModules
● NetxEcatJobPrmSanityCheck
● NetxEcatJobPrmSanityCheckSlave
● NetxEcatJobReadRegister
● NetxEcatJobReadSlaveLostLinkCnt
● NetxEcatJobReadSlaveRxErrorCnt
● NetxEcatJobReadSlaveVersion
● NetxEcatJobSdoRead
● NetxEcatJobSdoWrite
● NetxEcatJobSetSlaveState
● NetxEcatJobSetState
● NetxEcatJobSoeRead
● NetxEcatJobSoeWrite
● NetxEcatJobStart
● NetxEcatJobStop
● NetxEcatJobWriteRegister
● NMT
● NMT_ERROR_BEHAVIOUR
● NodeFlags
● NODEID
● NodeId
● NodeIdArray
● NodeInformation
● NodeMapper
● NOP
● Norm3D
● NSC_AddrComponent
● NSC_CompleteNodeInfo
● NSC_NodeAddress
● NSC_NodeInfoExt
● NSC_NodeInfoInt
● NSClientClose
● NSClientGeneralResolveCallback
● NSClientOpen
● NSClientResolveAll
● NSClientSearchNodeFlags
● NSClientSysMemAllocator
● NSClientTaskBase
● NSClientTaskResolveAllNodes
● NSClientTaskSearchForSpecificNode
● NSClientUtil_DumpAddress
● NSClientUtil_DumpAddressHelp

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4361

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobBusScanStart.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobBusScanStop.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobGetDevStatistics.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobGetExtSyncInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobGetInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobGetMasterCPULoad.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobGetMasterDcInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobGetMasterFrameLossCount.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobGetMasterMemInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobGetMasterThresholdCount.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobGetMasterTimingInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobGetSlaveDcInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobGetSlaveDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobGetSlaveMDPModules.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Device/NetxEcatJobPrmSanityCheck.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Device/NetxEcatJobPrmSanityCheckSlave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobReadRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobReadSlaveLostLinkCnt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobReadSlaveRxErrorCnt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobReadSlaveVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobSdoRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobSdoWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobSetSlaveState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobSetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobSoeRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobSoeWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobStart.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobStop.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Async/Handlers/NetxEcatJobWriteRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/Network-management/NMT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Enums/NMT_ERROR_BEHAVIOUR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/NodeFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/Range-Types/NODEID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/NodeId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/NodeIdArray.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Configuration/NodeInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/NodeMapper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/NOP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/Norm3D.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Datastructures/NSC_AddrComponent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Datastructures/NSC_CompleteNodeInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Datastructures/NSC_NodeAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Datastructures/NSC_NodeInfoExt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Datastructures/NSC_NodeInfoInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/External-Functions/NSClientClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/NSClientGeneralResolveCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/External-Functions/NSClientOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/External-Functions/NSClientResolveAll.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/NSClientSearchNodeFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/NSClientSysMemAllocator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/NSClientTaskBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/NSClientTaskResolveAllNodes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/NSClientTaskSearchForSpecificNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_DumpAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_DumpAddressHelp.html#index-0

● NSClientUtil_DumpCallback
● NSClientUtil_DumpNodeInfo
● NSClientUtil_DumpStartSearchNodeParams
● NSClientUtil_Log1
● NSClientUtil_Log2
● NSClientUtil_Log3
● NSClientWrapper
● NtpSourceInfoData
● NtpSourceMode
● NtpSourceState
● NullElement
● OBIO_PTO_Motion_Parameter
● OBIO_PTOMotionKernel
● OBIO_PWM_Motion_Parameter
● OBIO_PWMMotionKernel
● OBIOBasicPoint2Point
● OBIOEncoderCounter
● OBIOForwardCounter
● OBIOFreqOut
● OBIOInterruptInfo
● OBIOInterruptPara
● OBIOLimitSwitch
● OBIOMotionPTO
● OBIOMotionPwm
● OBIOPulseTrainOutput
● OBIOPwm
● OBIOSineSquarePoint2Point
● ObjectIterator
● ObjectPersistence
● OffsetPoints
● OLM_OnlineLicenseManager
● OPCAClientCredentials_UserPassword
● OpcDateTimeToDT
● OpcUa_ActivateSessionRequest
● OpcUa_ActivateSessionResponse
● OpcUa_AddNodesItem
● OpcUa_AddNodesRequest
● OpcUa_AddNodesResponse
● OpcUa_AddNodesResult
● OpcUa_AddReferencesItem
● OpcUa_AddReferencesRequest
● OpcUa_AddReferencesResponse
● OpcUa_AggregateConfiguration
● OpcUa_AggregateFilter
● OpcUa_AggregateFilterResult
● OpcUa_Annotation
● OpcUa_AnonymousIdentityToken
● OpcUa_ApplicationDescription
● OpcUa_ApplicationType
● OpcUa_Argument
● OpcUa_ArrayType
● OpcUa_AttributeOperand
● OpcUa_Attributes
● OpcUa_AxisInformation
● OpcUa_AxisScaleEnumeration

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4362

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_DumpCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_DumpNodeInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_DumpStartSearchNodeParams.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_Log1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_Log2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_Log3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/NSClientWrapper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Structs/NtpSourceInfoData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Enum/NtpSourceMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Enum/NtpSourceState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/NullElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.0.0.6_Library/Data-types/OBIO_PTO_Motion_Parameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.0.0.6_Library/eCo-Kernel-Function-blocks/OBIO_PTOMotionKernel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.0.0.6_Library/Data-types/OBIO_PWM_Motion_Parameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.0.0.6_Library/eCo-Kernel-Function-blocks/OBIO_PWMMotionKernel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.5.5_Library/OBIO_SimpleMotion/Positioning_Algorithm/OBIOBasicPoint2Point.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.5.5_Library/OBIO_FunctionBlocks/OBIOEncoderCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.5.5_Library/OBIO_FunctionBlocks/OBIOForwardCounter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.5.5_Library/OBIO_FunctionBlocks/OBIOFreqOut.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.5.5_Library/OBIO_FunctionBlocks/OBIOInterruptInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.5.5_Library/OBIO_FunctionBlocks/OBIOInterruptPara.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.5.5_Library/OBIO_FunctionBlocks/OBIOLimitSwitch.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.5.5_Library/OBIO_SimpleMotion/OBIOMotionPTO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.5.5_Library/OBIO_SimpleMotion/OBIOMotionPwm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.5.5_Library/OBIO_FunctionBlocks/OBIOPulseTrainOutput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.5.5_Library/OBIO_FunctionBlocks/OBIOPwm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.5.5_Library/OBIO_SimpleMotion/Positioning_Algorithm/OBIOSineSquarePoint2Point.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/ObjectDictionary/Iterators/ObjectIterator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/ObjectPersistence.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/OffsetPoints.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/3SLicense.library_Library/OLM_OnlineLicenseManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Structs/OPCAClientCredentials_UserPassword.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/OpcDateTimeToDT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ActivateSessionRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ActivateSessionResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddNodesItem.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddNodesRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddNodesResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddNodesResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddReferencesItem.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddReferencesRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddReferencesResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AggregateConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AggregateFilter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AggregateFilterResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Annotation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AnonymousIdentityToken.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ApplicationDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_ApplicationType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Argument.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_ArrayType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AttributeOperand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_Attributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AxisInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_AxisScaleEnumeration.html#index-0

● OpcUa_Boolean
● OpcUa_BrowseDescription
● OpcUa_BrowseDirection
● OpcUa_BrowseNextRequest
● OpcUa_BrowseNextResponse
● OpcUa_BrowsePath
● OpcUa_BrowsePathResult
● OpcUa_BrowsePathTarget
● OpcUa_BrowseRequest
● OpcUa_BrowseResponse
● OpcUa_BrowseResult
● OpcUa_BrowseResultMask
● OpcUa_BuildInfo
● OpcUa_BuiltInType
● OpcUa_Byte
● OpcUa_ByteString
● OpcUa_CallMethodRequest
● OpcUa_CallMethodResult
● OpcUa_CallRequest
● OpcUa_CallResponse
● OpcUa_CancelRequest
● OpcUa_CancelResponse
● OpcUa_ChannelSecurityToken
● OpcUa_CharA
● OpcUa_CloseSecureChannelRequest
● OpcUa_CloseSecureChannelResponse
● OpcUa_CloseSessionRequest
● OpcUa_CloseSessionResponse
● OpcUa_ComplexNumberType
● OpcUa_ContentFilter
● OpcUa_ContentFilterElement
● OpcUa_ContentFilterElementResult
● OpcUa_ContentFilterResult
● OpcUa_CreateMonitoredItemsRequest
● OpcUa_CreateMonitoredItemsResponse
● OpcUa_CreateSessionRequest
● OpcUa_CreateSessionResponse
● OpcUa_CreateSubscriptionRequest
● OpcUa_CreateSubscriptionResponse
● OpcUa_DataChangeFilter
● OpcUa_DataChangeNotification
● OpcUa_DataChangeTrigger
● OpcUa_DataTypeAttributes
● OpcUa_DataValue
● OpcUa_DateTime
● OpcUa_Decoder
● OpcUa_DeleteAtTimeDetails
● OpcUa_DeleteEventDetails
● OpcUa_DeleteMonitoredItemsRequest
● OpcUa_DeleteMonitoredItemsResponse
● OpcUa_DeleteNodesItem
● OpcUa_DeleteNodesRequest
● OpcUa_DeleteNodesResponse
● OpcUa_DeleteRawModifiedDetails
● OpcUa_DeleteReferencesItem

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4363

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Boolean.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowseDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_BrowseDirection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowseNextRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowseNextResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowsePath.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowsePathResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowsePathTarget.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowseRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowseResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowseResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_BrowseResultMask.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BuildInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_BuiltInType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Byte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ByteString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CallMethodRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CallMethodResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CallRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CallResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CancelRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CancelResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ChannelSecurityToken.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_CharA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CloseSecureChannelRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CloseSecureChannelResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CloseSessionRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CloseSessionResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ComplexNumberType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ContentFilter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ContentFilterElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ContentFilterElementResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ContentFilterResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CreateMonitoredItemsRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CreateMonitoredItemsResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CreateSessionRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CreateSessionResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CreateSubscriptionRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CreateSubscriptionResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DataChangeFilter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DataChangeNotification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_DataChangeTrigger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DataTypeAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DataValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_DateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Decoder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteAtTimeDetails.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteEventDetails.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteMonitoredItemsRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteMonitoredItemsResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteNodesItem.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteNodesRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteNodesResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteRawModifiedDetails.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteReferencesItem.html#index-0

● OpcUa_DeleteReferencesRequest
● OpcUa_DeleteReferencesResponse
● OpcUa_DeleteSubscriptionsRequest
● OpcUa_DeleteSubscriptionsResponse
● OpcUa_DiagnosticInfo
● OpcUa_Double
● OpcUa_DoubleComplexNumberType
● OpcUa_ElementOperand
● OpcUa_EncodeableObjectBody
● OpcUa_EncodeableType
● OpcUa_Encoder
● OpcUa_EndpointConfiguration
● OpcUa_EndpointDescription
● OpcUa_EndpointUrlListDataType
● OpcUa_EnumDefinition
● OpcUa_EnumField
● OpcUa_EnumValueType
● OpcUa_EUInformation
● OpcUa_EventFieldList
● OpcUa_EventFilter
● OpcUa_EventFilterResult
● OpcUa_EventNotificationList
● OpcUa_ExpandedNodeId
● OpcUa_ExtensionObject
● OpcUa_ExtensionObject_Body
● OpcUa_ExtensionObjectEncoding
● OpcUa_FilterOperator
● OpcUa_FindServersOnNetworkRequest
● OpcUa_FindServersOnNetworkResponse
● OpcUa_FindServersRequest
● OpcUa_FindServersResponse
● OpcUa_Float
● OpcUa_GenericAttributes
● OpcUa_GenericAttributeValue
● OpcUa_GetEndpointsRequest
● OpcUa_GetEndpointsResponse
● OpcUa_Guid
● OPcUa_Handle
● OpcUa_HistoryData
● OpcUa_HistoryEvent
● OpcUa_HistoryEventFieldList
● OpcUa_HistoryModifiedData
● OpcUa_HistoryReadRequest
● OpcUa_HistoryReadResponse
● OpcUa_HistoryReadResult
● OpcUa_HistoryReadValueId
● OpcUa_HistoryUpdateDetails
● OpcUa_HistoryUpdateRequest
● OpcUa_HistoryUpdateResponse
● OpcUa_HistoryUpdateResult
● OpcUa_HistoryUpdateType
● OpcUa_IdentifierType
● OpcUa_Int
● OpcUa_Int16
● OpcUa_Int32

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4364

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteReferencesRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteReferencesResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteSubscriptionsRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteSubscriptionsResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DiagnosticInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Double.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DoubleComplexNumberType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ElementOperand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EncodeableObjectBody.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EncodeableType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Encoder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EndpointConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EndpointDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EndpointUrlListDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EnumDefinition.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EnumField.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EnumValueType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EUInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EventFieldList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EventFilter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EventFilterResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EventNotificationList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ExpandedNodeId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ExtensionObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ExtensionObject_Body.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_ExtensionObjectEncoding.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_FilterOperator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_FindServersOnNetworkRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_FindServersOnNetworkResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_FindServersRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_FindServersResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Float.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_GenericAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_GenericAttributeValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_GetEndpointsRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_GetEndpointsResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Guid.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OPcUa_Handle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryEventFieldList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryModifiedData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryReadRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryReadResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryReadResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryReadValueId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryUpdateDetails.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryUpdateRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryUpdateResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryUpdateResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_HistoryUpdateType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_IdentifierType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Int.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Int16.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Int32.html#index-0

● OpcUa_Int64
● OpcUa_IssuedIdentityToken
● OpcUa_LiteralOperand
● OpcUa_LocalizedText
● OpcUa_MdnsDiscoveryConfiguration
● OpcUa_MessageSecurityMode
● OpcUa_MethodAttributes
● OpcUa_ModelChangeStructureDataType
● OpcUa_ModificationInfo
● OpcUa_ModifyMonitoredItemsRequest
● OpcUa_ModifyMonitoredItemsResponse
● OpcUa_ModifySubscriptionRequest
● OpcUa_ModifySubscriptionResponse
● OpcUa_MonitoredItemCreateRequest
● OpcUa_MonitoredItemCreateResult
● OpcUa_MonitoredItemModifyRequest
● OpcUa_MonitoredItemModifyResult
● OpcUa_MonitoredItemNotification
● OpcUa_MonitoringMode
● OpcUa_MonitoringParameters
● OpcUa_NetworkGroupDataType
● OpcUa_NodeAttributes
● OpcUa_NodeClass
● OpcUa_NodeId
● OpcUa_NodeId_anon
● OpcUa_NodeIds
● OpcUa_NodeReference
● OpcUa_NodeTypeDescription
● OpcUa_NotificationMessage
● OpcUa_ObjectAttributes
● OpcUa_ObjectTypeAttributes
● OpcUa_OpenSecureChannelRequest
● OpcUa_OpenSecureChannelResponse
● OpcUa_OptionSet
● OpcUa_ParsingResult
● OpcUa_PerformUpdateType
● OpcUa_ProgramDiagnostic2DataType
● OpcUa_ProgramDiagnosticDataType
● OpcUa_PublishRequest
● OpcUa_PublishResponse
● OpcUa_QualifiedName
● OpcUa_QueryDataDescription
● OpcUa_QueryDataSet
● OpcUa_QueryFirstRequest
● OpcUa_QueryFirstResponse
● OpcUa_QueryNextRequest
● OpcUa_QueryNextResponse
● OpcUa_Range
● OpcUa_ReadAtTimeDetails
● OpcUa_ReadEventDetails
● OpcUa_ReadProcessedDetails
● OpcUa_ReadRawModifiedDetails
● OpcUa_ReadRequest
● OpcUa_ReadResponse
● OpcUa_ReadValueId

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4365

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Int64.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_IssuedIdentityToken.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_LiteralOperand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_LocalizedText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MdnsDiscoveryConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_MessageSecurityMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MethodAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ModelChangeStructureDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ModificationInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ModifyMonitoredItemsRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ModifyMonitoredItemsResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ModifySubscriptionRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ModifySubscriptionResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MonitoredItemCreateRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MonitoredItemCreateResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MonitoredItemModifyRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MonitoredItemModifyResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MonitoredItemNotification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_MonitoringMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MonitoringParameters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NetworkGroupDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NodeAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_NodeClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NodeId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NodeId_anon.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_NodeIds.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NodeReference.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NodeTypeDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NotificationMessage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ObjectAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ObjectTypeAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_OpenSecureChannelRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_OpenSecureChannelResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_OptionSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ParsingResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_PerformUpdateType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ProgramDiagnostic2DataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ProgramDiagnosticDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_PublishRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_PublishResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QualifiedName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QueryDataDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QueryDataSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QueryFirstRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QueryFirstResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QueryNextRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QueryNextResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Range.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadAtTimeDetails.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadEventDetails.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadProcessedDetails.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadRawModifiedDetails.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadValueId.html#index-0

● OpcUa_RedundantServerDataType
● OpcUa_ReferenceDescription
● OpcUa_ReferenceTypeAttributes
● OpcUa_RegisteredServer
● OpcUa_RegisterNodesRequest
● OpcUa_RegisterNodesResponse
● OpcUa_RegisterServer2Request
● OpcUa_RegisterServer2Response
● OpcUa_RegisterServerRequest
● OpcUa_RegisterServerResponse
● OpcUa_RelativePath
● OpcUa_RelativePathElement
● OpcUa_RepublishRequest
● OpcUa_RepublishResponse
● OpcUa_RequestHeader
● OpcUa_ResponseHeader
● OpcUa_RolePermissionType
● OpcUa_SamplingIntervalDiagnosticsDataType
● OpcUa_SByte
● OpcUa_SecurityTokenRequestType
● OpcUa_SemanticChangeStructureDataType
● OpcUa_ServerDiagnosticsSummaryDataType
● OpcUa_ServerOnNetwork
● OpcUa_ServerState
● OpcUa_ServerStatusDataType
● OpcUa_ServiceCounterDataType
● OpcUa_ServiceFault
● OpcUa_SessionDiagnosticsDataType
● OpcUa_SessionlessInvokeRequestType
● OpcUa_SessionlessInvokeResponseType
● OpcUa_SessionSecurityDiagnosticsDataType
● OpcUa_SetMonitoringModeRequest
● OpcUa_SetMonitoringModeResponse
● OpcUa_SetPublishingModeRequest
● OpcUa_SetPublishingModeResponse
● OpcUa_SetTriggeringRequest
● OpcUa_SetTriggeringResponse
● OpcUa_SignatureData
● OpcUa_SignedSoftwareCertificate
● OpcUa_SimpleAttributeOperand
● OpcUa_StatusChangeNotification
● OpcUa_StatusCode
● OpcUa_StatusResult
● OpcUa_String
● OpcUa_StructureDefinition
● OpcUa_StructureField
● OpcUa_StructureType
● OpcUa_SubscriptionAcknowledgement
● OpcUa_SubscriptionDiagnosticsDataType
● OpcUa_TimestampsToReturn
● OpcUa_TimeZoneDataType
● OpcUa_TransferResult
● OpcUa_TransferSubscriptionsRequest
● OpcUa_TransferSubscriptionsResponse
● OpcUa_TranslateBrowsePathsToNodeIdsRequest

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4366

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RedundantServerDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReferenceDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReferenceTypeAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisteredServer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisterNodesRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisterNodesResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisterServer2Request.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisterServer2Response.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisterServerRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisterServerResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RelativePath.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RelativePathElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RepublishRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RepublishResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RequestHeader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ResponseHeader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RolePermissionType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SamplingIntervalDiagnosticsDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_SByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_SecurityTokenRequestType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SemanticChangeStructureDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ServerDiagnosticsSummaryDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ServerOnNetwork.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_ServerState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ServerStatusDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ServiceCounterDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ServiceFault.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SessionDiagnosticsDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SessionlessInvokeRequestType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SessionlessInvokeResponseType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SessionSecurityDiagnosticsDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SetMonitoringModeRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SetMonitoringModeResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SetPublishingModeRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SetPublishingModeResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SetTriggeringRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SetTriggeringResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SignatureData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SignedSoftwareCertificate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SimpleAttributeOperand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_StatusChangeNotification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_StatusCode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_StatusResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_String.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_StructureDefinition.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_StructureField.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_StructureType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SubscriptionAcknowledgement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SubscriptionDiagnosticsDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_TimestampsToReturn.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_TimeZoneDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_TransferResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_TransferSubscriptionsRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_TransferSubscriptionsResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_TranslateBrowsePathsToNodeIdsRequest.html#index-0

● OpcUa_TranslateBrowsePathsToNodeIdsResponse
● OpcUa_UInt
● OpcUa_Uint16
● OpcUa_UInt32
● OpcUa_UInt64
● OpcUa_UnregisterNodesRequest
● OpcUa_UnregisterNodesResponse
● OpcUa_UpdateDataDetails
● OpcUa_UpdateEventDetails
● OpcUa_UpdateStructureDataDetails
● OpcUa_UserIdentityToken
● OpcUa_UserNameIdentityToken
● OpcUa_UserTokenPolicy
● OpcUa_UserTokenType
● OpcUa_VariableAttributes
● OpcUa_VariableTypeAttributes
● OpcUa_Variant
● OpcUa_VariantArrayType
● OpcUa_VariantArrayUnion
● OpcUa_VariantArrayValue
● OpcUa_VariantMatrixValue
● OpcUa_VariantUnion
● OpcUa_ViewAttributes
● OpcUa_ViewDescription
● OpcUa_WriteRequest
● OpcUa_WriteResponse
● OpcUa_WriteValue
● OpcUa_X509IdentityToken
● OpcUa_XVType
● OpcUaApplicationDescriptionClear
● OpcUaApplicationDescriptionInitialize
● OpcUaBrowsePathClear
● OpcUaBrowsePathInitialize
● OpcUaBrowsePathResultClear
● OpcUaBrowsePathResultInitialize
● OpcUaBrowseResultClear
● OpcUaBrowseResultInitialize
● OpcUaByteStringClear
● OpcUaByteStringCompare
● OpcUaByteStringConcatenate
● OpcUaByteStringCopyTo
● OpcUaByteStringInitialize
● OPCUAClient_Browse
● OPCUAClient_BrowseNext
● OPCUAClient_Call
● OPCUAClient_Connect
● OPCUAClient_Create
● OPCUAClient_CreateMonitoredItems
● OPCUAClient_CreateSubscription
● OPCUAClient_Delete
● OPCUAClient_DeleteMonitoredItems
● OPCUAClient_DeleteSubscription
● OPCUAClient_Disconnect
● OPCUAClient_FindServers
● OPCUAClient_FindServersOnNetwork

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4367

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_TranslateBrowsePathsToNodeIdsResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_UInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Uint16.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_UInt32.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_UInt64.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UnregisterNodesRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UnregisterNodesResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UpdateDataDetails.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UpdateEventDetails.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UpdateStructureDataDetails.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UserIdentityToken.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UserNameIdentityToken.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UserTokenPolicy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_UserTokenType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_VariableAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_VariableTypeAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Variant.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_VariantArrayType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_VariantArrayUnion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_VariantArrayValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_VariantMatrixValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_VariantUnion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ViewAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ViewDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_WriteRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_WriteResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_WriteValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_X509IdentityToken.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_XVType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaApplicationDescriptionClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaApplicationDescriptionInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaBrowsePathClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaBrowsePathInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaBrowsePathResultClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaBrowsePathResultInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaBrowseResultClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaBrowseResultInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaByteStringClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaByteStringCompare.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaByteStringConcatenate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaByteStringCopyTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaByteStringInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/View/OPCUAClient_Browse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/View/OPCUAClient_BrowseNext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Method/OPCUAClient_Call.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Connection/OPCUAClient_Connect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/CmpOPCUAClient/OPCUAClient_Create.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/MonitoredItems/OPCUAClient_CreateMonitoredItems.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Subscription/OPCUAClient_CreateSubscription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/CmpOPCUAClient/OPCUAClient_Delete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/MonitoredItems/OPCUAClient_DeleteMonitoredItems.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Subscription/OPCUAClient_DeleteSubscription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Connection/OPCUAClient_Disconnect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Discovery/OPCUAClient_FindServers.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Discovery/OPCUAClient_FindServersOnNetwork.html#index-0

● OPCUAClient_GetConfig
● OPCUAClient_GetEndpoints
● OPCUAClient_ModifyMonitoredItems
● OPCUAClient_ModifySubscription
● OPCUAClient_Read
● OPCUAClient_RegisterNodes
● OPCUAClient_SetDataChangeFilterStatic
● OPCUAClient_SetEventFilterStatic
● OPCUAClient_SetMonitoringMode
● OPCUAClient_SetPublishingMode
● OPCUAClient_TranslateBrowsePathsToNodeIds
● OPCUAClient_UnregisterNodes
● OPCUAClient_Write
● OPCUAClientConnectionConfiguration
● OPCUAClientConnectionState
● OPCUAClientCredentials
● OPCUAClientMonitoredItemConfiguration
● OPCUAClientMonitoredItemState
● OPCUAClientSubscriptionState
● OPCUAClientUserToken
● OpcUaDataTypeDescription
● OpcUaDataValueClear
● OpcUaDataValueCompare
● OpcUaDataValueCopyTo
● OpcUaDataValueInitialize
● OpcUaDateTimeUtcNow
● OpcUaElementDescription
● OpcUaEndpointDescriptionClear
● OpcUaEndpointDescriptionInitialize
● OpcUaEventFieldListClear
● OpcUaEventFieldListInitialize
● OpcUaEventNotificationListClear
● OpcUaEventNotificationListInitialize
● OpcUaExpandedNodeIdClear
● OpcUaExpandedNodeIdCompare
● OpcUaExpandedNodeIdCopyTo
● OpcUaExpandedNodeIdInitialize
● OpcUaExpandedNodeIdIsNull
● OpcUaExtensionObjectClear
● OpcUaExtensionObjectCompare
● OpcUaExtensionObjectCopyTo
● OpcUaExtensionObjectCreate
● OpcUaExtensionObjectDelete
● OpcUaExtensionObjectInitialize
● OpcUaLocalizedTextClear
● OpcUaLocalizedTextCompare
● OpcUaLocalizedTextCopyTo
● OpcUaLocalizedTextInitialize
● OpcUaMetaDataType
● OpcUaMethodDescription
● OpcUaMethodMetaData
● OpcUaNodeIdClear
● OpcUaNodeIdCompare
● OpcUaNodeIdCopyTo
● OpcUaNodeIdInitialize

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4368

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/CmpOPCUAClient/OPCUAClient_GetConfig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Discovery/OPCUAClient_GetEndpoints.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/MonitoredItems/OPCUAClient_ModifyMonitoredItems.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Subscription/OPCUAClient_ModifySubscription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/DataAccess/OPCUAClient_Read.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/View/OPCUAClient_RegisterNodes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/MonitoredItems/OPCUAClient_SetDataChangeFilterStatic.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/MonitoredItems/OPCUAClient_SetEventFilterStatic.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/MonitoredItems/OPCUAClient_SetMonitoringMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Subscription/OPCUAClient_SetPublishingMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/View/OPCUAClient_TranslateBrowsePathsToNodeIds.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/View/OPCUAClient_UnregisterNodes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/DataAccess/OPCUAClient_Write.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Structs/OPCUAClientConnectionConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Types/OPCUAClientConnectionState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Structs/OPCUAClientCredentials.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Structs/OPCUAClientMonitoredItemConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Types/OPCUAClientMonitoredItemState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Types/OPCUAClientSubscriptionState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Structs/OPCUAClientUserToken.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaDataTypeDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaDataValueClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaDataValueCompare.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaDataValueCopyTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaDataValueInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaDateTimeUtcNow.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaElementDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaEndpointDescriptionClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaEndpointDescriptionInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaEventFieldListClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaEventFieldListInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaEventNotificationListClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaEventNotificationListInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExpandedNodeIdClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExpandedNodeIdCompare.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExpandedNodeIdCopyTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExpandedNodeIdInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExpandedNodeIdIsNull.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExtensionObjectClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExtensionObjectCompare.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExtensionObjectCopyTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExtensionObjectCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExtensionObjectDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExtensionObjectInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaLocalizedTextClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaLocalizedTextCompare.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaLocalizedTextCopyTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaLocalizedTextInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaMetaDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaMethodDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaMethodMetaData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaNodeIdClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaNodeIdCompare.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaNodeIdCopyTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaNodeIdInitialize.html#index-0

● OpcUaNodeIdIsNull
● OpcUaNodeMetaData
● OpcUaObjectDescription
● OpcUaObjectTypeDescription
● OpcUaOwnDataTypeMetaData
● OpcUaQualifiedNameClear
● OpcUaQualifiedNameCompare
● OpcUaQualifiedNameCopyTo
● OpcUaQualifiedNameInitialize
● OpcUaReadValueIdClear
● OpcUaReadValueIdInitialize
● OpcUaReferenceDescriptionClear
● OpcUaReferenceDescriptionInitialize
● OpcUaReferenceTypeDescription
● OpcUaServer_MessageSecurityMode
● OpcUaServer_Session_Information
● OpcUaServer_SessionEvents
● OpcUaServerGetFirstSession
● OpcUaServerGetNextSession
● OpcUaServerGetSessionInfo
● OpcUaServerNodeDescription
● OpcUaServerOnNetworkClear
● OpcUaServerOnNetworkInitialize
● OpcUaServerReferenceDescription
● OpcUaSimpleAttributeOperandClear
● OpcUaSimpleAttributeOperandInitialize
● OpcUaStatusChangeNotificationClear
● OpcUaStatusChangeNotificationInitialize
● OpcUaStringAttachCopy
● OpcUaStringAttachReadOnly
● OpcUaStringAttachToString
● OpcUaStringClear
● OpcUaStringGetRawString
● OpcUaStringInitialize
● OpcUaStringIsEmpty
● OpcUaStringIsNull
● OpcUaStringStrLen
● OpcUaStringStrnCat
● OpcUaStringStrnCmp
● OpcUaStringStrnCpy
● OpcUaStringStrSize
● OpcUaTypeMetaData
● OpcUaTypeMetaDataUnion
● OpcUaVariableDescription
● OpcUaVariableTypeDescription
● OpcUaVariantClear
● OpcUaVariantCompare
● OpcUaVariantCopyTo
● OpcUaVariantInitialize
● OpcUaViewDescription
● OpcUaWellKnownDataTypeMetaData
● Open
● OPERATION_FWK_ACCESS_ADDRESS
● OPERATION_FWK_ACCESS_CONFIG
● OPERATION_FWK_ACCESS_PARAMETER

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4369

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaNodeIdIsNull.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaNodeMetaData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaObjectDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaObjectTypeDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaOwnDataTypeMetaData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaQualifiedNameClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaQualifiedNameCompare.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaQualifiedNameCopyTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaQualifiedNameInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaReadValueIdClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaReadValueIdInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaReferenceDescriptionClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaReferenceDescriptionInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaReferenceTypeDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/OpcUaServer_MessageSecurityMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/OpcUaServer_Session_Information.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/OpcUaServer_SessionEvents.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer%20Implementation.library_Library/OpcUaServerGetFirstSession.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer%20Implementation.library_Library/OpcUaServerGetNextSession.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer%20Implementation.library_Library/OpcUaServerGetSessionInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaServerNodeDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaServerOnNetworkClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaServerOnNetworkInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaServerReferenceDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaSimpleAttributeOperandClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaSimpleAttributeOperandInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStatusChangeNotificationClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStatusChangeNotificationInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringAttachCopy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringAttachReadOnly.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringAttachToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringGetRawString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringIsEmpty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringIsNull.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringStrLen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringStrnCat.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringStrnCmp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringStrnCpy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringStrSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaTypeMetaData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaTypeMetaDataUnion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaVariableDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaVariableTypeDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaVariantClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaVariantCompare.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaVariantCopyTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaVariantInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaViewDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaWellKnownDataTypeMetaData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/Open.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Types/OPERATION_FWK_ACCESS_ADDRESS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Types/OPERATION_FWK_ACCESS_CONFIG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Types/OPERATION_FWK_ACCESS_PARAMETER.html#index-0

● OPERATION_FWK_CALLINFO
● OPERATION_FWK_GET_DEV_STATUS_PARAMETER
● OPERATION_FWK_SEND_COMMAND
● OPERATION_FWK_SEND_PARAMETER
● OPERATION_FWK_SET_PARAMETER
● OPERATION_FWK_START_SCAN
● OPERATION_FWK_STATUS_PARAMETER
● OPERATION_FWK_TEST_ADDRESS
● OperationsQueue
● OS
● OurVarInfo
● PACK
● PackArrayOfBoolToArrayOfByte
● PackBitsToByte
● PackBitsToDword
● PackBitsToWord
● PackBytesToDword
● PackBytesToWord
● PacketPool
● PacketPoolFactoryArgs
● PacketPoolFactoryBase
● PacketReader
● PacketWriter
● PackWordsToDword
● PaintCmdAndEventListener
● PaintRectangle
● Pair_DintDint
● Pair_PStringDint
● Pair_PStringXWORD
● Pair_StringDint
● Pair_StringString
● PARAM_ID
● PARAMETER
● ParameterServiceResult
● PARITY
● ParseCANID
● ParsePGN
● ParseXML2
● PB_CNCT
● PB_SLAVE_CIFX_DIAG
● PB_SlaveActivation
● PB_SlaveConfigurationData
● PBS_CONFIG_STATES
● PBScanData
● PBSlave
● PBSlaveDiag
● PCB
● PCI_INFO
● PciInterrupt
● PD
● PenStyle
● PERIOD
● PERIODE
● PERIODE_INFO
● Persistence

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4370

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Types/OPERATION_FWK_CALLINFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Types/OPERATION_FWK_GET_DEV_STATUS_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Types/OPERATION_FWK_SEND_COMMAND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Types/OPERATION_FWK_SEND_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Types/OPERATION_FWK_SET_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Types/OPERATION_FWK_START_SCAN.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Types/OPERATION_FWK_STATUS_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Types/OPERATION_FWK_TEST_ADDRESS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/DownloadSeamLess/OperationsQueue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Enum/OS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Nodefinding/OurVarInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/PACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackArrayOfBoolToArrayOfByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackBitsToByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackBitsToDword.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackBitsToWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackBytesToDword.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackBytesToWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Packet/PacketPool/PacketPool.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Packet/PacketPool/PacketPoolFactoryArgs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Packet/PacketPool/PacketPoolFactoryBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXBase.library_Library/FunctionBlocks/Utils/PacketReader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXBase.library_Library/FunctionBlocks/Utils/PacketWriter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackWordsToDword.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/FBs/PaintCmdAndEventListener.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Structures/PaintRectangle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/Pair_DintDint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/Pair_PStringDint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/Pair_PStringXWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/Pair_StringDint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/Pair_StringString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6731.library_Library/PARAM_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20SerialCom.library_Library/CAA-SerialCom/Structs/PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvAL1030.library_Library/Services/ParameterServiceResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20SerialCom.library_Library/CAA-SerialCom/Enums/PARITY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Help-Functions/Parser/ParseCANID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Help-Functions/Parser/ParsePGN.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpXMLParser.library_Library/ParseXML2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfibus.library_Library/CommFB/PB_CNCT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfibusDevice.library_Library/Datastructs/PB_SLAVE_CIFX_DIAG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/PB_SlaveActivation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/PB_SlaveConfigurationData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfibusDevice.library_Library/Datastructs/PBS_CONFIG_STATES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6731.library_Library/PBScanData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfibus.library_Library/FunctionBlocks/PBSlave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfibus.library_Library/Diag/PBSlaveDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CmpHilscherCIFX/PCB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPci.library_Library/PCI_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/PciInterrupt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Controller/PD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Enums/PenStyle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Enums/PERIOD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Enums/PERIODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/PERIODE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/DownloadSeamLess/Persistence.html#index-0

● PersistenceWriteProperty
● PERSISTENT_DATA_BUFFER
● PERSISTENT_INDEX_HEADER
● PERSISTENT_PDATA_ENTRY
● PERSISTENT_PDATA_HEADER
● PFSYS_TASK_EXCEPTIONHANDLER
● PFSYS_TASK_FUNCTION
● PFTIMERCALLBACK
● PFTIMEREXCEPTIONHANDLER
● PG_TYPE
● PID
● PID_FIXCYCLE
● PINGROUP
● PLANE_H
● PLC_IDENT
● PlcConnectionInitFlags
● PlcCryptType
● PlcOperationControl
● PlcShellAppend
● PlcShellRegister
● PlcShellSetEof
● PlcShellSkip
● PlcShellUnregister
● PM_VERSION
● PmBatt
● PmDiskLifetimeUsed
● PmDiskStatus
● PmDispSetText
● PmEcoResetFRAM
● PmErrLedSet
● PmGetDeviceState
● PmGetPlcId
● PmLedSet
● PmNtpInfo
● PmPlcReboot
● PmProdReadAsync
● PmRealtimeClock
● PmRealtimeClockDT
● PmSntpInfo
● PmSramCleared
● PmSramExport
● PmSramImport
● PmSysTime
● PmVersion
● PN_ADDR
● PN_AINFO
● PN_DEVICE_ID
● PN_PortConfiguration
● PN_PortConfigurationRecord
● PNIO_COMM_ERNO_TYPE
● PNIO_MST_STATE_TYPE
● PnioCntrlGetCntrlState
● PnioCntrlGetDevIM0Data
● PnioCntrlGetDevState
● PnioCntrlRead

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4371

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/PersistenceWriteProperty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Structs/Persistence/PERSISTENT_DATA_BUFFER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Structs/Persistence/PERSISTENT_INDEX_HEADER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Structs/Persistence/PERSISTENT_PDATA_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Structs/PERSISTENT_PDATA_HEADER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/DUTs/PFSYS_TASK_EXCEPTIONHANDLER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/DUTs/PFSYS_TASK_FUNCTION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimer.library_Library/PFTIMERCALLBACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimer.library_Library/PFTIMEREXCEPTIONHANDLER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Enum/PG_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Controller/PID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Controller/PID_FIXCYCLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Structs/PINGROUP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Structs/PLANE_H.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy_Itfs.library_Library/CmpRedundancy-Interfaces/Enums/PLC_IDENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Communication/PlcConnectionInitFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Communication/PlcCryptType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/PlcOperationControl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPlcShell.library_Library/PlcShellAppend.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPlcShell.library_Library/PlcShellRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPlcShell.library_Library/PlcShellSetEof.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPlcShell.library_Library/PlcShellSkip.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPlcShell.library_Library/PlcShellUnregister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Functions/System-information/CompatibleV23/PM_VERSION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Functions/Battery/PmBatt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Data-storage/FlashDisk/PmDiskLifetimeUsed.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Data-storage/FlashDisk/PmDiskStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Display/PmDispSetText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/EcoResetFRAM/PmEcoResetFRAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/LED-control/PmErrLedSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Device-State/PmGetDeviceState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Functions/System-information/PmGetPlcId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/LED-control/PmLedSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/SNTP-Diagnosis/PmNtpInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Reboot/PmPlcReboot.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Production-data/PmProdReadAsync.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Realtime-clock/PmRealtimeClock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Realtime-clock/PmRealtimeClockDT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/SNTP-Diagnosis/PmSntpInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Functions/Data-storage/SRAM-data/PmSramCleared.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Data-storage/SRAM-data/PmSramExport.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Data-storage/SRAM-data/PmSramImport.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Functions/System-information/PmSysTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Functions/System-information/PmVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/PN_ADDR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/PN_AINFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/PN_DEVICE_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/PN_PortConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/PN_PortConfigurationRecord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Profinet/PnioCntrl_1.1.0.5_Library/Enums/PNIO_COMM_ERNO_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Profinet/PnioCntrl_1.1.0.5_Library/Enums/PNIO_MST_STATE_TYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Profinet/PnioCntrl_1.1.0.5_Library/Function-Blocks/Diagnosis/PnioCntrlGetCntrlState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Profinet/PnioCntrl_1.1.0.5_Library/Function-Blocks/Diagnosis/PnioCntrlGetDevIM0Data.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Profinet/PnioCntrl_1.1.0.5_Library/Function-Blocks/Diagnosis/PnioCntrlGetDevState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Profinet/PnioCntrl_1.1.0.5_Library/Function-Blocks/Data-Access/PnioCntrlRead.html#index-0

● PnioCntrlStartCom
● PnioCntrlStopCom
● PnioCntrlWrite
● PnioImSwRevType
● PnioImVersionType
● PNM_AP_CFG_OEMPRM_DEVICE_IDENTITY_T
● PNS_CONFIG_STATES
● PNS_DIAG
● PNS_DIAG_LinkState
● PNS_IF_APDU_STATUS_CHANGED_IND_DATA_T
● PNS_IF_APDU_STATUS_CHANGED_IND_T
● PNS_IF_AR_ABORT_IND_IND_T
● PNS_IF_AR_CHECK_IND_DATA_T
● PNS_IF_AR_CHECK_IND_T
● PNS_IF_AR_IN_DATA_IND_T
● PNS_IF_CHECK_IND
● PNS_IF_CHECK_IND_DATA_T
● PNS_IF_CMD
● PNS_IF_EVENT_IND_T
● PNS_IF_GET_ASSET_IND_DATA_T
● PNS_IF_GET_ASSET_IND_T
● PNS_IF_GET_IP_ADDR_CNF_DATA_T
● PNS_IF_GET_IP_ADDR_CNF_T
● PNS_IF_GET_STATION_NAME_CNF_DATA_T
● PNS_IF_GET_STATION_NAME_CNF_T
● PNS_IF_LOAD_REMANENT_DATA_REQ
● PNS_IF_READ_RECORD_IND_DATA_T
● PNS_IF_READ_RECORD_IND_T
● PNS_IF_READ_RECORD_RSP_DATA_T
● PNS_IF_READ_RECORD_RSP_T
● PNS_IF_RESET_FACTORY_SETTINGS_IND_T
● PNS_IF_START_LED_BLINKING_IND_T
● PNS_IF_STORE_REMANENT_DATA_IND_T
● PNS_IF_USER_ERROR_IND_DATA_T
● PNS_IF_USER_ERROR_IND_T
● PNSlave
● PNSlaveDiag
● POINT
● Point
● POINT2_DINT
● POINT2_LREAL
● PointArrayCalcSurroundingSimpleRect
● PolarToCartesian
● PolygonType
● PolynomialValue
● PoolClass
● PoolCreateH
● PoolCreateP
● PoolDelete
● PoolExtendH
● PoolGetBlock
● PoolGetSize
● PoolPutBlock
● PopTransformation
● Port

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4372

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Profinet/PnioCntrl_1.1.0.5_Library/Function-Blocks/Bus-Control/PnioCntrlStartCom.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Profinet/PnioCntrl_1.1.0.5_Library/Function-Blocks/Bus-Control/PnioCntrlStopCom.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Profinet/PnioCntrl_1.1.0.5_Library/Function-Blocks/Data-Access/PnioCntrlWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Profinet/PnioCntrl_1.1.0.5_Library/Structs/DataTypes/PnioImSwRevType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Profinet/PnioCntrl_1.1.0.5_Library/Structs/DataTypes/PnioImVersionType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetIRT.library_Library/IoDrvCIFXProfinetIRT/PacketInterface/OEM/PNM_AP_CFG_OEMPRM_DEVICE_IDENTITY_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PNS_CONFIG_STATES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PNS_DIAG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PNS_DIAG_LinkState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Connection/PNS_IF_APDU_STATUS_CHANGED_IND_DATA_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Connection/PNS_IF_APDU_STATUS_CHANGED_IND_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/StackEvents/PNS_IF_AR_ABORT_IND_IND_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Connection/PNS_IF_AR_CHECK_IND_DATA_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Connection/PNS_IF_AR_CHECK_IND_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Connection/PNS_IF_AR_IN_DATA_IND_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/PNS_IF_CHECK_IND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/PNS_IF_CHECK_IND_DATA_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/PNS_IF_CMD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/StackEvents/PNS_IF_EVENT_IND_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/RecordData/PNS_IF_GET_ASSET_IND_DATA_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/RecordData/PNS_IF_GET_ASSET_IND_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Network/PNS_IF_GET_IP_ADDR_CNF_DATA_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Network/PNS_IF_GET_IP_ADDR_CNF_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Network/PNS_IF_GET_STATION_NAME_CNF_DATA_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Network/PNS_IF_GET_STATION_NAME_CNF_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/PNS_IF_LOAD_REMANENT_DATA_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/RecordData/PNS_IF_READ_RECORD_IND_DATA_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/RecordData/PNS_IF_READ_RECORD_IND_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/RecordData/PNS_IF_READ_RECORD_RSP_DATA_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/RecordData/PNS_IF_READ_RECORD_RSP_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/StackEvents/PNS_IF_RESET_FACTORY_SETTINGS_IND_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/PNS_IF_START_LED_BLINKING_IND_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/StackEvents/PNS_IF_STORE_REMANENT_DATA_IND_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/StackEvents/PNS_IF_USER_ERROR_IND_DATA_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/StackEvents/PNS_IF_USER_ERROR_IND_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetIRT.library_Library/IoDrvCIFXProfinetIRT/Function-Blocks/PNSlave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetIRT.library_Library/IoDrvCIFXProfinetIRT/Diagnosis/PNSlaveDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Datatypes/POINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Structures/Point.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Structs/POINT2_DINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Structs/POINT2_LREAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Animation/PointArrayCalcSurroundingSimpleRect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Polar-coordinates/PolarToCartesian.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Enums/PolygonType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analytical-functions/PolynomialValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Internal/PoolClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolCreateH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolCreateP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolExtendH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolGetBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolGetSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolPutBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/PopTransformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Functionblocks/Port.html#index-0

● PortStatus
● PostEvent
● PrimaryTables
● Printf
● PrintfW
● private_iomgr_memcpy
● PROC_CMD
● PROC_STATE
● ProfibusBaudrate
● ProfinetByteData
● ProfinetConfigType
● ProfinetController
● ProfinetControllerDiag
● ProfinetDevice
● ProfinetDeviceDiag
● ProfinetDeviceInstance
● ProfinetSubmodule
● PROJECT_INFO
● ProjectPointOnLine
● ProjectPointOnPlane
● PropAddrString
● PropertyAddrString
● PropertyAttributeExistenceString
● PropertyAttributePersistentString
● PropertyAttributesString
● PropertyAttributeWritableString
● PropertyConfiguration
● PropertyConfigurationMostlyAllPersistent
● PropertyConfigurationMostlyAllWritable
● PropertyConfigurationObjectPropertyPair
● PropertyContentToString
● PropertyIndexAddrString
● PropertyInfo
● PropertyInfoRemote
● PropertyLocation
● PROTOCOL_DATA_UNIT
● ProtocolDataUnit
● ProxyEnumState
● ProxyFbHistActiveAlarmsQueue
● ProxyFbHistAlarmsRowQueue
● ProxyStructError
● ProxyStructMonitor
● ProxyStructMonitorAlarmClassDesc
● ProxyStructMonitorAlarmDesc
● ProxyStructMonitorAlarmGroupDesc
● ProxyStructMonitorRequest
● PRVREC
● PRVREC_MODE
● PStrCat
● PStrCmp
● PStrICmp
● PStrIFind
● PStringElement
● PStringElementFactory
● PStringToDintMap

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4373

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ProfinetDeviceConfig.library_Library/ProfinetDeviceConfig/DataTypes/PortStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/PostEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Enums/PrimaryTables.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/IECStringUtils.library_Library/Printf.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/IECStringUtils.library_Library/PrintfW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/private/private_iomgr_memcpy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/PROC_CMD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/PROC_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfibus.library_Library/Diag/ProfibusBaudrate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Util/ProfinetByteData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/ProfinetConfigType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinet.library_Library/FunctionBlocks/ProfinetController.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinet.library_Library/Diagnosis/ProfinetControllerDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetDevice.library_Library/IoDrvProfinetDevice/FunctionBlocks/ProfinetDevice.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetDevice.library_Library/IoDrvProfinetDevice/FunctionBlocks/ProfinetDeviceDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ProfinetDeviceConfig.library_Library/ProfinetDeviceConfig/ProfinetDeviceInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ProfinetDeviceConfig.library_Library/ProfinetDeviceConfig/ProfinetSubmodule.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/PROJECT_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Line-Functions/ProjectPointOnLine.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Plane-Functions/ProjectPointOnPlane.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/PropAddrString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/ToString/PropertyAddrString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/ToString/PropertyAttributeExistenceString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/ToString/PropertyAttributePersistentString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/ToString/PropertyAttributesString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/ToString/PropertyAttributeWritableString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/PropertyConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/PropertyConfigurationMostlyAllPersistent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/PropertyConfigurationMostlyAllWritable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Structs/PropertyConfiguration/PropertyConfigurationObjectPropertyPair.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/PropertyContentToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/ToString/PropertyIndexAddrString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/PropertyInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/PropertyInfoRemote.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/PropertyLocation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSrv.library_Library/Structs/PROTOCOL_DATA_UNIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ProtocolDataUnit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/ProxyEnumState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/ProxyFbHistActiveAlarmsQueue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/ProxyFbHistAlarmsRowQueue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Structures/ProxyStructError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Structures/Monitor/ProxyStructMonitor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Structures/Monitor/ProxyStructMonitorAlarmClassDesc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Structures/Monitor/ProxyStructMonitorAlarmDesc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Structures/Monitor/ProxyStructMonitorAlarmGroupDesc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Structures/Monitor/ProxyStructMonitorRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/FieldDevice/PRVREC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/FieldDevice/PRVREC_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrCat.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrCmp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrICmp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrIFind.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/PStringElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/PStringElementFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/PStringToDintMap.html#index-0

● PStringToXWORDMap
● PStringVector
● PStringVectorArrAccess
● PStrLen
● PStrLenUntil
● PStrNICmp
● PStrToUpper
● PT_SIZE
● PtrToString
● PtrVectorArrAccess
● PURPOSE
● PushTransformation
● PUTBIT
● PVOID
● PVOID_TO_DWORD
● PVOID_TO_LWORD
● PVOID_TO_WORD
● QOS_INFO
● Queue
● QueueFactory
● QuickSortAddrItemHelpers
● R_TRIG
● RaiseModuleEvent
● RALARM
● RALARM_MODE
● RAMP_INT
● RAMP_REAL
● RCSINFO
● RCVREC
● RCVREC_MODE
● RCX_SET_WATCHDOG_TIME_CNF_T
● RCX_SET_WATCHDOG_TIME_REQ_DATA_T
● RCX_SET_WATCHDOG_TIME_REQ_T
● RDIAG
● RDREC
● RDT_Base
● RDT_Client
● RDT_ERROR
● RDT_Server
● RdtInitStructClientTCP
● RdtInitStructServerTCP
● RdtProtStructCommPh
● RdtProtStructConnection
● RdtProtStructResPh
● Read
● ReadableRequestBase
● ReadArbitraryStringFromBuffer
● readBit
● ReadEEpromData
● ReadIdentification
● ReadItemInfo
● ReadItemVector
● ReadMemory
● ReadNbrSlaves
● ReadRequest

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4374

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/PStringToXWORDMap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/PStringVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Utils/Collections/PStringVectorArrAccess.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrLen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrLenUntil.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/StringFunctions/PStrNICmp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrToUpper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Datatypes/PT_SIZE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/Logging/PtrToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Utils/Collections/PtrVectorArrAccess.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Enums/PURPOSE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/PushTransformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/PUTBIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/PVOID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/PVOID/PVOID_TO_DWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/PVOID/PVOID_TO_LWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/PVOID/PVOID_TO_WORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Structs/QOS_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Queue/Queue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Queue/QueueFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/QuickSortAddrItemHelpers.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Trigger/R_TRIG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Composer/AC_Alarming.library_Library/Functions/RaiseModuleEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/RALARM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/RALARM_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Function-Manipulators/RAMP_INT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Function-Manipulators/RAMP_REAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/RCSINFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/FieldDevice/RCVREC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/FieldDevice/RCVREC_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/RCX_SET_WATCHDOG_TIME_CNF_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/RCX_SET_WATCHDOG_TIME_REQ_DATA_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/RCX_SET_WATCHDOG_TIME_REQ_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/RDIAG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/RDREC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/RDT_Base.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/RDT_Client.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/RDT_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/RDT_Server.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/Structures/RdtInitStructClientTCP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/Structures/RdtInitStructServerTCP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/Structures/RdtProtStructCommPh.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/Structures/RdtProtStructConnection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/RedundancyDataTransfer.library_Library/Structures/RdtProtStructResPh.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/Read.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Requests/ReadableRequestBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/ReadArbitraryStringFromBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvGPIOSysfs.library_Library/Functions/readBit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Commands/ReadEEpromData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Commands/ReadIdentification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Requests/ReadItemInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Utils/Collections/ReadItemVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Commands/ReadMemory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Commands/ReadNbrSlaves.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Requests/ReadRequest.html#index-0

● ReadRequestState
● ReadWriteEEprom
● REAL_TO_FLOAT
● REAL8
● REAL8_TO_DT
● REAL8_TO_LTIME
● REAL8_TO_TIME
● RealToHexStr
● RealToStr
● ReceiveParameterGroup
● ReceiveWatchdog
● Recipe_FileParameters
● RecipeMan_FctTypeClassToDataType
● RecipeManCommands
● Reconfigure
● RectangleType
● RECV_EMCY
● RECV_EMCY_DEV
● REDUNDANCY_CONNECTION_INFO
● RedundancyState
● RedundancyStatus
● RedundancySynchronizeData
● RegContext
● Register
● RegisterCallback
● RegisterIdArea
● ReinitDevice_SvcAppHook
● RemoteAdapter
● RemoteAdapter_Diag
● RemoteAdapter_diag
● RemotePlcRequestIdentification
● RemoteProcedureCall
● RemoteVarInfo
● RemoteVarResolver
● Rename
● ReparseIOMemoryAccessExpression
● REPLACE
● ReplaceAlarmPlaceholderString
● Request
● RequestData
● RequestDataDiagnostics
● RequestDataMaskWriteRegister
● RequestDataRead
● RequestDataReadWriteMultipleRegisters
● RequestDataWriteMultiple
● RequestDataWriteSingle
● RequestFactory
● RequestStatus
● RequestUnion
● RequestVector
● Reset
● RESET_INIT
● RESET_OPTION
● RESET_RESET
● ResetBusAlarm

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4375

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Requests/ReadRequestState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Commands/ReadWriteEEprom.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/FLOAT/REAL_TO_FLOAT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Types/REAL8.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/REAL8_TO_DT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/REAL8_TO_LTIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/REAL8_TO_TIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/RealToHexStr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/RealToStr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/ParameterGroups/ReceiveParameterGroup.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/ReceiveWatchdog.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuCommandInterface.library_Library/Recipe_FileParameters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/Utilities/RecipeMan_FctTypeClassToDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/RecipeManCommands.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Function-Blocks/Reconfigure/Reconfigure.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Enums/RectangleType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/Network-management/RECV_EMCY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/Network-management/RECV_EMCY_DEV.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpRedundancyConnection_Itfs.library_Library/CmpRedundancyConnection/Types/REDUNDANCY_CONNECTION_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy_Itfs.library_Library/CmpRedundancy-Interfaces/Structs/RedundancyState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfibus.library_Library/FunctionBlocks/RedundancyStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy%20Implementation.library_Library/Redundancy-Implementation/Functions/RedundancySynchronizeData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysExcept.library_Library/RegContext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/Register.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/RegisterCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/RegisterIdArea.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/ReinitDevice_SvcAppHook.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXEthernetIP.library_Library/FunctionBlocks/RemoteAdapter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXEthernetIP.library_Library/FunctionBlocks/Diagnosis/RemoteAdapter_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIP.library_Library/IoDrvEtherNetIP/Function-Blocks/Device-Diagnosis/RemoteAdapter_diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/Access-to-data-source/RemotePlcRequestIdentification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/RemoteProcedureCall.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Address-Resolution/RemoteVarInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Address-Resolution/RemoteVarResolver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/Rename.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/ReparseIOMemoryAccessExpression.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/REPLACE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Composer/AC_Alarming.library_Library/Functions/ReplaceAlarmPlaceholderString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Communication/Request.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Structs/RequestData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Structs/RequestDataDiagnostics.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Structs/RequestDataMaskWriteRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Structs/RequestDataRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Structs/RequestDataReadWriteMultipleRegisters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Structs/RequestDataWriteMultiple.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Structs/RequestDataWriteSingle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/RequestFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvModbus.library_Library/Structs/RequestStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Structs/RequestUnion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Utils/Collections/RequestVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/Reset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Supplement/RESET_INIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpApp.library_Library/RESET_OPTION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.3.4_Library/IEC60870_5_104/Function-Blocks/Supplement/RESET_RESET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/ResetBusAlarm.html#index-0

● ResetNodeInfo
● ResetNodeInfoInt
● ResolveHostname
● ReturnValues
● ReusableRequestInfo
● ReusableRequestState
● ReverseBitsInBYTE
● ReverseBitsInDWORD
● ReverseBitsInWORD
● ReverseBYTEsInDWORD
● ReverseBYTEsInWORD
● ReverseWORDsInDWORD
● RIGHT
● RLstAddPrio
● RLstCheckPrio
● RLstClass
● RLstCreateH
● RLstCreateP
● RLstDelete
● RLstGetHighestPrio
● RLstGetSize
● RLstRemovePrio
● RootDatasourceIndex
● RootPseudo
● RootRenamed
● RootRenamedDatasourceIndex
● RotatePoint
● RouterGetHostAddress
● RouterGetInstanceByName
● RouterGetName
● RouterGetParentAddress
● RPCDataRepresentation
● RPCNCARejectStatus
● RS
● RSM_HANDLE
● RSMClass
● RTC
● RTCLK_GETDATEANDTIME_PARAMS
● RTCLK_GETTIMEZONEINFORMATION_PARAMS
● RTCLK_PERIODE_INFO
● RTCLK_SETDATEANDTIME_PARAMS
● RTCLK_SETTIMEZONEINFORMATION_PARAMS
● RTCLK_SYSTEMTIME
● RTCLK_TIME_ZONE_INFO
● RTR_AddrComponent
● RTR_NodeAddress
● RTS_CMBOXENTRY
● RTS_CODEMETER_INFO
● RTS_CONTROL
● RTS_IEC_CWCHAR
● RTS_IEC_HANDLE
● RTS_IEC_RESULT
● RTS_IEC_SIZE
● RTS_SIL2_ADDRESSSTATE
● RTS_SIL2_CALLERCTX

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4376

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/ResetNodeInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/ResetNodeInfoInt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/IP/ResolveHostname.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/TextListUtils.library_Library/TextListUtils/ReturnValues.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/ReusableRequestInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Requests/ReusableRequestState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Reverse-Bit-Swap-ByteWord-order/ReverseBitsInBYTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Reverse-Bit-Swap-ByteWord-order/ReverseBitsInDWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Reverse-Bit-Swap-ByteWord-order/ReverseBitsInWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Reverse-Bit-Swap-ByteWord-order/ReverseBYTEsInDWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Reverse-Bit-Swap-ByteWord-order/ReverseBYTEsInWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Reverse-Bit-Swap-ByteWord-order/ReverseWORDsInDWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/RIGHT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstAddPrio.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstCheckPrio.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Internal/RLstClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstCreateH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstCreateP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstGetHighestPrio.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstGetSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstRemovePrio.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Roots/RootDatasourceIndex.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Roots/RootPseudo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Roots/RootRenamed.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Roots/RootRenamedDatasourceIndex.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Animation/RotatePoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpRouter.library_Library/RouterGetHostAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpRouter.library_Library/RouterGetInstanceByName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpRouter.library_Library/RouterGetName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpRouter.library_Library/RouterGetParentAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/RPCDataRepresentation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/RPCNCARejectStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Bistable-Function-Blocks/RS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/RSM-Utility/RSM_HANDLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/RSM-Utility/RSMClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Miscellaneous/RTC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_GETDATEANDTIME_PARAMS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_GETTIMEZONEINFORMATION_PARAMS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_PERIODE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_SETDATEANDTIME_PARAMS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_SETTIMEZONEINFORMATION_PARAMS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_SYSTEMTIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_TIME_ZONE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpRouter.library_Library/RTR_AddrComponent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpRouter.library_Library/RTR_NodeAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/RTS_CMBOXENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/RTS_CODEMETER_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20SerialCom.library_Library/CAA-SerialCom/Enums/RTS_CONTROL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTypes2_Itfs.library_Library/RTS_IEC_CWCHAR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTypes2_Itfs.library_Library/RTS_IEC_HANDLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTypes2_Itfs.library_Library/RTS_IEC_RESULT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTypes2_Itfs.library_Library/RTS_IEC_SIZE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/RTS_SIL2_ADDRESSSTATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/RTS_SIL2_CALLERCTX.html#index-0

● RTS_SIL2_EXCEPTION
● RTS_SIL2_OPMODE
● RTS_SOCKET_SO_VALUE_IP_MREQ
● RTS_SOCKET_SO_VALUE_LINGER
● RTS_SOCKET_SO_VALUE_TCP_KEEPALIVE
● RTS_SYSTIMEDATE
● RTS_SYSTIMEDATE_TO_STRING
● RtsAL1030Handler
● RtsBrowseInfo
● RtsByteString
● RtsCertEncoding
● RtsCertTrustLevel
● RtsCryptoID
● RtsCryptoKey
● RtsCryptoKeyStorage
● RtsCryptoKeyType
● RtsCryptoType
● RtsEL6224Handler
● RtsKdfParameter
● RtsOID
● RtsOIDClear
● RtsOIDCreate
● RtsOIDGetID
● RtsOIDGetName
● RtsOIDStore
● RtsScryptParameter
● RtsServicehandlerBase
● RtsServicehandlerBase2
● RtsX509AltName
● RtsX509AltNameStore
● RtsX509AltNameType
● RtsX509CertCheckFlags
● RtsX509CertFilter
● RtsX509CertFilterContent
● RtsX509CertFilterType
● RtsX509CertInfo
● RtsX509CertName
● RtsX509ExKeyUsage
● RtsX509NameEntry
● RtuAscii
● RudimentaryDeviceInfo
● RUNE
● RuneCount
● RuneLen
● RuntimeCredentialsHandler
● SAdapterFlags
● SAFE_SRDO_DATA
● SAFE_SRDO_RECEIVED
● SAFETY_EXCHANGE
● SAFETY_STATE
● SafetyMemCpy
● SALARM
● ScalePoint
● ScalProd3D
● ScalProd3DStand

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4377

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/RTS_SIL2_EXCEPTION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/RTS_SIL2_OPMODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/RTS_SOCKET_SO_VALUE_IP_MREQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/RTS_SOCKET_SO_VALUE_LINGER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/RTS_SOCKET_SO_VALUE_TCP_KEEPALIVE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/RTS_SYSTIMEDATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/RTS_SYSTIMEDATE_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvAL1030.library_Library/Services/RtsAL1030Handler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/RtsBrowseInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Structs/RtsByteString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Enums/RtsCertEncoding.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Enums/RtsCertTrustLevel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Enums/RtsCryptoID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Structs/RtsCryptoKey.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Unions/RtsCryptoKeyStorage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Enums/RtsCryptoKeyType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Enums/RtsCryptoType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6224.library_Library/Services/RtsEL6224Handler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Unions/RtsKdfParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsOID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/UtilityFunctions/RtsOIDClear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/UtilityFunctions/RtsOIDCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/UtilityFunctions/RtsOIDGetID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/UtilityFunctions/RtsOIDGetName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Types/RtsOIDStore.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Structs/RtsScryptParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Rts%20Service%20Handler.library_Library/RtsServiceHandler/Function-Blocks/RtsServicehandlerBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Rts%20Service%20Handler.library_Library/RtsServiceHandler/Function-Blocks/RtsServicehandlerBase2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsX509AltName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Types/RtsX509AltNameStore.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Enums/RtsX509AltNameType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Enums/RtsX509CertCheckFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsX509CertFilter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Types/RtsX509CertFilterContent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Enums/RtsX509CertFilterType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsX509CertInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsX509CertName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsX509ExKeyUsage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsX509NameEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Enums/RtuAscii.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Structs/RudimentaryDeviceInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/UTF-8%20Encoding%20Support.library_Library/utf8/Types/RUNE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/UTF-8%20Encoding%20Support.library_Library/utf8/Functions/RuneCount.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Strings/UTF-8%20Encoding%20Support.library_Library/utf8/Functions/RuneLen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20Symbolic%20Access.library_Library/DatasourceSymbolic/Function-Blocks/Utils/RuntimeCredentialsHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet_Itfs.library_Library/IIoDrvEthernet_Itfs/Structs/SAdapterFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyTypes.library_Library/CANopenSafetyTypes/Structures/SAFE_SRDO_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyTypes.library_Library/CANopenSafetyTypes/Structures/SAFE_SRDO_RECEIVED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyTypes.library_Library/CANopenSafetyTypes/Structures/SAFETY_EXCHANGE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyTypes.library_Library/CANopenSafetyTypes/Enumerations/SAFETY_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Safety/SysSafetyIoBase.library_Library/SafetyMemCpy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/FieldDevice/SALARM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Animation/ScalePoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/ScalProd3D.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/ScalProd3DStand.html#index-0

● ScannerState
● SchedGetCurrentTask
● SchedGetNumOfTasks
● SchedGetProcessorLoad
● SchedGetTaskEventByHandle
● SchedGetTaskHandleByIndex
● SchedGetTaskHandleByName
● SchedGetTaskInterval
● SchedPostExternalEvent
● SchedRegisterExternalEvent
● SchedSetTaskInterval
● Schedule
● SchedUnregisterExternalEvent
● SchedWaitBusy
● SchedWaitSleep
● SDO_ABORT
● SDO_ERROR
● SDO_MODE
● SDO_READ
● SDO_READ_DATA
● SDO_READ4
● SDO_WRITE
● SDO_WRITE_DATA
● SDO_WRITE4
● SdoAbort
● SdoRead
● SDOServerClose
● SDOServerDoCycle
● SDOServerOpen
● SdoWrite
● SECOND
● SecurityModeToString
● SEEK_MODE
● Segment
● SegmentPool
● SegmentPoolFactoryArgs
● SegmentPoolFactoryBase
● Select
● SEMA
● SendEvent
● SeparateDateTime
● SERCOS_TOPOLOGY
● SERCOS3_ERROR
● Sercos3_IDNCmd
● Sercos3_IDNRead
● Sercos3_IDNRead4
● Sercos3_IDNWrite
● Sercos3_IDNWrite4
● Sercos3Master_GetVersion
● Sercos3Slave
● Sercos3Slave_Diag
● SerializeHexReal
● SerialSubFunctionCodes
● Server
● ServerCapabilities

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4378

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIP.library_Library/IoDrvEtherNetIP/Enums/ScannerState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetCurrentTask.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetNumOfTasks.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetProcessorLoad.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetTaskEventByHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetTaskHandleByIndex.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetTaskHandleByName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetTaskInterval.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedPostExternalEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedRegisterExternalEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedSetTaskInterval.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Structs/Schedule.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedUnregisterExternalEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedWaitBusy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedWaitSleep.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/SDO_ABORT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Types/SDO_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/SDO_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/SDO_READ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/SDO-access/SDO_READ_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/SDO-access/SDO_READ4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/SDO_WRITE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/SDO-access/SDO_WRITE_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/SDO-access/SDO_WRITE4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/SdoAbort.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/SdoRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/SDO%20Server.library_Library/Functions/SDOServerClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/SDO%20Server.library_Library/Functions/SDOServerDoCycle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/SDO%20Server.library_Library/Functions/SDOServerOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/SdoWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/SECOND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Logging/SecurityModeToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpCharDevice_Itfs.library_Library/CmpCharDevice-Interfaces/SEEK_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Structs/Segment.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Stream/SegmentPool/SegmentPool.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Stream/SegmentPool/SegmentPoolFactoryArgs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Stream/SegmentPool/SegmentPoolFactoryBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/TCP.library_Library/TCP/Function-Blocks/Select.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Function-Blocks/SEMA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/SendEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/SeparateDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/IoDrvSercos/SERCOS_TOPOLOGY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/IDNCommands/ENUMS/SERCOS3_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/IDNCommands/Sercos3_IDNCmd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/IDNCommands/Sercos3_IDNRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/IDNCommands/Sercos3_IDNRead4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/IDNCommands/Sercos3_IDNWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/IDNCommands/Sercos3_IDNWrite4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/Sercos3Master_GetVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/IoDrvSercos/Sercos3Slave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvSercos3.library_Library/Diagnosis/Sercos3Slave_Diag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/HexReal/SerializeHexReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Enums/SerialSubFunctionCodes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Server/Server.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Configuration/ServerCapabilities.html#index-0

● ServerCapabiltiesReader
● ServerClass
● ServerSerial
● ServerSide
● ServerStructCommand
● ServerTCP
● ServiceGroup
● SERVICEHANDLER_PARAMETER
● ServiceHeader
● ServiceReader
● ServiceRequest
● ServiceRequestBase
● ServiceRequestRaw
● ServiceResponse
● ServiceResult
● ServiceWriter
● ServiceWriterSavepoint
● Set_Attribute_Single
● Set_Attributes_All
● SETBIT
● SetBitValue
● SetCiAState
● SetCustomMapping
● SetDateAndTime
● SetError
● SETIO_PART
● SetLastError
● SetPaintRectangle
● SetParent
● SetPos
● SetPropertyAgain
● SetResult
● SetSimpleRectangle
● SettgBeginUpdate
● SettgEndUpdate
● SettgGetIntValue
● SettgGetStringValue
● SettgGetWStringValue
● SettgRemoveKey
● SettgSetIntValue
● SettgSetStringValue
● SettgSetWStringValue
● SetTimeZoneInformation
● SettingsHelper
● SettingValue
● Severity
● SFCActionControl
● SFCActionType
● SFCStepType
● sgn
● SharedArea
● SharedAreaFactoryArgs
● SharedAreaFactoryBase
● SharedAreaRefDisposer
● SharedPointer

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4379

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/StateHelpers/ServerCapabiltiesReader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/SDO%20Server.library_Library/Internal/ServerClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Server/ServerSerial.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Execution/Server/ServerSide.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/ServerStructCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Function-Blocks/Server/ServerTCP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Rts%20Service%20Handler.library_Library/RtsServiceHandler/Types/ServiceGroup.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSrv.library_Library/Structs/SERVICEHANDLER_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceHeader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceReader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceRequestBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceRequestRaw.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceResponse.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvAL1030.library_Library/Services/ServiceResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceWriter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceWriterSavepoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/DataExchange/Set_Attribute_Single.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/DataExchange/Set_Attributes_All.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/SETBIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/SetBitValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Indicator-Services/SetCiAState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAProviderAlarmConfiguration.library_Library/Curstom-Mapping/SetCustomMapping.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Function-Blocks/Time-and-Date/SetDateAndTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Test/SetError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/SETIO_PART.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/ErrorHandling/SetLastError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/SetPaintRectangle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/SetParent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/SetPos.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.clean_Library/Utilities/BACnetUtilities/BACnetProperties/SetPropertyAgain.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/SetResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/SetSimpleRectangle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgBeginUpdate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgEndUpdate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgGetIntValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgGetStringValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgGetWStringValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgRemoveKey.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgSetIntValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgSetStringValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgSetWStringValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Function-Blocks/Time-Zone-Information/SetTimeZoneInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/SettingsHelper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/SettingValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Logging/Severity.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SFC/IecSfc.library_Library/SFCActionControl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SFC/IecSfc.library_Library/SFCActionType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SFC/IecSfc.library_Library/SFCStepType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analog-monitors/sgn.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedArea/Function-Blocks/SharedArea.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedArea/Function-Blocks/SharedAreaFactoryArgs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedArea/Function-Blocks/SharedAreaFactoryBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedArea/Function-Blocks/SharedAreaRefDisposer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedPointer/Function-Blocks/SharedPointer.html#index-0

● SharedPointerFactoryArgs
● SharedPointerFactoryBase
● SharedQueue
● SharedQueueFactoryArgs
● SharedQueueFactoryBase
● SIGNED
● SIGNED_TO_DINT
● SIGNED_TO_INT
● SIGNED_TO_LINT
● SIL2AddLog
● SIL2CheckCallerContext
● SIL2CopyCodeGuid
● SIL2CopyDataGuid
● SIL2ExecuteNonSafetyJob
● SIL2ExecuteNonSafetyJob_WRAP_FB_INIT
● SIL2ExecuteNonSafetyJob_WRAP_INITIALIZE
● SIL2OEMException
● SIL2OEMGetCallerContext
● SIL2OEMGetMemoryState
● SIL2OEMGetOperationMode
● SIL2OEMStackIsValid
● SimpleRectangle
● SIZE
● SIZE_TO_UDINT
● SIZE_TO_UINT
● SIZE_TO_ULINT
● SlaveDiag
● SlaveStateBitFieldType
● SLOT_ID
● Sm560Rec
● Sm560Send
● SNCM_ETC_Slave
● SNCM_ETC_VoE_SendReceive
● SntpSourceInfoData
● SntpSourceMode
● SntpSourceState
● SOCK_ADAPTER_INFORMATION
● SOCK_ADAPTER_INFORMATION2
● SOCK_HOSTENT
● SockAddr
● SOCKADDRESS
● SOCKET_FD_SET
● SOCKET_TIMEVAL
● SocketType
● softing_profi_end
● softing_profi_get_data
● softing_profi_get_dps_input_data
● softing_profi_get_dps_output_data
● softing_profi_get_last_errror
● softing_profi_get_serial_device_number
● softing_profi_get_versions
● softing_profi_init
● softing_profi_rcv_con_ind
● softing_profi_set_data
● softing_profi_set_dps_input_data

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4380

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedPointer/Function-Blocks/SharedPointerFactoryArgs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedPointer/Function-Blocks/SharedPointerFactoryBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedQueue/Function-Blocks/SharedQueue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedQueue/Function-Blocks/SharedQueueFactoryArgs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SharedData%20Utilities%20for%20MultiCore.library_Library/SharedData/SharedQueue/Function-Blocks/SharedQueueFactoryBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/SIGNED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIGNED/SIGNED_TO_DINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIGNED/SIGNED_TO_INT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIGNED/SIGNED_TO_LINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/SIL2AddLog.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/SIL2CheckCallerContext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/SIL2CopyCodeGuid.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/SIL2CopyDataGuid.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/SIL2ExecuteNonSafetyJob.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/SIL2ExecuteNonSafetyJob_WRAP_FB_INIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/SIL2ExecuteNonSafetyJob_WRAP_INITIALIZE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/SIL2OEMException.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/SIL2OEMGetCallerContext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/SIL2OEMGetMemoryState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/SIL2OEMGetOperationMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/SIL2OEMStackIsValid.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Structures/SimpleRectangle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/SIZE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIZE/SIZE_TO_UDINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIZE/SIZE_TO_UINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIZE/SIZE_TO_ULINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEL6731.library_Library/SlaveDiag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.0.2_Library/Enums/SlaveStateBitFieldType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/DP-Address/SLOT_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Safety/SM560Safety_1.2.1.2_Library/Function-Blocks/Non-Safe-Data-Exchange/Sm560Rec.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Safety/SM560Safety_1.2.1.2_Library/Function-Blocks/Non-Safe-Data-Exchange/Sm560Send.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/SNCM%20ECAT%20Slave.library_Library/_3S_SNCM_ECATSlave/Function-Blocks/SNCM_ETC_Slave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/SNCM%20ECAT%20Slave.library_Library/_3S_SNCM_ECATSlave/Function-Blocks/SNCM_ETC_VoE_SendReceive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Structs/SntpSourceInfoData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Enum/SntpSourceMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Enum/SntpSourceState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCK_ADAPTER_INFORMATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCK_ADAPTER_INFORMATION2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCK_HOSTENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/TCP.library_Library/TCP/Structs/SockAddr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCKADDRESS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCKET_FD_SET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCKET_TIMEVAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Enum/SocketType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Functions/softing_profi_end.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Functions/softing_profi_get_data.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Functions/softing_profi_get_dps_input_data.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Functions/softing_profi_get_dps_output_data.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Functions/softing_profi_get_last_errror.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Functions/softing_profi_get_serial_device_number.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Functions/softing_profi_get_versions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Functions/softing_profi_init.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Functions/softing_profi_rcv_con_ind.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Functions/softing_profi_set_data.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Functions/softing_profi_set_dps_input_data.html#index-0

● softing_profi_snd_req_res
● SOFTING_T_DP_AAT_DATA
● SOFTING_T_DP_ACT_PARAM_IND
● SOFTING_T_DP_ACT_PARAM_REQ
● SOFTING_T_DP_ACT_PARAM_RES_CON
● SOFTING_T_DP_BUS_PARA_SET
● SOFTING_T_DP_CFG_DATA
● SOFTING_T_DP_DATA_TRANSFER_CON
● SOFTING_T_DP_DIAG_DATA
● SOFTING_T_DP_DOWNLOAD_IND
● SOFTING_T_DP_DOWNLOAD_REQ
● SOFTING_T_DP_DOWNLOAD_RES_CON
● SOFTING_T_DP_END_SEQ_IND
● SOFTING_T_DP_END_SEQ_REQ
● SOFTING_T_DP_END_SEQ_RES_CON
● SOFTING_T_DP_EXIT_MASTER_CON
● SOFTING_T_DP_GET_MASTER_DIAG_REQ
● SOFTING_T_DP_GET_MASTER_DIAG_RES_CON
● SOFTING_T_DP_GET_PRM_REQ
● SOFTING_T_DP_GET_SLAVE_DIAG_CON
● SOFTING_T_DP_GET_SLAVE_DIAG_IND
● SOFTING_T_DP_GET_SLAVE_PARAM_CON
● SOFTING_T_DP_GET_SLAVE_PARAM_REQ
● SOFTING_T_DP_INIT_MASTER_CON
● SOFTING_T_DP_INIT_MASTER_REQ
● SOFTING_T_DP_PRM_DATA
● SOFTING_T_DP_SET_BUSPARAMETER_CON
● SOFTING_T_DP_SET_BUSPARAMETER_REQ
● SOFTING_T_DP_SET_PRM_CON
● SOFTING_T_DP_SET_PRM_REQ
● SOFTING_T_DP_SLAVE_PARA_SET
● SOFTING_T_DP_SLAVE_PARAM_SLAVE_INFO
● SOFTING_T_DP_SLAVE_PARAM_SYS_INFO
● SOFTING_T_DP_SLAVE_USER_DATA
● SOFTING_T_DP_START_SEQ_IND
● SOFTING_T_DP_START_SEQ_REQ
● SOFTING_T_DP_START_SEQ_RES_CON
● SOFTING_T_DP_UPLOAD_REQ
● SOFTING_T_DP_UPLOAD_RES_CON
● SOFTING_T_FMB_CONFIG_CRL
● SOFTING_T_FMB_CONFIG_DP
● SOFTING_T_FMB_CONFIG_FDLIF
● SOFTING_T_FMB_CONFIG_SM7
● SOFTING_T_FMB_CONFIG_VFD
● SOFTING_T_FMB_FM2_EVENT_IND
● SOFTING_T_FMB_SET_CONFIGURATION_REQ
● SOFTING_T_PROFI_SERVICE_DESCR
● SortByAddrItemHelper
● SortedBranchNamedTreeNode
● SortedInstancePathBuildingBranchNode
● SortedList
● SortedListFactory
● SortedPStringVector
● SplitDateTime
● SplitString

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4381

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Functions/softing_profi_snd_req_res.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/Profibus-DP/SOFTING_T_DP_AAT_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_ACT_PARAM_IND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_ACT_PARAM_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_ACT_PARAM_RES_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/Profibus-DP/SOFTING_T_DP_BUS_PARA_SET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/Profibus-DP/SOFTING_T_DP_CFG_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_DATA_TRANSFER_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_DIAG_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_DOWNLOAD_IND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_DOWNLOAD_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_DOWNLOAD_RES_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_END_SEQ_IND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_END_SEQ_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_END_SEQ_RES_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_EXIT_MASTER_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_GET_MASTER_DIAG_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_GET_MASTER_DIAG_RES_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_GET_PRM_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_GET_SLAVE_DIAG_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_GET_SLAVE_DIAG_IND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_GET_SLAVE_PARAM_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_GET_SLAVE_PARAM_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_INIT_MASTER_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_INIT_MASTER_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/Profibus-DP/SOFTING_T_DP_PRM_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_SET_BUSPARAMETER_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_SET_BUSPARAMETER_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_SET_PRM_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_SET_PRM_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/Profibus-DP/SOFTING_T_DP_SLAVE_PARA_SET.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_SLAVE_PARAM_SLAVE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_SLAVE_PARAM_SYS_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/Profibus-DP/SOFTING_T_DP_SLAVE_USER_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_START_SEQ_IND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_START_SEQ_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_START_SEQ_RES_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_UPLOAD_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_DP_UPLOAD_RES_CON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/FMB-Structs/SOFTING_T_FMB_CONFIG_CRL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/FMB-Structs/SOFTING_T_FMB_CONFIG_DP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/FMB-Structs/SOFTING_T_FMB_CONFIG_FDLIF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/FMB-Structs/SOFTING_T_FMB_CONFIG_SM7.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/FMB-Structs/SOFTING_T_FMB_CONFIG_VFD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/FMB-Structs/SOFTING_T_FMB_FM2_EVENT_IND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/FMB-Structs/SOFTING_T_FMB_SET_CONFIGURATION_REQ.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSoftingProfibus.library_Library/Datastructs/SOFTING_T_PROFI_SERVICE_DESCR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/SortByAddrItemHelper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/SortedBranchNamedTreeNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/SortedInstancePathBuildingBranchNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/SortedList/SortedList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/SortedList/SortedListFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/SortedPStringVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/SplitDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/SplitString.html#index-0

● SplitTextListId
● SQLSTATEMENT
● SR
● SRAM_CLEARED
● SRAM_EXPORT
● SRAM_IMPORT
● SRDO_DATA
● SRDO_DIRECTION
● SRDO_LIST
● SRDO_STATE
● SRDOObject
● Stack
● StackFactory
● Start
● StatDynMemory
● STATE
● State
● StateFlags
● StateMachine
● StaticMemBuffer
● Statistics_DINT
● STATISTICS_INT
● Statistics_LREAL
● Statistics_LTIME
● STATISTICS_REAL
● STK_INFO
● STK_NODES
● STK_SPEC
● STK_STATE
● StkClose
● StkGetInfo
● StkOpen
● StkRegister
● StkUnregister
● STO_BLOB
● STO_METRICS
● STO_TEXT
● Stop
● STOPBIT
● Storage
● StrCaseCmpA
● StrCaseCmpEndA
● StrCaseCmpStartA
● StrCaseCmpW
● StrCaseFindA
● StrCaseFindW
● StrCmpA
● StrCmpEndA
● StrCmpStartA
● StrCmpW
● StrConcatA
● StrConcatW
● StrCpyA
● StrCpyW
● StrCpyWtoA

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4382

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Functions/SplitTextListId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Types/SQLSTATEMENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Bistable-Function-Blocks/SR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Functions/Data-storage/SRAM-data/CompatibleV23/SRAM_CLEARED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Data-storage/SRAM-data/CompatibleV23/SRAM_EXPORT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Data-storage/SRAM-data/CompatibleV23/SRAM_IMPORT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyTypes.library_Library/CANopenSafetyTypes/Structures/SRDO_DATA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyTypes.library_Library/CANopenSafetyTypes/Enumerations/SRDO_DIRECTION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyTypes.library_Library/CANopenSafetyTypes/Structures/SRDO_LIST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/CANopenSafetyTypes.library_Library/CANopenSafetyTypes/Enumerations/SRDO_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack%20Unsafe.library_Library/_3SCANopenSlaveUnsafe/Function-Blocks/CommunicationObjects/SRDOObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Stack/Stack.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Stack/StackFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/Start.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/Memory/StatDynMemory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Structs/STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Enums/State.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Structs/StateFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/StateMachine.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StaticMemBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/statistical-functions/Statistics_DINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/STATISTICS_INT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/statistical-functions/Statistics_LREAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Statistics_LTIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/STATISTICS_REAL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/STK_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/STK_NODES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/STK_SPEC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/STK_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/StkClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/StkGetInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/StkOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/Services-for-CANopen-Stack/StkRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/Services-for-CANopen-Stack/StkUnregister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Structs/STO_BLOB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Structs/STO_METRICS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Structs/STO_TEXT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/Stop.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20SerialCom.library_Library/CAA-SerialCom/Enums/STOPBIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/3S%20Storage.library_Library/_3SStorage/Instances/Storage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCaseCmpA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCaseCmpEndA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCaseCmpStartA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrCaseCmpW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCaseFindA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrCaseFindW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCmpA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCmpEndA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCmpStartA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrCmpW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrConcatA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrConcatW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCpyA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrCpyW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Functions/StrCpyWtoA.html#index-0

● StrDeleteA
● StrDeleteW
● Stream
● STREAM_STATE
● StrFindA
● StrFindW
● StringBuilder
● StringBuilderSysMemExtending
● StringElement
● StringElementFactory
● StringToDintMap
● StringToStringMap
● StringVector
● StrIsNullOrEmptyA
● StrIsNullOrEmptyW
● StrLenA
● StrLenW
● StrMidA
● StrMidW
● StrPadLeftA
● StrPadLeftW
● StrPadRightA
● StrPadRightW
● StrReplaceA
● StrReplaceW
● StrToLowerA
● StrToLReal
● StrToReal
● StrToUpperA
● StrTrimA
● StrTrimEndA
● StrTrimStartA
● STRUCT_BACNET_READ_FILE_RANGE_RECORD
● STRUCT_BACNET_READ_FILE_RANGE_STREAM
● STRUCT_BACNET_READ_RANGE_RANGE_POSITION
● STRUCT_BACNET_READ_RANGE_RANGE_SEQUENCE
● STRUCT_BACNET_READ_RANGE_RANGE_TIME
● STRUCT_BACNET_READ_RANGE_RANGE_TIMERANGE
● STRUCT_BACNET_WRITE_FILE_DATA_RECORD
● STRUCT_BACNET_WRITE_FILE_DATA_STREAM
● StructClientCommand
● StructClientCommandMonitor
● StructClientInitialize
● StructClientMonitor
● StructClientUseAsTCP
● StructCmdHandleCertificate
● StructCmdHandleClientAns
● StructCmdHandleClientAns2
● StructCmdHandleClientAnsSub
● StructCmdHandleClientAnsSub2
● StructCmdNewClient
● StructCmdNewFrame
● StructCmdNewLogin
● StructCmdNewPage
● StructCmdRemoveClient

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4383

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrDeleteA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrDeleteW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/TCP.library_Library/TCP/Function-Blocks/Stream.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/TCP.library_Library/TCP/Enums/STREAM_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrFindA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrFindW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringBuilder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/StringBuilderSysMemExtending.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/StringElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/StringElementFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringToDintMap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringToStringMap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrIsNullOrEmptyA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrIsNullOrEmptyW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrLenA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrLenW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrMidA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrMidW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrPadLeftA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrPadLeftW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrPadRightA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrPadRightW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrReplaceA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrReplaceW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrToLowerA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/StrToLReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/StrToReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrToUpperA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrTrimA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrTrimEndA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrTrimStartA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/STRUCT_BACNET_READ_FILE_RANGE_RECORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/STRUCT_BACNET_READ_FILE_RANGE_STREAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/STRUCT_BACNET_READ_RANGE_RANGE_POSITION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/STRUCT_BACNET_READ_RANGE_RANGE_SEQUENCE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/STRUCT_BACNET_READ_RANGE_RANGE_TIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/STRUCT_BACNET_READ_RANGE_RANGE_TIMERANGE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/STRUCT_BACNET_WRITE_FILE_DATA_RECORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetStructs/STRUCT_BACNET_WRITE_FILE_DATA_STREAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/StructClientCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Monitor/StructClientCommandMonitor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Initialization/StructClientInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Monitor/StructClientMonitor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Initialization/StructClientUseAsTCP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/StructCmdHandleCertificate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/StructCmdHandleClientAns.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/StructCmdHandleClientAns2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/StructCmdHandleClientAnsSub.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/StructCmdHandleClientAnsSub2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/StructCmdNewClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/StructCmdNewFrame.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/StructCmdNewLogin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/StructCmdNewPage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/StructCmdRemoveClient.html#index-0

● StructCmdValueChanged
● StructDataLogin
● StructFrame
● StructFrameDwnSL
● StructServerCommandMonitor
● StructServerInitialize
● StructServerMonitor
● StructServerUseAsTCP
● StructTicket
● StructValueChanged
● StructVisuClient
● StructVisuClientDwnSL
● StructVisuClientMonitor
● StuSprintf
● StuSprintfW
● StyleUtilFct_GetBoolFromStyle
● StyleUtilFct_GetBoolFromStyleEnumOrExplicitValue
● StyleUtilFct_GetSimpleTypeFromStyleEnumOrExplicitValue
● StyleUtilFct_GetUDIntFromStyle
● SubmoduleConfiguration
● SubmoduleDiagnosisEntry
● SubmoduleInfo
● SubmoduleIterator
● SubmoduleState_AddInfo
● SubmoduleState_ARInfo
● SubmoduleState_Detail
● SubmoduleState_IdentInfo
● SubmoduleStatus
● SubObjectIterator
● SubPoints
● SUBSLOT_ID
● SubVector
● SupervisorEntry
● SupervisorInstance
● SupervisorOperationAlive
● SupervisorOperationDead
● SupervisorOperationDisable
● SupervisorOperationEnable
● SupervisorOperationGetEntry
● SupervisorOperationGetFirst
● SupervisorOperationGetNext
● SupervisorOperationGetState2
● SupervisorOperationRegister
● SupervisorOperationSetTimeout
● SupervisorOperationUnregister
● SupervisorState
● SupportedFcs
● Swap
● SwapDword
● SwapLocalToIntel
● SwapLocalToMotorola
● SwapLword
● SwappedDirectAssigner
● SwapWord
● SWITCHBIT

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4384

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Command/StructCmdValueChanged.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/StructDataLogin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/StructFrame.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/DownloadSeamLess/StructFrameDwnSL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Monitor/StructServerCommandMonitor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Initialization/StructServerInitialize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Monitor/StructServerMonitor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Initialization/StructServerUseAsTCP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/StructTicket.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/StructValueChanged.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/StructVisuClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/DownloadSeamLess/StructVisuClientDwnSL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/Monitor/StructVisuClientMonitor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/StuSprintf.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/StuSprintfW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/StyleUtils/StyleUtilFct_GetBoolFromStyle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/StyleUtils/StyleUtilFct_GetBoolFromStyleEnumOrExplicitValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/StyleUtils/StyleUtilFct_GetSimpleTypeFromStyleEnumOrExplicitValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/StyleUtils/StyleUtilFct_GetUDIntFromStyle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ProfinetDeviceConfig.library_Library/ProfinetDeviceConfig/DataTypes/SubmoduleConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/SubmoduleDiagnosisEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/SubmoduleInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/SubmoduleIterator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Status/SubmoduleState_AddInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Status/SubmoduleState_ARInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Status/SubmoduleState_Detail.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Status/SubmoduleState_IdentInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/SubmoduleStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenSlaveStack.library_Library/ObjectDictionary/Iterators/SubObjectIterator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/Utilities/SubPoints.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/SUBSLOT_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/SubVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorInstance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorOperationAlive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorOperationDead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorOperationDisable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorOperationEnable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorOperationGetEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorOperationGetFirst.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorOperationGetNext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorOperationGetState2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorOperationRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorOperationSetTimeout.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorOperationUnregister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSupervisor.library_Library/SupervisorState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Structs/SupportedFcs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Swap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/Swap/SwapDword.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Functions/Swapping/SwapLocalToIntel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Functions/Swapping/SwapLocalToMotorola.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/Swap/SwapLword.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Assigners/SwappedDirectAssigner.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/Swap/SwapWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/SWITCHBIT.html#index-0

● SwitchToActive
● SwitchToSimulation
● SwitchToStandalone
● SwitchToStandby
● SymbolicVarNodeAccessor
● SymbolicVarNodeFinder
● SymbolicVarsBaseHandleConverter
● SymbolInfo
● SymbolsBaseNode
● SymbolsBranchNode
● SymVarAccess
● SYNC_INFO
● SyncDefineVarList
● SyncDeleteVarList
● Synchronize
● SyncReadVarList
● SyncReadVarListFromPlc
● SyncReadVars
● SyncReadVarsRelease
● SyncSendService
● SyncWriteVarListToPlc
● SyncWriteVars
● SYS_COM_BAUDRATE
● SYS_COM_DTR_CONTROL
● SYS_COM_PARITY
● SYS_COM_PORTS
● SYS_COM_RTS_CONTROL
● SYS_COM_STOPBITS
● SYS_COM_TIMEOUT
● SYS_FILE_STATUS
● SYS_FILETIME
● SYS_INT_DESCRIPTION
● SYS_TASK_INFO
● SYS_TASK_PARAM
● SYS_TIME
● SysComAsyncFB
● SysComClose
● SysComGetSettings
● SysComGetSettings2
● SysComOpen
● SysComOpen2
● SysComOpen3
● SysComPurge
● SysComRead
● SysComSetSettings
● SysComSetSettings2
● SysComSetTimeout
● SysComSettings
● SysComSettingsEx
● SysComSettingsEx2
● SysComWrite
● SysCpuAtomicAdd
● SysCpuAtomicAdd64
● SysCpuAtomicCompareAndSwap
● SysCpuCallIecFuncWithParams

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4385

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy%20Implementation.library_Library/Redundancy-Implementation/Functions/SwitchToActive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy%20Implementation.library_Library/Redundancy-Implementation/Functions/SwitchToSimulation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy%20Implementation.library_Library/Redundancy-Implementation/Functions/SwitchToStandalone.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy%20Implementation.library_Library/Redundancy-Implementation/Functions/SwitchToStandby.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/SymbolicVarNodeAccessor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/SymbolicVarNodeFinder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/SymbolicVarsBaseHandleConverter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/SymbolInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/SymbolsBaseNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/SymbolsBranchNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/SymVarAccess.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy_Itfs.library_Library/CmpRedundancy-Interfaces/Structs/SYNC_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/SyncDefineVarList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/SyncDeleteVarList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/Redundancy/Redundancy%20Implementation.library_Library/Redundancy-Implementation/Functions/Synchronize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/SyncReadVarList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/SyncReadVarListFromPlc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/SyncReadVars.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/SyncReadVarsRelease.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/SyncSendService.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/SyncWriteVarListToPlc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/SyncWriteVars.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SYS_COM_BAUDRATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SYS_COM_DTR_CONTROL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SYS_COM_PARITY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SYS_COM_PORTS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SYS_COM_RTS_CONTROL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SYS_COM_STOPBITS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SYS_COM_TIMEOUT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SYS_FILE_STATUS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SYS_FILETIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/SYS_INT_DESCRIPTION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/DUTs/SYS_TASK_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/DUTs/SYS_TASK_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Functions/System-information/CompatibleV23/SYS_TIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysComAsync.library_Library/SysComAsyncFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComGetSettings.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComGetSettings2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComOpen2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComOpen3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComPurge.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComSetSettings.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComSetSettings2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComSetTimeout.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComSettings.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComSettingsEx.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComSettingsEx2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCom.library_Library/SysComWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuAtomicAdd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuAtomicAdd64.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuAtomicCompareAndSwap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuCallIecFuncWithParams.html#index-0

● SysCpuResetBit
● SysCpuResetBit2
● SysCpuSetBit
● SysCpuSetBit2
● SysCpuTestAndReset
● SysCpuTestAndSet
● SysCpuTestAndSetBit
● SysDirAsyncFB
● SysDirClose
● SysDirCopy
● SysDirCreate
● SysDirCreate2
● SysDirDelete
● SysDirDelete2
● SysDirGetCurrent
● SysDirOpen
● SysDirRead
● SysDirRename
● SysDirSetCurrent
● SysEthernetAdapterClose
● SysEthernetAdapterOpen
● SysEthernetCapabilities
● SysEthernetEthFrameReceive
● SysEthernetEthFrameSend
● SysEthernetFrame
● SysEthernetFrameRelease
● SysEthernetGetCapabilities
● SysEthernetGetInterfaceCounters
● SysEthernetGetMediaCounters
● SysEthernetGetPortConfigAndStatus
● SysEthernetInterfaceCounters
● SysEthernetIpFrameReceive
● SysEthernetIpFrameSend
● SysEthernetMediaCounters
● SysEthernetPortConfigAndStatus
● SysEthernetSetAutoNegAdvertisedCap
● SysEthernetSetAutoNegMode
● SysEthernetSetMauType
● SysEventCreate
● SysEventDelete
● SysEventSet
● SysEventWait
● SysExceptGenerateException
● SysFileAsyncFB
● SysFileClose
● SysFileCopy
● SysFileDelete
● SysFileDeleteByHandle
● SysFileEOF
● SysFileFlush
● SysFileGetName
● SysFileGetName2
● SysFileGetPath
● SysFileGetPos
● SysFileGetSize

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4386

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuResetBit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuResetBit2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuSetBit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuSetBit2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuTestAndReset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuTestAndSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuTestAndSetBit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDirAsync.library_Library/SysDirAsyncFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirCopy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirCreate2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirDelete2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirGetCurrent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirRename.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirSetCurrent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetAdapterClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetAdapterOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Structs/SysEthernetCapabilities.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetEthFrameReceive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetEthFrameSend.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Structs/SysEthernetFrame.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetFrameRelease.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetGetCapabilities.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetGetInterfaceCounters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetGetMediaCounters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetGetPortConfigAndStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Structs/SysEthernetInterfaceCounters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetIpFrameReceive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetIpFrameSend.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Structs/SysEthernetMediaCounters.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Structs/SysEthernetPortConfigAndStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetSetAutoNegAdvertisedCap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetSetAutoNegMode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetSetMauType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEvent.library_Library/SysEventCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEvent.library_Library/SysEventDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEvent.library_Library/SysEventSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysEvent.library_Library/SysEventWait.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysExcept.library_Library/SysExceptGenerateException.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/SysFileAsyncFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileCopy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileDeleteByHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileEOF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileFlush.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetName2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetPath.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetPos.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetSize.html#index-0

● SysFileGetSizeByHandle
● SysFileGetStatus
● SysFileGetStatus2
● SysFileGetTime
● SysFileIoctl
● SysFileOpen
● SysFileRead
● SysFileRename
● SysFileSetPos
● SysFileTruncate
● SysFileWrite
● SysGraphicLightBeginPaint
● SysGraphicLightDrawBitmap
● SysGraphicLightDrawPolygon
● SysGraphicLightDrawRect
● SysGraphicLightDrawText
● SysGraphicLightEndPaint
● SysGraphicLightGetDisplayDeviceContext
● SysGraphicLightRegisterFont
● SysGraphicLightReleaseDisplayDeviceContext
● SysGraphicLightSetFill
● SysGraphicLightSetFont
● SysGraphicLightSetLine
● SysIntClose
● SysIntDisable
● SysIntDisableAll
● SysIntEnable
● SysIntEnableAll
● SysIntLevel
● SysIntOpen
● SysIntOpenByName
● SysIntRegister
● SysIntUnregister
● SysMCBDAlloc
● SysMCBDCount
● SysMCBDFree
● SysMCBDGetFirstID
● SysMCBDGetNextID
● SysMCBDIsSet
● SysMCGetLoad
● SysMCGetNumOfCores
● SysMCGetProcessBinding
● SysMCGetTaskBinding
● SysMemAllocData
● SysMemCmp
● SysMemCpy
● SysMemForceSwap
● SysMemFreeData
● SysMemGetCurrentHeapSize
● SysMemIsValidPointer
● SysMemMove
● SysMemReallocData
● SysMemSet
● SysMemSwap
● SysPciGetCardInfo

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4387

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetSizeByHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetStatus2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/SysFile_1.0.1.4_Library/Functions/SysFileIoctl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileRename.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileSetPos.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileTruncate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/SysGraphicLight/Environment/SysGraphicLightBeginPaint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/SysGraphicLight/Draw/SysGraphicLightDrawBitmap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/SysGraphicLight/Draw/SysGraphicLightDrawPolygon.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/SysGraphicLight/Draw/SysGraphicLightDrawRect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/SysGraphicLight/Draw/SysGraphicLightDrawText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/SysGraphicLight/Environment/SysGraphicLightEndPaint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/SysGraphicLight/Environment/SysGraphicLightGetDisplayDeviceContext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/SysGraphicLight/PenBrushFont/SysGraphicLightRegisterFont.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/SysGraphicLight/Environment/SysGraphicLightReleaseDisplayDeviceContext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/SysGraphicLight/PenBrushFont/SysGraphicLightSetFill.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/SysGraphicLight/PenBrushFont/SysGraphicLightSetFont.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TargetVisuLight.library_Library/CODESYS-TargetVisuBasic/SysGraphicLight/PenBrushFont/SysGraphicLightSetLine.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/SysIntClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/SysIntDisable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/SysIntDisableAll.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/SysIntEnable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/SysIntEnableAll.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/SysIntLevel.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/SysIntOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/SysIntOpenByName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/SysIntRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysInt.library_Library/SysIntUnregister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCBDAlloc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCBDCount.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCBDFree.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCBDGetFirstID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCBDGetNextID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCBDIsSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCGetLoad.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCGetNumOfCores.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCGetProcessBinding.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCGetTaskBinding.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemAllocData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemCmp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemCpy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemForceSwap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemFreeData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemGetCurrentHeapSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemIsValidPointer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemMove.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemReallocData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemSwap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPci.library_Library/SysPciGetCardInfo.html#index-0

● SysPciGetConfigEntry
● SysPciReadValue
● SysPciSetConfigEntry
● SysPciWriteValue
● SysPipeWindowsClose
● SysPipeWindowsOpen
● SysPipeWindowsPeek
● SysPipeWindowsRead
● SysPipeWindowsSetHandleState
● SysPipeWindowsWrite
● SysPortAsyncFB
● SysPortIn
● SysPortInD
● SysPortInW
● SysPortOut
● SysPortOutD
● SysPortOutW
● SysProcessCreate
● SysProcessCreate2
● SysProcessExecuteCommand
● SysProcessExecuteCommand2
● SysProcessFreeHandle
● SysProcessGetCurrentHandle
● SysProcessGetOSId
● SysProcessGetPriority
● SysProcessGetState
● SysProcessResume
● SysProcessSetPriority
● SysProcessTerminate
● SysRWLCreate
● SysRWLDelete
● SysRWLReadLock
● SysRWLReadLockTry
● SysRWLReadUnlock
● SysRWLWriteLock
● SysRWLWriteLockTry
● SysRWLWriteUnlock
● SysSafetyAfterWriteOutput
● SysSafetyBeforeReadInput
● SysSafetyIoCfgReady
● SysSafetyMapShm
● SysSafetyReadConfigIdFromSafety
● SysSafetyUnmapShm
● SysSafetyWriteConfigIdOfStandard
● SysSemCreate
● SysSemDelete
● SysSemEnter
● SysSemLeave
● SysSemProcessCreate
● SysSemProcessDelete
● SysSemProcessEnter
● SysSemProcessLeave
● SysSemTry
● SysSharedMemoryClose
● SysSharedMemoryCreate

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4388

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPci.library_Library/SysPciGetConfigEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPci.library_Library/SysPciReadValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPci.library_Library/SysPciSetConfigEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPci.library_Library/SysPciWriteValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPipeWindows%20Implementation.library_Library/SysPipeWindowsClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPipeWindows%20Implementation.library_Library/SysPipeWindowsOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPipeWindows%20Implementation.library_Library/SysPipeWindowsPeek.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPipeWindows%20Implementation.library_Library/SysPipeWindowsRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPipeWindows%20Implementation.library_Library/SysPipeWindowsSetHandleState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPipeWindows%20Implementation.library_Library/SysPipeWindowsWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPortAsync.library_Library/SysPortAsyncFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPort.library_Library/SysPortIn.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPort.library_Library/SysPortInD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPort.library_Library/SysPortInW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPort.library_Library/SysPortOut.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPort.library_Library/SysPortOutD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPort.library_Library/SysPortOutW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessCreate2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessExecuteCommand.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessExecuteCommand2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessFreeHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessGetCurrentHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessGetOSId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessGetPriority.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessGetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessResume.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessSetPriority.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessTerminate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysReadWriteLock.library_Library/SysRWLCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysReadWriteLock.library_Library/SysRWLDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysReadWriteLock.library_Library/SysRWLReadLock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysReadWriteLock.library_Library/SysRWLReadLockTry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysReadWriteLock.library_Library/SysRWLReadUnlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysReadWriteLock.library_Library/SysRWLWriteLock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysReadWriteLock.library_Library/SysRWLWriteLockTry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysReadWriteLock.library_Library/SysRWLWriteUnlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Safety/SysSafetyIoBase.library_Library/SysSafetyAfterWriteOutput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Safety/SysSafetyIoBase.library_Library/SysSafetyBeforeReadInput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Safety/SysSafetyIoBase.library_Library/SysSafetyIoCfgReady.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Safety/SysSafetyIoBase.library_Library/SysSafetyMapShm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Safety/SysSafetyIoBase.library_Library/SysSafetyReadConfigIdFromSafety.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Safety/SysSafetyIoBase.library_Library/SysSafetyUnmapShm.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Safety/SysSafetyIoBase.library_Library/SysSafetyWriteConfigIdOfStandard.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSem%20Implementation.library_Library/SysSemCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSem%20Implementation.library_Library/SysSemDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSem%20Implementation.library_Library/SysSemEnter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSem%20Implementation.library_Library/SysSemLeave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSemProcess.library_Library/SysSemProcessCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSemProcess.library_Library/SysSemProcessDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSemProcess.library_Library/SysSemProcessEnter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSemProcess.library_Library/SysSemProcessLeave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSem%20Implementation.library_Library/SysSemTry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryCreate.html#index-0

● SysSharedMemoryDelete
● SysSharedMemoryGetPointer
● SysSharedMemoryOpen2
● SysSharedMemoryRead
● SysSharedMemoryReadByte
● SysSharedMemoryWrite
● SysSharedMemoryWriteByte
● SysShmAsyncFB
● SysSock2Accept
● SysSock2Bind
● SysSock2Close
● SysSock2Connect
● SysSock2Create
● SysSock2FdInit
● SysSock2FdIsset
● SysSock2FdZero
● SysSock2GetOption
● SysSock2GetPeerName
● SysSock2GetSockName
● SysSock2Htonl
● SysSock2Htons
● SysSock2InetAddr
● SysSock2InetNtoa
● SysSock2Ioctl
● SysSock2Listen
● SysSock2Ntohl
● SysSock2Ntohs
● SysSock2Recv
● SysSock2RecvFrom
● SysSock2Select
● SysSock2Send
● SysSock2SendTo
● SysSock2SetOption
● SysSock2Shutdown
● SysSockAccept
● SysSockAsyncFB
● SysSockBind
● SysSockClose
● SysSockCloseUdp
● SysSockConnect
● SysSockCreate
● SysSockCreateUdp
● SysSocket2_Parameter
● SysSocket2_SpecificParameter
● SysSocket2_StdSockets
● SysSocket2_TlsSockets
● SysSocket2_Type
● SysSocketPair
● SysSockFdInit
● SysSockFdIsset
● SysSockFdZero
● SysSockGetAdapterInfo
● SysSockGetFirstAdapterInfo
● SysSockGetHostByName
● SysSockGetHostName

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4389

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryGetPointer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryOpen2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryReadByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryWriteByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShmAsync.library_Library/SysShmAsyncFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Accept.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Bind.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Close.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Connect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Create.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2FdInit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2FdIsset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2FdZero.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2GetOption.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2GetPeerName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2GetSockName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Htonl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Htons.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2InetAddr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2InetNtoa.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Ioctl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Listen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Ntohl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Ntohs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Recv.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2RecvFrom.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Select.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Send.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2SendTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2SetOption.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Shutdown.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockAccept.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/SysSockAsyncFB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockBind.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockCloseUdp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockConnect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockCreateUdp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2_Itfs.library_Library/SysSocket2_Parameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2_Itfs.library_Library/SysSocket2_SpecificParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2_Itfs.library_Library/SysSocket2_StdSockets.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2_Itfs.library_Library/SysSocket2_TlsSockets.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2_Itfs.library_Library/SysSocket2_Type.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/SysSocket_1.0.1.4_Library/Functions/SysSocketPair.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockFdInit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockFdIsset.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockFdZero.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/SysSocket_1.0.1.4_Library/Functions/SysSockGetAdapterInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetFirstAdapterInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetHostByName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetHostName.html#index-0

● SysSockGetNextAdapterInfo
● SysSockGetOption
● SysSockGetOSHandle
● SysSockGetPeerName
● SysSockGetRecvSizeUdp
● SysSockGetSockName
● SysSockGetSubnetMask
● SysSockHtonl
● SysSockHtons
● SysSockInetAddr
● SysSockInetNtoa
● SysSockIoctl
● SysSockListen
● SysSockNtohl
● SysSockNtohs
● SysSockPing
● SysSockRecv
● SysSockRecvFrom
● SysSockRecvFromUdp
● SysSockRecvFromUdp2
● SysSockSelect
● SysSockSend
● SysSockSendTo
● SysSockSendToUdp
● SysSockSetDefaultGateway
● SysSockSetIPAddress
● SysSockSetIpAddressAndNetMask
● SysSockSetOption
● SysSockSetSubnetMask
● SysSockShutdown
● SysTargetGetDeviceName
● SysTargetGetId
● SysTargetGetNodeName
● SysTargetGetOperatingSystemId
● SysTargetGetProcessorId
● SysTargetGetSerialNumber
● SysTargetGetType
● SysTargetGetVendorName
● SysTargetGetVersion
● SysTargetOperationNumber
● SysTaskAutoReleaseOnExit
● SysTaskCheckStack
● SysTaskCreate
● SysTaskCreate2
● SysTaskDestroy
● SysTaskEnd
● SysTaskEnter
● SysTaskExit
● SysTaskGenerateException
● SysTaskGetContext
● SysTaskGetCurrent
● SysTaskGetCurrentOSHandle
● SysTaskGetInfo
● SysTaskGetInterval
● SysTaskGetName

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4390

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetNextAdapterInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetOption.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetOSHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetPeerName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetRecvSizeUdp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetSockName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetSubnetMask.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockHtonl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockHtons.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockInetAddr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockInetNtoa.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockIoctl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockListen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockNtohl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockNtohs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockPing.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockRecv.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockRecvFrom.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockRecvFromUdp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockRecvFromUdp2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSelect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSend.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSendTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSendToUdp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSetDefaultGateway.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSetIPAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSetIpAddressAndNetMask.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSetOption.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSetSubnetMask.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockShutdown.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetDeviceName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetNodeName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetOperatingSystemId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetProcessorId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetSerialNumber.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetVendorName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/SysTargetOperationNumber.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskAutoReleaseOnExit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskCheckStack.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskCreate2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskDestroy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskEnd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskEnter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskExit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGenerateException.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetContext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetCurrent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetCurrentOSHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetInterval.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetName.html#index-0

● SysTaskGetOSHandle
● SysTaskGetOSPriority
● SysTaskGetPriority
● SysTaskJoin
● SysTaskLeave
● SysTaskResume
● SysTaskSetExit
● SysTaskSetInterval
● SysTaskSetPriority
● SysTaskSuspend
● SysTaskWaitInterval
● SysTaskWaitSleep
● SysTaskWaitSleepUs
● SYSTEM_MEMORY_INFORMATION
● SystemParameter
● SYSTEMTIME
● SYSTIME
● SYSTIMEDATE
● SysTimeDateToString
● SysTimeGetMs
● SysTimeGetNs
● SysTimeGetUs
● SysTimeLock
● SysTimerCreateCallback
● SysTimerCreateCallback2
● SysTimerCreateEvent
● SysTimerDelete
● SysTimerGetInterval
● SysTimerGetTimeStamp
● SysTimerMaxTimer
● SysTimerSetInterval
● SysTimerStart
● SysTimerStop
● SysTimeRtcControl
● SysTimeRtcConvertDateToHighRes
● SysTimeRtcConvertDateToUtc
● SysTimeRtcConvertHighResToDate
● SysTimeRtcConvertHighResToLocal
● SysTimeRtcConvertLocalToHighRes
● SysTimeRtcConvertLocalToUtc
● SysTimeRtcConvertUtcToDate
● SysTimeRtcConvertUtcToLocal
● SysTimeRtcGet
● SysTimeRtcGetTimezone
● SysTimeRtcHighResGet
● SysTimeRtcHighResSet
● SysTimeRtcSet
● SysTimeRtcSetTimezone
● SysTimeSet
● SysTimeUnlock
● SysTimeUnSet
● SYSTYPE
● TableDefinition
● TableDefinitions
● TableSection

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4391

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetOSHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetOSPriority.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetPriority.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskJoin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskLeave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskResume.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskSetExit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskSetInterval.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskSetPriority.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskSuspend.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskWaitInterval.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskWaitSleep.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskWaitSleepUs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SYSTEM_MEMORY_INFORMATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/SystemParameter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/SYSTEMTIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeCore.library_Library/SYSTIME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/SYSTIMEDATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/SysTimeDateToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeCore.library_Library/SysTimeGetMs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeCore.library_Library/SysTimeGetNs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeCore.library_Library/SysTimeGetUs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeLock.library_Library/SysTimeLock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimer.library_Library/SysTimerCreateCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimer.library_Library/SysTimerCreateCallback2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimer.library_Library/SysTimerCreateEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimer.library_Library/SysTimerDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimer.library_Library/SysTimerGetInterval.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimer.library_Library/SysTimerGetTimeStamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimer.library_Library/SysTimerMaxTimer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimer.library_Library/SysTimerSetInterval.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimer.library_Library/SysTimerStart.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimer.library_Library/SysTimerStop.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcControl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/High-Resolution/SysTimeRtcConvertDateToHighRes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcConvertDateToUtc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/High-Resolution/SysTimeRtcConvertHighResToDate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/High-Resolution/SysTimeRtcConvertHighResToLocal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/High-Resolution/SysTimeRtcConvertLocalToHighRes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcConvertLocalToUtc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcConvertUtcToDate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcConvertUtcToLocal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcGet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcGetTimezone.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/High-Resolution/SysTimeRtcHighResGet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/High-Resolution/SysTimeRtcHighResSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcSetTimezone.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeLock.library_Library/SysTimeSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeLock.library_Library/SysTimeUnlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeLock.library_Library/SysTimeUnSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Enums/SYSTYPE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Structs/TableDefinition.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Structs/TableDefinitions.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/ModbusFB.library_Library/ModbusFB/Structs/TableSection.html#index-0

● TargetVisuCyclic
● TargetVisuFindById
● TargetVisuNotify
● Task_Desc
● Task_Desc2
● TASK_GROUP
● Task_Info2
● TASK_NAME
● TASKINFOLIST
● TaskLock
● TASKPARAM
● TASKSTATE
● TaskUnlock
● tCmpLogAdd
● TCP_Client
● TCP_Connection
● TCP_Processor
● TCP_Read
● TCP_ReadBuffer
● TCP_Reader
● TCP_Server
● TCP_Write
● TCP_WRITE_STATE
● TCP_WriteBuffer
● TCP_Writer
● teClass
● teEcatDcControlState
● teEcatDevState
● teEcatExtSyncInfoFlags
● teEcatSlvDCInfoFlags
● teErrorCodesOB
● teEvent
● teHwId
● tError
● Test_State
● Testcases
● TEXT
● TextCopyToString
● TextCopyToWString
● TextFree
● TextHelper
● TextListForCombobox_CIPClass
● TICK
● TICK_TO_UDINT
● TICK_TO_UINT
● TICK_TO_ULINT
● TicketsSafe
● TicketType
● TIME_TO_DURATION
● TIME_TO_INT64
● TIME_TO_ISO8601
● TIME_TO_REAL8
● TIME_ZONE_INFO
● Time2BACnetDateTime
● Time2BACnetTimeStamp

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4392

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTargetVisu.library_Library/TargetVisuCyclic.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTargetVisu.library_Library/TargetVisuFindById.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTargetVisu.library_Library/TargetVisuNotify.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/Task_Desc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/Task_Desc2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Types/TASK_GROUP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/Task_Info2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Types/TASK_NAME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/TASKINFOLIST.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Helper-Fuctions/TaskLock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/TASKPARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/TASKSTATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Helper-Fuctions/TaskUnlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpLogAsync.library_Library/DUT/tCmpLogAdd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Client.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Connection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Processor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Read.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Function-Blocks/TCP/TCP_ReadBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Reader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Server.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Write.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Enums/TCP_WRITE_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Function-Blocks/TCP/TCP_WriteBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Writer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagTypes_1.2.5.5_Library/Enums/teClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Enums/teEcatDcControlState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Enums/teEcatDevState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Enums/teEcatExtSyncInfoFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Enums/teEcatSlvDCInfoFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvDigitalOptionBoard_1.1.2.3_Library/teErrorCodesOB.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagTypes_1.2.5.5_Library/Enums/teEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagTypes_1.2.5.5_Library/Enums/teHwId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/tError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Test/Test_State.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Test/Testcases.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Structs/TEXT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TEXT/TextCopyToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TEXT/TextCopyToWString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TEXT/TextFree.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Function-blocks/Utilities/TextHelper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Visualization/TextListForCombobox_CIPClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/TICK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/TICK/TICK_TO_UDINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/TICK/TICK_TO_UINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/TICK/TICK_TO_ULINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/FBs/TicketsSafe.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Structures/TicketType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/DURATION/TIME_TO_DURATION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/TIME_TO_INT64.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/TIME_TO_ISO8601.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/TIME_TO_REAL8.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/TIME_ZONE_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/Time2BACnetDateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/Time2BACnetTimeStamp.html#index-0

● TimeElement
● TimeElementFactory
● TimerSwitch
● TIMESTAMP
● Timestamp_to_DT
● TimeSync_SvcAppHook
● TimeZone
● TimezoneInformation
● TimezoneInformationToString
● TimeZoneSegmentToString
● TimeZoneToString
● TimingControlledBehaviourModelBase
● TimingController
● TL_AlarmStatus
● TL_AlarmTableColumnTitles
● TL_DateTime
● TL_ElementProperties
● TL_RecipeManager
● TLR_PACKET_HEADER_T
● TLS_VERSION
● TLSContext
● TODConcat
● TODSplit
● TOF
● TokenTypeToString
● TON
● TP
● TraceAddress
● TraceFctGetPropertyValue
● TraceFctGetVariableName
● TraceFctGetVariableNameW
● TraceMgrGetConfigFromFile
● TraceMgrGetConfigFromFileRelease
● TraceMgrPacketCheckTrigger
● TraceMgrPacketClose
● TraceMgrPacketComplete
● TraceMgrPacketCreate
● TraceMgrPacketDelete
● TraceMgrPacketDisable
● TraceMgrPacketDisableTrigger
● TraceMgrPacketEnable
● TraceMgrPacketEnableTrigger
● TraceMgrPacketGetAbsoluteStartTime
● TraceMgrPacketGetChangeTimestamp
● TraceMgrPacketGetConfig
● TraceMgrPacketGetFirst
● TraceMgrPacketGetNext
● TraceMgrPacketGetStartTime
● TraceMgrPacketGetState
● TraceMgrPacketOpen
● TraceMgrPacketReadBegin
● TraceMgrPacketReadEnd
● TraceMgrPacketReadFirst
● TraceMgrPacketReadFirst2
● TraceMgrPacketReadNext

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4393

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/TimeElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/TimeElementFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/FunctionBlocks/TimerSwitch.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/TIMESTAMP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/Timestamp_to_DT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/TimeSync_SvcAppHook.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Structs/TimeZone.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/TimezoneInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/TimezoneInformationToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/TimeZoneSegmentToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/TimeZoneToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/ImplementationBase/TimingControlledBehaviourModelBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/TimingController.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/TL_AlarmStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/TL_AlarmTableColumnTitles.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/TL_DateTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/TL_ElementProperties.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/TL_RecipeManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/TLR_PACKET_HEADER_T.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Types/TLS_VERSION.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TLS/TLSContext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/TODConcat.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/TODSplit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Timer/TOF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Logging/TokenTypeToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Timer/TON.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Timer/TP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/Functions/TraceFctGetPropertyValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trend/Helpfunctions/TraceFctGetVariableName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trend/Helpfunctions/TraceFctGetVariableNameW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrGetConfigFromFile.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrGetConfigFromFileRelease.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketCheckTrigger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketComplete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketDisable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketDisableTrigger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketEnable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketEnableTrigger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetAbsoluteStartTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetChangeTimestamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetConfig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetFirst.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetNext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetStartTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketReadBegin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketReadEnd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketReadFirst.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketReadFirst2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketReadNext.html#index-0

● TraceMgrPacketReadNext2
● TraceMgrPacketResetTrigger
● TraceMgrPacketRestart
● TraceMgrPacketRestore
● TraceMgrPacketStart
● TraceMgrPacketStop
● TraceMgrPacketStore
● TraceMgrRecordAdd
● TraceMgrRecordGetConfig
● TraceMgrRecordGetFirst
● TraceMgrRecordGetNext
● TraceMgrRecordRemove
● TraceMgrRecordUpdate
● TraceMgrRecordUpdate2
● TraceMgrRecordUpdate3
● TraceMgrRecordUpdate4
● TraceMgrRecordUpdate5
● TracePacketConfiguration
● TraceRecordConfiguration
● TraceRecordEntry
● TraceState
● TraceTrigger
● TraceVariable
● TraceVariableAddress
● TraceVarInfo
● TRANSITION_STATE
● TransmissionTrigger
● TransmitParameterGroup
● Tree
● TreeBase
● TreeNode
● TreeNodeFactory
● TreeNodeType
● TrendFbDatabaseAccessErrorHandler
● TrendFbTrendStorageWriterReader
● TrendFctCursorSearchFirstRow
● TrendFctGetTimestamp
● TrendFctSetComplexElementCallState
● TrendFctShowLossOfPrecisionWarning
● TrendFctShowUnsupportedFunctionWarning
● TrendLog
● TrendStorageConvertFromTimestamp
● TrendStorageConvertToTimestamp
● TrendStorageReader
● TrendStorageReaderValueConverter
● TrendStorageVariableDescription
● TriggerState
● TriggerValue
● TrimEnd
● TrimStart
● Truncate
● TruncateF
● tsEcmExtSyncInfo
● tsEcmMstrDcInfo
● tsEcmMstrFrameLossCnt

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4394

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketReadNext2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketResetTrigger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketRestart.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketRestore.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketStart.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketStop.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketStore.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordAdd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordGetConfig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordGetFirst.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordGetNext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordRemove.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordUpdate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordUpdate2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordUpdate3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordUpdate4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordUpdate5.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TracePacketConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceRecordConfiguration.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceRecordEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceTrigger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceVariable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceVariableAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceVarInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Enums/TRANSITION_STATE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/TransmissionTrigger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/ParameterGroups/TransmitParameterGroup.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/Tree/Tree.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/Tree/TreeBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/TreeNode/TreeNode.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/TreeNode/TreeNodeFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TreeNodeType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/TrendFbDatabaseAccessErrorHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/TrendFbTrendStorageWriterReader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/TrendFctCursorSearchFirstRow.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/TrendFctGetTimestamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trend/Helpfunctions/TrendFctSetComplexElementCallState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trend/debugging/TrendFctShowLossOfPrecisionWarning.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trend/debugging/TrendFctShowUnsupportedFunctionWarning.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/LoggingObjects/TrendLog.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/TrendStorageConvertFromTimestamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/TrendStorageConvertToTimestamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/TrendStorageReader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/TrendStorageReaderValueConverter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/TrendStorageVariableDescription.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TriggerState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TriggerValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/TrimEnd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/TrimStart.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/Functions/Truncate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/Functions/TruncateF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmExtSyncInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmMstrDcInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmMstrFrameLossCnt.html#index-0

● tsEcmMstrFrameLossCntEntry
● tsEcmMstrInfo
● tsEcmMstrMemInfo
● tsEcmMstrThresholdCnt
● tsEcmMstrThresholdCntEntry
● tsEcmMstrTimingInfo
● tsEcmSlvConnInfo
● tsEcmSlvDcInfo
● tsEcmSlvEmergencies
● tsEcmSlvEmergency
● tsEcmSlvESCVersion
● tsEcmSlvInfo
● tsEcmSlvLostLinkCnt
● tsEcmSlvRxErrorCnt
● tsNetxEcatBusScanDeviceInfo
● tsNetxEcatHandle
● tsParameterStruct
● tSysComClose
● tSysComGetSettings
● tSysComOpen
● tSysComOpen2
● tSysComPurge
● tSysComRead
● tSysComSetSettings
● tSysComSetTimeout
● tSysComWrite
● tSysDirClose
● tSysDirCreate
● tSysDirDelete
● tSysDirGetCurrent
● tSysDirOpen
● tSysDirRead
● tSysDirRename
● tSysDirSetCurrent
● tSysFileClose
● tSysFileCopy
● tSysFileDelete
● tSysFileDeleteByHandle
● tSysFileEOF
● tSysFileGetName
● tSysFileGetPath
● tSysFileGetPos
● tSysFileGetSize
● tSysFileGetSizeByHandle
● tSysFileGetStatus
● tSysFileGetTime
● tSysFileOpen
● tSysFileRead
● tSysFileRename
● tSysFileSetPos
● tSysFileWrite
● tSysPortIn
● tSysPortInD
● tSysPortInW
● tSysPortOut

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4395

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmMstrFrameLossCntEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmMstrInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmMstrMemInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmMstrThresholdCnt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmMstrThresholdCntEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmMstrTimingInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmSlvConnInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmSlvDcInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmSlvEmergencies.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmSlvEmergency.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmSlvESCVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmSlvInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmSlvLostLinkCnt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/EcatBase_1.3.2.2_Library/Types/tsEcmSlvRxErrorCnt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/Device/tsNetxEcatBusScanDeviceInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/EtherCAT/NetxEcat_1.3.2.4_Library/NetxEcat/tsNetxEcatHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvAnalogOptionBoard_1.1.1.6_Library/Structs/tsParameterStruct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysComAsync.library_Library/DUT/tSysComClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysComAsync.library_Library/DUT/tSysComGetSettings.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysComAsync.library_Library/DUT/tSysComOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysComAsync.library_Library/DUT/tSysComOpen2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysComAsync.library_Library/DUT/tSysComPurge.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysComAsync.library_Library/DUT/tSysComRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysComAsync.library_Library/DUT/tSysComSetSettings.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysComAsync.library_Library/DUT/tSysComSetTimeout.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysComAsync.library_Library/DUT/tSysComWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDirAsync.library_Library/DUT/tSysDirClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDirAsync.library_Library/DUT/tSysDirCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDirAsync.library_Library/DUT/tSysDirDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDirAsync.library_Library/DUT/tSysDirGetCurrent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDirAsync.library_Library/DUT/tSysDirOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDirAsync.library_Library/DUT/tSysDirRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDirAsync.library_Library/DUT/tSysDirRename.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysDirAsync.library_Library/DUT/tSysDirSetCurrent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileCopy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileDeleteByHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileEOF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileGetName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileGetPath.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileGetPos.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileGetSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileGetSizeByHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileGetStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileGetTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileRename.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileSetPos.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysFileAsync.library_Library/DUT/tSysFileWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPortAsync.library_Library/DUT/tSysPortIn.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPortAsync.library_Library/DUT/tSysPortInD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPortAsync.library_Library/DUT/tSysPortInW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPortAsync.library_Library/DUT/tSysPortOut.html#index-0

● tSysPortOutD
● tSysPortOutW
● tSysShmClose
● tSysShmGetPointer
● tSysShmOpen
● tSysShmRead
● tSysShmReadByte
● tSysShmWrite
● tSysShmWriteByte
● tSysSockAccept
● tSysSockBind
● tSysSockClose
● tSysSockCloseUdp
● tSysSockConnect
● tSysSockCreate
● tSysSockCreateUdp
● tSysSockGetHostByName
● tSysSockGetHostname
● tSysSockGetOption
● tSysSockGetOsHandle
● tSysSockGetRecvSizeUdp
● tSysSockGetSubnetMask
● tSysSockHtonl
● tSysSockHtons
● tSysSockInetAddr
● tSysSockInetNtoa
● tSysSockIoctl
● tSysSockListen
● tSysSockNtohl
● tSysSockNtohs
● tSysSockPing
● tSysSockRecv
● tSysSockRecvFrom
● tSysSockRecvFromUdp
● tSysSockSelect
● tSysSockSend
● tSysSockSendTo
● tSysSockSendToUdp
● tSysSockSetIpAddress
● tSysSockSetOption
● tSysSockSetSubnetMask
● tSysSockShutdown
● tTaskInfo
● tyIEC61850_ASN1_Header
● tyIEC61850_AT_AnalogueValue
● tyIEC61850_AT_AnalogueValue_Struct
● tyIEC61850_AT_APC
● tyIEC61850_AT_APC_Operate
● tyIEC61850_AT_APC_Operate_SP
● tyIEC61850_AT_APC1
● tyIEC61850_AT_BOOLEAN
● tyIEC61850_AT_BSC_Operate
● tyIEC61850_AT_Check
● tyIEC61850_AT_CODED_ENUM
● tyIEC61850_AT_DPC_Operate

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4396

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPortAsync.library_Library/DUT/tSysPortOutD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysPortAsync.library_Library/DUT/tSysPortOutW.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShmAsync.library_Library/DUT/tSysShmClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShmAsync.library_Library/DUT/tSysShmGetPointer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShmAsync.library_Library/DUT/tSysShmOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShmAsync.library_Library/DUT/tSysShmRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShmAsync.library_Library/DUT/tSysShmReadByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShmAsync.library_Library/DUT/tSysShmWrite.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysShmAsync.library_Library/DUT/tSysShmWriteByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockAccept.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockBind.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockCloseUdp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockConnect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockCreate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockCreateUdp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockGetHostByName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockGetHostname.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockGetOption.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockGetOsHandle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockGetRecvSizeUdp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockGetSubnetMask.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockHtonl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockHtons.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockInetAddr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockInetNtoa.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockIoctl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockListen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockNtohl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockNtohs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockPing.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockRecv.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockRecvFrom.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockRecvFromUdp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSelect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSend.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSendTo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSendToUdp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSetIpAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSetOption.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSetSubnetMask.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockShutdown.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/tTaskInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/tyIEC61850_ASN1_Header.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_AnalogueValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_AnalogueValue_Struct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61400-Special/tyIEC61850_AT_APC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_APC_Operate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_APC_Operate_SP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61400-Special/tyIEC61850_AT_APC1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_BOOLEAN.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_BSC_Operate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_Check.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_CODED_ENUM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_DPC_Operate.html#index-0

● tyIEC61850_AT_DstAddress
● tyIEC61850_AT_EntryTime
● tyIEC61850_AT_ENUM_CtlModels
● tyIEC61850_AT_ENUM_MODE
● tyIEC61850_AT_ENUM_SboClass
● tyIEC61850_AT_ENUMERATED
● tyIEC61850_AT_FLOAT32
● tyIEC61850_AT_INC
● tyIEC61850_AT_INC_Operate
● tyIEC61850_AT_INC1
● tyIEC61850_AT_INS
● tyIEC61850_AT_INT128
● tyIEC61850_AT_INT16
● tyIEC61850_AT_INT16U
● tyIEC61850_AT_INT32
● tyIEC61850_AT_INT32U
● tyIEC61850_AT_INT8
● tyIEC61850_AT_INT8U
● tyIEC61850_AT_ISC_Operate
● tyIEC61850_AT_Octet255
● tyIEC61850_AT_Octet64
● tyIEC61850_AT_Origin
● tyIEC61850_AT_POINT
● tyIEC61850_AT_PulseConfig
● tyIEC61850_AT_Quality
● tyIEC61850_AT_RANGECONFIG
● tyIEC61850_AT_ScaledValConfig
● tyIEC61850_AT_SPC
● tyIEC61850_AT_SPC_Operate
● tyIEC61850_AT_StatusValue_Struct
● tyIEC61850_AT_TimeStamp
● tyIEC61850_AT_UCSTRING255
● tyIEC61850_AT_UINT32
● tyIEC61850_AT_UNIT
● tyIEC61850_AT_ValWithTrans
● tyIEC61850_AT_VECTOR
● tyIEC61850_AT_VisSTRING129
● tyIEC61850_AT_VisSTRING255
● tyIEC61850_AT_VisSTRING32
● tyIEC61850_AT_VisSTRING64
● tyIEC61850_AT_VisSTRING65
● tyIEC61850_DataPoint
● tyIEC61850_DataSetRef
● tyIEC61850_GOOSE_Check
● tyIEC61850_GOOSEMsg
● tyIEC61850_MMS_DataExchange
● tyIEC61850_MMS_Initiate
● tyIEC61850_SubsDataBlock
● tyIEC61850_SubsDataPoint
● tyISO_BlockHeader
● tyISO_SPDU
● tyISO8073_BlockHeader
● tyISO8073_ClientPara
● tyISO8073_PDU
● tyISO8327_BlockHeader

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4397

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_DstAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_EntryTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_ENUM_CtlModels.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_ENUM_MODE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_ENUM_SboClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_ENUMERATED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_FLOAT32.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61400-Special/tyIEC61850_AT_INC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_INC_Operate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61400-Special/tyIEC61850_AT_INC1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61400-Special/tyIEC61850_AT_INS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT128.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT16.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT16U.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT32.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT32U.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT8.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT8U.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_ISC_Operate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_Octet255.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_Octet64.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_Origin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_POINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_PulseConfig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_Quality.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_RANGECONFIG.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_ScaledValConfig.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61400-Special/tyIEC61850_AT_SPC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_SPC_Operate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_StatusValue_Struct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_TimeStamp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_UCSTRING255.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_UINT32.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_UNIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_ValWithTrans.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_VECTOR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_VisSTRING129.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_VisSTRING255.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_VisSTRING32.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_VisSTRING64.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_VisSTRING65.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/DataClass/tyIEC61850_DataPoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/tyIEC61850_DataSetRef.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/tyIEC61850_GOOSE_Check.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/GOOSE/tyIEC61850_GOOSEMsg.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/MMS/tyIEC61850_MMS_DataExchange.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/MMS/tyIEC61850_MMS_Initiate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/tyIEC61850_SubsDataBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/IEC61850/tyIEC61850_SubsDataPoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO_BlockHeader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO_SPDU.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8073_BlockHeader.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8073_ClientPara.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8073_PDU.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8327_BlockHeader.html#index-0

● tyISO8327_ClientData
● tyISO8327_Connect_AcceptItem
● tyISO8327_ConnectionIdent
● tyISO8650_UserInfoData
● tyISO8823_ContextList
● tyISO8823_ContextName
● tyISO8823_CP_Type
● tyISO8823_DataUser
● tyISO8823_NormalModePara
● TypeClass
● TypeClass3
● TypeClassToVariantId
● TypedElement
● TypeDesc
● TypeDesc_Alias
● TypeDesc_AliasWithAttributes
● TypeDesc_Array
● TypeDesc_Array_ByteAddressed
● TypeDesc_Array_Remote
● TypeDesc_Enum
● TypeDesc_EnumWithAttributes
● TypeDesc_Executable
● TypeDesc_Executable2
● TypeDesc_Property
● TypeDesc_Property_Remote
● TypeDesc_Reference
● TypeDesc_Simple
● TypeDesc_Simple_Bit
● TypeDesc_Struct
● TypeDesc_Struct_Derived_Remote
● TypeDesc_Struct_Remote
● TypeDesc_Struct2
● TypeDesc_Struct2_WithBaseType
● TypeDesc_Struct2_WithBaseTypeAndAttributes
● TypeDesc_Subrange
● TypeDesc_VarLenArray
● TypeDescArrayAsStruct
● TypeDescAsUnion
● TypeDescSimpleAsStruct
● TypeDescStructAsStruct
● TypeDescUnion
● TypeDescVarArrayAsStruct
● TypedList
● TypedTree
● TypeHasCompleteBlittableLayout
● TZ_NAME
● UDINT_IN_BYTES
● UDINT_IN_WORDS
● UDINT_TO_COUNT
● UDINT_TO_HEX
● UDINT_TO_IPARRAY
● UDINT_TO_IPSTRING
● UDINT_TO_SIZE
● UDINT_TO_TICK
● UDINT_TO_UNSIGNED

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4398

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8327_ClientData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8327_Connect_AcceptItem.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8327_ConnectionIdent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8650_UserInfoData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8823_ContextList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8823_ContextName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8823_CP_Type.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8823_DataUser.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.7.1_Library/Data-types/ISO/tyISO8823_NormalModePara.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDriverBase/Base_Itfs.library_Library/TypeClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TypeClass3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Requests/TypeClassToVariantId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/Element/TypedElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Alias.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_AliasWithAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Array.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Array_ByteAddressed.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Array_Remote.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Enum.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_EnumWithAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Executable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Executable2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Property.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Property_Remote.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Reference.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Simple.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Simple_Bit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Struct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Struct_Derived_Remote.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Struct_Remote.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Struct2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Struct2_WithBaseType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Struct2_WithBaseTypeAndAttributes.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Subrange.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_VarLenArray.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TypeDescArrayAsStruct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TypeDescAsUnion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TypeDescSimpleAsStruct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TypeDescStructAsStruct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TypeDescUnion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TypeDescVarArrayAsStruct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/List/TypedList.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/Tree/TypedTree.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeHasCompleteBlittableLayout.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/TZ_NAME.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/UDINT_IN_BYTES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/UDINT_IN_WORDS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/COUNT/UDINT_TO_COUNT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Functions/UDINT_TO_HEX.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Functions/UDINT_TO_IPARRAY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Functions/UDP/UDINT_TO_IPSTRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIZE/UDINT_TO_SIZE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/TICK/UDINT_TO_TICK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/UNSIGNED/UDINT_TO_UNSIGNED.html#index-0

● UdintElement
● UdintElementFactory
● UDP_GetDataSize
● UDP_Peer
● UDP_Processor
● UDP_Receive
● UDP_ReceiveBuffer
● UDP_Receiver
● UDP_REPLY
● UDP_REPLY2
● UDP_Send
● UDP_SendBuffer
● UDP_Sender
● UDPDriver
● UdpGetReceiveDataSize
● UdpOpenReceiveSocket
● UdpOpenSendSocket
● UdpReceiveData
● UdpSendData
● UINT_TO_COUNT
● UINT_TO_HEX
● UINT_TO_SIZE
● UINT_TO_TICK
● UINT_TO_UNSIGNED
● UintElement
● UintElementFactory
● ULINT_TO_COUNT
● ULINT_TO_SIZE
● ULINT_TO_TICK
● ULINT_TO_UNSIGNED
● UlintElement
● UlintElementFactory
● unexport
● UNION_BACNET_ADDRESS
● UNION_BACNET_ADDRESS_TO_STRING
● UNION_BACNET_CALENDAR_ENTRY
● UNION_BACNET_CHANNEL_VALUE
● UNION_BACNET_EP_COV_PARAM
● UNION_BACNET_EPFP_E_PARAMETER
● UNION_BACNET_ERROR
● UNION_BACNET_EVENT_LOG_RECORD
● UNION_BACNET_EVENT_PARAMETER
● UNION_BACNET_FAULT_PARAMETER
● UNION_BACNET_LOG_RECORD
● UNION_BACNET_LOG_RECORD_M_ENTRY
● UNION_BACNET_LOG_RECORD_MULTIPLE
● UNION_BACNET_MESSAGE_CLASS
● UNION_BACNET_NETWORK_MANAGEMENT_MESSAGE
● UNION_BACNET_NMM_BVLL
● UNION_BACNET_NMM_NETWORK
● UNION_BACNET_NOTIFICATION_PARAMETERS
● UNION_BACNET_NP_CMD_FAIL_PARAM
● UNION_BACNET_NP_CMD_FAIL_PARAM1
● UNION_BACNET_NP_COV_PARAM
● UNION_BACNET_NP_E_PARAMETER

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4399

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/UdintElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/UdintElementFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Functions/UDP/UDP_GetDataSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Peer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Processor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Receive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Function-Blocks/UDP/UDP_ReceiveBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Receiver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/UDP_REPLY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/UDP_REPLY2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Send.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Function-Blocks/UDP/UDP_SendBuffer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Sender.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Functionblocks/UDPDriver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Udp-specific/UdpGetReceiveDataSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Udp-specific/UdpOpenReceiveSocket.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Udp-specific/UdpOpenSendSocket.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Udp-specific/UdpReceiveData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Udp-specific/UdpSendData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/COUNT/UINT_TO_COUNT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Functions/UINT_TO_HEX.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIZE/UINT_TO_SIZE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/TICK/UINT_TO_TICK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/UNSIGNED/UINT_TO_UNSIGNED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/UintElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/UintElementFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/COUNT/ULINT_TO_COUNT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIZE/ULINT_TO_SIZE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/TICK/ULINT_TO_TICK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/UNSIGNED/ULINT_TO_UNSIGNED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/UlintElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/UlintElementFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvGPIOSysfs.library_Library/Functions/unexport.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_ADDRESS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/TO_STRING/UNION_BACNET_ADDRESS_TO_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_CALENDAR_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_CHANNEL_VALUE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_EP_COV_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_EPFP_E_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_EVENT_LOG_RECORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_EVENT_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_FAULT_PARAMETER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_LOG_RECORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_LOG_RECORD_M_ENTRY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_LOG_RECORD_MULTIPLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_MESSAGE_CLASS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_NETWORK_MANAGEMENT_MESSAGE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_NMM_BVLL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_NMM_NETWORK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_NOTIFICATION_PARAMETERS.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_NP_CMD_FAIL_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_NP_CMD_FAIL_PARAM1.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_NP_COV_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_NP_E_PARAMETER.html#index-0

● UNION_BACNET_OBJECT_SPECIFIER
● UNION_BACNET_OS_TIME_PROVIDER_VALUE
● UNION_BACNET_PRIORITY_ARRAY_ITEM
● UNION_BACNET_PROPERTY_ACCESS_RESULT
● UNION_BACNET_PROPERTY_STATES
● UNION_BACNET_READ_FILE_RESULT
● UNION_BACNET_READ_RESULT_ITEM
● UNION_BACNET_RECIPIENT
● UNION_BACNET_SCALE
● UNION_BACNET_SHED_LEVEL
● UNION_BACNET_SPECIAL_EVENT
● UNION_BACNET_STACK_CONTROL
● UNION_BACNET_STACK_DATALINK
● UNION_BACNET_STACK_INTERNAL_ERROR
● UNION_BACNET_STRING
● UNION_BACNET_TIME_STAMP
● UNION_BACNET_WHO_HAS_INFO
● UNION_BACNET_WHO_HAS_PARAM
● UNION_BACNET_WRITE_FILE_RESULT
● UNPACK
● UnpackArrayOfByte
● UnpackByte
● UnpackDWord
● UnpackWord
● Unregister
● UnregisterCallback
● UnregisterIdArea
● UNSIGNED
● UNSIGNED_TO_UDINT
● UNSIGNED_TO_UINT
● UNSIGNED_TO_ULINT
● UpdateByDefaultInfo
● UpdateByDefaultItem
● UpdateDiagnosis_Status
● UpdateDiagnosisEntry
● UserAuthentification
● UserMgrChangeMyPassword
● UserMgrGetUserAccessRights
● UserMgrHasUserAccessRights
● UserMgrIsActive
● UserMgrLogin
● UserMgrLogout
● UserMgrObjectAdd
● UserMgrObjectRemove
● UserMgrObjectSetUsedRights
● UserMgrRelogin
● UTC_TO_DT
● UTCTimeSync_SvcAppHook
● UtilAddrEqual
● UtilBytesFromHexSubString
● UtilDateTimeToString
● UtilFillNodeAddress
● UtilGetLocalByteorder
● UtilGetLocalByteorderAtRuntime
● UtilIsGeneralErrorReply

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4400

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_OBJECT_SPECIFIER.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_OS_TIME_PROVIDER_VALUE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_PRIORITY_ARRAY_ITEM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_PROPERTY_ACCESS_RESULT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_PROPERTY_STATES.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_READ_FILE_RESULT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_READ_RESULT_ITEM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_RECIPIENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_SCALE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_SHED_LEVEL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_SPECIAL_EVENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_STACK_CONTROL.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_STACK_DATALINK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_STACK_INTERNAL_ERROR.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_TIME_STAMP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_WHO_HAS_INFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_WHO_HAS_PARAM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.clean_Library/BACnetUnions/UNION_BACNET_WRITE_FILE_RESULT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/UNPACK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/UnpackArrayOfByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/UnpackByte.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/UnpackDWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/UnpackWord.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/Unregister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/UnregisterCallback.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/UnregisterIdArea.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/UNSIGNED.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/UNSIGNED/UNSIGNED_TO_UDINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/UNSIGNED/UNSIGNED_TO_UINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/UNSIGNED/UNSIGNED_TO_ULINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/UpdateByDefaultInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/UpdateByDefaultItem.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/UpdateDiagnosis_Status.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/UpdateDiagnosisEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Configuration/UserAuthentification.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authentication/UserMgrChangeMyPassword.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authorization/UserMgrGetUserAccessRights.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authorization/UserMgrHasUserAccessRights.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authentication/UserMgrIsActive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authentication/UserMgrLogin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authentication/UserMgrLogout.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectAdd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectRemove.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectSetUsedRights.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authentication/UserMgrRelogin.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Functions/UTC_TO_DT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Function-Blocks/UTCTimeSync_SvcAppHook.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/UtilAddrEqual.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/UtilBytesFromHexSubString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/BACnet/BACnetDefaultImpl.clean_Library/BACnetDefaultImpl/Functions/UtilDateTimeToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/UtilFillNodeAddress.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilGetLocalByteorder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilGetLocalByteorderAtRuntime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilIsGeneralErrorReply.html#index-0

● UtilIsIntelByteorder
● UtilIsToSwap
● UtilReadAddressFromRouter
● UtilsWriteBYTE
● UtilsWriteString
● UtilsWriteUDINT
● UtilsWriteUINT
● UtilsWriteULINT
● UtilTokenizer
● UtilValidateByteOrder
● UUID
● UUID_COMPARE
● UUIDGenerator
● ValueToString
● VarAccUaNamespaceFragment
● VariableInformation
● VariableInformationStruct
● VariableInformationStruct2
● VariableInformationStruct3
● VariableInformationStruct4
● VariableInformationStruct5
● VariableValue
● VARIANCE
● Variance
● VarListDefine
● VarListDelete
● VarListDisable
● VarListEnable
● VarListEnter
● VarListFlags
● VarListLeave
● VarListRead
● VECTOR3D
● Verifier
● VERSIONINFO
● Visu_Assert
● Visu_CheckPropertyInfo
● Visu_ClientTagData
● Visu_FbClearEventsAfterStart
● Visu_FbStringDintMap
● Visu_FbWebserver
● Visu_FctCheckForLongFormatSpecifier
● Visu_FctClosePAADialogIfNecessary
● Visu_FctGetDatasources
● Visu_FctHandleInputGesture
● Visu_FctHandleVisuInputDialogTarget
● Visu_FctHandleVisuInputMouseEvent
● Visu_FctHandleVisuInputOverlayMeasureString
● Visu_FctHandleVisuInputPAA
● Visu_FctInitMemSet
● Visu_FctIsEventToIgnoreWhileEditboxOpen
● Visu_FctIsGestureEvent
● Visu_FctIsModalDialogOpen
● Visu_FctIsOnStraightLine
● Visu_FctIsRelevantGestureEvent

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4401

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilIsIntelByteorder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilIsToSwap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/UtilReadAddressFromRouter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilsWriteBYTE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilsWriteString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilsWriteUDINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilsWriteUINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilsWriteULINT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/UtilTokenizer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Intern/Utilities/UtilValidateByteOrder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/UUID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Functions/UUID_COMPARE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Function-Blocks/Utils/UUIDGenerator.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/Logging/ValueToString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccessOpcUaMetaData_Itfs.library_Library/VarAccUaNamespaceFragment.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/VariableInformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/VariableInformationStruct.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/VariableInformationStruct2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/VariableInformationStruct3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/VariableInformationStruct4.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/VariableInformationStruct5.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandlerDataModelDefault.library_Library/CmpPLCHandler/Structs/VariableValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/VARIANCE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/statistical-functions/Variance.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/VarListDefine.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/VarListDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/VarListDisable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/VarListEnable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/VarListEnter.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Enums/VarListFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/VarListLeave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpPLCHandler.library_Library/CmpPLCHandler/Functions/VarListRead.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Structs/VECTOR3D.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/FBs/Verifier.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvHilscher.library_Library/DPM-Structures/VERSIONINFO.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu_Assert.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PropertySupport/Visu_CheckPropertyInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpVisuHandler.library_Library/Structures/Visu_ClientTagData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/Visu_FbClearEventsAfterStart.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Collections/Visu_FbStringDintMap.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Webvisu/Visu_FbWebserver.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/StringFunctions/Visu_FctCheckForLongFormatSpecifier.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/HandleVisuInput/Visu_FctClosePAADialogIfNecessary.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Visu_FctGetDatasources.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/Visu_FctHandleInputGesture.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/HandleVisuInput/Visu_FctHandleVisuInputDialogTarget.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/HandleVisuInput/Visu_FctHandleVisuInputMouseEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/HandleVisuInput/Visu_FctHandleVisuInputOverlayMeasureString.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/HandleVisuInput/Visu_FctHandleVisuInputPAA.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu_FctInitMemSet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/Visu_FctIsEventToIgnoreWhileEditboxOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/Visu_FctIsGestureEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/Visu_FctIsModalDialogOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Selection-Management/Visu_FctIsOnStraightLine.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/Visu_FctIsRelevantGestureEvent.html#index-0

● Visu_FctIsSelectionEmpty
● Visu_FctLegacyIDStackInfoFill
● Visu_FctLegacyIDStackInfoReadFromAdditionalData
● Visu_FctRaiseMouseLeave
● Visu_FctReleaseNonIECMemClientResources
● Visu_FctTransformSelectionIsotropicOverlay
● Visu_HelpDumpLibHierarchy
● Visu_OnlinechangeNotify
● Visu_ScalarTypesUnion
● Visu_ScalarTypesWithPtr
● Visu_SetCodegenFeatureSupport
● Visu_StructCommandData
● VisuAlarmScrollValueProvider
● VisuBenchmarkFBStatistics
● VisuBenchmarkNowInUs
● VisuClientAnimationData
● VisuClientObject
● VisuClientObjectClientSpecificData
● VisuClientObjectFlags
● VisuClientObjectIdStack
● VisuClientObjectIdStackOptimized
● VisuClientObjectIdStackWithParentSize
● VisuClientObjectInputRectangleMgr
● VisuClientObjectLayerInitFlags
● VisuClientObjectMgr
● VisuClientObjectReservedIds
● VisuClientObjectStateFlags
● VisuClientTag
● VisuClientType
● VisuDateTimeFormatPlaceholders
● VisuDialogOpenFlags
● VisuElemLayer
● VisuElemLayerAlignmentFlag
● VisuElemLayerClientSpecificData
● VisuElemLayerData
● VisuElemLayerFlag
● VisuElemMgrClientData
● VisuElemMgrClientSpecificData
● VisuElemMgrClientSpecificDataIndices
● VisuElemSelectionLayer
● VisuEnumActionType
● VisuEnumAfterTransformation
● VisuEnumAlarmDataType
● VisuEnumAnalogClockStyle
● VisuEnumBackgroundDrawingState
● VisuEnumClientTag
● VisuEnumCreateTemporaryRenderLocationFlags
● VisuEnumFileTransferDirection
● VisuEnumFileTransferError
● VisuEnumInputOnElementType
● VisuEnumLegendDisplayerLineType
● VisuEnumRectangleFlags
● VisuEnumRedundancyValueChanged
● VisuEnumXYChartActivityType
● VisuEnumXYChartAxisPosition

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4402

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Selection-Management/Visu_FctIsSelectionEmpty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/Visu_FctLegacyIDStackInfoFill.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/Visu_FctLegacyIDStackInfoReadFromAdditionalData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Input-Event-Handling/Visu_FctRaiseMouseLeave.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Visu_FctReleaseNonIECMemClientResources.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Selection-Management/Visu_FctTransformSelectionIsotropicOverlay.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Namespaces-Table/Visu_HelpDumpLibHierarchy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/OnlineChange/Visu_OnlinechangeNotify.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PropertySupport/Visu_ScalarTypesUnion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PropertySupport/Visu_ScalarTypesWithPtr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/OnlineChange/Visu_SetCodegenFeatureSupport.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Collections/Visu_StructCommandData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/VisuAlarmScrollValueProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Benchmarking/VisuBenchmarkFBStatistics.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Benchmarking/VisuBenchmarkNowInUs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientAnimationData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectClientSpecificData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectIdStack.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectIdStackOptimized.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectIdStackWithParentSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectInputRectangleMgr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectLayerInitFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectMgr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectReservedIds.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectStateFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Enumerations/VisuClientTag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Types/Enum/VisuClientType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuDateTimeFormatPlaceholders.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/VisuDialogOpenFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemLayer/VisuElemLayer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemLayer/VisuElemLayerAlignmentFlag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemLayer/VisuElemLayerClientSpecificData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemLayer/VisuElemLayerData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemLayer/VisuElemLayerFlag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemMgrClientData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemMgrClientSpecificData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemMgrClientSpecificDataIndices.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemLayer/VisuElemSelectionLayer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumActionType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumAfterTransformation.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/Enumerations/VisuEnumAlarmDataType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/AnalogClock/Enumerations/VisuEnumAnalogClockStyle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Enumerations/VisuEnumBackgroundDrawingState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpVisuHandler.library_Library/VisuEnumClientTag.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumCreateTemporaryRenderLocationFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/File-transfer/VisuEnumFileTransferDirection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumFileTransferError.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumInputOnElementType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/LegendDisplayer/VisuEnumLegendDisplayerLineType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumRectangleFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumRedundancyValueChanged.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartActivityType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartAxisPosition.html#index-0

● VisuEnumXYChartAxType
● VisuEnumXYChartBarType
● VisuEnumXYChartBgType
● VisuEnumXYChartCommands
● VisuEnumXYChartCursorActive
● VisuEnumXYChartCursorType
● VisuEnumXYChartCursorVisible
● VisuEnumXYChartCvChartType
● VisuEnumXYChartCvFillType
● VisuEnumXYChartCvHeapCmd
● VisuEnumXYChartCvOverlapType
● VisuEnumXYChartFocusType
● VisuEnumXYChartGradientType
● VisuEnumXYChartGridType
● VisuEnumXYChartLineType
● VisuEnumXYChartLvlLineLbPos
● VisuEnumXYChartPointStyle
● VisuEnumXYChartProgType
● VisuEnumXYChartShadowStyle
● VisuEnumXYChartZeroLineType
● VisuEventOptimization
● VisuEventTarget
● VisuFbAlarmBannerDataBlock
● VisuFbAnalyzeDateTimeFormatExtractWithoutWeekdays
● VisuFbAnalyzeDateTimeFormatStringBase
● VisuFbAnalyzeDateTimeFormatStringMinSecOnly
● VisuFbAnalyzeStateVarsTapAware
● VisuFbAnalyzeTextVarsDateTimeOnly
● VisuFbBaseVector
● VisuFbCapturedTransformationProvider
● VisuFbClientLogger
● VisuFbClientStartVisuMgr
● VisuFbClientTagDataHelper
● VisuFbCommandVector
● VisuFbDatasourcesResourceEntries_MBM
● VisuFbDatasourcesResourceEntries_SysMem
● VisuFbDateTimeNamesLocalizer
● VisuFbDialogClientInfo
● VisuFbDialogInfoVector
● VisuFbDWORDVector
● VisuFbElemTextEditor
● VisuFbExecution
● VisuFbFileTransferManager
● VisuFbFrameRegistrationVector
● VisuFbGestureFromEvent
● VisuFbGroupOverlay
● VisuFbInputRectangle
● VisuFbLegacyCapturingTransformationProvider
● VisuFbLibHierarchy
● VisuFbMainClientMgmt
● VisuFbMouseTouchDragUtil
● VisuFbMoveAbsoluteTapAware
● VisuFbMoveAbsoluteTapAwareF
● VisuFbMoveRelativeTapAware
● VisuFbNamespaceTable

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4403

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartAxType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartBarType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartBgType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCommands.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCursorActive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCursorType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCursorVisible.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCvChartType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCvFillType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCvHeapCmd.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCvOverlapType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartFocusType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartGradientType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartGridType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartLineType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartLvlLineLbPos.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartPointStyle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartProgType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartShadowStyle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartZeroLineType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuEventOptimization.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Enumerations/VisuEventTarget.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/HMI/VisuFbAlarmBannerDataBlock.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbAnalyzeDateTimeFormatExtractWithoutWeekdays.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbAnalyzeDateTimeFormatStringBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbAnalyzeDateTimeFormatStringMinSecOnly.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Animations/Tap-Awareness/VisuFbAnalyzeStateVarsTapAware.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Animations/VisuFbAnalyzeTextVarsDateTimeOnly.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbBaseVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Capturing/VisuFbCapturedTransformationProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbClientLogger.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/VisuFbClientStartVisuMgr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Client-Tags/VisuFbClientTagDataHelper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Collections/VisuFbCommandVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Allocation/VisuFbDatasourcesResourceEntries_MBM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Allocation/VisuFbDatasourcesResourceEntries_SysMem.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/VisuFbDateTimeNamesLocalizer.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/VisuFbDialogClientInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/VisuFbDialogInfoVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbDWORDVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTextEditor.library_Library/VisuFbElemTextEditor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Execution/VisuFbExecution.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/File-transfer/VisuFbFileTransferManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Frame-Switching/VisuFbFrameRegistrationVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/VisuFbGestureFromEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/VisuFbGroupOverlay.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbInputRectangle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Capturing/VisuFbLegacyCapturingTransformationProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Namespaces-Table/VisuFbLibHierarchy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Main-Clienthandling/VisuFbMainClientMgmt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFbMouseTouchDragUtil.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Animations/Tap-Awareness/VisuFbMoveAbsoluteTapAware.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Animations/Tap-Awareness/VisuFbMoveAbsoluteTapAwareF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Animations/Tap-Awareness/VisuFbMoveRelativeTapAware.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Namespaces-Table/VisuFbNamespaceTable.html#index-0

● VisuFbNamespaceTableHelper
● VisuFbNativeControlItemVector
● VisuFbPaintAfterAllDialog
● VisuFbPaintAfterAllElement
● VisuFbPaintRectF
● VisuFbPointF
● VisuFbPrintDateTimeFormatBase
● VisuFbPrintDateTimeFormatCurrentTime
● VisuFbPrintDateTimeFormatVariable
● VisuFbRectangleListManager
● VisuFbRectF
● VisuFbResourcesEntryVector
● VisuFbScalingInfo
● VisuFbSizeF
● VisuFbTabControlOverlayTabs
● VisuFbTemporaryPolygon
● VisuFbTickMarkDrawer2
● VisuFbTransformationCommon
● VisuFbTransformationScrolling
● VisuFbVisuVector
● VisuFbWriteDateTimeVariableFormatted
● VisuFbXYChartDataProvider
● VisuFbXYChartDataProviderAxis
● VisuFbXYChartDataProviderCurve
● VisuFbXYChartGenericVariable
● VisuFbXYChartGenericVariableArray
● VisuFct_IsBehindOverlayElement
● VisuFctAddChecksumBool
● VisuFctAddChecksumForConverted
● VisuFctAddClientToEventQueue
● VisuFctAssignValue
● VisuFctCalculateCompleteSurroundingSimpleRectOfElemArray
● VisuFctCalculateMaxTooltipLength
● VisuFctCalculateSurroundingSimpleRectOfElemArray
● VisuFctCheckClientSupportsTouch
● VisuFctClearElementEntries
● VisuFctClearEventIdStack
● VisuFctConfigureTextBufferSize
● VisuFctCreateEventMapIfNeeded
● VisuFctCreateIdStack
● VisuFctDatasourcesResourceEntryAllocatorGet
● VisuFctDatasourcesResourceEntryAllocatorGet_MBM
● VisuFctDatasourcesResourceEntryAllocatorGet_SysMem
● VisuFctDrawCircle
● VisuFctDrawDot
● VisuFctDrawDot2
● VisuFctDrawImage
● VisuFctDrawLine
● VisuFctDrawLineEx
● VisuFctDrawLineExUntransformed
● VisuFctDrawLineUntransformed
● VisuFctDrawPolygon
● VisuFctDrawPolyline
● VisuFctDrawPolyline2
● VisuFctDrawText

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4404

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbNamespaceTableHelper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Native-Control/VisuFbNativeControlItemVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFbPaintAfterAllDialog.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbPaintAfterAllElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Geometrics/VisuFbPaintRectF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Geometrics/VisuFbPointF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbPrintDateTimeFormatBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbPrintDateTimeFormatCurrentTime.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbPrintDateTimeFormatVariable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Scaling/Touch-Handling/VisuFbRectangleListManager.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Geometrics/VisuFbRectF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/VisuFbResourcesEntryVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Scaling/VisuFbScalingInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Geometrics/VisuFbSizeF.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/VisuFbTabControlOverlayTabs.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbTemporaryPolygon.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Internal/VisuFbTickMarkDrawer2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Transformation/VisuFbTransformationCommon.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Transformation/VisuFbTransformationScrolling.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Management/VisuFbVisuVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbWriteDateTimeVariableFormatted.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/VisuFbXYChartDataProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/VisuFbXYChartDataProviderAxis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/VisuFbXYChartDataProviderCurve.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/VisuFbXYChartGenericVariable.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/VisuFbXYChartGenericVariableArray.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFct_IsBehindOverlayElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctAddChecksumBool.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctAddChecksumForConverted.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/EventQueuePerClient/VisuFctAddClientToEventQueue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctAssignValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctCalculateCompleteSurroundingSimpleRectOfElemArray.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trace/Helpfunctions/VisuFctCalculateMaxTooltipLength.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctCalculateSurroundingSimpleRectOfElemArray.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctCheckClientSupportsTouch.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctClearElementEntries.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctClearEventIdStack.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctConfigureTextBufferSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/EventQueuePerClient/VisuFctCreateEventMapIfNeeded.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctCreateIdStack.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Allocation/VisuFctDatasourcesResourceEntryAllocatorGet.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Allocation/VisuFctDatasourcesResourceEntryAllocatorGet_MBM.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Allocation/VisuFctDatasourcesResourceEntryAllocatorGet_SysMem.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawCircle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawDot.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawDot2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawImage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawLine.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawLineEx.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawLineExUntransformed.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawLineUntransformed.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawPolygon.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawPolyline.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawPolyline2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawText.html#index-0

● VisuFctEvaluatePanGesture
● VisuFctEventIdStackGetValue
● VisuFctEventIdStackGetValuePtr
● VisuFctEventIdStackGetValuePtrFromEvent2
● VisuFctEventIdStackGetValuePtrFromEventLegacy
● VisuFctEventIdStackHas
● VisuFctEventIdStackPopHelp
● VisuFctEventIdStackPopId
● VisuFctEventIdStackPopTarget
● VisuFctEventIdStackPopVisuVersion
● VisuFctEventIdStackPushId
● VisuFctEventIdStackSetValue
● VisuFctExitVisuClientObject
● VisuFctFillPolygon
● VisuFctFillPolygon2
● VisuFctFillPolygon3
● VisuFctFillRectangle
● VisuFctFreeClientTagData
● VisuFctGetAbsolutePosition
● VisuFctGetClientName
● VisuFctGetEffectiveTextProperties
● VisuFctGetElementClientData
● VisuFctGetElementEntry
● VisuFctGetElementState
● VisuFctGetGradient
● VisuFctGetLineJoinMiterLimit
● VisuFctGetMeasureString2Result
● VisuFctGetMeasureStringApprox
● VisuFctGetMeasureStringResult
● VisuFctGetMultitouchActive
● VisuFctGetMultitouchScrollbarsActive
● VisuFctGetPaintRectFromSimpleRect
● VisuFctGetRectangleFromPaintRect
● VisuFctGetRectangleFromSimpleRect
● VisuFctGetRectHeight
● VisuFctGetRectWidth
● VisuFctGetShadowColor
● VisuFctGetTargetVisuTouchFlags
● VisuFctGetTransparentValue
● VisuFctHandleInputOnElementEvent
● VisuFctHandleInputVisuClientObject
● VisuFctHandleInputWithoutInputHandler
● VisuFctIncreaseSimpleRectIfRotated
● VisuFctInitFlagsVisuClientObject
● VisuFctInitVisuClientObject
● VisuFctIsDegenerateRectangle
● VisuFctIsMultitouchClient
● VisuFctIsRectangleRotated
● VisuFctIsToPaintSelection
● VisuFctIsTransparentBackground
● VisuFctLimitSimpleRectangleSize
● VisuFctMainClientsCheck
● VisuFctMainClientsCheckOld
● VisuFctPaintSelection
● VisuFctPaintVisuClientObject

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4405

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctEvaluatePanGesture.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackGetValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackGetValuePtr.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackGetValuePtrFromEvent2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackGetValuePtrFromEventLegacy.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackHas.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackPopHelp.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackPopId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackPopTarget.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackPopVisuVersion.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackPushId.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackSetValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFctExitVisuClientObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctFillPolygon.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctFillPolygon2.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctFillPolygon3.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctFillRectangle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Client-Tags/VisuFctFreeClientTagData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/ClientObjectInfo/VisuFctGetAbsolutePosition.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Functions/VisuFctGetClientName.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctGetEffectiveTextProperties.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetElementClientData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetElementEntry.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctGetElementState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trace/Helpfunctions/VisuFctGetGradient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctGetLineJoinMiterLimit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetMeasureString2Result.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctGetMeasureStringApprox.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetMeasureStringResult.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetMultitouchActive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetMultitouchScrollbarsActive.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetPaintRectFromSimpleRect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetRectangleFromPaintRect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetRectangleFromSimpleRect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctGetRectHeight.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctGetRectWidth.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Private/Functions/VisuFctGetShadowColor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Scaling/Touch-Handling/VisuFctGetTargetVisuTouchFlags.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trace/Helpfunctions/VisuFctGetTransparentValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/VisuFctHandleInputOnElementEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFctHandleInputVisuClientObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctHandleInputWithoutInputHandler.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIncreaseSimpleRectIfRotated.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFctInitFlagsVisuClientObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFctInitVisuClientObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIsDegenerateRectangle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctIsMultitouchClient.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIsRectangleRotated.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Selection-Management/VisuFctIsToPaintSelection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Colors/VisuFctIsTransparentBackground.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctLimitSimpleRectangleSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Main-Clienthandling/VisuFctMainClientsCheck.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Main-Clienthandling/VisuFctMainClientsCheckOld.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctPaintSelection.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFctPaintVisuClientObject.html#index-0

● VisuFctRectSize
● VisuFctRemoveClientFromEventQueue
● VisuFctSelectElement
● VisuFctSetClientDataVisuClientObject
● VisuFctSetMaxElementCountPaintAfterAll
● VisuFctSetNumericValue
● VisuFctSetRectangleUpdateNecessaryOnAllClients
● VisuFctSetSelectionChanged
● VisuFctSetSimpleRect
● VisuFctSimpleRectangleFToSimpleRectangle
● VisuFctSplitColor
● VisuFctTestLReal
● VisuFctTestReal
● VisuFctTextEditorGetErrorText
● VisuFctTryAtomicAssignValueBySize
● VisuFctTryAtomicAssignValueByType
● VisuFctWriteValueIfValid
● VisuGestureInfo
● VisuInput_CheckUpdateElementStatePossible_DependingOnCurrentInput
● VisuRegistrationHelpDuringDecl
● VisuScrollValueData
● VisuScrollValueProvider
● VisuStructAllDialogInfo
● VisuStructAllModalDialogInfo
● VisuStructAllNonModalDialogInfo
● VisuStructBackgroundAndStaticElementDrawing
● VisuStructButtonClientSpecificData
● VisuStructClientTagData
● VisuStructCompleteSurroundingRectInfo
● VisuStructComplexFrameClientSpecificData
● VisuStructElementClientData
● VisuStructElementClientDataExtended
● VisuStructFindElementEvent
● VisuStructFlickInfo
● VisuStructIECTouchInfo
● VisuStructInputInfo
● VisuStructInputOnElementEvent
● VisuStructLegendDisplayerCheckBoxPos
● VisuStructLegendDisplayerCheckBoxStatus
● VisuStructNamespace
● VisuStructNamespaceProjectIdent
● VisuStructPAADialogClientSpecificData
● VisuStructPanInfo
● VisuStructPoint
● VisuStructPointD
● VisuStructPolygonClientSpecificData
● VisuStructRadius
● VisuStructRectangularElementUtilBaseClientSpecificData
● VisuStructScaleScrollInfo
● VisuStructSimpleRectangleD
● VisuStructSimpleRectWithBorder
● VisuStructSingleIECTouchInfo
● VisuStructSpreadPinchInfo
● VisuStructTopMostDialogInfo
● VisuStructTraceGradientColor

PLC Automation with V3 CPUs
Reference, function blocks

2022/01/213ADR010583, 3, en_US4406

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctRectSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/EventQueuePerClient/VisuFctRemoveClientFromEventQueue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctSelectElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFctSetClientDataVisuClientObject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctSetMaxElementCountPaintAfterAll.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctSetNumericValue.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctSetRectangleUpdateNecessaryOnAllClients.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctSetSelectionChanged.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctSetSimpleRect.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctSimpleRectangleFToSimpleRectangle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Colors/VisuFctSplitColor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Functions/VisuFctTestLReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Functions/VisuFctTestReal.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTextEditor.library_Library/VisuFctTextEditorGetErrorText.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctTryAtomicAssignValueBySize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctTryAtomicAssignValueByType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctWriteValueIfValid.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/VisuGestureInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuInputs.library_Library/Functions/VisuInput_CheckUpdateElementStatePossible_DependingOnCurrentInput.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuRegistrationHelpDuringDecl.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuScrollValueData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuScrollValueProvider.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/Structures/VisuStructAllDialogInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/Structures/VisuStructAllModalDialogInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/Structures/VisuStructAllNonModalDialogInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructBackgroundAndStaticElementDrawing.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/VisuStructButtonClientSpecificData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructClientTagData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructCompleteSurroundingRectInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/VisuStructComplexFrameClientSpecificData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemMeter.library_Library/private/Structures/VisuStructElementClientData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemMeter.library_Library/private/Structures/VisuStructElementClientDataExtended.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructFindElementEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/VisuStructFlickInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/VisuStructIECTouchInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructInputInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/User-Events/VisuStructInputOnElementEvent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/LegendDisplayer/VisuStructLegendDisplayerCheckBoxPos.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/LegendDisplayer/VisuStructLegendDisplayerCheckBoxStatus.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Namespaces-Table/VisuStructNamespace.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Namespaces-Table/VisuStructNamespaceProjectIdent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructPAADialogClientSpecificData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/VisuStructPanInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpVisuHandler.library_Library/Structures/VisuStructPoint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructPointD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/VisuStructPolygonClientSpecificData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructRadius.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsSpecialControls.library_Library/private/Struct/VisuStructRectangularElementUtilBaseClientSpecificData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Scaling/VisuStructScaleScrollInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructSimpleRectangleD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructSimpleRectWithBorder.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructSingleIECTouchInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/VisuStructSpreadPinchInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructTopMostDialogInfo.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/TraceMgr2_Itfs.library_Library/VisuStructTraceGradientColor.html#index-0

● VisuStructUpdateRectangle
● VisuStructWaitingCubeClientSpecificData
● VisuStructWaitingFlowerClientSpecificData
● VisuStructXYChart
● VisuStructXYChartAxis
● VisuStructXYChartCurve
● VisuStructXYChartGradientColor
● VisuStructXYChartLevelLine
● VisuStyleFct_GetImageAccordingMapping
● VisuTaskOpClientBase
● VisuTouchState
● VUM_EditType
● VUM_ReturnValues
● VUM_User
● WARNING_ID
● WCharToUpper
● WCONCAT
● WDELETE
● WEEK
● WEEKDAY
● WeekOfYear
● WFIND
● WINSERT
● WLEFT
● WLEN
● WMID
● WORD_AS_BIT
● WORD_AS_STRING
● WORD_TO_BCD
● WORD_TO_GRAY
● WORD_TO_HANDLE
● WORD_TO_IDENT
● WORD_TO_PVOID
● WorkerRegister
● WorkerUnregister
● WRAP_FB_INIT_STRUCT
● WRAP_INITIALIZE_STRUCT
● WREPLACE
● WRIGHT
● Write
● writeBit
● WriteBootProject
● WriteCfgThumb
● WriteMemory
● WriteRequest
● WRREC
● WStringElement
● WStringElementFactory
● WStringsEqual
● X509CertCheckHost
● X509CertCheckIP
● X509CertClose
● X509CertCmsDecrypt
● X509CertCmsVerify
● X509CertCreateCSR

PLC Automation with V3 CPUs

Reference, function blocks

2022/01/21 3ADR010583, 3, en_US 4407

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructUpdateRectangle.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsSpecialControls.library_Library/private/Struct/VisuStructWaitingCubeClientSpecificData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsSpecialControls.library_Library/private/Struct/VisuStructWaitingFlowerClientSpecificData.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Structures/VisuStructXYChart.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Structures/VisuStructXYChartAxis.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Structures/VisuStructXYChartCurve.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Structures/VisuStructXYChartGradientColor.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Structures/VisuStructXYChartLevelLine.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Styles/VisuStyleFct_GetImageAccordingMapping.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Execution/Server/Visu-Task-Operations/Base-Classes/VisuTaskOpClientBase.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuTouchState.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt2_Itfs.library_Library/VUM_EditType.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt2_Itfs.library_Library/VUM_ReturnValues.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt2_Itfs.library_Library/VUM_User.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.2.0.6_Library/Enums/WARNING_ID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/WCharToUpper.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WCONCAT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WDELETE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/WEEK.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Enums/WEEKDAY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/WeekOfYear.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WFIND.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WINSERT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WLEFT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WLEN.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WMID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/WORD_AS_BIT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/HEXASCII-Functions/WORD_AS_STRING.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/WORD_TO_BCD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Gray-Conversions/WORD_TO_GRAY.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/HANDLE/WORD_TO_HANDLE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/IDENT/WORD_TO_IDENT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/PVOID/WORD_TO_PVOID.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/WorkerRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/WorkerUnregister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/WRAP_FB_INIT_STRUCT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpSIL2.library_Library/WRAP_INITIALIZE_STRUCT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WREPLACE.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WRIGHT.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/Write.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvGPIOSysfs.library_Library/Functions/writeBit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.6.7_Library/Function-Blocks/Boot-project/WriteBootProject.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Visu/VisuRedundancy.library_Library/Functions/WriteCfgThumb.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Commands/WriteMemory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Requests/WriteRequest/WriteRequest.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/WRREC.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/WStringElement.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/WStringElementFactory.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/WStringsEqual.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertCheckHost.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertCheckIP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CMS/X509CertCmsDecrypt.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CMS/X509CertCmsVerify.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertCreateCSR.html#index-0

● X509CertCreateSelfSigned
● X509CertGetBinary
● X509CertGetContent
● X509CertGetPrivateKey
● X509CertGetPublicKey
● X509CertGetThumbprint
● X509CertHasExtendedKeyUsage
● X509CertInfoExit
● X509CertInfoInit
● X509CertIsDateValid
● X509CertIsSelfSigned
● X509CertKeyClose
● X509CertStoreAddCert
● X509CertStoreClose
● X509CertStoreGetFirstCert
● X509CertStoreGetNextCert
● X509CertStoreGetRegisteredCert
● X509CertStoreOpen
● X509CertStoreRegister
● X509CertStoreRemoveCert
● X509CertStoreSearchGetFirst
● X509CertStoreSearchGetNext
● X509CertStoreUnregister
● X509CertVerify
● X509ParseCertificate
● XChgClass
● XChgCreateH
● XChgCreateP
● XChgDelete
● XChgExtendH
● XChgGetSize
● XChgIsEmpty
● XChgMsgLeft
● XWORD
● XwordVector
● YEAR

1.11 Contact ABB
ABB AG
Eppelheimer Str. 82
69123 Heidelberg, Germany

PLC support: +49 (0)6221 701 1444, plc.support@de.abb.com

abb.com/plc

abb.com/automationbuilder

abb.com/contacts

PLC Automation with V3 CPUs
Contact ABB

2022/01/213ADR010583, 3, en_US4408

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertCreateSelfSigned.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertGetBinary.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertGetContent.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertGetPrivateKey.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertGetPublicKey.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertGetThumbprint.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertHasExtendedKeyUsage.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/UtilityFunctions/X509CertInfoExit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/UtilityFunctions/X509CertInfoInit.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertIsDateValid.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertIsSelfSigned.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertKeyClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreAddCert.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreClose.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreGetFirstCert.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreGetNextCert.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreGetRegisteredCert.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreOpen.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreRegister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreRemoveCert.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreSearchGetFirst.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreSearchGetNext.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreUnregister.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertVerify.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509ParseCertificate.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Internal/XChgClass.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgCreateH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgCreateP.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgDelete.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgExtendH.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgGetSize.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgIsEmpty.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgMsgLeft.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20System/SysLibs/SysTypes2_Itfs.library_Library/XWORD.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/XwordVector.html#index-0
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/YEAR.html#index-0
http://www.abb.com/plc
http://www.abb.com/automationbuilder
http://www.abb.com/contacts

—
2 Index
1, 2, 3 ...
__AdrInst . 747
__BitOffset . 747
__Cast . 747
__CATCH . 619
__COMPARE_AND_SWAP 625
__Copy . 747
__CRC . 747
__CURRENTTASK . 624
__DELETE . 611
__ENDTRY' . 619
__FCall . 747
__FINALLY . 619
__Init . 747
__ISVALIDREF . 614, 658
__Lazy . 747
__Localoffset . 747
__MaxOffset . 747
__NEW . 614
__POOL . 630
__POSITION . 627
__POUNAME . 627
__PropertyInfo . 747
__QUERYINTERFACE . 617
__QUERYPOINTER . 618
__RefAdr . 747
__RELOC . 747
__System.ExceptionCode, data type 619
__SystemScope . 747
__TEST_AND_SET . 628
__TRY . 619
__TypeOf . 747
__UXINT . 656

convert . 572
__UXINT_TO___XINT . 572
__UXINT_TO___XWORD 572
__UXINT_TO_BIT . 572
__UXINT_TO_BOOL . 572
__UXINT_TO_BYTE . 572
__UXINT_TO_DATE . 572
__UXINT_TO_DINT . 572
__UXINT_TO_DT . 572

__UXINT_TO_DWORD . 572
__UXINT_TO_INT . 572
__UXINT_TO_LDATE . 572
__UXINT_TO_LDT . 572
__UXINT_TO_LINT . 572
__UXINT_TO_LREAL . 572
__UXINT_TO_LTIME . 572
__UXINT_TO_LTOD . 572
__UXINT_TO_LWORD . 572
__UXINT_TO_REAL . 572
__UXINT_TO_SINT . 572
__UXINT_TO_STRING . 572
__UXINT_TO_TIME . 572
__UXINT_TO_TOD . 572
__UXINT_TO_UDINT . 572
__UXINT_TO_UINT . 572
__UXINT_TO_ULINT . 572
__UXINT_TO_USINT . 572
__UXINT_TO_WORD . 572
__UXINT_TO_WSTRING 572
__VarInfo . 747
__VCADD . 668

vector operator . 668
__VCDIV . 669

vector operator . 669
__VCDOT . 670

vector operator . 670
__VCLOAD_LREAL . 672

vector operator . 672
__VCLOAD_REAL . 672

vector operator . 672
__VCMAX . 671

vector operator . 671
__VCMIN . 671

vector operator . 671
__VCMUL . 669

vector operator . 669
__VCSET_LREAL . 672

vector operator . 672
__VCSET_REAL . 671

vector operator . 671

Index

2022/01/21 3ADR010583, 3, en_US 4409

__VCSQRT . 670
vector operator . 670

__VCSTORE . 673
vector operator . 673

__VCSUB . 668
vector operator . 668

__VECTOR . 666
__Wait . 747
__XADD . 626
__XINT . 656

convert . 572
__XINT_TO___UXINT . 572
__XINT_TO___XWORD 572
__XINT_TO_BIT . 572
__XINT_TO_BOOL . 572
__XINT_TO_BYTE . 572
__XINT_TO_DATE . 572
__XINT_TO_DINT . 572
__XINT_TO_DT . 572
__XINT_TO_DWORD . 572
__XINT_TO_INT . 572
__XINT_TO_LDATE . 572
__XINT_TO_LDT . 572
__XINT_TO_LINT . 572
__XINT_TO_LREAL . 572
__XINT_TO_LTIME . 572
__XINT_TO_LWORD . 572
__XINT_TO_REAL . 572
__XINT_TO_SINT . 572
__XINT_TO_STRING . 572
__XINT_TO_TIME . 572
__XINT_TO_TOD . 572
__XINT_TO_UDINT . 572
__XINT_TO_UINT . 572
__XINT_TO_ULINT . 572
__XINT_TO_USINT . 572
__XINT_TO_WORD . 572
__XINT_TO_WSTRING . 572
__XWORD . 656

convert . 572
__XWORD_TO__UXINT 572
__XWORD_TO__XINT . 572
__XWORD_TO_BIT . 572
__XWORD_TO_BOOL . 572
__XWORD_TO_BYTE . 572

__XWORD_TO_DATE . 572
__XWORD_TO_DINT . 572
__XWORD_TO_DT . 572
__XWORD_TO_DWORD 572
__XWORD_TO_INT . 572
__XWORD_TO_LDATE . 572
__XWORD_TO_LDT . 572
__XWORD_TO_LINT . 572
__XWORD_TO_LREAL . 572
__XWORD_TO_LTIME . 572
__XWORD_TO_LWORD 572
__XWORD_TO_REAL . 572
__XWORD_TO_SINT . 572
__XWORD_TO_STRING 572
__XWORD_TO_TIME . 572
__XWORD_TO_TOD . 572
__XWORD_TO_UDINT . 572
__XWORD_TO_UINT . 572
__XWORD_TO_ULINT . 572
__XWORD_TO_USINT . 572
__XWORD_TO_WORD . 572
__XWORD_TO_WSTRING 572
_BlockGetData . 4293
_BlockGetPool . 4293
_CloneMessage . 4293
_cnt.library . 449
_CreateArrayReceiver . 4293
_CreateIdAreaReceiver 4293
_CreateMaskReceiver . 4293
_CreateMessage . 4293
_CreateSingleIdReceiver 4293
_DeleteReceiver . 4293
_DisableSyncService . 4293
_DriverClose . 4293
_DriverGetSize . 4293
_DriverOpenH . 4293
_DriverOpenP . 4293
_EnableSyncService . 4293
_FlatCreateH . 4293
_FlatCreateP . 4293
_FlatDelete . 4293
_FlatDisable . 4293
_FlatEnable . 4293
_FlatGetSize . 4293
_FlatRead . 4293

Index

2022/01/213ADR010583, 3, en_US4410

_FlatTest . 4293
_FlatUpdate . 4293
_FreeMessage . 4293
_GetBaudrate . 4293
_GetBusAlarm . 4293
_GetBusload . 4293
_GetBusState . 4293
_GetCiAState . 4293
_GetDiagnosis . 4293
_GetLostCounter . 4293
_GetMessageDataPointer 4293
_GetMessageId . 4293
_GetMessageLength . 4293
_GetMsgCount . 4293
_GetNetId . 4293
_GetReceiveCounter . 4293
_GetReceiveErrorCounter 4293
_GetReceivePoolSize . 4293
_GetReceiveQueueLength 4293
_GetTimeStamp . 4293
_GetTransmitCounter . 4293
_GetTransmitErrorCounter 4293
_GetTransmitPoolSize . 4293
_GetTransmitQueueLength 4293
_Is29BitIdMessage . 4293
_IsRTRMessage . 4293
_IsSendingActive . 4293
_IsTransmitMessage . 4293
_Itfs.library . 449
_JobAbort . 4293
_JobClose . 4293
_JobExecute . 4293
_JobGetId . 4293
_JobGetParams . 4293
_JobGetState . 4294
_JobOpen . 4294
_JobOpenEx . 4294
_JobReset . 4294
_JobSetState . 4294
_LostMessages . 4294
_MsgAddRef . 4294
_MsgClone . 4294
_MsgGetData . 4294
_MsgReceive . 4294
_MsgRelease . 4294

_MsgReleaseEx . 4294
_MsgSend . 4294
_PoolCreateH . 4294
_PoolCreateP . 4294
_PoolDelete . 4294
_PoolExtendH . 4294
_PoolGetBlock . 4294
_PoolGetBlockSize . 4294
_PoolGetCurCapacity . 4294
_PoolGetNumBlocksLeft 4294
_PoolGetSize . 4294
_PoolPutBlock . 4294
_Read . 4294
_ReadArrayReceiver . 4294
_RegisterIdArea . 4294
_ResetBusAlarm . 4294
_RLstAddPrio . 4294
_RLstCheckPrio . 4294
_RLstCreateH . 4294
_RLstCreateP . 4294
_RLstDelete . 4294
_RLstGetHighestPrio . 4294
_RLstGetSize . 4294
_RLstRemovePrio . 4294
_SDOServerClose . 4294
_SDOServerDoCycle . 4294
_SDOServerOpen . 4294
_SetCiAState . 4294
_StorageGetIndexId . 4294
_StorageGetTableId . 4294
_UnregisterIdArea . 4294
_WorkerRegister . 4294
_WorkerUnregister . 4294
_Write . 4294
_XChgCreateH . 4294
_XChgCreateP . 4294
_XChgDelete . 4294
_XChgExtendH . 4294
_XChgGetSize . 4294
_XChgIsEmpty . 4294
_XChgMsgLeft . 4294
//---timestampingserverurl, command line 448
//--compare, command line 443
//--culture, command line 442
//--enforcesignedcompiledlibraries, command line 447

Index

2022/01/21 3ADR010583, 3, en_US 4411

//--profile, command line . 442
//--project, command line 443
//--projectarchive, command line 443
//--runscript, command line 444
//--signaturethumbprint, command line 447
//--skipunlicensedplugins, command line 447
% . 1708

format definition %c, %s for text variables . . . 1709
format definition in output text, visualization . 1708

%M . 3461
3rd party device diagnosis 4012

A
AbbETrig . 4294
AbbLCon . 4294
AbbLConA . 4294
AbbLConC . 4295
AbbLConCA . 4295
ABORT_CODE . 4295
ABS . 607
AbstrTreeNode . 4295
AC500

communication modules 2528
TB . 2430
Terminal bases . 2430
Terminal Units . 2549

AC500 hardware
short description . 2424

AC500 High Availability system 2234
AC500_Diag . 4027, 4037
AC500_DiagTypes 4020, 4021
AC500-eCo V3 CPUs . 3360
AC500DeviceDiag . 4295
AC522 . 2833

Analog I/O module . 2833
Analog input/output module 2833

ACAlarmExtender . 4295
access

symbol set . 357
access control

properties . 1161
access protection

development system . 455
general information . 453
runtime system / PLC 455

user management . 453
WebVisu . 455

access right
device editor . 863
object . 200
visualization element 1745

ACCESS_MODE . 4295
accessor . 897

access method . 897
access method, interface 894

Accessories . 2420, 3288
AccessRights . 4295
ACCESSTYPES . 4295
Ack . 4027, 4037
AcknowledgeRequestBuilder 4295
ACOS . 611
ACS drives . 2156
action . 488, 901

SFC, do not display embedded objects 1088
SFC, duplication mode 1082
SFC, remove duplication 1087
SFC, set duplication 1087

ACTION . 747
action association

insert, command . 1084
ActionController . 4295
activate keyboard usage

command, visualization 1722
active_low . 4295
ActiveX . 1637, 2061

visualization element 1637, 2061
AdapterDiagnosis . 4295
AdapterState . 4295
ADAPTERSTATE . 4295
add

EN/ENO . 1090
file as text . 969
input pin . 1099
language in a text list 1132
output pin . 1099

Add
IEC 61850 Server . 3877

ADD . 546
add all instance paths . 1124
add file as text . 969

Index

2022/01/213ADR010583, 3, en_US4412

add folder . 1002
add POU

dialog . 881
add user

device user management 860
AddBrowseInfo . 4295
additional device-specific diagnosis 4012
AddLogger . 4295
AddMultiplicatedVector . 4295
AddPoints . 4295
ADDR . 4295
ADDR_TO_ID . 4295
ADDR_TYPE . 4295
address . 643

absolute . 355
assign variable . 281
broadcast . 357
I/O . 219
network . 355
node . 355
relative . 355
specification . 643

AddressArea . 4295
addressing . 353

relative . 353
AddressLeafTreeNode . 4295
AdjustData_LocalToOpc 4295
AdjustData_OpcToLocal 4295
ADR . 563, 656
AffectedSourcesHelp . 4295
AI523 . 2858

Analog input module 2858
AI531 . 2880

Analog input module 2880
AI561 . 2776
AI562 . 2787
AI563 . 2798
AI581-S . 2429, 3454
AINFO_TYPE . 4295
alarm . 4011

visualization . 1289
alarm acknowledgement 1744
alarm banner . 1554, 1978

visualization element 1554, 1978

Alarm Class
Object . 821

Alarm Configuration
Object . 821

Alarm Group
Object . 821

Alarm Storage
Object . 821

alarm table . 1545, 1969
visualization element 1545, 1969

ALARM_ID . 4295
AlarmFctWriteLatchVariable 4295
ALARMGROUP_ID . 4295
AlarmIndices . 4295
AlarmInfo . 4295
AlarmingCall . 4295
AlarmLatchAdapter . 4295
AlarmSelectionInfo . 4295
AlarmSelectionInfoDefault 4295
AlarmState . 4295
AlarmStateTransition . 4295
AlarmStorageConvertFromTimestamp 4295
AlarmStorageConvertToTimestamp 4295
AlarmStorageConvertValueToLREAL 4295
AlarmStorageConvertValueToREAL 4295
AlarmStorageConvertValueToString 4295
AlarmStorageGetDefaultText 4295
AlarmStorageGetMessageCount 4295
AlarmStorageGetTextId 4295
AlarmStorageGetTextListName 4295
AlarmStorageLatchVariable 4295
AlarmStorageReader . 4295
AlarmStorageRow . 4295
AlarmStorageStaticData 4295
AlarmType . 4295
alias . 658, 680

data type . 680
Identifier . 658
object DUT . 835

alignment
command, visualization editor 1723

AllocAndCopyPString . 4295
AllScalarsUnion . 4295
alpha channel . 1295
alternative . 1083

Index

2022/01/21 3ADR010583, 3, en_US 4413

Analog I/O modules . 2776
AnalogDeviceDescType 4296
analysis . 4149

attribute . 4149
pragma . 4149

analysis, attribute . 4150
analysis, pragma . 4149
analysis:report-multiple-instance-calls, attribute
pragma . 4152
analyzation

library . 259
analyzation library . 485

SFC . 485
AnalyzeExpression . 4296
AnalyzeExpressionCombined 4296
AnalyzeExpressionTable 4296
AND . 552
AND_THEN . 553
AND, pragma . 739
ANDN . 500
animation

visualization element 1293
ANY . 651

data type . 651
ANY_BIT . 651
ANY_DATE . 651
ANY_INT . 651
ANY_NUM . 651
ANY_REAL . 651
ANY_STRING . 651
AO523 . 2912
AO561 . 2810
APP_MEMORY_SEGMENT 4296
APP_NAME . 4296
AppCallGetProperty . 4296
AppCallGetProperty2 . 4296
AppCallGetProperty2Release 4296
AppCallGetProperty3 . 4296
AppCallSetProperty . 4296
AppCallSetProperty2 . 4296
AppendToString . 4296
AppFindApplicationByName 4296
AppGenerateException 4296
AppGetApplicationByAreaAddress 4296
AppGetApplicationFlags 4296

AppGetApplicationInfo . 4296
AppGetAreaAddress . 4296
AppGetAreaOffsetByAddress 4296
AppGetAreaPointer . 4296
AppGetAreaSize . 4296
AppGetCurrent . 4296
AppGetFirstApp . 4296
AppGetNextApp . 4296
AppGetProjectInformation 4296
AppGetSegment . 4296
AppGetSegmentAddress 4296
AppGetSegmentSize . 4296
application . 819

activate on toolbar . 1027
backup application files 846
build . 1022, 1031
build, options . 1162
clean . 1021
cold start . 1038
compare . 1030
compile . 1031
contents . 1030
delete . 1040
download . 440, 1032
download with file . 847
encrypt . 198, 294
encrypted transfer . 4128
encryption . 1158
encryption, instructions 208
information . 1030
memory mapping . 820
online change . 1033
rebuild . 1022
remove from PLC . 1031
reset . 404
reset (cold) . 1038
reset (origin) . 1039
reset (warm) . 1038
reset origin . 1039
set active . 1006
warm start . 1038

APPLICATION . 4296
application code

code generation . 389
messages for code generation 390

Index

2022/01/213ADR010583, 3, en_US4414

application composer
modules view . 986

APPLICATION_INFO . 4296
applications, device editor 845
ApplicationSoftwareVersion 4296
Apply_Attributes . 4296
AppNumOfActiveSessions 4296
AppRegisterPropAccessFunctions 4296
AppReset . 4296
AppRestoreRetainsFromFile 4296
AppStartApplication . 4296
AppStopApplication . 4296
AppStoreRetainsInFile . 4296
AR_Info . 4296
arccosine . 611
archive

save . 960
send . 960

arcsine . 610
arctangent . 611
AREA_TYPE . 4296
AreaRegister . 4296
ARInfo . 4296
ARP_Packet . 4296
array . 660

access . 641
declaration . 660
declare . 228
initialization . 660
monitor . 412
monitoring . 461
of arrays . 664
of function blocks . 660
of variable length . 665
structure . 660
visualizing . 1298

ARRAY . 660
OF . 660

ARRAY_RECV_ENTRY 4296
ArrayDimension . 4296
AsciiUpper . 4296
ASIN . 610
AskCredentialsHelper . 4296
ASM_IWORKER . 4296
ASM_STATE . 4296

assemblies
EtherNet/IP adapter 1228

Assert . 4296
AssignerBase . 4296
assignment . 468

FBD/LD/IL . 505
output ST . 465
ST operator . 465

association
insert for SFC action, command 1084, 1085

AsyncAdd . 4296
AsyncBase . 4296
AsyncBaseClass . 4297
AsyncGetJobReturnValue 4297
ASYNCJOB_EVENTPARAM 4297
ASYNCJOB_HOOKPARAM 4297
ASYNCJOB_PARAM . 4297
ASYNCJOB_TASKPARAM 4297
AsyncKill . 4297
AsyncProperty . 4297
AsyncRemove . 4297
AsyncRemoveAll . 4297
AsyncWrapper . 4297
AT . 281

declaration . 281
ATAN . 611
atan2 . 4297
AtomicReadLInt . 4297
AtomicReadLReal . 4297
AtomicReadLTime . 4297
AtomicReadLWord . 4297
AtomicReadULInt . 4297
AtomicWriteLInt . 4297
AtomicWriteLReal . 4297
AtomicWriteLTime . 4297
AtomicWriteLWord . 4297
AtomicWriteULInt . 4297
ATTRIB . 4297
attribute

for pragma . 685
authentication

SVN . 4267
automatic formatting . 984

ST code . 984
AutomaticTimeSync . 4297

Index

2022/01/21 3ADR010583, 3, en_US 4415

Automation Builder
device state diagnosis 4017
diagnosis description 4017, 4020
Profile . 3637
Update . 3637

AX521 . 2927
AX522 . 2950
AX561 . 2819
axis control

cam . 341

B
B . 643

size prefix . 643
background

designing the visualization 1266
placing, visualization 1728

BackgroundTask . 4297
BackgroundTaskFactoryArgs 4297
BackgroundTaskFactoryBase 4297
backup . 438, 846

create backup file . 846
backup and restore . 438, 846
backup file . 846

create, save . 846
BackupRestore . 4297
BACnet . 2209, 3928
BACnet Building Controller 2211, 3931
BACnet configuration 2214, 3933
BACnet libraries . 2223, 3943
BACnet network . 2211, 3931
BACnet server root object 2214, 3934
BACNET_READ_FILE_RESULT_RECORD . . . 4297
BACNET_READ_FILE_RESULT_STREAM 4297
BACnet-BC System 2209, 3928
BACnetAccessCredentialDisableReasonString . 4297
BACnetAccessCredentialDisableString 4297
BACnetAccessDoorPVString 4297
BACnetAccessEventString 4297
BACnetAccessPassbackModeString 4297
BACnetAccessUserTypeString 4297
BACnetAccessZoneOccupancyStateString 4297
BACnetAccumulator . 4297
BACnetAccumulatorStatusString 4297
BACnetAcknowledgeAlarm 4297

BACnetAcknowledgeInternalAlarm 4297
BACnetActionString . 4297
BACnetAddListElement 4297
BACnetAlarmSummResponseCbCompletion . . . 4297
BACnetAnalogInput . 4297
BACnetAnalogOutput . 4297
BACnetAnalogValue . 4297
BACnetAsyncTransactionToken 4297
BACnetAttachUserDataToObjectHandle 4297
BACnetAttachUserDataToObjectPropertyOverOb-
jectHandle . 4297
BACnetAuthenticationStatusString 4297
BACnetAuthorizationModeString 4297
BACnetAveraging . 4297
BACnetBackupBACnetDevice 4297
BACnetBackupStateString 4297
BACnetBinaryInput . 4298
BACnetBinaryOutput . 4298
BACnetBinaryPVString . 4298
BACnetBinaryValue . 4298
BACnetBitStringGetBit . 4298
BACnetBitStringSetBit . 4298
BACnetCalendar . 4298
BACnetCancelPendingConfirmedRequest 4298
BACnetChangeListErrorCbCompletion 4298
BACnetClientAcknowledgeAlarm 4298
BACnetClientAddListElement 4298
BACnetClientBackupBACnetDevice 4298
BACnetClientBase . 4298
BACnetClientConfPrivateTransfer 4298
BACnetClientConfTextMessage 4298
BACnetClientCreateObject 4298
BACnetClientDeleteObject 4298
BACnetClientDeviceCommControl 4298
BACnetClientGetAlarmSummary 4298
BACNetClientGetEnrollmentSummary 4298
BACnetClientGetEventInfo 4298
BACnetClientLifeSafetyOperation 4298
BACnetClientReadAllPropertyDataContents . . . 4298
BACnetClientReadProperty 4298
BACnetClientReadPropertyMultiple 4298
BACnetClientReadRange 4298
BACnetClientReadStreamFile 4298
BACnetClientReinitializeDevice 4298
BACnetClientRemoveListElement 4298

Index

2022/01/213ADR010583, 3, en_US4416

BACnetClientRestoreBACnetDevice 4298
BACnetClientSubscribeCOV 4298
BACnetClientSubscribeCOVProperty 4298
BACnetClientTimeSynchronization 4298
BACnetClientUTCTimeSynchronization 4298
BACnetClientWriteProperty 4298
BACnetClientWritePropertyMultiple 4298
BACnetClientWriteStreamFile 4298
BACnetClose . 4298
BACnetCloseClientCustomer 4298
BACnetCommand . 4298
BACnetConfCOVNotification 4298
BACnetConfEventNotification 4298
BACnetConfPrivateTransfer 4298
BACnetConfTextMessage 4298
BACnetConstructObject 4298
BACnetControlStackInternalObjectActions 4298
BACnetCopyPropertyContents 4298
BACnetCreateObject . 4298
BACnetCreateObjectErrorCbCompletion 4298
BACnetCreateObjectResponseCbCompletion . . 4298
BACnetCreateObjectResult 4298
BACnetDataTypeString 4298
BACnetDateRange . 4298
BACnetDateTime . 4298
BACnetDateTimeCmp . 4298
BACnetDateTimeToString 4299
BACnetDayOfWeekBitsString 4299
BACnetDayOfWeekString 4299
BACnetDeleteDeviceAddressBindings 4299
BACnetDeleteObject . 4299
BACnetDeleteObjectIdNameBindings 4299
BACnetDestroyObject . 4299
BACnetDevice . 4299
BACnetDeviceAddressToInstNumber 4299
BACnetDeviceCommControl 4299
BACnetDevObjPropReference 4299
BACnetDevStatusString 4299
BACnetDoesObjectExist 4299
BACnetDoesObjectNameExist 4299
BACnetDoorAlarmStateString 4299
BACnetDoorSecuredStatusString 4299
BACnetDoorStatusString 4299
BACnetDoorValueString 4299
BACnetDumpStackInformation 4299

BACnetEnableStackLogging 4299
BACnetEnrollmentSummResponseCbCompletion
. 4299

BACnetEnumString . 4299
BACnetEventEnrollment 4299
BACnetEventInfoResponseCbCompletion 4299
BACnetEventLog . 4299
BACnetEventStateString 4299
BACnetEventTransitionString 4299
BACnetEventTypeString 4299
BACnetFile . 4299
BACnetFileAccessString 4299
BACnetFindUpdateDeviceAddressBindings 4299
BACnetFindUpdateObjectIdNameBindings 4299
BACnetFreeStackAllocatedMemory 4299
BACnetGetAlarmSummary 4299
BACnetGetBACstackTaskPriority 4299
BACnetGetCheckInvalidDateResponses 4299
BACnetGetCheckInvalidDateWrites 4299
BACnetGetCheckInvalidEnumResponses 4299
BACnetGetCheckInvalidEnumWrites 4299
BACnetGetCheckInvalidUnsignedResponses . . 4299
BACnetGetCheckInvalidUnsignedWrites 4299
BACnetGetClientDeviceCommunication 4299
BACnetGetDatabaseObjectDescription 4299
BACnetGetDatabaseObjectPropertyDescription 4299
BACnetGetDccValue . 4299
BACnetGetDeviceAddressBindingList 4299
BACnetGetDeviceAddressBindingsCacheOptions
. 4299

BACnetGetEnrollmentSummary 4299
BACnetGetEventInfo . 4299
BACnetGetObjectHandle 4299
BACnetGetObjectIdentifierFromHandle 4299
BACnetGetObjectIdNameBindingList 4299
BACnetGetObjectIdNameBindingsCacheOptions
. 4299

BACnetGetPropertyAccessRight 4299
BACnetGetPropertyCallbackAttachment 4299
BACnetGetPropertyCallbackAttachmentByHandle
. 4300

BACnetGetStackApiVersion 4300
BACnetGetStackApiVersionParts 4300
BACnetGetUserDataFromObjectHandle 4300
BACnetGetUserDataFromObjectPropertyOverOb-
jectHandle . 4300

Index

2022/01/21 3ADR010583, 3, en_US 4417

BACnetGlobalGroup . 4300
BACnetGroup . 4300
BACnetIam . 4300
BACnetIAmEx . 4300
BACnetIHave . 4300
BACnetIHaveEx . 4300
BACnetInitMidnightTimer 4300
BACnetInstnumberToDeviceAddress 4300
BACnetIntegerValue . 4300
BACnetIPdatalink . 4300
BACnetIPdatalinkExt . 4300
BACnetIsPropertyWriteable 4300
BACnetLargeAnalogValue 4300
BACnetLifeSafetyModeString 4300
BACnetLifeSafetyOperation 4300
BACnetLifeSafetyOpString 4300
BACnetLifeSafetyPoint . 4300
BACnetLifeSafetyStateString 4300
BACnetLifeSafetyZone . 4300
BACnetLimitEnableString 4300
BACnetLockStatusString 4300
BACnetLoggingTypeString 4300
BACnetLoop . 4300
BACnetMaintenanceString 4300
BACnetMonthString . 4300
BACnetMSTPdatalink . 4300
BACnetMultistateInput . 4300
BACnetMultistateOutput 4300
BACnetMultistateValue . 4300
BACnetNodeTypeString 4300
BACnetNotificationClass 4300
BACnetNotifyTypeString 4300
BACnetObjectBase . 4300
BACnetObjectIdToText . 4300
BACnetObjTypeString . 4300
BACnetOpenClientCustomer 4300
BACnetPDUtypeToText 4300
BACnetPersistenceInfo 4300
BACnetPolarityString . 4300
BACnetPositiveIntegerValue 4300
BACnetPrivateTransferErrorCbCompletion 4300
BACnetPrivateTransferResponseCbCompletion 4300
BACnetProgram . 4300
BACnetProgramErrorString 4300
BACnetProgramRequestString 4300

BACnetProgramStateString 4300
BACnetPropertyAttributeExistent 4300
BACnetPropertyAttributePersistent 4300
BACnetPropertyAttributes 4300
BACnetPropertyAttributeWritable 4300
BACnetPropertyIdToText 4301
BACnetPropIDString . 4301
BACnetPulseConverter 4301
BACnetReadAllPropertyDataContents 4301
BACnetReadFile . 4301
BACnetReadFileResponseCbCompletion 4301
BACnetReadProperty . 4301
BACnetReadPropertyMultiple 4301
BACnetReadPropMultipleResponseCbCompletion
. 4301

BACnetReadPropResponseCbCompletion 4301
BACnetReadRange . 4301
BACnetReadRangeResponseCbCompletion . . . 4301
BACnetRegisterAddressBindingsChangeCallback
. 4301

BACnetRegisterClientCommunicationStateCall-
back . 4301
BACnetRegisterClientDataPoint 4301
BACnetRegisterClientEventNotification 4301
BACnetRegisterClientUnsubscribeCompletion-
Callback . 4301
BACnetRegisterInternalActionErrorCallback . . . 4301
BACnetRegisterObjectIdNameBindingsChange-
Callback . 4301
BACnetRegisterTimeProviderFunction 4301
BACnetReinitializeDevice 4301
BACnetReliabilityString 4301
BACnetRemoveListElement 4301
BACnetRestartAllClients 4301
BACnetRestoreBACnetDevice 4301
BACnetRetrievePropertyInstance 4301
BACnetRetrievePropertyInstanceByHandle 4301
BACnetSchedule . 4301
BACnetSecurityLevelString 4301
BACnetSegmentString . 4301
BACnetSendNetworkManagementMessage . . . 4301
BACnetServer . 4301
BACnetServerConfCOVNotification 4301
BACnetServerConfEventNotification 4301
BACnetServerInit . 4301
BACnetServerPluginBase 4301

Index

2022/01/213ADR010583, 3, en_US4418

BACnetServerPluginCallbackBase 4301
BACnetServerPluginHookBase 4301
BACnetServiceChoiceToText 4301
BACnetServiceString . 4301
BACnetSetBACstackTaskPriority 4301
BACnetSetCallback . 4301
BACnetSetCheckInvalidDateResponses 4301
BACnetSetCheckInvalidDateWrites 4301
BACnetSetCheckInvalidEnumResponses 4301
BACnetSetCheckInvalidEnumWrites 4301
BACnetSetCheckInvalidUnsignedResponses . . 4301
BACnetSetCheckInvalidUnsignedWrites 4301
BACnetSetClientDeviceCommunication 4301
BACnetSetClientDeviceFixAddress 4301
BACnetSetClientGlobalCommTimingParameters
. 4301

BACnetSetClientGlobalMaxDeviceActions 4301
BACnetSetComponentLoggingLevel 4301
BACnetSetDccValue . 4301
BACnetSetDeviceAddressBindingsCacheOptions
. 4301

BACnetSetHook . 4302
BACnetSetObjectIdNameBindingsCacheOptions
. 4302

BACnetSetpointReference 4302
BACnetSetPropertyAccessRight 4302
BACnetSetPropertyCallbackAttachment 4302
BACnetSetPropertyCallbackAttachmentByHandle
. 4302

BACnetShedStateString 4302
BACnetSilencedStateString 4302
BACnetSrvcAbortCbCompletion 4302
BACnetSrvcErrorCbCompletion 4302
BACnetSrvcIgnoreCbCompletion 4302
BACnetSrvcRejectCbCompletion 4302
BACnetSrvcResponseCbCompletion 4302
BACnetStackControl . 4302
BACnetStatusFlagString 4302
BACnetStorePropertyInstance 4302
BACnetStorePropertyInstanceByHandle 4302
BACnetStructuredView . 4302
BACnetSubscribeCOV . 4302
BACnetSubscribeCOVProperty 4302
BACnetTimeProviderTimeChangedTrigger 4302
BACnetTimeStamp . 4302
BACnetTimeStampUnion 4302

BACnetTimeSynchronization 4302
BACnetTrendLog . 4302
BACnetTrendLogMultiple 4302
BACnetUnconfCOVNotification 4302
BACnetUnconfEventNotification 4302
BACnetUnconfPrivateTransfer 4302
BACnetUnconfTextMessage 4302
BACnetUnitsString . 4302
BACnetUnregisterClientDataPoint 4302
BACnetUnregisterClientEventNotification 4302
BACnetUpdateAccumulatorDataSourceValue . . 4302
BACnetUTCTimeSynchronization 4302
BACnetVtClassesSupportedString 4302
BACnetWhoHas . 4302
BACnetWhoIs . 4302
BACnetWriteFile . 4302
BACnetWriteFileResponseCbCompletion 4302
BACnetWriteGroup . 4302
BACnetWriteProperty . 4302
BACnetWritePropertyInstance 4302
BACnetWritePropertyInstanceByHandle 4302
BACnetWritePropertyMultiple 4302
BACnetWritePropMultipleErrorCbCompletion . . . 4302
bar display . 1560, 1984

visualization element 1560, 1984
BASE64 . 4302
BaseMap . 4302
BaseVector . 4302
Basic CPU . 2441
Battery . 3478
BBMD_Info . 4302
BCD_TO_BYTE . 4302
BCD_TO_DWORD . 4302
BCD_TO_INT . 4302
BCD_TO_WORD . 4302
BehaviourModel . 4302
BehaviourModelBase . 4303
Bézier curve . 1392, 1816

visualization element 1392, 1816
BIBBs and services 2213, 3933
binary

display mode when monitoring 1058
number . 633

binary number
format definition %b 1708

Index

2022/01/21 3ADR010583, 3, en_US 4419

BIT . 656
convert . 572
structure . 675

bit access . 641
in integer variable . 641
in structure variable . 641

BIT_AS_BYTE . 4303
BIT_AS_DWORD . 4303
BIT_AS_WORD . 4303
BIT_TO___UXINT . 572
BIT_TO___XINT . 572
BIT_TO___XWORD . 572
BIT_TO_BOOL . 572
BIT_TO_BYTE . 572
BIT_TO_DATE . 572
BIT_TO_DINT . 572
BIT_TO_DT . 572
BIT_TO_DWORD . 572
BIT_TO_INT . 572
BIT_TO_LDATE . 572
BIT_TO_LDT . 572
BIT_TO_LINT . 572
BIT_TO_LREAL . 572
BIT_TO_LTIME . 572
BIT_TO_LTOD . 572
BIT_TO_LWORD . 572
BIT_TO_REAL . 572
BIT_TO_SINT . 572
BIT_TO_STRING . 572
BIT_TO_TIME . 572
BIT_TO_TOD . 572
BIT_TO_UDINT . 572
BIT_TO_UINT . 572
BIT_TO_ULINT . 572
BIT_TO_USINT . 572
BIT_TO_WORD . 572
BIT_TO_WSTRING . 572
BITADR . 564
BitCpy . 4303
bitmap, properties . 1162
BitmapEntry . 4303
BitmapProcessing . 4303
BLINK . 4303
BlkClass . 4303
BLOB . 4303

BlobAlloc . 4303
BlobCopyToData . 4303
BlobFree . 4303
BlockGetData . 4303
BmpPoolBegin . 4303
BmpPoolEnd . 4303
BmpPoolRegister . 4303
BmpPoolUnRegister . 4303
BOLT . 4303
bookmarks

clear all . 974
clear all in active editor 974
next . 973
next in active editor . 973
previous . 973
previous in active editor 973
set . 287
toggle . 972
view . 988

BOOL . 647
constant . 633
convert . 567
data type . 647

BOOL_TO___UXINT . 567
BOOL_TO___XINT . 567
BOOL_TO___XWORD . 567
BOOL_TO_BIT . 567
BOOL_TO_BYTE . 567
BOOL_TO_DATE . 567
BOOL_TO_DINT . 567
BOOL_TO_DT . 567
BOOL_TO_DWORD . 567
BOOL_TO_INT . 567
BOOL_TO_LDATE . 567
BOOL_TO_LDT . 567
BOOL_TO_LINT . 567
BOOL_TO_LREA . 567
BOOL_TO_LTIME . 567
BOOL_TO_LTOD . 567
BOOL_TO_LWORD . 567
BOOL_TO_REAL . 567
BOOL_TO_SINT . 567
BOOL_TO_STRING . 567
BOOL_TO_TIME . 567
BOOL_TO_TOD . 567

Index

2022/01/213ADR010583, 3, en_US4420

BOOL_TO_UDINT . 567
BOOL_TO_UINT . 567
BOOL_TO_ULINT . 567
BOOL_TO_USINT . 567
BOOL_TO_WORD . 567
BOOL_TO_WSTRING . 567
BoolElement . 4303
BoolElementFactory . 4303
boot application

delete . 1040
encrypt . 198, 4123
encrypted transfer . 4128
encryption . 294
generate . 391, 1032
options . 1162
properties . 1158
signing . 294, 295

box
CFC . 523
clean, FBD/LD . 1114
FBD/LD/IL . 505
FBD/LD/IL, empty box with en/eno 1106
insert parallel LD . 1106
insert, FBD/LD/IL . 1105
repair . 1114
with EN/ENO, FBD/LD/IL 1106

box input
insert, FBD/LD/IL . 1107

bracket, code . 971
branch . 491

add . 1083
closed . 509
insert right . 1083
set end point . 1114
start/end . 508

branch/tag
create . 4263

BranchNamedTreeNode 4303
BranchTreeNode . 4303
BranchTreeNodeOpcUA 4303
breakpoint . 395

concept . 395
condition . 1154
define condition . 397
define execution point 398

disable . 1050
edit . 1049
enable . 1050
execution point . 1155
new . 1049
position . 1156
set . 397
toggle . 1050
view . 989

broadcast address . 357
browse . 287
BrushStyle . 4303
BTagAlignment . 4303
BTagElementType . 4303
BTagReaderCreate . 4303
BTagReaderCreateDynamic 4303
BTagReaderDestroy . 4303
BTagReaderGetComplexContent 4303
BTagReaderGetContent 4303
BTagReaderGetString . 4303
BTagReaderGetTagId . 4303
BTagReaderGetTagLen 4303
BTagReaderInit . 4303
BTagReaderIsDataTag . 4303
BTagReaderMoveNext . 4303
BTagReaderPeekNext . 4303
BTagReaderSkipContent 4303
BTagSwapHeader . 4303
BTagWriterAppendBlob 4303
BTagWriterAppendDummyBytes 4303
BTagWriterAppendFillBytes 4303
BTagWriterAppendRaw 4303
BTagWriterAppendWString 4303
BTagWriterCreate . 4303
BTagWriterCreateDynamic 4303
BTagWriterCreateSavePoint 4303
BTagWriterCreateSavePointDynamic 4303
BTagWriterDestroy . 4303
BTagWriterDestroySavePoint 4303
BTagWriterEndTag . 4303
BTagWriterFinish . 4303
BTagWriterInit . 4303
BTagWriterInit2 . 4304
BTagWriterRestoreSavePoint 4304
BTagWriterStartTag . 4304

Index

2022/01/21 3ADR010583, 3, en_US 4421

BTagWriterSwitchBuffer 4304
Buffer . 4304
BufferPool . 4304
BufferPoolFactoryArgs . 4304
BufferPoolFactoryBase 4304
BufferToString . 4304
build

application . 1022
exclude . 1159
messages for code generation 390
properties . 1159

build information . 1021
BuildAndEnqueueV3Request 4304
bus cycle

EtherCAT . 3831
EtherNet/IP . 1222
J1939 . 3808
PROFINET IO . 3835

bus cycle task
device editor . 857

BUS_INFO . 4304
BUS_STATE . 4304
BUS_TYPE . 4304
BusScanConfHeader . 4304
BusSpecific . 4304
BUSSTATE . 4304
busy symbol . 1645, 2069

cube, visualization element 1645, 2069
flower, visualization element 1649, 2073

button . 1468, 1892
visualization element 1468, 1892

BY . 469
byte

addressing mode . 643
BYTE . 647

convert . 572
byte order . 736
BYTE_AS_BIT . 4304
BYTE_TO___UXINT . 572
BYTE_TO___XINT . 572
BYTE_TO___XWORD . 572
BYTE_TO_BCD . 4304
BYTE_TO_BIT . 572
BYTE_TO_BOOL . 572
BYTE_TO_DATE . 572

BYTE_TO_DINT . 572
BYTE_TO_DT . 572
BYTE_TO_DWORD . 572
BYTE_TO_GRAY . 4304
BYTE_TO_HEXinASCII 4304
BYTE_TO_INT . 572
BYTE_TO_LDATE . 572
BYTE_TO_LDT . 572
BYTE_TO_LINT . 572
BYTE_TO_LREAL . 572
BYTE_TO_LTIME . 572
BYTE_TO_LTOD . 572
BYTE_TO_LWORD . 572
BYTE_TO_REAL . 572
BYTE_TO_SINT . 572
BYTE_TO_STRING . 572
BYTE_TO_TOD . 572
BYTE_TO_UDINT . 572
BYTE_TO_UINT . 572
BYTE_TO_ULINT . 572
BYTE_TO_USINT . 572
BYTE_TO_WORD . 572
BYTE_TO_WSTRING . 572
BYTEBIT_TO_TIME . 572
ByteBuffer . 4304
ByteOrder . 4304

C
C code integration . 275
C code module

project environment . 1184
C integration . 275

configuration . 275
create stub in C . 1026
export C sources . 1026
exporting a C-function 1026
IDE, path . 1160
import C code module 275
library . 275
open in IDE . 1025
properties . 1160
update sources . 1025

C sources
export . 1026
update . 1025

Index

2022/01/213ADR010583, 3, en_US4422

C stub file . 1022
C stub file for external library 1022
C_TS_Type . 4304
C0001 . 756
C0002 . 756
C0004 . 757
C0005 . 757
C0006 . 757
C0007 . 758
C0008 . 758
C0009 . 759
C0010 . 759
C0011 . 759
C0013 . 760
C0015 . 760
C0018 . 760
C0020 . 761
C0022 . 761
C0023 . 761
C0026 . 762
C0027 . 762
C0030 . 762
C0031 . 763
C0032 . 763
C0033 . 763
C0035 . 764
C0036 . 764
C0037 . 764
C0038 . 765
C0039 . 765
C0040 . 766
C0041 . 766
C0042 . 767
C0043 . 767
C0044 . 768
C0045 . 768
C0046 . 768
C0047 . 769
C0048 . 769
C0049 . 770
C0050 . 770
C0051 . 770
C0053 . 771
C0061 . 771
C0062 . 771

C0064 . 772
C0065 . 772
C0066 . 772
C0068 . 773
C0069 . 773
C0070 . 774
C0072 . 774
C0074 . 774
C0075 . 775
C0076 . 775
C0077 . 775
C0078 . 776
C0080 . 776
C0081 . 777
C0082 . 777
C0084 . 777
C0085 . 778
C0086 . 778
C0087 . 779
C0089 . 779
C0090 . 780
C0091 . 780
C0094 . 780
C0096 . 781
C0097 . 781
C0098 . 782
C0099 . 782
C0101 . 783
C0102 . 783
C0104 . 783
C0114 . 783
C0115 . 784
C0116 . 784
C0117 . 784
C0118 . 784
C0119 . 785
C0120 . 785
C0122 . 786
C0124 . 786
C0125 . 786
C0126 . 787
C0130 . 787
C0131 . 788
C0132 . 788
C0136 . 788

Index

2022/01/21 3ADR010583, 3, en_US 4423

C0138 . 789
C0139 . 789
C0140 . 789
C0141 . 790
C0142 . 790
C0143 . 790
C0144 . 791
C0145 . 791
C0149 . 792
C0161 . 792
C0162 . 792
C0164 . 793
C0165 . 793
C0168 . 794
C0169 . 794
C0173 . 795
C0174 . 795
C0175 . 795
C0177 . 796
C0178 . 796
C0179 . 797
C0180 . 797
C0182 . 797
C0183 . 798
C0185 . 798
C0186 . 798
C0188 . 799
C0189 . 799
C0190 . 800
C0191 . 800
C0195 . 800
C0196 . 800
C0197 . 801
C0198 . 801
C0199 . 801
C0201 . 802
C0203 . 802
C0204 . 803
C0205 . 803
C0206 . 803
C0207 . 803
C0208 . 804
C0209 . 804
C0211 . 804
C0212 . 805

C0215 . 805
C0216 . 805
C0217 . 805
C0218 . 806
C0219 . 806
C0221 . 807
C0222 . 807
C0224 . 807
C0225 . 808
C0227 . 808
C0228 . 809
C0230 . 809
C0232 . 809
C0233 . 810
C0234 . 810
C0235 . 811
C0236 . 811
C0237 . 811
C0238 . 812
C0239 . 812
C0240 . 813
C0241 . 813, 816
C0242 . 813
C0243 . 814
C0380 . 814
C0509 . 815
C0542 . 816
C0543 . 817
CA-signed

certificate . 458
CA-signed certificate . 208
CAA library guidelines . 2225
CAADiagDeviceDefault 4304
CAADiagTreeBase . 4304
CAAReconfigureBase . 4304
CAL . 565
CALC . 500
CalcCCIT16 . 4304
CalcHesseRepresentation 4304
CALCN . 500
CalcRootLin . 4304
CalcRootParable . 4304
CalculateCenter . 4304
CalculatePropertyBufferSize 4304

Index

2022/01/213ADR010583, 3, en_US4424

call
function . 886
function block, ST . 474
program . 882

call stack . 408
view . 993

call tree
show . 975
view . 993

call_after_global_init_slot 687
pragma attribute . 687

call_after_init . 687
pragma attribute . 687

call_after_online_change_slot 688
pragma attribute . 688

call_before_global_exit_slot
pragma attribute . 689

call_on_type_change . 689
pragma attribute . 689

CallbackNetVar . 4304
CallbackTaskCodeNC . 4304
CallFunctionByIndex . 4304
CallGlueDeserializeParameters 4304
CallGlueFunctionParameterSet 4304
CallGlueSerializeReturnValues 4304
calls

function block . 883
cam

acceleration . 344
add tappet . 347
change path . 320
create . 319
data structure . 330
example created by application 332
example created manually 332
graph . 344
jerk . 344
object properties 348, 1167
position . 344
read data from ASCII table, command 350
read online file, command 351
sample application . 344
switch . 344
table . 345
tappets . 346

velocity . 344
write data to ASCII table, command 351
write online file, command 352

cam editor
online . 332
visualization . 332

cam plate table . 345
CANbus . 4304

J1939 . 3809
parameters . 844

CANbus_Diag . 4304
CANDiagnosis . 4304
CANopen

local device . 3808
modular device . 3802
non-modular device . 3802
remote device . 3802

CANOPEN_DIAGNOSIS_INFO 4304
CANOPEN_KERNEL_ERROR 4304
CANOPEN_KERNEL_STATE 4304
CANOPEN_STATE . 4304
CANopenDevice . 4304
CANopenDevice_Diag . 4304
CANopenDeviceSIL2 . 4304
CANopenDeviceUnsafe 4304
CANOpenDiagnosisInfo 4304
CANopenEvent . 4304
CANopenManager . 4304
CANopenManager_Diag 4304
CANopenManagerSIL2 4304
CANopenManagerUnsafe 4304
CANopenSafetyBase . 4305
CanReconfigure . 4305
CANRemoteDevice . 4305
CANRemoteDevice_Diag 4305
CANRemoteDeviceSafe 4305
CANRemoteDeviceUnsafe 4305
CANRemoteModule_Diag 4305
Cartesian XY chart . 1675

visualization element 1675
CartesianToPolar . 4305
CASE . 470
CaseSensitiveNamedTreeNode 4305
CATCH . 619

Index

2022/01/21 3ADR010583, 3, en_US 4425

category
configure in visualization toolbox 1747
create for visualization elements 1255

CB_CALLBACK . 4305
CCB . 4305
CD522DoubleWordCounter 4305
CD522Encoder32Bit . 4305
CD522FreqOut . 4305
CD522FreqScan . 4305
CD522FreqScan_PLUS 4305
CD522In . 4305
CD522OneWordCounter 4305
CD522Out . 4305
CD522PulseOut . 4305
CD522PwmOut . 4305
CD522ReadInput . 4305
CD522SsiCnt . 4305
CD522SsiCnt_PLUS . 4305
CD522TwoWordCounters 4305
CD522WriteOutput . 4305
CDClose . 4305
CDIoctl . 4305
CDLseek . 4305
CDMmap . 4305
CDMunmap . 4305
CDOpen . 4305
CDRead . 4305
CDSV3Request . 4305
CDWrite . 4305
Ceil . 4305
CeilF . 4305
CERT_INFO . 4305
CertCreate . 4305
certificate . 198

application . 294
boot application, download, online change . . 4123
CA-signed . 198, 208, 458
controller . 4122
delete . 208
encrypted communication 294, 381
encryption . 198
encryption, instructions 208
expiration date . 381
expired . 457
general information . 454

issue more . 457
project settings . 1176
request from PLC . 208
Security Agent . 4122
sign boot application . 295
signing . 198
time stamp by command line 448
via PLC shell . 458
Windows Certificate Store 198

CertificateStoreOwner . 4305
CertRemove . 4305
CFC . 241

add input . 1099
add output . 1099
connect structure . 1102
connection mark . 1100
create control point . 1100
edit page size . 1090
edit parameters . 1096
edit worksheet . 1089
editor . 511
end with selected elements 1093
force FB . 1101
group . 1100
keyboard shortcuts . 515
move down . 1094
move up . 1093
order by data flow . 1095
order by topology . 1095
page-oriented . 241, 511
parameter values . 1097
programming in CFC editor 246
properties . 1165
reference . 1091
remove control point 1099
remove unused pins 1098
Reset . 1091
reset connecting line 1099
reset pins . 1098
route connections . 1099
select connected pins 1098
send to front . 1092
Set . 1091
set element number within execution order . 1094
show next collision . 1098

Index

2022/01/213ADR010583, 3, en_US4426

starting point in feedback network 244
ungroup . 1101
unlock connection . 1097

CFC editor . 511
breakpoint . 516
debugging . 516
monitoring . 516
online mode . 516
option . 1189
page-oriented . 514
setting . 1189
toolbar . 462

ChainBuffer . 4305
Change over to another module type 3648, 3694
change the language

font settings per language 1289
ChannelDiagnosisData . 4305
ChannelErrorType . 4305
ChannelProperties . 4305
ChannelProperties_Type 4305
character string

with placeholder, visualization 1708
character string literal . 634
CharBufferPtr . 4305
CharBufferString . 4305
CHARCURVE . 4305
CharCurve_DINT . 4305
CharCurve_LREAL . 4305
chart . 1209, 1675

in trace editor . 1209
visualization element 1675

CharToUpper . 4305
CHCAddressComponent 4305
CHCAddressType . 4305
CHCPeerAddress . 4305
CHCProtocolDataUnit . 4306
check

avoid implicit checks . 712
Check . 4306
check box . 1535, 1955

visualization element 1535, 1955
CheckBounds . 906

array . 660
CheckConfigSRDO . 4306
CheckDivInt . 909

CheckDivLInt' . 909
CheckDivLReal' . 911
CheckDivReal . 910
CheckExpSubmodule . 4306
CheckInverseData . 4306
CheckLRangeSigned . 914
CheckLRangeUnsigned . 916
CheckPointer . 917
CheckRangeSigned 681, 912
CheckRangeUnsigned 681, 915
CheckReceivedSRDO . 4306
checks_in_libs . 904
CheckSymbolValidity . 4306
CheckThumbString . 4306
CI . 2419
CI501 . 3224
CI501-PNIO . 3224
CI502 . 3263
CI502-PNIO . 3263
CI511 . 3106
CI512 . 3138
CI512-ETHCAT . 3138
CI521 . 3156
CI521-MODTCP . 3156
CI522 . 3196
CI522-MODTCP . 3196
CI581 . 3046
CI581-CN . 3046
CI582 . 3084
CIF_MemCpy . 4306
CIF_MemSet . 4306
CIF_StrLen . 4306
CIFEXTMESSAGEHEADERtyp 4306
CIFFMSANYMESSAGEtyp 4306
CIFMESSAGEHEADERtyp 4306
CIFMESSAGERAWtyp . 4306
CIFX_APPLICATION_CHANNEL_INFO 4306
CIFX_BOARD . 4306
CIFX_BOARD_INFORMATION 4306
CIFX_CHANNEL . 4306
CIFX_CHANNEL_INFO_BLOCK 4306
CIFX_CHANNEL_INFORMATION 4306
CIFX_COM_DIAGNOSTICS 4306
CIFX_COMMON_STATUS_BLOCK 4306
CIFX_COMMON_STATUS_BLOCK_MASTER . 4306

Index

2022/01/21 3ADR010583, 3, en_US 4427

CIFX_COMMUNOICATION_CHANNEL_INFO . 4306
CIFX_DEV_INFO . 4306
CIFX_DIRECTORY_ENTRY 4306
CIFX_ERROR_FIELD . 4306
CIFX_GetBusActivationBeforeReset 4306
CIFX_GETSLAVECONNECTINFO_REQ 4306
CIFX_GETSLAVEHANDLE_CONF 4306
CIFX_GETSLAVEHANDLE_REQ 4306
CIFX_HANDSHAKE_CHANNEL_INFO 4306
CIFX_INDICATION_PARAM 4306
CIFX_MASTER_DIAG . 4306
CIFX_MAX_PACKET . 4306
CIFX_MEMORY_INFORMATION 4306
CIFX_PACKET . 4306
CIFX_ResetConfigApplication 4306
CIFX_SYSTEM_CHANNEL_INFO 4306
CIFX_SYSTEM_INFO_BLOCK 4306
CIFX_xChannelBusState 4306
CIFX_xChannelClose . 4306
CIFX_xChannelCommonStatusBlock 4306
CIFX_xChannelConfigLock 4306
CIFX_xChannelControlBlock 4306
CIFX_xChannelDownload 4306
CIFX_xChannelExtendedStatusBlock 4306
CIFX_xChannelFindFirstFile 4306
CIFX_xChannelFindNextFile 4306
CIFX_xChannelGetMBXState 4306
CIFX_xChannelGetPacket 4306
CIFX_xChannelGetPacketTimeout 4306
CIFX_xChannelGetSendPacket 4306
CIFX_xChannelHostState 4306
CIFX_xChannelInfo . 4307
CIFX_xChannelIOInfo . 4307
CIFX_xChannelIORead 4307
CIFX_xChannelIOReadSendData 4307
CIFX_xChannelIOWrite 4307
CIFX_xChannelOpen . 4307
CIFX_xChannelOpen2 . 4307
CIFX_xChannelPLCActivateRead 4307
CIFX_xChannelPLCActivateWrite 4307
CIFX_xChannelPLCIsReadReady 4307
CIFX_xChannelPLCIsWriteReady 4307
CIFX_xChannelPLCMemoryPtr 4307
CIFX_xChannelPutPacket 4307
CIFX_xChannelReset . 4307

CIFX_xChannelSetPacketTimeout 4307
CIFX_xChannelUpload . 4307
CIFX_xChannelUserBlock 4307
CIFX_xChannelWatchdog 4307
CIFX_xDriverClose . 4307
CIFX_xDriverEnumBoards 4307
CIFX_xDriverEnumChannels 4307
CIFX_xDriverGetErrorDescription 4307
CIFX_xDriverGetInformation 4307
CIFX_xDriverMemoryPointer 4307
CIFX_xDriverOpen . 4307
CIFX_xMemCpy . 4307
CIFX_xSysdeviceClose 4307
CIFX_xSysdeviceDownload 4307
CIFX_xSysdeviceFindFirstFile 4307
CIFX_xSysdeviceFindNextFile 4307
CIFX_xSysdeviceGetMBXState 4307
CIFX_xSysdeviceGetPacket 4307
CIFX_xSysdeviceInfo . 4307
CIFX_xSysdeviceOpen 4307
CIFX_xSysdevicePutPacket 4307
CIFX_xSysdeviceReset 4307
CIFX_xSysdeviceUpload 4307
CIFXProfinetController . 4307
CIFXProfinetControllerDiag 4307
CiModCi52x . 4307
CiModCiClusterDiag . 4307
CiModClusterDiag . 4307
CiModClusterStatus . 4307
CiModCmdQueueInput . 4307
CiModDataAI523 . 4307
CiModDataAI531 . 4307
CiModDataAI561 . 4307
CiModDataAI562 . 4307
CiModDataAI563 . 4307
CiModDataAO523 . 4307
CiModDataAO561 . 4307
CiModDataAX521 . 4307
CiModDataAX522 . 4307
CiModDataAX561 . 4307
CiModDataCI521 . 4307
CiModDataCI522 . 4308
CiModDataDA501 . 4308
CiModDataDA502 . 4308
CiModDataDC522 . 4308

Index

2022/01/213ADR010583, 3, en_US4428

CiModDataDC523 . 4308
CiModDataDC532 . 4308
CiModDataDC561 . 4308
CiModDataDC562 . 4308
CiModDataDI524 . 4308
CiModDataDI561 . 4308
CiModDataDI562 . 4308
CiModDataDI571 . 4308
CiModDataDI572 . 4308
CiModDataDO524 . 4308
CiModDataDO526 . 4308
CiModDataDO561 . 4308
CiModDataDO562 . 4308
CiModDataDO571 . 4308
CiModDataDO572 . 4308
CiModDataDO573 . 4308
CiModDataDX522 . 4308
CiModDataDX531 . 4308
CiModDataDX561 . 4308
CiModDataDX571 . 4308
CiModDiag . 4308
CiModDiagModInfo . 4308
CiModDiagTableType . 4308
CiModInput . 4308
CiModParaAI523 . 4308
CiModParaAI531 . 4308
CiModParaAI561 . 4308
CiModParaAI562 . 4308
CiModParaAI563 . 4308
CiModParaAO523 . 4308
CiModParaAO561 . 4308
CiModParaAX521 . 4308
CiModParaAX522 . 4308
CiModParaAX561 . 4308
CiModParaCI521 . 4308
CiModParaCI522 . 4308
CiModParaDA501 . 4308
CiModParaDA502 . 4308
CiModParaDC522 . 4308
CiModParaDC523 . 4308
CiModParaDC532 . 4308
CiModParaDC561 . 4308
CiModParaDC562 . 4308
CiModParaDI524 . 4308
CiModParaDI561 . 4308

CiModParaDI562 . 4308
CiModParaDI571 . 4308
CiModParaDI572 . 4308
CiModParaDO524 . 4308
CiModParaDO526 . 4308
CiModParaDO561 . 4308
CiModParaDO562 . 4309
CiModParaDO571 . 4309
CiModParaDO572 . 4309
CiModParaDO573 . 4309
CiModParaDX522 . 4309
CiModParaDX531 . 4309
CiModParaDX561 . 4309
CiModParaDX571 . 4309
CIP_Attribute . 4309
CIPClass . 4309
CIPCommonService . 4309
CIPHER_LIST . 4309
CLASS_INFO . 4309
ClassCreate . 4309
ClassDelete . 4309
ClassFree . 4309
CLClient . 4309
CLClientOptions . 4309
CLClientState . 4309
clean all . 1021
clean gaps . 1123
Client . 4309
CLIENT_ACCEPT . 4309
CLIENT_REPLY . 4309
ClientCreatableObjects 4309
ClientRequest . 4309
ClientRequestMaskWriteRegister 4309
ClientRequestRead . 4309
ClientRequestReadBits 4309
ClientRequestReadCoils 4309
ClientRequestReadDiscreteInputs 4309
ClientRequestReadHoldingRegisters 4309
ClientRequestReadInputRegisters 4309
ClientRequestReadRegisters 4309
ClientRequestReadWriteMultipleRegisters 4309
ClientRequestWriteMultiple 4309
ClientRequestWriteMultipleCoils 4309
ClientRequestWriteMultipleRegisters 4309
ClientRequestWriteSingle 4309

Index

2022/01/21 3ADR010583, 3, en_US 4429

ClientRequestWriteSingleCoil 4309
ClientRequestWriteSingleRegister 4309
ClientSerial . 4309
ClientSide . 4309
ClientTCP . 4309
clock

visualization element 1696, 2115
CLOCK . 4309
CLOCK_DT . 4309
cloned code . 4137
CloneMessage . 4309
Close . 4309
closed branch, LD . 509
CloseDialog . 1716
CloseDialog2 . 1716
CLRequestState . 4309
CLServer . 4309
CLServerOptions . 4309
CM . 2412, 2528
CM579 . 2539, 2543
CM579- EtherCAT master 2539
CM579-PNIO . 2543
CM579EtherCATDeviceInfoType 4309
CM582ProfibusDeviceInfoType 4309
CM589ProfinetDeviceInfoType 4309
CM592-DP

PROFIBUS DP master diagnosis 4097
PROFIBUS DP master diagnostic 4097

CM592CommErrorInfo . 4309
CM592CommStatus . 4309
CM592Control . 4309
CM592DPV1Masc1Read 4310
CM592DPV1Masc1Write 4310
CM592ExtDiagData . 4310
CM592ProfibusDeviceInfoType 4310
CM592ReadInput . 4310
CM592ReadOutput . 4310
CM592SlaveDiagnosis . 4310
CM592SlaveStates . 4310
CM592StateBits . 4310
CM592StationStatus_1 4310
CM592StationStatus_2 4310
CM592StationStatus_3 4310
CM592SystemDiagnosis 4310
CM598 . 2532

Cm598Base . 4310
Cm598CanInfo . 4310
Cm598CanInfoType . 4310
Cm598CanMessageType 4310
Cm598CanMsgRec . 4310
Cm598CanMsgRecEvt . 4310
Cm598CanMsgSend . 4310
Cm598CanopenComErrorType 4310
Cm598CanopenNmt . 4310
Cm598CanopenSdoRead 4310
Cm598CanopenSdoWrite 4310
Cm598CanopenState . 4310
Cm598CanopenStateBitsType 4310
Cm598CanopenStateType 4310
CM598DeviceInfoType . 4310
Cm598NmtCmd . 4310
CMAddComponent . 4310
CMAddComponent2 . 4310
CMExitComponent . 4310
CMGetComponentByName 4310
CMGetCoreVersion . 4310
CMInitComponent . 4310
CmpIoDrvC . 4310
CmpIoDrvWrapper . 4310
CmpLogAsyncFB . 4310
CmpTlsAccept . 4310
CmpTlsBufferDataReceived 4310
CmpTlsBufferDataSent 4310
CmpTlsBufferDataToSendAvailable 4310
CmpTlsBufferOpen . 4310
CmpTlsClose . 4310
CmpTlsConnect . 4310
CmpTlsCreateContext . 4310
CmpTlsCreateContext2 4310
CmpTlsFreeContext . 4310
CmpTlsMethod . 4310
CmpTlsRead . 4310
CmpTlsShutdown . 4310
CmpTlsWrite . 4310
CmpTraceMgr

runtime system component 421
CmpTraceMgr.library . 421
CMRemoveComponent 4310
CMShutDown . 4310
CMUtlcwstrcpy . 4310

Index

2022/01/213ADR010583, 3, en_US4430

CMUtlSafeStrCpy . 4311
CMUtlStrICmp . 4311
CMUtlUtf8ToW . 4311
CMUtlwstrcpy . 4311
CMUtlWToUtf8 . 4311
CNCT . 4311
COBID . 4311
code

analysis, pragmas . 4149
analyze . 283
checks . 4139
collapse all . 971
duplicate . 4137
encrypt . 198
encryption . 390
exclude from the static analysis 284
expand all . 971
format code . 984
generate . 1021
generate, active application 1024
go to matching bracket 971

code analysis
getting started . 4130
metrics . 4147
naming conventions 4140
prohibited symbols . 4148
rules . 4139

code check
metrics . 4147
prohibited symbols . 4148
rules . 4139
settings . 4138

code clone . 4137
code duplicate . 4137
code generation . 1021

application code . 389
application in library project 1024
messages . 390

CodeMClose . 4311
CodeMDecrypt . 4311
CodeMEncrypt . 4311
CodeMGetContentByFirmcode 4311
CodeMGetContentByFirmcode2 4311
CodeMGetExpirationTime 4311
CodeMGetFeatureMapByFirmcode 4311

CodeMGetFirst . 4311
CodeMGetInfo . 4311
CodeMGetName . 4311
CodeMGetNext . 4311
CodeMGetQuantity . 4311
CodeMGetUnitCounter . 4311
CodeMOpen . 4311
CodeWriter . 4311
coding guidelines . 283
coil . 508

insert . 1108
reset . 1108
set . 1108

cold start . 1038
collapse all . 971
COLLECTION_ERROR 4311
color . 1295

code as hexadecimal number 1295
visualization . 1258

color animation
configure for visualization element 1259, 1296

color definition . 1295
byte order . 1295

color gradient
specify for visualization element 1259

color space . 1295
COM_CFG_FORMAT_ENUM 4311
COM_MOD_FCT22_TYPE 4311
COM_MOD_FCT23_TYPE 4311
COM_PORT_ID . 4311
CombineDateTime . 4311
combo box, array 1458, 1875

visualization element 1458, 1875
combo box, integer 1451, 1881

visualization element 1451, 1881
ComGetCaaSerialComConfig 4311
ComGetIdByName . 4311
CommAbbxUsrMsgGet . 4311
CommAbbxUsrMsgRec 4311
CommAbbxUsrMsgSend 4311
command 'Go to instance' 980
command icon . 1206

customize . 183
command line . 442

---timestampingserverurl 448

Index

2022/01/21 3ADR010583, 3, en_US 4431

--compare . 443
--culture . 442
--enforcesignedcompiledlibraries 447
--ignorecomments . 446
--ignoreproperties . 447
--ignorewhitespace . 446
--profile . 442
--project . 443
--projectarchive . 443
--runscript . 444
--signaturethumbprint 447
--skipunlicensedplugins 447

CommandHandler . 4311
CommandManager . 4311
comment

CFC . 524
library documentation 475
ST . 475

comment out . 972
commit

ignore object, SVN . 4251
commit accepted changes 1014
CommStatus . 4311
communication

controller, encrypted 4122
device editor . 840
edit . 373
enable unencrypted . 460
encrypt . 198
encrypted . 381
encryption, certificate 4122
setting, classic display 1190

Communication
Modbus TCP/IP . 3558

communication gateway 81, 141
Communication interface modules 3043
Communication modules 2412, 2528
communication parameters

in Windows . 47, 81, 141
communication policy . 840
CommunicationErrorCIFX 4311
compare . 4247

projects . 195, 1010, 3640
with HEAD revision, SVN 4247
with revision, SVN . 4247

working copy and base revision, SVN 4247
working copy and project in SVN repository . 4248

Compare . 4311
compare objects

command . 1010
compare view . 195, 3640

detail . 195, 3640
open detailed . 196, 3641
project . 195, 3640

COMPARE_AND_SWAP 625
CompareString . 4311
CompareWString . 4311
Comparison

AC500 V3 terminal bases 2384
comparison view . 196, 3640
compatibility

library . 1025
CompatibilitySafeGetPrepareExitCommProcessin-
gLastCall . 4311
CompatibilitySafeSetPrepareExitCommProces-
singFurtherCallNecessary 4311
compiled libraries

signature . 447
compiled library

save . 960
compiled library, see compiled library 921
compiled-library . 449
compiled-library-v3 . 449
compiler

options . 1173
version . 1182
warnings . 1173

compiler version
project environment . 1182

Compiling a project . 81, 101, 105, 118, 141, 161, 165
ComponentBase . 4311
ComponentManager . 4311
ComponentPseudo . 4311
ComponentRenamed . 4311
ComponentSimple . 4311
composer

CFC . 524
compression

project . 1196
CONCAT . 4311

Index

2022/01/213ADR010583, 3, en_US4432

condition
breakpoint . 1154

conditional compilation . 732
conditionalshow, pragma 690
conditionalshowsymbols, command-line command
. 691, 692

condtionalshow_all_locals pragma
pragma . 691

CONFIG_SRDO . 4311
ConfigError . 4311
ConfigGetConnector . 4311
ConfigGetFirstChild . 4311
ConfigGetFirstConnector 4311
ConfigGetNextChild . 4311
ConfigGetNextConnector 4311
ConfigGetParameter . 4312
ConfigGetParameterLength 4312
ConfigGetParameterValueByte 4312
ConfigGetParameterValueDword 4312
ConfigGetParameterValuePointer 4312
ConfigGetParameterValueWord 4312
configuration

device . 213
programming system 1149
task . 942
trace . 1209

Configuration
IEC 61850 Server 3885, 3886

configuration variable . 534
ConfigureByString . 4312
connect

to device . 1044
Connect . 4312
Connect2 . 4312
connection

CFC, connect pins . 1097
CFC, route . 1099
connection mark . 1100

Connection
AC522 . 2836

connection mark
CFC . 525

ConnectionHandler . 4312
connections

EtherNet/IP adapter 1226

Connections
AC522 . 2836

ConnectionSetup . 4312
Connector . 4312
ConnectorFlagController 4312
ConnectorState . 4312
const_non_replaced, pragma 692
const_replaced, pragma . 692
constant . 632

BOOL . 633
date . 637
input/output variable . 530
LTIME . 636
REAL and LREAL . 634
string . 634
time . 635
TIME . 636
time of day . 637
variable . 534

CONSTANT . 632
variable . 534

constants
numeric . 633

contact . 507
insert . 1111
ld . 1108
negated . 1110
negated, parallel . 1110
paste right after . 1111
right . 1109

content operator . 564
ContentFeatureFlags . 4312
CONTINUE . 474
Continuous Function Chart 241

page-oriented . 241, 511
Continuous Function Chart (CFC) 241
Continuous Function Chart (CFC) - page-oriented
. 241, 511

Control direction
IEC 61850 server . 3902

control panel . 1661, 2085
visualization element 1661, 2085

control point
CFC . 522
create . 1100

Index

2022/01/21 3ADR010583, 3, en_US 4433

remove . 1099
Control variable

IEC 61850 Server . 3888
controller

communication, certificate-encrypted 198
security . 455
symbol access . 868
unencrypted communication 460
wink . 1044

ControllerConfigUtil . 4312
ControllerState . 4312
conversion . 61, 2430, 3993
conversion rule, see unit conversion 298
convert

device . 1151
integer . 572
library reference . 1150
strings . 587
to FBD . 1115
to IL . 1115
to LD . 1115
TO_ . 566
TRUNC . 606
TRUNC_INT . 606

convert V2 project to V3 project 61, 2430, 3993
convertion . 3637
ConvertNSecToTick . 4312
ConvertSystimedateToUTC 4312
ConvertSystimedateUsingLDate 4312
ConvertSysTimeValueToLWord 4312
ConvertTickToNSec . 4312
ConvertTickToUSec . 4312
ConvertTimestampToLDateAndTime 4312
ConvertUSecToTick . 4312
ConvertUTF8toUTF16 . 4312
ConvertUTF16toUTF8 . 4312
ConvThumbToBytes . 4312
ConvThumbToString . 4312
copied code . 4137
Copy . 4312
CopyBufferData . 4312
core dump

close . 1058
create . 1057
load . 1057

load device log . 1058
open memory view . 995

COS . 609
COUNT . 4312
COUNT_TO_UDINT . 4312
COUNT_TO_UINT . 4312
COUNT_TO_ULINT . 4312
CP-C.1 . 3449
CPU display

diagnosis description 4013
CPU load . 428, 942
CPU_PROD_READ_ASYNC 4312
CpuCoreBindingDesc . 4312
CpuCoreBits . 4312
cpuload

trace . 421, 1144
CpuLoad

DeviceTrace . 429
CPUs . 2410
CRC16_CCITT . 4312
CRC16_generic . 4312
CRC16_Modbus . 4312
CRC16_standard . 4312
CRC16Finish . 4312
CRC16Init . 4312
CRC16Update . 4312
CRC32 . 4312
CRC32Finish . 4312
CRC32Init . 4312
CRC32Update . 4312
CRC32Update2 . 4312
create device list CSV

command . 1069
create localization template 1008
create stub implementation in C 1026
CREATE_ID . 4312
CreateBuffer . 4312
CreateIdAreaReceiver . 4312
CreateInstance . 4312
CreateMaskReceiver . 4312
CreateMessage . 4313
CreateSingleIdReceiver 4313
CreateTextFromString . 4313
CreateTextFromWString 4313
CreateXMLParser2 . 4313

Index

2022/01/213ADR010583, 3, en_US4434

CredentialsHandling . 4313
cross reference

browse . 974, 975
global . 975

cross-reference . 993
auto-update . 1201
IEC address . 1190

cross-reference list . 990
classic view . 993
collapse all . 971
limit . 1148
occurrence location . 285
view . 990

CrossProduct . 4313
CrossProductNormed . 4313
CryptoAsymmetricDecrypt 4313
CryptoAsymmetricEncrypt 4313
CryptoDeletePrivateKey 4313
CryptoDeriveKey . 4313
CryptoExportAsymmetricKey 4313
CryptoGenerateAsymmetricKeyPair 4313
CryptoGenerateHash . 4313
CryptoGenerateRandomNumber 4313
CryptoGetAlgorithmById 4313
CryptoGetAsymmetricKeyLength 4313
CryptoGetFirstAlgorithm 4313
CryptoGetNextAlgorithm 4313
CryptoHMACSign . 4313
CryptoHMACVerify . 4313
CryptoImportAsymmetricKey 4313
CryptoKeyExit . 4313
CryptoKeyInit . 4313
CryptoLoadPrivateKey . 4313
CryptoRtsByteStringExit 4313
CryptoRtsByteStringInit 4313
CryptoRtsByteStringInit2 4313
CryptoSignatureGenerate 4313
CryptoSignatureVerify . 4313
CryptoStorePrivateKey . 4313
CryptoSymmetricDecrypt 4313
CryptoSymmetricEncrypt 4313
CSMD_SVC_ERROR_CODES 4313
CTD . 4313
CTU . 4313
CTUD . 4313

CurrentVisu
Variable for visualization name 1777

custom data type . 835
customize . 1205
CustomRequestQueue . 4313
CustomRequestResponse 4313
CustomRequestState . 4313
CWCHAR . 4313
cycle consistency . 230

D
D . 643

keyword . 637
size prefix . 643

DA501 . 2975
DA502 . 3010

Digital/Analog input/output module 3010
dar file . 863
data

exchange . 352
record and trace . 421

DATA . 4313
data breakpoint . 395

condition . 1154
execution point . 1155

data persistence . 301
data record (see sample) 421
data security . 385
Data Set

IEC 61850 Server . 3895
data source . 363, 823

add . 822
add initially . 365
choose variables . 824
communication via address monitoring 831
communication via symbols 826
object . 823
OPC UA Client 376, 377, 834
symbolic access . 827
type . 363
type mapping . 825
update rate . 834
variables . 824

data source manager
general . 363

Index

2022/01/21 3ADR010583, 3, en_US 4435

Data Source Manager
object . 821

data source type
ApplicationV3 . 364
symbolic . 363

data type
__System.ExceptionCode 620
alias . 680
ANY . 651
BIT . 656
date and time . 650
enumeration . 676
integer . 647
LTIME . 650
message . 718
overflow underflow . 542
reference . 658
standard data types . 646
structure . 674
UNION . 681
user defined . 676
WSTRING . 655

data unit type . 835
DATA_TYPE . 4313
DataCopyToBlob . 4313
dataflow, pragma attribute 693
DataItem . 4313
DataItemAndPtrVectors 4313
DataItemBase . 4313
DataItemItfVector . 4313
DataItemList . 4313
DataItemListPublic . 4313
DataItemListPublicPersistant 4313
DataItemLocation . 4313
DataItemPtrVector . 4313
DataItemVector . 4313
Datalogging library . 2225
DataRepresentation . 4314
DataSet

IEC 61850 Server . 3895
Datasource . 4314
DataSourceError . 4314
DataSourceMonitoringState 4314
Datasources . 4314
DatasourcesAction . 4314

DatasourcesActionRecord 4314
DatasourceShutdownInfo 4314
DatasourcesMgr . 4314
DataSourcesQualityChecker 4314
DataSourceState . 4314
date . 650

constant . 637
data type . 650

DATE . 650
convert . 600
data type . 650
keyword . 637

date picker . 1690, 2108
visualization element 1690, 2108

date range picker 1680, 2099
visualization element 1680, 2099

DATE_AND_TIME . 650
data type . 650
keyword . 637

DATE_TO___UXINT . 600
DATE_TO___XINT . 600
DATE_TO___XWORD . 600
DATE_TO_BOOL . 600
DATE_TO_BYTE . 600
DATE_TO_DINT . 600
DATE_TO_DT . 600
DATE_TO_DWORD . 600
DATE_TO_INT . 600
DATE_TO_LDATE . 600
DATE_TO_LDT . 600
DATE_TO_LINT . 600
DATE_TO_LREAL . 600
DATE_TO_LTOD . 600
DATE_TO_LWORD . 600
DATE_TO_REAL . 600
DATE_TO_SINT . 600
DATE_TO_STRING . 600
DATE_TO_TIME . 600
DATE_TO_TOD . 600
DATE_TO_UDINT . 600
DATE_TO_UINT . 600
DATE_TO_ULINT . 600
DATE_TO_USINT . 600
DATE_TO_WORD . 600
DATE_TO_WSTRING . 600

Index

2022/01/213ADR010583, 3, en_US4436

date/time formats . 1710
format definition %t . 1710

date/time picker . 1703, 2122
visualization element 1703, 2122

DateConcat . 4314
DateSplit . 4314
DateTime . 4314
DATETIME_TO_RTS_SYSTIMEDATE 4314
DateTimeFromWeek . 4314
DateTimeProvider . 4314
DateTimeToString . 4314
DateTimeToTimestamp 4314
DAY . 4314
DayOfWeek . 4314
DAYS . 4314
DC522 . 2696
DC523 . 2706

Digital input/output module 2706
DC532 . 2717

Digital input/output module 2717
DC561 . 2569

Digital input/output module 2569
DC562 . 2577
DCC_SvcAppHook . 4314
DCF file . 1067
DCP_DeviceData . 4314
DCP_DeviceRole . 4314
DCP_Error . 4314
DCP_FilterData . 4314
DCP_FilterMode . 4314
DCP_FilterOptions . 4314
DCP_Get . 4314
DCP_GetOptions . 4314
DCP_Identify . 4314
DCP_Reset . 4314
DCP_ResetMode . 4314
DCP_Service . 4314
DCP_Set . 4314
DCP_SetData . 4314
DCP_SetOptions . 4314
DCS drives . 2157
DeallocStackAllocatedContentBuffer 4314
debug . 399

CFC editor . 516
flow control . 406

operating mode . 1046
run to cursor . 1052
set next statement . 1052
show next statement 1052
step out . 1051
using step into . 1051
using step over . 1050

debug mode . 399
DebugItfAddrToItfPtr . 4314
decimal

display mode when monitoring 1058
number . 633

decimal number
format definition %d, %i 1708

declaration . 4149
attribute, static analysis 4149
Auto Declare . 261
change order . 291
global variable . 229
go to . 287
refactoring . 291

declaration editor . 226, 461
edit declaration header 1121
option . 1190
show/hide . 1076
tabular/textual . 226

declare . 222
array . 228
automatic . 1201
short form feature . 262
task-local global variable list 230
variable, command . 975

Decode . 4314
DECODE_IOL_STATUS 4314
DecodeClass . 4314
DecodeEmcyCOBID . 4314
DecodeEvent . 4314
DecodeHeartbeatConsumerSettings 4314
DecodeLastRune . 4314
DecodePDOCOBID . 4314
DecodePDOMappingEntry 4314
DecodeRune . 4314
DecodeSyncCOBID . 4314
default keyboard shortcuts

visualization manager 1781

Index

2022/01/21 3ADR010583, 3, en_US 4437

DefaultAlarmFilterCriteria 4314
DefaultIParameterDB . 4314
DefaultIParData . 4314
define, pragma . 732
Definitions: PLC system start-up 2406, 3464
Deg2Rad . 4314
Delete . 4315

IEC 61850 Server . 3904
DELETE . 611, 4315
delete IL line . 1111
DeleteBuffer . 4315
DeleteInstance . 4315
DeleteReceiver . 4315
Demounting

AC500-eCo V3 CPUs 3360
dereferencing . 656
Derivative . 4315
DERIVATIVE . 4315
DeserializeHexReal . 4315
design attribute . 717
devdesc.xml . 1067
development system

appearance and behavior 180
customize user interface 180

Development System
Features . 178

device . 839
add . 1002
application . 845
configuration . 839
configuration mode . 1019
configure . 213
connect . 840
connection . 1044
conversion . 1151
database . 1067
devices view . 985
disable . 1017
encrypted communication 381, 840, 4122
favorite . 840
files . 848
function block instance 859
I/O mapping . 854
IEC objects . 859
insert . 1017

install . 452, 1067
interactive login . 1169
log . 848
map I/Os . 215
online config mode . 1019
options . 1169
PLC settings . 850
PLC shell . 436
plug . 1003
properties . 1169
scan . 840
scan hardware 1003, 1234, 3813
security . 381
send echo service . 840
simulation mode 394, 1044
symbol access . 868
uninstall . 1067
update . 1005
user management 385, 860, 863
wink . 840

DEVICE . 4315
device description

download . 1067
download, option . 1190
install . 1067

device diagnosis 1216, 4018, 4034, 4055
device ECAD data

command . 1069
device editor . 857

access rights . 863
add user . 861
applications . 845
backup and restore . 846
communication . 840
communication settings 840
encrypted communication 840
EtherCAT . 3815
EtherNet/IP . 1220
files . 441, 848
generic . 839
I/O mapping . 854
IEC objects . 859
information . 870
KNX . 3924
log . 848

Index

2022/01/213ADR010583, 3, en_US4438

options . 1190
parameters . 844
PLC settings . 850
PLC shell . 852
status . 870
symbol rights . 868
synchronized file . 847
task deployment . 869
users and groups . 860

Device list
Accessories . 2420
Communication modules 2412
Processor modules . 2410
S500 I/O modules . 2416
S500-eCo I/O modules 2415
Terminal bases . 2408
Terminal units . 2413

Device list: Accessories 2420
Device list: Communication modules 2412
Device list: Processor modules 2410
Device list: S500 I/O modules 2416
Device list: S500-eCo I/O modules 2415
Device list: Terminal bases 2408
Device list: Terminal units 2413
device permission management file 861, 864

dm . 861, 864
device reader . 1072
device repository . 1067

renew . 1067
device state 4011, 4012, 4017, 4025, 4035
device user

add . 1041
change password . 1043
logout current user . 1041
remove . 1042

device user management 385
device user management file 861, 864

dum2, dum . 861, 864
device version . 1183
DEVICE_INFO . 4315
DEVICE_STATE . 4035, 4315
DEVICE_TRANSITION_STATE 4315
DEVICE_TYPE . 4315
DeviceAR . 4315
DeviceAR_State . 4315

DeviceConfigUtil . 4315
DeviceDateTime . 4315
DeviceIdentification . 4315
DeviceInfo . 4315
DeviceIterator . 4315
devices view . 985
DeviceState . 4315
DeviceStatusT . 4315
DeviceTrace . 421

CPU load . 428
download . 1144
object . 948

DEVINFO . 4315
DI524 . 2729

Digital input module . 2729
DI561 . 2588

Digital input module . 2588
DI562 . 2594
DI571 . 2603

Digital input module . 2603
DI572 . 2611

Digital input module . 2611
DI581-S . 2429, 3454
Diag . 4315
Diag (function block) 4027, 4037
DIAG_HISTORY_TXT_TYPE 4315
DIAG_TXT_TYPE 4022, 4315
DIAG_VAL_TYPE 4021, 4315
Diag.NumClass . 4025
Diag.NumTotal . 4025
DiagAck . 4027, 4037
DiagGet... (method) 4027, 4037
DiagHistory . 4315
DiagHistoryValToTxt . 4315
DiagMessageFactory . 4315
diagnosis

acknowledge . 1005
device diagnosis 4018, 4055
fieldbus . 1216
PLC shell . 436
subtree . 1005
system diagnosis 4018, 4025
V3 . 4011

Diagnosis
AC522 . 2851

Index

2022/01/21 3ADR010583, 3, en_US 4439

VisuDrvModbusRTUBroadcast 2198
diagnosis description 4012, 4013, 4017, 4020
diagnosis message

V3 . 4011, 4012
diagnosis messages list

CM579-ETHCAT . 4074
CM579-PNIO . 4107
CM582-DP . 4102
CM592-DP . 4097
CPU . 4062
I/O bus . 4063
S500 I/O module . 4065

diagnosis system
V3 . 4011

DIAGNOSIS_INFO . 4315
DiagnosisDataBuffer . 4315
DiagnosisDataReader . 4315
DiagnosisDirection . 4315
DiagnosisInformationUSI 4315
DiagnosisRecordIndex . 4315
DiagnosisSeverity . 4315
DiagnosisSource . 4315
diagnostic messages list

CM579-ETHCAT . 4074
CM579-PNIO . 4107
CM592-DP . 4097

diagram
autofit Y-trace axis . 1137
mouse zooming . 1141

DiagValToTxt 4033, 4043, 4315
DiagVerifyTextListCallback 4315
dialog . 1338, 1343

calling in a visualization 1338
close, input action . 1750
implement with interface 1343
open, input action . 1750
opening globally in a visualization 1340
user management for visualization 1779

dialog manager . 1714
methods . 1714

Digital I/O modules . 2569
Digital/Analog I/O modules 2975
DINT . 647

convert . 572
DINT_TO___UXINT . 572

DINT_TO___XINT . 572
DINT_TO___XWORD . 572
DINT_TO_BIT . 572
DINT_TO_BOOL . 572
DINT_TO_BYTE . 572
DINT_TO_DATE . 572
DINT_TO_DT . 572
DINT_TO_DWORD . 572
DINT_TO_INT . 572
DINT_TO_LDATE . 572
DINT_TO_LDT . 572
DINT_TO_LINT . 572
DINT_TO_LREAL . 572
DINT_TO_LTIME . 572
DINT_TO_LTOD . 572
DINT_TO_LWORD . 572
DINT_TO_REAL . 572
DINT_TO_SIGNED . 4315
DINT_TO_SINT . 572
DINT_TO_STRING . 572
DINT_TO_TIME . 572
DINT_TO_TOD . 572
DINT_TO_UDINT . 572
DINT_TO_UINT . 572
DINT_TO_ULINT . 572
DINT_TO_USINT . 572
DINT_TO_WORD . 572
DINT_TO_WSTRING . 572
DintElement . 4315
DintElementFactory . 4315
DintSetBitBased . 4315
DintSetFull . 4315
DintToDintMap . 4315
DintVector . 4315
dip switch . 1610, 2034

visualization element 1610, 2034
DirClose . 4315
DirCopy . 4315
DirCreate . 4315
DirectAssigner . 4315
DirectIOBits8 . 4315
DirectIOBits16 . 4315
direction . 4315
Directory . 4315
DirFileTime . 4316

Index

2022/01/213ADR010583, 3, en_US4440

DirInfo . 4316
DirList . 4316
DirOpen . 4316
DirRemove . 4316
DirRename . 4316
disable breakpoint . 1050
DisableSyncService . 4316
disassembly file . 1027
disconnect

device . 1044
Disconnect . 4316
display generated code

cam, command . 350
display variant . 1354

configure . 1354
executing as integrated 1357
executing webvisu . 1355
maximum number . 1781
size of the paintbuffer 1780
TargetVisu . 1787
WebVisu . 1788

displaymode, pragma . 694
DIV . 549
division by zero 909, 910, 911
dm file

device permission management file 861, 864
DM1_Read . 4316
DM1_Write . 4316
DM2_Read . 4316
DM2_Write . 4316
DO . 469
DO524 . 2737

Digital output module 2737
DO526 . 2745
DO561 . 2620

Digital output module 2620
DO562 . 2629

Digital output module 2629
DO571 . 2638

Digital output module 2638
DO572 . 2648

Digital output module 2648
DO573 . 2658

Digital output module 2658
document . 1009

dongle . 203, 1063
encryption . 294
project settings . 1176

dot product . 670
download

command . 1041
device description from the server 1190
encrypt . 4123
encrypt code . 294
library from server . 1195
multiple . 1036
source code, project setting 1174
trace . 1138
user data, visualization 1785

download manager
command . 1036

download source code . 393
download to controller

multiple . 1036
DownloadDestination . 4316
DP_ADDR . 4316
DP_AINFO . 4316
DP_DEVICE_ID . 4316
DP_DIAG . 4316
DP_StationStatus1 . 4316
DP_StationStatus1_Diag 4316
DP_StationStatus2 . 4316
DP_StationStatus2_Diag 4316
DP_StationStatus3 . 4316
DP_StationStatus3_Diag 4316
DPM . 4316
DPM_2KB . 4316
DPM_8KB . 4316
DPM_BUS_DP . 4316
DPM_CARD_DESC . 4316
DPM_COM . 4316
DPM_DIAGNOSTICS . 4316
DPM_INIT_PARAMETERS 4316
DPM_SL . 4316
DPM_SL_DIAG . 4316
DPM_SL_PRM_ADD_TAB 4316
DPM_SL_PRM_CFG_DATA 4316
DPM_SL_PRM_DATA . 4316
DPM_SL_PRM_SET . 4316
DPM_SL_PRM_USR_DATA 4316

Index

2022/01/21 3ADR010583, 3, en_US 4441

DPSlaveDiag . 4316
DPT10 . 4316
DPT10_IEC_to_KNX . 4316
DPT10_KNX_to_IEC . 4316
DPT16_IEC_to_KNX . 4316
DPT16_KNX_to_IEC . 4316
DPT19 . 4316
DPT19_IEC_to_KNX . 4316
DPT19_KNX_to_IEC . 4316
DrawBitmapByID . 4316
DrawBitmapByIndex . 4316
DrawPolygon . 4316
DrawRect . 4316
DrawText . 4316
Drive parameter settings 2187
Driver . 4316
DriverCfg . 4316
DriverClose . 4316
DriverDiag . 4317
DriverGetSize . 4317
DriverOpenH . 4317
DriverOpenP . 4317
DRV_PDRIVE_PRM_REQ_ERROR 4317
DRV_PDRIVE_PRM_TYPE 4317
DrvControlACS . 4317
DrvControlCANCiA402 . 4317
DrvControlDCS . 4317
DrvControlModbusACS 4317
DrvControlModbusDCS 4317
DrvControlModbusEng . 4317
DrvDataType . 4317
DrvDataTypeInternal . 4317
DrvModbusRead . 4317
DrvModbusReadWrite23 4317
DrvModbusRtu . 4317
DrvModbusRtuBroadcast 4317
DrvModbusTcp . 4317
DrvModbusWrite . 4317
DrvModFct23Type . 4317
DrvModMastType . 4317
DrvModPara32Bit . 4317
DrvPdPrmDpv1DataType 4317
DrvPnRead . 4317
DrvPnWrite . 4317
DrvScaling . 4317

DS_DISK_STATUS . 4317
DS_EOL_INFO . 4317
DS_LIFETIME_USED . 4317
DT . 650

convert . 600
data type . 650
keyword . 637

DT_TO___XWORD . 600
DT_TO__UXINT . 600
DT_TO__XINT . 600
DT_TO_BOOL . 600
DT_TO_BYTE . 600
DT_TO_DATE . 600
DT_TO_DINT . 600
DT_TO_DWORD . 600
DT_TO_INT . 600
DT_TO_INT64 . 4317
DT_TO_ISO8601 . 4317
DT_TO_LDATE . 600
DT_TO_LDT . 600
DT_TO_LINT . 600
DT_TO_LREAL . 600
DT_TO_LTOD . 600
DT_TO_LWORD . 600
DT_TO_REAL . 600
DT_TO_REAL8 . 4317
DT_TO_SINT . 600
DT_TO_STRING . 600
DT_TO_TIME . 600
DT_to_Timestamp . 4317
DT_to_Timestamp2 . 4317
DT_TO_TOD . 600
DT_TO_UDINT . 600
DT_TO_UINT . 600
DT_TO_ULINT . 600
DT_TO_USINT . 600
DT_TO_WORD . 600
DT_TO_WSTRING . 600
DTC . 4317
DTCBufferWriter . 4317
DTCLogger . 4317
DTConcat . 4317
DTCProvider . 4317
DTR_CONTROL . 4317
DTSplit . 4317

Index

2022/01/213ADR010583, 3, en_US4442

DTToOpcDate . 4317
DTU_GETDATEANDTIME_PARAMS 4317
DTU_GETTIMEZONEINFORMATION_PARAMS
. 4317

DTU_SETDATEANDTIME_PARAMS 4317
DTU_SETTIMEZONEINFORMATION_PARAMS
. 4317

dum file . 860
dum2 file, dum file

device user management file 861, 864
Dummy . 4317
DummyJob . 4317
duplicated code . 4137
duplication . 1082

remove . 1087
SFC . 1082
SFC, set . 1087

duplication mode . 1082
DURATION . 4317
DURATION_TO_LTIME 4317
DURATION_TO_TIME . 4317
DUT . 835

add . 836
DUT_GPIOPin . 4317
DWORD . 647

convert . 572
DWORD_AS_BIT . 4317
DWORD_SEQ_LET . 4317
DWORD_SEQ_LT . 4318
DWORD_TO___UXINT . 572
DWORD_TO___XINT . 572
DWORD_TO___XWORD 572
DWORD_TO_BCD . 4318
DWORD_TO_BIT . 572
DWORD_TO_BOOL . 572
DWORD_TO_BYTE . 572
DWORD_TO_DATE . 572
DWORD_TO_DINT . 572
DWORD_TO_DT . 572
DWORD_TO_GRAY . 4318
DWORD_TO_HANDLE 4318
DWORD_TO_IDENT . 4318
DWORD_TO_INT . 572
DWORD_TO_LDATE . 572
DWORD_TO_LDT . 572

DWORD_TO_LINT . 572
DWORD_TO_LREAL . 572
DWORD_TO_LTIME . 572
DWORD_TO_LTOD . 572
DWORD_TO_LWORD . 572
DWORD_TO_PVOID . 4318
DWORD_TO_REAL . 572
DWORD_TO_SINT . 572
DWORD_TO_STRING . 572
DWORD_TO_TIME . 572
DWORD_TO_TOD . 572
DWORD_TO_UDINT . 572
DWORD_TO_UINT . 572
DWORD_TO_ULINT . 572
DWORD_TO_USINT . 572
DWORD_TO_WORD . 572
DWORD_TO_WSTRING 572
DwordVector . 4318
DX522 . 2754

Digital input/output module 2754
DX531 . 2766

Digital input/output module 2766
DX561 . 2670
DX571 . 2682
DX581-S . 2429, 3454
dynamic memory allocation 614
DynamicTextChangeLanguage 4318
DynamicTextGetCurrentLanguage 4318
DynamicTextGetDefaultText 4318
DynamicTextGetDefaultTextW 4318
DynamicTextGetText . 4318
DynamicTextGetTextW . 4318
DynamicTextIterateIndices 4318
DynamicTextLoadDefaultTexts 4318
DynamicTextRegisterFile 4318
DynamicTextRegisterPath 4318
DynamicTextReloadTexts 4318
DynamicTextUnRegisterFile 4318
DynamicTraceLoader . 4318
DynamicTraceLoaderRemote 4318

E
EAlarmStorageReaderErrors 4318
EAlarmTableParts . 4318
EAlarmType . 4318

Index

2022/01/21 3ADR010583, 3, en_US 4443

ECAT_402ParameterHoming_APP 4318
ECAT_CiA_Object_App 4318
ECAT_CiA402_Control_App 4318
ECAT_CiA402_TouchProbe_App 4318
ECAT_HomingOnTouchProbe_APP 4318
ECAT_Read_Byte_App 4318
ECAT_Read_Coe_List_App 4318
ECAT_Read_DInt_App 4318
ECAT_Read_Int_App . 4318
ECAT_Write_Byte_App 4318
ECAT_Write_Coe_List_App 4318
ECAT_Write_DInt_App . 4318
ECAT_Write_Int_App . 4318
EcatBusDiag . 4318
EcatBusGetDCMaxDeviation 4318
EcatBusSetState . 4318
EcatCoeRead . 4318
EcatCoeWrite . 4318
EcatDeviceIdentification 4318
EcatDeviceInfoData . 4318
EcatDeviceTypeIdentification 4318
EcatGetExtSyncInfo . 4318
EcatMasterGetCPULoad 4318
EcatMasterGetFrameLossCount 4318
EcatMasterGetMemInfo 4318
EcatMasterGetThresholdCount 4318
EcatMasterGetTimingInfo 4318
EcatRegisterRead . 4318
EcatRegisterWrite . 4318
EcatScanTopology . 4318
EcatScanTopologyStop 4318
EcatSlvDiag . 4319
EcatSlvGetDCInfo . 4319
EcatSlvGetMDPModules 4319
EcatSlvGetState . 4319
EcatSlvReadESCVersion 4319
EcatSlvReadLostLinkCnt 4319
EcatSlvReadRxErrorCnt 4319
EcatSlvSetState . 4319
EcatSoeRead . 4319
EcatSoeWrite . 4319
EcatStartCom . 4319
EcatState . 4319
EcatStopCom . 4319
EcatSync . 4319

EcatVendor . 4319
EcatVendorIDList . 4319
EcatVendorName2Device 4319
echo service . 840
ECM_IF_DC_CONTROL_STATUS_E 4319
ECM_IF_GET_SLAVE_DC_INFO_FLAGS_E . . 4319
EColorSetting . 4319
ECUSTATE . 4319
EDBActiveIndex . 4319
EDBType . 4319
eDeviceState . 4319
EdgeTriggeredBehaviourModelBase 4319
EdgeTriggeredTimingControlledBehaviourModel-
Base . 4319
edit code

format document . 984
editing mode

graphical editor . 462
editor

close all . 1073
close all (inactive applications) 1074
close all other . 1077
next . 1073
previous . 1073
visualization . 1772

Editor
IEC 61850 Server . 3885

EEthernetState . 4319
eFastCounter . 4319
EFillingStyle . 4319
EFilterCriteriaActivity . 4319
EFilterLatchContent . 4319
EFilterTimeRangeType . 4319
EImageStyle . 4319
EIP_CloseClass3Connection 4319
EIP_OpenClass3Connection 4319
EIP_SendClass3ConnectedMessage 4319
EIP_SendUnconnectedMessage 4319
ElaborateLatchFilterCriteria 4319
ElaborateTimeRangeFilterCriteria 4319
Electrical Connection

AC522 . 2836
element

selection, tab order . 1721
Element . 4319

Index

2022/01/213ADR010583, 3, en_US4444

element list
command, visualization 1721
tab, visualization . 1721

element properties . 987
SFC . 493

element property
visualization . 1775

elements for alarms acknowledgement 1744
ellipse . 1368, 1792

visualization element 1368, 1792
ELSE . 469
ELSIF . 469
EMCY_DATA . 4319
EMCY_ERROR . 4319
eModulName . 4319
empty box

insert . 1106
empty box with eno . 1106
EN/ENO

add . 1090
FBD/LD/IL . 505

enable
breakpoint . 1050

enable_dynamic_creation, pragma 695
EnableSyncService . 4319
Encode . 4319
EncodeEmcyCOBID . 4319
EncodeHeartbeatConsumerSettings 4319
EncodePDOCOBID . 4319
EncodePDOMappingEntry 4319
EncodeRune . 4319
EncodeSpec . 4319
EncodeSyncCOBID . 4319
encrypted communication

data source OPC UA Client 376, 377
device editor . 840

encryption . 453
application . 294
boot application . 4128
boot application, download, online change, cer-
tificate . 4123
certificate . 198
certificate, controller 4122
communication with PLC 381
dialog, security screen 995

dongle . 294
download code . 294
method . 453
project . 203
properties, application 1158
Security Agent . 4122
signature . 453
with certificate, instructions 208
wizard, boot application 4128

encryption wizard . 4128
boot application, download, online change . . 4123

END_ACTION . 747
END_CASE . 470
END_FOR . 469
END_FUNCTION . 747
END_FUNCTION_BLOCK 747
END_IF . 469
END_PROGRAM . 747
END_REPEAT . 472
END_STRUCT . 674
END_TYPE . 676
END_UNION . 681
END_VAR . 526
END_WHILE . 471
endianess . 736
ENDIANESS . 4319
EndpointDescriptionToString 4319
EndpointReceiver . 4319
ENDTRY' . 619
enlarging/reducing a pin group 716
EnqueuedRequest . 4320
entry action . 489

SFC, add . 1082
ENUM61850_BASIC_TYPES 4320
ENUM61850_CLOCK_SYNC_MODE 4320
ENUM61850_DataPoint_Type 4320
ENUM61850_SIM_MODE 4320
EnumAttributes . 4320
EnumCommand . 4320
enumeration . 676

conversion TO_STRING 728
data type . 676
default value . 676
initialization . 676
namespace . 630

Index

2022/01/21 3ADR010583, 3, en_US 4445

object DUT . 835
pragma strict . 678

EnumErrors . 4320
EnumUnitTest . 4320
EnumValues . 4320
EnXYChartClientActity . 4320
EnXYChartDataProviderAxisVar 4320
EnXYChartDataProviderCurveVar 4320
EnXYChartDataProviderVar 4320
EnXYChartUpdateType 4320
EOF . 4320
eParaState . 4320
EQ . 562
ERectSetting . 4320
Error . 4320
ERROR . 4036, 4320
error list

CM579-PNIO . 4107
CPU . 4062
I/O bus . 4063
I/O-bus . 4063
IO bus . 4063
S500 I/O module . 4065

Error list
CM579-ETHCAT . 4074

error message
V3 . 4011, 4012

ERROR_ID . 4022, 4320
ERROR_INFO . 4320
ErrorCode . 4320
ErrorCode1_RW . 4320
ErrorCodesOB . 4320
ErrorInjection . 4320
ErrorPLCHToString . 4320
ErrorToString . 4320
EShadowStyle . 4320
ESpecial_FP_Value . 4320
estimated-stack-usage, pragma 695
ETC_ADS_IoLinkRead . 4320
ETC_ADS_IoLinkWrite . 4320
ETC_CO_Emergency . 4320
ETC_CO_ERROR . 4320
ETC_CO_MODE . 4320
ETC_CO_SdoInfoGeEntryDescription 4320
ETC_CO_SdoInfoGetObjectDescription 4320

ETC_CO_SdoInfoGetODList 4320
ETC_CO_SdoRead . 4320
ETC_CO_SdoRead_Access 4320
ETC_CO_SdoRead_Channel 4320
ETC_CO_SdoRead4 . 4320
ETC_CO_SdoReadDWord 4320
ETC_CO_SdoWrite . 4320
ETC_CO_SdoWrite_Access 4320
ETC_CO_SdoWrite4 . 4320
ETC_CO_SdoWriteDWord 4320
ETC_FoE_Download . 4320
ETC_FoE_Upload . 4320
ETC_LASTERROR . 4320
ETC_MASTER_STATE 4320
ETC_SDO_INFO_LIST_TYPE 4320
ETC_SDO_INFO_OBJECT_CODE 4320
ETC_SLAVE_STATE . 4320
ETC_SoE_Cmd . 4320
ETC_SOE_ERROR . 4321
ETC_SoE_IDNRead . 4321
ETC_SoE_IDNRead4 . 4321
ETC_SoE_IDNWrite . 4321
ETC_SoE_IDNWrite4 . 4321
ETC_VoE_SendReceive 4321
ETCDeviceIdentMode . 4321
ETCERRORCODES . 4321
ETCMasterStack . 4321
ETCSlave . 4321
ETCSlave_Diag . 4321
ETCSlaveStack . 4321
ETH_MOD_FCT22_TYPE 4321
ETH_MOD_FCT23_TYPE 4321
EthDNSResolve . 4321
EtherCAT . 3815

bus cycle . 3831
generate xml file . 1017
I/O mapping . 3815
IEC objects . 3815
information . 3815
parameters . 3815
requirement . 3815
status . 3815

EtherCAT Master
general . 3816
parameters . 3819

Index

2022/01/213ADR010583, 3, en_US4446

sync unit assignment 3818
EtherCAT module

startup parameters . 3828
EtherCAT Slave

Ethernet connection 3827
expert mode process data 3823
FMMU/sync . 3822
general . 3819
IDN . 3825
parameters . 3827
process data, inputs/outputs 3825
SDO . 3825
startup parameters . 3825

EtherCATDevice . 4321
EthercatMaster_GetVersion 4321
Ethernet

EtherCAT connection 3827
Ethernet communication interface modules 2549
Ethernet over EtherCAT 3827
Ethernet protocols and ports for AC500 V3 prod-
ucts . 2389, 3515
EtherNet/IP . 1220

bus cycle . 1222
I/O mapping . 1220
IEC objects . 1220
NetX configuration . 1224
parameters . 1220
status . 1220

EtherNet/IP adapter
assemblies . 1228
connection tag . 1233
connections . 1226
general . 1225, 1232
new connection . 1227
select parameters . 1230
user parameters . 1229

EtherNet/IP configurator 1220
EtherNet/IP module

general . 1233
EtherNet/IP scanner . 1220
EtherNet/IP Scanner

general . 1223
I/O mapping . 1225
IEC objects . 1225

EtherNet/IP scanner NetX
general . 1224

EtherNet/IP target . 1220
EthernetState . 4321
EthIcmpPing . 4321
EthOwnIP . 4321
EthOwnIPInfo . 4321
EthSetOwnIP . 4321
EthSetRtoMin . 4321
ETHx_ICMP_PING . 4321
ETHx_MOD_CONFIG . 4321
ETHx_MOD_INFO . 4321
ETHx_MOD_MAST . 4321
ETHx_OWN_IP . 4321
ETHx_OWN_IP_INFO . 4321
ETraceGradientType . 4321
ETrendStorageGraphType 4321
ETrendStoragePenStyle 4321
ETrendStorageReaderErrors 4321
ETrendStorageReaderStep 4321
ETrig . 4321
ETrigA . 4321
ETrigATl . 4321
ETrigATlTo . 4321
ETrigATo . 4321
ETrigTl . 4321
ETrigTlA . 4321
ETrigTlTo . 4321
ETrigTo . 4321
ETrigToA . 4321
ETrigToTl . 4321
ETrigToTlA . 4321
ETS5 parameters . 3927
event . 4011
EVENT . 4321
EVENT_CLASS . 4321
EVENT_SOURCE . 4321
EventClose2 . 4321
EventCreate . 4321
EventCreate2 . 4321
EventCreateEventID . 4321
EventDelete2 . 4321
EventElementData . 4321
EventGetClass . 4322
EventGetEvent . 4322

Index

2022/01/21 3ADR010583, 3, en_US 4447

EventIdToString . 4322
EventListener . 4322
EventOpen . 4322
EventParam . 4322
EventParam2 . 4322
EventPost . 4322
EventPost2 . 4322
EventPostByEvent . 4322
EventPostByEvent2 . 4322
EventQueueAndElement 4322
EventRegisterCallback . 4322
EventRegisterCallback2 4322
EventRegisterCallbackFunction 4322
EventRegisterCallbackFunction2 4322
EventRegisteredCallbacks 4322
EventUnregisterCallback 4322
EventUnregisterCallbackFunction 4322
EventUnregisterCallbackFunction2 4322
EVT_BACNET_ACKALARM 4322
EVT_BACNET_ADDELEMENT 4322
EVT_BACNET_ADDRESSCHANGECALLBACK
. 4322

EVT_BACNET_BACKUPRESTOREPROGRESS-
CALLBACK . 4322
EVT_BACNET_CHANGEOFVALUEEVENTS . . 4322
EVT_BACNET_CLIENTEVENTCALLBACK 4322
EVT_BACNET_CLIENTSTATUSCALLBACK . . . 4322
EVT_BACNET_CLIENTUNSUBSCRIBECOM-
PLETECALLBACK . 4322
EVT_BACNET_CLIENTVALUECALLBACK 4322
EVT_BACNET_CONFCOVNOTIFICATION 4322
EVT_BACNET_CONFEVENTNOTIFICATION . . 4322
EVT_BACNET_CONFPRIVATEXFER 4322
EVT_BACNET_CONFTEXTMESSAGE 4322
EVT_BACNET_CREATEOBJECT 4322
EVT_BACNET_DCC . 4322
EVT_BACNET_DELETEOBJECT 4322
EVT_BACNET_GETALARMSUMMARY 4322
EVT_BACNET_GETENROLLMENTSUMMARY 4322
EVT_BACNET_GETEVENTINFO 4322
EVT_BACNET_IACTIONERRCALLBACK 4322
EVT_BACNET_IAM . 4322
EVT_BACNET_IHAVE . 4322
EVT_BACNET_INTRINSICEVENTS 4322
EVT_BACNET_LIFESAFETYOPERATION 4322

EVT_BACNET_NETWORKEVENTS 4322
EVT_BACNET_OBJECTIDCHANGECALLBACK
. 4322

EVT_BACNET_OSTIMEPROVIDERCALLBACK
. 4322

EVT_BACNET_READFILE 4322
EVT_BACNET_READPROPERTY 4322
EVT_BACNET_READPROPERTY_TO_STRING
. 4322

EVT_BACNET_READPROPERTYCALLBACK . 4322
EVT_BACNET_READPROPERTYMULT 4322
EVT_BACNET_READPROPERTYRELEASE-
CALLBACK . 4322
EVT_BACNET_READRANGE 4322
EVT_BACNET_REINITDEV 4322
EVT_BACNET_REMOVEELEMENT 4323
EVT_BACNET_STACKACTION 4323
EVT_BACNET_SUBSCRIBECOV 4323
EVT_BACNET_SUBSCRIBECOVPROPERTY . 4323
EVT_BACNET_TIMESYNC 4323
EVT_BACNET_UNCONFCOVNOTIFICATION . 4323
EVT_BACNET_UNCONFEVENTNOTIFICATION
. 4323

EVT_BACNET_UNCONFPRIVATEXFER 4323
EVT_BACNET_UNCONFTEXTMESSAGE 4323
EVT_BACNET_UTCTIMESYNC 4323
EVT_BACNET_WHOHAS 4323
EVT_BACNET_WHOIS 4323
EVT_BACNET_WRITEFILE 4323
EVT_BACNET_WRITEGROUP 4323
EVT_BACNET_WRITEPROPERTY 4323
EVT_BACNET_WRITEPROPERTY_TO_STRING
. 4323

EVT_BACNET_WRITEPROPERTYCALLBACK 4323
EVT_BACNET_WRITEPROPERTYCALLBACK2
. 4323

EVT_BACNET_WRITEPROPERTYMULT 4323
EVTPARAM_BeforeCheckFirmware 4323
EVTPARAM_CIFX_GetFirmware 4323
EVTPARAM_CIFX_LoadFirmware 4323
EVTPARAM_CIFX_xChannelClose 4323
EVTPARAM_CIFX_xChannelOpen 4323
EVTPARAM_CmpApp . 4323
EVTPARAM_CmpAppAllBootAppsLoaded 4323
EVTPARAM_CmpAppComm 4323
EVTPARAM_CmpAppCommCycle 4323

Index

2022/01/213ADR010583, 3, en_US4448

EVTPARAM_CmpAppConfig 4323
EVTPARAM_CmpAppDeny 4323
EVTPARAM_CmpAppDenyDelete 4323
EVTPARAM_CmpAppDenyLoadBootproject . . . 4323
EVTPARAM_CmpAppDenyStart 4323
EVTPARAM_CmpAppDenyStop 4323
EVTPARAM_CmpAppException 4323
EVTPARAM_CmpAppExit 4323
EVTPARAM_CmpAppOEMServiceTag 4323
EVTPARAM_CmpAppOperatingStateChanged . 4323
EVTPARAM_CmpAppPrepareLoadBootproject . 4323
EVTPARAM_CmpAppRegisterBootproject 4323
EVTPARAM_CmpAppReset 4323
EVTPARAM_CmpAppResetAllApplications 4323
EVTPARAM_CmpAppRetainBackupState 4323
EVTPARAM_CmpAppSourceDownload 4323
EVTPARAM_CmpAppStateChanged 4323
EVTPARAM_CmpAppStop 4323
EVTPARAM_CmpChS_ChannelClosed 4323
EVTPARAM_CmpChS_ChannelOpened 4323
EVTPARAM_CmpIecTask 4323
EVTPARAM_CmpIecTask2 4323
EVTPARAM_CmpIoMgr 4323
EVTPARAM_CmpLogAdd 4323
EVTPARAM_CmpMgr_DisableOperation 4323
EVTPARAM_CmpMgr_LicenseRequest 4323
EVTPARAM_CmpMgr_PrepareExitCommPro-
cessing . 4323
EVTPARAM_CmpMgr_Shutdown 4324
EVTPARAM_CmpOPCUAServerSession-
sChanged . 4324
EVTPARAM_CmpSrv . 4324
EVTPARAM_CmpSupervisor_StateChanged . . . 4324
EVTPARAM_CmpTraceMgr_Packet 4324
EVTPARAM_CmpTraceMgr_Record 4324
EVTPARAM_CmpXMLData 4324
EVTPARAM_CmpXMLEnd 4324
EVTPARAM_CmpXMLStart 4324
EVTPARAM_DownloadProgress 4324
EVTPARAM_PacketConfirmation 4324
EVTPARAM_PacketIndication 4324
EVTPARAM_PacketUnhandled 4324
EVTPARAM_PlcShellCommand 4324
EVTPARAM_UploadProgress 4324

example project with Automation Builder and
AC500 AC500 V3 products 63, 109, 124
ExampleDataModel . 4324
exception

stop execution . 1043
Exception

catch in IEC code . 619
exception error, see exception 619
exception handling . 619

display variant . 1355
ExceptionCodes . 4324
exchange localization files

project . 211
execute . 507

ST code in FBD/LD/IL 507
execute command . 1752

input action . 1752
execution order . 242

by data flow . 242
CFC . 242
end with selected elements 1093
move down . 1094
move up . 1093
order by data flow . 1095
selected elements to front 1092
set number of element 1094
set start of feedback in CFC POU 1092
show tags . 1092

execution point . 1155
EXIT . 473
exit action . 489

add, SFC . 1082
EXP . 608
expand all . 971
expandfully, pragma . 698
expert mode process data

EtherCAT Slave . 3823
export . 4324

library . 451
library from Library Manager 1120
library from repository 1061

Export Server
IEC 61850 . 3903

export/import
I/O mapping . 1019

Index

2022/01/21 3ADR010583, 3, en_US 4449

PLCopen XML . 193
PLCopenXML . 1015
text list . 1133
XML . 193

Exportieren . 1014
exporting C-functions . 1026
expression, ST . 464
ExpressionResult . 4324
ExpSubmodule . 4324
EXPT . 608

operator . 608
ExST . 254

reset . 466
Set . 465

EXT . 260, 1159
extend memory profile . 958
extend profile . 958
extended diagnosis . 4012
Extended Structured Text 254
EXTENDS . 311
external file . 838

properties . 1161
external implementation . 260

configuration . 1159
external variable . 533
EXTRACT . 4324
extract archive . 961

F
F_TRIG . 4324
FactoryBase . 4324
FailureReadRequest . 4324
FALSE . 633
FaultStatus . 4324
FB_Exit . 748

method . 748
FB_Init . 748

method . 748
FB_Reinit . 748

method . 748
FbChangeVisu . 4324
FbCloseDialog . 4324
FBD . 235

option . 1192
programming in . 237

FBD/LD/IL
insert assignment, . 1105
insert box . 1105
insert empty box with en/eno 1106
insert input . 1107
insert jump . 1107
insert jump label . 1107
insert network . 1104
insert network below 1105
insert return . 1107
online operation . 499
view as function block diagram 1115
view as instruction list 1115
view as ladder logic . 1115

FBD/LD/IL editor . 495
line branch . 1114
toolbar . 462

FBFileTransfer . 4324
fbIEC61850_Subs_ASN1_CheckData 4324
fbIEC61850_Subs_ASN1_Decoder 4324
fbIEC61850_Subs_ASN1_Decoder_CheckDa-
taNum . 4324
fbIEC61850_Subs_ASN1_Decoding_Data 4324
fbIEC61850_Subscriber 4324
FbIterateClients . 4324
FbOpenDialog . 4324
FbOpenDialogExtended 4324
FctIncreaseElemRectForLine 4324
FctPointIntersectsRectangle 4324
FD_CLR . 4324
Features

Development System 178
fieldbus devices . 1217
fieldbus diagnosis . 1216
file

add . 838
download during application download 847
link to object . 1166
save . 209
save as . 209
to and from PLC . 441
transfer, input action 1758

file transfer
configure mode . 1359
visualization - PLC . 1758

Index

2022/01/213ADR010583, 3, en_US4450

File transfer
on controller and visualization 1780

FILE_DIR_ENTRY . 4324
FILENAME . 4324
FileNameString . 4324
files

device editor . 848
filing

project . 200
FillNodeInfoInt . 4324
FINAL . 881
FINALLY . 619
find . 966

find next (selection) . 968
find previous (selection) 969
in help . 1078
next . 968
previous . 968

FIND . 4324
Find2 . 4324
FindBlock . 4324
FindByte . 4324
Firmware update

with IP configuration tool 3681, 3728
FIRMWAREINFO . 4324
flag memory . 643
flash . 820

external memory . 820
FlatClass . 4324
FlatCreateH . 4324
FlatCreateP . 4324
FlatDelete . 4324
FlatDisable . 4324
FlatEnable . 4324
FlatGetSize . 4324
FlatRead . 4325
FlatTest . 4325
FlatUpdate . 4325
FLOAT . 4325
FLOAT_TO_LREAL . 4325
FLOAT_TO_REAL . 4325
floating-point number . 648

constant . 634
format definition %f, %e 1709

Floor . 4325

FloorF . 4325
flow control . 406, 1056
Flush . 4325
FMI . 4325
FMMU/sync

EtherCAT Slave . 3822
fmod . 4325
font

visualization manager 1786
visualization, language 1289

FOR . 469
force . 401

force values . 1053
handling in watch list . 987
in CFC . 1101
watch all forces . 403

forcing
add all forces to watchlist 988
prepare value . 1153

format definition
in output text, visualization 1708

format document . 984
format code . 984

FORMAT_MODE . 4325
FormatDateTime . 4325
FormatTimestamp . 4325
FormatTimestamp2 . 4325
FormatTypedValue . 4325
frame . 1432, 1856

selection, visualization command 1727
switch visualization, input action 1756
switch visualizations in a frame via follow-up
actions . 1326
switch visualizations in a frame with a variable
. 1322

update parameters, visualization 1746
visualization element 1432, 1856

Frame
select visualizations 1727

frame visualization . 1322
FrameManager . 4325
FrameRegistrationData 4325
FreeMessage . 4325
FreeStackAllocatedMemory 4325
FreeXMLParser . 4325

Index

2022/01/21 3ADR010583, 3, en_US 4451

FREQ_MEASURE . 4325
FromBACnetBitString . 4325
FromBACnetBoolean . 4325
FromBACnetDate . 4325
FromBACnetDateRange 4325
FromBACnetDateTime . 4325
FromBACnetDevObjPropReference 4325
FromBACnetSetpointReference 4325
FromBACnetString . 4325
FromBACnetTime . 4325
FromBACnetTimeStamp 4325
FSLState . 4325
FTP server . 3917
full screen mode . 1000
function . 886

call . 886
call via event . 938
call with external implementation 260
monitor . 415
reaction to type change 689

FUNCTION . 886
function as operand . 645
function block . 883

add input, CFC . 525
add output, CFC . 525
assignment, info . 707
call . 883
call with external implementation 260
call, ST . 474
extend . 311
I/O channel . 218
I/O channel, mapping 859
I/O mapping 218, 707, 854
implement interface . 313
initialization on call . 704
map I/O channel . 854
monitor . 412
monitor with properties 414
property . 897
select for I/O mapping 1150
test, reflection . 727

function block diagram . 235
function extraction . 4136
FUNCTION_BLOCK . 883

functionality
AC522 . 2835

FunctionCodes . 4325
funIEC61850_GetReportHeaderLen 4325
funIEC61850_MMSTYPE_TO_STRING 4325
funIEC61850_Subs_Bits_SwapRight 4325
funIEC61850_Subs_InitDatapoint 4325
funIEC61850_SubsCheckDataNum 4325

G
gateway

add . 840
block driver . 1125
configuration . 1125
configuration file . 1125
manage . 840

gateway.cfg . 1125
GE . 562
GEN . 4325
GEN_MODE . 4325
general

EtherCAT Master . 3816
EtherCAT Slave . 3819
EtherNet/IP adapter 1225, 1232
EtherNet/IP module . 1233
EtherNet/IP Scanner 1223
EtherNet/IP scanner NetX 1224
KNX . 3925, 3926

Generate code
IEC 61850 Server . 3903

Generic_Service . 4325
gesture

for operating a visualization 1269
get

access method, interface 894
Get

accessor method . 897
Get_Attribute_Single . 4325
Get_Attributes_All . 4325
GET_CANOPEN_KERNEL_STATE 4325
GET_LOCAL_NODE_ID 4325
GET_STATE . 4325
Get... (method) . 4027, 4037
GetAttribute . 4325
GetBACnetDataTypeSize 4325

Index

2022/01/213ADR010583, 3, en_US4452

GetBACnetPropertyDataType 4325
GetBaudrate . 4325
GETBIT . 4325
GetBitStringFromContents 4325
GetBitValue . 4325
GetBooleanProperty . 4325
GetBoolFromContents . 4326
GetBufferSize . 4326
GetBusAlarm . 4326
GetBusError . 4326
GetBusload . 4326
GetBusScan . 4326
GetBusState . 4326
GetCallback . 4326
GetCallbackTypeOfEventId 4326
GetCBTypeOfEventId . 4326
GetCertHandle . 4326
GetCertRenewTime . 4326
GetChar . 4326
GetCiAState . 4326
GetClass . 4326
GetClassInfo . 4326
GetClientInterface . 1715
GetCompany . 4326
GetConfigType . 4326
GetConnectionInfo . 4326
GetConnectionState . 4326
GetControllerNode . 4326
GetCurrentUtcOffset . 4326
GetDateAndTime . 4326
GetDateFromContents . 4326
GetDateRangeFromContents 4326
GetDateTime . 4326
GetDateTimeFromContents 4326
GetDayOfWeek . 4326
GetDeviceError . 4326
GetDeviceInfo . 4326
GetDeviceNode . 4326
GetDevObjPropReferenceFromContents 4326
GetDiagnosis . 4326
GetDialog . 1715
GetElapsedTimeInNSec 4326
GetElapsedTimeInUSec 4326
GetEventIdOfCallbackType 4326
GetEventIdOfCBType . 4326

GetHandleOfCallback . 4326
GetHostname . 4326
GetID . 4326
GetIDeviceInstByIoAddr 4326
GetInfo . 4326
GETIO_PART . 4326
GetIPAddress . 4326
GetLatchVarColumnID . 4326
GetLibVersion . 4326
GetLibVersionNumber . 4326
GetLINTValue . 4326
GetLINTValue2 . 4326
GetLINTValue3 . 4326
GetLocalDateTime . 4326
GetLocalTime . 4326
GetLostCounter . 4326
GetLrealFromContents . 4326
GetLRealSpecialVal . 4326
GetMessageDataPointer 4327
GetMessageId . 4327
GetMessageLength . 4327
GetMsgCount . 4327
GetNetId . 4327
GetNextNode . 4327
GetNodeDepth . 4327
GetNumberActiveCallbacks 4327
GetNumberProperty . 4327
GetObjectIDFromContents 4327
GetParent . 4327
GetPlcIdent . 4327
GetPos . 4327
GetProperty . 4327
GetRealFromContents . 4327
GetRealSpecialVal . 4327
GetReceiveCounter . 4327
GetReceiveErrorCounter 4327
GetReceivePoolSize . 4327
GetReceiveQueueLength 4327
GetRedundancyState . 4327
GetRoot . 4327
GetSetpointReferenceFromContents 4327
GetSignedFromContents 4327
GetSize . 4327
GetSpecificDeviceError 4327
GetState . 4327

Index

2022/01/21 3ADR010583, 3, en_US 4453

GetSubmoduleDiagnosis 4327
GetSupplierVersion . 4327
GetSyncInformation . 4327
GetSystemTimeZone . 4327
GetText . 4327
GetTextListInfo . 4327
GetTextProperty . 4327
GetTextProperty2 . 4327
GetTextW . 4327
GetTick . 4327
GetTime . 4327
GetTimeFromContents . 4327
GetTimeStamp . 4327
GetTimeStampsDifference 4327
GetTimeZoneInformation 4327
getting started

display histogram . 2138
trend visualization . 1309

GetTitle . 4327
GetTransmitCounter . 4327
GetTransmitErrorCounter 4327
GetTransmitPoolSize . 4327
GetTransmitQueueLength 4327
GetUnitTestStatus . 4327
GetUnsignedFromContents 4327
GetVersion . 4327
GetVersionProperty . 4327
GetWStringFromContents 4327
global namespace operator 629
global network variable list 360
global text list

add language and translate text 266
check . 270
compare and export differences 268
create . 1132
create again with current IDs 270
enter text in visualization element 269
export . 266
for static application . 269
import file . 267
object . 871
remove text list entries 270
update ID . 270
update with replacement file 271

global variable . 531
declare . 229

global variable list . 871
declare task-local . 230
task-local . 872

global variables list
namespace . 629

global_init_slot, pragma . 699
GlobalImagePool . 274
GlobalTextList . 4327
go to

definition, how to . 287
line . 970
matching bracket . 971
network . 1116

go to definition
command . 979

go to source position . 986
GOOSE Publisher

IEC 61850 Server . 3898
GOOSE Subscriber

IEC 61850 Server . 3900
GPIOSysfs . 4327
GPIOSysfsDiag . 4327
gradient editor

visualization . 1748
graphical editor toolbar . 462
GRAY_TO_BYTE . 4328
GRAY_TO_DWORD . 4328
GRAY_TO_WORD . 4328
grid

visualization . 1764
group . 860

CFC, create . 1100
CFC, remove . 1101
configure, visualization 1283
create for the first time, visualization 1282
in the visualization editor 1726
user management . 199
user management, visualization 1782

group box . 1480, 1904
visualization element 1480, 1904

grouping
ungrouping, visualization editor 1727

GSD file . 1067

Index

2022/01/213ADR010583, 3, en_US4454

GT . 561
GuidHelper . 4328
GVL . 871

declare task-local . 230
namespace . 629
property . 897
task-local . 872

H
HA-Modbus TCP

System Technology . 2234
HaModAIO . 4328
HaModCallbackStop . 4328
HaModControl . 4328
HaModCtd . 4328
HaModCtu . 4328
HaModCtud . 4328
HaModDataSync . 4328
HaModDerivative . 4328
HaModDiag . 4328
HaModDIO . 4328
HaModEthFrame . 4328
HaModEthFrameHeader 4328
HaModIntegral . 4328
HaModPid . 4328
HaModPidFixCycle . 4328
HaModRampInt . 4328
HaModRampReal . 4328
HaModStatus . 4328
HaModStatusLifecom2 . 4328
HaModStatusPlc . 4328
HaModTof . 4328
HaModTon . 4328
HaModVisuData . 4328
HANDLE . 4328
HANDLE_TO_DWORD 4328
HANDLE_TO_LWORD . 4328
HANDLE_TO_WORD . 4328
HandleChannelError . 4328
HandleReply . 4328
HandleStore . 4328
HasAlarmStorageRecordLimit 4328
hasattribute, pragma . 732
hasconstantvalue, pragma 732
HashCodeFromString . 4328

HashCodeFromWString 4328
HashTable . 4328
HashTableFactory . 4328
hastype, pragma . 732
HEADER_TAG . 4328
HeapInspectionInfo . 4328
help

language . 1195
offline help . 1194
online help . 1194

hexadecimal
display mode when monitoring 1058
number . 633

hexadecimal number
format definition %x, %llx 1708

HEXinASCII_TO_BYTE 4328
HexStrToLReal . 4328
HexStrToReal . 4328
hide windows . 185
hide_all_locals, pragma . 703
hide, pragma . 700
High performance range 3449
HighByte . 4328
HighWord . 4328
HIL_LiveList . 4328
HilscherCardMgr . 4328
histogram . 1595, 2019

configure . 2138
visualization element 1595, 2019

HistoricalActiveAlarmRowID 4328
history . 4328
HOSTNAME . 4328
HOUR . 4328
HYSTERESIS . 4328
Hysteresis_DINT . 4328
Hysteresis_LREAL . 4328

I
I . 643

memory range prefix . 643
I/O channel

function block . 218
IEC objects . 859
map to function block 854
map to variable . 854

Index

2022/01/21 3ADR010583, 3, en_US 4455

select function block 1150
I/O configuration

AC522 . 2846
I/O mapping 214, 1217, 3639

all devices . 221
change address . 219
device editor . 854
edit . 1018
EtherCAT . 3815
EtherNet/IP . 1220
EtherNet/IP Scanner 1225
export to CSV . 1019
force . 221
function block . 218
import from CSV . 1018
KNX . 3924
monitoring . 220
procedure . 215
select function block 1150
task deployment . 408
update . 220

I/O module
general . 3836

I/O modules . 2416, 2569
IAbortable . 4329
IAC500Diag . 4329
IAC500DiagGet . 4329
IACAlarmExtender . 4329
IACAlarmExtender2 . 4329
IACAlarmExtender3 . 4329
IActionController . 4329
IActionController2 . 4329
IActionProvider . 4329
IAddressResolver . 4329
IAlarm . 4329
IAlarm2 . 4329
IAlarm3 . 4329
IAlarm4 . 4329
IAlarm5 . 4329
IAlarmClass . 4329
IAlarmConfiguration7 . 4329
IAlarmGroup . 4329
IAlarmGroup3 . 4329
IAlarmHandler . 4329
IAlarmHandler2 . 4329

IAlarmHandler3 . 4329
IAlarmHandler4 . 4329
IAlarmHandler5 . 4329
IAlarmHandlerRemoteMonitor 4329
IAlarmManagerClient . 4329
IAlarmManagerClient2 . 4329
IAlarmNotifiable . 4329
IAlarmRemote . 4329
IAlarmStateChangedEventListener 4329
IAlarmStateChangedListener 4329
IAlarmStateChangedListener2 4329
IAlarmStorageListener . 4329
IAlarmStorageReaderConsumer 4329
IAlarmStorageReaderConsumer2 4329
IApplicationRectangleProvider 4329
IARPCallback . 4329
IARPEthernetClient . 4329
IArrayNotifiable . 4329
IAsyncActionProvider . 4329
IAsyncProperty . 4329
IBackgroundTask . 4329
IBACnetClient . 4329
IBACnetEventConsumer 4329
IBACnetObjectBase . 4329
IBACnetPersistence . 4329
IBACnetPropertyConfiguration 4329
IBACnetServer . 4329
IBACnetServerPlugin . 4329
IBACnetServerPluginCallback 4329
IBACnetServerPluginHook 4329
IBACnetStaticObjectBase 4329
IBase . 4329
IBehaviourModel . 4329
IBoolElement . 4329
IBranchTreeNode . 4330
IBuffer . 4330
IBufferPool . 4330
IBufferPoolFactoryArgs 4330
IBus . 4330
ICallOnDialogBlocks . 4330
ICallOnVisuBlocks . 4330
ICANopenEventHandler 4330
ICanOpenStack . 4330
ICascadedDisposalProvider 4330
ICDSV3RequestBuilder 4330

Index

2022/01/213ADR010583, 3, en_US4456

ICDSV3RequestCallback 4330
ICertificateVerifier . 4330
ICleanupActionProvider 4330
IClient . 4330
IClientObjectInfo . 4330
IClippingLayer . 4330
ICmpEventCallback . 4330
ICmpIoDrv . 4330
ICmpIoDrvBusControl . 4330
ICmpIoDrvBusControl2 4330
ICmpIoDrvCIPServices 4330
ICmpIoDrvLiveList . 4330
ICmpIoDrvParameter . 4330
ICmpIoDrvParameter2 . 4330
ICmpIoDrvPbSlaveActivation 4330
ICmpIoDrvProfibus . 4330
ICmpIoDrvProfibusConfig 4330
ICmpIoDrvProfiNet . 4330
ICollection . 4330
ICompactTextListInfo2 . 4330
ICompleteSurroundingRectInfo 4330
IConfigurationProvider . 4330
IConfigurationProvider2 4330
IConnection . 4330
IContainerPaintSelf . 4330
IContainsValue . 4330
ICursor . 4330
ICursor2 . 4330
ICursor3 . 4330
ICursorAsync . 4330
ICustomAlarmToOpcUaMapping 4330
ICustomEventHandler . 4330
ICyclicActionProvider . 4330
ID . 4330
ID_TO_ADDR . 4330
IData . 4330
IDataItemCompound . 4330
IDataItemListInternal . 4330
IDatasourcesActionRecordInternal 4330
IDatasourcesResourceEntryAllocator 4330
IDateTimeLanguageTextTarget 4330
IDateTimeProvider . 4330
IDENT . 4330
IDENT_TO_DWORD . 4330
IDENT_TO_WORD . 4331

Identifier
alias . 658

identifiers
rules . 740
search order . 745

IDevice . 4331
IDevice2 . 4331
IDeviceCM579EtherCAT 4331
IDeviceCM582Profibus . 4331
IDeviceCM589Profinet . 4331
IDeviceCM592Profibus . 4331
IDeviceCM598Can . 4331
IDeviceSM560 . 4331
IDialogCloseListener . 4331
IDialogCloseListenerWithTag 4331
IDialogManager2 . 4331
IDialogManager3 . 4331
IDialogManager4 . 4331
IDialogManager5 . 4331
IDialogManager6 . 4331
IDialogManager7 . 4331
IDialogManager8 . 4331
IDintElement . 4331
IDintSet . 4331
IDisposable . 4331
IDoubleLinkedList . 4331
IDrawSequentially . 4331
IEC 61850

Export Server . 3903
write . 3902

IEC 61850 server
control direction . 3902
Logical Name Classes (LNC) 3904
monitoring direction . 3902
read . 3902
Report . 3896
RW . 3902

IEC 61850 Server
add . 3877
Configuration . 3885
creation . 3886
DataSet . 3895
delete . 3904
Editor . 3885
functionalities . 3906

Index

2022/01/21 3ADR010583, 3, en_US 4457

Generate code . 3903
GOOSE Publisher . 3898
GOOSE Subscriber . 3900
Import Server . 3903
Options . 3903
Properties . 3888
Quickstart . 3877
Reset . 3904
status bar . 3893
Trigger option . 3893
variable . 3888

IEC 61850 Sever
Information . 3902

IEC action
SFC . 488

IEC application
device diagnosis . 4034
device state diagnosis 4025, 4035

IEC objects
device editor . 859
EtherCAT . 3815
EtherNet/IP . 1220
EtherNet/IP Scanner 1225
KNX . 3924

IEC task . 3467
IEC_BACNET_ABORT_REASON 4331
IEC_BACNET_ACCESS 4331
IEC_BACNET_ACCESS_AUTHENTICA-
TION_FACTOR_DISABLE 4331
IEC_BACNET_ACCESS_CREDENTIAL_DIS-
ABLE . 4331
IEC_BACNET_ACCESS_CREDENTIAL_DIS-
ABLE_REASON . 4331
IEC_BACNET_ACCESS_EVENT 4331
IEC_BACNET_ACCESS_PASSBACK_MODE . . 4331
IEC_BACNET_ACCESS_RULE 4331
IEC_BACNET_ACCESS_RULE_LOCA-
TION_SPECIFIER . 4331
IEC_BACNET_ACCESS_RULE_RANGE_SPECI-
FIER . 4331
IEC_BACNET_ACCESS_USER_TYPE 4331
IEC_BACNET_ACCESS_ZONE_OCCU-
PANCY_STATE . 4331
IEC_BACNET_ACCUMULATOR_RECORD . . . 4331
IEC_BACNET_ACCUMULATOR_STATUS 4331
IEC_BACNET_ACK_ALARM_INFO 4331

IEC_BACNET_ACK_FILTER 4331
IEC_BACNET_ACTION 4331
IEC_BACNET_ACTION_COMMAND 4331
IEC_BACNET_ACTION_LIST 4331
IEC_BACNET_ADDRESS 4331
IEC_BACNET_ADDRESS_BINDING 4331
IEC_BACNET_ADDRESS_TO_STRING 4331
IEC_BACNET_ALARM_INFO 4331
IEC_BACNET_ALARM_SUMMARY 4331
IEC_BACNET_APDU_PROPERTIES 4331
IEC_BACNET_ARRAY_INDEX 4331
IEC_BACNET_ASSIGNED_ACCESS_RIGHTS 4331
IEC_BACNET_AUTHENTICATION_FACTOR . . 4331
IEC_BACNET_AUTHENTICA-
TION_FACTOR_FORMAT 4331
IEC_BACNET_AUTHENTICA-
TION_FACTOR_TYPE . 4331
IEC_BACNET_AUTHENTICATION_POLICY . . . 4331
IEC_BACNET_AUTHENTICA-
TION_POLICY_DATAINPUT 4331
IEC_BACNET_AUTHENTICATION_STATUS . . 4332
IEC_BACNET_AUTHORIZATION_MODE 4332
IEC_BACNET_BACKUP_STATE 4332
IEC_BACNET_BACKUPRESTORE_INFO 4332
IEC_BACNET_BINARY_PV 4332
IEC_BACNET_BIT_STRING 4332
IEC_BACNET_BOOLEAN 4332
IEC_BACNET_BUFFER 4332
IEC_BACNET_BVLL_BDT_ENTRY 4332
IEC_BACNET_BVLL_DELETE_FDT 4332
IEC_BACNET_BVLL_DISTRIBUTE_NPDU 4332
IEC_BACNET_BVLL_FDT_ENTRY 4332
IEC_BACNET_BVLL_FORWARDED_NPDU . . . 4332
IEC_BACNET_BVLL_READ_BDT 4332
IEC_BACNET_BVLL_READ_FDT 4332
IEC_BACNET_BVLL_RESULT_CODE 4332
IEC_BACNET_BVLL_TYPE 4332
IEC_BACNET_BVLL_WRITE_BDT 4332
IEC_BACNET_BYTE . 4332
IEC_BACNET_CALENDAR_ENTRY 4332
IEC_BACNET_CALENDAR_ENTRY_TYPE . . . 4332
IEC_BACNET_CALLBACK_STATUS 4332
IEC_BACNET_CALLBACK_TYPE 4332
IEC_BACNET_CB_STATUS 4332
IEC_BACNET_CB_TYPE 4332

Index

2022/01/213ADR010583, 3, en_US4458

IEC_BACNET_CHANGE_LIST_INFO 4332
IEC_BACNET_CHANNEL_VALUE 4332
IEC_BACNET_CLI_INIT 4332
IEC_BACNET_CLIENT_COV 4332
IEC_BACNET_CLIENT_DEVICE_COMM_STATE
. 4332

IEC_BACNET_CLIENT_SUBSCRIBE_MODE . . 4332
IEC_BACNET_CONF_SERV_REQUEST 4332
IEC_BACNET_CONTROL_RANGECHK 4332
IEC_BACNET_CONTROL_REDUNDANT 4332
IEC_BACNET_CONTROL_STATS 4332
IEC_BACNET_COV_NOTIF_INFO 4332
IEC_BACNET_COV_SUBSCRIPTION 4332
IEC_BACNET_CREATE_OBJECT_INFO 4332
IEC_BACNET_CREATE_OBJECT_TYPE 4332
IEC_BACNET_CREDENTIAL_AUTHENTICA-
TION_FACTOR . 4332
IEC_BACNET_DAILY_SCHEDULE 4332
IEC_BACNET_DATA_TYPE 4332
IEC_BACNET_DATABASE_INFO 4332
IEC_BACNET_DATE . 4332
IEC_BACNET_DATE_RANGE 4332
IEC_BACNET_DATE_TIME 4332
IEC_BACNET_DATE_TIME_TO_STRING 4332
IEC_BACNET_DATE_TO_STRING 4332
IEC_BACNET_DAY_OF_WEEK 4332
IEC_BACNET_DAY_OF_WEEK_BITS 4332
IEC_BACNET_DCC_INFO 4332
IEC_BACNET_DCC_VALUE 4332
IEC_BACNET_DDX_DDV_SIZE 4332
IEC_BACNET_DESTINATION 4332
IEC_BACNET_DEV_OBJ_PROP_REFERENCE
. 4332

IEC_BACNET_DEV_OBJ_PROP_VALUE 4333
IEC_BACNET_DEV_OBJ_REFERENCE 4333
IEC_BACNET_DEVICE_STATUS 4333
IEC_BACNET_DOOR_ALARM_STATE 4333
IEC_BACNET_DOOR_SECURED_STATUS . . . 4333
IEC_BACNET_DOOR_STATUS 4333
IEC_BACNET_DOOR_VALUE 4333
IEC_BACNET_DOUBLE 4333
IEC_BACNET_DUMP_REPORT_FLAGS 4333
IEC_BACNET_DUMP_STATE 4333
IEC_BACNET_DWORD 4333
IEC_BACNET_ELEMENT_COUNT 4333

IEC_BACNET_EN_CONDITIONAL 4333
IEC_BACNET_EN_MANDATORY 4333
IEC_BACNET_EN_MANDATORY_TO_STRING
. 4333

IEC_BACNET_ENGINEERING_UNITS 4333
IEC_BACNET_ENROLLMENT_FILTER 4333
IEC_BACNET_ENROLLMENT_INFO 4333
IEC_BACNET_ENROLLMENT_SUMMARY 4333
IEC_BACNET_ENUM . 4333
IEC_BACNET_EP_ACCESS_EVENT_PARAM 4333
IEC_BACNET_EP_BUF_READY_PARAM 4333
IEC_BACNET_EP_CHG_OF_BITS_PARAM . . . 4333
IEC_BACNET_EP_CHG_OF_CHAR-
STRING_PARAM . 4333
IEC_BACNET_EP_CHG_OF_STAT_FLG_PARA
M . 4333
IEC_BACNET_EP_CHG_OF_STATES_PARAM 4333
IEC_BACNET_EP_CMD_FAIL_PARAM 4333
IEC_BACNET_EP_COLS_PARAM 4333
IEC_BACNET_EP_COV_CRITERIA_TYPE 4333
IEC_BACNET_EP_COV_PARAM 4333
IEC_BACNET_EP_DBL_OUT_OF_RANGE_PAR
AM . 4333
IEC_BACNET_EP_E_PARAMETER 4333
IEC_BACNET_EP_EXT_PARAM 4333
IEC_BACNET_EP_FLOAT_LIMIT_PARAM 4333
IEC_BACNET_EP_OUT_OF_RANGE_PARAM 4333
IEC_BACNET_EP_SIG_OUT_OF_RANGE_PARA
M . 4333
IEC_BACNET_EP_UNS_OUT_OF_RANGE_PAR
AM . 4333
IEC_BACNET_EP_URANGE_PARAM 4333
IEC_BACNET_EPFP_E_PARAMETER 4333
IEC_BACNET_ERROR 4333
IEC_BACNET_ERROR_CLASS 4333
IEC_BACNET_ERROR_CODE 4333
IEC_BACNET_ERROR_TO_STRING 4333
IEC_BACNET_ERROR_TYPE 4333
IEC_BACNET_EVENT_INFO 4333
IEC_BACNET_EVENT_INFO_INFO 4333
IEC_BACNET_EVENT_LOG_RECORD 4333
IEC_BACNET_EVENT_LOG_RECORD_TYPE 4333
IEC_BACNET_EVENT_NOTIF_INFO 4333
IEC_BACNET_EVENT_NOTIFICATION_SUB-
SCRIPTION . 4333
IEC_BACNET_EVENT_PARAMETER 4333

Index

2022/01/21 3ADR010583, 3, en_US 4459

IEC_BACNET_EVENT_STATE 4333
IEC_BACNET_EVENT_SUMMARY 4333
IEC_BACNET_EVENT_TRANSITION_BITS . . . 4333
IEC_BACNET_EVENT_TYPE 4333
IEC_BACNET_FAILURE_TYPE 4334
IEC_BACNET_FAULT_PARAM_TYPE 4334
IEC_BACNET_FAULT_PARAMETER 4334
IEC_BACNET_FILE_ACCESS_METHOD 4334
IEC_BACNET_FILE_ACCESS_TYPE 4334
IEC_BACNET_FP_CHARSTRING_PARAM 4334
IEC_BACNET_FP_COLS_PARAM 4334
IEC_BACNET_FP_E_PARAMETER 4334
IEC_BACNET_FP_EXT_PARAM 4334
IEC_BACNET_FP_STAT_FLG_PARAM 4334
IEC_BACNET_FP_STATES_PARAM 4334
IEC_BACNET_FRAME_PARAM 4334
IEC_BACNET_FRAME_PART 4334
IEC_BACNET_FRAME_PART_TYPE 4334
IEC_BACNET_GROUP_CHANNEL_VALUE . . . 4334
IEC_BACNET_HANDLE 4334
IEC_BACNET_I_AM_INFO 4334
IEC_BACNET_I_HAVE_INFO 4334
IEC_BACNET_INST_NUMBER 4334
IEC_BACNET_IP_BBMD_ENTRY 4334
IEC_BACNET_KEY_ID_ALGORITHM 4334
IEC_BACNET_KEY_ID_NUMBER 4334
IEC_BACNET_KEY_IDENTIFIER 4334
IEC_BACNET_KEY_REVISION 4334
IEC_BACNET_LIFE_SAFETY_INFO 4334
IEC_BACNET_LIFE_SAFETY_MODE 4334
IEC_BACNET_LIFE_SAFETY_OPERATION . . . 4334
IEC_BACNET_LIFE_SAFETY_STATE 4334
IEC_BACNET_LIGHTING_COMMAND 4334
IEC_BACNET_LIGHTING_IN_PROGRESS . . . 4334
IEC_BACNET_LIGHTING_OPERATION 4334
IEC_BACNET_LIGHTING_TRANSITION 4334
IEC_BACNET_LIMIT_ENABLE 4334
IEC_BACNET_LOCK_STATUS 4334
IEC_BACNET_LOG_RECORD 4334
IEC_BACNET_LOG_RECORD_M_DATA 4334
IEC_BACNET_LOG_RECORD_M_DATA_TYPE
. 4334

IEC_BACNET_LOG_RECORD_M_ENTRY 4334
IEC_BACNET_LOG_RECORD_MULTIPLE 4334

IEC_BACNET_LOG_RECORD_MULTIPLE_TYPE
. 4334

IEC_BACNET_LOG_RECORD_TYPE 4334
IEC_BACNET_LOG_STATUS_BITS 4334
IEC_BACNET_LOGGING_TYPE 4334
IEC_BACNET_MAC_ETH 4334
IEC_BACNET_MAC_IP 4334
IEC_BACNET_MAC_IP_TO_STRING 4334
IEC_BACNET_MAC_LON 4334
IEC_BACNET_MAC_MSTP 4334
IEC_BACNET_MAC_PTP 4334
IEC_BACNET_MAINTENANCE 4334
IEC_BACNET_MESSAGE_CLASS 4334
IEC_BACNET_MESSAGE_CLASS_TYPE 4334
IEC_BACNET_MESSAGE_PRIORITY 4334
IEC_BACNET_MONTH 4334
IEC_BACNET_NETWORK_MANAGE-
MENT_MESSAGE . 4334
IEC_BACNET_NETWORK_MANAGE-
MENT_MSG_TYPE . 4335
IEC_BACNET_NETWORK_SECURITY_POLICY
. 4335

IEC_BACNET_NMM_BVLL 4335
IEC_BACNET_NMM_CONFIRM_TO_NETWORK
. 4335

IEC_BACNET_NMM_ESTABLISH_TO_NET-
WORK . 4335
IEC_BACNET_NMM_EVENT 4335
IEC_BACNET_NMM_EVENT_REASON 4335
IEC_BACNET_NMM_IAM_ROUTER_TO_NET-
WORK . 4335
IEC_BACNET_NMM_ICOULDBE_ROUTER_TO_
NETWORK . 4335
IEC_BACNET_NMM_INDICATE_TO_NETWORK
. 4335

IEC_BACNET_NMM_INIT_ROUTINGTABLE . . 4335
IEC_BACNET_NMM_MESSAGE_ID 4335
IEC_BACNET_NMM_NETWORK 4335
IEC_BACNET_NMM_NETWORK_NUMBER_IS 4335
IEC_BACNET_NMM_REJECT_REASON 4335
IEC_BACNET_NMM_REJECT_TO_NETWORK 4335
IEC_BACNET_NMM_ROUTER_AVAIL_TO_NET-
WORK . 4335
IEC_BACNET_NMM_ROUTER_BUSY_TO_NET-
WORK . 4335
IEC_BACNET_NMM_ROUTINGTABLE_ACK . . 4335
IEC_BACNET_NMM_ROUTINGTABLE_ENTRY
. 4335

Index

2022/01/213ADR010583, 3, en_US4460

IEC_BACNET_NMM_TIMESTAMP 4335
IEC_BACNET_NMM_TYPE 4335
IEC_BACNET_NODE_TYPE 4335
IEC_BACNET_NOTIFICATION_PARAMETERS 4335
IEC_BACNET_NOTIFY_TYPE 4335
IEC_BACNET_NP_ACCESS_EVENT_PARAM 4335
IEC_BACNET_NP_BUF_READY_PARAM 4335
IEC_BACNET_NP_BUF_READY_PARAM2 . . . 4335
IEC_BACNET_NP_CHG_OF_BITS_PARAM . . . 4335
IEC_BACNET_NP_CHG_OF_CHAR-
STRING_PARAM . 4335
IEC_BACNET_NP_CHG_OF_RELIABTY_PARAM
. 4335

IEC_BACNET_NP_CHG_OF_STAT_FLG_PARA
M . 4335
IEC_BACNET_NP_CHG_OF_STATE_PARAM . 4335
IEC_BACNET_NP_CMD_FAIL_PARAM 4335
IEC_BACNET_NP_COLS_PARAM 4335
IEC_BACNET_NP_COMPLEX_PARAM 4335
IEC_BACNET_NP_COV_PARAM 4335
IEC_BACNET_NP_COV_TYPE 4335
IEC_BACNET_NP_DBL_OUT_OF_RANGE_PAR
AM . 4335
IEC_BACNET_NP_E_PARAMETER 4335
IEC_BACNET_NP_EXT_PARAM 4335
IEC_BACNET_NP_FLOAT_LIMIT_PARAM 4335
IEC_BACNET_NP_OUT_OF_RANGE_PARAM 4335
IEC_BACNET_NP_SIG_OUT_OF_RANGE_PAR
AM . 4335
IEC_BACNET_NP_UNS_OUT_OF_RANGE_PAR
AM . 4335
IEC_BACNET_NP_URANGE_PARAM 4335
IEC_BACNET_NPDU_REJECT_REASON 4335
IEC_BACNET_NPDU_TYPE 4335
IEC_BACNET_OBJ_PROP_REFERENCE 4335
IEC_BACNET_OBJECT_ID 4335
IEC_BACNET_OBJECT_ID_TO_STRING 4335
IEC_BACNET_OBJECT_SPECIFIER 4335
IEC_BACNET_OBJECT_TYPE 4335
IEC_BACNET_OBJECT_TYPES_BITS 4335
IEC_BACNET_OCTET_STRING 4335
IEC_BACNET_OPTIONAL_STRING 4336
IEC_BACNET_OS_TIME_PROVIDER 4336
IEC_BACNET_OS_TIME_PROVIDER_TIME . . 4336
IEC_BACNET_PDU_TYPE 4336
IEC_BACNET_PERIOD_TYPE 4336

IEC_BACNET_POLARITY 4336
IEC_BACNET_PORT_PERMISSION 4336
IEC_BACNET_PRESCALE 4336
IEC_BACNET_PRIORITY_ARRAY_ITEM 4336
IEC_BACNET_PRIORITY_LEVEL 4336
IEC_BACNET_PRIVATE_TRANSFER_INFO . . . 4336
IEC_BACNET_PROCESS_ID_SELECTION . . . 4336
IEC_BACNET_PROGRAM_ERROR 4336
IEC_BACNET_PROGRAM_REQUEST 4336
IEC_BACNET_PROGRAM_STATE 4336
IEC_BACNET_PROP_STATES_TYPE 4336
IEC_BACNET_PROPERTY_ACCESS_RESULT
. 4336

IEC_BACNET_PROPERTY_CONTENTS 4336
IEC_BACNET_PROPERTY_DESCRIPTION . . . 4336
IEC_BACNET_PROPERTY_DESCRIPTION_LIST
. 4336

IEC_BACNET_PROPERTY_ID 4336
IEC_BACNET_PROPERTY_INSTANCE 4336
IEC_BACNET_PROPERTY_REFERENCE 4336
IEC_BACNET_PROPERTY_STATES 4336
IEC_BACNET_PROPERTY_VALUE 4336
IEC_BACNET_RANGE_FLAGS 4336
IEC_BACNET_RANGE_TYPE 4336
IEC_BACNET_RAW_ASN1_VALUE 4336
IEC_BACNET_READ_ACCESS_RESULT 4336
IEC_BACNET_READ_ACCESS_SPEC 4336
IEC_BACNET_READ_FILE_INFO 4336
IEC_BACNET_READ_FILE_RANGE 4336
IEC_BACNET_READ_FILE_RESULT 4336
IEC_BACNET_READ_INFO 4336
IEC_BACNET_READ_INFO_TO_STRING 4336
IEC_BACNET_READ_LIST 4336
IEC_BACNET_READ_MUL_INFO 4336
IEC_BACNET_READ_RANGE_INFO 4336
IEC_BACNET_READ_RANGE_RANGE 4336
IEC_BACNET_READ_RANGE_RESULT 4336
IEC_BACNET_READ_RAW_RESULT_LIST . . . 4336
IEC_BACNET_READ_RESULT_ITEM 4336
IEC_BACNET_READ_RESULT_LIST 4336
IEC_BACNET_REAL . 4336
IEC_BACNET_RECIPIENT 4336
IEC_BACNET_RECIPIENT_PROCESS 4336
IEC_BACNET_RECIPIENT_TYPE 4336
IEC_BACNET_REINIT_DEV_INFO 4336

Index

2022/01/21 3ADR010583, 3, en_US 4461

IEC_BACNET_REINIT_TYPE 4336
IEC_BACNET_REJECT_REASON 4336
IEC_BACNET_RELATION_TYPE 4336
IEC_BACNET_RELIABILITY 4336
IEC_BACNET_REMOTE_DEVICE_CAPS 4336
IEC_BACNET_RESTART_REASON 4336
IEC_BACNET_SCALE . 4336
IEC_BACNET_SECURITY_KEY_SET 4337
IEC_BACNET_SECURITY_LEVEL 4337
IEC_BACNET_SECURITY_POLICY 4337
IEC_BACNET_SECURITY_RESPONSE_CODE
. 4337

IEC_BACNET_SEGMENTATION 4337
IEC_BACNET_SELECTION_LOGIC 4337
IEC_BACNET_SERVICES_BITS 4337
IEC_BACNET_SESSION_KEY 4337
IEC_BACNET_SETPOINT_REFERENCE 4337
IEC_BACNET_SHED_LEVEL 4337
IEC_BACNET_SHED_LEVEL_TYPE 4337
IEC_BACNET_SHED_STATE 4337
IEC_BACNET_SIGNED 4337
IEC_BACNET_SILENCED_STATE 4337
IEC_BACNET_SPECIAL_EVENT 4337
IEC_BACNET_SRVR_INIT 4337
IEC_BACNET_STACK_CONTROL 4337
IEC_BACNET_STACK_CONTROL_TYPE 4337
IEC_BACNET_STACK_DATALINK 4337
IEC_BACNET_STACK_DATALINK_CONFIG . . . 4337
IEC_BACNET_STACK_DATALINK_TYPE 4337
IEC_BACNET_STACK_ETHERNET_DATALINK
. 4337

IEC_BACNET_STACK_IERROR 4337
IEC_BACNET_STACK_IERROR_TYPE 4337
IEC_BACNET_STACK_IP_DATALINK 4337
IEC_BACNET_STACK_LONTALK_DATALINK . . 4337
IEC_BACNET_STACK_MSTP_DATALINK 4337
IEC_BACNET_STACK_PTP_DATALINK 4337
IEC_BACNET_STACK_VIRTUAL_DATALINK . . 4337
IEC_BACNET_STATE_FILTER 4337
IEC_BACNET_STATUS 4337
IEC_BACNET_STATUS_FLAG_BITS 4337
IEC_BACNET_STRING 4337
IEC_BACNET_STRING_TABLE_ENTRY 4337
IEC_BACNET_STRING_TABLE_INFO 4337
IEC_BACNET_STRING_TYPE 4337

IEC_BACNET_SUBSCRIBE_COV_INFO 4337
IEC_BACNET_SUBSCRIBE_COVP_INFO 4337
IEC_BACNET_TAG . 4337
IEC_BACNET_TEMPLATE_DEVICE 4337
IEC_BACNET_TEMPLATE_OBJECT 4337
IEC_BACNET_TEXT_MESSAGE_INFO 4337
IEC_BACNET_TIME . 4337
IEC_BACNET_TIME_STAMP 4337
IEC_BACNET_TIME_STAMP_TYPE 4337
IEC_BACNET_TIME_SYNC_INFO 4337
IEC_BACNET_TIME_TO_STRING 4337
IEC_BACNET_TIME_VALUE 4337
IEC_BACNET_UNCONF_SERV_REQUEST . . . 4337
IEC_BACNET_UNSIGNED 4337
IEC_BACNET_VT_CLASS 4337
IEC_BACNET_VT_SESSION 4337
IEC_BACNET_WEEK_AND_DAY 4337
IEC_BACNET_WEEK_OF_MONTH 4337
IEC_BACNET_WHO_HAS_IND_OBJ_SPEC_TY
PE . 4337
IEC_BACNET_WHO_HAS_INFO 4338
IEC_BACNET_WHO_HAS_PARAM 4338
IEC_BACNET_WHO_HAS_TYPE 4338
IEC_BACNET_WHO_IS_INFO 4338
IEC_BACNET_WORD . 4338
IEC_BACNET_WRITE_FILE_DATA 4338
IEC_BACNET_WRITE_FILE_INFO 4338
IEC_BACNET_WRITE_FILE_RESULT 4338
IEC_BACNET_WRITE_GROUP_INFO 4338
IEC_BACNET_WRITE_INFO 4338
IEC_BACNET_WRITE_INFO_TO_STRING 4338
IEC_BACNET_WRITE_ITEM 4338
IEC_BACNET_WRITE_LIST 4338
IEC_BACNET_WRITE_MUL_INFO 4338
IEC_BACNET_WRITE_STATUS 4338
IEC_CYCLE_STRUCT . 4338
IEC_STATE . 4338
IEC60870_5_104_Connection 4338
IEC60870_BACKGROUND_SCAN 4338
IEC60870_DISABLE . 4338
IEC60870_DoubleCommand 4338
IEC60870_DoublePointInformation 4338
IEC60870_GET_ADDRESS 4338
IEC60870_IntegratedTotal 4338
IEC60870_MeasuredValue 4338

Index

2022/01/213ADR010583, 3, en_US4462

IEC60870_REC_C_DC 4338
IEC60870_REC_C_SC 4338
IEC60870_REC_C_SE 4338
IEC60870_REC_C_TS_NA_1 4338
IEC60870_REC_M_DP 4338
IEC60870_REC_M_IT . 4338
IEC60870_REC_M_ME 4338
IEC60870_REC_M_ME_1 4338
IEC60870_REC_M_SP 4338
IEC60870_REC_P_ME 4338
IEC60870_SEND_C_CI_NA_1 4338
IEC60870_SEND_C_CI_NA_1_2 4338
IEC60870_SEND_C_CS_NA_1 4338
IEC60870_SEND_C_CS_NA_1_2 4338
IEC60870_SEND_C_DC 4338
IEC60870_SEND_C_IC_NA_1 4338
IEC60870_SEND_C_IC_NA_1_2 4338
IEC60870_SEND_C_RD_NA_1 4338
IEC60870_SEND_C_RP_NA_1 4338
IEC60870_SEND_C_RP_NA_1_2 4338
IEC60870_SEND_C_SC 4338
IEC60870_SEND_C_SE 4338
IEC60870_SEND_C_TS_NA_1_ACT 4338
IEC60870_SEND_C_TS_NA_1_ACTCON 4338
IEC60870_SEND_DISABLE 4338
IEC60870_SEND_M_DP 4338
IEC60870_SEND_M_DP_ET 4338
IEC60870_SEND_M_EI_NA_1 4338
IEC60870_SEND_M_IT 4338
IEC60870_SEND_M_IT_1 4338
IEC60870_SEND_M_IT_1_ET 4339
IEC60870_SEND_M_IT_16 4339
IEC60870_SEND_M_IT_16_ET 4339
IEC60870_SEND_M_ME 4339
IEC60870_SEND_M_ME_1 4339
IEC60870_SEND_M_ME_1_ET 4339
IEC60870_SEND_M_ME_16 4339
IEC60870_SEND_M_ME_16_ET 4339
IEC60870_SEND_M_SP 4339
IEC60870_SEND_M_SP_1_ET 4339
IEC60870_SEND_M_SP_16 4339
IEC60870_SEND_M_SP_16_ET 4339
IEC60870_SEND_P_ME 4339
IEC60870_SetPoint . 4339
IEC60870_SingleCommand 4339

IEC60870_SinglePointInformation 4339
IEC60870_STATE . 4339
IEC60870_TIME . 4339
IEC60870Commands . 4339
IEC60870Disable . 4339
IEC60870DisableSend . 4339
IEC60870GetConfigAddress 4339
IEC60870GetConfigValues 4339
IEC60870GetConnectionStatistics 4339
IEC60870GetPinData . 4339
IEC60870GetStatesOfPinParam 4339
IEC60870GetStatesOfPins 4339
IEC60870GetTestInformation 4339
IEC60870SendCommand 4339
IEC60870SendPinData 4339
IEC60870SetParameterValues 4339
IEC60870SetPinData . 4339
IEC60870StartScan . 4339
IEC61850_ArrayBits_SwapLeft 4339
IEC61850_ASN1_Decoder 4339
IEC61850_ASN1_DECODING 4339
IEC61850_ASN1_Decoding_Data 4339
IEC61850_ASN1_EncodingBlock 4339
IEC61850_ASN1_EncodingSize 4339
IEC61850_ASN1_EncodingSpecific 4339
IEC61850_ASN1_EncodingStruct 4339
IEC61850_ASN1_GetNextTag 4339
IEC61850_ASN1_NewDecoder 4339
IEC61850_ByteBits_SwapLeft 4339
IEC61850_ByteBits_SwapRight 4339
IEC61850_CDC_ACD . 4339
IEC61850_CDC_ACT . 4339
IEC61850_CDC_ALM . 4339
IEC61850_CDC_APC . 4339
IEC61850_CDC_ASG . 4339
IEC61850_CDC_ASS . 4339
IEC61850_CDC_BCR . 4339
IEC61850_CDC_BRCB 4339
IEC61850_CDC_BSC . 4339
IEC61850_CDC_CMD . 4339
IEC61850_CDC_CMV . 4340
IEC61850_CDC_CSD . 4340
IEC61850_CDC_CTE . 4340
IEC61850_CDC_CURVE 4340
IEC61850_CDC_DEL . 4340

Index

2022/01/21 3ADR010583, 3, en_US 4463

IEC61850_CDC_DPC . 4340
IEC61850_CDC_DPL . 4340
IEC61850_CDC_DPS . 4340
IEC61850_CDC_GoCB 4340
IEC61850_CDC_HDEL 4340
IEC61850_CDC_HMV . 4340
IEC61850_CDC_HWYE 4340
IEC61850_CDC_INC . 4340
IEC61850_CDC_ING . 4340
IEC61850_CDC_INS . 4340
IEC61850_CDC_ISC . 4340
IEC61850_CDC_LPL . 4340
IEC61850_CDC_MV . 4340
IEC61850_CDC_ORG . 4340
IEC61850_CDC_SAV . 4340
IEC61850_CDC_SEC . 4340
IEC61850_CDC_SEQ . 4340
IEC61850_CDC_SPC . 4340
IEC61850_CDC_SPG . 4340
IEC61850_CDC_SPS . 4340
IEC61850_CDC_SPV . 4340
IEC61850_CDC_STV . 4340
IEC61850_CDC_TMS . 4340
IEC61850_CDC_URCB 4340
IEC61850_CDC_WDPL 4340
IEC61850_CDC_WYE . 4340
IEC61850_Check_HexString 4340
IEC61850_CheckBufferIx 4340
IEC61850_CheckByteOrder 4340
IEC61850_CheckClients 4340
IEC61850_CheckDataPoint 4340
IEC61850_CheckDoubleDP 4340
IEC61850_CheckEntryID 4340
IEC61850_CheckEnumRange 4340
IEC61850_CheckTrgOp 4340
IEC61850_CLIENT_ACCEPT 4340
IEC61850_ClientConnectionFB 4340
IEC61850_CONCAT3 . 4340
IEC61850_CONCAT4 . 4340
IEC61850_CONCAT5 . 4340
IEC61850_CONCAT6 . 4340
IEC61850_CpyAndSwap 4340
IEC61850_CreateBasicNames 4340
IEC61850_DatasetFB . 4340
IEC61850_DateTime . 4340

IEC61850_DecodeNull . 4340
IEC61850_DeleteDataSet 4340
IEC61850_DWORD_TO_HEXSTRING 4340
IEC61850_Encoding_Array_Count 4340
IEC61850_Encoding_Array_Struct 4340
IEC61850_Encoding_Component 4341
IEC61850_Encoding_Component_Struct 4341
IEC61850_Encoding_ComponentSingle 4341
IEC61850_Encoding_DirectoryNames 4341
IEC61850_Encoding_ListOfData 4341
IEC61850_Encoding_ListOfData_Struct 4341
IEC61850_Encoding_ListOfVariable 4341
IEC61850_Encoding_Value 4341
IEC61850_ENUM_ASN1_TAGS 4341
IEC61850_ENUM_ATTR_NAMES 4341
IEC61850_ENUM_DA_ALM_STATE 4341
IEC61850_ENUM_DA_ANGID 4341
IEC61850_ENUM_DA_ANGIDCMV 4341
IEC61850_ENUM_DA_ANGLEREFERENCE-
KIND . 4341
IEC61850_ENUM_DA_ASS_STVAL 4341
IEC61850_ENUM_DA_BEH 4341
IEC61850_ENUM_DA_CBOPCAP 4341
IEC61850_ENUM_DA_CMDQUAL 4341
IEC61850_ENUM_DA_CONTROLOUTPUTKIND
. 4341

IEC61850_ENUM_DA_CTE_HISRS 4341
IEC61850_ENUM_DA_CTE_RSPER 4341
IEC61850_ENUM_DA_CTLMODELKIND 4341
IEC61850_ENUM_DA_CTLMODELS 4341
IEC61850_ENUM_DA_CURVECHARKIND 4341
IEC61850_ENUM_DA_DAWEEKDAYKIND 4341
IEC61850_ENUM_DA_DBPOS 4341
IEC61850_ENUM_DA_DIR 4341
IEC61850_ENUM_DA_DIRMOD 4341
IEC61850_ENUM_DA_ENUMERATED 4341
IEC61850_ENUM_DA_FAILMOD 4341
IEC61850_ENUM_DA_FANCTL 4341
IEC61850_ENUM_DA_FAULTDIRECTIONKIND
. 4341

IEC61850_ENUM_DA_GNST 4341
IEC61850_ENUM_DA_HEALTH 4341
IEC61850_ENUM_DA_HVID 4341
IEC61850_ENUM_DA_HVREFERENCEKIND . . 4341
IEC61850_ENUM_DA_LEVMOD 4341

Index

2022/01/213ADR010583, 3, en_US4464

IEC61850_ENUM_DA_LIVDEAMOD 4341
IEC61850_ENUM_DA_MOD 4341
IEC61850_ENUM_DA_MONTHKIND 4341
IEC61850_ENUM_DA_MULTIPLIER 4341
IEC61850_ENUM_DA_MULTIPLIERKIND 4341
IEC61850_ENUM_DA_OCCURRENCEKIND . . 4341
IEC61850_ENUM_DA_OPMOD 4341
IEC61850_ENUM_DA_ORCAT 4341
IEC61850_ENUM_DA_ORIGINATORCATEGOR-
YKIND . 4341
IEC61850_ENUM_DA_PERIODKIND 4341
IEC61850_ENUM_DA_PHASEANGLEREFEREN-
CEKIND . 4341
IEC61850_ENUM_DA_PHASEFAULTDIREC-
TIONKIND . 4341
IEC61850_ENUM_DA_PHASEREFERENCE-
KIND . 4341
IEC61850_ENUM_DA_PHSID 4341
IEC61850_ENUM_DA_POLQTY 4341
IEC61850_ENUM_DA_POWCAP 4341
IEC61850_ENUM_DA_RANGE 4341
IEC61850_ENUM_DA_RANGEKIND 4341
IEC61850_ENUM_DA_RETRMOD 4342
IEC61850_ENUM_DA_RSTMOD 4342
IEC61850_ENUM_DA_RVAMOD 4342
IEC61850_ENUM_DA_SBOCLASSES 4342
IEC61850_ENUM_DA_SBOCLASSKIND 4342
IEC61850_ENUM_DA_SCHTYP 4342
IEC61850_ENUM_DA_SEQT 4342
IEC61850_ENUM_DA_SEQUENCEKIND 4342
IEC61850_ENUM_DA_SETCHARACT 4342
IEC61850_ENUM_DA_SEV 4342
IEC61850_ENUM_DA_SEVERITYKIND 4342
IEC61850_ENUM_DA_SHOPCAP 4342
IEC61850_ENUM_DA_SIUNIT 4342
IEC61850_ENUM_DA_SIUNITKIND 4342
IEC61850_ENUM_DA_SPV_CHAPERRS 4342
IEC61850_ENUM_DA_SPV_SPACS 4342
IEC61850_ENUM_DA_SWOPCAP 4342
IEC61850_ENUM_DA_SWTYP 4342
IEC61850_ENUM_DA_TCMD 4342
IEC61850_ENUM_DA_TMS_HISRS 4342
IEC61850_ENUM_DA_TMS_RSPER 4342
IEC61850_ENUM_DA_TRGMOD 4342
IEC61850_ENUM_DA_TRMOD 4342
IEC61850_ENUM_DA_TYPRSCRV 4342

IEC61850_ENUM_DA_UNBLKMOD 4342
IEC61850_ENUM_DA_WEIMOD 4342
IEC61850_ENUM_ELEMENTTYP 4342
IEC61850_ENUM_FC . 4342
IEC61850_ENUM_MMS_CON-
FIRMED_REQ_PDU . 4342
IEC61850_ENUM_MMS_CON-
FIRMED_RESP_PDU . 4342
IEC61850_ENUM_MMS_DataType 4342
IEC61850_ENUM_MMS_OBJECTCLASS 4342
IEC61850_ENUM_MMS_PDU 4342
IEC61850_ENUM_QUALITY 4342
IEC61850_ENUM_SERVICES 4342
IEC61850_ENUM_TRGOPT 4342
IEC61850_EthernetAdapter 4342
IEC61850_GetDatapoint 4342
IEC61850_GetDataPointLen 4342
IEC61850_GetDatapointRef 4342
IEC61850_GetDefinition 4342
IEC61850_GetDirectory 4342
IEC61850_GetDirectory_All 4342
IEC61850_GetFC . 4342
IEC61850_GetReportLen 4342
IEC61850_GetURCBDataLen 4342
IEC61850_GetValue . 4342
IEC61850_GetValues_All 4342
IEC61850_Goose_ASN1_Decoder 4342
IEC61850_GOOSE_MReq 4342
IEC61850_GooseDecodeData 4342
IEC61850_HEXSTRING_TO_DWORD 4342
IEC61850_HistDataBuffer_In 4342
IEC61850_HistDataBufferFB 4342
IEC61850_Init_BReportBlock 4342
IEC61850_Init_DataPoints 4343
IEC61850_Init_GoCB . 4343
IEC61850_Init_UBReportBlock 4343
IEC61850_InitDSLastValPtr 4343
IEC61850_INT_TO_STRING 4343
IEC61850_MMS_Data_InterpreterFB 4343
IEC61850_MMS_ErrorPDU 4343
IEC61850_MMS_InterpreterFB 4343
IEC61850_MMSGetBlockLen 4343
IEC61850_ReadDWord 4343
IEC61850_ReadISOHeader 4343
IEC61850_ReadString . 4343

Index

2022/01/21 3ADR010583, 3, en_US 4465

IEC61850_ReadWord . 4343
IEC61850_SetDatasetVal 4343
IEC61850_SetDSError . 4343
IEC61850_SetISOEntry 4343
IEC61850_SetISOLen . 4343
IEC61850_SetReportValue 4343
IEC61850_SetStructIndex 4343
IEC61850_SetTrgOpt . 4343
IEC61850_SetValue . 4343
IEC61850_SimpleClock 4343
IEC61850_STR_TO_BYTE 4343
IEC61850_String_Split . 4343
IEC61850_SWAP_2_BYTE 4343
IEC61850_SWAP_3_BYTE 4343
IEC61850_SWAP_4_BYTE 4343
IEC61850_SysMemCpy 4343
IEC61850_TimeStampR 4343
IEC61850_Version . 4343
IEC61850_WordBits_SwapLeft 4343
IEC61850_WordBits_SwapRight 4343
IEC61850ServerFB . 4343
IecTaskCreate . 4343
IecTaskCreate2 . 4343
IecTaskDelete2 . 4343
IecTaskDisableScheduling 4343
IecTaskDisableWatchdog 4343
IecTaskDisableWatchdog2 4343
IecTaskEnableScheduling 4343
IecTaskEnableWatchdog 4343
IecTaskEnableWatchdog2 4343
IecTaskGetCurrent . 4343
IecTaskGetDesc . 4343
IecTaskGetFirst . 4343
IecTaskGetInfo3 . 4343
IecTaskGetNext . 4343
IecTaskGetProfiling . 4343
IecTaskReload . 4343
IecTaskResetStatistics . 4343
IecVarAccBrowseCallback 4343
IecVarAccBrowseDirection 4343
IecVarAccBrowseDown2 4343
IecVarAccBrowseGetNext2 4343
IecVarAccBrowseRecursive 4343
IecVarAccBrowseUp2 . 4344
IecVarAccess . 4344

IecVarAccessUaInformationModelMetaData . . . 4344
IecVarAccExitVarInfo . 4344
IecVarAccGetFirstInterface 4344
IecVarAccGetFirstInterface2 4344
IecVarAccGetNextInterface 4344
IecVarAccGetNextInterface2 4344
IecVarAccGetNode4 . 4344
IecVarAccGetNodeFullPath4 4344
IecVarAccGetNodeName4 4344
IecVarAccGetSymbolSetMask 4344
IecVarAccInitVarInfo . 4344
IecVarAccInitVarInfo2 . 4344
IecVarAccInvalidateNode 4344
IecVarAccNodeInfoAddBrowseInfo 4344
IecVarAccNodeInfoAddReference 4344
IecVarAccNodeInfoGetBrowseInfo 4344
IecVarAccNodeInfoGetReference 4344
IecVarAccNodeInfoRemoveBrowseInfo 4344
IecVarAccNodeInfoRemoveReference 4344
IecVarAccRegisterInstance 4344
IecVarAccRegisterInstance2 4344
IecVarAccRegisterInstance3 4344
IecVarAccRegisterInstanceBase 4344
IecVarAccRegisterInstanceBase2 4344
IecVarAccSetSymbolconfigCrc 4344
IecVarAccSymbolSetDescription 4344
IecVarAccUnregisterInstance 4344
IecVarAccUpdateSymbolSets 4344
IEdgeTriggered . 4344
IElement . 4344
IEthernet . 4344
IETrig . 4344
IETrigA . 4344
IETrigATl . 4344
IETrigATlTo . 4344
IETrigATo . 4344
IETrigTl . 4344
IETrigTlTo . 4344
IETrigTo . 4344
IExitActionProvider . 4344
IExpandSubNodeAdapterSingleRelease 4344
IExternalUserDatabaseProvider 4344
IExternalUserDatabaseProvider2 4344
IF . 469

statement . 469

Index

2022/01/213ADR010583, 3, en_US4466

if, pragma . 732
IFactory . 4344
IFBCommand . 4344
IFrame . 4344
IFrameElement2 . 4344
IFrameElement3 . 4344
IFrameManager . 4344
IFrameManager2 . 4344
IFrameManagerBase . 4344
IGeneralCommand . 4344
IGestureEventHandler . 4344
IGestureEventHandler2 4345
IGestureEventHandler3 4345
IGridProvider . 4345
IHasContinuousBehaviour 4345
iIEC61850_LogicalDevice 4345
IIecVarAccess . 4345
IIecVarAccess2 . 4345
IIecVarAccess3 . 4345
IIecVarAccess4 . 4345
IIecVarAccess5 . 4345
IIecVarAccess6 . 4345
IIecVarAccess7 . 4345
IIecVarAccess8 . 4345
IIecVarAccess9 . 4345
IIecVarAccess10 . 4345
IIecVarAccess11 . 4345
IIecVarAccess12 . 4345
IIecVarAccess13 . 4345
IIecVarAccess14 . 4345
IIecVarAccess15 . 4345
IIecVarAccessOpcUaMetaData 4345
IInputOnElementEventHandler 4345
IInputRectangle . 4345
IInputRectangleMgr . 4345
IInputRectangleProvider 4345
IInstance . 4345
IIntElement . 4345
IIoDrvEIPAcylicServices 4345
IIPAddress . 4345
IIPAddressSet . 4345
IIParameterData . 4345
IIPv4Address . 4345
IIterator . 4345
IKeyEventHandler . 4345

IL . 236
online operation . 499
option . 1192

ILayeredVisualElement 4345
ILayerManager . 4345
ILCon . 4345
ILConC . 4345
ILConTl . 4345
ILConTlC . 4345
ILConTlTo . 4345
ILConTo . 4345
ILeafTreeNode . 4345
ILevelControlled . 4345
ILinkedListIterator . 4345
ILintElement . 4345
IList . 4345
IList2 . 4345
IListIterator . 4345
ILocalAssigner . 4345
ILocalizedDateTimeNames 4345
ILogger . 4345
ILRealToStringFormatter 4345
image . 1418, 1842

visualization element 1418, 1842
image file

insert . 1121
names and directories for visualization 1764

image pool . 274, 873
create . 274
download . 1168
global . 274
object . 873
properties . 1168

image selection . 873
image switcher . 1600, 2024

visualization element 1600, 2024
IMap . 4345
IMap2 . 4345
IMemberIndex . 4346
IMemoryManager . 4346
IModuleAlarming . 4346
IMouseEventHandler . 4346
implement interfaces . 1148
IMPLEMENTS . 313

Index

2022/01/21 3ADR010583, 3, en_US 4467

import
I/O mapping . 1018
PLCopenXML . 1015
project in SVN . 4242

Import . 1015
import assistant

configuration programming system 1149
Import Server

IEC 61850 . 3903
import users

device user management 860
IMultitouchElement . 4346
INADDR . 4346
index . 1078
index access . 657
INDEXOF . 550
INetworkInterface . 4346
INFO . 4346
information . 1079

device editor . 870
EtherCAT . 3815
KNX . 3924

information model object 877
information model OPC UA 877
InfoValues . 4346
INI . 631
init step, SFC . 1079
init_namespace, pragma attribute 705
init_on_onlchange, pragma 705
initialization . 226

array . 660
avoid, pragma . 713
FB on call . 704
input variable, pragma 704
namespace, pragma . 705
online change, download 705
order, pragma . 699
vector . 666
with FB_Init, FB_Reinit 748

initialize_on_call, pragma 704
InitializeBACnetBitString 4346
InitializeBACnetBoolean 4346
InitializeBACnetDate . 4346
InitializeBACnetDateRange 4346
InitializeBACnetDateTime 4346

InitializeBACnetDateTimeUnspecified 4346
InitializeBACnetDevObjPropReference 4346
InitializeBACnetSetpointReference 4346
InitializeBACnetString . 4346
InitializeBACnetTime . 4346
InitializeBACnetTimeStamp 4346
InitializeEmptyPropertyInstance 4346
InitializePropertyInstance 4346
inline monitoring . 410

enable . 972
example . 410

INode . 4346
INode_TO_IBus . 4346
INode_TO_IDevice . 4346
INode_TO_IDevice2 . 4346
INode_TO_IStack . 4346
INodeId . 4346
INodeName . 4346
input

CFC . 522
device . 215

input action . 1749
visualization . 1749

input assistance . 260
Auto Declare . 261
behavior in visualization 1764
input assistant . 261
List components . 261
short form feature . 262

input assistant . 977
categories . 978
dialog . 978
text search . 978

Input Assistant
options . 1201

input configuration . 1749
visualization . 1749

input event
visualization element 1268

input memory . 643
input pin order . 717
Input simulator . 3307, 3392
input variable . 526

refactoring . 290

Index

2022/01/213ADR010583, 3, en_US4468

input/output variable . 527
constant . 530
VAR_IN_OUT . 527

InputDataSave . 4346
insert . 1121

box parallel LD . 1106
branch above . 1113
branch below . 1113
branch, ld . 1113
coil . 1108
contact . 1111
contact parallel above 1109, 1110
contact parallel below 1109
contact right . 1109
contact, ld . 1108
contact, negated parallel 1110
empty box . 1106
image file . 1121
instruction line . 1111
line branch prallel . 1113
negated contact . 1110
set coil . 1108
text in a text list . 1133
variable declaration in the tabular editor 1121

INSERT . 4346
insert action association

insert, command . 1085
insert assignment, FBD/LD/IL 1105
insert contact

parallel above . 1109, 1110
parallel below . 1109

insert input
box, FBD/LD/IL . 1107

insert jump . 1107
insert jump label . 1107
insert network . 1104
insert network below . 1105
Inspect_Heap . 4346
install

device . 452, 1067
library . 1061

install additional license
command . 1059

instance path . 1124
add in global persistent variable list 1124

add in variables configuration 1124
instance variables . 533
instance-path, pragma . 706
InstanceBase . 4346
InstanceData . 4346
InstancePathBuildingBranchNode 4346
InstancePathBuildingNode 4346
InstancePathNodeFinder 4346
instruction list . 236
INT . 647

convert . 572
INT_TO___UXINT . 572
INT_TO___XINT . 572
INT_TO___XWORD . 572
INT_TO_BCD . 4346
INT_TO_BIT . 572
INT_TO_BOOL . 572
INT_TO_BYTE . 572
INT_TO_DATE . 572
INT_TO_DINT . 572
INT_TO_DT . 572
INT_TO_DWORD . 572
INT_TO_LDATE . 572
INT_TO_LDT . 572
INT_TO_LINT . 572
INT_TO_LREAL . 572
INT_TO_LTIME . 572
INT_TO_LTOD . 572
INT_TO_LWORD . 572
INT_TO_REAL . 572
INT_TO_SIGNED . 4346
INT_TO_SINT . 572
INT_TO_STRING . 572
INT_TO_TIME . 572
INT_TO_TOD . 572
INT_TO_UDINT . 572
INT_TO_UINT . 572
INT_TO_ULINT . 572
INT_TO_USINT . 572
INT_TO_WORD . 572
INT_TO_WSTRING . 572
INT64 . 4346
INT64_TO_DT . 4346
INT64_TO_ISO8601 . 4346
INT64_TO_LOCALTIME 4346

Index

2022/01/21 3ADR010583, 3, en_US 4469

INT64_TO_LTIME . 4346
INT64_TO_REAL8 . 4346
INT64_TO_TIME . 4346
INT64_TO_UTC . 4346
integer

convert . 572
integer data type . 647
Integral . 4346
INTEGRAL . 4346
IntElement . 4346
IntElementFactory . 4346
Intended purpose

AC522 . 2834
interface . 888

call visualization with interface 1333
command, visualization 1719
editor, visualization . 1719
extend . 314
implement . 313
property . 894
update data source programmatically 374
update, visualization 1746

INTERFACE . 888
interface method . 894
InterfaceEthernetStatistic 4346
InterfaceVersion . 4346
INTERNAL . 889

method . 889
property . 897

Internal data exchange
AC522 . 2846

InternalConnectionState 4346
InternalState . 4346
interpretation of CM579-PNIO diagnosis 4111
INullElement . 4347
InverseMemCopy . 4347
invisible input . 1526, 1950

visualization element 1526, 1950
IO

S500 . 2416
S500-eCo . 2415

IO mapping . 3639
io_function_block

pragma attribute . 1150

io_function_block_mapping 707
pragma attribute 707, 1150

IO_SYSTEM_TYPE . 4347
IObjectDictionary . 4347
IOBus_Download . 4347
IOBus_GetBusInfo . 4347
IOBus_GetBusStatistcis 4347
IOBus_GetDownloadState 4347
IOBus_GetHotplugOK . 4347
IOBus_GetIODriverVersion 4347
IOBus_GetModState . 4347
IOBus_GetModuleInfo . 4347
IOBus_GetModuleLinkStatistics 4347
IOBus_GetModuleStatistics 4347
IOBus_GetModuleVersion 4347
IOBus_GetPlugged . 4347
IOBus_GetProductionData 4347
IOBus_GetRun . 4347
IOBUS_INFO . 4347
IOBUS_LINKSTATISTICS 4347
IOBUS_MOD_STATE . 4347
IOBUS_MODUL_STATE 4347
IOBUS_MODULINFO . 4347
IOBUS_PARA_STATE . 4347
IOBUS_PRODDATA . 4347
IOBUS_STATISTICS . 4347
IOBus_SwitchLinkStatistics 4347
IOBUS_TU_STATE . 4347
IOBUS_VERSIONINFO 4347
IoConfigChannelMap . 4347
IoConfigConnector . 4347
IoConfigConnectorMap 4347
IoConfigParameter . 4347
IoConfigTaskMap . 4347
IoCopyIn . 4347
IoCopyOut . 4347
IODCallback . 4347
IODObject . 4347
IoDrvAL1x3x . 4347
IoDrvAL1030 . 4347
IoDrvAnalogBase . 4347
IoDrvBase . 4347
IoDrvCIFX . 4347
IoDrvCIFXEthernetIP . 4347
IoDrvCIFXEthernetIP_Diag 4347

Index

2022/01/213ADR010583, 3, en_US4470

IoDrvCIFXProfibus . 4347
IoDrvCIFXProfibusDevice 4347
IoDrvCIFXProfibusDeviceDiag 4347
IoDrvCIFXProfibusDiag 4347
IoDrvCIFXProfinetDevice 4347
IoDrvCIFXProfinetDeviceDiag 4347
IoDrvCM579EtherCAT . 4347
IoDrvCM579EtherCATDiag 4347
IoDrvCM579Profinet . 4347
IoDrvCM579ProfinetDiag 4347
IoDrvCM582Profibus . 4348
IoDrvCM582ProfibusDiag 4348
IoDrvCM589Profinet . 4348
IoDrvCM589ProfinetDiag 4348
IoDrvCM592Profibus . 4348
IoDrvCM592ProfibusDiag 4348
IoDrvCM598 . 4348
IoDrvCM598Diag . 4348
IoDrvCpuModuleDiag . 4348
IoDrvDigitalOptionBoardBase 4348
IoDrvEL6224 . 4348
IoDrvEL6631 . 4348
IoDrvEL6631_0010 . 4348
IoDrvEL6631_0010_Diag 4348
IoDrvEL6631Diag . 4348
IoDrvEL6731 . 4348
IoDrvEL6731_0010 . 4348
IoDrvEL6731_0010_Diag 4348
IoDrvEL6731Diag . 4348
IoDrvEtherCAT . 4348
IoDrvEthercat_Diag . 4348
IoDrvEthernet . 4348
IoDrvEthernetAC500 . 4348
IoDrvEthernetAC500Diag 4348
IoDrvEthernetDiag . 4348
IoDrvEtherNetIP . 4348
IoDrvEtherNetIP_diag . 4348
IoDrvEtherNetIPAdapter 4348
IoDrvEtherNetIPAdapter_Diag 4348
IoDrvGpioSysfs . 4348
IoDrvGpioSysfsDiag . 4348
IoDrvHilscher . 4348
IoDrvHilscherProfibus . 4348
IoDrvHilscherProfibusWrapper 4348
IoDrvInfo . 4348

IoDrvIoBusModuleDiag 4348
IoDrvJ1939Diag . 4348
IoDrvKNX . 4348
IoDrvKNXDiag . 4348
IoDrvModbusComPort . 4348
IoDrvModbusComPort_Diag 4348
IoDrvModbusSerialSlave 4348
IoDrvModbusTCP . 4348
IoDrvModbusTCP_Diag 4348
IoDrvModbusTCPSlave 4348
IoDrvOnboardIO . 4348
IoDrvOnboardIODiag . 4348
IoDrvS500ModuleDiag . 4348
IoDrvSafetySp . 4348
IoDrvSercos3 . 4348
IoDrvSercos3_Diag . 4348
IoDrvSM560 . 4348
IoDrvSM560Diag . 4348
IoDrvTA5101 . 4348
IoDrvTA5101Diag . 4348
IoDrvTA5105 . 4349
IoDrvTA5105Diag . 4349
IoDrvTA5110 . 4349
IoDrvTA5110Diag . 4349
IoDrvTA5120 . 4349
IoDrvTA5120Diag . 4349
IoDrvTA5122 . 4349
IoDrvTA5122Diag . 4349
IoDrvTA5123 . 4349
IoDrvTA5123Diag . 4349
IoDrvTA5126 . 4349
IoDrvTA5126Diag . 4349
IODSubObject . 4349
IOL_AdditionalCode . 4349
IOL_AdjustableSwitchingSensor 4349
IOL_AdSS_Function . 4349
IOL_AdSS_Status . 4349
IOL_AdSS_TeachFunction 4349
IOL_AdSS_TeachMode 4349
IOL_CALL . 4349
IOL_DataStorage . 4349
IOL_DiagEntry . 4349
IOL_Error . 4349
IOL_ErrorCode . 4349
IOL_Event . 4349

Index

2022/01/21 3ADR010583, 3, en_US 4471

IOL_EventCode . 4349
IOL_EventCode_Device 4349
IOL_EventCode_Port . 4349
IOL_EventQualifier . 4349
IOL_EventQualifier_Instance 4349
IOL_EventQualifier_Mode 4349
IOL_EventQualifier_Source 4349
IOL_EventQualifier_Type 4349
IOL_FieldbusStatus . 4349
IOL_GetEvent_ChannelDiagnosis 4349
IOL_GetEvent_UDINT . 4349
IOL_IdentificationAndDiagnosis 4349
IOL_IdentificationAndDiagnosis_Function 4349
IOL_IdentificationObjects 4349
IOL_Index . 4349
IOL_IOLM_Info . 4349
IOL_IOLM_InfoRecord . 4349
IOL_IQ_Behavior . 4349
IOL_MasterIdent . 4349
IOL_MasterIdent_Features_1 4349
IOL_MasterType . 4349
IOL_MeasurementDataChannel 4349
IOL_PN_PortControl . 4349
IOL_PortConfigList . 4349
IOL_PortConfiguration . 4349
IOL_PortConfigurationRecord 4349
IOL_PortError . 4349
IOL_PortMode . 4349
IOL_PortQualityInfo . 4349
IOL_PortStatus . 4349
IOL_PortStatusInfo . 4350
IOL_PortStatusList . 4350
IOL_PortStatusRecord . 4350
IOL_PortType . 4350
IOL_PQI . 4350
IOL_ProfileIdentifier . 4350
IOL_TransmissionRate . 4350
IOL_ValidationBackup . 4350
IoLinkService . 4350
IOLINKSERVICEHEADER 4350
IOLinkServices . 4350
IoMgrConfigGetConnector 4350
IoMgrConfigGetConnectorByDriver 4350
IoMgrConfigGetConnectorList 4350
IoMgrConfigGetDriver . 4350

IoMgrConfigGetFirstChild 4350
IoMgrConfigGetFirstConnector 4350
IoMgrConfigGetFirstParameter 4350
IoMgrConfigGetNextChild 4350
IoMgrConfigGetNextConnector 4350
IoMgrConfigGetNextParameter 4350
IoMgrConfigGetParameter 4350
IoMgrConfigGetParameterValueByte 4350
IoMgrConfigGetParameterValueDword 4350
IoMgrConfigGetParameterValuePointer 4350
IoMgrConfigGetParameterValueWord 4350
IoMgrConfigResetDiagnosis 4350
IoMgrConfigSetDiagnosis 4350
IoMgrCopyInputBE . 4350
IoMgrCopyInputLE . 4350
IoMgrCopyOutputBE . 4350
IoMgrCopyOutputLE . 4350
IoMgrGetBusCycleType 4350
IoMgrGetConfigApplication 4350
IoMgrGetDriverProperties 4350
IoMgrGetFirstDriverInstance 4350
IoMgrGetModuleDiagnosis 4350
IoMgrGetNextDriverInstance 4350
IoMgrIdentify . 4350
IoMgrLockEnter . 4350
IoMgrLockLeave . 4350
IoMgrReadInputs . 4350
IoMgrReadParameter . 4350
IoMgrReconfigure . 4350
IoMgrRegisterConfigApplication 4350
IoMgrRegisterInstance2 4350
IoMgrScanModules . 4350
IoMgrSetDriverProperties 4350
IoMgrSetDriverProperty 4350
IoMgrStartBusCycle . 4350
IoMgrStartBusCycle2 . 4350
IoMgrUnregisterConfigApplication 4350
IoMgrUnregisterInstance 4350
IoMgrUpdateConfiguration 4350
IoMgrUpdateConfiguration2 4350
IoMgrUpdateMapping . 4351
IoMgrUpdateMapping2 . 4351
IoMgrWatchdogTrigger . 4351
IoMgrWriteOutputs . 4351
IoMgrWriteParameter . 4351

Index

2022/01/213ADR010583, 3, en_US4472

IOMODULEDESC . 4351
IOnlineChangeSafeLinkedListElement 4351
IOPCUAClientConnectionCallback 4351
IOPCUAClientDataAccessCallback 4351
IOPCUAClientDiscoveryCallback 4351
IOPCUAClientMethodCallback 4351
IOPCUAClientMonitoredItemCallback 4351
IOPCUAClientSubscriptionCallback 4351
IOPCUAClientViewCallback 4351
IOpcUaDataTypeMetaData 4351
IOpcUaInstanceMetaData 4351
IOptionalMultitouchElement 4351
IOxStatus . 4351
IP address

change . 3680, 3727
IP configuration tool 3675, 3722
IP_ADDR . 4351
IP_ADR_DWORD_TO_STRING 4351
IP_ADR_STRING_TO_DWORD 4351
IP-configuration

command . 1059
IPAADialog . 4351
IPacket . 4351
IPacketPool . 4351
IPacketQueue . 4351
IPADDRESS . 4351
IPAddressSet . 4351
IPaintAfterAll . 4351
IPaintAfterAll2 . 4351
IPaintAfterAllRectangleProvider 4351
IPaintAfterAllSelection . 4351
IPaintSelectionInElement 4351
IPARRAY_TO_INADDR 4351
IPARRAY_TO_IPSTRING 4351
IPARRAY_TO_UDINT . 4351
iParServer . 4351
iParServerError . 4351
IPBSlaveDiag . 4351
IPeer . 4351
IPersistantRecipeListSupportsAdd 4351
IPParameterValue . 4351
IProvidesBitOffset . 4351
IProvidesDifferentRemoteName 4351
IProvidesRootInfo . 4351
IProvidesTabOrder . 4351

IProxyMonitor . 4351
IPseudoNode . 4351
IPSTRING_TO_UDINT 4351
IPStringAndIntElement . 4351
IPStringElement . 4351
IPv4Address . 4351
IQueryInterfaceElement 4351
IQueue . 4351
IQueue2 . 4351
IQueueableNode . 4351
IRdtProt . 4352
IRdtProtClient . 4352
IRdtProtServer . 4352
IReadableSharedArea . 4352
IRecipeCheckOnStart . 4352
IRecipeDefinition2 . 4352
IReconfigureProvider . 4352
IRectangleListManager 4352
IRectangleListManager2 4352
IRectangleListManager3 4352
IRectangleListManager4 4352
IRectangleProvider . 4352
IRequest . 4352
IRequestNoSyncReleaseDuringShutdown 4352
IRequestResult . 4352
IRequiresInitMeasureString 4352
IResetActionProvider . 4352
IResolveCallbackHandler 4352
IRow . 4352
IRow2 . 4352
IRow3 . 4352
IRowAsync . 4352
IRowBase . 4352
IRowIdIterator . 4352
IRowPlanchet . 4352
IRowPlanchetAsync . 4352
IRPCCLClient . 4352
IRPCCLClientCallback . 4352
IRPCProvider . 4352
IRPCProviderCallback . 4352
IRtsServiceHandler . 4352
IRtsServiceHandler2 . 4352
is_connected . 707

pragma attribute . 707
IS_MULTICAST_GROUP 4352

Index

2022/01/21 3ADR010583, 3, en_US 4473

Is29BitIdMessage . 4352
IsAcceptedLeafNode . 4352
IsAddressInArea . 4352
IsaInterrupt . 4352
ISampleActionProvider . 4352
ISavepoint . 4352
ISavepointAsync . 4352
IsBACnetBACnetDateTimeUnspecified 4352
IsBACnetDateTimeUnspecified 4352
IsBACnetObjectAMEVCreatable 4352
IsBACnetPropertyAMEVASBWritable 4352
IsBroadcast . 4352
IScrollValueProvider . 4352
ISDOHandler . 4352
ISearchCallbacks . 4352
ISegment . 4352
ISegmentPool . 4352
ISelectableInside . 4352
ISelectionManager . 4352
IServer . 4352
IServerCommand . 4352
IServiceReader . 4352
IServiceWriter . 4353
IsFullRune . 4353
IsHandleValid . 4353
ISharedArea . 4353
ISharedAreaObserver . 4353
ISharedAreaRef . 4353
ISharedAreaUtilities . 4353
ISharedPointer . 4353
ISharedQueue . 4353
ISimpleList . 4353
ISimpleTree . 4353
IsInvalidMemoryAddress 4353
IsLeapYear . 4353
IsLegalUTF8 . 4353
IsLibReleased . 4353
IsLRealNaN . 4353
IsLRealNegInfinity . 4353
IsLRealNumber . 4353
IsLRealPosInfinity . 4353
ISO8073_FB . 4353
ISO8327_FB . 4353
ISO8327_ReadHeader . 4353
ISO8601 . 4353

ISO8601_TO_DT . 4353
ISO8601_TO_LTIME . 4353
ISO8601_TO_TIME . 4353
ISO8650_FB . 4353
ISO8823_FB . 4353
ISOLayer_FB . 4353
ISortedList . 4353
ISortedList2 . 4353
IsP2P . 4353
ISpecialEventHandler . 4353
IsRealNaN . 4353
IsRealNegInfinity . 4353
IsRealNumber . 4353
IsRealPosInfinity . 4353
IsRTRMessage . 4353
IsRuneStart . 4353
IsSendingActive . 4353
IStack . 4353
IStack2 . 4353
IStartActionProvider . 4353
IStorage . 4353
IStorage2 . 4353
IStorageAsync . 4353
IsTransmitMessage . 4353
IStream . 4353
IStringElement . 4353
ISupportsRealDrawing . 4353
IsValid . 4353
IsValidRune . 4353
ISysInt . 4353
ITable . 4353
ITable2 . 4353
ITable3 . 4354
ITable4 . 4354
ITableAsync . 4354
ITargetVisuLight . 4354
ITaskFinishedCallback . 4354
ITCPProcessor . 4354
ITextListInfo . 4354
ITextListWrapper . 4354
ITimeElement . 4354
ITimeLimited . 4354
ITimeOutConstraint . 4354
ITimingControlled . 4354
ITimingController . 4354

Index

2022/01/213ADR010583, 3, en_US4474

ITLSContext . 4354
ITransaction . 4354
ITransactionAsync . 4354
ITransformationImplProvider 4354
ITree . 4354
ITreeNode . 4354
ITreeWalker . 4354
ITrendRootPageManager2 4354
ITrendStorageAccessReadOperator 4354
ITrendStorageAccessReadOperator2 4354
ITrendStorageReaderConsumer 4354
ITrendStorageWriterListener 4354
ITSNContext . 4354
ITypedElement . 4354
ITypeDesc . 4354
ITypeDesc2 . 4354
ITypeDesc3 . 4354
ITypeDesc4 . 4354
ITypeDescExecutable . 4354
ITypeDescSubrange . 4354
ITypeDescWithAttributes 4354
ITypeDescWithBaseType 4354
ITypeDescWithReferenceType 4354
ITypedList . 4354
ITypedTree . 4354
IUdintElement . 4354
IUDPProcessor . 4354
IUintElement . 4354
IUlintElement . 4354
IUseDataContextSubNodes 4354
IUserMgmtEventHandler 4354
IValueChangedListener 4354
IVariableInformation . 4354
IVariableInformation2 . 4354
IVariableInformation3 . 4354
IVariableInformation4 . 4354
IVariableInformation5 . 4354
IVerifyCertCallback . 4354
IVisualElementLayer . 4354
IVisualElementOfflineScaling 4354
IVisualElementProvidesSubElements 4354
IVisualElementWithoutBlobInit 4354
IVisualisationAccessRights 4355
IVisualizationClient . 4355
IVisualizationClientFilter 4355

IVisualizationClientIteration 4355
IVisuManager . 4355
IVisuManager2 . 4355
IVisuManagerBase . 4355
IVisuStreamFileNameInfo 4355
IVisuStreamHandler . 4355
IVisuStreamReader . 4355
IVisuStreamSetFileName 4355
IVisuStreamWriter . 4355
IVisuUserEventManager 4355
IVisuUserManagement . 4355
IVisuUserManagement2 4355
IVisuUserMgmtCyclicCall 4355
IWORKER . 4355
IWriteableSharedArea . 4355
IWStringElement . 4355
IXYChartDataProvider . 4355
IXYChartDataProvider2 4355
IXYChartDataProvider3 4355
IXYChartDataProviderAxis 4355
IXYChartDataProviderCurve 4355
IXYChartFont . 4355
IXYChartGenericVariable 4355
IXYChartGenericVariable2 4355
IXYChartStringApproxMeasurer 4355
IXYChartVisuStructLevelLine 4355

J
J1939 . 3809

bus cycle . 3808
J1939ECUBase . 4355
J1939LocalECU . 4355
J1939LocalECUDiag . 4355
J1939RemoteECU . 4355
J1939RemoteECUDiag 4355
jitter . 294

task configuration . 294
Jitter_Distribution . 4355
JMP . 473, 500
JMPC . 500
JMPCN . 500
JOB_STATE . 4355
JobAbort . 4355
JobClass . 4355
JobClose . 4355

Index

2022/01/21 3ADR010583, 3, en_US 4475

JobExecute . 4355
JobGetId . 4355
JobGetParams . 4355
JobGetState . 4355
JobOpen . 4355
JobOpenEx . 4355
JobReset . 4355
JobSetState . 4355
JoinDateTime . 4355
JSON_ARR_REF . 4355
JSON_OBJ_REF . 4355
JsonAddArray . 4355
JsonAddBool . 4355
JsonAddInt . 4355
JsonAddObject . 4355
JsonAddReal . 4355
JsonAddString . 4356
JsonArrayAddArray . 4356
JsonArrayAddBool . 4356
JsonArrayAddInt . 4356
JsonArrayAddObject . 4356
JsonArrayAddReal . 4356
JsonArrayAddString . 4356
JsonArrayGetArray . 4356
JsonArrayGetBool . 4356
JsonArrayGetInt . 4356
JsonArrayGetObject . 4356
JsonArrayGetReal . 4356
JsonArrayGetString . 4356
JsonArrayRemoveEntry 4356
JsonCreateArray . 4356
JsonCreateObject . 4356
JsonFreeArray . 4356
JsonFreeObject . 4356
JsonGetArray . 4356
JsonGetBool . 4356
JsonGetInt . 4356
JsonGetObject . 4356
JsonGetReal . 4356
JsonGetString . 4356
JsonParseArrayFromString 4356
JsonParseObjectFromString 4356
JsonRemoveEntry . 4356
JsonSerializeArray . 4356
JsonSerializeObject . 4356

jump . 492
add . 1085
CFC . 523
insert after . 1085
insert, FBD/LD/IL . 1107

jump label
FBD/LD/IL . 506
insert, FBD/LD/IL . 1107
ST . 473

K
key

certificate . 454
key combination . 183
key file . 192
keyboard

call for virtual input, visualization 1271
keyboard configuration

command, visualization 1720
tab, visualization . 1720

keyboard shortcut . 1207
customize . 183

keyboard shortcuts . 183
configure for elements 1274
configure on visualization 1275
for default keyboard action, visualization 1717

keypad
visualization . 1778

KeyValuePair . 4356
keyword . 747

uppercase . 1201
KNX . 3924

device editor . 3924
ETS5 . 3927
general . 3925, 3926
I/O mapping . 3924
IEC objects . 3924
information . 3924
parameters . 3924
status . 3924

L
label . 524, 1447, 1871

CFC . 524
visualization element 1447, 1871

Index

2022/01/213ADR010583, 3, en_US4476

ladder diagram . 235
lamp . 1605, 2029

visualization element 1605, 2029
LAMP_FLASH . 4356
LAMP_INFO . 4356
LAMP_STATUS . 4356
language

current in the visualization 1778
help . 1195
project localization . 211
switch input action . 1751
user interface, command line 442
user interface, options 1195
visualization . 1286

language switching
configure, instructions 1286

LatchVariable . 4356
latency . 294

task configuration . 294
LCon . 4356
LConC . 4356
LConTl . 4356
LConTlC . 4356
LConTlTo . 4356
LConTo . 4356
LCTD . 4356
LCTU . 4356
LCTUD . 4356
LD . 235, 500

closed branch . 509
keyword . 637
online operation . 499
option . 1192
programming in . 239

LDATE . 650
convert . 600
data type . 650
keyword . 637

LDATE_AND_TIME . 650
data type . 650
keyword . 637

LDATE_TO___UXINT . 600
LDATE_TO___XINT . 600
LDATE_TO___XWORD . 600
LDATE_TO_BOOL . 600

LDATE_TO_BYTE . 600
LDATE_TO_DATE . 600
LDATE_TO_DINT . 600
LDATE_TO_DT . 600
LDATE_TO_DWORD . 600
LDATE_TO_INT . 600
LDATE_TO_LDT . 600
LDATE_TO_LINT . 600
LDATE_TO_LREAL . 600
LDATE_TO_LTOD . 600
LDATE_TO_LWORD . 600
LDATE_TO_REAL . 600
LDATE_TO_SINT . 600
LDATE_TO_STRING . 600
LDATE_TO_TIME . 600
LDATE_TO_TOD . 600
LDATE_TO_UDINT . 600
LDATE_TO_UINT . 600
LDATE_TO_ULINT . 600
LDATE_TO_USINT . 600
LDATE_TO_WORD . 600
LDATE_TO_WSTRING . 600
LDN . 500
LDT

convert . 600
keyword . 637

LDT_TO___XWORD . 600
LDT_TO__UXINT . 600
LDT_TO__XINT . 600
LDT_TO_BOOL . 600
LDT_TO_BYTE . 600
LDT_TO_DATE . 600
LDT_TO_DINT . 600
LDT_TO_DT . 600
LDT_TO_DWORD . 600
LDT_TO_INT . 600
LDT_TO_LDATE . 600
LDT_TO_LINT . 600
LDT_TO_LREAL . 600
LDT_TO_LTOD . 600
LDT_TO_LWORD . 600
LDT_TO_REAL . 600
LDT_TO_SINT . 600
LDT_TO_STRING . 600
LDT_TO_TIME . 600

Index

2022/01/21 3ADR010583, 3, en_US 4477

LDT_TO_TOD . 600
LDT_TO_UDINT . 600
LDT_TO_UINT . 600
LDT_TO_ULINT . 600
LDT_TO_USINT . 600
LDT_TO_WORD . 600
LDT_TO_WSTRING . 600
LE . 561
LeafTreeNode . 4356
LeafTreeNodeOpcUA . 4356
LeafTreeNodeTypeMember 4356
LeafTreeNodeTypeMemberOpcUA 4356
LED_ID . 4356
LEFT . 4356
LegacyRTSVisuStructEvent2 4356
legend . 1633, 2057

visualization element 1633, 2057
LEN . 4356
library

add . 1116
add to project . 450
check compatibility . 1025
checks_in_libs . 904
convert library reference 1150
create . 1249
download . 874
download, option . 1195
export . 451, 1061, 1120
install . 1061
integrate . 874
integrate in project . 876
Library Manager . 874
library types . 449
location . 1061
mapping definition . 1195
namespace . 630, 874
options . 1195
outdated versions . 1182
placeholder . 1120
profile . 1061
properties . 874, 1118
protected, signed . 449
referenced libraries . 874
reload . 1117
save as compiled library 960

signing . 960
summary . 874
uninstall . 1061
use POUs . 265

library development
information . 449

Library Development Summary 1249
library documentation

comment . 475
Library Manager . 874

general . 448
library project

category . 919
compiled library . 921
license . 192
licensing . 921
sign . 921

library reference
conversion . 1150

library repository . 1061
adding a library . 451
general . 448

license
activate . 1063
information . 1079
manage . 1063
plug-in . 1079
request . 1063
restore . 1063
return . 1063
start development system without license
prompt . 447

license Information
controller . 1072

License Manager . 1063
license repository . 1066
LicenseFunctions . 4356
LIMIT . 560
LIMITALARM . 4356
LimitAlarm_DINT . 4356
LimitAlarm_LREAL . 4356
LimitDeviceObjectPropertyReferencesToCertain-
Types . 4357
LIN_TRAFO . 4357

Index

2022/01/213ADR010583, 3, en_US4478

line . 1380, 1804
visualization element 1380, 1804

line branch . 1114
IL . 506
open . 506
start point . 1113
start/end . 508

LINE_3D . 4357
LinearMemoryManager 4357
LinearTrafo . 4357
linkalways . 708

pragma . 708
LinkedList . 4357
LinkedListElementBase 4357
LinkedListFactory . 4357
LinkedListIterator . 4357
LinkState_Link . 4357
Lint . 283

programming tool for code analysis 283
LINT . 647

convert . 572
data type . 647

LINT_tO___UXINT . 572
LINT_tO___XINT . 572
LINT_tO___XWORD . 572
LINT_tO_BIT . 572
LINT_tO_BOOL . 572
LINT_tO_BYTE . 572
LINT_TO_DATE . 572
LINT_TO_DINT . 572
LINT_TO_DT . 572
LINT_TO_DWORD . 572
LINT_TO_INT . 572
LINT_TO_LDATE . 572
LINT_TO_LDT . 572
LINT_TO_LREAL . 572
LINT_TO_LTIME . 572
LINT_TO_LTOD . 572
LINT_TO_LWORD . 572
LINT_TO_REAL . 572
LINT_TO_SIGNED . 4357
LINT_TO_SINT . 572
LINT_TO_STRING . 572
LINT_TO_TIME . 572
LINT_TO_TOD . 572

LINT_TO_UDINT . 572
LINT_TO_UINT . 572
LINT_TO_ULINT . 572
LINT_TO_USINT . 572
LINT_TO_WORD . 572
LINT_TO_WSTRING . 572
LintElement . 4357
LintElementFactory . 4357
List . 4357
List components . 261
ListBase . 4357
Listener . 4357
ListFactory . 4357
ListIterator . 4357
ListNewClient . 4357
ListNewFrame . 4357
ListNewLogin . 4357
ListNewPage . 4357
ListOfDevices . 4357
ListRemoveClient . 4357
ListValueChanged . 4357
ListVisuClient . 4357
ListVisuClientDwnSL . 4357
literal . 632

character . 634
date . 637
time of day . 637
typed . 640

LMMBlock . 4357
LN . 607
LNC

IEC 61850 server . 3904
load

project, option . 1196
loading to the controller . 440
local variable . 526
LocalDateTime . 4357
localization

project . 211
localization template

project localization . 211
lock

get, SVN . 4252
steal, SVN . 4253

locked, operating mode 1046

Index

2022/01/21 3ADR010583, 3, en_US 4479

log
device . 1058
open . 848
PLC . 435
SVN . 4253
VendorException . 848

Log . 4053
LOG . 608
log of the PLC

device editor . 848
LOG_ENTRY . 4357
log-in to a CPU . 89, 148
LogAdd . 4357
LogAdd2 . 4357
LogClose . 4357
LogComponent . 4357
LogCreate . 4357
LogDelete . 4357
LogGeneric_Input . 4357
LogGeneric_Output . 4357
LOGGER_MODE . 4357
LoggingHelper . 4357
LoggingInit . 4357
LoggingOptions . 4357
LogHandling . 4357
Logical Name Class (LNC)

IEC 61850 server . 3904
LogIec60870_Input . 4357
LogIec60870_Output . 4357
login . 1028

as user . 206
via user account . 205
with certificate only . 198
wrong password . 459

LogManager . 4357
LogMessage . 4357
LogObjectBaseFileHandleTableEntry 4357
LogObjectsBase . 4357
LogOpen . 4357
LogOptions . 4357
logout . 1031, 1041
LogToDevice . 4357
LostMessages . 4357
LowByte . 4357

LOWER_BOUND . 665
array . 665

lowercase . 970
LowWord . 4357
LREAL . 648

constant . 634
convert . 584
literal . 634

LREAL_TO___XWORD . 584
LREAL_TO__UXINT . 584
LREAL_TO__XINT . 584
LREAL_TO_BIT . 584
LREAL_TO_BOOL . 584
LREAL_TO_BYTE . 584
LREAL_TO_DATE . 584
LREAL_TO_DINT . 584
LREAL_TO_DT . 584
LREAL_TO_DWORD . 584
LREAL_TO_FLOAT . 4358
LREAL_TO_INT . 584
LREAL_TO_LINT . 584
LREAL_TO_LREAL . 584
LREAL_TO_LWORD . 584
LREAL_TO_SINT . 584
LREAL_TO_STRING . 584
LREAL_TO_UDINT . 584
LREAL_TO_UINT . 584
LREAL_TO_ULINT . 584
LREAL_TO_USINT . 584
LRealToHexStr . 4358
LRealToStr . 4358
LT . 561
LTIME . 650

constant . 636
convert . 595
literal . 636

LTIME_OF_DAY . 650
data type . 650
keyword . 637

LTIME_TO___UXINT . 595
LTIME_TO___XINT . 595
LTIME_TO___XWORD . 595
LTIME_TO_BOOL . 595
LTIME_TO_BYTE . 595
LTIME_TO_DATE . 595

Index

2022/01/213ADR010583, 3, en_US4480

LTIME_TO_DINT . 595
LTIME_TO_DT . 595
LTIME_TO_DURATION 4358
LTIME_TO_DWORD . 595
LTIME_TO_INT . 595
LTIME_TO_INT64 . 4358
LTIME_TO_ISO8601 . 4358
LTIME_TO_LDATE . 595
LTIME_TO_LDT . 595
LTIME_TO_LINT . 595
LTIME_TO_LREAL . 595
LTIME_TO_LTOD . 595
LTIME_TO_LWORD . 595
LTIME_TO_REAL . 595
LTIME_TO_REAL8 . 4358
LTIME_TO_SINT . 595
LTIME_TO_STRING . 595
LTIME_TO_TIME . 595
LTIME_TO_TOD . 595
LTIME_TO_UDINT . 595
LTIME_TO_UINT . 595
LTIME_TO_ULINT . 595
LTIME_TO_USINT . 595
LTIME_TO_WORD . 595
LTIME_TO_WSTRING . 595
LTOD . 650

convert . 600
data type . 650
keyword . 637

LTOD_TO___XWORD . 600
LTOD_TO__UXINT . 600
LTOD_TO__XINT . 600
LTOD_TO_BOOL . 600
LTOD_TO_BYTE . 600
LTOD_TO_DATE . 600
LTOD_TO_DINT . 600
LTOD_TO_DT . 600
LTOD_TO_DWORD . 600
LTOD_TO_INT . 600
LTOD_TO_LDATE . 600
LTOD_TO_LDT . 600
LTOD_TO_LINT . 600
LTOD_TO_LREAL . 600
LTOD_TO_LWORD . 600
LTOD_TO_REAL . 600

LTOD_TO_SINT . 600
LTOD_TO_STRING . 600
LTOD_TO_TIME . 600
LTOD_TO_TOD . 600
LTOD_TO_UDINT . 600
LTOD_TO_UINT . 600
LTOD_TO_ULINT . 600
LTOD_TO_USINT . 600
LTOD_TO_WORD . 600
LTOD_TO_WSTRING . 600
LTOF . 4358
LTON . 4358
LTP . 4358
LTrig . 4358
LWORD . 647

convert . 572
LWORD_TO___UXINT . 572
LWORD_TO___XINT . 572
LWORD_TO___XWORD 572
LWORD_TO_BIT . 572
LWORD_TO_BOOL . 572
LWORD_TO_BYTE . 572
LWORD_TO_DATE . 572
LWORD_TO_DINT . 572
LWORD_TO_DT . 572
LWORD_TO_DWORD . 572
LWORD_TO_HANDLE . 4358
LWORD_TO_INT . 572
LWORD_TO_LDATE . 572
LWORD_TO_LDT . 572
LWORD_TO_LINT . 572
LWORD_TO_LREAL . 572
LWORD_TO_LTIME . 572
LWORD_TO_LTOD . 572
LWORD_TO_PVOID . 4358
LWORD_TO_REAL . 572
LWORD_TO_SINT . 572
LWORD_TO_STRING . 572
LWORD_TO_TIME . 572
LWORD_TO_TOD . 572
LWORD_TO_UDINT . 572
LWORD_TO_UINT . 572
LWORD_TO_ULINT . 572
LWORD_TO_USINT . 572
LWORD_TO_WORD . 572

Index

2022/01/21 3ADR010583, 3, en_US 4481

LWORD_TO_WSTRING 572

M
M . 643

memory range prefix . 643
M4 interface file for external library 1022
MAC_ADDRESS_COMPARE 4358
macro . 492

add . 1086
insert after . 1086
SFC . 492
zoom into . 1086
zoom out of . 1086

magnification tool . 462
main action . 489
MAKE_EVENTID . 4358
MakeNormed3D . 4358
manage localizations . 1008
map pool devices

command . 1014
MapErrorCode . 4358
MapErrorCodeFailedAsConnLost 4358
MapIECResult . 4358
MapNetBaseServiceError 4358
MapOpcUaStatus . 4358
mapping . 214

I/O mapping . 214
mapping (see I/O mapping) 215
MappingDesc_ArrayArbitrary 4358
MappingDesc_ArraySubRange 4358
MAUType . 4358
MAX . 559
MB_AccessTypes . 4358
MB_ErrorCodes . 4358
MB_MasterParameter . 4358
MB_Medium . 4358
MB_Parity . 4358
MB_PortParameter . 4358
MB_SlaveParameter . 4358
MB_Transmission . 4358
MB_TriggerType . 4358
MBFunctionCode . 4358
MC . 3999
MC502 . 3311, 3428
MC5102 3288, 3315, 3374, 3432

MC5141 . 3320, 3437
MD5 . 4358
MD5_FF . 4358
MD5_GG . 4358
MD5_HH . 4358
MD5_II . 4358
MD5_Transform . 4358
MeasureFrequence . 4358
Measuring ranges

AC522 . 2853
MeasuringPoint . 4358
Mechanical dimensions S500 3406
MemBuffer . 4358
MemCmp . 4358
MemCopy . 4358
MemCopySwap . 4358
MemCpy . 4358
MemFill . 4358
MemForceSwap . 4358
MemMove . 4358
memory

display memory snapshot 995
dynamic allocation . 614

memory card . 3999
MC502 . 3311, 3428
MC5102 (micro) 3288, 3315, 3374, 3432
MC5141 . 3320, 3437

memory range . 643
memory reserve

function block . 998
online change . 998

memory view . 995
MemoryBarrier . 4358
MemoryManager . 4358
MemSet . 4358
menu . 1206

customize . 180
merge changes . 4260
message

go to source position . 978
next . 979
previous . 979

MESSAGE . 4358
message pragma . 683
message view . 986

Index

2022/01/213ADR010583, 3, en_US4482

MessageBox_Struct . 4358
meta-information . 191

add to project . 191
meter . 1580, 2004

90°, visualization element 1566, 1990
180°, visualization element 1573, 1997
visualization element 1580, 2004

method . 889
call . 314, 890
call recursively . 316
call with external implementation 260
example of recursive call 696
factorial calculation . 696
FB_Init, FB_Reinit, FB_Exit 748
interface . 894
monitor . 414
object-oriented programming 889
reaction to type change 689
recursive call . 891
virtual call . 314

METHOD . 889
Methode . 533
metrics

code analysis . 4147
static analysis 4134, 4147

METRICS . 4359
micro memory card

MC5102 3288, 3315, 3374, 3432
micro memory card adapter

TA5350-AD 3288, 3315, 3374, 3432
MID . 4359
Mid2 . 4359
migrate third party device

command . 1059
migration 61, 2430, 3637, 3993
MILLISECOND . 4359
MIN . 559
MINUTE . 4359
MMAP_PROT . 4359
MMAPS_FLAGS . 4359
MOD . 550
Modbus

parameters . 844
RTU protocol . 3427, 3912
TCP/IP protocol 3558, 3910

Modbus TCP . 2155
ModbusChannel . 4359
ModbusCommand . 4359
ModbusRequest . 4359
ModbusRequest2 . 4359
ModbusSerialDeviceDiag 4359
ModbusSerialSlaveBase 4359
ModbusServer . 4359
ModbusSlaveComPort . 4359
ModbusSlaveComPort_Diag 4359
ModbusTCPComSettings 4359
ModbusTCPComState . 4359
ModbusTCPDeviceDiag 4359
ModbusTCPSlave . 4359
ModbusTCPSlave_Diag 4359
ModbusTCPSlaveBase 4359
ModbusTCPSlaveUnit . 4359
ModbusTCPSlaveUnit_Diag 4359
MODE . 4359
modifier. IL . 500
ModRtuGenDevDataType 4359
ModRtuGenDevDataTypeInternal 4359
ModRtuMast . 4359
ModRtuMastTypeInternal 4359
ModRtuRead . 4359
ModRtuReadWrite23 . 4359
ModRtuToken . 4359
ModRtuTokenType . 4359
ModRtuWrite . 4359
ModTcpConfig . 4359
ModTcpInfo . 4359
ModTcpMast . 4359
ModTcpMast2 . 4359
ModTcpServOnOff . 4359
module

call tree . 975
Module . 4359
Module_Diag . 4359
ModuleAlarmInfo . 4359
ModuleCall . 4359
ModuleEvent . 4359
ModuleState . 4359
MODULESTATE . 4359
MonitorDBStatus . 4359
MonitoredItem . 4359

Index

2022/01/21 3ADR010583, 3, en_US 4483

MonitoredItemState . 4359
MonitoredReadRequest 4359
MonitoredReadRequestState 4359
MonitorFilterByDateTime 4359
MonitorFilterByLatch . 4359
monitoring . 410

area for arrays . 461, 1156
CFC editor . 516
display mode . 1058
enable inline monitoring 972
function call . 709
inline . 410
interval . 1169
options . 1197
pragma . 709
properties . 1170
property . 709
SFC . 476
using pous for implicit checks 309

monitoring area . 461
dialog . 461

Monitoring direction
IEC 61850 server . 3902

monitoring function
implicit . 904

Monitoring variable
IEC 61850 Server . 3888

Monitoring2ByteCode . 4359
Monitoring2ByteCodeUnion 4359
MonitoringService . 4360
MonitoringServiceHelper 4360
MonitorPopulateFilterCriteria 4360
MONTH . 4360
Motion control library . 2288
Motion Solution Wizard

CAM editor . 2278
Mounting

AC500-eCo V3 CPUs 3360
Mounting and demounting

AC500-eCo V3 CPUs 3360
Mounting/Demounting

communication modules 3414
function module terminal bases 3408
terminal bases . 3408

terminal bases and function module terminal
bases . 3408
terminal unit . 3410

MOVE . 550
move down . 1122
move up . 1122
MoveAbsolute . 4360
MoveAbsoluteData . 4360
MoveRelative . 4360
MQTT . 3917
MQTT client library . 2376
MQTT_CONNECTION 2378, 4360
MQTT_ERROR_ID . 2376
MQTT_MESSAGE 2378, 4360
MQTT_QOS . 2378, 4360
MqttConnectWithCertBuffer 4360
MqttConnectWithCertFile 4360
MqttConnectWithCertStore 4360
MqttDisconnect . 4360
MqttGetReceivedPacket 4360
MqttPing . 4360
MqttPublish . 4360
MqttSubscribe . 4360
MqttUnsubscribe . 4360
MsgAddRef . 4360
MsgClass . 4360
MsgClone . 4360
MsgGetData . 4360
MsgReceive . 4360
MsgRelease . 4360
MsgReleaseEx . 4360
MsgSend . 4360
MSK_ECM_IF_EXT_SYNC_INFO_FLAGS 4360
MSSQL . 3951
MUL . 547
multi online change

command . 1069
multicore . 941

show CPU load . 429
trace . 428
use task-local global variable list 230

multicore operator
__COMPARE_AND_SWAP 625
__XADD . 626
TEST_AND_SET . 628

Index

2022/01/213ADR010583, 3, en_US4484

multitouch
for operating a visualization 1269
implement event handling 1270
visualization . 1780

MUX . 560
MySQL . 3951

N
name

convention, static analysis 4149
NamedTreeNode . 4360
nameprefix . 4149

attribute . 4149
nameprefix, attribute . 4151
namespace . 740

automatic . 1201
enumeration . 630
GVL . 629
library . 630
of variables . 740

NamespaceIdFixer . 4360
NamespaceNodeFlags . 4360
NamespaceTable . 4360
naming . 4149

attribute . 4149
naming convention 740, 4140

code analysis . 4140
disable . 4150
naming . 4150
static analysis . 4140
suppress . 4150

naming, attribute . 4150
NCAPDUFaultStatus . 4360
NE . 562
Negate . 1090
negated coil . 508
negated contact . 507
negation, fbd/ld/il . 1112
NestingPathEntry . 4360
NestingPathInformation 4360
NET_INFO . 4360
NetClientCloseChannel 4360
NetClientOpenChannel 4360
NetClientOpenChannelResult 4360
NetClientSend . 4360

NetDiagnosis . 4360
NetVarDataItem_Udp . 4360
NetVarManager_Udp_FB 4360
NetVarOD_Service_Udp 4360
NetVarPDO_Rx_Udp . 4360
NetVarPDO_Tx_Udp . 4360
NetVarTelegramm_Udp 4360
NetVarTlgHeader_Udp . 4360
NetVarUDPDiagStruct . 4360
NetVarUDPError . 4360
network . 353

address . 355
addressing . 353
comment out . 1105
FBD/LD/IL . 504
FBD/LD/IL, insert . 1104
FBD/LD/IL, insert below 1105
jump . 1116
scan . 840
settings . 1165
topology . 353

Network scan . 3678, 3725
network variable list (receiver) 880

add . 880
network variable list (sender) 880

add . 880
network variables . 360

properties . 1163
NetX configuration

EtherNet/IP . 1224
NETX_DEV_DIAG . 4360
NETX_SYSTEM_CHANNEL 4360
NETX_UDINT_TO_STRINGHEX 4360
NetxEcatInit . 4360
NetxEcatIsCompatible . 4360
NetxEcatJobBusScanStart 4361
NetxEcatJobBusScanStop 4361
NetxEcatJobGetDevStatistics 4361
NetxEcatJobGetExtSyncInfo 4361
NetxEcatJobGetInfo . 4361
NetxEcatJobGetMasterCPULoad 4361
NetxEcatJobGetMasterDcInfo 4361
NetxEcatJobGetMasterFrameLossCount 4361
NetxEcatJobGetMasterMemInfo 4361
NetxEcatJobGetMasterThresholdCount 4361

Index

2022/01/21 3ADR010583, 3, en_US 4485

NetxEcatJobGetMasterTimingInfo 4361
NetxEcatJobGetSlaveDcInfo 4361
NetxEcatJobGetSlaveDiag 4361
NetxEcatJobGetSlaveMDPModules 4361
NetxEcatJobPrmSanityCheck 4361
NetxEcatJobPrmSanityCheckSlave 4361
NetxEcatJobReadRegister 4361
NetxEcatJobReadSlaveLostLinkCnt 4361
NetxEcatJobReadSlaveRxErrorCnt 4361
NetxEcatJobReadSlaveVersion 4361
NetxEcatJobSdoRead . 4361
NetxEcatJobSdoWrite . 4361
NetxEcatJobSetSlaveState 4361
NetxEcatJobSetState . 4361
NetxEcatJobSoeRead . 4361
NetxEcatJobSoeWrite . 4361
NetxEcatJobStart . 4361
NetxEcatJobStop . 4361
NetxEcatJobWriteRegister 4361
NEW . 614
new connection

EtherNet/IP adapter 1227
next message . 986
NMT . 4361
NMT_ERROR_BEHAVIOUR 4361
no_assign_warning, pragma 711
no_assign, pragma . 711
no_check, pragma . 712
no_copy, pragma attribute 713
no_fast_online_change . 705
no_init . 3461
no_instance_in_retain, pragma 714
no_virtual_actions, pragma 714
no-exit, pragma . 713
node address . 355
NodeFlags . 4361
NodeId . 4361
NODEID . 4361
NodeIdArray . 4361
NodeInformation . 4361
NodeMapper . 4361
noinit, pragma . 713
NOP . 4361
Norm3D . 4361
NOT . 552

NOT, operator in pragma 738
notification center . 817
notifications . 817
NSC_AddrComponent . 4361
NSC_CompleteNodeInfo 4361
NSC_NodeAddress . 4361
NSC_NodeInfoExt . 4361
NSC_NodeInfoInt . 4361
NSClientClose . 4361
NSClientGeneralResolveCallback 4361
NSClientOpen . 4361
NSClientResolveAll . 4361
NSClientSearchNodeFlags 4361
NSClientSysMemAllocator 4361
NSClientTaskBase . 4361
NSClientTaskResolveAllNodes 4361
NSClientTaskSearchForSpecificNode 4361
NSClientUtil_DumpAddress 4361
NSClientUtil_DumpAddressHelp 4361
NSClientUtil_DumpCallback 4362
NSClientUtil_DumpNodeInfo 4362
NSClientUtil_DumpStartSearchNodeParams . . . 4362
NSClientUtil_Log1 . 4362
NSClientUtil_Log2 . 4362
NSClientUtil_Log3 . 4362
NSClientWrapper . 4362
NTP . 3912
NtpSourceInfoData . 4362
NtpSourceMode . 4362
NtpSourceState . 4362
NullElement . 4362
NumClass . 4025
numeric constants . 633
numeric keypad

call, visualization . 1272
numpad

visualization . 1778
NumTotal . 4025
NVL (receiver) . 880
NVL (sender) . 880

O
OBIO_PTO_Motion_Parameter 4362
OBIO_PTOMotionKernel 4362
OBIO_PWM_Motion_Parameter 4362

Index

2022/01/213ADR010583, 3, en_US4486

OBIO_PWMMotionKernel 4362
OBIOBasicPoint2Point . 4362
OBIOEncoderCounter . 4362
OBIOForwardCounter . 4362
OBIOFreqOut . 4362
OBIOInterruptInfo . 4362
OBIOInterruptPara . 4362
OBIOLimitSwitch . 4362
OBIOMotionPTO . 4362
OBIOMotionPwm . 4362
OBIOPulseTrainOutput . 4362
OBIOPwm . 4362
OBIOSineSquarePoint2Point 4362
object

access right . 200
add, visualization . 1746
edit . 1006
edit (offline) . 1006
edit with . 1006
find . 985
link to file . 1166
open detailed compare view 196, 3641
select in device tree 1077
select parent object in device tree 1077

Object
add, command . 1001
Properties . 1157

ObjectIterator . 4362
ObjectPersistence . 4362
obsolete, pragma . 718
occurrence location

variable . 285
octal

number . 633
octal number

format definition %o 1708
OF . 660

array . 660
offline help

option . 1194
OffsetPoints . 4362
OLM_OnlineLicenseManager 4362
Onboard I/Os

PM50x2 . 2449
Onboard I/Os in processor module PM50x2 2449

online
log in to application . 1028
logout from application 1031
multiple download . 1036
pointer reference . 979

online cam editor . 332
online change . 1033

active application . 1033
attribute . 705
compiler definition . 705
encrypt . 4123
selected application . 1033

online config mode . 1019
online help

option . 1194
online mode

task monitoring . 940
OPC UA

information model . 877
information model repository 1069

OPC UA Client
data source . 834

OPC UA server . 1236, 3981
OPCAClientCredentials_UserPassword 4362
OpcDateTimeToDT . 4362
OpcUa_ActivateSessionRequest 4362
OpcUa_ActivateSessionResponse 4362
OpcUa_AddNodesItem 4362
OpcUa_AddNodesRequest 4362
OpcUa_AddNodesResponse 4362
OpcUa_AddNodesResult 4362
OpcUa_AddReferencesItem 4362
OpcUa_AddReferencesRequest 4362
OpcUa_AddReferencesResponse 4362
OpcUa_AggregateConfiguration 4362
OpcUa_AggregateFilter 4362
OpcUa_AggregateFilterResult 4362
OpcUa_Annotation . 4362
OpcUa_AnonymousIdentityToken 4362
OpcUa_ApplicationDescription 4362
OpcUa_ApplicationType 4362
OpcUa_Argument . 4362
OpcUa_ArrayType . 4362
OpcUa_AttributeOperand 4362
OpcUa_Attributes . 4362

Index

2022/01/21 3ADR010583, 3, en_US 4487

OpcUa_AxisInformation 4362
OpcUa_AxisScaleEnumeration 4362
OpcUa_Boolean . 4363
OpcUa_BrowseDescription 4363
OpcUa_BrowseDirection 4363
OpcUa_BrowseNextRequest 4363
OpcUa_BrowseNextResponse 4363
OpcUa_BrowsePath . 4363
OpcUa_BrowsePathResult 4363
OpcUa_BrowsePathTarget 4363
OpcUa_BrowseRequest 4363
OpcUa_BrowseResponse 4363
OpcUa_BrowseResult . 4363
OpcUa_BrowseResultMask 4363
OpcUa_BuildInfo . 4363
OpcUa_BuiltInType . 4363
OpcUa_Byte . 4363
OpcUa_ByteString . 4363
OpcUa_CallMethodRequest 4363
OpcUa_CallMethodResult 4363
OpcUa_CallRequest . 4363
OpcUa_CallResponse . 4363
OpcUa_CancelRequest 4363
OpcUa_CancelResponse 4363
OpcUa_ChannelSecurityToken 4363
OpcUa_CharA . 4363
OpcUa_CloseSecureChannelRequest 4363
OpcUa_CloseSecureChannelResponse 4363
OpcUa_CloseSessionRequest 4363
OpcUa_CloseSessionResponse 4363
OpcUa_ComplexNumberType 4363
OpcUa_ContentFilter . 4363
OpcUa_ContentFilterElement 4363
OpcUa_ContentFilterElementResult 4363
OpcUa_ContentFilterResult 4363
OpcUa_CreateMonitoredItemsRequest 4363
OpcUa_CreateMonitoredItemsResponse 4363
OpcUa_CreateSessionRequest 4363
OpcUa_CreateSessionResponse 4363
OpcUa_CreateSubscriptionRequest 4363
OpcUa_CreateSubscriptionResponse 4363
OpcUa_DataChangeFilter 4363
OpcUa_DataChangeNotification 4363
OpcUa_DataChangeTrigger 4363
OpcUa_DataTypeAttributes 4363

OpcUa_DataValue . 4363
OpcUa_DateTime . 4363
OpcUa_Decoder . 4363
OpcUa_DeleteAtTimeDetails 4363
OpcUa_DeleteEventDetails 4363
OpcUa_DeleteMonitoredItemsRequest 4363
OpcUa_DeleteMonitoredItemsResponse 4363
OpcUa_DeleteNodesItem 4363
OpcUa_DeleteNodesRequest 4363
OpcUa_DeleteNodesResponse 4363
OpcUa_DeleteRawModifiedDetails 4363
OpcUa_DeleteReferencesItem 4363
OpcUa_DeleteReferencesRequest 4364
OpcUa_DeleteReferencesResponse 4364
OpcUa_DeleteSubscriptionsRequest 4364
OpcUa_DeleteSubscriptionsResponse 4364
OpcUa_DiagnosticInfo . 4364
OpcUa_Double . 4364
OpcUa_DoubleComplexNumberType 4364
OpcUa_ElementOperand 4364
OpcUa_EncodeableObjectBody 4364
OpcUa_EncodeableType 4364
OpcUa_Encoder . 4364
OpcUa_EndpointConfiguration 4364
OpcUa_EndpointDescription 4364
OpcUa_EndpointUrlListDataType 4364
OpcUa_EnumDefinition 4364
OpcUa_EnumField . 4364
OpcUa_EnumValueType 4364
OpcUa_EUInformation . 4364
OpcUa_EventFieldList . 4364
OpcUa_EventFilter . 4364
OpcUa_EventFilterResult 4364
OpcUa_EventNotificationList 4364
OpcUa_ExpandedNodeId 4364
OpcUa_ExtensionObject 4364
OpcUa_ExtensionObject_Body 4364
OpcUa_ExtensionObjectEncoding 4364
OpcUa_FilterOperator . 4364
OpcUa_FindServersOnNetworkRequest 4364
OpcUa_FindServersOnNetworkResponse 4364
OpcUa_FindServersRequest 4364
OpcUa_FindServersResponse 4364
OpcUa_Float . 4364
OpcUa_GenericAttributes 4364

Index

2022/01/213ADR010583, 3, en_US4488

OpcUa_GenericAttributeValue 4364
OpcUa_GetEndpointsRequest 4364
OpcUa_GetEndpointsResponse 4364
OpcUa_Guid . 4364
OPcUa_Handle . 4364
OpcUa_HistoryData . 4364
OpcUa_HistoryEvent . 4364
OpcUa_HistoryEventFieldList 4364
OpcUa_HistoryModifiedData 4364
OpcUa_HistoryReadRequest 4364
OpcUa_HistoryReadResponse 4364
OpcUa_HistoryReadResult 4364
OpcUa_HistoryReadValueId 4364
OpcUa_HistoryUpdateDetails 4364
OpcUa_HistoryUpdateRequest 4364
OpcUa_HistoryUpdateResponse 4364
OpcUa_HistoryUpdateResult 4364
OpcUa_HistoryUpdateType 4364
OpcUa_IdentifierType . 4364
OpcUa_Int . 4364
OpcUa_Int16 . 4364
OpcUa_Int32 . 4364
OpcUa_Int64 . 4365
OpcUa_IssuedIdentityToken 4365
OpcUa_LiteralOperand 4365
OpcUa_LocalizedText . 4365
OpcUa_MdnsDiscoveryConfiguration 4365
OpcUa_MessageSecurityMode 4365
OpcUa_MethodAttributes 4365
OpcUa_ModelChangeStructureDataType 4365
OpcUa_ModificationInfo 4365
OpcUa_ModifyMonitoredItemsRequest 4365
OpcUa_ModifyMonitoredItemsResponse 4365
OpcUa_ModifySubscriptionRequest 4365
OpcUa_ModifySubscriptionResponse 4365
OpcUa_MonitoredItemCreateRequest 4365
OpcUa_MonitoredItemCreateResult 4365
OpcUa_MonitoredItemModifyRequest 4365
OpcUa_MonitoredItemModifyResult 4365
OpcUa_MonitoredItemNotification 4365
OpcUa_MonitoringMode 4365
OpcUa_MonitoringParameters 4365
OpcUa_NetworkGroupDataType 4365
OpcUa_NodeAttributes 4365
OpcUa_NodeClass . 4365

OpcUa_NodeId . 4365
OpcUa_NodeId_anon . 4365
OpcUa_NodeIds . 4365
OpcUa_NodeReference 4365
OpcUa_NodeTypeDescription 4365
OpcUa_NotificationMessage 4365
OpcUa_ObjectAttributes 4365
OpcUa_ObjectTypeAttributes 4365
OpcUa_OpenSecureChannelRequest 4365
OpcUa_OpenSecureChannelResponse 4365
OpcUa_OptionSet . 4365
OpcUa_ParsingResult . 4365
OpcUa_PerformUpdateType 4365
OpcUa_ProgramDiagnostic2DataType 4365
OpcUa_ProgramDiagnosticDataType 4365
OpcUa_PublishRequest 4365
OpcUa_PublishResponse 4365
OpcUa_QualifiedName 4365
OpcUa_QueryDataDescription 4365
OpcUa_QueryDataSet . 4365
OpcUa_QueryFirstRequest 4365
OpcUa_QueryFirstResponse 4365
OpcUa_QueryNextRequest 4365
OpcUa_QueryNextResponse 4365
OpcUa_Range . 4365
OpcUa_ReadAtTimeDetails 4365
OpcUa_ReadEventDetails 4365
OpcUa_ReadProcessedDetails 4365
OpcUa_ReadRawModifiedDetails 4365
OpcUa_ReadRequest . 4365
OpcUa_ReadResponse 4365
OpcUa_ReadValueId . 4365
OpcUa_RedundantServerDataType 4366
OpcUa_ReferenceDescription 4366
OpcUa_ReferenceTypeAttributes 4366
OpcUa_RegisteredServer 4366
OpcUa_RegisterNodesRequest 4366
OpcUa_RegisterNodesResponse 4366
OpcUa_RegisterServer2Request 4366
OpcUa_RegisterServer2Response 4366
OpcUa_RegisterServerRequest 4366
OpcUa_RegisterServerResponse 4366
OpcUa_RelativePath . 4366
OpcUa_RelativePathElement 4366
OpcUa_RepublishRequest 4366

Index

2022/01/21 3ADR010583, 3, en_US 4489

OpcUa_RepublishResponse 4366
OpcUa_RequestHeader 4366
OpcUa_ResponseHeader 4366
OpcUa_RolePermissionType 4366
OpcUa_SamplingIntervalDiagnosticsDataType . 4366
OpcUa_SByte . 4366
OpcUa_SecurityTokenRequestType 4366
OpcUa_SemanticChangeStructureDataType . . . 4366
OpcUa_ServerDiagnosticsSummaryDataType . . 4366
OpcUa_ServerOnNetwork 4366
OpcUa_ServerState . 4366
OpcUa_ServerStatusDataType 4366
OpcUa_ServiceCounterDataType 4366
OpcUa_ServiceFault . 4366
OpcUa_SessionDiagnosticsDataType 4366
OpcUa_SessionlessInvokeRequestType 4366
OpcUa_SessionlessInvokeResponseType 4366
OpcUa_SessionSecurityDiagnosticsDataType . . 4366
OpcUa_SetMonitoringModeRequest 4366
OpcUa_SetMonitoringModeResponse 4366
OpcUa_SetPublishingModeRequest 4366
OpcUa_SetPublishingModeResponse 4366
OpcUa_SetTriggeringRequest 4366
OpcUa_SetTriggeringResponse 4366
OpcUa_SignatureData . 4366
OpcUa_SignedSoftwareCertificate 4366
OpcUa_SimpleAttributeOperand 4366
OpcUa_StatusChangeNotification 4366
OpcUa_StatusCode . 4366
OpcUa_StatusResult . 4366
OpcUa_String . 4366
OpcUa_StructureDefinition 4366
OpcUa_StructureField . 4366
OpcUa_StructureType . 4366
OpcUa_SubscriptionAcknowledgement 4366
OpcUa_SubscriptionDiagnosticsDataType 4366
OpcUa_TimestampsToReturn 4366
OpcUa_TimeZoneDataType 4366
OpcUa_TransferResult . 4366
OpcUa_TransferSubscriptionsRequest 4366
OpcUa_TransferSubscriptionsResponse 4366
OpcUa_TranslateBrowsePathsToNodeIdsRequest
. 4366

OpcUa_TranslateBrowsePathsToNodeIdsRes-
ponse . 4367

OpcUa_UInt . 4367
OpcUa_Uint16 . 4367
OpcUa_UInt32 . 4367
OpcUa_UInt64 . 4367
OpcUa_UnregisterNodesRequest 4367
OpcUa_UnregisterNodesResponse 4367
OpcUa_UpdateDataDetails 4367
OpcUa_UpdateEventDetails 4367
OpcUa_UpdateStructureDataDetails 4367
OpcUa_UserIdentityToken 4367
OpcUa_UserNameIdentityToken 4367
OpcUa_UserTokenPolicy 4367
OpcUa_UserTokenType 4367
OpcUa_VariableAttributes 4367
OpcUa_VariableTypeAttributes 4367
OpcUa_Variant . 4367
OpcUa_VariantArrayType 4367
OpcUa_VariantArrayUnion 4367
OpcUa_VariantArrayValue 4367
OpcUa_VariantMatrixValue 4367
OpcUa_VariantUnion . 4367
OpcUa_ViewAttributes . 4367
OpcUa_ViewDescription 4367
OpcUa_WriteRequest . 4367
OpcUa_WriteResponse 4367
OpcUa_WriteValue . 4367
OpcUa_X509IdentityToken 4367
OpcUa_XVType . 4367
OpcUaApplicationDescriptionClear 4367
OpcUaApplicationDescriptionInitialize 4367
OpcUaBrowsePathClear 4367
OpcUaBrowsePathInitialize 4367
OpcUaBrowsePathResultClear 4367
OpcUaBrowsePathResultInitialize 4367
OpcUaBrowseResultClear 4367
OpcUaBrowseResultInitialize 4367
OpcUaByteStringClear . 4367
OpcUaByteStringCompare 4367
OpcUaByteStringConcatenate 4367
OpcUaByteStringCopyTo 4367
OpcUaByteStringInitialize 4367
OPCUAClient_Browse . 4367
OPCUAClient_BrowseNext 4367
OPCUAClient_Call . 4367
OPCUAClient_Connect 4367

Index

2022/01/213ADR010583, 3, en_US4490

OPCUAClient_Create . 4367
OPCUAClient_CreateMonitoredItems 4367
OPCUAClient_CreateSubscription 4367
OPCUAClient_Delete . 4367
OPCUAClient_DeleteMonitoredItems 4367
OPCUAClient_DeleteSubscription 4367
OPCUAClient_Disconnect 4367
OPCUAClient_FindServers 4367
OPCUAClient_FindServersOnNetwork 4367
OPCUAClient_GetConfig 4368
OPCUAClient_GetEndpoints 4368
OPCUAClient_ModifyMonitoredItems 4368
OPCUAClient_ModifySubscription 4368
OPCUAClient_Read . 4368
OPCUAClient_RegisterNodes 4368
OPCUAClient_SetDataChangeFilterStatic 4368
OPCUAClient_SetEventFilterStatic 4368
OPCUAClient_SetMonitoringMode 4368
OPCUAClient_SetPublishingMode 4368
OPCUAClient_TranslateBrowsePathsToNodeIds
. 4368

OPCUAClient_UnregisterNodes 4368
OPCUAClient_Write . 4368
OPCUAClientConnectionConfiguration 4368
OPCUAClientConnectionState 4368
OPCUAClientCredentials 4368
OPCUAClientMonitoredItemConfiguration 4368
OPCUAClientMonitoredItemState 4368
OPCUAClientSubscriptionState 4368
OPCUAClientUserToken 4368
OpcUaDataTypeDescription 4368
OpcUaDataValueClear . 4368
OpcUaDataValueCompare 4368
OpcUaDataValueCopyTo 4368
OpcUaDataValueInitialize 4368
OpcUaDateTimeUtcNow 4368
OpcUaElementDescription 4368
OpcUaEndpointDescriptionClear 4368
OpcUaEndpointDescriptionInitialize 4368
OpcUaEventFieldListClear 4368
OpcUaEventFieldListInitialize 4368
OpcUaEventNotificationListClear 4368
OpcUaEventNotificationListInitialize 4368
OpcUaExpandedNodeIdClear 4368
OpcUaExpandedNodeIdCompare 4368

OpcUaExpandedNodeIdCopyTo 4368
OpcUaExpandedNodeIdInitialize 4368
OpcUaExpandedNodeIdIsNull 4368
OpcUaExtensionObjectClear 4368
OpcUaExtensionObjectCompare 4368
OpcUaExtensionObjectCopyTo 4368
OpcUaExtensionObjectCreate 4368
OpcUaExtensionObjectDelete 4368
OpcUaExtensionObjectInitialize 4368
OpcUaLocalizedTextClear 4368
OpcUaLocalizedTextCompare 4368
OpcUaLocalizedTextCopyTo 4368
OpcUaLocalizedTextInitialize 4368
OpcUaMetaDataType . 4368
OpcUaMethodDescription 4368
OpcUaMethodMetaData 4368
OpcUaNodeIdClear . 4368
OpcUaNodeIdCompare 4368
OpcUaNodeIdCopyTo . 4368
OpcUaNodeIdInitialize . 4368
OpcUaNodeIdIsNull . 4369
OpcUaNodeMetaData . 4369
OpcUaObjectDescription 4369
OpcUaObjectTypeDescription 4369
OpcUaOwnDataTypeMetaData 4369
OpcUaQualifiedNameClear 4369
OpcUaQualifiedNameCompare 4369
OpcUaQualifiedNameCopyTo 4369
OpcUaQualifiedNameInitialize 4369
OpcUaReadValueIdClear 4369
OpcUaReadValueIdInitialize 4369
OpcUaReferenceDescriptionClear 4369
OpcUaReferenceDescriptionInitialize 4369
OpcUaReferenceTypeDescription 4369
OpcUaServer_MessageSecurityMode 4369
OpcUaServer_Session_Information 4369
OpcUaServer_SessionEvents 4369
OpcUaServerGetFirstSession 4369
OpcUaServerGetNextSession 4369
OpcUaServerGetSessionInfo 4369
OpcUaServerNodeDescription 4369
OpcUaServerOnNetworkClear 4369
OpcUaServerOnNetworkInitialize 4369
OpcUaServerReferenceDescription 4369
OpcUaSimpleAttributeOperandClear 4369

Index

2022/01/21 3ADR010583, 3, en_US 4491

OpcUaSimpleAttributeOperandInitialize 4369
OpcUaStatusChangeNotificationClear 4369
OpcUaStatusChangeNotificationInitialize 4369
OpcUaStringAttachCopy 4369
OpcUaStringAttachReadOnly 4369
OpcUaStringAttachToString 4369
OpcUaStringClear . 4369
OpcUaStringGetRawString 4369
OpcUaStringInitialize . 4369
OpcUaStringIsEmpty . 4369
OpcUaStringIsNull . 4369
OpcUaStringStrLen . 4369
OpcUaStringStrnCat . 4369
OpcUaStringStrnCmp . 4369
OpcUaStringStrnCpy . 4369
OpcUaStringStrSize . 4369
OpcUaTypeMetaData . 4369
OpcUaTypeMetaDataUnion 4369
OpcUaVariableDescription 4369
OpcUaVariableTypeDescription 4369
OpcUaVariantClear . 4369
OpcUaVariantCompare 4369
OpcUaVariantCopyTo . 4369
OpcUaVariantInitialize . 4369
OpcUaViewDescription 4369
OpcUaWellKnownDataTypeMetaData 4369
open . 186

library projects . 186
project . 186
project archives . 186
write-protected project 187

Open . 4369
open in the IDE . 1025
OpenDialog . 1715
Operand . 647
operating mode

debug . 1046
locked . 1046
operational . 1046

OPERATION_FWK_ACCESS_ADDRESS 4369
OPERATION_FWK_ACCESS_CONFIG 4369
OPERATION_FWK_ACCESS_PARAMETER . . 4369
OPERATION_FWK_CALLINFO 4370

OPERA-
TION_FWK_GET_DEV_STATUS_PARAMETER
. 4370

OPERATION_FWK_SEND_COMMAND 4370
OPERATION_FWK_SEND_PARAMETER 4370
OPERATION_FWK_SET_PARAMETER 4370
OPERATION_FWK_START_SCAN 4370
OPERATION_FWK_STATUS_PARAMETER . . . 4370
OPERATION_FWK_TEST_ADDRESS 4370
operational, operating mode 1046
OperationsQueue . 4370
operator . 542

binding strength . 464
IL . 500
precedence . 464

option board . 2478
Option board for processor modules PM50xx . . . 3720
Option boards . 2478
options . 1071, 1072

development status . 180
device editor . 1190
import assistant . 1149
monitoring . 1197
SVN . 4265, 4266
visualization . 1763

Options
IEC 61850 Server . 3903

OR . 552
OR_ELSE . 553
OR, pragma . 739
order

command, visualization editor 1723
pin . 717

Ordering data
AC522 . 2858

ORN . 500
OS . 4370
OurVarInfo . 4370
output

assign ST . 465
CFC . 522
device . 215
reset . 1091

output memory . 643
output pin order . 717

Index

2022/01/213ADR010583, 3, en_US4492

output text
with placeholder and format definition 1709

output variable . 527
overflow data type . 542
overlay icon . 4235

SVN . 4235
overloading . 566

P
PACK . 4370
pack_mode, pragma . 719
package

manage . 1059
uninstall . 1059

Package Manager . 1059
packages

import assistant . 1149
PackArrayOfBoolToArrayOfByte 4370
PackBitsToByte . 4370
PackBitsToDword . 4370
PackBitsToWord . 4370
PackBytesToDword . 4370
PackBytesToWord . 4370
PacketPool . 4370
PacketPoolFactoryArgs 4370
PacketPoolFactoryBase 4370
PacketReader . 4370
PacketWriter . 4370
PackWordsToDword . 4370
page

CFC . 522
page oriented

CFC object . 514
page size

edit . 1090
page-oriented . 514
PaintCmdAndEventListener 4370
PaintRectangle . 4370
Pair_DintDint . 4370
Pair_PStringDint . 4370
Pair_PStringXWORD . 4370
Pair_StringDint . 4370
Pair_StringString . 4370
pane

next . 1075

previous . 1075
Panel Builder . 4281
panning tool . 462
parallel . 1082
PARAM_ID . 4370
parameter

update, fbd/ld/il cfc . 1114
PARAMETER . 4370
parameter mode . 1019
Parameterization

AC522 . 2846
I/O bus . 3773
IO bus . 3773

parameters
CANbus . 844
device editor . 844
edit . 1096
EtherCAT . 3815
EtherCAT Master . 3819
EtherCAT Slave . 3827
EtherNet/IP . 1220
Modbus . 844
PROFIBUS DP . 844
PROFINET IO . 844

ParameterServiceResult 4370
parameterstringof

pragma, visualization 1717
Parametrization

I/O bus . 3773
IEC 61850 Server . 3888

PARAMS . 747
PARITY . 4370
ParseCANID . 4370
ParsePGN . 4370
ParseXML2 . 4370
pass parameters

pass pointer, visualization 1351
pass-by-reference parameter 527
password

indicate at login . 205
project . 202
project settings . 1176
wrong . 459

password manager . 199
paste after . 1087

Index

2022/01/21 3ADR010583, 3, en_US 4493

path3d
camera control 1660, 2084

Path3D . 1658, 2082
PB_CNCT . 4370
PB_SLAVE_CIFX_DIAG 4370
PB_SlaveActivation . 4370
PB_SlaveConfigurationData 4370
PBS_CONFIG_STATES 4370
PBScanData . 4370
PBSlave . 4370
PBSlaveDiag . 4370
PCB . 4370
PCI_INFO . 4370
PciInterrupt . 4370
PD . 4370
PDOs . 3805
PenStyle . 4370
PERIOD . 4370
PERIODE . 4370
PERIODE_INFO . 4370
permission

configure, visualization 1285
persistence . 301

clean gaps . 1123
rearrange list . 1123
save values . 1123

Persistence . 4370
persistence editor . 872
Persistence Manager

remanent variable . 307
PersistenceWriteProperty 4371
PERSISTENT . 535

variable . 304, 535
persistent variable . 301

declare . 308
saving in a recipe . 309

persistent variable list . 872
PERSISTENT_DATA_BUFFER 4371
PERSISTENT_INDEX_HEADER 4371
PERSISTENT_PDATA_ENTRY 4371
PERSISTENT_PDATA_HEADER 4371
PFSYS_TASK_EXCEPTIONHANDLER 4371
PFSYS_TASK_FUNCTION 4371
PFTIMERCALLBACK . 4371
PFTIMEREXCEPTIONHANDLER 4371

PG_TYPE . 4371
PID . 4371
PID_FIXCYCLE . 4371
pie . 1405, 1829

visualization element 1405, 1829
pin

reset . 1098
select . 1098

pin_presentation_order_inputs, pragma attribute 717
pin_presentation_order_outputs, pragma attribute
. 717

PINGROUP . 4371
pingroup, pragma . 716
pins

remove . 1098
placeholder . 1120

with format definition in character string, visual-
ization . 1708

PLANE_H . 4371
Plastic labels . 3331
Plastic markers . 3331
PLC

read parameter file to configuration 1019
security . 455

PLC behavior after voltage dip 3698
PLC behaviour after voltage dip 3698
PLC firmware . 3665
PLC load . 428
PLC log . 435, 4053
PLC runtime licensing . 3665
PLC settings

device editor . 850
PLC shell . 436

device editor . 852
PLC system start-up 2406, 3464
PLC_IDENT . 4371
PLC_PRG . 73, 132
PlcConnectionInitFlags . 4371
PlcCryptType . 4371
plcload

trace . 421, 1144
PlcLoad

DeviceTrace . 429
PLCopenXML

export/import . 1015

Index

2022/01/213ADR010583, 3, en_US4494

import . 1015
option . 1198

PlcOperationControl 437, 4371
PlcShellAppend . 4371
PlcShellRegister . 4371
PlcShellSetEof . 4371
PlcShellSkip . 4371
PlcShellUnregister . 4371
Pluggable Label Mounting 3329
Pluggable Marker Holder 3329
PM . 2410, 2440

AC500 V3 (Standard) 2411
AC500-eCo V3 . 2410

PM_VERSION . 4371
PM50xx . 2440
PM5012-R-ETH . 2440
PM5012-T-ETH . 2440
PM5032-R-ETH . 2440
PM5032-T-ETH . 2440
PM5052-R-ETH . 2440
PM5052-T-ETH . 2440
PM5072-T-2ETH 2440, 3481
PM5072-T-2ETHW . 2440
PM5630 . 2516
PM5650 . 2516
PM5670 . 2516
PM5675 . 2516
PmBatt . 4371
PmDiskLifetimeUsed . 4371
PmDiskStatus . 4371
PmDispSetText . 4371
PmEcoResetFRAM . 4371
PmErrLedSet . 4371
PmGetDeviceState . 4371
PmGetPlcId . 4371
PmLedSet . 4371
PmNtpInfo . 4371
PmPlcReboot . 4371
PmProdReadAsync . 4371
PmRealtimeClock . 4371
PmRealtimeClockDT . 4371
PmSntpInfo . 4371
PmSramCleared . 4371
PmSramExport . 4371
PmSramImport . 4371

PmSysTime . 4371
PmVersion . 4371
PN_ADDR . 4371
PN_AINFO . 4371
PN_DEVICE_ID . 4371
PN_PortConfiguration . 4371
PN_PortConfigurationRecord 4371
PNIO_COMM_ERNO_TYPE 4371
PNIO_MST_STATE_TYPE 4371
PnioCntrlGetCntrlState . 4371
PnioCntrlGetDevIM0Data 4371
PnioCntrlGetDevState . 4371
PnioCntrlRead . 4371
PnioCntrlStartCom . 4372
PnioCntrlStopCom . 4372
PnioCntrlWrite . 4372
PnioImSwRevType . 4372
PnioImVersionType . 4372
PNM_AP_CFG_OEMPRM_DEVICE_IDENTITY_T
. 4372

PNS_CONFIG_STATES 4372
PNS_DIAG . 4372
PNS_DIAG_LinkState . 4372
PNS_IF_APDU_STATUS_CHANGED_IND_DATA
_T . 4372
PNS_IF_APDU_STATUS_CHANGED_IND_T . . 4372
PNS_IF_AR_ABORT_IND_IND_T 4372
PNS_IF_AR_CHECK_IND_DATA_T 4372
PNS_IF_AR_CHECK_IND_T 4372
PNS_IF_AR_IN_DATA_IND_T 4372
PNS_IF_CHECK_IND . 4372
PNS_IF_CHECK_IND_DATA_T 4372
PNS_IF_CMD . 4372
PNS_IF_EVENT_IND_T 4372
PNS_IF_GET_ASSET_IND_DATA_T 4372
PNS_IF_GET_ASSET_IND_T 4372
PNS_IF_GET_IP_ADDR_CNF_DATA_T 4372
PNS_IF_GET_IP_ADDR_CNF_T 4372
PNS_IF_GET_STATION_NAME_CNF_DATA_T 4372
PNS_IF_GET_STATION_NAME_CNF_T 4372
PNS_IF_LOAD_REMANENT_DATA_REQ 4372
PNS_IF_READ_RECORD_IND_DATA_T 4372
PNS_IF_READ_RECORD_IND_T 4372
PNS_IF_READ_RECORD_RSP_DATA_T 4372
PNS_IF_READ_RECORD_RSP_T 4372

Index

2022/01/21 3ADR010583, 3, en_US 4495

PNS_IF_RESET_FACTORY_SETTINGS_IND_T
. 4372

PNS_IF_START_LED_BLINKING_IND_T 4372
PNS_IF_STORE_REMANENT_DATA_IND_T . . 4372
PNS_IF_USER_ERROR_IND_DATA_T 4372
PNS_IF_USER_ERROR_IND_T 4372
PNSlave . 4372
PNSlaveDiag . 4372
po file . 211
Point . 4372
POINT . 4372
POINT2_DINT . 4372
POINT2_LREAL . 4372
PointArrayCalcSurroundingSimpleRect 4372
pointer . 656

index access . 657
SUPER . 538
THIS . 539

Pointer
check function CheckPointer 917

POINTER TO . 656
pointers

Go To Reference . 979
PolarToCartesian . 4372
polygon . 1392, 1816

polygon, visualization element 1392, 1816
PolygonType . 4372
polyline . 1392, 1816

visualization element 1392, 1816
PolynomialValue . 4372
POOL . 630
PoolClass . 4372
PoolCreateH . 4372
PoolCreateP . 4372
PoolDelete . 4372
PoolExtendH . 4372
PoolGetBlock . 4372
PoolGetSize . 4372
PoolPutBlock . 4372
PopTransformation . 4372
Port . 4372
PortStatus . 4373
position

breakpoint . 1156
POSITION . 627

PostEvent . 4373
pot file . 211
potentiometer . 1587, 2011

visualization element 1587, 2011
POU . 881

add . 881
change type . 1121
cross references . 974
global cross references 975
implicit checks . 904
monitor function call . 415
POUs view . 986

POU locations . 820
POU view

reference an object . 630
syntax check . 1024

POUNAME . 627
POUs for implicit checks 309
POUs view . 986
power function . 608

operator . 608
power switch . 1610, 2034

visualization element 1610, 2034
pragma . 732

analysis:report-multiple-instance-calls 4152
attribute . 685
conditional . 732
dataflow . 693
define . 732
effect on symbol . 729
enable_dynamic_creation 695
hasattribute . 732
hasconstantvalue . 732
hastype . 732
if . 732
message . 683
no_copy . 713
parameterstringof . 1717
ProcessValue . 726, 1102
region . 739
static analysis . 4149
undefine . 732
use . 263
VAR_IN_OUT_AS_POINTER 1716

precedence, ST . 464

Index

2022/01/213ADR010583, 3, en_US4496

preconditions
drives library . 2153

prefix
convention, static analysis 4149

prepare value . 1153
previous message . 986
PrimaryTables . 4373
print

input action . 1752
page setup . 1175

Printf . 4373
PrintfW . 4373
PRIVATE . 889

method . 889
property . 897

private key . 454
private_iomgr_memcpy 4373
Pro CPU . 2441
PROC_CMD . 4373
PROC_STATE . 4373
process data

EtherCAT Slave . 3825
processing order in SFC . 477
processing order, ST . 464
processor load . 1144
Processor modules 2410, 2440
ProcessValue . 726
PROFIBUS DP

parameters . 844
ProfibusBaudrate . 4373
profile . 3637
PROFINET . 2162
PROFINET Device

general . 3835
PROFINET Field Device

general . 3837, 3838
PROFINET IO

bus cycle . 3835
parameters . 844

PROFINET IO controller
general . 3832

PROFINET IO device
general . 3836

PROFINET IO module
general . 3836

ProfinetByteData . 4373
ProfinetConfigType . 4373
ProfinetController . 4373
ProfinetControllerDiag . 4373
ProfinetDevice . 4373
ProfinetDeviceDiag . 4373
ProfinetDeviceInstance 4373
ProfinetSubmodule . 4373
program . 882

execute on client, input action 1752
execute on controller, input action 1752
property . 897

PROGRAM . 882
programming

reference, visualization 1367
progress bar . 1531, 1960

visualization element 1531, 1960
prohibited symbols

code check . 4148
static analysis . 4148

project . 56, 186, 3632
access protection . 197
add folder . 1002
commit accepted changes 1014
compare 195, 1010, 3640
comparison . 196, 3640
create property with key 191
document . 1009
dongle . 203
encryption . 197, 203
encryption, instructions 208
export . 193
export/import . 193
file information . 919
filing . 200
functions for accessing properties 191
include with source code management 211
information . 919
install in the library repository 959
key for meta-information 920
last used . 964
localization . 1008
login data . 205
manage localizations 1008
meta-information . 919

Index

2022/01/21 3ADR010583, 3, en_US 4497

migrate V2 project to V3 project . . . 61, 2430, 3993
new . 955
object statistics . 921
open . 957
open by command line 443
open V2.3 . 187
open, option . 1196
password . 202
password protection . 197
POUs for keys . 920
project settings . 193
protection . 197
query information . 191
released . 201
restore . 1196
rights management . 200
save . 209
save as . 209
save as compiled library 960
save as, command . 958
saving in project archive 210
security . 197
template . 955
toggle localization . 1009
transfer . 193, 194
update . 61, 2430, 3993
user management . 203
VisuSymbolLibrary key 920
write protection . 197, 201

Project
close . 957

project archive . 210
extract by command line 443

project compare
configuration . 1010
detail . 1012
differences . 1011

project compression . 1196
project documentation print 1009
project environment

symbol library in visualization 1185, 1765
visualization profile 1183, 1764
visualization style 1184, 1765

project localization . 211
create template . 1008

localization template . 211
manage . 1008
toggle . 1009

project restore information 1196
project setting

command . 1006
project settings . 918

command . 1007
make . 193
object . 918
rules, Static Analysis 4139
SFC . 1171
SVN . 4266
user management . 203
users and groups . 1172
visualization . 1180, 1766

PROJECT_INFO . 4373
ProjectPointOnLine . 4373
ProjectPointOnPlane . 4373
PropAddrString . 4373
properties

access control . 1161
bitmap . 1162
boot application . 1158
build . 1159
build, C-integration . 1160
cam . 1167
common . 1157
device . 1169
encryption . 1158
external file . 1161
image pool . 1168
link to file . 1166
monitoring . 1169, 1170
network settings . 1165
network variables . 1163
SFC . 1166
task configuration . 938
text list . 1169

Properties
IEC 61850 Server . 3888
of an object . 1157

property
CFC execution order 1165
monitor . 412

Index

2022/01/213ADR010583, 3, en_US4498

object . 897
object-oriented programming 897
SFC, do not display embedded objects 1088

PROPERTY . 897
object . 897

PropertyAddrString . 4373
PropertyAttributeExistenceString 4373
PropertyAttributePersistentString 4373
PropertyAttributesString 4373
PropertyAttributeWritableString 4373
PropertyConfiguration . 4373
PropertyConfigurationMostlyAllPersistent 4373
PropertyConfigurationMostlyAllWritable 4373
PropertyConfigurationObjectPropertyPair 4373
PropertyContentToString 4373
PropertyIndexAddrString 4373
PropertyInfo . 4373
PropertyInfoRemote . 4373
PropertyLocation . 4373
PROTECTED . 889

method . 889
property . 897

protection
data security . 385
project . 197

PROTOCOL_DATA_UNIT 4373
ProtocolDataUnit . 4373
Protocols

BACnet . 2209, 3928
IEC60870-5-104 (Telecontrol) 3839
Modbus RTU 3427, 3912
Modbus TCP/IP 3558, 3910
MQTT . 3917
NTP . 3912
OPC UA . 1236, 3981
Secure . 3920
SNTP . 3912

proxy
access data . 1198
server option . 1198
server, setting . 1198

ProxyEnumState . 4373
ProxyFbHistActiveAlarmsQueue 4373
ProxyFbHistAlarmsRowQueue 4373
ProxyStructError . 4373

ProxyStructMonitor . 4373
ProxyStructMonitorAlarmClassDesc 4373
ProxyStructMonitorAlarmDesc 4373
ProxyStructMonitorAlarmGroupDesc 4373
ProxyStructMonitorRequest 4373
PRVREC . 4373
PRVREC_MODE . 4373
PStrCat . 4373
PStrCmp . 4373
PStrICmp . 4373
PStrIFind . 4373
PStringElement . 4373
PStringElementFactory 4373
PStringToDintMap . 4373
PStringToXWORDMap . 4374
PStringVector . 4374
PStringVectorArrAccess 4374
PStrLen . 4374
PStrLenUntil . 4374
PStrNICmp . 4374
PStrToUpper . 4374
PT_SIZE . 4374
PtrToString . 4374
PtrVectorArrAccess . 4374
PUBLIC . 889

method . 889
property . 897

public key . 454
PURPOSE . 4374
push switch . 1610, 2034

visualization element 1610, 2034
push switch LED . 1610, 2034

visualization element 1610, 2034
PushTransformation . 4374
PUTBIT . 4374
PVOID . 4374
PVOID_TO_DWORD . 4374
PVOID_TO_LWORD . 4374
PVOID_TO_WORD . 4374
Python . 4277

Q
Q . 643

memory range prefix . 643
QOS_INFO . 4374

Index

2022/01/21 3ADR010583, 3, en_US 4499

qualified_only, pragma . 726
qualifiers for SFC actions 479
QUERYINTERFACE . 617
QUERYPOINTER . 618
Queue . 4374
QueueFactory . 4374
QuickSortAddrItemHelpers 4374
Quickstart

IEC 61850 Server . 3877

R
R_TRIG . 4374
R= . 466

reset assignment . 466
radio buttons . 1540, 1964

visualization element 1540, 1964
RaiseModuleEvent . 4374
RALARM . 4374
RALARM_MODE . 4374
RAMP_INT . 4374
RAMP_REAL . 4374
RCSINFO . 4374
RCVREC . 4374
RCVREC_MODE . 4374
RCX_SET_WATCHDOG_TIME_CNF_T 4374
RCX_SET_WATCHDOG_TIME_REQ_DATA_T 4374
RCX_SET_WATCHDOG_TIME_REQ_T 4374
RDIAG . 4374
RDREC . 4374
RDT_Base . 4374
RDT_Client . 4374
RDT_ERROR . 4374
RDT_Server . 4374
RdtInitStructClientTCP . 4374
RdtInitStructServerTCP 4374
RdtProtStructCommPh . 4374
RdtProtStructConnection 4374
RdtProtStructResPh . 4374
Read . 4374

IEC 61850 server . 3902
READ_ONLY . 747
READ_WRITE . 747
ReadableRequestBase 4374
ReadArbitraryStringFromBuffer 4374
readBit . 4374

ReadEEpromData . 4374
ReadIdentification . 4374
ReadItemInfo . 4374
ReadItemVector . 4374
ReadMemory . 4374
ReadNbrSlaves . 4374
ReadRequest . 4374
ReadRequestState . 4375
ReadWriteEEprom . 4375
REAL . 648

constant . 634
convert . 584
literal . 634

REAL_TO___UXINT . 584
REAL_TO___XINT . 584
REAL_TO___XWORD . 584
REAL_TO_BIT . 584
REAL_TO_BOOL . 584
REAL_TO_BYTE . 584
REAL_TO_DATE . 584
REAL_TO_DINT . 584
REAL_TO_DT . 584
REAL_TO_DWORD . 584
REAL_TO_FLOAT . 4375
REAL_TO_INT . 584
REAL_TO_LINT . 584
REAL_TO_LREAL . 584
REAL_TO_LWORD . 584
REAL_TO_SINT . 584
REAL_TO_STRING . 584
REAL_TO_UDINT . 584
REAL_TO_UINT . 584
REAL_TO_ULINT . 584
REAL_TO_WORD . 584
REAL_TO_WSTRING . 584
Real-Time Clock . 3478
REAL8 . 4375
REAL8_TO_DT . 4375
REAL8_TO_LTIME . 4375
REAL8_TO_TIME . 4375
Realization with centralized PLC based Motion
Control . 2313
realtime clock . 3478
RealToHexStr . 4375
RealToStr . 4375

Index

2022/01/213ADR010583, 3, en_US4500

rearrange list . 1123
ReceiveParameterGroup 4375
ReceiveWatchdog . 4375
recent projects . 964
recipe . 417, 926

add . 1127
create . 418
create, input action . 1752
delete, input action . 1752
insert variable . 1127
load . 1128
load and write . 1129
load from device . 1131
load from file . 419
load, input action . 1752
read . 1129
read and save . 1130
read, input action . 1752
remanent variable . 307
remove . 1128
remove variables . 1130
save . 1128
save, input action . 1752
visualization . 1320
write . 1129
write, input action . 1752

recipe definition . 926
recipe file

load . 419
recipe management . 417

memory usage . 419
Recipe Manager . 923
Recipe_FileParameters 4375
RecipeMan_FctTypeClassToDataType 4375
RecipeManCommands . 4375
Reconfigure . 4375
recording, see data recording 1210
rectangle . 1368, 1792

visualization element 1368, 1792
RectangleType . 4375
RECV_EMCY . 4375
RECV_EMCY_DEV . 4375
REDUNDANCY_CONNECTION_INFO 4375
RedundancyState . 4375
RedundancyStatus . 4375

RedundancySynchronizeData 4375
REF= . 468, 658
refactoring . 289

add variable . 981
add/remove variable . 290
code clone . 4137
declaration order of variables 291
duplicated code . 4137
function extraction . 4136
option . 1199
remove variable . 983
rename . 980
rename variable . 289
reorder variables . 984
update referenced pins 981

reference . 658
__ISVALIDREF . 659
data type . 658
test operator . 659
valid . 659

REFERENCE TO . 658
reflection . 707, 727

pragma attribute . 727
refresh

structured variables 1131
RegContext . 4375
Register . 4375
RegisterCallback . 4375
RegisterIdArea . 4375
ReinitDevice_SvcAppHook 4375
released . 201
remanent . 535

recipe . 307
remanent variable of the Persistence Manager
. 307

variable . 535
remanent variables

AC500 V3 products . 3456
Remote Alarms

Object . 821
remote data

visualize . 375
RemoteAdapter . 4375
RemoteAdapter_diag . 4375
RemoteAdapter_Diag . 4375

Index

2022/01/21 3ADR010583, 3, en_US 4501

RemotePlcRequestIdentification 4375
RemoteProcedureCall . 4375
RemoteVarInfo . 4375
RemoteVarResolver . 4375
remove

IL line . 1111
Reset . 1091
Set . 1091
unused parameters, FBD/LD 1114

remove force list . 1054
remove unused FB call parameters 1114
rename

refactoring . 980
Rename . 4375
repair

box . 1114
ReparseIOMemoryAccessExpression 4375
REPEAT . 472
replace . 289

command . 967
REPLACE . 4375
ReplaceAlarmPlaceholderString 4375
Report

IEC 61850 server . 3896
repository . 1061, 4232

browse SVN repository 4238
information model OPC UA 1069
library . 1061
OPC UA information model 1069
SVN . 4232
visualization element 1740

Request . 4375
RequestData . 4375
RequestDataDiagnostics 4375
RequestDataMaskWriteRegister 4375
RequestDataRead . 4375
RequestDataReadWriteMultipleRegisters 4375
RequestDataWriteMultiple 4375
RequestDataWriteSingle 4375
RequestFactory . 4375
RequestStatus . 4375
RequestUnion . 4375
RequestVector . 4375
reserve memory

online change . 998

reset
application . 404
application (reset cold) 1038
application (reset origin) 1039
application (reset warm) 1038
assignment ST . 466
cold . 1038
device to origin . 1040
origin . 1039
origin device . 1040
SVN . 4255
warm . 1038

Reset . 4375
IEC 61850 Server . 3904
output . 1091
remove . 1091

reset coil . 508
insert . 1108

reset origin . 1039
application . 1039

RESET_INIT . 4375
RESET_OPTION . 4375
RESET_RESET . 4375
ResetBusAlarm . 4375
ResetNodeInfo . 4376
ResetNodeInfoInt . 4376
ResolveHostname . 4376
restore . 438
restore values from recipe 1123
RET . 500
RETAIN . 537

remanent variable . 306
variable . 537

RETC . 500
RETCN . 500
return

CFC . 524
FBD/LD/IL . 506
insert, FBD/LD/IL . 1107

RETURN . 472
ReturnValues . 4376
ReusableRequestInfo . 4376
ReusableRequestState 4376
ReverseBitsInBYTE . 4376
ReverseBitsInDWORD . 4376

Index

2022/01/213ADR010583, 3, en_US4502

ReverseBitsInWORD . 4376
ReverseBYTEsInDWORD 4376
ReverseBYTEsInWORD 4376
ReverseWORDsInDWORD 4376
revision

copy to branch/tag . 4263
select in SVN . 4267

RGB . 1295
color space . 1295

RGBA . 1295
color space extended with alpha channel . . . 1295

RIGHT . 4376
rights management . 199

project . 200
rising edge detection . 1112
RLstAddPrio . 4376
RLstCheckPrio . 4376
RLstClass . 4376
RLstCreateH . 4376
RLstCreateP . 4376
RLstDelete . 4376
RLstGetHighestPrio . 4376
RLstGetSize . 4376
RLstRemovePrio . 4376
RobotStudio . 3638
rocker switch . 1610, 2034

visualization element 1610, 2034
ROL . 556
RootDatasourceIndex . 4376
RootPseudo . 4376
RootRenamed . 4376
RootRenamedDatasourceIndex 4376
ROR . 557
rotary switch

visualization element 1614, 2038
RotatePoint . 4376
rounded rectangle 1368, 1792

visualization element 1368, 1792
RouterGetHostAddress 4376
RouterGetInstanceByName 4376
RouterGetName . 4376
RouterGetParentAddress 4376
routing . 353
RPCDataRepresentation 4376
RPCNCARejectStatus . 4376

RS . 4376
RSM_HANDLE . 4376
RSMClass . 4376
RTC . 3478, 4376
RTCLK_GETDATEANDTIME_PARAMS 4376
RTCLK_GETTIMEZONEINFORMA-
TION_PARAMS . 4376
RTCLK_PERIODE_INFO 4376
RTCLK_SETDATEANDTIME_PARAMS 4376
RTCLK_SETTIMEZONEINFORMA-
TION_PARAMS . 4376
RTCLK_SYSTEMTIME 4376
RTCLK_TIME_ZONE_INFO 4376
RTR_AddrComponent . 4376
RTR_NodeAddress . 4376
RTS_CMBOXENTRY . 4376
RTS_CODEMETER_INFO 4376
RTS_CONTROL . 4376
RTS_IEC_CWCHAR . 4376
RTS_IEC_HANDLE . 4376
RTS_IEC_RESULT . 4376
RTS_IEC_SIZE . 4376
RTS_SIL2_ADDRESSSTATE 4376
RTS_SIL2_CALLERCTX 4376
RTS_SIL2_EXCEPTION 4377
RTS_SIL2_OPMODE . 4377
RTS_SOCKET_SO_VALUE_IP_MREQ 4377
RTS_SOCKET_SO_VALUE_LINGER 4377
RTS_SOCKET_SO_VALUE_TCP_KEEPALIVE 4377
RTS_SYSTIMEDATE . 4377
RTS_SYSTIMEDATE_TO_STRING 4377
RtsAL1030Handler . 4377
RtsBrowseInfo . 4377
RtsByteString . 4377
RtsCertEncoding . 4377
RtsCertTrustLevel . 4377
RtsCryptoID . 4377
RtsCryptoKey . 4377
RtsCryptoKeyStorage . 4377
RtsCryptoKeyType . 4377
RtsCryptoType . 4377
RtsEL6224Handler . 4377
RtsKdfParameter . 4377
RtsOID . 4377
RtsOIDClear . 4377

Index

2022/01/21 3ADR010583, 3, en_US 4503

RtsOIDCreate . 4377
RtsOIDGetID . 4377
RtsOIDGetName . 4377
RtsOIDStore . 4377
RtsScryptParameter . 4377
RtsServicehandlerBase 4377
RtsServicehandlerBase2 4377
RtsX509AltName . 4377
RtsX509AltNameStore . 4377
RtsX509AltNameType . 4377
RtsX509CertCheckFlags 4377
RtsX509CertFilter . 4377
RtsX509CertFilterContent 4377
RtsX509CertFilterType . 4377
RtsX509CertInfo . 4377
RtsX509CertName . 4377
RtsX509ExKeyUsage . 4377
RtsX509NameEntry . 4377
RtuAscii . 4377
RudimentaryDeviceInfo 4377
run

stepping . 399
to cursor . 1052
using step out . 1051

run static analysis . 4133
RUNE . 4377
RuneCount . 4377
RuneLen . 4377
runtime

security . 455
runtime licensing

command . 1020
runtime system files

generate . 1022
runtime system service

disable . 436
RuntimeCredentialsHandler 4377

S
S= . 465

set assignment . 465
S500 hardware

short description . 2424
S500-eCo I/O modules . 2415
SA0001 . 4155

SA0002 . 4155
SA0003 . 4156
SA0004 . 4156
SA0005 . 4184
SA0006 . 4157
SA0007 . 4158
SA0008 . 4158
SA0009 . 4159
SA0010 . 4160
SA0011 . 4160
SA0012 . 4161
SA0013 . 4161
SA0014 . 4162
SA0015 . 4163
SA0016 . 4163
SA0017 . 4164
SA0018 . 4164
SA0019 . 4179
SA0020 . 4165
SA0021 . 4166
SA0022 . 4166
SA0023 . 4167
SA0024 . 4167
SA0025 . 4168
SA0026 . 4168
SA0027 . 4169
SA0028 . 4169
SA0029 . 4170
SA0031 . 4170
SA0032 . 4171
SA0033 . 4171
SA0034 . 4173
SA0035 . 4172
SA0036 . 4172
SA0037 . 4173
SA0038 . 4174
SA0040 . 4175, 4217
SA0041 . 4176
SA0042 . 4177
SA0043 . 4177
SA0044 . 4178
SA0046 . 4218
SA0047 . 4185
SA0048 . 4185
SA0051 . 4186

Index

2022/01/213ADR010583, 3, en_US4504

SA0052 . 4187
SA0053 . 4187
SA0054 . 4188
SA0055 . 4189
SA0056 . 4189
SA0057 . 4190
SA0058 . 4190
SA0059 . 4192
SA0060 . 4192
SA0061 . 4192
SA0062 . 4193
SA0063 . 4193
SA0064 . 4194
SA0065 . 4194
SA0066 . 4195
SA0072 . 4197
SA0073 . 4197
SA0075 . 4199
SA0076 . 4200
SA0077 . 4201
SA0078 . 4201
SA0080 . 4197
SA0081 . 4198
SA0090 . 4202
SA0095 . 4202
SA0100 . 4203
SA0101 . 4204
SA0102 . 4204
SA0103 . 4205
SA0105 . 4206
SA0106 . 4207
SA0107 . 4208
SA0111 . 4210
SA0112 . 4210
SA0113 . 4210
SA0114 . 4211
SA0115 . 4211
SA0117 . 4211
SA0118 . 4216
SA0119 . 4212
SA0120 . 4212
SA0121 . 4213
SA0122 . 4214
SA0123 . 4214
SA0124 . 4216

SA0125 . 4216
SA0130 . 4180
SA0131 . 4181
SA0132 . 4182
SA0133 . 4182
SA0134 . 4183
SA0140 . 4217
SA0145 . 4219
SA0147 . 4214
SA0148 . 4215
SA0150 . 4220
SA0160 . 4220
SA0161 . 4221
SA0162 . 4222
SA0163 . 4223
SA0164 . 4224
SA0165 . 4224
SA0166 . 4225
SA0167 . 4225
sa0168 . 4226
sa0169 . 4227
SAdapterFlags . 4377
SAFE_SRDO_DATA . 4377
SAFE_SRDO_RECEIVED 4377
Safety instructions

drives library . 2153
Safety notice . 12
SAFETY_EXCHANGE . 4377
SAFETY_STATE . 4377
SafetyMemCpy . 4377
SALARM . 4377
sample

show in the trace editor 421
samples

save in trace file . 422
save

project archive . 210
project, option . 1196

Save
project . 209

save current values to recipe 1123
save the project . 957
save values to recipe . 1123
saving

project . 200

Index

2022/01/21 3ADR010583, 3, en_US 4505

scalar product . 670
ScalePoint . 4377
ScalProd3D . 4377
ScalProd3DStand . 4377
scan devices 1003, 1234, 3813
scanner . 1220
ScannerState . 4378
SCE in LD . 509
SchedGetCurrentTask . 4378
SchedGetNumOfTasks . 4378
SchedGetProcessorLoad 4378
SchedGetTaskEventByHandle 4378
SchedGetTaskHandleByIndex 4378
SchedGetTaskHandleByName 4378
SchedGetTaskInterval . 4378
SchedPostExternalEvent 4378
SchedRegisterExternalEvent 4378
SchedSetTaskInterval . 4378
Schedule . 4378
SchedUnregisterExternalEvent 4378
SchedWaitBusy . 4378
SchedWaitSleep . 4378
scope . 526
script

execute . 1071
Script

enable tracing . 1071
script file

run by command line . 444
scripting

execute . 1070
execute script file . 1070

Scripting
enable script tracing 1071

Scripts
Python . 4277

scroll bar . 1504, 1928
visualization element 1504, 1928

SD memory card . 3999
sdcard . 3999
sdcard.ini . 3999
SDO_ABORT . 4378
SDO_ERROR . 4378
SDO_MODE . 4378
SDO_READ . 4378

SDO_READ_DATA . 4378
SDO_READ4 . 4378
SDO_WRITE . 4378
SDO_WRITE_DATA . 4378
SDO_WRITE4 . 4378
SdoAbort . 4378
SdoRead . 4378
SDOs . 3807
SDOServerClose . 4378
SDOServerDoCycle . 4378
SDOServerOpen . 4378
SdoWrite . 4378
search . 289, 968, 969

object . 985
search order

identifiers . 745
variable name . 745

SECOND . 4378
Secure communication . 3920
Secure protocols . 3920
security . 453

add device user . 1041
certificate . 454
certificate via PLC shell 458
certificates . 197, 995
client . 457
communication with controller 4122
data security . 385
development system . 455
device . 381
disable user management 459
encrypt the boot application, download, and
online change . 4123
encrypted communication 840
encryption, signing, certificates 198
general information . 453
password device user 1043
project encryption . 197
project settings . 1176
remove device user . 1042
runtime system / PLC 455
Security Agent . 4122
unencrypted communication 460
WebVisu . 455

Index

2022/01/213ADR010583, 3, en_US4506

Security Agent . 4122
certificate . 4122

security functions
certificate . 454
development system . 455
general information . 453
runtime system / PLC 455
WebVisu . 455

Security notice . 12
security screen . 995
SecurityModeToString . 4378
SEEK_MODE . 4378
Segment . 4378
SegmentPool . 4378
SegmentPoolFactoryArgs 4378
SegmentPoolFactoryBase 4378
SEL . 558
Select . 4378
select matching bracket . 971
select none

of the seclected visualization elements 1744
selection

alarm class . 1768
alarm group . 1769

selector
CFC . 524

SEMA . 4378
semi-transparency

visualization . 1780
SendEvent . 4378
SeparateDateTime . 4378
sercos

generate xml . 1017
SERCOS_TOPOLOGY 4378
SERCOS3_ERROR . 4378
Sercos3_IDNCmd . 4378
Sercos3_IDNRead . 4378
Sercos3_IDNRead4 . 4378
Sercos3_IDNWrite . 4378
Sercos3_IDNWrite4 . 4378
Sercos3Master_GetVersion 4378
Sercos3Slave . 4378
Sercos3Slave_Diag . 4378
Serial adapter option board 2504, 2510
SerializeHexReal . 4378

SerialSubFunctionCodes 4378
Server . 4378

FTP . 3917
ServerCapabilities . 4378
ServerCapabiltiesReader 4379
ServerClass . 4379
ServerSerial . 4379
ServerSide . 4379
ServerStructCommand . 4379
ServerTCP . 4379
ServiceGroup . 4379
SERVICEHANDLER_PARAMETER 4379
ServiceHeader . 4379
ServiceReader . 4379
ServiceRequest . 4379
ServiceRequestBase . 4379
ServiceRequestRaw . 4379
ServiceResponse . 4379
ServiceResult . 4379
ServiceWriter . 4379
ServiceWriterSavepoint 4379
set

access method, interface 894
Set

accessor method . 897
assignment ST . 465
output . 1091
remove . 1091

set coil . 508
insert . 1108

set output connection, FBD/LD 1112
Set_Attribute_Single . 4379
Set_Attributes_All . 4379
set/reset, FBD/LD/IL . 1112
SETBIT . 4379
SetBitValue . 4379
SetCiAState . 4379
SetCustomMapping . 4379
SetDateAndTime . 4379
SetError . 4379
SETIO_PART . 4379
SetLastError . 4379
SetPaintRectangle . 4379
SetParent . 4379
SetPos . 4379

Index

2022/01/21 3ADR010583, 3, en_US 4507

SetPropertyAgain . 4379
SetResult . 4379
SetSimpleRectangle . 4379
SettgBeginUpdate . 4379
SettgEndUpdate . 4379
SettgGetIntValue . 4379
SettgGetStringValue . 4379
SettgGetWStringValue . 4379
SettgRemoveKey . 4379
SettgSetIntValue . 4379
SettgSetStringValue . 4379
SettgSetWStringValue . 4379
SetTimeZoneInformation 4379
settings

code check . 4138
static analysis . 4138

SettingsHelper . 4379
SettingValue . 4379
Severity . 4379
SFC . 255

action . 488
action qualifiers . 479
analyzation library . 485
analyzation, library . 259
branch . 491
build . 1166
code generation 1166, 1171
copy implementation 1082
copy reference . 1082
do not display embedded objects 1088
duplication mode . 1082
element properties . 493
implicit variables . 480
init step . 1079
jogging mode . 481
jump . 492
library . 1171
macro . 492
online mode . 476
processing order . 477
programming . 255
project settings . 1171
properties . 1166
step . 486
step time . 480

transition . 486
SFC editor . 476

character set . 1200
layout . 1200
online, step time . 1201
options . 1200
properties, visibility . 1201
settings . 1200
step actions, options 1200
toolbar . 462

SFC flag . 481
SFCActionControl . 4379
SFCActionType . 4379
SFCStepType . 4379
sgn . 4379
shadowing . 745
shadowing rules . 745
SharedArea . 4379
SharedAreaFactoryArgs 4379
SharedAreaFactoryBase 4379
SharedAreaRefDisposer 4379
SharedPointer . 4379
SharedPointerFactoryArgs 4380
SharedPointerFactoryBase 4380
SharedQueue . 4380
SharedQueueFactoryArgs 4380
SharedQueueFactoryBase 4380
SHL . 554
short description

AC500 hardware . 2424
S500 hardware . 2424

short form feature . 262
short-circuit evaluation . 509
show source position: . 992
show windows . 185
show/hide implementation view 1076
SHR . 555
signature

compiled library . 447
encryption . 453
enforce signing of compiled libraries 447

SIGNED . 4380
SIGNED_TO_DINT . 4380
SIGNED_TO_INT . 4380
SIGNED_TO_LINT . 4380

Index

2022/01/213ADR010583, 3, en_US4508

signing
boot application . 294
certificate . 198
library project . 921
with certificate, instructions 208

SIL2AddLog . 4380
SIL2CheckCallerContext 4380
SIL2CopyCodeGuid . 4380
SIL2CopyDataGuid . 4380
SIL2ExecuteNonSafetyJob 4380
SIL2ExecuteNonSafetyJob_WRAP_FB_INIT . . . 4380
SIL2ExecuteNonSafetyJob_WRAP_INITIALIZE 4380
SIL2OEMException . 4380
SIL2OEMGetCallerContext 4380
SIL2OEMGetMemoryState 4380
SIL2OEMGetOperationMode 4380
SIL2OEMStackIsValid . 4380
Simple motion . 3577
SimpleRectangle . 4380
simulation . 394

command . 1044
for testing . 394

SIN . 609
single cycle . 1049
SINT . 647

convert . 572
SINT_TO___UXINT . 572
SINT_TO___XINT . 572
SINT_TO___XWORD . 572
SINT_TO_BIT . 572
SINT_TO_BOOL . 572
SINT_TO_BYTE . 572
SINT_TO_DATE . 572
SINT_TO_DINT . 572
SINT_TO_DT . 572
SINT_TO_DWORD . 572
SINT_TO_INT . 572
SINT_TO_LDATE . 572
SINT_TO_LDT . 572
SINT_TO_LINT . 572
SINT_TO_LREAL . 572
SINT_TO_LTIME . 572
SINT_TO_LTOD . 572
SINT_TO_LWORD . 572
SINT_TO_REAL . 572

SINT_TO_STRING . 572
SINT_TO_TIME . 572
SINT_TO_TOD . 572
SINT_TO_UDINT . 572
SINT_TO_UINT . 572
SINT_TO_ULINT . 572
SINT_TO_USINT . 572
SINT_TO_WORD . 572
SINT_TO_WSTRING . 572
SIZE . 4380
SIZE_TO_UDINT . 4380
SIZE_TO_UINT . 4380
SIZE_TO_ULINT . 4380
SIZEOF . 551
SlaveDiag . 4380
SlaveStateBitFieldType 4380
slider . 1513, 1937

visualization element 1513, 1937
SLOT_ID . 4380
SM560-S . 2429, 3454
SM560-S-FD-1 . 2429, 3454
SM560-S-FD-4 . 2429, 3454
Sm560Rec . 4380
Sm560Send . 4380
smart tag . 263
SmartCoding . 260
SmartCoding, options . 1201
SNCM_ETC_Slave . 4380
SNCM_ETC_VoE_SendReceive 4380
SNTP . 3912
SntpSourceInfoData . 4380
SntpSourceMode . 4380
SntpSourceState . 4380
SOCK_ADAPTER_INFORMATION 4380
SOCK_ADAPTER_INFORMATION2 4380
SOCK_HOSTENT . 4380
SockAddr . 4380
SOCKADDRESS . 4380
SOCKET_FD_SET . 4380
SOCKET_TIMEVAL . 4380
SocketType . 4380
softing_profi_end . 4380
softing_profi_get_data . 4380
softing_profi_get_dps_input_data 4380
softing_profi_get_dps_output_data 4380

Index

2022/01/21 3ADR010583, 3, en_US 4509

softing_profi_get_last_errror 4380
softing_profi_get_serial_device_number 4380
softing_profi_get_versions 4380
softing_profi_init . 4380
softing_profi_rcv_con_ind 4380
softing_profi_set_data . 4380
softing_profi_set_dps_input_data 4380
softing_profi_snd_req_res 4381
SOFTING_T_DP_AAT_DATA 4381
SOFTING_T_DP_ACT_PARAM_IND 4381
SOFTING_T_DP_ACT_PARAM_REQ 4381
SOFTING_T_DP_ACT_PARAM_RES_CON . . . 4381
SOFTING_T_DP_BUS_PARA_SET 4381
SOFTING_T_DP_CFG_DATA 4381
SOFTING_T_DP_DATA_TRANSFER_CON . . . 4381
SOFTING_T_DP_DIAG_DATA 4381
SOFTING_T_DP_DOWNLOAD_IND 4381
SOFTING_T_DP_DOWNLOAD_REQ 4381
SOFTING_T_DP_DOWNLOAD_RES_CON . . . 4381
SOFTING_T_DP_END_SEQ_IND 4381
SOFTING_T_DP_END_SEQ_REQ 4381
SOFTING_T_DP_END_SEQ_RES_CON 4381
SOFTING_T_DP_EXIT_MASTER_CON 4381
SOFTING_T_DP_GET_MASTER_DIAG_REQ . 4381
SOFTING_T_DP_GET_MASTER_DIAG_RES_C
ON . 4381
SOFTING_T_DP_GET_PRM_REQ 4381
SOFTING_T_DP_GET_SLAVE_DIAG_CON . . . 4381
SOFTING_T_DP_GET_SLAVE_DIAG_IND 4381
SOFTING_T_DP_GET_SLAVE_PARAM_CON . 4381
SOFTING_T_DP_GET_SLAVE_PARAM_REQ . 4381
SOFTING_T_DP_INIT_MASTER_CON 4381
SOFTING_T_DP_INIT_MASTER_REQ 4381
SOFTING_T_DP_PRM_DATA 4381
SOFTING_T_DP_SET_BUSPARAMETER_CON
. 4381

SOFTING_T_DP_SET_BUSPARAMETER_REQ
. 4381

SOFTING_T_DP_SET_PRM_CON 4381
SOFTING_T_DP_SET_PRM_REQ 4381
SOFTING_T_DP_SLAVE_PARA_SET 4381
SOFTING_T_DP_SLAVE_PARAM_SLAVE_INFO
. 4381

SOFTING_T_DP_SLAVE_PARAM_SYS_INFO 4381
SOFTING_T_DP_SLAVE_USER_DATA 4381
SOFTING_T_DP_START_SEQ_IND 4381

SOFTING_T_DP_START_SEQ_REQ 4381
SOFTING_T_DP_START_SEQ_RES_CON . . . 4381
SOFTING_T_DP_UPLOAD_REQ 4381
SOFTING_T_DP_UPLOAD_RES_CON 4381
SOFTING_T_FMB_CONFIG_CRL 4381
SOFTING_T_FMB_CONFIG_DP 4381
SOFTING_T_FMB_CONFIG_FDLIF 4381
SOFTING_T_FMB_CONFIG_SM7 4381
SOFTING_T_FMB_CONFIG_VFD 4381
SOFTING_T_FMB_FM2_EVENT_IND 4381
SOFTING_T_FMB_SET_CONFIGURATION_REQ
. 4381

SOFTING_T_PROFI_SERVICE_DESCR 4381
SortByAddrItemHelper . 4381
SortedBranchNamedTreeNode 4381
SortedInstancePathBuildingBranchNode 4381
SortedList . 4381
SortedListFactory . 4381
SortedPStringVector . 4381
source code . 393

download from controller 962
download to controller 963
download, project setting 1174
management . 211
write, to connected device 1035

space character
in the text editor . 1204

spin box . 1519, 1943
visualization element 1519, 1943

SplitDateTime . 4381
SplitString . 4381
SplitTextListId . 4382
SQLSTATEMENT . 4382
SQRT . 607
SR . 4382
SRAM_CLEARED . 4382
SRAM_EXPORT . 4382
SRAM_IMPORT . 4382
SRDO_DATA . 4382
SRDO_DIRECTION . 4382
SRDO_LIST . 4382
SRDO_STATE . 4382
SRDOObject . 4382
ST . 253, 500

assignment . 465

Index

2022/01/213ADR010583, 3, en_US4510

expression . 464
extended . 254
format code . 984
programming in . 254
R= . 466
reset assignment . 466
S= . 465
set assignment . 465

ST code
execute, input action 1758
extract . 4136

ST code in FBD, LD . 507
ST editor . 463

automatic formatting . 463
browse . 463
format code . 984
online operation . 463
option . 1203
syntax error . 463

Stack . 4382
stack checking of recursive methods 695
StackFactory . 4382
standard commands . 965
Standard CPU . 2441
standard data types . 646
standard keyboard handling

activate, visualization 1277
standard metrics . 4134
Start . 4382
start page . 999
startup parameters

EtherCAT module . 3828
EtherCAT Slave . 3825

StatDynMemory . 4382
state

device state . 4011
State . 4382
STATE . 4382
State LEDs

AC522 . 2853
StateFlags . 4382
StateMachine . 4382
statement . 469

IF . 469
set next . 1052

show next . 1052
static

code analysis . 283
static analysis

getting started . 4130
pragmas . 4149
run . 4133

Static Analysis Light . 283
project settings . 1177

static variable . 532
StaticMemBuffer . 4382
Statistics_DINT . 4382
STATISTICS_INT . 4382
Statistics_LREAL . 4382
Statistics_LTIME . 4382
STATISTICS_REAL . 4382
status

device editor . 870
device state . 4011
EtherCAT . 3815
EtherNet/IP . 1220
KNX . 3924
SFC actions . 480
SFC steps . 480

status bar
IEC 61850 Server . 3893

step . 486
add exit action, SFC 1082
insert . 1080
insert after . 1080
SFC, add entry action 1082
SFC, duplication mode 1082

step action
SFC . 488

step into . 1051
run . 1051

step over . 1050
run . 1050

step status . 480
step-transition

add . 1081
insert after . 1081

STK_INFO . 4382
STK_NODES . 4382
STK_SPEC . 4382

Index

2022/01/21 3ADR010583, 3, en_US 4511

STK_STATE . 4382
StkClose . 4382
StkGetInfo . 4382
StkOpen . 4382
StkRegister . 4382
StkUnregister . 4382
STN . 500
STO_BLOB . 4382
STO_METRICS . 4382
STO_TEXT . 4382
Stop . 4382
STOPBIT . 4382
Storage . 4382
StrCaseCmpA . 4382
StrCaseCmpEndA . 4382
StrCaseCmpStartA . 4382
StrCaseCmpW . 4382
StrCaseFindA . 4382
StrCaseFindW . 4382
StrCmpA . 4382
StrCmpEndA . 4382
StrCmpStartA . 4382
StrCmpW . 4382
StrConcatA . 4382
StrConcatW . 4382
StrCpyA . 4382
StrCpyW . 4382
StrCpyWtoA . 4382
StrDeleteA . 4383
StrDeleteW . 4383
Stream . 4383
STREAM_STATE . 4383
StrFindA . 4383
StrFindW . 4383
strict

pragma for enumeration 678
STRING . 649

convert . 588
data type . 649
index access . 657

string constants . 634
STRING_TO___UXINT . 588
STRING_TO___UXWORD 588
STRING_TO___XINT . 588
STRING_TO_BIT . 588

STRING_TO_BOOL . 588
STRING_TO_BYTE . 588
STRING_TO_DATE . 588
STRING_TO_DINT . 588
STRING_TO_DT . 588
STRING_TO_DWORD . 588
STRING_TO_INT . 588
STRING_TO_LDATE . 588
STRING_TO_LDT . 588
STRING_TO_LINT . 588
STRING_TO_LREAL . 588
STRING_TO_LTIME . 588
STRING_TO_LTOD . 588
STRING_TO_LWORD . 588
STRING_TO_REAL . 588
STRING_TO_SINT . 588
STRING_TO_TIME . 588
STRING_TO_TOD . 588
STRING_TO_UDINT . 588
STRING_TO_UINT . 588
STRING_TO_ULINT . 588
STRING_TO_USINT . 588
STRING_TO_WORD . 588
STRING_TO_WSTRING 588
StringBuilder . 4383
StringBuilderSysMemExtending 4383
StringElement . 4383
StringElementFactory . 4383
strings

convert . 587
StringToDintMap . 4383
StringToStringMap . 4383
StringVector . 4383
StrIsNullOrEmptyA . 4383
StrIsNullOrEmptyW . 4383
StrLenA . 4383
StrLenW . 4383
StrMidA . 4383
StrMidW . 4383
StrPadLeftA . 4383
StrPadLeftW . 4383
StrPadRightA . 4383
StrPadRightW . 4383
StrReplaceA . 4383
StrReplaceW . 4383

Index

2022/01/213ADR010583, 3, en_US4512

StrToLowerA . 4383
StrToLReal . 4383
StrToReal . 4383
StrToUpperA . 4383
StrTrimA . 4383
StrTrimEndA . 4383
StrTrimStartA . 4383
STRUCT . 674
STRUCT_BACNET_READ_FILE_RANGE_RECO
RD . 4383
STRUCT_BACNET_READ_FILE_RANGE_STRE
AM . 4383
STRUCT_BACNET_READ_RANGE_RANGE_PO
SITION . 4383
STRUCT_BACNET_READ_RANGE_RANGE_SE
QUENCE . 4383
STRUCT_BACNET_READ_RANGE_RANGE_TI
ME . 4383
STRUCT_BACNET_READ_RANGE_RANGE_TI
MERANGE . 4383
STRUCT_BACNET_WRITE_FILE_DATA_RECOR
D . 4383
STRUCT_BACNET_WRITE_FILE_DATA_STREA
M . 4383
StructClientCommand . 4383
StructClientCommandMonitor 4383
StructClientInitialize . 4383
StructClientMonitor . 4383
StructClientUseAsTCP . 4383
StructCmdHandleCertificate 4383
StructCmdHandleClientAns 4383
StructCmdHandleClientAns2 4383
StructCmdHandleClientAnsSub 4383
StructCmdHandleClientAnsSub2 4383
StructCmdNewClient . 4383
StructCmdNewFrame . 4383
StructCmdNewLogin . 4383
StructCmdNewPage . 4383
StructCmdRemoveClient 4383
StructCmdValueChanged 4384
StructDataLogin . 4384
StructFrame . 4384
StructFrameDwnSL . 4384
StructServerCommandMonitor 4384
StructServerInitialize . 4384
StructServerMonitor . 4384
StructServerUseAsTCP 4384

StructTicket . 4384
structure . 674

access . 641
BIT . 675
data type . 674
extend . 674
EXTENDS . 674
object DUT . 835
symbolic bit access . 675

Structure: DrvPdPrmDpv1DataType 2208
Structures and enumerations 2376
StructValueChanged . 4384
StructVisuClient . 4384
StructVisuClientDwnSL 4384
StructVisuClientMonitor 4384
StuSprintf . 4384
StuSprintfW . 4384
style color

select, visualization element 1258
visualization . 1258

style property
assign to a visualization element 1360
localize . 1365

StyleUtilFct_GetBoolFromStyle 4384
StyleUtilFct_GetBoolFromStyleEnumOrExplicit-
Value . 4384
StyleUtilFct_GetSimpleTypeFromStyleEnumOrEx-
plicitValue . 4384
StyleUtilFct_GetUDIntFromStyle 4384
SUB . 548
SubmoduleConfiguration 4384
SubmoduleDiagnosisEntry 4384
SubmoduleInfo . 4384
SubmoduleIterator . 4384
SubmoduleState_AddInfo 4384
SubmoduleState_ARInfo 4384
SubmoduleState_Detail 4384
SubmoduleState_IdentInfo 4384
SubmoduleStatus . 4384
SubObjectIterator . 4384
SubPoints . 4384
subrange types . 681
subsequent, pragma . 727
SUBSLOT_ID . 4384
SubVector . 4384

Index

2022/01/21 3ADR010583, 3, en_US 4513

Subversion
source management . 211

SUPER . 538
SupervisorEntry . 4384
SupervisorInstance . 4384
SupervisorOperationAlive 4384
SupervisorOperationDead 4384
SupervisorOperationDisable 4384
SupervisorOperationEnable 4384
SupervisorOperationGetEntry 4384
SupervisorOperationGetFirst 4384
SupervisorOperationGetNext 4384
SupervisorOperationGetState2 4384
SupervisorOperationRegister 4384
SupervisorOperationSetTimeout 4384
SupervisorOperationUnregister 4384
SupervisorState . 4384
SupportedFcs . 4384
suppress warning, pragma 729
SVN . 211, 4231

_VERSION_INFO . 4271
checkout . 4242
commands . 4236
info . 4251
overlay icon . 4235
project settings . 4266
repository . 4232
repository browser . 4238
version control . 4232
version Info . 4271

Swap . 4384
SwapDword . 4384
SwapLocalToIntel . 4384
SwapLocalToMotorola . 4384
SwapLword . 4384
SwappedDirectAssigner 4384
SwapWord . 4384
switch . 1610, 2034

visualization element 1610, 1614, 2034, 2038
switch point

define . 322
SWITCHBIT . 4384
SwitchToActive . 4385
SwitchToSimulation . 4385
SwitchToStandalone . 4385

SwitchToStandby . 4385
symbol

access rights . 357
access to controller . 868
overlay . 4235

symbol configuration 357, 927
access rights . 928
add . 927
comments and attributes 931
data layout . 927
editor . 928
OPC UA . 927
symbol set . 357
task synchronization . 932

symbol file . 927
symbol library

project environment of visualization . . . 1185, 1765
update . 1185, 1765

symbol rights
device editor . 868
symbol access . 357

symbol set
symbol configuration . 357

symbol, pragma . 728
SymbolicVarNodeAccessor 4385
SymbolicVarNodeFinder 4385
SymbolicVarsBaseHandleConverter 4385
SymbolInfo . 4385
SymbolsBaseNode . 4385
SymbolsBranchNode . 4385
SymVarAccess . 4385
sync unit assignment

EtherCAT Master . 3818
SYNC_INFO . 4385
SyncDefineVarList . 4385
SyncDeleteVarList . 4385
synchronize

cycle-consistent variables 230
file by application download 847

Synchronize . 4385
SyncReadVarList . 4385
SyncReadVarListFromPlc 4385
SyncReadVars . 4385
SyncReadVarsRelease 4385
SyncSendService . 4385

Index

2022/01/213ADR010583, 3, en_US4514

SyncWriteVarListToPlc . 4385
SyncWriteVars . 4385
syntax check . 1024
SYS_COM_BAUDRATE 4385
SYS_COM_DTR_CONTROL 4385
SYS_COM_PARITY . 4385
SYS_COM_PORTS . 4385
SYS_COM_RTS_CONTROL 4385
SYS_COM_STOPBITS 4385
SYS_COM_TIMEOUT . 4385
SYS_FILE_STATUS . 4385
SYS_FILETIME . 4385
SYS_INT_DESCRIPTION 4385
SYS_TASK_INFO . 4385
SYS_TASK_PARAM . 4385
SYS_TIME . 4385
SysComAsyncFB . 4385
SysComClose . 4385
SysComGetSettings . 4385
SysComGetSettings2 . 4385
SysComOpen . 4385
SysComOpen2 . 4385
SysComOpen3 . 4385
SysComPurge . 4385
SysComRead . 4385
SysComSetSettings . 4385
SysComSetSettings2 . 4385
SysComSetTimeout . 4385
SysComSettings . 4385
SysComSettingsEx . 4385
SysComSettingsEx2 . 4385
SysComWrite . 4385
SysCpuAtomicAdd . 4385
SysCpuAtomicAdd64 . 4385
SysCpuAtomicCompareAndSwap 4385
SysCpuCallIecFuncWithParams 4385
SysCpuResetBit . 4386
SysCpuResetBit2 . 4386
SysCpuSetBit . 4386
SysCpuSetBit2 . 4386
SysCpuTestAndReset . 4386
SysCpuTestAndSet . 4386
SysCpuTestAndSetBit . 4386
SysDirAsyncFB . 4386
SysDirClose . 4386

SysDirCopy . 4386
SysDirCreate . 4386
SysDirCreate2 . 4386
SysDirDelete . 4386
SysDirDelete2 . 4386
SysDirGetCurrent . 4386
SysDirOpen . 4386
SysDirRead . 4386
SysDirRename . 4386
SysDirSetCurrent . 4386
SysEthernetAdapterClose 4386
SysEthernetAdapterOpen 4386
SysEthernetCapabilities 4386
SysEthernetEthFrameReceive 4386
SysEthernetEthFrameSend 4386
SysEthernetFrame . 4386
SysEthernetFrameRelease 4386
SysEthernetGetCapabilities 4386
SysEthernetGetInterfaceCounters 4386
SysEthernetGetMediaCounters 4386
SysEthernetGetPortConfigAndStatus 4386
SysEthernetInterfaceCounters 4386
SysEthernetIpFrameReceive 4386
SysEthernetIpFrameSend 4386
SysEthernetMediaCounters 4386
SysEthernetPortConfigAndStatus 4386
SysEthernetSetAutoNegAdvertisedCap 4386
SysEthernetSetAutoNegMode 4386
SysEthernetSetMauType 4386
SysEventCreate . 4386
SysEventDelete . 4386
SysEventSet . 4386
SysEventWait . 4386
SysExceptGenerateException 4386
SysFileAsyncFB . 4386
SysFileClose . 4386
SysFileCopy . 4386
SysFileDelete . 4386
SysFileDeleteByHandle 4386
SysFileEOF . 4386
SysFileFlush . 4386
SysFileGetName . 4386
SysFileGetName2 . 4386
SysFileGetPath . 4386
SysFileGetPos . 4386

Index

2022/01/21 3ADR010583, 3, en_US 4515

SysFileGetSize . 4386
SysFileGetSizeByHandle 4387
SysFileGetStatus . 4387
SysFileGetStatus2 . 4387
SysFileGetTime . 4387
SysFileIoctl . 4387
SysFileOpen . 4387
SysFileRead . 4387
SysFileRename . 4387
SysFileSetPos . 4387
SysFileTruncate . 4387
SysFileWrite . 4387
SysGraphicLightBeginPaint 4387
SysGraphicLightDrawBitmap 4387
SysGraphicLightDrawPolygon 4387
SysGraphicLightDrawRect 4387
SysGraphicLightDrawText 4387
SysGraphicLightEndPaint 4387
SysGraphicLightGetDisplayDeviceContext 4387
SysGraphicLightRegisterFont 4387
SysGraphicLightReleaseDisplayDeviceContext 4387
SysGraphicLightSetFill . 4387
SysGraphicLightSetFont 4387
SysGraphicLightSetLine 4387
SysIntClose . 4387
SysIntDisable . 4387
SysIntDisableAll . 4387
SysIntEnable . 4387
SysIntEnableAll . 4387
SysIntLevel . 4387
SysIntOpen . 4387
SysIntOpenByName . 4387
SysIntRegister . 4387
SysIntUnregister . 4387
SysMCBDAlloc . 4387
SysMCBDCount . 4387
SysMCBDFree . 4387
SysMCBDGetFirstID . 4387
SysMCBDGetNextID . 4387
SysMCBDIsSet . 4387
SysMCGetLoad . 4387
SysMCGetNumOfCores 4387
SysMCGetProcessBinding 4387
SysMCGetTaskBinding . 4387
SysMemAllocData . 4387

SysMemCmp . 4387
SysMemCpy . 4387
SysMemForceSwap . 4387
SysMemFreeData . 4387
SysMemGetCurrentHeapSize 4387
SysMemIsValidPointer . 4387
SysMemMove . 4387
SysMemReallocData . 4387
SysMemSet . 4387
SysMemSwap . 4387
SysPciGetCardInfo . 4387
SysPciGetConfigEntry . 4388
SysPciReadValue . 4388
SysPciSetConfigEntry . 4388
SysPciWriteValue . 4388
SysPipeWindowsClose 4388
SysPipeWindowsOpen . 4388
SysPipeWindowsPeek . 4388
SysPipeWindowsRead . 4388
SysPipeWindowsSetHandleState 4388
SysPipeWindowsWrite . 4388
SysPortAsyncFB . 4388
SysPortIn . 4388
SysPortInD . 4388
SysPortInW . 4388
SysPortOut . 4388
SysPortOutD . 4388
SysPortOutW . 4388
SysProcessCreate . 4388
SysProcessCreate2 . 4388
SysProcessExecuteCommand 4388
SysProcessExecuteCommand2 4388
SysProcessFreeHandle 4388
SysProcessGetCurrentHandle 4388
SysProcessGetOSId . 4388
SysProcessGetPriority . 4388
SysProcessGetState . 4388
SysProcessResume . 4388
SysProcessSetPriority . 4388
SysProcessTerminate . 4388
SysRWLCreate . 4388
SysRWLDelete . 4388
SysRWLReadLock . 4388
SysRWLReadLockTry . 4388
SysRWLReadUnlock . 4388

Index

2022/01/213ADR010583, 3, en_US4516

SysRWLWriteLock . 4388
SysRWLWriteLockTry . 4388
SysRWLWriteUnlock . 4388
SysSafetyAfterWriteOutput 4388
SysSafetyBeforeReadInput 4388
SysSafetyIoCfgReady . 4388
SysSafetyMapShm . 4388
SysSafetyReadConfigIdFromSafety 4388
SysSafetyUnmapShm . 4388
SysSafetyWriteConfigIdOfStandard 4388
SysSemCreate . 4388
SysSemDelete . 4388
SysSemEnter . 4388
SysSemLeave . 4388
SysSemProcessCreate 4388
SysSemProcessDelete . 4388
SysSemProcessEnter . 4388
SysSemProcessLeave . 4388
SysSemTry . 4388
SysSharedMemoryClose 4388
SysSharedMemoryCreate 4388
SysSharedMemoryDelete 4389
SysSharedMemoryGetPointer 4389
SysSharedMemoryOpen2 4389
SysSharedMemoryRead 4389
SysSharedMemoryReadByte 4389
SysSharedMemoryWrite 4389
SysSharedMemoryWriteByte 4389
SysShmAsyncFB . 4389
SysSock2Accept . 4389
SysSock2Bind . 4389
SysSock2Close . 4389
SysSock2Connect . 4389
SysSock2Create . 4389
SysSock2FdInit . 4389
SysSock2FdIsset . 4389
SysSock2FdZero . 4389
SysSock2GetOption . 4389
SysSock2GetPeerName 4389
SysSock2GetSockName 4389
SysSock2Htonl . 4389
SysSock2Htons . 4389
SysSock2InetAddr . 4389
SysSock2InetNtoa . 4389
SysSock2Ioctl . 4389

SysSock2Listen . 4389
SysSock2Ntohl . 4389
SysSock2Ntohs . 4389
SysSock2Recv . 4389
SysSock2RecvFrom . 4389
SysSock2Select . 4389
SysSock2Send . 4389
SysSock2SendTo . 4389
SysSock2SetOption . 4389
SysSock2Shutdown . 4389
SysSockAccept . 4389
SysSockAsyncFB . 4389
SysSockBind . 4389
SysSockClose . 4389
SysSockCloseUdp . 4389
SysSockConnect . 4389
SysSockCreate . 4389
SysSockCreateUdp . 4389
SysSocket2_Parameter 4389
SysSocket2_SpecificParameter 4389
SysSocket2_StdSockets 4389
SysSocket2_TlsSockets 4389
SysSocket2_Type . 4389
SysSocketPair . 4389
SysSockFdInit . 4389
SysSockFdIsset . 4389
SysSockFdZero . 4389
SysSockGetAdapterInfo 4389
SysSockGetFirstAdapterInfo 4389
SysSockGetHostByName 4389
SysSockGetHostName . 4389
SysSockGetNextAdapterInfo 4390
SysSockGetOption . 4390
SysSockGetOSHandle . 4390
SysSockGetPeerName 4390
SysSockGetRecvSizeUdp 4390
SysSockGetSockName 4390
SysSockGetSubnetMask 4390
SysSockHtonl . 4390
SysSockHtons . 4390
SysSockInetAddr . 4390
SysSockInetNtoa . 4390
SysSockIoctl . 4390
SysSockListen . 4390
SysSockNtohl . 4390

Index

2022/01/21 3ADR010583, 3, en_US 4517

SysSockNtohs . 4390
SysSockPing . 4390
SysSockRecv . 4390
SysSockRecvFrom . 4390
SysSockRecvFromUdp 4390
SysSockRecvFromUdp2 4390
SysSockSelect . 4390
SysSockSend . 4390
SysSockSendTo . 4390
SysSockSendToUdp . 4390
SysSockSetDefaultGateway 4390
SysSockSetIPAddress . 4390
SysSockSetIpAddressAndNetMask 4390
SysSockSetOption . 4390
SysSockSetSubnetMask 4390
SysSockShutdown . 4390
SysTargetGetDeviceName 4390
SysTargetGetId . 4390
SysTargetGetNodeName 4390
SysTargetGetOperatingSystemId 4390
SysTargetGetProcessorId 4390
SysTargetGetSerialNumber 4390
SysTargetGetType . 4390
SysTargetGetVendorName 4390
SysTargetGetVersion . 4390
SysTargetOperationNumber 4390
SysTaskAutoReleaseOnExit 4390
SysTaskCheckStack . 4390
SysTaskCreate . 4390
SysTaskCreate2 . 4390
SysTaskDestroy . 4390
SysTaskEnd . 4390
SysTaskEnter . 4390
SysTaskExit . 4390
SysTaskGenerateException 4390
SysTaskGetContext . 4390
SysTaskGetCurrent . 4390
SysTaskGetCurrentOSHandle 4390
SysTaskGetInfo . 4390
SysTaskGetInterval . 4390
SysTaskGetName . 4390
SysTaskGetOSHandle . 4391
SysTaskGetOSPriority . 4391
SysTaskGetPriority . 4391
SysTaskJoin . 4391

SysTaskLeave . 4391
SysTaskResume . 4391
SysTaskSetExit . 4391
SysTaskSetInterval . 4391
SysTaskSetPriority . 4391
SysTaskSuspend . 4391
SysTaskWaitInterval . 4391
SysTaskWaitSleep . 4391
SysTaskWaitSleepUs . 4391
system diagnosis 4018, 4025
system event . 938

function call . 938
system time

output in visualization 1710
system variable . 436

operation control . 436
SYSTEM_MEMORY_INFORMATION 4391
SYSTEM.VAR_INFO . 621

data structure . 621
SystemParameter . 4391
SYSTEMTIME . 4391
SYSTIME . 4391
SYSTIMEDATE . 4391
SysTimeDateToString . 4391
SysTimeGetMs . 4391
SysTimeGetNs . 4391
SysTimeGetUs . 4391
SysTimeLock . 4391
SysTimerCreateCallback 4391
SysTimerCreateCallback2 4391
SysTimerCreateEvent . 4391
SysTimerDelete . 4391
SysTimerGetInterval . 4391
SysTimerGetTimeStamp 4391
SysTimerMaxTimer . 4391
SysTimerSetInterval . 4391
SysTimerStart . 4391
SysTimerStop . 4391
SysTimeRtcControl . 4391
SysTimeRtcConvertDateToHighRes 4391
SysTimeRtcConvertDateToUtc 4391
SysTimeRtcConvertHighResToDate 4391
SysTimeRtcConvertHighResToLocal 4391
SysTimeRtcConvertLocalToHighRes 4391
SysTimeRtcConvertLocalToUtc 4391

Index

2022/01/213ADR010583, 3, en_US4518

SysTimeRtcConvertUtcToDate 4391
SysTimeRtcConvertUtcToLocal 4391
SysTimeRtcGet . 4391
SysTimeRtcGetTimezone 4391
SysTimeRtcHighResGet 4391
SysTimeRtcHighResSet 4391
SysTimeRtcSet . 4391
SysTimeRtcSetTimezone 4391
SysTimeSet . 4391
SysTimeUnlock . 4391
SysTimeUnSet . 4391
SYSTYPE . 4391

T
T

constant . 636
literal . 636

TA515-CASE . 61
TA521 . 3324, 3441
TA523 . 3329
TA524 . 3328, 3446
TA525 . 3331
TA526 . 3329, 3332, 3445
TA535 . 3333
TA543

PM50x2 . 3396
TA566 . 3397
TA5101-4DI . 2478

Digital input module option board 2478
TA5105-4DOT . 2484

Digital output module option board 2484
TA5110-2DI2DOT . 2490

Digital input/output module option board 2490
TA5130-KNXPB . 2498
TA5131-RTC . 2500
TA5141-RS232I . 2502
TA5142-RS485 . 2510

Serial adapter option board 2510
TA5142-RS485I . 2504

Serial adapter option board 2504
TA5211-TSCL-B . 3293, 3379
TA5211-TSPF-B . 3293, 3379
TA5212-TSCL . 3293, 3379
TA5212-TSPF . 3293, 3379
TA5220-SPF5 . 3293, 3379

TA5220-SPF6 . 3293, 3379
TA5220-SPF7 . 3293, 3379
TA5220-SPF8 . 3293, 3379
TA5300-CVR . 3304, 3389
TA5350-AD 3288, 3315, 3374, 3432
TA5400-SIM . 3307, 3392
TA5450-CASE . 61
tab

selection, visualization elements 1721
tab group

new horizontal . 1074
new vertical . 1074

tab order
element list . 1721

table . 1485, 1909
display structured variables 1298, 2140
visualization element 1485, 1909
visualizing data arrays 1298

table of contents . 1078
TableDefinition . 4391
TableDefinitions . 4391
TableSection . 4391
tabs . 1463, 1887

reference visualizations 1329
visualization element 1463, 1887

TAN . 610
tappet

add . 347
graphical editor . 346
trail . 346

Target change . 3648, 3694
TargetVisu

object . 1787
TargetVisuCyclic . 4392
TargetVisuFindById . 4392
TargetVisuNotify . 4392
task . 942

check . 408
configuration . 942
cycle consistency . 230
cycle times . 435
jitter, latency . 294
monitor . 435
monitoring . 940
processing order . 292

Index

2022/01/21 3ADR010583, 3, en_US 4519

statistics . 435
task cycle time . 942
task-local variables . 230
type . 942
watchdog . 942

task configuration . 292
basic settings . 938
basics . 292
create . 293
jitter latency . 294
object . 937
properties . 938

task deployment
check . 408
device editor . 869

task groups . 941
task monitoring, online . 940
Task_Desc . 4392
Task_Desc2 . 4392
TASK_GROUP . 4392
Task_Info2 . 4392
TASK_NAME . 4392
task-local

declare GVL . 230
GVL . 872

TASKINFOLIST . 4392
TaskLock . 4392
TASKPARAM . 4392
TASKSTATE . 4392
TaskUnlock . 4392
TB . 2408
TB56xx . 2430
TB511

Technical data . 2437
TB521

Technical data . 2437
TB523

Technical data . 2437
TB541

Technical data . 2437
TB5600 . 2430

Technical data . 2437
TB5610 . 2430

Technical data . 2437

TB5620 . 2430
Technical data . 2437

TB5640 . 2430
Technical data . 2437

TB5660 . 2430
Technical data . 2437

tCmpLogAdd . 4392
TCP_Client . 4392
TCP_Connection . 4392
TCP_Processor . 4392
TCP_Read . 4392
TCP_ReadBuffer . 4392
TCP_Reader . 4392
TCP_Server . 4392
TCP_Write . 4392
TCP_WRITE_STATE . 4392
TCP_WriteBuffer . 4392
TCP_Writer . 4392
Technical data

AC522 . 2855
TB511 . 2437
TB521 . 2437
TB523 . 2437
TB541 . 2437
TB5600 . 2437
TB5610 . 2437
TB5620 . 2437
TB5640 . 2437
TB5660 . 2437

teClass . 4023, 4392
teEcatDcControlState . 4392
teEcatDevState . 4392
teEcatExtSyncInfoFlags 4392
teEcatSlvDCInfoFlags . 4392
teErrorCodesOB . 4392
teEvent . 4023, 4392
teHwId . 4024, 4392
Telecontrol . 3839
template element . 1729

visualization . 1729
temporary variable . 532
Terminal bases . 2408
Terminal Units . 2413, 2549
Terminal units for communication interface
modules . 2559

Index

2022/01/213ADR010583, 3, en_US4520

Terminal units for I/O modules 2553, 2562
tError . 4392
test functions . 904

also in libraries . 904
TEST_AND_SET . 628
Test_State . 4392
Testcases . 4392
testing a program 90, 120, 149
text

display, visualization 1260
output configuration . 1263
translate and manage 266
visualization, multi-language capability 1286

TEXT . 4392
text display

animate in visualization 1264
animating with a visualization element 1295

text editor . 972, 1653, 2077
option . 1203
show whitespace . 969
visualization element 1653, 2077

Text Editor
configuring, visualization 1315

text field . 1492, 1916
configure dynamic text output 1261
configure input . 1264
visualization element 1492, 1916

text file
configuring the display, visualization 1315
configuring the processing, visualization 1315

text input
define for all visualizations throughout the
application . 1273

text list
add language . 1132
add language and translate text 266
availability . 1169
check ID . 1135
compare and export differences 268
display text dynamically 273
download . 1169
DUT . 1136
export . 266
export as unicode text 1133
export everything as text 1132

export/import . 1133
for dynamic application 273
for input assistance . 267
import file . 267
insert text . 1133
names and directories for visualization 1764
object . 927
properties . 1169
remove language . 1134
remove unused entries 1135
rename language . 1134
update ID . 1135
visualization . 1286

text list support
add . 1136
DUT . 1136
remove . 1136

TextCopyToString . 4392
TextCopyToWString . 4392
TextFree . 4392
TextHelper . 4392
TextListForCombobox_CIPClass 4392
THEN . 469
third party PROFIsafe devices 3639
THIS . 539
TICK . 4392
TICK_TO_UDINT . 4392
TICK_TO_UINT . 4392
TICK_TO_ULINT . 4392
TicketsSafe . 4392
TicketType . 4392
time . 635

constant . 635
duration . 635
literal . 635

TIME . 649
constant . 636
convert . 595
keyword . 649
literal . 636

TIME function . 645
time of day . 650

constant . 637
data type . 650

Index

2022/01/21 3ADR010583, 3, en_US 4521

time picker . 1685, 2104
visualization element 1685, 2104

Time syncronisation 2221, 3941
TIME_OF_DAY . 650

data type . 650
keyword . 637

TIME_TO___UXINT . 595
TIME_TO___XINT . 595
TIME_TO___XWORD . 595
TIME_TO_BOOL . 595
TIME_TO_BYTE . 595
TIME_TO_DATE . 595
TIME_TO_DINT . 595
TIME_TO_DT . 595
TIME_TO_DURATION . 4392
TIME_TO_DWORD . 595
TIME_TO_INT . 595
TIME_TO_INT64 . 4392
TIME_TO_ISO8601 . 4392
TIME_TO_LDATE . 595
TIME_TO_LDT . 595
TIME_TO_LINT . 595
TIME_TO_LREAL . 595
TIME_TO_LTIME . 595
TIME_TO_LTOD . 595
TIME_TO_LWORD . 595
TIME_TO_REAL . 595
TIME_TO_REAL8 . 4392
TIME_TO_SINT . 595
TIME_TO_STRING . 595
TIME_TO_TOD . 595
TIME_TO_UDINT . 595
TIME_TO_UINT . 595
TIME_TO_ULINT . 595
TIME_TO_USINT . 595
TIME_TO_WORD . 595
TIME_TO_WSTRING . 595
TIME_ZONE_INFO . 4392
TIME() . 645
Time2BACnetDateTime 4392
Time2BACnetTimeStamp 4392
TimeElement . 4393
TimeElementFactory . 4393
TimerSwitch . 4393
TIMESTAMP . 4393

Timestamp_to_DT . 4393
TimeSync_SvcAppHook 4393
TimeZone . 4393
TimezoneInformation . 4393
TimezoneInformationToString 4393
TimeZoneSegmentToString 4393
TimeZoneToString . 4393
TimingControlledBehaviourModelBase 4393
TimingController . 4393
TL_AlarmStatus . 4393
TL_AlarmTableColumnTitles 4393
TL_DateTime . 4393
TL_ElementProperties . 4393
TL_RecipeManager . 4393
TLR_PACKET_HEADER_T 4393
TLS_VERSION . 4393
TLSContext . 4393
TO___UXINT . 566
TO___XINT . 566
TO___XWORD . 566
TO_BIT . 566
TO_BOOL . 566
TO_BYTE . 566
TO_DATE . 566
TO_DINT . 566
TO_DT . 566
TO_DWORD . 566
TO_INT . 566
TO_LDATE . 566
TO_LDT . 566
TO_LINT . 566
TO_LREAL . 566
TO_LTIME . 566
TO_LTOD . 566
TO_LWORD . 566
TO_REAL . 566
TO_SINT . 566
to_string . 728

pragma attribute . 728
TO_STRING . 566
TO_TIME . 566
TO_TOD . 566
TO_UDINT . 566
TO_UINT . 566
TO_ULINT . 566

Index

2022/01/213ADR010583, 3, en_US4522

TO_USINT . 566
TO_WORD . 566
TO_WSTRING . 566
TOD . 650

convert . 600
data type . 650
keyword . 637

TOD_TO___XWORD . 600
TOD_TO__UXINT . 600
TOD_TO__XINT . 600
TOD_TO_BOOL . 600
TOD_TO_BYTE . 600
TOD_TO_DATE . 600
TOD_TO_DINT . 600
TOD_TO_DT . 600
TOD_TO_DWORD . 600
TOD_TO_INT . 600
TOD_TO_LDATE . 600
TOD_TO_LDT . 600
TOD_TO_LINT . 600
TOD_TO_LREAL . 600
TOD_TO_LTOD . 600
TOD_TO_LWORD . 600
TOD_TO_REAL . 600
TOD_TO_SINT . 600
TOD_TO_STRING . 600
TOD_TO_TIME . 600
TOD_TO_UDINT . 600
TOD_TO_UINT . 600
TOD_TO_ULINT . 600
TOD_TO_USINT . 600
TOD_TO_WORD . 600
TOD_TO_WSTRING . 600
TODConcat . 4393
TODSplit . 4393
TOF . 4393
toggle localization . 1009
toggle subview . 1076
toggle/tap variable

couple with Button state variable 1477, 1901
TokenTypeToString . 4393
TON . 4393
toolbar . 1207

customize . 182
toolbox . 987

tooltip
visualization, multi-language capability 1286

TP . 4393
trace . 421

access all traces on controller 428
add variable . 1136
advanced settings . 1208
advanced settings, visualization element 1770
assign task . 424
CmpTraceMgr.library . 421
configuration . 1209
configure . 1137
configure data recording 1210
configure display . 426
configure recording, visualization 1734
configure variable . 425
configure variables, visualization 1735
configure, visualization 1734
control data recording 427
convert to multi-channel 1141
convert to single-channel 1142
cpuload, plcload . 1144
create configuration . 424
data of IEC variable . 424
delete from runtime . 1144
delete variable . 425
DeviceTrace . 421
DeviceTrace object . 948
display setting of visualization 1770
download configuration to controller 1138
editor . 946
file formats . 422
getting started . 423
list . 1143
load file . 1141
load to trace editor . 1146
manage as file . 430
navigate in data in diagrams 429
navigate in diagram . 947
object . 945
online list . 1143
open statistics . 1146
processor load . 1144
read y-value . 1137
runtime buffer . 1208

Index

2022/01/21 3ADR010583, 3, en_US 4523

runtime system component CmpTraceMgr . . . 421
save samples to file . 422
save to file . 1145
show statistics . 430
start . 1145
stop . 1145
trace cursor . 1137
trigger . 422
upload . 1146
visualization element 1619, 2043

trace configuration
export . 1736
export symbolic . 1139

trace element
getting started . 1307
insert elements for control, visualization 1737
record data of a variable 1308
wizard of visualization element 1737

trace graph
compress . 1137
reset to default view . 1144
stretch . 1146

trace manager (see CmpTraceMgr) 421
TraceAddress . 4393
TraceFctGetPropertyValue 4393
TraceFctGetVariableName 4393
TraceFctGetVariableNameW 4393
TraceMgrGetConfigFromFile 4393
TraceMgrGetConfigFromFileRelease 4393
TraceMgrPacketCheckTrigger 4393
TraceMgrPacketClose . 4393
TraceMgrPacketComplete 4393
TraceMgrPacketCreate 4393
TraceMgrPacketDelete . 4393
TraceMgrPacketDisable 4393
TraceMgrPacketDisableTrigger 4393
TraceMgrPacketEnable 4393
TraceMgrPacketEnableTrigger 4393
TraceMgrPacketGetAbsoluteStartTime 4393
TraceMgrPacketGetChangeTimestamp 4393
TraceMgrPacketGetConfig 4393
TraceMgrPacketGetFirst 4393
TraceMgrPacketGetNext 4393
TraceMgrPacketGetStartTime 4393
TraceMgrPacketGetState 4393

TraceMgrPacketOpen . 4393
TraceMgrPacketReadBegin 4393
TraceMgrPacketReadEnd 4393
TraceMgrPacketReadFirst 4393
TraceMgrPacketReadFirst2 4393
TraceMgrPacketReadNext 4393
TraceMgrPacketReadNext2 4394
TraceMgrPacketResetTrigger 4394
TraceMgrPacketRestart 4394
TraceMgrPacketRestore 4394
TraceMgrPacketStart . 4394
TraceMgrPacketStop . 4394
TraceMgrPacketStore . 4394
TraceMgrRecordAdd . 4394
TraceMgrRecordGetConfig 4394
TraceMgrRecordGetFirst 4394
TraceMgrRecordGetNext 4394
TraceMgrRecordRemove 4394
TraceMgrRecordUpdate 4394
TraceMgrRecordUpdate2 4394
TraceMgrRecordUpdate3 4394
TraceMgrRecordUpdate4 4394
TraceMgrRecordUpdate5 4394
TracePacketConfiguration 4394
TraceRecordConfiguration 4394
TraceRecordEntry . 4394
TraceState . 4394
TraceTrigger . 4394
TraceVariable . 4394
TraceVariableAddress . 4394
TraceVarInfo . 4394
training case . 61
transfer parameters

update . 1333
transition . 486, 903

insert . 1081
insert after . 1080
SFC, do not display embedded objects 1088

TRANSITION_STATE . 4394
TransmissionTrigger . 4394
TransmitParameterGroup 4394
Tree . 4394
TreeBase . 4394
TreeNode . 4394
TreeNodeFactory . 4394

Index

2022/01/213ADR010583, 3, en_US4524

TreeNodeType . 4394
trend

basis, visualization . 1309
configure display settings, command . . 1732, 1738
configure recording, visualization 949
configure variables, visualization 950
configure, visualization 1739
visualization element 1625, 2049

Trend
insert elements for control, command 1739

trend configuration
add parameters . 434
add variable . 433
assign tasks . 432
configure additional buffering 434
configure data buffering on RTS 434
delete variable . 433
start conditional . 433

trend recording . 430, 949
configure . 432
getting started . 431
set additional buffer . 1214
storage configuration 1214
trend recording task . 952

trend recording manager 949
trend visualization

edit . 1312
programming . 1312
sine-shaped curve of IEC variable, example 1310

Trend visualization
getting started . 1309

TrendFbDatabaseAccessErrorHandler 4394
TrendFbTrendStorageWriterReader 4394
TrendFctCursorSearchFirstRow 4394
TrendFctGetTimestamp 4394
TrendFctSetComplexElementCallState 4394
TrendFctShowLossOfPrecisionWarning 4394
TrendFctShowUnsupportedFunctionWarning . . . 4394
TrendLog . 4394
TrendStorageConvertFromTimestamp 4394
TrendStorageConvertToTimestamp 4394
TrendStorageReader . 4394
TrendStorageReaderValueConverter 4394
TrendStorageVariableDescription 4394

trigger
activate in trace configuration 426
reset trace configuration 1144

Trigger option
IEC 61850 Server . 3893

TriggerState . 4394
TriggerValue . 4394
TrimEnd . 4394
TrimStart . 4394
TRUE . 633
TRUNC . 606
TRUNC_INT . 606
Truncate . 4394
TruncateF . 4394
TRY . 619
tsEcmExtSyncInfo . 4394
tsEcmMstrDcInfo . 4394
tsEcmMstrFrameLossCnt 4394
tsEcmMstrFrameLossCntEntry 4395
tsEcmMstrInfo . 4395
tsEcmMstrMemInfo . 4395
tsEcmMstrThresholdCnt 4395
tsEcmMstrThresholdCntEntry 4395
tsEcmMstrTimingInfo . 4395
tsEcmSlvConnInfo . 4395
tsEcmSlvDcInfo . 4395
tsEcmSlvEmergencies . 4395
tsEcmSlvEmergency . 4395
tsEcmSlvESCVersion . 4395
tsEcmSlvInfo . 4395
tsEcmSlvLostLinkCnt . 4395
tsEcmSlvRxErrorCnt . 4395
tsNetxEcatBusScanDeviceInfo 4395
tsNetxEcatHandle . 4395
tsParameterStruct . 4395
tSysComClose . 4395
tSysComGetSettings . 4395
tSysComOpen . 4395
tSysComOpen2 . 4395
tSysComPurge . 4395
tSysComRead . 4395
tSysComSetSettings . 4395
tSysComSetTimeout . 4395
tSysComWrite . 4395
tSysDirClose . 4395

Index

2022/01/21 3ADR010583, 3, en_US 4525

tSysDirCreate . 4395
tSysDirDelete . 4395
tSysDirGetCurrent . 4395
tSysDirOpen . 4395
tSysDirRead . 4395
tSysDirRename . 4395
tSysDirSetCurrent . 4395
tSysFileClose . 4395
tSysFileCopy . 4395
tSysFileDelete . 4395
tSysFileDeleteByHandle 4395
tSysFileEOF . 4395
tSysFileGetName . 4395
tSysFileGetPath . 4395
tSysFileGetPos . 4395
tSysFileGetSize . 4395
tSysFileGetSizeByHandle 4395
tSysFileGetStatus . 4395
tSysFileGetTime . 4395
tSysFileOpen . 4395
tSysFileRead . 4395
tSysFileRename . 4395
tSysFileSetPos . 4395
tSysFileWrite . 4395
tSysPortIn . 4395
tSysPortInD . 4395
tSysPortInW . 4395
tSysPortOut . 4395
tSysPortOutD . 4396
tSysPortOutW . 4396
tSysShmClose . 4396
tSysShmGetPointer . 4396
tSysShmOpen . 4396
tSysShmRead . 4396
tSysShmReadByte . 4396
tSysShmWrite . 4396
tSysShmWriteByte . 4396
tSysSockAccept . 4396
tSysSockBind . 4396
tSysSockClose . 4396
tSysSockCloseUdp . 4396
tSysSockConnect . 4396
tSysSockCreate . 4396
tSysSockCreateUdp . 4396
tSysSockGetHostByName 4396

tSysSockGetHostname 4396
tSysSockGetOption . 4396
tSysSockGetOsHandle . 4396
tSysSockGetRecvSizeUdp 4396
tSysSockGetSubnetMask 4396
tSysSockHtonl . 4396
tSysSockHtons . 4396
tSysSockInetAddr . 4396
tSysSockInetNtoa . 4396
tSysSockIoctl . 4396
tSysSockListen . 4396
tSysSockNtohl . 4396
tSysSockNtohs . 4396
tSysSockPing . 4396
tSysSockRecv . 4396
tSysSockRecvFrom . 4396
tSysSockRecvFromUdp 4396
tSysSockSelect . 4396
tSysSockSend . 4396
tSysSockSendTo . 4396
tSysSockSendToUdp . 4396
tSysSockSetIpAddress . 4396
tSysSockSetOption . 4396
tSysSockSetSubnetMask 4396
tSysSockShutdown . 4396
tTaskInfo . 4396
TU . 2413, 2549
TU507 . 2549
TU508 . 2549
TU515 . 2553
TU516 . 2553
TU517 . 2559
TU518 . 2559
TU531 . 2562
TU532 . 2562
TU541 . 2553
TU542 . 2553
TU582-S . 2429, 3454
Tutorial

Visualisierung . 2131
tyIEC61850_ASN1_Header 4396
tyIEC61850_AT_AnalogueValue 4396
tyIEC61850_AT_AnalogueValue_Struct 4396
tyIEC61850_AT_APC . 4396
tyIEC61850_AT_APC_Operate 4396

Index

2022/01/213ADR010583, 3, en_US4526

tyIEC61850_AT_APC_Operate_SP 4396
tyIEC61850_AT_APC1 . 4396
tyIEC61850_AT_BOOLEAN 4396
tyIEC61850_AT_BSC_Operate 4396
tyIEC61850_AT_Check 4396
tyIEC61850_AT_CODED_ENUM 4396
tyIEC61850_AT_DPC_Operate 4396
tyIEC61850_AT_DstAddress 4397
tyIEC61850_AT_EntryTime 4397
tyIEC61850_AT_ENUM_CtlModels 4397
tyIEC61850_AT_ENUM_MODE 4397
tyIEC61850_AT_ENUM_SboClass 4397
tyIEC61850_AT_ENUMERATED 4397
tyIEC61850_AT_FLOAT32 4397
tyIEC61850_AT_INC . 4397
tyIEC61850_AT_INC_Operate 4397
tyIEC61850_AT_INC1 . 4397
tyIEC61850_AT_INS . 4397
tyIEC61850_AT_INT8 . 4397
tyIEC61850_AT_INT8U 4397
tyIEC61850_AT_INT16 4397
tyIEC61850_AT_INT16U 4397
tyIEC61850_AT_INT32 4397
tyIEC61850_AT_INT32U 4397
tyIEC61850_AT_INT128 4397
tyIEC61850_AT_ISC_Operate 4397
tyIEC61850_AT_Octet64 4397
tyIEC61850_AT_Octet255 4397
tyIEC61850_AT_Origin . 4397
tyIEC61850_AT_POINT 4397
tyIEC61850_AT_PulseConfig 4397
tyIEC61850_AT_Quality 4397
tyIEC61850_AT_RANGECONFIG 4397
tyIEC61850_AT_ScaledValConfig 4397
tyIEC61850_AT_SPC . 4397
tyIEC61850_AT_SPC_Operate 4397
tyIEC61850_AT_StatusValue_Struct 4397
tyIEC61850_AT_TimeStamp 4397
tyIEC61850_AT_UCSTRING255 4397
tyIEC61850_AT_UINT32 4397
tyIEC61850_AT_UNIT . 4397
tyIEC61850_AT_ValWithTrans 4397
tyIEC61850_AT_VECTOR 4397
tyIEC61850_AT_VisSTRING32 4397
tyIEC61850_AT_VisSTRING64 4397

tyIEC61850_AT_VisSTRING65 4397
tyIEC61850_AT_VisSTRING129 4397
tyIEC61850_AT_VisSTRING255 4397
tyIEC61850_DataPoint . 4397
tyIEC61850_DataSetRef 4397
tyIEC61850_GOOSE_Check 4397
tyIEC61850_GOOSEMsg 4397
tyIEC61850_MMS_DataExchange 4397
tyIEC61850_MMS_Initiate 4397
tyIEC61850_SubsDataBlock 4397
tyIEC61850_SubsDataPoint 4397
tyISO_BlockHeader . 4397
tyISO_SPDU . 4397
tyISO8073_BlockHeader 4397
tyISO8073_ClientPara . 4397
tyISO8073_PDU . 4397
tyISO8327_BlockHeader 4397
tyISO8327_ClientData . 4398
tyISO8327_Connect_AcceptItem 4398
tyISO8327_ConnectionIdent 4398
tyISO8650_UserInfoData 4398
tyISO8823_ContextList 4398
tyISO8823_ContextName 4398
tyISO8823_CP_Type . 4398
tyISO8823_DataUser . 4398
tyISO8823_NormalModePara 4398
type . 835

object DUT . 835
TYPE . 676
TypeClass . 4398
TypeClass3 . 4398
TypeClassToVariantId . 4398
typed literals . 640
TypedElement . 4398
TypeDesc . 4398
TypeDesc_Alias . 4398
TypeDesc_AliasWithAttributes 4398
TypeDesc_Array . 4398
TypeDesc_Array_ByteAddressed 4398
TypeDesc_Array_Remote 4398
TypeDesc_Enum . 4398
TypeDesc_EnumWithAttributes 4398
TypeDesc_Executable . 4398
TypeDesc_Executable2 4398
TypeDesc_Property . 4398

Index

2022/01/21 3ADR010583, 3, en_US 4527

TypeDesc_Property_Remote 4398
TypeDesc_Reference . 4398
TypeDesc_Simple . 4398
TypeDesc_Simple_Bit . 4398
TypeDesc_Struct . 4398
TypeDesc_Struct_Derived_Remote 4398
TypeDesc_Struct_Remote 4398
TypeDesc_Struct2 . 4398
TypeDesc_Struct2_WithBaseType 4398
TypeDesc_Struct2_WithBaseTypeAndAttributes 4398
TypeDesc_Subrange . 4398
TypeDesc_VarLenArray 4398
TypeDescArrayAsStruct 4398
TypeDescAsUnion . 4398
TypeDescSimpleAsStruct 4398
TypeDescStructAsStruct 4398
TypeDescUnion . 4398
TypeDescVarArrayAsStruct 4398
TypedList . 4398
TypedTree . 4398
TypeHasCompleteBlittableLayout 4398
TZ_NAME . 4398

U
UDINT . 647

convert . 572
UDINT_IN_BYTES . 4398
UDINT_IN_WORDS . 4398
UDINT_TO___UXINT . 572
UDINT_TO___XINT . 572
UDINT_TO___XWORD . 572
UDINT_TO_BIT . 572
UDINT_TO_BOOL . 572
UDINT_TO_BYTE . 572
UDINT_TO_COUNT . 4398
UDINT_TO_DATE . 572
UDINT_TO_DINT . 572
UDINT_TO_DT . 572
UDINT_TO_DWORD . 572
UDINT_TO_HEX . 4398
UDINT_TO_INT . 572
UDINT_TO_IPARRAY . 4398
UDINT_TO_IPSTRING 4398
UDINT_TO_LDATE . 572
UDINT_TO_LDT . 572

UDINT_TO_LINT . 572
UDINT_TO_LREAL . 572
UDINT_TO_LTIME . 572
UDINT_TO_LTOD . 572
UDINT_TO_LWORD . 572
UDINT_TO_REAL . 572
UDINT_TO_SINT . 572
UDINT_TO_SIZE . 4398
UDINT_TO_STRING . 572
UDINT_TO_TICK . 4398
UDINT_TO_TIME . 572
UDINT_TO_TOD . 572
UDINT_TO_UINT . 572
UDINT_TO_ULINT . 572
UDINT_TO_UNSIGNED 4398
UDINT_TO_USINT . 572
UDINT_TO_WORD . 572
UDINT_TO_WSTRING . 572
UdintElement . 4399
UdintElementFactory . 4399
UDP_GetDataSize . 4399
UDP_Peer . 4399
UDP_Processor . 4399
UDP_Receive . 4399
UDP_ReceiveBuffer . 4399
UDP_Receiver . 4399
UDP_REPLY . 4399
UDP_REPLY2 . 4399
UDP_Send . 4399
UDP_SendBuffer . 4399
UDP_Sender . 4399
UDPDriver . 4399
UdpGetReceiveDataSize 4399
UdpOpenReceiveSocket 4399
UdpOpenSendSocket . 4399
UdpReceiveData . 4399
UdpSendData . 4399
UINT . 647

convert . 572
UINT_TO___UXINT . 572
UINT_TO___XINT . 572
UINT_TO___XWORD . 572
UINT_TO_BIT . 572
UINT_TO_BOOL . 572
UINT_TO_BYTE . 572

Index

2022/01/213ADR010583, 3, en_US4528

UINT_TO_COUNT . 4399
UINT_TO_DATE . 572
UINT_TO_DINT . 572
UINT_TO_DT . 572
UINT_TO_DWORD . 572
UINT_TO_HEX . 4399
UINT_TO_INT . 572
UINT_TO_LDATE . 572
UINT_TO_LDT . 572
UINT_TO_LINT . 572
UINT_TO_LREAL . 572
UINT_TO_LTIME . 572
UINT_TO_LTOD . 572
UINT_TO_LWORD . 572
UINT_TO_REAL . 572
UINT_TO_SINT . 572
UINT_TO_SIZE . 4399
UINT_TO_STRING . 572
UINT_TO_TICK . 4399
UINT_TO_TIME . 572
UINT_TO_TOD . 572
UINT_TO_UDINT . 572
UINT_TO_ULINT . 572
UINT_TO_UNSIGNED . 4399
UINT_TO_USINT . 572
UINT_TO_WORD . 572
UINT_TO_WSTRING . 572
UintElement . 4399
UintElementFactory . 4399
ULINT . 647

convert . 572
ULINT_TO___UXINT . 572
ULINT_TO___XINT . 572
ULINT_TO___XWORD . 572
ULINT_TO_BIT . 572
ULINT_TO_BOOL . 572
ULINT_TO_BYTE . 572
ULINT_TO_COUNT . 4399
ULINT_TO_DATE . 572
ULINT_TO_DINT . 572
ULINT_TO_DT . 572
ULINT_TO_DWORD . 572
ULINT_TO_INT . 572
ULINT_TO_LDATE . 572
ULINT_TO_LDT . 572

ULINT_TO_LINT . 572
ULINT_TO_LREAL . 572
ULINT_TO_LTIME . 572
ULINT_TO_LTOD . 572
ULINT_TO_LWORD . 572
ULINT_TO_REAL . 572
ULINT_TO_SINT . 572
ULINT_TO_SIZE . 4399
ULINT_TO_STRING . 572
ULINT_TO_TICK . 4399
ULINT_TO_TIME . 572
ULINT_TO_TOD . 572
ULINT_TO_UDINT . 572
ULINT_TO_UINT . 572
ULINT_TO_UNSIGNED 4399
ULINT_TO_USINT . 572
ULINT_TO_WORD . 572
ULINT_TO_WSTRING . 572
UlintElement . 4399
UlintElementFactory . 4399
uncomment . 972
undefine, pragma . 732
underflow data type . 542
unexport . 4399
unforce . 1054
unforce values . 1054
unicode

text list . 1133
Unicode

character string in visualization 1777
uninstall

device . 1067
library . 1061

union
object DUT . 835

UNION . 681
UNION_BACNET_ADDRESS 4399
UNION_BACNET_ADDRESS_TO_STRING . . . 4399
UNION_BACNET_CALENDAR_ENTRY 4399
UNION_BACNET_CHANNEL_VALUE 4399
UNION_BACNET_EP_COV_PARAM 4399
UNION_BACNET_EPFP_E_PARAMETER 4399
UNION_BACNET_ERROR 4399
UNION_BACNET_EVENT_LOG_RECORD 4399
UNION_BACNET_EVENT_PARAMETER 4399

Index

2022/01/21 3ADR010583, 3, en_US 4529

UNION_BACNET_FAULT_PARAMETER 4399
UNION_BACNET_LOG_RECORD 4399
UNION_BACNET_LOG_RECORD_M_ENTRY . 4399
UNION_BACNET_LOG_RECORD_MULTIPLE 4399
UNION_BACNET_MESSAGE_CLASS 4399
UNION_BACNET_NETWORK_MANAGE-
MENT_MESSAGE . 4399
UNION_BACNET_NMM_BVLL 4399
UNION_BACNET_NMM_NETWORK 4399
UNION_BACNET_NOTIFICATION_PARAME-
TERS . 4399
UNION_BACNET_NP_CMD_FAIL_PARAM 4399
UNION_BACNET_NP_CMD_FAIL_PARAM1 . . . 4399
UNION_BACNET_NP_COV_PARAM 4399
UNION_BACNET_NP_E_PARAMETER 4399
UNION_BACNET_OBJECT_SPECIFIER 4400
UNION_BACNET_OS_TIME_PROVIDER_VALUE
. 4400

UNION_BACNET_PRIORITY_ARRAY_ITEM . . 4400
UNION_BACNET_PROP-
ERTY_ACCESS_RESULT 4400
UNION_BACNET_PROPERTY_STATES 4400
UNION_BACNET_READ_FILE_RESULT 4400
UNION_BACNET_READ_RESULT_ITEM 4400
UNION_BACNET_RECIPIENT 4400
UNION_BACNET_SCALE 4400
UNION_BACNET_SHED_LEVEL 4400
UNION_BACNET_SPECIAL_EVENT 4400
UNION_BACNET_STACK_CONTROL 4400
UNION_BACNET_STACK_DATALINK 4400
UNION_BACNET_STACK_INTERNAL_ERROR
. 4400

UNION_BACNET_STRING 4400
UNION_BACNET_TIME_STAMP 4400
UNION_BACNET_WHO_HAS_INFO 4400
UNION_BACNET_WHO_HAS_PARAM 4400
UNION_BACNET_WRITE_FILE_RESULT 4400
unit conversion . 298

apply . 300
apply reverse . 300
define . 299
define as switchable . 299
example . 300
link with variable . 1320
object . 952

unlock connection . 1097

UNPACK . 4400
UnpackArrayOfByte . 4400
UnpackByte . 4400
UnpackDWord . 4400
UnpackWord . 4400
Unregister . 4400
UnregisterCallback . 4400
UnregisterIdArea . 4400
UNSIGNED . 4400
UNSIGNED_TO_UDINT 4400
UNSIGNED_TO_UINT . 4400
UNSIGNED_TO_ULINT 4400
UNTIL . 472
update . 3637

IDs in text list . 1135
parameters, fbd/ld/il cfc 1114
SVN project . 4256

update referenced pins
refactoring . 981

update structured variables 1131
UpdateByDefaultInfo . 4400
UpdateByDefaultItem . 4400
UpdateDiagnosis_Status 4400
UpdateDiagnosisEntry . 4400
upgrade 61, 2430, 3637, 3993
UPPER_BOUND . 665

array . 665
uppercase . 970

keyword . 1201
URL

open web page, input action 1752
user

login as this . 206
user group . 199, 1783

activate group hierarchy, visualization 1785
hierarchy for permissions, visualization 1783
import/export user groups, visualization 1783

user input
visualization element 1268

user input event
capture in application 1277

user interface
customize . 180
language . 1195

Index

2022/01/213ADR010583, 3, en_US4530

user management . 199
activate dialog, visualization 1284
configure permissions, visualization 1285
controller, device . 385
create for visualization 1779
create, visualization . 1282
device, enforce . 381
disable . 459
general information . 453
input action, visualization 1749
options, visualization 1762
project . 203
project settings . 1172
runtime, visualization 1284
visualization . 1782

user parameters
EtherNet/IP adapter 1229

user-defined attributes . 686
user-defined data type . 835
UserAuthentification . 4400
UserMgrChangeMyPassword 4400
UserMgrGetUserAccessRights 4400
UserMgrHasUserAccessRights 4400
UserMgrIsActive . 4400
UserMgrLogin . 4400
UserMgrLogout . 4400
UserMgrObjectAdd . 4400
UserMgrObjectRemove 4400
UserMgrObjectSetUsedRights 4400
UserMgrRelogin . 4400
users

configure, visualization 1283
create for the first time, visualization 1282

users and groups
device editor . 860
project settings . 1172
visualization . 1782

USINT . 647
convert . 572

USINT_TO___UXINT . 572
USINT_TO___XINT . 572
USINT_TO___XWORD . 572
USINT_TO_BIT . 572
USINT_TO_BOOL . 572
USINT_TO_BYTE . 572

USINT_TO_DATE . 572
USINT_TO_DINT . 572
USINT_TO_DT . 572
USINT_TO_DWORD . 572
USINT_TO_INT . 572
USINT_TO_LDATE . 572
USINT_TO_LDT . 572
USINT_TO_LINT . 572
USINT_TO_LREAL . 572
USINT_TO_LTIME . 572
USINT_TO_LTOD . 572
USINT_TO_LWORD . 572
USINT_TO_REAL . 572
USINT_TO_SINT . 572
USINT_TO_STRING . 572
USINT_TO_TIME . 572
USINT_TO_TOD . 572
USINT_TO_UDINT . 572
USINT_TO_UINT . 572
USINT_TO_ULINT . 572
USINT_TO_WORD . 572
USINT_TO_WSTRING . 572
UTC_TO_DT . 4400
UTCTimeSync_SvcAppHook 4400
UtilAddrEqual . 4400
UtilBytesFromHexSubString 4400
UtilDateTimeToString . 4400
UtilFillNodeAddress . 4400
UtilGetLocalByteorder . 4400
UtilGetLocalByteorderAtRuntime 4400
UtilIsGeneralErrorReply 4400
UtilIsIntelByteorder . 4401
UtilIsToSwap . 4401
UtilReadAddressFromRouter 4401
UtilsWriteBYTE . 4401
UtilsWriteString . 4401
UtilsWriteUDINT . 4401
UtilsWriteUINT . 4401
UtilsWriteULINT . 4401
UtilTokenizer . 4401
UtilValidateByteOrder . 4401
UUID . 4401
UUID_COMPARE . 4401
UUIDGenerator . 4401

Index

2022/01/21 3ADR010583, 3, en_US 4531

V
V2.3 project . 187
V3

diagnosis . 4011
diagnosis system . 4011

ValueToString . 4401
VAR . 526
VAR_ACCESS . 747
VAR_CONFIG . 534
VAR_EXTERNAL . 533
VAR_GLOBAL . 531
VAR_IN_OUT . 527

CONSTANT . 530
input/output variable . 527

VAR_IN_OUT_AS_POINTER
pragma, visualization 1716

VAR_INFO . 621
data structure, SYSTEM 621

VAR_INPUT . 526
VAR_INST . 533
VAR_OUTPUT . 527
VAR_STAT . 532
VAR_TEMP . 532
VarAccUaNamespaceFragment 4401
variable . 632, 633

access . 641
add by refactoring . 981
allocate memory . 727
assign address . 281
bit access . 641
constant . 534
declare . 222, 227
declare, command . 975
declare, tabular . 227
declare, textual . 227
display format, pragma 694
external . 533
global . 531
hide, pragma . 700
initialize . 226
input . 526
insert, tabular . 1121
local . 526
monitor . 410

occurrence location . 285
operator for information 621
output . 527
Persistence Manager 307
persistent . 304
PERSISTENT . 535
remanent . 537
remove by refactoring 983
rename . 289
RETAIN . 306, 537
rules for names . 740
short form feature . 262
static . 532
switch, input action . 1758
temporary . 532
value in online mode . 410
write, input action . 1757

Variable
IEC 61850 Server . 3888

variable declaration . 222
move down . 1122
move up . 1122

variable list . 872
global, persistent . 872

variable usage . 941
VariableInformation . 4401
VariableInformationStruct 4401
VariableInformationStruct2 4401
VariableInformationStruct3 4401
VariableInformationStruct4 4401
VariableInformationStruct5 4401
variables configuration . 279
VariableValue . 4401
Variance . 4401
VARIANCE . 4401
VARINFO . 621

operator . 621
VarListDefine . 4401
VarListDelete . 4401
VarListDisable . 4401
VarListEnable . 4401
VarListEnter . 4401
VarListFlags . 4401
VarListLeave . 4401
VarListRead . 4401

Index

2022/01/213ADR010583, 3, en_US4532

vector . 666
declaration . 666
initialization . 666

VECTOR3D . 4401
VendorException . 848

log . 848
Verifier . 4401
version

development System 1079
Info, SVN . 4271
information . 1079
operating system . 1079

VERSIONINFO . 4401
view

bookmarks . 988
breakpoints . 989
call stack . 993
call tree . 993
cross-reference list . 990
devices . 985
element properties, visualization 1775
memory view . 995
modules application composer 986
POUs . 986
standard menu bar . 985

view indentation guides . 970
virtual mode

command . 1047
virtual system testing

command . 1048
Visu_Assert . 4401
Visu_CheckPropertyInfo 4401
Visu_ClientTagData . 4401
Visu_FbClearEventsAfterStart 4401
Visu_FbStringDintMap . 4401
Visu_FbWebserver . 4401
Visu_FctCheckForLongFormatSpecifier 4401
Visu_FctClosePAADialogIfNecessary 4401
Visu_FctGetDatasources 4401
Visu_FctHandleInputGesture 4401
Visu_FctHandleVisuInputDialogTarget 4401
Visu_FctHandleVisuInputMouseEvent 4401
Visu_FctHandleVisuInputOverlayMeasureString 4401
Visu_FctHandleVisuInputPAA 4401
Visu_FctInitMemSet . 4401

Visu_FctIsEventToIgnoreWhileEditboxOpen . . . 4401
Visu_FctIsGestureEvent 4401
Visu_FctIsModalDialogOpen 4401
Visu_FctIsOnStraightLine 4401
Visu_FctIsRelevantGestureEvent 4401
Visu_FctIsSelectionEmpty 4402
Visu_FctLegacyIDStackInfoFill 4402
Visu_FctLegacyIDStackInfoReadFromAdditional-
Data . 4402
Visu_FctRaiseMouseLeave 4402
Visu_FctReleaseNonIECMemClientResources . 4402
Visu_FctTransformSelectionIsotropicOverlay . . . 4402
Visu_HelpDumpLibHierarchy 4402
Visu_OnlinechangeNotify 4402
Visu_ScalarTypesUnion 4402
Visu_ScalarTypesWithPtr 4402
Visu_SetCodegenFeatureSupport 4402
Visu_StructCommandData 4402
VisuAlarmScrollValueProvider 4402
Visualisierung

Tutorial . 2131
visualization . 91, 151

alarm management . 1289
calling with parameter transfer 1332
capture user input event 1277
change variable values 1266
configured users and groups 1283
create user management 1282
design with elements 1254
display histogram . 2138
display variable values 1265
displaying data arrays 1298
executing as integrated 1357
folder containing image pool 1181, 1766
folder containing text list 1181, 1766
font . 1786
gradient editor . 1748
grouping elements . 1726
language . 1786
memory size . 1780
multiply element 1299, 1729
object . 1772
object properties . 1767
operate with gestures 1269
placing an element in the background 1728

Index

2022/01/21 3ADR010583, 3, en_US 4533

project settings 1180, 1766
recipes . 1320
reference . 1322
refrigerator controller 2131
run . 1354
switch, input action . 1752
text list . 1286
text, tooltip . 1286
trace wizard . 1737
ungrouping elements 1727
variable values in tables, example 1298, 2140
web browser, example 2141

Visualization . 1249
Assignment of the visualizations to the display
variants . 1781

visualization editor
configuration . 1763

visualization element . 1368
add via command . 1743
animation . 1293
configuration with interface property . . 1181, 1766
configure size and position 1256
configuring an offset 1293
configuring while rotating 1293
design in color . 1258
element list . 1721
enter static text . 269
in visualization toolbox view 1773
many of the same type 1299
multiple template . 1299
repository . 1740
select in visualization toolbox 1255
user input . 1268
view assignment in visualization toolbox 1747

visualization manager . 1777
activate multitouch . 1780
settings . 1777
user management . 1779
visualization styles editor 1778

visualization profile . 1764
project setting 1181, 1767
repository . 1740
version . 1183, 1764

visualization style . 1360
copy . 2127

create . 1364, 2127
determine the appearance 1360
edit . 1361
install . 1366
manage in repository 1365
manage repository . 1366
option . 1761
preview in the visualization manager 1778
preview of installed styles 1743
repository and contents 1743
selection in the visualization manager 1778
switch . 1361
uninstall . 1366
update version . 1361
version . 1184, 1765

visualization style editor 2128
open . 1363
open from development system 1363

visualization toolbox . 1773
visualization user management 1282
VisualizationManager 91, 151
VisuBenchmarkFBStatistics 4402
VisuBenchmarkNowInUs 4402
VisuClientAnimationData 4402
VisuClientObject . 4402
VisuClientObjectClientSpecificData 4402
VisuClientObjectFlags . 4402
VisuClientObjectIdStack 4402
VisuClientObjectIdStackOptimized 4402
VisuClientObjectIdStackWithParentSize 4402
VisuClientObjectInputRectangleMgr 4402
VisuClientObjectLayerInitFlags 4402
VisuClientObjectMgr . 4402
VisuClientObjectReservedIds 4402
VisuClientObjectStateFlags 4402
VisuClientTag . 4402
VisuClientType . 4402
VisuDateTimeFormatPlaceholders 4402
VisuDialogOpenFlags . 4402
VisuElemLayer . 4402
VisuElemLayerAlignmentFlag 4402
VisuElemLayerClientSpecificData 4402
VisuElemLayerData . 4402
VisuElemLayerFlag . 4402
VisuElemMgrClientData 4402

Index

2022/01/213ADR010583, 3, en_US4534

VisuElemMgrClientSpecificData 4402
VisuElemMgrClientSpecificDataIndices 4402
VisuElemSelectionLayer 4402
VisuEnumActionType . 4402
VisuEnumAfterTransformation 4402
VisuEnumAlarmDataType 4402
VisuEnumAnalogClockStyle 4402
VisuEnumBackgroundDrawingState 4402
VisuEnumClientTag . 4402
VisuEnumCreateTemporaryRenderLocationFlags
. 4402

VisuEnumFileTransferDirection 4402
VisuEnumFileTransferError 4402
VisuEnumInputOnElementType 4402
VisuEnumLegendDisplayerLineType 4402
VisuEnumRectangleFlags 4402
VisuEnumRedundancyValueChanged 4402
VisuEnumXYChartActivityType 4402
VisuEnumXYChartAxisPosition 4402
VisuEnumXYChartAxType 4403
VisuEnumXYChartBarType 4403
VisuEnumXYChartBgType 4403
VisuEnumXYChartCommands 4403
VisuEnumXYChartCursorActive 4403
VisuEnumXYChartCursorType 4403
VisuEnumXYChartCursorVisible 4403
VisuEnumXYChartCvChartType 4403
VisuEnumXYChartCvFillType 4403
VisuEnumXYChartCvHeapCmd 4403
VisuEnumXYChartCvOverlapType 4403
VisuEnumXYChartFocusType 4403
VisuEnumXYChartGradientType 4403
VisuEnumXYChartGridType 4403
VisuEnumXYChartLineType 4403
VisuEnumXYChartLvlLineLbPos 4403
VisuEnumXYChartPointStyle 4403
VisuEnumXYChartProgType 4403
VisuEnumXYChartShadowStyle 4403
VisuEnumXYChartZeroLineType 4403
VisuEventOptimization . 4403
VisuEventTarget . 4403
VisuFbAlarmBannerDataBlock 4403
VisuFbAnalyzeDateTimeFormatExtractWithout-
Weekdays . 4403
VisuFbAnalyzeDateTimeFormatStringBase 4403

VisuFbAnalyzeDateTimeFormatStringMinSecOnly
. 4403

VisuFbAnalyzeStateVarsTapAware 4403
VisuFbAnalyzeTextVarsDateTimeOnly 4403
VisuFbBaseVector . 4403
VisuFbCapturedTransformationProvider 4403
VisuFbClientLogger . 4403
VisuFbClientStartVisuMgr 4403
VisuFbClientTagDataHelper 4403
VisuFbCommandVector 4403
VisuFbDatasourcesResourceEntries_MBM 4403
VisuFbDatasourcesResourceEntries_SysMem . 4403
VisuFbDateTimeNamesLocalizer 4403
VisuFbDialogClientInfo . 4403
VisuFbDialogInfoVector 4403
VisuFbDWORDVector . 4403
VisuFbElemTextEditor . 4403
VisuFbExecution . 4403
VisuFbFileTransferManager 4403
VisuFbFrameRegistrationVector 4403
VisuFbGestureFromEvent 4403
VisuFbGroupOverlay . 4403
VisuFbInputRectangle . 4403
VisuFbLegacyCapturingTransformationProvider 4403
VisuFbLibHierarchy . 4403
VisuFbMainClientMgmt 4403
VisuFbMouseTouchDragUtil 4403
VisuFbMoveAbsoluteTapAware 4403
VisuFbMoveAbsoluteTapAwareF 4403
VisuFbMoveRelativeTapAware 4403
VisuFbNamespaceTable 4403
VisuFbNamespaceTableHelper 4404
VisuFbNativeControlItemVector 4404
VisuFbPaintAfterAllDialog 4404
VisuFbPaintAfterAllElement 4404
VisuFbPaintRectF . 4404
VisuFbPointF . 4404
VisuFbPrintDateTimeFormatBase 4404
VisuFbPrintDateTimeFormatCurrentTime 4404
VisuFbPrintDateTimeFormatVariable 4404
VisuFbRectangleListManager 4404
VisuFbRectF . 4404
VisuFbResourcesEntryVector 4404
VisuFbScalingInfo . 4404
VisuFbSizeF . 4404

Index

2022/01/21 3ADR010583, 3, en_US 4535

VisuFbTabControlOverlayTabs 4404
VisuFbTemporaryPolygon 4404
VisuFbTickMarkDrawer2 4404
VisuFbTransformationCommon 4404
VisuFbTransformationScrolling 4404
VisuFbVisuVector . 4404
VisuFbWriteDateTimeVariableFormatted 4404
VisuFbXYChartDataProvider 4404
VisuFbXYChartDataProviderAxis 4404
VisuFbXYChartDataProviderCurve 4404
VisuFbXYChartGenericVariable 4404
VisuFbXYChartGenericVariableArray 4404
VisuFct_IsBehindOverlayElement 4404
VisuFctAddChecksumBool 4404
VisuFctAddChecksumForConverted 4404
VisuFctAddClientToEventQueue 4404
VisuFctAssignValue . 4404
VisuFctCalculateCompleteSurroundingSimpleRec-
tOfElemArray . 4404
VisuFctCalculateMaxTooltipLength 4404
VisuFctCalculateSurroundingSimpleRectOfEle-
mArray . 4404
VisuFctCheckClientSupportsTouch 4404
VisuFctClearElementEntries 4404
VisuFctClearEventIdStack 4404
VisuFctConfigureTextBufferSize 4404
VisuFctCreateEventMapIfNeeded 4404
VisuFctCreateIdStack . 4404
VisuFctDatasourcesResourceEntryAllocatorGet 4404
VisuFctDatasourcesResourceEntryAlloca-
torGet_MBM . 4404
VisuFctDatasourcesResourceEntryAlloca-
torGet_SysMem . 4404
VisuFctDrawCircle . 4404
VisuFctDrawDot . 4404
VisuFctDrawDot2 . 4404
VisuFctDrawImage . 4404
VisuFctDrawLine . 4404
VisuFctDrawLineEx . 4404
VisuFctDrawLineExUntransformed 4404
VisuFctDrawLineUntransformed 4404
VisuFctDrawPolygon . 4404
VisuFctDrawPolyline . 4404
VisuFctDrawPolyline2 . 4404
VisuFctDrawText . 4404
VisuFctEvaluatePanGesture 4405

VisuFctEventIdStackGetValue 4405
VisuFctEventIdStackGetValuePtr 4405
VisuFctEventIdStackGetValuePtrFromEvent2 . . 4405
VisuFctEventIdStackGetValuePtrFromEventLe-
gacy . 4405
VisuFctEventIdStackHas 4405
VisuFctEventIdStackPopHelp 4405
VisuFctEventIdStackPopId 4405
VisuFctEventIdStackPopTarget 4405
VisuFctEventIdStackPopVisuVersion 4405
VisuFctEventIdStackPushId 4405
VisuFctEventIdStackSetValue 4405
VisuFctExitVisuClientObject 4405
VisuFctFillPolygon . 4405
VisuFctFillPolygon2 . 4405
VisuFctFillPolygon3 . 4405
VisuFctFillRectangle . 4405
VisuFctFreeClientTagData 4405
VisuFctGetAbsolutePosition 4405
VisuFctGetClientName . 4405
VisuFctGetEffectiveTextProperties 4405
VisuFctGetElementClientData 4405
VisuFctGetElementEntry 4405
VisuFctGetElementState 4405
VisuFctGetGradient . 4405
VisuFctGetLineJoinMiterLimit 4405
VisuFctGetMeasureString2Result 4405
VisuFctGetMeasureStringApprox 4405
VisuFctGetMeasureStringResult 4405
VisuFctGetMultitouchActive 4405
VisuFctGetMultitouchScrollbarsActive 4405
VisuFctGetPaintRectFromSimpleRect 4405
VisuFctGetRectangleFromPaintRect 4405
VisuFctGetRectangleFromSimpleRect 4405
VisuFctGetRectHeight . 4405
VisuFctGetRectWidth . 4405
VisuFctGetShadowColor 4405
VisuFctGetTargetVisuTouchFlags 4405
VisuFctGetTransparentValue 4405
VisuFctHandleInputOnElementEvent 4405
VisuFctHandleInputVisuClientObject 4405
VisuFctHandleInputWithoutInputHandler 4405
VisuFctIncreaseSimpleRectIfRotated 4405
VisuFctInitFlagsVisuClientObject 4405
VisuFctInitVisuClientObject 4405

Index

2022/01/213ADR010583, 3, en_US4536

VisuFctIsDegenerateRectangle 4405
VisuFctIsMultitouchClient 4405
VisuFctIsRectangleRotated 4405
VisuFctIsToPaintSelection 4405
VisuFctIsTransparentBackground 4405
VisuFctLimitSimpleRectangleSize 4405
VisuFctMainClientsCheck 4405
VisuFctMainClientsCheckOld 4405
VisuFctPaintSelection . 4405
VisuFctPaintVisuClientObject 4405
VisuFctRectSize . 4406
VisuFctRemoveClientFromEventQueue 4406
VisuFctSelectElement . 4406
VisuFctSetClientDataVisuClientObject 4406
VisuFctSetMaxElementCountPaintAfterAll 4406
VisuFctSetNumericValue 4406
VisuFctSetRectangleUpdateNecessaryOnAll-
Clients . 4406
VisuFctSetSelectionChanged 4406
VisuFctSetSimpleRect . 4406
VisuFctSimpleRectangleFToSimpleRectangle . . 4406
VisuFctSplitColor . 4406
VisuFctTestLReal . 4406
VisuFctTestReal . 4406
VisuFctTextEditorGetErrorText 4406
VisuFctTryAtomicAssignValueBySize 4406
VisuFctTryAtomicAssignValueByType 4406
VisuFctWriteValueIfValid 4406
VisuGestureInfo . 4406
VisuInput_CheckUpdateElementStatePos-
sible_DependingOnCurrentInput 4406
VisuRegistrationHelpDuringDecl 4406
VisuScrollValueData . 4406
VisuScrollValueProvider 4406
VisuStructAllDialogInfo . 4406
VisuStructAllModalDialogInfo 4406
VisuStructAllNonModalDialogInfo 4406
VisuStructBackgroundAndStaticElementDrawing
. 4406

VisuStructButtonClientSpecificData 4406
VisuStructClientTagData 4406
VisuStructCompleteSurroundingRectInfo 4406
VisuStructComplexFrameClientSpecificData . . . 4406
VisuStructElementClientData 4406
VisuStructElementClientDataExtended 4406

VisuStructFindElementEvent 4406
VisuStructFlickInfo . 4406
VisuStructIECTouchInfo 4406
VisuStructInputInfo . 4406
VisuStructInputOnElementEvent 4406
VisuStructLegendDisplayerCheckBoxPos 4406
VisuStructLegendDisplayerCheckBoxStatus . . . 4406
VisuStructNamespace . 4406
VisuStructNamespaceProjectIdent 4406
VisuStructPAADialogClientSpecificData 4406
VisuStructPanInfo . 4406
VisuStructPoint . 4406
VisuStructPointD . 4406
VisuStructPolygonClientSpecificData 4406
VisuStructRadius . 4406
VisuStructRectangularElementUtilBaseClientSpe-
cificData . 4406
VisuStructScaleScrollInfo 4406
VisuStructSimpleRectangleD 4406
VisuStructSimpleRectWithBorder 4406
VisuStructSingleIECTouchInfo 4406
VisuStructSpreadPinchInfo 4406
VisuStructTopMostDialogInfo 4406
VisuStructTraceGradientColor 4406
VisuStructUpdateRectangle 4407
VisuStructWaitingCubeClientSpecificData 4407
VisuStructWaitingFlowerClientSpecificData 4407
VisuStructXYChart . 4407
VisuStructXYChartAxis . 4407
VisuStructXYChartCurve 4407
VisuStructXYChartGradientColor 4407
VisuStructXYChartLevelLine 4407
VisuStyleFct_GetImageAccordingMapping 4407
VisuTaskOpClientBase . 4407
VisuTouchState . 4407
voltage sag . 3698
VUM_ChangePassword

user management dialog, visualization 1779
VUM_EditType . 4407
VUM_Login

user management dialog, visualization 1779
VUM_ReturnValues . 4407
VUM_User . 4407
VUM_UserManagement

user management dialog, visualization 1779

Index

2022/01/21 3ADR010583, 3, en_US 4537

W
W . 643

size prefix . 643
Wall mounting accessory 3329, 3332, 3445
warm start . 1038
warning disable, pragma 729
warning restore, pragma 729
WARNING_ID . 4407
watch

add all forces to watchlist 988
open view . 987
watch all forces . 403

watch list . 416
watch all forces . 987

Watchdog . 3467
watchlist . 987

add variable . 1147
WCharToUpper . 4407
WCONCAT . 4407
WDELETE . 4407
web browser . 1641, 2065

visualization element 1641, 2065
visualization, example 2141

webvisu . 1355
calling a page in the browser 1356
execute . 1355

WebVisu
object . 1788
security . 455

WEEK . 4407
WEEKDAY . 4407
WeekOfYear . 4407
WFIND . 4407
WHILE . 471
whitespace . 969

show in text editor . 969
window

auto hide . 1075
dock . 1075
float . 1075
reset layout . 1074

window <n> . 1077
windows . 1076

hide . 185

layout . 184
move . 184
resize . 184
show . 185
toggle . 185

Windows Certificate Store 198
wink . 1044
WINSERT . 4407
WLEFT . 4407
WLEN . 4407
WMID . 4407
word

addressing mode . 643
WORD . 647

convert . 572
WORD_AS_BIT . 4407
WORD_AS_STRING . 4407
WORD_TO___XWORD . 572
WORD_TO__UXINT . 572
WORD_TO__XINT . 572
WORD_TO_BCD . 4407
WORD_TO_BIT . 572
WORD_TO_BOOL . 572
WORD_TO_BYTE . 572
WORD_TO_DATE . 572
WORD_TO_DINT . 572
WORD_TO_DT . 572
WORD_TO_DWORD . 572
WORD_TO_GRAY . 4407
WORD_TO_HANDLE . 4407
WORD_TO_IDENT . 4407
WORD_TO_INT . 572
WORD_TO_LDATE . 572
WORD_TO_LDT . 572
WORD_TO_LINT . 572
WORD_TO_LREAL . 572
WORD_TO_LTIME . 572
WORD_TO_LTOD . 572
WORD_TO_LWORD . 572
WORD_TO_PVOID . 4407
WORD_TO_REAL . 572
WORD_TO_SINT . 572
WORD_TO_STRING . 572
WORD_TO_TIME . 572
WORD_TO_TOD . 572

Index

2022/01/213ADR010583, 3, en_US4538

WORD_TO_UDINT . 572
WORD_TO_UINT . 572
WORD_TO_ULINT . 572
WORD_TO_USINT . 572
WORD_TO_WSTRING . 572
WorkerRegister . 4407
WorkerUnregister . 4407
worksheet . 1089
WRAP_FB_INIT_STRUCT 4407
WRAP_INITIALIZE_STRUCT 4407
WREPLACE . 4407
WRIGHT . 4407
write . 401
Write . 4407

IEC 61850 server . 3902
write protection . 202

project . 201
writeBit . 4407
WriteBootProject . 4407
WriteCfgThumb . 4407
WriteMemory . 4407
WriteRequest . 4407
writing values

command . 1053
prepare value . 1153

WRREC . 4407
WSTRING . 655

convert . 588
index access . 657

WSTRING_TO___UXINT 588
WSTRING_TO___UXWORD 588
WSTRING_TO___XINT . 588
WSTRING_TO_BIT . 588
WSTRING_TO_BOOL . 588
WSTRING_TO_BYTE . 588
WSTRING_TO_DATE . 588
WSTRING_TO_DINT . 588
WSTRING_TO_DT . 588
WSTRING_TO_DWORD 588
WSTRING_TO_INT . 588
WSTRING_TO_LDATE . 588
WSTRING_TO_LDT . 588
WSTRING_TO_LINT . 588
WSTRING_TO_LREAL . 588
WSTRING_TO_LTIME . 588

WSTRING_TO_LTOD . 588
WSTRING_TO_LWORD 588
WSTRING_TO_REAL . 588
WSTRING_TO_STRING 588
WSTRING_TO_TIME . 588
WSTRING_TO_TOD . 588
WSTRING_TO_UDINT . 588
WSTRING_TO_UINT . 588
WSTRING_TO_ULINT . 588
WSTRING_TO_USINT . 588
WSTRING_TO_WORD . 588
WStringElement . 4407
WStringElementFactory 4407
WStringsEqual . 4407

X
X . 643

size prefix . 643
X509CertCheckHost . 4407
X509CertCheckIP . 4407
X509CertClose . 4407
X509CertCmsDecrypt . 4407
X509CertCmsVerify . 4407
X509CertCreateCSR . 4407
X509CertCreateSelfSigned 4408
X509CertGetBinary . 4408
X509CertGetContent . 4408
X509CertGetPrivateKey 4408
X509CertGetPublicKey 4408
X509CertGetThumbprint 4408
X509CertHasExtendedKeyUsage 4408
X509CertInfoExit . 4408
X509CertInfoInit . 4408
X509CertIsDateValid . 4408
X509CertIsSelfSigned . 4408
X509CertKeyClose . 4408
X509CertStoreAddCert 4408
X509CertStoreClose . 4408
X509CertStoreGetFirstCert 4408
X509CertStoreGetNextCert 4408
X509CertStoreGetRegisteredCert 4408
X509CertStoreOpen . 4408
X509CertStoreRegister 4408
X509CertStoreRemoveCert 4408
X509CertStoreSearchGetFirst 4408

Index

2022/01/21 3ADR010583, 3, en_US 4539

X509CertStoreSearchGetNext 4408
X509CertStoreUnregister 4408
X509CertVerify . 4408
X509ParseCertificate . 4408
XADD . 626
XChgClass . 4408
XChgCreateH . 4408
XChgCreateP . 4408
XChgDelete . 4408
XChgExtendH . 4408
XChgGetSize . 4408
XChgIsEmpty . 4408
XChgMsgLeft . 4408
XOR . 553
XORN . 500
XSIZEOF . 551
XWORD . 4408
XwordVector . 4408

Y
YEAR . 4408

Z
zoom

factor . 462
graphical editor . 462

zoom in/out
graphical editor . 462

Index

2022/01/213ADR010583, 3, en_US4540

3A
D

R
01

05
83

, 3
, e

n_
U

S

—
© Copyright 2021-2022 ABB.

—
ABB AG
Eppelheimer Str. 82
69123 Heidelberg, Germany
Telephone: +49 (0)6221 701 1444
E-mail: plc.support@de.abb.com
abb.com/plc
abb.com/automationbuilder
abb.com/contacts

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden.

	 Table of contents
	1 PLC Automation with V3 CPUs
	1.1 About this document
	1.1.1 Documentation structure
	1.1.2 Your tasks - documentation from the user's point of view
	1.1.3 Older revisions of this document
	1.1.4 Use the "magic button" to display your current position in the table of contents

	1.2 Getting started
	1.2.1 Structure of safety notices
	1.2.2 Cyber security
	1.2.2.1 Defense in depth
	1.2.2.2 Secure operation
	1.2.2.3 Hardening
	1.2.2.4 Open Ports and Services

	1.2.3 Automation Builder update notification
	1.2.4 Managing your licenses
	1.2.4.1 Identifying the installed license
	1.2.4.2 Selecting the license used on Automation Builder startup
	1.2.4.3 Checking licenses with CodeMeter control center
	1.2.4.4 Setting dedicated network servers in search list
	1.2.4.5 Restarting license check with a dongle bound license
	1.2.4.6 Removing trial license to remove expiring message
	1.2.4.7 Network licenses
	1.2.4.7.1 Setting up a network license
	Configuring a network license server
	Configuring the client side

	1.2.4.7.2 View network server licenses
	1.2.4.7.3 View network server license usage
	1.2.4.7.4 Controlling network server license usage

	1.2.4.8 License borrowing manager
	1.2.4.8.1 Borrowing a network license
	1.2.4.8.2 Returning a network license

	1.2.4.9 Transfering an Automation Builder license
	1.2.4.9.1 General
	1.2.4.9.2 Getting activation code
	1.2.4.9.3 Returning an Automation Builder license
	Online license transfer
	Offline license transfer

	1.2.4.10 Generating license information file for support
	1.2.4.10.1 Log files

	1.2.5 Set-up communication parameters in Windows
	1.2.6 Further information
	1.2.7 PLC runtime and demo licensing
	1.2.8 Create log files for support
	1.2.9 Menues, views, windows
	1.2.9.1 Start page and menus
	1.2.9.2 'All Messages' window

	1.2.10 Device repository
	1.2.11 Creating and configuring projects
	1.2.12 Handling of AC500 projects
	1.2.13 Connection of devices
	1.2.13.1 Configuring devices
	1.2.13.2 Symbolic names for variables, inputs and outputs
	1.2.13.3 Update of AC500 devices
	1.2.13.4 Comparing objects

	1.2.14 Connection of serial interfaces
	1.2.14.1 Programming of applications

	1.2.15 I/O mapping
	1.2.16 AC500 PLC configuration
	1.2.17 Converting an AC500 V2 project to an AC500 V3 project
	1.2.18 Example projects
	1.2.18.1 Example projects for AC500 V3
	1.2.18.1.1 Hardware AC500 V3
	Configuration for example projects
	System assembly, construction and connection

	1.2.18.1.2 Example project for central I/O expansion
	Preconditions
	Create, set-up and save your AC500 V3 project
	Create a project
	Configure your CPU
	Create folders in the device tree
	Save the project

	Configure the I/O module
	Add an I/O bus module
	DA501 variable mapping
	Handle the digital input variables
	Handle the digital output variables

	Programming and compiling
	Task configuration
	Main program PLC_PRG
	Boolean logic "NOT"
	Application example "driller"
	Implementation
	Create a new program POU in the project
	Assign the hardware DI signals to local variables
	Add assignments and a Boolean NOT to the DO signals
	Call the POU in the PLC_PRG

	Compile the project
	Save the project

	Set-up the communication gateway
	AC500 V3 firmware installation and update
	Log-in to CPU and download the program
	Test the program
	Start the program execution
	Test the function
	Stop the program execution

	Set-up visualization
	Add the VisualizationManager
	Set-up the VisualizationManager
	Save the project

	Create visualization
	Add a folder for visualization screens
	Add a screen for "_01_Assignment_NOT" POU
	Creating and configuring of visualization
	Change background color
	Add a screen title
	Further lines and labels
	Lamp element for signal indication
	Compile the project
	Save the project

	Loading the project to the CPU
	Test the program

	Enable web visualization
	Add a web server object to the device tree
	Set-up the web server
	Compile the project
	Save the project
	Loading the project to the CPU
	Create a boot project
	Rebooting the CPU
	Test the web visualization

	Reset the CPU

	1.2.18.1.3 Example project for remote I/O expansion with PROFINET
	Preconditions
	Set-up PROFINET controller
	Add the CM579-PNIO to the device tree
	Set-up the general behavior
	Set-up the PROFINET IO controller

	Set-up PROFINET device
	Hardware preparation
	Add the CI502-PNIO to the device tree
	Configure the CI502-PNIO device
	Configure the CI502-PNIO PROFINET IO device
	Create CI502-PNIO I/O mapping to symbols

	Add remote I/O expansion to project
	Add a program POU to the project
	Create a POU logic
	Call the POU in PLC_PRG
	Compile the project
	Save the project
	Loading the project to the CPU

	Test the program
	Start the program execution
	Test the function

	Reset the CPU

	1.2.18.2 Example projects for AC500-eCo V3
	1.2.18.2.1 Hardware AC500-eCo V3
	Configuration for example projects
	System assembly, construction and connection

	1.2.18.2.2 Example project
	Preconditions
	Create, set-up and save your AC500 V3 project
	Create a project
	Create folders in the device tree
	Save the project

	Configure the onboard I/O channels
	Onboard I/O variable mapping
	Handle the digital input variables
	Handle the digital output variables

	Programming and compiling
	Task configuration
	Main program PLC_PRG
	Boolean logic "NOT"
	Application example "driller"
	Implementation
	Create a new program POU in the project
	Assign the hardware DI signals to local variables
	Add assignments and a Boolean NOT to the DO signals
	Call the POU in the PLC_PRG

	Compile the project
	Save the project

	Set-up the communication gateway
	AC500-eCo V3 firmware installation and update
	Log-in to CPU and download the program
	Test the program
	Start the program execution
	Test the function
	Stop the program execution

	Set-up visualization
	Add the VisualizationManager
	Set-up the VisualizationManager
	Save the project

	Create visualization
	Add a folder for visualization screens
	Add a screen for "_01_Assignment_NOT" POU
	Creating and configuring of visualization
	Change background color
	Add a screen title
	Further lines and labels
	Lamp element for signal indication
	Compile the project
	Save the project

	Loading the project to the CPU
	Test the program

	Enable web visualization
	Add a web server object to the device tree
	Set-up the web server
	Compile the project
	Save the project
	Loading the project to the CPU
	Create a boot project
	Rebooting the CPU
	Test the web visualization

	Reset the CPU

	1.3 Automation Builder installation manager
	1.3.1 Installing customer specific package
	1.3.2 Adding or removing installed software packages
	1.3.3 Automation Builder update notification
	1.3.4 Checking for updates
	1.3.5 Uninstalling Automation Builder

	1.4 Programming with CODESYS
	1.4.1 CODESYS Development System
	1.4.1.1 Configuring CODESYS
	1.4.1.1.1 Setting CODESYS options
	1.4.1.1.2 Customizing the user interface
	Customizing menus
	Customizing toolbars
	Customize command icon
	Customizing keyboard shortcuts
	Changing the window layout
	Resizing windows
	Auto-hiding windows
	Switching between windows

	1.4.1.2 Creating and Configuring a Project
	1.4.1.2.1 Opening a V3 Project
	1.4.1.2.2 Opening a V2.3 project
	1.4.1.2.3 Configuring a Project
	Retrieving and Editing Project Information
	Making project settings

	1.4.1.3 Exporting and Transferring Projects
	1.4.1.3.1 Exporting and importing projects
	1.4.1.3.2 Transferring Projects

	1.4.1.4 Comparing projects
	1.4.1.4.1 Creating a comparison view
	1.4.1.4.2 Opening the detailed compare view

	1.4.1.5 Protecting and Saving Projects
	1.4.1.5.1 Setting up write protection
	1.4.1.5.2 Assigning Passwords
	1.4.1.5.3 Protecting Projects Using a Dongle
	1.4.1.5.4 Setting up a user management
	1.4.1.5.5 Protecting Objects in the Project by Access Rights
	1.4.1.5.6 Logging in via User Account and Password Manager
	1.4.1.5.7 Encrypting Projects with Certificates
	1.4.1.5.8 Saving the Project
	1.4.1.5.9 Saving/Sending the project archive
	1.4.1.5.10 Linking a project to the source control system

	1.4.1.6 Localizing projects
	1.4.1.7 Configuring I/O Links
	1.4.1.7.1 Configuring Devices and I/O Mapping

	1.4.1.8 Programming of Applications
	1.4.1.8.1 Designating identifiers
	1.4.1.8.2 Declaration of Variables
	Using the declaration editor
	Using the 'Declare variable' dialog box
	Declaring arrays
	Declaring global variables
	Using Task-Local Variables

	1.4.1.8.3 Creating Source Code in IEC
	FBD/LD/IL
	Programming function block diagrams (FBD)
	Programming ladder diagrams (LD)
	Programming in instruction list (IL)

	Continuous Function Chart (CFC)
	Automatic Execution Order by Data Flow
	Programming in the CFC editor

	Structured Text (ST), Extended Structured Text (ExST)
	Programming structured text (ST)

	Sequential Function Chart (SFC)
	Programming in SFC

	1.4.1.8.4 Function block — Calling functions or methods with external implementation
	1.4.1.8.5 Using input assistance
	1.4.1.8.6 Using Pragmas
	1.4.1.8.7 Using Library POUs
	1.4.1.8.8 Managing text in text lists
	Managing static text in global text lists
	Managing dynamic text in text lists

	1.4.1.8.9 Using image pools
	1.4.1.8.10 Integrating C Modules
	1.4.1.8.11 Programmatic Access to I/Os
	Variables configuration - VAR_CONFIG
	AT declaration

	1.4.1.8.12 Checking Syntax and Analyzing Code
	Checking Syntax
	Analyzing code statically

	1.4.1.8.13 Orientation and Navigation
	Using the cross-reference list to find occurrences
	Finding declarations
	Setting and using bookmarks

	1.4.1.8.14 Searching and replacing in the entire project
	1.4.1.8.15 Refactoring
	1.4.1.8.16 Task Configuration
	Creating a task configuration
	Definitions of Jitter and Latency

	1.4.1.8.17 Encrypting an application
	1.4.1.8.18 Unit conversion
	1.4.1.8.19 Data Persistence
	Preserving data with persistent variables
	Preserving data with retain variables
	Retaining data with variables of the persistence manager
	Preserving data with recipes
	Declaring VAR PERSISTENT Variables
	Saving the values of a persistent variable list in a recipe

	1.4.1.8.20 Alarm Management
	1.4.1.8.21 Using POUs for implicit checks
	1.4.1.8.22 Object-Oriented Programming
	Extension of function blocks
	Implementing interfaces
	Extending interfaces
	Calling methods

	1.4.1.8.23 Motion Solution
	Basic Motion
	Cams
	Definition of a SoftMotion Cam
	Structure of the Cam Editor
	Creating Cams
	Changing the Cam Path
	Defining Switch Points
	Important Cam Settings
	Switching Between Cams
	Data Structure
	Visualization Element 'Online cam editor'

	BufferMode
	Supported Function Blocks
	Buffering/Blending from Continuous or Synchronized Movement
	Using One Function Block Instance to Control Multiple Movements
	Behavior in Case of Error
	Execution Order of Movement Function Blocks
	Behavior in the Case of Buffered Movements
	Behavior in the Case of Blending
	Behavior of MC_MoveSuperimposed

	Examples of Use
	Controlling a Cam Drive with a Virtual Time Axis
	Alternating Cams

	Reference
	User Interface
	Objects
	Object 'Cam Table'
	Tab 'Cam'
	Tab 'Cam table'
	Tab 'Tappets'
	Tab 'Tappet table'
	Dialog 'Properties - 'Cam'

	Commands
	Cam
	Command 'Display generated code'
	Command 'Read cam data from ASCII table'
	Command 'Read cam online file'
	Command 'Write cam data to ASCII table'
	Command 'Write cam online file'

	1.4.1.9 Working with Controller Networks
	1.4.1.9.1 Network and Addressing
	Network topology
	Addressing and Routing
	Address Structures

	1.4.1.9.2 Symbol Configuration
	1.4.1.9.3 Network Variables
	Configuring a Network Variable Exchange

	1.4.1.9.4 Data Link with Data Sources
	Initially Adding a Data Source
	Editing data source variables
	Editing Communication
	Updating data interfaces
	Using remote data
	Establishing an Encrypted Connection of a Data Source OPC UA Client to an OPC UA Server
	Establishing an Encrypted Connection of a Data Source OPC UA Client to an OPC UA Server

	1.4.1.9.5 Subordinate safety controller

	1.4.1.10 Downloading an Application to the PLC
	1.4.1.10.1 Configuring the Connection to the PLC
	1.4.1.10.2 Encrypting Communication, Changing Security Settings
	1.4.1.10.3 Handling of Device User Management
	1.4.1.10.4 Generating Application Code
	1.4.1.10.5 Downloading the application code, logging in, and starting the PLC
	1.4.1.10.6 Generating boot applications
	1.4.1.10.7 Downloading source code to and from the PLC

	1.4.1.11 Testing and Debugging
	1.4.1.11.1 Testing in simulation mode
	1.4.1.11.2 Using Breakpoints
	1.4.1.11.3 Stepping Through a Program
	1.4.1.11.4 Forcing and Writing of Variables
	1.4.1.11.5 Resetting applications
	1.4.1.11.6 Flow Control
	1.4.1.11.7 Determining the current processing position with the call stack
	1.4.1.11.8 Checking the Task Deployment

	1.4.1.12 Application at Runtime
	1.4.1.12.1 Monitoring of Values
	Calling of monitoring in programming objects
	Using watch lists

	1.4.1.12.2 Changing Values with Recipes
	1.4.1.12.3 Data Recording with Trace
	Getting started
	Creating trace configuration
	Operating the data recording
	Accessing All Traces on the Controller
	Navigating into trace data
	Managing trace
	Showing statistics

	1.4.1.12.4 Data Recording with Trend
	Getting started with trend recording
	Configuring trend recording

	1.4.1.12.5 Monitoring tasks
	1.4.1.12.6 Reading the PLC log
	1.4.1.12.7 Using PLC shell for requesting information
	1.4.1.12.8 PLC operation control via system variables
	1.4.1.12.9 Backup and restore

	1.4.1.13 Updating an Application on the PLC
	1.4.1.13.1 Executing the online change
	1.4.1.13.2 Execution of a download

	1.4.1.14 Copying files to/from PLC
	1.4.1.15 Using the Command-Line Interface
	1.4.1.16 Using Libraries
	1.4.1.16.1 Information for Library Developers
	1.4.1.16.2 Adding a Library to the Application
	1.4.1.16.3 Adding a library to the repository
	1.4.1.16.4 Exporting library files

	1.4.1.17 Managing devices
	1.4.1.17.1 Installing devices

	1.4.1.18 Security
	1.4.1.18.1 General Information
	1.4.1.18.2 Security for the development system
	1.4.1.18.3 Security for the Runtime/PLC
	1.4.1.18.4 Security for CODESYS WebVisu
	1.4.1.18.5 FAQ
	Certificate expired
	New certificate (while the current one is still valid)
	Client does not support security feature
	CA-signed certificates preferred (PLC shell)
	Problems at login
	Disabling User Management
	Permitting encrypted communication again

	1.4.1.19 Reference, Programming
	1.4.1.19.1 Programming Languages and Editors
	Declaration Editor
	Common functions in graphical editors
	Structured Text and Extended Structured Text (ExST)
	ST Editor
	ST editor in online mode
	ST expressions
	Assignments
	ST assignment operator
	ST assignment operator for outputs
	ExST assignment 'S='
	ExST assignment 'R='
	ExST – Assignment as expression
	Assignment Operator 'REF='

	Statements
	ST statement 'IF'
	ST instruction 'FOR'
	ST instruction 'CASE'
	ST instruction 'WHILE'
	ST Statement 'REPEAT'
	ST statement 'RETURN'
	ST instruction 'JMP'
	ST instruction 'EXIT'
	EXST Statement 'CONTINUE'
	ST function block call
	ST – Comments

	Sequential Function Chart (SFC)
	SFC editor
	SFC Editor in Online Mode
	Processing order in SFC
	Qualifiers for Actions in SFC
	Implicit variables
	SFC Flags
	Library "Analyzation"
	Elements
	SFC elements 'Step' and 'Transition'
	SFC Element 'Action'
	SFC element 'Branch'
	SFC element 'Jump'
	SFC element 'Macro'
	SFC element properties

	Function Block Diagram / Ladder Diagram / Instruction List (FBD/LD/IL)
	FBD/LD/IL Editor
	FBD/LD/IL editor in online mode
	Modifiers and operators in IL
	Elements
	FBD/LD/IL element 'Network'
	FBD/LD/IL element 'Box'
	FBD/LD/IL element 'Assignment'
	FBD/LD/IL element 'Box with EN/ENO'
	FBD/LD/IL element 'Input'
	FBD/LD/IL element 'Label'
	FBD/LD/IL element 'Jump'
	FBD/LD/IL element 'Return'
	FBD/LD/IL element 'Branch'
	FBD/LD/IL element 'Execute'
	LD element 'Contact'
	LD element 'Coil'
	LD element 'Branch Start/End'
	Closed branch

	Continuous Function Chart (CFC) and Page-Oriented CFC
	CFC Editor
	CFC editor, page-oriented
	Keyboard Shortcuts in the CFC Editors
	CFC Editor in Online Mode
	Elements
	CFC element 'Page'
	CFC element 'Control Point'
	CFC Element 'Input'
	CFC Element 'Output'
	CFC Element 'Box'
	CFC element 'Jump'
	CFC element 'Label'
	CFC element 'Return'
	CFC element 'Composer'
	CFC element 'Selector'
	CFC element 'Comment'
	CFC element 'Connection Mark - Source/Sink'
	CFC element 'Input Pin'
	CFC element 'Output Pin'

	1.4.1.19.2 Variables
	Local variables - VAR
	Input variables - VAR_INPUT
	Output variables - VAR_OUTPUT
	Input/Output Variable (VAR_IN_OUT)
	Global variables - VAR_GLOBAL
	Temporary variable - VAR_TEMP
	Static variables - VAR_STAT
	External variables - VAR_EXTERNAL
	Instance variables - VAR_INST
	Configuration variables - VAR_CONFIG
	Constant Variables - 'CONSTANT'
	Persistent Variable - PERSISTENT
	Retain Variable - RETAIN
	SUPER
	THIS

	1.4.1.19.3 Operators
	Operator 'ADD'
	Operator 'MUL'
	Operator 'SUB'
	Operator 'DIV'
	Operator 'MOD'
	Operator 'MOVE'
	Operator 'INDEXOF'
	Operator 'SIZEOF'
	Operator 'XSIZEOF'
	Operator 'NOT'
	Operator 'AND'
	Operator 'OR'
	Operator 'XOR'
	Operator 'AND_THEN'
	Operator 'OR_ELSE'
	Operator 'SHL'
	Operator 'SHR'
	Operator 'ROL'
	Operator 'ROR'
	Operator 'SEL'
	Operator 'MAX'
	Operator 'MIN'
	Operator 'LIMIT'
	Operator 'MUX'
	Operator 'GT'
	Operator 'LT'
	Operator 'LE'
	Operator 'GE'
	Operator 'EQ'
	Operator 'NE'
	Operator 'ADR'
	Operator 'Content Operator'
	Operator 'BITADR'
	Operator 'CAL'
	Overloading
	Boolean Conversion
	Integer Conversion
	Floating-Point Number Conversion
	String Conversion
	Time Conversion
	Date and Time Conversion
	Operator 'TRUNC'
	Operator 'TRUNC_INT'
	Operator 'ABS'
	Operator 'SQRT'
	Operator 'LN'
	Operator 'LOG'
	Operator 'EXP'
	Operator 'EXPT'
	Operator 'SIN'
	Operator 'COS'
	Operator 'TAN'
	Operator 'ASIN'
	Operator 'ACOS'
	Operator 'ATAN'
	Operator '__DELETE'
	Operator '__ISVALIDREF'
	Operator '__NEW'
	Operator '__QUERYINTERFACE'
	Operator '__QUERYPOINTER'
	Operators '__TRY', '__CATCH', '__FINALLY', '__ENDTRY'
	Operator '__VARINFO'
	Operator '__CURRENTTASK'
	Operator '__COMPARE_AND_SWAP
	Operator '__XADD'
	Operator '__POSITION'
	Operator '__POUNAME'
	Operator 'TEST_AND_SET'
	Operator - Global namespace
	Operator - Namespace for global variables lists
	Operator - Library namespace
	Operator - Enumeration namespace
	Operator '__POOL'
	Operator 'INI'

	1.4.1.19.4 Operands
	BOOL constants
	Numeric constants
	REAL/LREAL constants
	String Constants
	TIME/LTIME Constant
	Date and Time Constants
	Typed literals
	Access to Variables in Arrays, Structures, and Blocks
	Bit Access in Variables
	Addresses
	Functions

	1.4.1.19.5 Data Types
	Data type 'BOOL'
	Integer data types
	Data type 'REAL' / 'LREAL'
	Data Type 'STRING'
	Data Type 'TIME'
	Data Type 'LTIME'
	Date and Time Data Types
	Data Type 'ANY' and 'ANY_<type>'
	Data type 'WSTRING'
	Data Type 'BIT'
	Special Data Types '__UXINT', __XINT, and '__XWORD'
	Pointers
	Reference
	Data Type 'ARRAY'
	Data Type '__VECTOR'
	Structure
	Enumerations
	Alias
	Data type 'UNION'
	Subrange types
	Redundancy State

	1.4.1.19.6 Pragmas
	Message Pragmas
	Attribute Pragmas
	User-defined attributes
	Attribute 'call_after_global_init_slot'
	Attribute 'call_after_init'
	Attribute 'call_after_online_change_slot'
	Attribute 'call_before_global_exit_slot'
	Attribute 'call_on_type_change'
	Attribute 'conditionalshow'
	Attribute 'conditionalshow_all_locals'
	Attribute 'const_replaced', Attribute 'const_non_replaced'
	Attribute 'dataflow'
	Attribute 'displaymode'
	Attribute 'enable_dynamic_creation'
	Attribute 'estimated-stack-usage'
	Attribute 'ExpandFully'
	Attribute 'global_init_slot'
	Attribute 'hide'
	Attribute 'hide_all_locals'
	Attribute 'initialize_on_call'
	Attribute 'init_namespace'
	Attribute 'init_on_onlchange'
	Attribute 'instance-path'
	Attribute 'io_function_block', 'io_function_block_mapping'
	Attribute 'is_connected'
	Attribute 'linkalways'
	Attribute 'monitoring'
	Attribute 'no_assign', Attribute 'no_assign_warning'
	Attribute 'no_check'
	Attribute 'no_copy'
	Attribute 'no-exit'
	Attribute 'noinit'
	Attribute 'no_instance_in_retain'
	Attribute 'no_virtual_actions'
	Attribute 'pingroup'
	Attribute 'pin_presentation_order_inputs/outputs'
	Attribute 'obsolete'
	Attribute 'pack_mode'
	Attribute 'ProcessValue'
	Attribute 'qualified_only'
	Attribute 'reflection'
	Attribute 'subsequent'
	Attribute 'symbol'
	Attribute 'to_string'
	Attribute 'warning disable', attribute 'warning restore'
	Effects of Pragmas on Symbols

	Conditional Pragmas
	Region Pragma

	1.4.1.19.7 Identifiers
	1.4.1.19.8 Shadowing Rules
	1.4.1.19.9 Keywords
	1.4.1.19.10 Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'
	1.4.1.19.11 Error Messages and Warnings
	Compiler error C0001
	Compiler error C0002
	Compiler error C0003
	Compiler Error C0004
	Compiler error C0005
	Compiler error C0006
	Compiler error C0007
	Compiler error C0008
	Compiler error C0009
	Compiler error C0010
	Compiler error C0011
	Compiler error C0013
	Compiler error C0016
	Compiler error C0018
	Compiler error C0020
	Compiler error C0022
	Compiler error C0023
	Compiler error C0026
	Compiler error C0027
	Compiler error C0030
	Compiler error C0031
	Compiler error C0032
	Compiler Error C0033
	Compiler error C0035
	Compiler Error C0036
	Compiler error C0037
	Compiler error C0038
	Compiler error C0039
	Compiler error C0040
	Compiler error C0041
	Compiler Error C0042 (Compiler Version <= 3.4.10)
	Compiler error C0043
	Compiler error C0044
	Compiler error C0045
	Compiler error C0046
	Compiler error C0047
	Compiler error C0048
	Compiler error C0049
	Compiler error C0050
	Compiler Error C0051
	Compiler Error C0053
	Compiler error C0061
	Compiler error C0062
	Compiler error C0064
	Compiler Error C0065
	Compiler error C0066
	Compiler error C0068
	Compiler error C0069
	Compiler error C0070
	Compiler error C0072
	Compiler error C0074
	Compiler error C0075
	Compiler error C0076
	Compiler error C0077
	Compiler Error C0078
	Compiler error C0080
	Compiler error C0081
	Compiler error C0082
	Compiler error C0084
	Compiler Error C0085
	Compiler error C0086
	Compiler error C0087
	Compiler error C0089
	Compiler error C0090
	Compiler error C0091
	Compiler error C0094
	Compiler error C0096
	Compiler error C0097
	Compiler error C0098
	Compiler Error C0099 (Compiler Version < 3.5.7.0)
	Compiler error C0101
	Compiler error C0102
	Compiler error C0104
	Compiler error C0114
	Compiler Error C0115
	Compiler error C0116
	Compiler error C0117
	Compiler error C0118
	Compiler error C0119
	Compiler error C0120
	Compiler error C0122
	Compiler error C0124
	Compiler error C0125
	Compiler error C0126
	Compiler error C0130
	Compiler error C0131
	Compiler error C0132
	Compiler error C0136
	Compiler Error C0138
	Compiler error C0139
	Compiler error C0140
	Compiler error C0141
	Compiler error C0142
	Compiler error C0143
	Compiler error C0144
	Compiler error C0145
	Compiler error C0149
	Compiler error C0161
	Compiler error C0162
	Compiler Error C0164
	Compiler Error C0165
	Compiler error C0168
	Compiler error C0169
	Compiler Error C0173
	Compiler error C0174
	Compiler error C0175
	Compiler error C0177
	Compiler error C0178
	Compiler Error C0179
	Compiler Error C0180
	Compiler error C0182
	Compiler Error C0183
	Compiler error C0185
	Compiler Error C0186
	Compiler Error C0188
	Compiler error C0189
	Compiler error C0190
	Compiler error C0191
	Compiler error C0195
	Compiler error C0196
	Compiler error C0197
	Compiler error C0198
	Compiler error C0199
	Compiler error C0201
	Compiler error C0203
	Compiler error C0204
	Compiler error C0205
	Compiler error C0206
	Compiler Error C0207
	Compiler error C0208
	Compiler Error C0209
	Compiler error C0211
	Compiler error C0212
	Compiler Error C0215
	Compiler error C0216
	Compiler error C0217
	Compiler error C0218
	Compiler error C0219
	Compiler error C0221
	Compiler error C0222
	Compiler error C0224
	Compiler Error C0225
	Compiler error C0227
	Compiler error C0228
	Compiler Error C0230
	Compiler Error C0232
	Compiler Error C0233
	Compiler error C0234
	Compiler error C0235
	Compiler error C0236
	Compiler error C0237
	Compiler error C0238
	Compiler error C0239
	Compiler error C0240
	Compiler error C0241
	Compiler error C0242
	Compiler error C0243
	Compiler Error C0380
	Compiler error C0509
	Compiler error C0511
	Compiler Error C0542
	Compiler Error C0543

	1.4.1.20 Reference, User Interface
	1.4.1.20.1 Notifications
	1.4.1.20.2 Objects
	Object 'Application'
	Object 'POU Locations'
	Objects for Alarm Management
	Object 'Data Source Manager'
	Object 'Data Source'
	Tab 'Variables'
	Tab 'Type Mappings'
	Tab 'Communication' via CODESYS Symbolic
	Tab 'Communication' via CODESYS ApplicationV3
	Tab 'Communication' via OPC UA Server
	Tab 'General and Diagnosis'

	Object 'DUT'
	Object 'External File'
	Object 'Device' and Generic Device Editor
	Generic device editor
	Tab 'Communication Settings'
	Tab 'Parameters'
	Tab 'Applications'
	Tab 'Backup and Restore'
	Tab 'Synchronized Files'
	Tab 'Files'
	Tab 'Log'
	Tab 'PLC Settings'
	Tab 'PLC Shell'
	Tab '<device name> I/O Mapping'
	Tab '<device name> IEC Objects'
	Tab 'Users and Groups'
	Tab 'Access Rights'
	Tab 'Symbol Rights'
	Tab 'Licensed Software Metrics'
	Tab 'Task deployment'
	Tab 'Status'
	Tab 'Information'

	Object 'GlobalTextList'
	Object 'GVL' - Global Variable List
	Object 'GVL' - Global Variable List (task-local)
	Object 'Persistent variable list'
	Object 'Image Pool'
	Object 'Library Manager'
	Object 'OPC UA Information Model'
	Object 'Network Variable List (Sender)'
	Object 'Network Variable List (Receiver)'
	Object 'POU'
	Object 'Program'
	Object 'Function Block'
	Object 'Function'
	Object 'Interface'
	Object 'Method'
	Object 'Interface Method'
	Object 'Interface Property'
	Object 'Property'
	Object 'Action'
	Object 'Transition'

	Object 'POUs for Implicit Checks'
	POU 'CheckBounds'
	POU 'CheckDivInt'
	POU 'CheckDivLInt'
	POU 'CheckDivReal'
	POU 'CheckDivLReal'
	POU 'CheckRangeSigned'
	POU 'CheckLRangeSigned'
	POU 'CheckRangeUnsigned'
	POU 'CheckLRangeUnsigned'
	POU 'CheckPointer'

	Object 'Project Settings'
	Object 'Project Information'
	Object 'Recipe Manager'
	Object 'Recipe Definition'
	Object 'Text List'
	Object 'Symbol Configuration'
	Object 'Task Configuration'
	Tab 'Properties'
	Tab 'System Events'
	Tab 'Monitor'
	Tab 'Variable Usage'
	Tab 'Task Groups'
	Tab 'CPU Load'

	Object 'Task'
	Tab 'Configuration'

	Object 'Trace'
	Object 'DeviceTrace'
	Object 'Trend Recording Manager'
	Object 'Trend Recording'
	Object 'Trend Recording Task'
	Object 'Unit Conversion'

	1.4.1.20.3 Menu Commands
	Menu 'File'
	Command ‘New Project’
	Command 'Open Project'
	Command ‘Close Project’
	Command 'Save project'
	Command 'Save Project as'
	Command 'Save Project and Install into Library Repository'
	Command 'Save Project as Compiled Library'
	Command 'Save/Send Archive'
	Command 'Extract Archive'
	Command 'Source Upload'
	Command 'Source Download'
	Command 'Print'
	Command 'Print Preview'
	Command 'Page Setup'
	Command ‘Recent Projects’
	Command 'Exit'

	Menu 'Edit'
	Standard Commands
	Command 'Find', 'Find in Project'
	Command 'Replace', 'Replace in Project'
	Command 'Find Next'
	Command 'Find Next (Selection)'
	Command 'Find Previous'
	Command 'Find Previous (Selection)'
	Command 'Insert File as Text'
	Command 'Overwrite Mode'
	Command 'View Whitespace'
	Command 'View Indentation Guides'
	Command 'Go to Line'
	Command 'Make Uppercase'
	Command 'Make Lowercase'
	Command 'Go to Matching Bracket'
	Command 'Select to Matching Bracket'
	Command 'Expand All Folds'
	Command 'Collapse All Folds'
	Command 'Comment Out Selected Lines'
	Command 'Uncomment Selected Lines'
	Command 'Enable Inline Monitoring'
	Command 'Toggle Bookmark'
	Command 'Next Bookmark (Active Editor)'
	Command 'Next Bookmark'
	Command 'Previous Bookmark (Active Editor)'
	Command 'Previous Bookmark'
	Command 'Clear All Bookmarks (Active Editor)'
	Command 'Clear All Bookmarks'
	Command 'Browse Cross References'
	Command 'Browse Global Cross References'
	Command 'Browse Call Tree'
	Command 'Auto Declare'
	Command 'Input Assistant'
	Command 'Go to Source Position'
	Command 'Next Message'
	Command 'Previous Message'
	Command 'Go to Definition'
	Command 'Go To Reference'
	Command 'Go to Instance'
	Command 'Refactoring' - 'Rename <...>'
	Command 'Refactoring' - 'Update Referenced Pins'
	Command 'Refactoring' - 'Add Variable'
	Command 'Refactoring' - 'Remove <variable>'
	Command 'Refactoring' - 'Reorder Variables'
	Command 'Advanced' - 'Format Document'

	Menu 'View'
	Standard Menu in View 'Devices', 'POUs', 'Modules'
	Command 'Devices'
	Command ‘POUs’
	Command 'Modules'
	Command 'Messages'
	Command 'Element properties'
	Command 'ToolBox'
	Command 'Watch' - 'Watch <n>'
	Command 'Watch' - 'Watch All Forces'
	Command 'Add All Forces to Watchlist'
	Command 'Bookmarks'
	Command 'Breakpoints'
	Command 'Cross Reference List'
	Command 'Browse Cross References in Classic View'
	Command 'Call Stack'
	Command 'Call tree'
	Command 'Memory'
	Command 'Security Screen'
	Command 'Settings of Memory Reserve for Online Change'
	Command 'Start Page'
	Command 'Full Screen'
	Command 'Properties'

	Menu 'Project'
	Command ‘Add Object’
	Command ‘Add Folder’
	Command 'Insert Device'
	Command 'Plug Device'
	Command 'Scan for Devices'
	Command 'Update Device'
	Command 'Acknowledge Diagnosis', 'Acknowledge Diagnosis for Subtree'
	Command 'Edit Object'
	Command 'Edit Object with'
	Command 'Check integrity'
	Command 'Edit Object (Offline)'
	Command 'Set Active Application'
	Command 'Project information'
	Command 'Project Settings'
	Command 'Project Environment'
	Command 'Project Localization' - 'Create Localization Template'
	Command 'Project Localization' - 'Manage Localizations'
	Command 'Project Localization' - 'Toggle Localization'
	Command 'Document'
	Command 'Compare objects'
	Command 'Compare'
	Command 'Commit Accepted Changes'
	Command 'Map pool devices'
	Command 'Export'
	Command 'Import'
	Command 'Export PLCopenXML'
	Command 'Import PLCopenXML'
	Command 'User management' – 'Log in User'
	Command 'User management' – 'Log out User'
	Command 'User management' – 'Rights…'
	Command 'Insert Device'
	Command 'Generate EtherCAT XML'
	Command 'Generate Sercos SCI XML'
	Command 'Disable Device' – 'Enable Device'
	Command 'Edit I/O Mapping'
	Command 'Import Mappings from CSV'
	Command 'Export Mappings to CSV'
	Command 'Read PLC Parameter File to Configuration'
	Command 'Online Config Mode'
	Command 'Runtime licensing'

	Menu 'Build'
	Command 'Generate Code'
	Command 'Clean'
	Command 'Clean All'
	Command 'Build'
	Command 'Rebuild'
	Command 'Generate Runtime System Files'
	Command 'Check all Pool Objects'
	Command 'Generate Code for Active Application'
	Command 'Check All Application Objects'
	Command 'Check Library Compatibility'
	Command 'C Integration' - 'Update C Sources'
	Command 'C Integration – Open in IDE'
	Command 'C Integration' - 'Export C sSurces'
	Command 'C Integration – Create Stub Implementation in C'
	Command 'Create IEC Interface'
	Command 'Generate Disassembly File'

	Menu 'Online'
	Command 'Choose Active Application'
	Command 'Login'
	Command 'Logout'
	Command 'Create Boot Application'
	Command 'Load'
	Command 'Online Change'
	Command 'Source Download to Connected Device'
	Command 'Download Manager'
	Command 'Multiple Download'
	Command 'Reset Cold'
	Command 'Reset Warm'
	Command 'Reset Origin'
	Command 'Reset Origin Device'
	Command 'Logoff Current Device User'
	Command 'Download'
	Command 'Add Device User'
	Command 'Remove Device User'
	Command 'Change Password Device User'
	Command 'Stop Execution on Handled Exceptions'
	Command 'Connect to Device'
	Command 'Disconnect from Device'
	Command 'Wink'
	Command 'Simulation
	Command 'Operating Mode'
	Command 'Virtual mode'
	Command 'Virtual system testing'

	Menu 'Debug'
	Command 'Start'
	Command 'Stop'
	Command 'Single Cycle'
	Command 'New Breakpoint'
	Command 'New Data Breakpoint'
	Command 'Edit Breakpoint'
	Command 'Enable Breakpoint'
	Command 'Disable Breakpoint'
	Command 'Toggle Breakpoint'
	Command 'Step Over'
	Command 'Step Into'
	Command 'Step Out'
	Command 'Run to Cursor'
	Command 'Set Next Statement'
	Command 'Show Next Statement'
	Command 'Force Values'
	Command 'Write Values'
	Command 'Unforce Values'
	Command 'Force All Values from <Device.Application>'
	Command 'Write All Values from <Device.Application>'
	Command 'Unforce All Values from <Device.Application>'
	Command 'Flow Control'
	Menu 'Core Dump'
	Command 'Load Core Dump'
	Command 'Create Core Dump'
	Command 'Close Core Dump'
	Command 'Load Device Log from Core Dump'

	Command 'Display Mode' - 'Binary', 'Decimal', 'Hexadecimal'

	Menu 'Tools'
	Command 'IP-Configuration'
	Command 'Install additional licence'
	Command 'Migrate third party devices'
	Command 'Package Manager'
	Command 'Library Repository'
	Command 'License Manager'
	Command ‘License Repository’
	Command 'Device Repository'
	Command 'Create Device list CSV'
	Command 'Multi Online Change'
	Command 'Device ECAD data'
	Command 'OPC UA Information Model Repository'
	Command 'Scripting' - 'Execute Script File'
	Command 'Scripting' - 'Enable Script Tracing'
	Command 'Scripting' - 'Scripts'
	Command 'Customize'
	Command 'Options'
	Command 'Import and Export Options'
	Command 'Device Reader'

	Menu 'Window'
	Command 'Next Editor'
	Command 'Previous Editor'
	Command 'Close All Editors'
	Command 'Close All Editors of Inactive Applications'
	Command 'Reset Window Layout'
	Command 'New Horizontal Tab Group'
	Command 'New Vertical Tab Group'
	Command 'Float'
	Command 'Dock'
	Command 'Auto Hide'
	Command 'Next Pane'
	Command 'Previous Pane'
	Command 'Toggle First Pane'
	Command 'Toggle Second Pane'
	Command 'Windows'
	Command 'Close All Editors But This'
	Command 'Select Object in Navigator'
	Command 'Select Parent Object in Navigator'
	Commands of the Submenu 'Window'

	Menu 'Help'
	Command 'Contents'
	Command 'Index'
	Command 'Find'
	Command 'About'

	Menu 'SFC'
	Command 'Init Step'
	Command 'Insert Step'
	Command 'Insert Step After'
	Command 'Insert Transition After'
	Command 'Insert Transition'
	Command 'Insert Step-Transition'
	Command 'Insert Step-Transition After'
	Command 'Add Entry Action'
	Command 'Add Exit Action'
	Command 'Parallel'
	Command 'Alternative'
	Command 'Insert Branch'
	Command 'Insert Branch Right'
	Command 'Insert Action Association'
	Command 'Insert Action Association After'
	Command 'Insert Jump'
	Command 'Insert Jump After'
	Command 'Insert Macro'
	Command 'Insert Macro After'
	Command 'Zoom Into Macro'
	Command 'Zoom Out of Macro'
	Command 'Paste After'
	Command 'Change Duplication' - 'Set'
	Command 'Change Duplication' - 'Remove'
	Command 'Do Not Display Embedded Objects'

	Menu 'CFC'
	Command 'Edit Worksheet'
	Command 'Edit Page Size’
	Command 'Negate'
	Command 'EN/ENO'
	Command 'None'
	Command 'R (Reset)'
	Command 'S (Set)'
	Command 'REF= (Reference Assignment)'
	Command 'Display Execution Order'
	Command 'Set Start of Feedback'
	Command 'Send to Front'
	Command 'Send to Back'
	Command 'Move Up'
	Command 'Move Down'
	Command 'Set Execution Order'
	Command 'Order by Data Flow'
	Command 'Order by Topology'
	Command 'Edit Parameters'
	Command 'Save Prepared Parameters to Project'
	Command 'Connect Selected Pins'
	Command 'Unlock Connection'
	Command 'Show Next Collision'
	Command 'Select Connected Pins'
	Command 'Reset Pins'
	Command 'Remove Unused Pins'
	Command 'Add Input Pin'
	Command 'Add Output Pin'
	Command 'Route All Connections'
	Command 'Remove Control Point'
	Command 'Create Control Point'
	Command 'Connection Mark'
	Command 'Create group'
	Command 'Ungroup'
	Command 'Prepare Box for Forcing'
	Command 'Force Function Block Input'
	Command 'Use Attributed Member as Input'

	Menu 'FBD/LD/IL'
	Command 'Insert Network'
	Command 'Insert Network (Below)'
	Command 'Toggle Network Comment State'
	Command 'Insert Assignment'
	Command 'Insert Box'
	Command 'Insert Box with EN/ENO'
	Command 'Insert Empty Box'
	Command 'Insert Empty Box with EN/ENO'
	Command 'Insert Box Parallel (Below)'
	Command 'Insert Jump'
	Command 'Insert Label'
	Command 'Insert Return'
	Command 'Insert Input'
	Command 'Insert Coil'
	Command 'Insert Set Coil'
	Command 'Insert Reset Coil'
	Command 'Insert Contact'
	Command 'Insert Contact (Right)'
	Command 'Insert Contact in Parallel (Below)'
	Command 'Insert Contact in Parallel (Above)'
	Command 'Toggle Parallel Mode'
	Command 'Insert Negated Contact'
	Command 'Insert Negated Contact Parallel (Below)'
	Command 'Paste Contacts: Paste Below'
	Command 'Paste Contacts: Paste Above'
	Command 'Paste Contacts: Paste Right (After)'
	Command 'Insert IL Line Below'
	Command 'Delete IL Line'
	Command 'Negation'
	Command 'Edge Detection'
	Command 'Set/Reset'
	Command 'Set Output Connection'
	Command 'Insert Branch'
	Command 'Insert Branch Above'
	Command 'Insert Branch Below'
	Command 'Set Branch Start Point'
	Command 'Set Branch End Point'
	Command 'Update Parameters'
	Command 'Remove Unused FB Call Parameters'
	Command 'Repair POU'
	Command 'View as Function Block Diagram'
	Command 'View as Ladder Logic'
	Command 'View as Instruction List'
	Command 'Go to'

	Menu 'Library'
	Command 'Add Library'
	Command 'Try to Reload Library'
	Command 'Properties'
	Command 'Placeholders'
	Command 'Export Library'

	Menu 'Image Pool'
	Command 'Insert Image'

	Menu 'Declarations'
	Command 'Insert'
	Command 'Edit Declaration Header'
	Command 'Move Down'
	Command 'Move Up'

	Menu 'Declarations' (Persistence)
	Command 'Reorder List and Clean Gaps'
	Command 'Save Current Values to Recipe'
	Command 'Restore Values from Recipe'
	Command 'Add all instance paths'

	Menu 'Device Communication', Gateway
	Command 'Add New Gateway'
	Command 'Configure the Local Gateway'

	Menu 'Recipes'
	Command 'Insert Variable'
	Command 'Add a New Recipe'
	Command 'Remove Recipe'
	Command ‘Load Recipe'
	Command 'Save Recipe'
	Command 'Read Recipe'
	Command 'Write Recipe'
	Command 'Load and Write Recipe'
	Command 'Read and Save Recipe'
	Command 'Remove Variables'
	Command 'Load Recipes from Device'
	Command 'Update Structured Variables'

	Menu 'Text List'
	Command 'Add Language'
	Command 'Create Global Text List'
	Command 'Export Everything as Text'
	Command 'Export All Unicode .txt Text List Files'
	Command 'Insert Text'
	Command 'Import/Export Text Lists'
	Command 'Remove Language'
	Command 'Rename Language'
	Command 'Remove Unused Text List Entries'
	Command 'Check Visualization Text IDs'
	Command 'Update Visualization Text IDs'
	Command 'Add Text List Support'
	Command 'Remove Text List Support'

	Menu 'Trace'
	Command 'Add Variable'
	Command 'AutoFit'
	Command 'Compress'
	Command 'Configuration'
	Command 'Cursor'
	Command 'Download Trace'
	Command 'Export Symbolic Trace Config'
	Command 'Load Trace'
	Command 'Mouse Zooming'
	Command 'Convert to Multi-Channel'
	Command 'Convert to Single-Channel'
	Command 'Online List'
	Command 'Reset Trigger'
	Command 'Reset View'
	Command 'Save Trace'
	Command 'Start Trace'
	Command 'Stop Trace'
	Command 'Stretch'
	Command 'Upload Trace'
	Command 'Statistics'

	Other
	Command 'Add Watch'
	Command 'Implement Interfaces'
	Command 'Limit Results to Current Declaration'

	1.4.1.20.4 Dialogs
	Dialog 'Import Assistant'
	Dialog 'Library Reference Conversion'
	Dialog 'Select Function Block'
	Dialog 'Device Conversion'
	Dialog 'Breakpoint Properties'
	Dialog 'Permissions'
	Dialog Box 'Prepare Value'
	Dialog 'New Breakpoint'
	Dialog 'Monitoring Range'
	Dialog 'Properties'
	Dialog Box 'Properties' - 'Common'
	Dialog 'Properties' - 'Boot Application'
	Dialog 'Properties' - 'Encryption'
	Dialog 'Properties' - 'Build'
	Dialog 'Properties' – 'Build' (C-integration)
	Dialog 'Properties' - 'Access Control'
	Dialog 'Properties' - 'External file'
	Dialog Box 'Properties' - 'Bitmap'
	Dialog 'Properties - Application Build Options'
	Dialog 'Properties' - 'Target memory settings'
	Dialog 'Properties' - 'Network Variables'
	Dialog 'Properties' - 'Network Settings'
	Dialog 'Properties' - 'CFC Execution Order'
	Dialog 'Properties' - 'SFC Settings'
	Dialog 'Properties' – 'Link to File'
	Dialog 'Properties' - 'Cam'
	Dialog 'Properties' - 'Image Pool'
	Dialog 'Properties' - 'TextList'
	Dialog 'Properties' - 'Options'
	Dialog 'Properties' - 'Monitoring'

	Dialog 'Project Settings'
	Dialog 'Project Settings' - 'SFC'
	Dialog 'Project Settings' - 'Users and Groups'
	Dialog Box 'Project Settings' - 'Compileoptions'
	Dialog Box 'Project Settings' - 'Compiler Warnings'
	Dialog 'Project Settings' – 'Source Download'
	Dialog 'Project Settings' - 'Page Setup'
	Dialog 'Project Settings' - 'Security'
	Dialog 'Project Settings' - 'Static Analysis Light'
	Dialog 'Project Settings' - 'Visualization'
	Dialog 'Project Settings' - 'Visualization Profile'

	Dialog 'Project Environment'
	Dialog 'Project Environment' – 'Library Versions'
	Dialog 'Project Environment' - 'Compiler Version'
	Dialog 'Project Environment' - 'Device Versions'
	Dialog 'Project Environment' – 'Visualization Profile'
	Dialog 'Project Environment' – 'Visualization Styles'
	Dialog 'Project Environment' – 'C Code Modules'
	Dialog 'Project Environment' – 'Visualization Symbols'

	Dialog 'Options'
	Dialog 'Options' - 'Automation Builder'
	Dialog 'Options' - 'C Compiler'
	Dialog 'Options' - 'CFC Editor'
	Dialog 'Options' – 'Declaration Editor'
	Dialog 'Options' – 'Device Description Download'
	Dialog 'Options' - 'Device Editor'
	Dialog 'Options' - 'Diagnosis'
	Dialog 'Options' - 'External tools'
	Dialog 'Options' - 'FBD, LD, and IL'
	Dialog 'Options' - 'Help'
	Dialog 'Options' - 'Help'
	Dialog 'Options' - 'IEC 60870-5-104'
	Dialog 'Options' – 'International Settings'
	Dialog 'Options' – 'Libraries'
	Dialog 'Options' – 'Library Download'
	Dialog 'Options' – 'Load and Save'
	Dialog 'Options' - 'Message View'
	Dialog 'Options' - 'Monitoring'
	Dialog 'Options' - 'PLCopenXML'
	Dialog 'Options' - 'Proxy Settings'
	Dialog 'Options' - 'Refactoring'
	Dialog 'Options' - 'SFC Editor'
	Dialog 'Options' - 'SmartCoding'
	Dialog 'Options' - 'Startup settings'
	Dialog 'Options' - 'Text Editor'

	Dialog 'Customize'
	Dialog 'Customize' - 'Menu'
	Dialog 'Customize' - 'Command Icons'
	Dialog 'Customize' - 'Toolbars'
	Dialog Box 'Customize' - 'Keyboard'

	Dialog 'Trace Configuration'
	Dialog 'Advanced Trace Settings'
	Dialog 'Trace Configuration'

	Dialog Box 'Trend storage'
	Dialog Box 'Advanced Trend Settings'
	Dialog 'Certificate Selection'

	1.4.2 Fieldbus Support
	1.4.2.1 Device Diagnosis
	1.4.2.2 Fieldbus Devices and I/O Drivers
	1.4.2.3 Bus Cycle Task
	1.4.2.4 EtherNet/IP Configurator
	1.4.2.4.1 EtherNet/IP Bus Cycle Task
	1.4.2.4.2 EtherNet/IP Scanner
	Tab 'EtherNet/IP Scanner - General'
	Tab 'EtherNet/IP Scanner NetX - General'
	Tab 'NetX Configuration'
	Tab 'EtherNet/IP Scanner - I/O Mapping'
	EtherNet/IP Remote Adapter
	Tab 'EtherNet/IP-Adapter - General'
	Tab 'EtherNet/IP Adapter - Connections'
	Dialog 'New Connection'
	Tab 'EtherNet/IP Adapter - Assemblies'
	Tab 'EtherNet/IP Adapter - User Parameters'
	Dialog 'Select Parameters'

	1.4.2.4.3 EtherNet/IP Local Adapter
	Tab 'EtherNet/IP-Adapter - General'
	Tab 'EtherNet/IP Adapter - Tags'
	EtherNet/IP Module
	Tab 'EtherNet/IP Module - General'

	1.4.2.4.4 Command 'EtherNet/IP - Scan Devices'

	1.4.3 OPC UA server for AC500 V3 products
	1.4.3.1 General
	1.4.3.2 Creating a project for OPC UA access
	1.4.3.3 Use node name
	1.4.3.4 Use UaExpert client
	1.4.3.5 Working with encryption
	1.4.3.5.1 Creating a certificate for the OPC UA server
	1.4.3.5.2 Encrypted connection with UaExpert client

	1.4.3.6 Changing variables via UaExpert client
	1.4.3.7 Configuring OPC UA client
	1.4.3.7.1 Operating modes
	1.4.3.7.2 Using OPC UA with subscription mode

	1.4.4 Libraries
	1.4.4.1 Guidelines for creating libraries

	1.4.5 CODESYS Visualization
	1.4.5.1 Preparing CODESYS and projects
	1.4.5.2 Limitation of the number of usable web pages on AC500 V3 PLCs
	1.4.5.3 Designing a visualization with elements
	1.4.5.3.1 Select Element
	1.4.5.3.2 Positioning the Element, Adapting Size and Layer
	1.4.5.3.3 Assigning a color
	1.4.5.3.4 Using texts
	1.4.5.3.5 How to display variable values in the visualization
	1.4.5.3.6 How to Change Variable Values via the Visualization
	1.4.5.3.7 Designing a background

	1.4.5.4 Configuring user inputs
	1.4.5.4.1 Configuring user inputs for visualization elements
	1.4.5.4.2 Configuring gesture recognition
	1.4.5.4.3 Configuring text input with the virtual keyboard
	1.4.5.4.4 Configuring Keyboard Shortcuts
	1.4.5.4.5 Capturing user input events

	1.4.5.5 Setting Up User Management
	1.4.5.5.1 Setting up user management for visualizations
	1.4.5.5.2 Configuring users and groups
	1.4.5.5.3 Editing and Selecting User Management Dialogs
	1.4.5.5.4 Configuring permissions for groups

	1.4.5.6 Setting Up Multiple Languages
	1.4.5.7 Visualizing alarm management
	1.4.5.8 Animating visualization elements
	1.4.5.8.1 Configuring rotations and offsets
	1.4.5.8.2 Animating a text display
	1.4.5.8.3 Animating a color display

	1.4.5.9 Displaying data arrays in tables
	1.4.5.9.1 Displaying Array Variables in Tables
	1.4.5.9.2 Configuring and Multiplying Visualization Elements as Templates

	1.4.5.10 Displaying data curve with trace
	1.4.5.10.1 Getting started with trace

	1.4.5.11 Displaying data curve with trend
	1.4.5.11.1 Getting Started with Trend Visualization
	1.4.5.11.2 Programming a Trend Visualization

	1.4.5.12 Displaying and Editing Text Files
	1.4.5.12.1 Configuring the Display of a Text File
	1.4.5.12.2 Configuring the Editing of a Text File

	1.4.5.13 Configuring a variable assignment with unit conversion
	1.4.5.14 Using recipes in visualization elements
	1.4.5.15 Creating a structured user interface
	1.4.5.15.1 Displaying Multiple Visualizations in One Visualization
	1.4.5.15.2 Calling a Visualization with an Interface
	1.4.5.15.3 Calling a dialog in a visualization
	1.4.5.15.4 Calling a Dialog with an Interface

	1.4.5.16 Configuring and executing display variants
	1.4.5.16.1 Executing as CODESYS WebVisu
	1.4.5.16.2 Executing as an Integrated Visualization
	1.4.5.16.3 Configure File Transfer Mode

	1.4.5.17 Applying Visualization Styles
	1.4.5.17.1 Editing visualization styles in the visualization style editor
	1.4.5.17.2 Managing visualization styles in repositories

	1.4.5.18 Reference, Programming
	1.4.5.18.1 Visualization Elements
	Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'
	Visualization Element 'Line'
	Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'
	Visualization Element 'Pie'
	Visualization Element 'Image'
	Visualization Element 'Frame'
	Visualization Element 'Label'
	Visualization Element 'Combo Box, Integer'
	Visualization Element 'Combo Box, Array'
	Visualization Element 'Tabs'
	Visualization Element 'Button'
	Visualization Element 'Group Box'
	Visualization Element 'Table'
	Visualization Element 'Text Field'
	Visualization Element 'Scroll Bar'
	Visualization Element 'Slider'
	Visualization Element 'Spin Box'
	Visualization Element 'Invisible Input'
	Visualization Element 'Progress Bar'
	Visualization Element 'Check Box'
	Visualization Element 'Radio Buttons'
	Visualization Element 'Alarm Table'
	Visualization Element 'Alarm Banner'
	Visualization Element 'Bar Display'
	Visualization Element 'Meter 90°'
	Visualization Element 'Meter 180°'
	Visualization Element 'Meter'
	Visualization Element 'Potentiometer'
	Visualization Element 'Histogram'
	Visualization Element 'Image Switcher'
	Visualization Element 'Lamp'
	Visualization Element 'Dip Switch', 'Power Switch', 'Push Switch', 'Push Switch LED', 'Rocker Switch'
	Visualization Element 'Rotary Switch'
	Visualization Element 'Trace'
	Visualization Element 'Trend'
	Visualization Element 'Legend'
	Visualization Element 'ActiveX'
	Visualization Element 'Web Browser'
	Visualization Element 'Busy Symbol, Cube'
	Visualization Element 'Busy Symbol, Flower'
	Visualization Element 'Text Editor'
	Visualization Element 'Path3D'
	Visualization Element 'Control Panel'
	Visualization Element 'Cartesian XY Chart'
	Visualization Element 'Date Range Picker'
	Visualization Element 'Time Range Picker'
	Visualization Element 'Date Picker'
	Visualization Element 'Analog Clock'
	Visualization Element 'Date/Time Picker'

	1.4.5.18.2 Placeholders with Format Definition in the Output Text
	1.4.5.18.3 Methods of the Dialog Manager
	1.4.5.18.4 Attribute 'VAR_IN_OUT_AS_POINTER'
	1.4.5.18.5 Attribute 'parameterstringof'

	1.4.5.19 Reference, user interface
	1.4.5.19.1 Keyboard Shortcuts for Default Keyboard Action
	1.4.5.19.2 Commands
	Command 'Interface Editor'
	Command 'Keyboard Configuration'
	Command 'Visualization Element List'
	Command 'Activate Keyboard Usage'
	Command 'Order'
	Command 'Alignment'
	Command 'Group'
	Command 'Ungroup'
	Command 'Frame Selection'
	Command 'Background'
	Command 'Multiply Visu Element'
	Command 'Configure Display Settings of Trend'
	Command 'Configure Trace'
	Command 'Export Trace Configuration'
	Command 'Insert Elements for Controlling Trace'
	Command 'Configure Display Settings of Trend'
	Command 'Edit Trend Recording'
	Command 'Insert Elements for Controlling the Trend'
	Command 'Visualization Element Repository'
	Command 'Visualization Style Repository'
	Command 'Add Visual Element'
	Command 'Select None'
	Command 'Add Elements for Alarm Acknowledgement'

	1.4.5.19.3 Dialog Boxes
	Dialog 'Access Rights'
	Dialog 'Add Visualization'
	Dialog 'Update Frame Parameters'
	Dialog 'Configure Categories and Items'
	Dialog 'Gradient Editor'
	Dialog 'Input Configuration'
	Dialog 'Options' - 'Visualization Styles'
	Dialog 'Options' - 'Visualization User Management'
	Dialog Box 'Options' - 'Visualization'
	Dialog 'Project Environment' - 'Visualization Profile'
	Dialog 'Project Environment' - 'Visualization Styles'
	Dialog 'Project Environment' – 'Visualization Symbols'
	Dialog 'Project Settings' - 'Visualization'
	Dialog ‘Project Settings’ - ‘Visualization Profile’
	Dialog 'Properties' of Visualization Objects
	Dialog 'Selected Alarm Class'
	Dialog 'Selected Alarm Group'
	Dialog 'Advanced Trace Settings'
	Dialog 'Display Settings'

	1.4.5.19.4 Objects
	Object 'Visualization' and visualization editor
	Visualization Editor
	View 'Visualization Toolbox'
	View 'Properties' of a visualization element

	Object 'Visualization manager'
	Tab 'Visualization Manager' - 'Default Hotkeys'
	Tab 'Visualization manager' – 'Visualizations'
	Tab 'Visualization manager' - 'User management'
	Tab 'Visualization Manager' - 'Font'
	Object 'TargetVisu'
	Object 'WebVisu'

	1.4.5.19.5 Visualization Elements
	Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'
	Visualization Element 'Line'
	Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'
	Visualization Element 'Pie'
	Visualization Element 'Image'
	Visualization Element 'Frame'
	Visualization Element 'Label'
	Visualization Element 'Combo Box, Array'
	Visualization Element 'Combo Box, Integer'
	Visualization Element 'Tabs'
	Visualization Element 'Button'
	Visualization Element 'Group Box'
	Visualization Element 'Table'
	Visualization Element 'Text Field'
	Visualization Element 'Scroll Bar'
	Visualization Element 'Slider'
	Visualization Element 'Spin Box'
	Visualization Element 'Invisible Input'
	Visualization Element 'Check Box'
	Visualization Element 'Progress Bar'
	Visualization Element 'Radio Buttons'
	Visualization Element 'Alarm Table'
	Visualization Element 'Alarm Banner'
	Visualization Element 'Bar Display'
	Visualization Element 'Meter 90°'
	Visualization Element 'Meter 180°'
	Visualization Element 'Meter'
	Visualization Element 'Potentiometer'
	Visualization Element 'Histogram'
	Visualization Element 'Image Switcher'
	Visualization Element 'Lamp'
	Visualization Element 'Dip Switch', 'Power Switch', 'Push Switch', 'Push Switch LED', 'Rocker Switch'
	Visualization Element 'Rotary Switch'
	Visualization Element 'Trace'
	Visualization Element 'Trend'
	Visualization Element 'Legend'
	Visualization Element 'ActiveX'
	Visualization Element 'Web Browser'
	Visualization Element 'Busy Symbol, Cube'
	Visualization Element 'Busy Symbol, Flower'
	Visualization Element 'Text Editor'
	Visualization Element 'Path3D'
	Visualization Element 'Control Panel'
	Visualization Element 'Date Range Picker'
	Visualization Element 'Time Range Picker'
	Visualization Element 'Date Picker'
	Visualization Element 'Analog Clock'
	Visualization Element 'Date/Time Picker'

	1.4.5.20 Reference, visualization style editor
	1.4.5.20.1 Dialog 'Create a New Visualization Style'
	1.4.5.20.2 Dialog 'Open Existing Style as a Copy'
	1.4.5.20.3 Editor 'Visualization Style Editor'

	1.4.5.21 Tutorial
	1.4.5.21.1 CODESYS visualization - first steps
	1.4.5.21.2 Show instance names
	1.4.5.21.3 Visualizing a Refrigerator Controller
	1.4.5.21.4 Displaying Array Data in a Histogram
	1.4.5.21.5 Displaying Array Variables in Tables
	1.4.5.21.6 Displaying Web Contents
	1.4.5.21.7 Using Client Animation

	1.5 Libraries and solutions
	1.5.1 Information on libraries
	1.5.2 Reference to CODESYS (V3)
	1.5.3 Library Manager functionality
	1.5.3.1 Search function
	1.5.3.2 View embedded documentation of all libraries
	1.5.3.3 Access version history
	1.5.3.4 Add user defined libraries
	1.5.3.5 Download missing libraries

	1.5.4 ACS/DCS drives libraries
	1.5.4.1 Introduction
	1.5.4.1.1 Scope of the document
	1.5.4.1.2 Safety instructions and preconditions to use drives library
	1.5.4.1.3 Comparison of V2 and V3 drives library
	1.5.4.1.4 Overview of the drives library for V3 PLC
	Modbus TCP
	ACS drives
	DCS drives

	Modbus RTU
	ACS drives
	DCS drives

	PROFINET
	ACS drives
	DCS drives

	EtherCAT
	ACS drives
	DCS drives

	CANopen
	ACS drives
	DCS drives

	CANopen with CAN CiA402 Profile for generic Drives
	General drives with CAN CiA402 interface

	1.5.4.1.5 Compatibility

	1.5.4.2 Overview of the library
	1.5.4.2.1 Installation
	1.5.4.2.2 Hardware and software requirement
	1.5.4.2.3 Description of the library
	Function blocks
	DrvScaling
	DrvControlACS
	DrvControlDCS
	DrvControlModbusACS
	DrvControlModbusDCS
	DrvModbusRead
	DrvModbusWrite
	DrvModbusTcp
	ABB drives classic profile
	ABB drives enhanced profile
	Diagnosis
	Drive parameter settings

	DrvModbusRtu
	ABB drives classic profile
	ABB drives enhanced profile
	Reconnection pause
	Diagnosis
	Drive parameter settings

	DrvModbusRtuBroadcast
	ABB drives classic profile
	ABB drives enhanced profile
	Diagnosis
	Drive parameter settings

	DrvModbusReadWrite23
	DrvControlModbusEng
	DrvControlCANCiA402
	DrvPNRead
	DrvPnWrite

	Function: DrvModPara32Bit
	Structure: DrvDataType
	Structure: DrvPdPrmDpv1DataType

	1.5.4.2.4 Limits for the data read and write between AC500 and drives

	1.5.5 BACnet-BC
	1.5.5.1 Introduction to BACnet
	1.5.5.2 AC500 and BACnet
	1.5.5.3 AC500 V3 as BACnet Building Controller (B-BC)
	1.5.5.3.1 Supported BACnet networks
	1.5.5.3.2 Supported objects and properties
	1.5.5.3.3 Supported BIBBs and services
	1.5.5.3.4 BACnet configuration in Automation Builder
	Configuration of BACnet server root object
	Adding BACnet server objects
	Adding BACnet client functionality
	Configuration of datalinks
	Time syncronisation

	1.5.5.3.5 Package content
	BACnet libraries
	Application examples

	1.5.6 CAA library guidelines
	1.5.7 Datalogging library
	1.5.7.1 Overview
	1.5.7.1.1 Operating modes
	1.5.7.1.2 Technical details
	1.5.7.1.3 File names
	1.5.7.1.4 Preconditions
	1.5.7.1.5 CSV file formats

	1.5.7.2 Examples

	1.5.8 High Availability Modbus TCP
	1.5.8.1 HA-Modbus TCP - System technology
	1.5.8.1.1 The AC500 High Availability system
	1.5.8.1.2 Hardware, requirements and options overview
	CPU choice, system size and performance indications
	Hardware connections
	Hardware Example

	1.5.8.1.3 Functionality
	Failures and use cases
	Use case descriptions

	1.5.8.1.4 How to get and install the AC500 High Availability system package
	1.5.8.1.5 System structure
	Programming
	Task configuration recommendations for HA system
	Field I/O network topologies
	Simple ring topology (smaller systems)
	Standard network topology (large systems)
	Parallel network topology (using PRP)
	HA Modbus system without communication interface modules in the network

	1.5.8.1.6 Getting started
	Quick start list and guidelines
	Configuration without communication interface modules to establish redundancy
	Configuration with communication interface modules and redundancy

	1.5.8.1.7 HA-Modbus TCP Limits
	1.5.8.1.8 Diagnosis
	Diagnosis in HA-Modbus TCP library
	Diagnosis in CI52x library

	1.5.8.1.9 Library overview

	1.5.9 Motion Solution Wizard
	1.5.9.1 Create new project
	1.5.9.2 Select PLC
	1.5.9.3 Select servo drive (motion axis)
	1.5.9.4 Configure servo drive (motion axis)
	1.5.9.5 Open Motion Solution Wizard editor page and generate application
	1.5.9.6 Check generated application
	1.5.9.7 Optional: Add and configure virtual axis for simulation without real axis

	1.5.10 Motion control library
	1.5.10.1 Preconditions for the use of the libraries
	1.5.10.2 Overview
	1.5.10.2.1 PLC-based motion control
	1.5.10.2.2 Overview of PLCopen function blocks
	1.5.10.2.3 Overview of libraries
	1.5.10.2.4 Overview of data types
	1.5.10.2.5 Naming of function blocks and data structures

	1.5.10.3 PLCopen
	1.5.10.3.1 Programming guidelines
	Axis data type Axis_Ref

	1.5.10.3.2 The single axis state diagram
	1.5.10.3.3 Visualizations
	1.5.10.3.4 Error codes
	1.5.10.3.5 Error handling
	1.5.10.3.6 PLCopen parameter
	1.5.10.3.7 Limits
	1.5.10.3.8 General restrictions
	1.5.10.3.9 Behavior of the function block inputs and outputs
	General rules
	Why is the command input edge sensitive?
	The input ContinuousUpdate

	1.5.10.3.10 Unit of length
	1.5.10.3.11 Aborting versus buffered modes
	1.5.10.3.12 PLCopen examples

	1.5.10.4 PLC-based motion control
	1.5.10.4.1 PLC-based motion control architecture
	Kernel function block

	1.5.10.4.2 Basic functionalities
	How to connect a drive
	How to enable and disable a drive
	How to use the axis simulation
	How to perform a homing
	How to Use a CAM curve
	How to use an external axis
	How to use an encoder/drive with <> 32-bit position overrun
	How to do position correction “on the fly”
	How to limit the movement

	1.5.10.4.3 Axis parameters
	Supervision
	Position control loop
	PLC cycle time
	Roll-Over axis
	Scaling of the unit of length
	Scaling of the speed reference output
	Access and modify parameters

	1.5.10.4.4 Programming guidelines
	1.5.10.4.5 Visualization
	1.5.10.4.6 ABB specific data structures
	PositionPositionProfile
	PositionTimeProfile
	Interpolation types for profiles

	1.5.10.4.7 PLC-based motion control -– Load control / fluid power extensions
	1.5.10.4.8 Appendix

	1.5.10.5 Examples

	1.5.11 MQTT client library
	1.5.11.1 Structures and enumerations
	1.5.11.2 Global variables

	1.5.12 PLCopen libraries
	1.5.12.1 Common function block state machine
	1.5.12.1.1 Edge triggered (AbbETrig)
	1.5.12.1.2 Level controlled (AbbLCon)
	Level controlled continous (AbbLConC)

	1.5.12.1.3 Error_ID
	1.5.12.1.4 Compatibility with V2 function blocks

	1.6 PLC integration (hardware)
	1.6.1 Product overview and comparison
	1.6.1.1 Comparison of AC500 V3 terminal bases
	1.6.1.2 Comparison of features and protocols
	1.6.1.3 Ethernet protocols and ports for AC500 V3 products
	1.6.1.3.1 Default open Ethernet ports of PM56xx-2ETH
	1.6.1.3.2 Overview of protocols, sockets and ports
	1.6.1.3.3 Limitation of connections per protocol
	1.6.1.3.4 Ethernet configuration
	Default Ethernet configuration

	1.6.1.3.5 Online access

	1.6.2 PLC introduction
	1.6.2.1 Safety instructions
	1.6.2.2 Cyber security
	1.6.2.2.1 Defense in depth
	1.6.2.2.2 Secure operation
	1.6.2.2.3 Hardening
	1.6.2.2.4 Open Ports and Services

	1.6.2.3 License and third party information
	1.6.2.4 Regulations
	1.6.2.5 Definitions: PLC system start-up
	1.6.2.6 Device lists
	1.6.2.6.1 Device list: Terminal bases
	1.6.2.6.2 Device list: Processor modules (CPUs)
	Processor modules for AC500-eCo
	Option boards for AC500-eCo V3 processor modules

	Processor modules for AC500 (Standard)

	1.6.2.6.3 Device list: Communication modules
	1.6.2.6.4 Device list: Terminal units
	1.6.2.6.5 Device list: S500-eCo I/O modules
	1.6.2.6.6 Device list: S500 I/O modules
	1.6.2.6.7 Device list: Communication interface modules
	1.6.2.6.8 Device list: Accessories

	1.6.2.7 PLC system description
	1.6.2.7.1 AC500 product family
	1.6.2.7.2 AC500/S500 system structure
	1.6.2.7.3 AC500/S500: Short description hardware
	1.6.2.7.4 Short description software
	1.6.2.7.5 CP600 control panels (HMI)

	1.6.2.8 AC500-S
	1.6.2.9 Converting an AC500 V2 project to an AC500 V3 project

	1.6.3 Device specifications
	1.6.3.1 Status LEDs, display and control elements
	1.6.3.2 Terminal bases (AC500 standard)
	1.6.3.2.1 TB56xx for AC500 V3 products
	Short description
	Connections
	I/O bus
	Power supply
	Serial interface COM1
	Ethernet interface
	CAN interface

	Technical data
	Ordering data

	1.6.3.3 Processor modules
	1.6.3.3.1 AC500-eCo
	PM50xx
	Short description
	Assortment
	Connections and interfaces
	Power supply
	State LEDs and operating elements
	Diagnosis
	Onboard I/Os
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the digital transistor outputs (PM50xx-T-ETH only)
	Connection of the digital relay outputs (PM50xx-R-ETH only)

	I/O configuration
	Parameterization
	Diagnosis
	Displays
	Technical data
	Technical data of the digital inputs
	Technical data of the fast counter inputs
	Technical data of the interrupt inputs
	Technical data of the Touch/Reset inputs
	Technical data of the digital transistor outputs
	Technical data of the digital relay outputs
	Technical data of the limit switch outputs
	Technical data of the PTO outputs
	Technical data of the PWM outputs

	Ordering data

	Technical data
	Ordering Data

	Option boards
	TA5101-4DI - Option board for digital I/O extension
	TA5105-4DOT - Option board for digital I/O extension
	TA5110-2DI2DOT - Option board for digital I/O extension
	TA5130-KNXPB - Option board KNX adress push button
	TA5131-RTC - Option board for real-time clock
	TA5141-RS232I - Option board for COMx serial communication
	TA5142-RS485I - Option board for COMx serial communication
	TA5142-RS485 - Option board for COMx serial communication

	1.6.3.3.2 AC500 (standard)
	PM56xx-2ETH for AC500 V3 products
	Short description
	Connections
	Storage elements
	LEDs, display and function keys on the front panel
	Technical data
	Ordering data

	1.6.3.4 Communication modules (AC500 standard)
	1.6.3.4.1 Overview
	Compatibility of communication modules and communication interface modules
	Technical data (Overview)

	1.6.3.4.2 Compatibility of communication modules and communication interface modules
	1.6.3.4.3 CANopen
	CM598-CN - CANopen master
	Purpose
	Connections
	Field bus interface

	State LEDs
	Technical data
	Ordering data

	1.6.3.4.4 EtherCAT
	CM579-ETHCAT - EtherCAT master
	Intended purpose
	Connections
	Field bus interfaces

	State LEDs
	Technical data
	Ordering data

	1.6.3.4.5 PROFINET
	CM579-PNIO - PROFINET IO RT controller
	Intended purpose
	Functionality
	Connections
	Field bus interfaces

	State LEDs
	Technical data
	Ordering data

	1.6.3.5 Terminal units (AC500 standard)
	1.6.3.5.1 TU507-ETH and TU508-ETH for Ethernet communication interface modules
	Technical data
	Ordering data

	1.6.3.5.2 TU515, TU516, TU541 and TU542 for I/O modules
	Technical data
	Ordering data

	1.6.3.5.3 TU517 and TU518 for communication interface modules
	Technical data
	Ordering data

	1.6.3.5.4 TU531 and TU532 for I/O modules
	Technical data
	Ordering data

	1.6.3.6 I/O modules
	1.6.3.6.1 Digital I/O modules
	S500-eCo
	DC561 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	I/O Configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Ordering data

	DC562 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Ordering data

	DI561 - Digital input module
	Intended purpose
	Functionality
	Connections
	I/O Configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs

	Ordering data

	DI562 - Digital input module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs

	Ordering data

	DI571 - Digital input module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs

	Ordering data

	DI572 - Digital input module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs

	Ordering data

	DO561 - Digital output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DO562 - Digital output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DO571 - Digital output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DO572 - Digital output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DO573 - Digital output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DX561 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the digital outputs

	Ordering data

	DX571 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the digital outputs

	Ordering data

	S500
	DC522 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O Configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Ordering data

	DC523 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Ordering data

	DC532 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Ordering data

	DI524 - Digital input module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the fast counter

	Ordering data

	DO524 - Digital output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DO526 - Digital output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DX522 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the relay outputs
	Technical data of the fast counter

	Ordering data

	DX531 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the relay outputs

	Ordering data

	Fast counter

	1.6.3.6.2 Analog I/O modules
	S500-eCo
	AI561 - Analog input module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Input channel (4x)

	Diagnosis
	State LEDs
	Measuring ranges
	Technical data
	Technical data of the analog inputs

	Ordering data

	AI562 - Analog input module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Input channel (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Resistance temperature detectors
	Resistances

	Technical data
	Technical data of the analog inputs

	Ordering data

	AI563 - Analog input module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Input channel (4x)

	Diagnosis
	State LEDs
	Measuring ranges
	Technical data
	Technical data of the analog inputs
	Accuracy of thermocouple ranges at 25 °C (with cold junction compensation)

	Ordering data

	AO561 - Analog output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Output channel (2x)

	Diagnosis
	State LEDs
	Output ranges
	Technical data
	Technical data of the analog outputs

	Ordering data

	AX561 - Analog input/output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Input channel (4x)
	Output channel (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Output ranges
	Technical data
	Technical data of the analog inputs
	Technical data of the analog outputs

	Ordering data

	S500
	AC522 - Analog input/output module
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage, current)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges of voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Ordering data

	AI523 - Analog input module
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges of voltage, current and digital input
	Input ranges resistance temperature detector

	Technical data
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs

	Ordering data

	AI531 - Analog input module
	Intended purpose
	Functionality
	Connections
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply and series-connection of an additional input
	Connection of passive-type analog sensors (Current)
	Connection of passive-type analog sensors (Current) and series-connection of an additional analog sensor
	Connection of digital signal sources at analog inputs
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of resistance thermometers in 4-wire configuration
	Connection of resistors in 2-wire configuration
	Connection of a resistance measuring bridge with internal supply
	Connection of a resistance measuring bridge with external supply
	Connection of thermocouples
	Internal compensation
	External compensation with temperature input
	External compensation with compensation box
	External compensation with flanking channel

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Voltage input ranges
	Bipolar voltage input range, measuring bridge
	Unipolar voltage input range, measuring bridge, digital input

	Current input ranges
	Resistance thermometer input ranges
	Resistor input range
	Thermocouple input ranges
	Temperature-internal reference point ranges

	Technical data
	Technical data of the analog inputs
	Technical data of the analog inputs if used as digital inputs

	Ordering data

	AO523 - Analog output module
	Intended purpose
	Functionality
	Connections
	Connection of analog output loads (Voltage, current)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Output ranges
	Output ranges voltage and current

	Technical data
	Technical data of the analog outputs

	Ordering data

	AX521 - Analog input/output module
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage, current)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges of voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Ordering Data

	AX522 - Analog input/output module
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage, current)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges of voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital Inputs
	Technical data of the analog outputs

	Ordering data

	1.6.3.6.3 Digital/Analog I/O modules
	S500
	DA501 - Digital/Analog input/output module
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the configurable digital inputs/outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)

	Internal data exchange
	I/O configuration
	Parameterization
	Group parameters for the digital part
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs
	Internal data exchange

	Ordering data

	DA502 - Digital/Analog input/output module
	Intended purpose
	Functionality
	Connections
	Connection of the digital outputs
	Connection of the configurable digital inputs/outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)

	Internal data exchange
	I/O configuration
	Parameterization
	Group parameters for the digital part
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Ordering data

	1.6.3.7 Communication interface modules (S500)
	1.6.3.7.1 Compatibility of communication modules and communication interface modules
	1.6.3.7.2 CANopen
	Comparison CI581 and CI582
	CI581-CN
	Intended purpose
	Functionality
	Connections
	Possibilities of connection
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs if used as digital inputs
	Technical data of the analog outputs
	Technical data of the fast counter

	Ordering data

	CI582-CN
	Intended purpose
	Functionality
	Connections
	Possibilities of connection
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of the configurable digital inputs/outputs

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the fast counter

	Ordering data

	1.6.3.7.3 EtherCAT
	CI511-ETHCAT
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage, current)
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Module parameter
	Group parameters of the cam switch
	Channel parameters for the cam switch (max. 32x)
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Ordering data

	CI512-ETHCAT
	Intended purpose
	Functionality
	Connections
	Assignment of the Ethernet ports
	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Module parameter
	Group parameters of the cam switch
	Channel parameters for the cam switch (max. 32x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Ordering data

	1.6.3.7.4 Modbus
	CI521-MODTCP
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis and state LEDs
	Structure of the diagnosis block
	State LEDs

	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs if used as digital inputs
	Technical data of the analog outputs
	Technical data of the fast counter

	Ordering data

	CI522-MODTCP
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of the configurable digital inputs/outputs
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the digital part

	Diagnosis
	State LEDs

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Ordering data

	1.6.3.7.5 PROFINET
	Comparison of the CI5xx-PNIO modules
	PROFINET IO devices CI50x-PNIO
	Characteristics of CI50x-PNIO
	Input/Output characteristics of CI501-PNIO
	Input/Output characteristics of CI502-PNIO
	Technical data of the serial interfaces of CI504-PNIO

	CI501-PNIO
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis and state LEDs
	Structure of the diagnosis block via PNIO_DEV_ALARM function block
	State LEDs

	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs
	Technical data of the fast counter

	Ordering data

	CI502-PNIO
	Intended purpose
	Functionality
	Connections
	Connection of the Digital inputs
	Connection of the Digital outputs
	Connection of the configurable digital inputs/outputs
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the digital part

	Diagnosis
	State LEDs

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Ordering data

	1.6.3.8 Accessories
	1.6.3.8.1 AC500-eCo
	MC5102 - Micro memory card with micro memory card adapter
	TA52xx(-x) - Terminal block sets
	TA5300-CVR - Option board slot cover
	TA5400-SIM - Input simulator

	1.6.3.8.2 AC500 (standard)
	MC502 - Memory card
	MC5102 - Micro memory card with micro memory card adapter
	MC5141 - Memory card
	TA521 - Battery
	TA524 - Dummy communication module
	TA526 - Wall mounting accessory

	1.6.3.8.3 S500
	TA523 - Pluggable label mounting
	TA525 - Plastic labels
	TA526 - Wall mounting accessory
	TA535 - Protective caps for XC devices

	1.6.4 System assembly, construction and connection
	1.6.4.1 Introduction
	1.6.4.2 Regulations
	1.6.4.3 Safety instructions
	1.6.4.4 Overall information (valid for complete AC500 product family)
	1.6.4.4.1 Serial I/O bus
	1.6.4.4.2 Mechanical encoding
	1.6.4.4.3 Earthing concept (Block diagrams)
	1.6.4.4.4 EMC-conforming assembly and construction
	General principles
	Cable routing
	Cable shields
	Switchgear cabinet
	Reference potential
	Equipotential bonding

	1.6.4.4.5 Power consumption of an entire station
	Calculation of the total current consumption
	Dimensioning of the fuses

	1.6.4.4.6 Decommissioning
	1.6.4.4.7 Recycling

	1.6.4.5 AC500-eCo
	1.6.4.5.1 System data AC500-eCo V3
	Environmental conditions
	Creepage distances and clearances
	Power supply units
	Electromagnetic compatibility
	Mechanical data
	Approvals and certifications

	1.6.4.5.2 Mechanical dimensions
	Switchgear cabinet assembly (indoor use)
	Mechanical dimensions AC500-eCo V3 option boards
	Mechanical dimensions AC500-eCo V3
	Mechanical dimensions S500-eCo

	1.6.4.5.3 Mounting and demounting
	Mounting and demounting of the AC500-eCo V3 CPUs
	Mounting a processor module on a DIN rail
	Demounting a processor module mounted on a DIN rail
	Mounting a processor module on a metal plate
	Demounting a processor module mounted on a metal plate
	Mounting of TA5301-CFA

	Mounting and demounting option boards
	Inserting the option board
	Removing the option board

	Mounting and demounting of S500-eCo I/O modules

	1.6.4.5.4 Connection and wiring
	Power supply
	Processor module interfaces
	Ethernet
	Ethernet interface

	Modbus RTU connection details

	1.6.4.5.5 Handling of accessories
	MC5102 - Micro memory card with micro memory card adapter
	TA52xx(-x) - Terminal block sets
	TA5300-CVR - Option board slot cover
	TA5400-SIM - Input simulator
	TA543 - Screw mounting accessory
	TA566 - Wall mounting accessory

	1.6.4.6 AC500 (Standard)
	1.6.4.6.1 System data AC500
	Environmental conditions
	Creepage distances and clearances
	Insulation test voltages, routine test
	Power supply units
	Electromagnetic compatibility
	Mechanical data
	Approvals and certifications

	1.6.4.6.2 Mechanical dimensions
	Switchgear cabinet assembly
	Mechanical dimensions AC500
	Mechanical dimensions S500

	1.6.4.6.3 Mounting and demounting
	Mounting/Demounting terminal bases and function module terminal bases
	Mounting/Demounting the terminal unit
	Mounting processor modules PM57x, PM58x, PM59x and PM56xx
	Mounting/Demounting the I/O modules
	Mounting/Demounting the communication modules
	Mounting/Demounting the accessories

	1.6.4.6.4 Connection and wiring
	Power supply
	Power supply for processor modules

	Terminals for power supply and the COM1 interface
	Terminals at the terminal unit
	Connection of wires at the spring terminals
	Terminals for CANopen/DeviceNet communication modules
	CANopen field bus
	Ethernet connection details
	Ethernet interface
	Wiring
	Cable types

	Modbus RTU connection details

	1.6.4.6.5 Handling of accessories
	MC502 - Memory card
	MC5102 - Micro memory card with micro memory card adapter
	MC5141 - Memory card
	TA521 - Battery
	TA526 - Wall mounting accessory
	TA524 - Dummy communication module
	CP-E - Economic range
	CP-C.1 - High performance range

	1.6.4.7 AC500-XC
	1.6.4.7.1 System data AC500-XC
	Environmental conditions
	Mechanical data
	Environmental tests

	1.6.4.8 AC500-S

	1.6.5 System technology for AC500 V3 products
	1.6.5.1 System technology of CPU and overall system
	1.6.5.1.1 Handling of remanent variables for AC500 V3 products
	Memory sizes
	Adding a global list of persistent/retain variables
	Declaring a new variable in global list
	Declaring a new persistent/retain variable in local POU
	Initialization of %M variables
	Behavior of retain variables
	PLC shell command for import and export of retain/persistent variables
	Import and export of retain/persistent variables by library functions
	SRAM_IMPORT
	SRAM_EXPORT
	SRAM_CLEARED

	1.6.5.1.2 System processing
	System start-up / Program processing
	Definitions: PLC system start-up
	Start of the user program
	Task configuration
	Watchdog handling in IEC tasks

	PLC utilization
	Managing priorities by selecting the appropriate communication schema
	The „Default“ priority schema in “SystemFW” 3.4.1
	The “Communication modules” priority schema in “SystemFW” 3.4.1
	The “Onboard Ethernet” priority schema in “SystemFW” 3.4.1
	The „Default“ priority schema in “SystemFW” 3.5.0
	The “Communication modules” priority schema in “SystemFW” 3.5.0
	The “Onboard Ethernet” priority schema in “SystemFW” 3.5.0

	Setting standard configuration

	1.6.5.1.3 User Management
	1.6.5.1.4 Real-time clock and battery
	Real-time clock
	AC500 battery
	AC500-eCo V3 data buffering

	1.6.5.1.5 AC500-eCo V3 processor module, LEDs, RUN/STOP switch on front panel
	State LEDs and operating elements

	1.6.5.1.6 LEDs, display and function keys on the front panel
	Overview
	Text outputs of the display
	Startup procedure of the PLC
	Startup procedure of a new PLC from factory
	Startup procedure of a PLC with system firmware

	Description of LEDs
	Description of the function keys
	Overview
	Start and stop PLC
	Configuration
	Configuration CPU firmware SystemFW V3.1.x and DisplayFW V3.0
	Configuration CPU firmware SystemFW >=V3.2.0 and DisplayFW >=V4.1

	Reading out values
	Reading out values CPU firmware SystemFW 3.1.x and DisplayFW 3.0
	Reading out values CPU firmware SystemFW >=V3.2.0 and DisplayFW >=V4.1

	Reading out diagnosis messages on the CPU

	Enable flashing of display
	Function blocks

	1.6.5.1.7 Onboard technologies
	Ethernet
	Ethernet protocols and ports for AC500-eCo V3 processor modules
	Default open Ethernet ports of PM50xx-x-xETH
	Overview of protocols, sockets and ports
	Limitation of connections per protocol

	Ethernet protocols and ports for AC500 V3 products
	Default open Ethernet ports of PM56xx-2ETH
	Overview of protocols, sockets and ports
	Limitation of connections per protocol
	Ethernet configuration
	Default Ethernet configuration

	Online access

	SNTP client and server
	Using network variables in AC500 V3

	Onboard CAN configuration

	1.6.5.1.8 Hot swap
	Preconditions for using hot swap
	Compatibility of hot swap
	Hot swap behavior

	1.6.5.1.9 KNX IP integration
	Introduction
	Engineering workflow
	Prerequisites
	General settings and system behavior
	Start-up behavior

	Engineering of KNX in Automation Builder
	Creation of KNX group objects
	Create an application program
	Export XML file

	Integration of the PLC in KNX
	Insert controller
	Import configuration
	Connect controller with KNX Devices
	Parameters of the device
	Download ETS configuration to controller

	Make changes
	Remarks
	KNX runtime license
	Data conversion

	1.6.5.1.10 Communication with Modbus RTU
	Protocol description
	Technical data
	Modbus addresses for AC500-eCo V3 processor modules PM50x2
	Modbus addresses for AC500 V3 processor modules PM56xx
	Modbus address table
	Peculiarities for accessing Modbus addresses
	Areas protect from read/write access by Modbus client

	Local data of the Modbus client
	Modbus telegrams
	FCT 1 or 2: Read n bits
	FCT 3 or 4: Read n words
	FCT 3 or 4: Read n double words
	FCT 5: Write 1 bit
	FCT 6: Write 1 word
	FCT 15: Write n bits
	FCT 16: Write n words
	FCT 16: Write n double words
	FCT 22: Mask write register
	FCT 23: Read/Write n words
	Exception response by server
	Example

	Processing bits
	Modbus client
	Modbus server
	Using the bit offset
	Defining symbolic names for the bit offsets
	Defining a data type
	Defining a complex data type
	Pack/unpack BOOL variables

	Function block ModRtuMast

	1.6.5.1.11 Communication with Modbus TCP/IP
	Protocol description
	Technical data
	Modbus addresses for AC500-eCo V3 processor modules PM50xx
	Modbus addresses for AC500 V3 processor modules PM56xx
	Modbus address table
	Peculiarities for accessing Modbus addresses
	Areas protect from read/write access by Modbus client

	Local data of the Modbus client
	Modbus telegrams
	Exception response by server
	General telegram description
	Example

	Processing bits
	Modbus client
	Modbus server
	Using the bit offset
	Defining symbolic names for the bit offsets
	Defining a data type
	Defining a complex data type
	Pack/unpack BOOL variables

	Function block ETHx_MOD_MAST and ModTcpMast

	1.6.5.1.12 Fast counters
	Fast counters in AC500 devices

	1.6.5.1.13 Onboard I/O on AC500-eCo V3 processor modules
	Onboard I/Os
	Intended purpose
	Functionality

	Fast counter in AC500-eCo V3 (Onboard I/O in PM50xx)

	1.6.5.1.14 Simple motion
	Introduction
	Hardware components for motion control
	Basic CPU – PM5012-R-ETH and PM5012-T-ETH
	Standard and Pro CPU - PM5032-x-ETH / PM5052-x-ETH / PM5072-T-2ETH

	System technology
	Use the onboard I/Os as encoder with A and B signals
	Parameter configuration
	Function block

	Use the onboard I/Os as forward counter
	Parameter configuration
	Function block

	Use the onboard I/Os as interrupt input with dedicated interrupt task
	Parameter configuration
	Function block

	Use the onboard I/Os as output limit switch
	Parameter configuration
	Function block

	Use the onboard I/Os as PTO (pulse-train output) with 100 kHz frequency (max. 2 PTO using PTO HW channels)
	Parameter configuration
	Function block

	Use the onboard I/Os as PTO (pulse-train output) with 200 kHz frequency (max. 2 PTO using PTO HW channels) and Simple Motion OBIOMotionPTO function block
	Parameter configuration
	Function block

	Use the onboard I/Os as PTO (pulse-train output) with 100 kHz frequency (Max. 4 PTO using PWM HW channels) and Simple Motion OBIOMotionPWM function bloc
	Parameter configuration
	Function block

	Use the onboard I/Os as output PWM (pulse-width modulation)
	Parameter configuration
	Function block

	Function block description
	AC500-eCo V3 option board slots for processor modules PM50xx
	Option board for COMx serial communication
	Option board for digital I/O extension
	Option board for specific function

	1.6.5.2 System technology of the AC500 communication modules
	1.6.5.2.1 CANopen communication modules
	Triggering of event tasks with CAN-IDs

	1.6.5.3 System technology of the communication interface modules
	1.6.5.3.1 Modbus communication interface module
	Overview
	Modbus TCP registers
	Register layout for CI52x-MODTCP
	Information data section (Acyclic data)
	Module specific information registers
	Common device information registers

	I/O / Process data and diagnosis section (Cyclic data)
	Module state
	Diagnosis data
	I/O data

	Parameter data (Acyclic data)
	Short description of the CI521-MODTCP parameters
	Short description of the CI522-MODTCP parameters
	Parameters of connected expansion modules

	Special functionality

	Behavior
	IP address assignment
	Using the address switches
	Using the IP configuration tool

	Parameterization
	Cyclic I/O data exchange
	Diagnosis behavior
	Single parameterization

	Commissioning example
	Hot swap
	Preconditions for using hot swap
	Compatibility of hot swap
	Hot swap behavior
	System behavior
	Mandatory rules for hot swapping

	1.6.5.3.2 PROFINET communication interface module
	Hot swap
	Preconditions for using hot swap
	Compatibility of hot swap
	Hot swap behavior
	System behavior
	Mandatory rules for hot swapping

	1.6.6 Configuration in Automation Builder for AC500 V3 products
	1.6.6.1 General settings
	1.6.6.1.1 Project handling
	Creating a new project
	Opening an existing project
	Exporting and importing a project
	Upgrading/ updating a project to a new Automation Builder version or profile
	I/O mapping export and import
	Comparing projects
	Creating a comparison view
	Opening the detailed compare view

	Project archive
	Creation of an archive
	Extraction of an archive

	1.6.6.1.2 User and access rights management
	User and access rights
	User management
	Access right management

	User management commands
	Project Settings - Users and groups
	Users dialog
	Groups dialog
	Settings dialog

	1.6.6.1.3 Later change-over of a target system
	Changing the processor module type
	Target change from a V2 processor module to a V3 processor module
	Target change from a V3 processor module to another V3 processor module

	Customer libraries

	1.6.6.1.4 Firmware identification and update
	Version information
	AC500 V3 firmware installation and update
	AC500-eCo V3 firmware installation and update
	Update CI52x-Modbus firmware
	Installation of the IP configuration tool
	Firmware update procedure
	Troubleshooting
	Erroneous firmware update
	Signature check failed
	Indeterminate device firmware version

	1.6.6.1.5 Migration of third party devices
	1.6.6.1.6 Advanced IO device handling
	Generating DUT
	Mapping to existing DUT
	Releasing DUT mapping
	Using DUT variables in CODESYS application
	Support for CI level node
	Configuration check

	1.6.6.2 PLC devices and components
	1.6.6.2.1 Device repository
	1.6.6.2.2 PLC start-up
	Initialization of AC500 V3 CPU
	PLC runtime licensing
	Activating a runtime license via license key
	Activation without internet connection
	Offline activation

	Activating a demo license
	Licensing via memory card
	Returning a license
	View license information

	Connection of devices
	Configuring devices
	Update of AC500 devices
	Comparing objects

	IP settings
	Configuration of the IP settings with the LED display
	Configuration of the IP settings with the IP configuration tool
	Stand-alone installation
	Using the tool functions
	Network scan
	Changing the IP address
	Firmware update
	Blink functionality

	Trouble-shooting for IP configuration tool
	Trouble-shooting for firmware update

	Configuration of communication via Ethernet (TCP/IP)
	Enter a known PLC IP address
	Enter PLC IP address by scanning devices
	Enter PLC IP address by [Advanced Settings...]

	1.6.6.2.3 Processor modules
	Configure a processor module in the device tree
	Changing the processor module type
	Target change from a V2 processor module to a V3 processor module
	Target change from a V3 processor module to another V3 processor module

	Changing the processor module type for AC500-eCo V3 CPU
	Parameters of the processor module
	Automated reboot after E2 error
	PLC behaviour after voltage dip
	Floating point values

	1.6.6.2.4 AC500-eCo V3 onboard I/Os
	1.6.6.2.5 Configure the onboard I/O channel
	1.6.6.2.6 Mapping of the I/O channels
	Onboard I/O variable mapping
	Handle the digital input variables
	Handle the digital output variables

	1.6.6.2.7 Configuration of the onboard I/Os of AC500-eCo V3 PLC
	Digital inputs from the onboard I/Os
	Fast counters in the onboard I/Os
	A/B Encoder in the onboard I/Os
	Configuration of interrupt inputs
	Creating an interrupt task
	Configuration of digital outputs
	Configuration of outputs as limit switch
	Operating the limit switch output with user program
	Configuration of PWM outputs (Pulse Width Modulation)
	Operating the PWM output with user program
	Configuration of PTO outputs (HW fast outputs for Pulse Train Output)
	Operating the PTO hardware output with user program
	Configuration of SW PTO (PWM) outputs (HW fast outputs and standard outputs with software dedicated function block)
	Operating the software PTO output channels with user program

	1.6.6.2.8 Option board for processor modules PM50xx
	Select the option board
	Attach an option board for digital I/O extension
	Attach an option board for COMx serial communication

	1.6.6.2.9 Onboard Ethernet configuration
	Configuration of the IP settings with the IP configuration tool
	Stand-alone installation
	Using the tool functions
	Network scan
	Changing the IP address
	Firmware update
	Blink functionality

	Trouble-shooting for IP configuration tool
	Trouble-shooting for firmware update

	Switch functionality of Ethernet interfaces ETH1/ETH2

	1.6.6.2.10 Onboard CAN configuration
	1.6.6.2.11 Communication modules
	CANopen
	CM598-CAN - CANopen master communication module
	Configuration of the communication module
	Configuration of the protocols CAN 2.0 A / CAN 2.0 B
	Configuration of the CANopen master

	PROFINET
	CM579-PNIO - PROFINET IO controller
	For Automation Builder < 2.2.0
	For Automation Builder >= 2.2.0
	PROFINET IO
	CM579-PNIO – PROFINET IO communication module
	Configuration of the communication module
	Configuration of the PROFINET IO controller
	PROFINET IO controller - Configuration
	PROFINET IO controller - Parameters
	PROFINET IO controller - I/O mapping

	Configuration of PROFINET IO devices
	PROFINET IO device - Configuration
	PROFINET IO device – Timing parameters
	PROFINET IO device – PNIO parameters
	Configuration of 3rd party PROFINET IO devices

	I/O mapping of the PROFINET IO devices

	CM589-PNIO PROFINET IO device communication module
	CM589-PNIO - PROFINET IO slave

	EtherCAT
	CM579-ETHCAT - EtherCAT I/O master
	EtherCAT-Master - ABB functionality for sync units

	EtherCAT diagnosis (V2 PLC and V3 PLC)

	PROFIBUS
	Parameterization of the CM592-DP/CM582-DP communication modules
	CM592-DP PROFIBUS DP master communication module
	Configuration of a PROFIBUS DP master
	Configuration of a PROFIBUS DP slave

	CM582-DP PROFIBUS DP slave communication module
	Configuration of PROFIBUS DP slave
	Configuration of I/O data objects
	Mapping of the I/Os

	1.6.6.2.12 Communication interface modules
	Configuration of communication interface modules
	CI521-MODTCP/CI522-MODTCP
	Unbundled CI52x-MODTCP configuration

	1.6.6.2.13 I/O bus and I/O modules
	Hot swap configuration
	Parameter configuration

	Parameterization of the I/O bus
	Parameter 'Ignore module'
	I/O bus - Bus cycle task
	Insertion of S500 I/O devices
	Configuring the input and output modules and channels
	Symbolic names for variables, inputs and outputs
	I/O mapping list
	Configuring I/O mapping list
	Editing I/O mapping list
	Toolbar

	Fast counter
	Configuration for S500 I/O modules
	Operands
	Operating modes

	Configuration for onboard I/Os
	Counting modes

	Control of the fast counter

	1.6.6.2.14 Serial interface
	Configuring Modbus RTU on serial interface
	Parameters

	Configuring CAA SerialCom on serial interface
	Activate particular configuration parameters

	Setting up a serial interface
	Configuration
	Comparison to V2

	1.6.6.2.15 Gateway configuration
	Gateway settings on windows server 2012

	1.6.6.2.16 CAN onboard
	CANopen
	CANopen manager (master)
	Tab 'CANopen Manager - General'

	CANopen remote device (Slave)
	Tab 'CANopen Remote Device - General'
	Tab 'CANopen Device - PDOs'
	Tab 'CANopen Remote Device - SDOs'
	CANopen module

	J1939
	Bus Cycle Task
	J1939 manager
	Tab 'J1939 Manager - General'

	J1939 ECU
	Tab 'J1939 ECU - General'
	Tab 'J1939 ECU - TX Signals'
	Tab 'J1939 ECU - P2P RX Signals'

	Command 'Scan for Devices'
	Tab 'CANbus - General'

	1.6.6.2.17 EtherCAT configurator
	EtherCAT master
	Tab 'EtherCAT Master - General'
	Tab 'EtherCAT Master - Sync Unit Assignment'
	Tab 'EtherCAT Master - Parameters'

	EtherCAT slave
	Tab 'EtherCAT Slave - General'
	Tab 'EtherCAT Slave - FMMU/Sync'
	Tab 'EtherCAT Slave - Expert Mode Process Data'
	Tab 'EtherCAT Slave - Process Data'
	Tab 'EtherCAT Slave - Startup Parameters'
	Tab 'EtherCAT Slave - Parameters'
	Tab 'EtherCAT Slave - EoE Settings'

	EtherCAT module
	Tab 'EtherCAT Module - Startup Parameters'

	Bus Cycle Task - EtherCAT

	1.6.6.2.18 PROFINET IO Configurator
	PROFINET IO controller
	Controller – General
	PROFINET IO Controller - Bus Cycle Task
	PROFINET IO device
	Device – General

	PROFINET IO - Module
	Module – General

	PROFINET IO - Field Device
	Field Device – General
	Field Device NetX – General

	1.6.6.3 Protocols and special servers
	1.6.6.3.1 IEC60870-5-104 (Telecontrol)
	General information IEC60870
	Introduction
	Data flow control
	Data integrity
	Data transmission
	Send blocks
	Send via request pin
	Change-driven send of data
	Cyclic send
	Receive blocks

	Configuration
	Configuration changes >= Automation Builder 1.1/CBP 2.4
	Control station and substation configuration
	Tab link layer
	Network settings
	Tab application layer
	Settings
	General inquiry
	Counter interrogation

	Tab information objects
	Format of common addr and info obj addr

	Import options of information objects
	IEC60870-5-104 Multiple connections
	Structures of connections
	Minimal structure
	Minimal redundancy structure
	Network redundancy
	Network redundancy with 2 separate networks
	Network redundancy with 1 network and 2 Ethernet ports in substation
	Network redundancy with 1 network and 1 Ethernet port in substation
	Network redundancy with 2 Ethernet ports in substation

	Full control station redundancy
	Multiple control stations on the same network
	Multiple control stations on different networks
	Double connection
	Faulty configuration

	Export a CSV file

	Import/Export functionality
	Validity check of configuration

	IEC60870 compatibility list

	1.6.6.3.2 IEC 61850 Server
	IEC 61850 Server
	Quickstart
	Editor of the IEC 61850 Server
	IEC 61850 Editor
	Configuration
	Configuration
	Creation of the IEC 61850 Server
	Properties
	Status bar

	DataSet
	Report
	GOOSE Publisher
	GOOSE Subscriber
	Information

	Reading and Writing from CODESYS Variables
	Menu Command sorted by Categories
	IEC61850
	Generate code
	Export Server
	Import Server
	Options
	Reset

	Logical Name Classes (LNC)
	IEC 61850 Functionalities

	1.6.6.3.3 Modbus protocol
	Modbus on TCP/IP protocol
	Configuration of Modbus TCP/IP server
	Configuration of Modbus TCP/IP client

	Modbus on RTU protocol

	1.6.6.3.4 NTP/SNTP protocol
	Introduction of the NTP/SNTP protocol
	Configuration of the (S)NTP protocol
	(S)NTP client configuration
	(S)NTP server configuration

	1.6.6.3.5 FTP server
	Configuration of FTP server

	1.6.6.3.6 MQTT client protocol
	System technology
	Examples

	1.6.6.3.7 AC500 V3 secure protocols
	Introduction
	Certificate handling
	Configuring secure protocols
	Encrypted communication between Automation Builder and the PLC
	Secure web server
	Secure FTP
	OPC UA secure

	1.6.6.3.8 KNX configurator
	ETS5 Software - 'DCA' Plug-In
	Tab 'KNX - General'
	Tab 'I/O Mapping'
	ETS5 - Tab 'Parameter'

	1.6.6.3.9 BACnet-BC
	Introduction to BACnet
	AC500 and BACnet
	AC500 V3 as BACnet Building Controller (B-BC)
	Supported BACnet networks
	Supported objects and properties
	Supported BIBBs and services
	BACnet configuration in Automation Builder
	Configuration of BACnet server root object
	Adding BACnet server objects
	Adding BACnet client functionality
	Configuration of datalinks
	Time syncronisation

	Package content
	BACnet libraries
	Application examples

	1.6.6.3.10 OPC UA

	1.6.6.4 Data transfer and programming
	1.6.6.4.1 Source download/upload
	1.6.6.4.2 Programming and testing
	1.6.6.4.3 Configuration of communication via Ethernet (TCP/IP)
	Enter a known PLC IP address
	Enter PLC IP address by scanning devices
	Enter PLC IP address by [Advanced Settings...]

	1.6.6.4.4 PLC shell commands
	1.6.6.4.5 Watchlists
	1.6.6.4.6 Reference to libraries
	1.6.6.4.7 Reference to application libraries
	1.6.6.4.8 Programming in C code

	1.6.6.5 Server installation
	1.6.6.5.1 OPC server for AC500 V3 products
	Introduction
	Architecture of the CODESYS OPC server
	Essential documents
	Work flow
	Consideration and preparation
	Commission OPC server
	Adjustment to target OPC client

	Hints
	Default folder and contents
	Windows 7, Windows Server 2008/2016 (64-bit)
	Windows 7 (32-bit), Windows Server 2008/2016 (32-bit)
	Windows Server 2008/2016 (32-bit)

	Installation of OPC server
	Installing with Automation Builder
	Manual registration and unregistration
	Register OPC server V3 as a system service

	OPC clients for tests

	Symbol file
	Define symbols

	Configure OPC server
	Configure OPC Server V3
	Check OPC function with AC500
	Check OPC server V3
	Check processes with windows task manager

	Configure AlarmEvents
	Check AlarmEvents

	Configure user account for OPC server
	OPC server V3 on Windows Server 2003/ 2008/ 2012/ 2016

	Potential issues
	Session isolation

	Examples
	Test OPC function without AC500
	AC500 project
	Configure OPC server V3
	Check OPC server with MatrikonOPCExplorer
	Check processes with windows task manager
	Summary

	1.6.6.5.2 OPC UA server for AC500 V3 products
	General
	Creating a project for OPC UA access
	Use node name
	Use UaExpert client
	Working with encryption
	Creating a certificate for the OPC UA server
	Encrypted connection with UaExpert client

	Changing variables via UaExpert client
	Configuring OPC UA client
	Operating modes
	Using OPC UA with subscription mode

	1.6.6.5.3 Web server

	1.6.6.6 Converting an AC500 V2 project to an AC500 V3 project

	1.6.7 Storage devices for AC500 V3 products
	1.6.7.1 Introduction of AC500 storage devices for AC500 Products
	1.6.7.1.1 Overview
	1.6.7.1.2 Functionalities
	1.6.7.1.3 Memory sizes
	1.6.7.1.4 Storage device details
	SRAM
	Memory card
	Flash disk

	1.6.7.2 Memory card in AC500 V3
	1.6.7.2.1 Firmware and/or application update with memory card
	Preparation of memory card
	Execution of update via memory card
	Description of LEDs

	1.6.7.2.2 Content of the memory card for firmware/application update
	Memory card file content: Firmware version V3.x
	Command file SDCARD.INI for AC500 V3 Products
	Example: SDCARD.INI as of CPU firmware V3.x

	1.6.7.3 Flash memory for AC500 V3 products
	1.6.7.4 Health monitoring

	1.7 Diagnosis and debugging for AC500 V3 products
	1.7.1 The diagnosis system
	1.7.1.1 Access to diagnosis data
	1.7.1.2 Diagnosis in CPU display
	1.7.1.2.1 Device state
	1.7.1.2.2 Diagnosis descriptions
	1.7.1.2.3 Reading out diagnosis messages on the CPU

	1.7.1.3 Diagnosis in Automation Builder
	1.7.1.3.1 Device state
	1.7.1.3.2 Diagnosis descriptions
	1.7.1.3.3 System diagnosis
	1.7.1.3.4 Device diagnosis
	1.7.1.3.5 Diagnosis history

	1.7.1.4 Diagnosis in IEC application
	1.7.1.4.1 Data types in library AC500_DiagTypes
	Structure DIAG_VAL_TYPE
	Structure DIAG_TXT_TYPE
	Enumeration ERROR_ID
	Enumeration teClass
	Enumeration teEvent
	Enumeration teHwId

	1.7.1.4.2 System diagnosis
	Device state
	Method NumTotal
	Method NumClass

	Diagnosis descriptions
	Method Ack / DiagAck: acknowledgement
	Methods Get... / DiagGet...: get and sort diagnosis messages
	Method Get-xxx-Val / DiagGet-xxx-Val: numeric values
	Method Get-xxx-ValExt / DiagGet-xxx-ValExt: numeric values and extended numeric values
	Method Get-xxx-ValAndTxt / DiagGet-xxx-ValAndTxt: numeric values and text
	Method Get-xxx-ValAndTxtExt / DiagGet-xxx-ValAndTxtExt: numeric values, extended numeric values and text
	Function DiagValToTxt

	1.7.1.4.3 Device diagnosis
	Activate device diagnosis
	Device state
	Diagnosis descriptions
	Method Ack / DiagAck: acknowledgement
	Methods Get... / DiagGet...: get and sort diagnosis messages
	Method Get-xxx-Val / DiagGet-xxx-Val: numeric values
	Method Get-xxx-ValExt / DiagGet-xxx-ValExt: numeric values and extended numeric values
	Method Get-xxx-ValAndTxt / DiagGet-xxx-ValAndTxt: numeric values and text
	Method Get-xxx-ValAndTxtExt / DiagGet-xxx-ValAndTxtExt: numeric values, extended numeric values and text
	Function DiagValToTxt

	1.7.1.5 Structure of error numbers
	1.7.1.5.1 Error severity

	1.7.1.6 Diagnosis history file

	1.7.2 Online diagnosis in Automation Builder
	1.7.2.1 Short description and overview
	1.7.2.2 Entering/leaving the online mode
	1.7.2.3 Project tree in online mode
	1.7.2.4 CPU diagnosis views
	1.7.2.4.1 Version information
	1.7.2.4.2 Statistics
	1.7.2.4.3 Log
	1.7.2.4.4 PLC shell commands
	1.7.2.4.5 Status
	1.7.2.4.6 Device diagnosis

	1.7.2.5 Live values in views with I/O components
	1.7.2.6 Communication module and fieldbus diagnosis
	1.7.2.6.1 Fieldbus commissioning
	Master/controller modules
	PROFINET scan and comparison view

	Slave/device communication modules

	1.7.2.6.2 CI52x Modbus diagnosis

	1.7.3 Diagnosis messages
	1.7.3.1 CPU diagnosis
	1.7.3.2 I/O bus diagnosis
	1.7.3.3 S500 I/O modules diagnosis
	1.7.3.4 Communication modules diagnosis
	1.7.3.4.1 CM579-ETHCAT
	1.7.3.4.2 CM592-DP PROFIBUS DP master diagnosis
	1.7.3.4.3 CM582-DP PROFIBUS DP slave diagnosis
	1.7.3.4.4 AC500-S: errors from safety CPU and safety I/O modules
	1.7.3.4.5 CM579-PNIO – PROFINET I/O controller diagnosis
	Manual interpretation of CM579-PNIO diagnosis

	1.8 Engineering interfaces and tools
	1.8.1 Export and import interfaces
	1.8.1.1 Exporting and importing ECAD data (PBF)
	1.8.1.1.1 Requirements on EPLAN electric P8
	1.8.1.1.2 Importing PLC data from the ECAD tool
	1.8.1.1.3 Importing third party devices
	1.8.1.1.4 Exporting PLC data to ECAD tool
	1.8.1.1.5 Exporting third party devices
	1.8.1.1.6 Importing ECAD PLC data to existing AB project
	1.8.1.1.7 Arrange or map devices imported to the device pool
	1.8.1.1.8 Limitations

	1.8.1.2 Exporting and importing I/O mapping (CSV)
	1.8.1.2.1 Exporting IO mapping data to CSV
	1.8.1.2.2 Importing I/O mapping data from CSV

	1.8.1.3 Exporting and importing device list (CSV)
	1.8.1.3.1 Exporting device list to CSV
	1.8.1.3.2 Creating CSV device list
	1.8.1.3.3 Importing a device list from CSV
	1.8.1.3.4 Renaming devices

	1.8.2 CODESYS Security Agent
	1.8.2.1 Integration in CODESYS Development System
	1.8.2.2 Encrypted Communication with Devices via Controller Certificates
	1.8.2.3 Encryption of the Boot Application, Download, and Online Change
	1.8.2.4 Reference, User Interface
	1.8.2.4.1 View 'Security Screen' - 'Devices'
	1.8.2.4.2 Dialog 'Encryption Wizard'

	1.8.3 CODESYS Static Analysis
	1.8.3.1 Configuring and Running Static Analysis
	1.8.3.2 Reference, User Interface
	1.8.3.2.1 Commands
	Command 'Settings'
	Command 'Run Static Analysis'
	Command 'View Standard-Metrics'
	Command 'Extract function'
	Command 'Detect clones'

	1.8.3.2.2 Dialogs
	Dialog 'Static Analysis Settings' - 'Settings'
	Dialog 'Static Analysis Settings' - 'Rules'
	Dialog 'Static Analysis Settings' - 'Naming Conventions'
	Dialog 'Static Analysis Settings' - 'Metrics'
	Dialog 'Static Analysis Settings' - 'Forbidden Symbols'

	1.8.3.3 Reference, Programming
	1.8.3.3.1 Pragmas and Attributes
	Pragma 'analysis'
	Attribute 'analysis'
	Attribute 'naming'
	Attribute 'nameprefix'
	Attribute 'analysis:report-multiple-instance-calls'

	1.8.3.3.2 Rules
	SA0001: Unreachable code
	SA0002: Empty objects
	SA0003: Empty statements
	SA0004: Multiple write access on output
	SA0006: Write access from several tasks
	SA0007: Address operator on constants
	SA0008: Check subrange types
	SA0009: Unused return values
	SA0010: Arrays with only one component
	SA0011: Useless declarations
	SA0012: Variable which could be declared as constants
	SA0013: Declarations with the same variable name
	SA0014: Assignment of instances
	SA0015: Access to global data via FB_Init
	SA0016: Gaps in structures
	SA0017: Non-regular assignments
	SA0018: Unusual bit access
	SA0020: Possibly assignment of truncated value to REAL variable
	SA0021: Transporting the address of a temporary variable
	SA0022: (Possibly) unassigned return value
	SA0023: Complex return values
	SA0024: Untyped literals / constants
	SA0025: Unqualified enumeration constants
	SA0026: Possible truncated strings
	SA0027: Multiple uses of identifiers
	SA0028: Overlapping memory areas
	SA0029: Notation in code different to declaration
	Unused Objects
	SA0031: Unused signatures
	SA0032: Unused enumeration constants
	SA0033: Unused variables
	SA0035: Unused input variables
	SA0036: Unused output variables

	SA0034: Enumerations with incorrect assignment
	SA0037: Write access to input variable
	SA0038: Read access to output variable
	SA0040: Possible division by zero
	SA0041: Detect possible loop invariant code
	SA0042: Usage of different access paths
	SA0043: Use of a global variable in only one POU
	SA0044: Declarations with reference to interface
	Conversions
	SA0019: Implicit pointer conversions
	SA0130: Implicit expanding conversions
	SA0131: Implicit narrowing conversions
	SA0132: Implicit signed/unsigned conversions
	SA0133: Explicit narrowing conversions
	SA0134: Explicit signed/unsigned conversions

	Use of Direct Addresses
	SA0005: Invalid addresses and data types
	SA0047: Accesses to direct address
	SA0048: AT-declarations on direct addresses

	Rules for Operators
	SA0051: Comparison operations on BOOL variables
	SA0052: Unusual shift operation
	SA0053: Too big bitwise shift
	SA0054: Comparisons of REAL/LREAL for equality / inequality
	SA0055: Unnecessary comparisons of unsigned operands
	SA0056: Constant out of valid range
	SA0057: Possible loss of decimal places
	SA0058: Operations on enumeration variables
	SA0059: Comparison operations always returning TRUE or FALSE
	SA0060: Zero used as invalid operand
	SA0061: Unusual operation on pointer
	SA0062: Uses of TRUE or FALSE in expressions
	SA0063: Possibly not 16-bit-compatible operations
	SA0064: Addition of pointer
	SA0065: Incorrect pointer addition to base size
	SA0066: Uses of temporary results

	Rules for Statements
	SA0072: Invalid uses of counter variable
	SA0073: Uses of inadequate counter variable
	SA0080: Loop index variable for array index exeeds array range
	SA0081: Upper border is not a constant
	SA0075: Missing ELSE
	SA0076: Missing enumeration constant
	SA0077: Type mismatches with CASE expression
	SA0078: Missing CASE branches
	SA0090: Return statement before end of function

	SA0095: Assignments in conditions
	SA0100: Variables greater than <n> bytes...
	SA0101: Names with invalid length
	SA0102: Access to program/fb variables from the outside
	SA0103: Concurrent access on not atomic data
	SA0105: Multiple instance calls
	SA0106: Virtual method calls in FB_INIT
	SA0107: Missing formal parameters
	Checking Strict IEC Rules
	SA0111: Pointer variables
	SA0112: Reference variables
	SA0113: Variables with data type WSTRING
	SA0114: Variables with data type LTIME
	SA0115: Variables with data type UNION
	SA0117: Variables with data type BIT
	SA0119:Object-oriented features
	SA0120: Program calls
	SA0121: Missing VAR_EXTERNAL declarations
	SA0122: Array index defined as expression
	SA0123: Usages of INI, ADR or BITADR
	SA0147: Unusual shift operation - strict
	SA0148: Unusual bit access - strict
	SA0118: Initialisations not using constants
	SA0124: Pointer dereferences in declarations
	SA0125: References in initializations

	SA0140: Statements commented out
	Possible Use of Uninitialized Variables
	SA0039: Possible null-pointer deferences
	SA0046: Possible use of not initialised interface
	SA0145: Possible use of not initialised reference

	SA0150: Violations of lower or upper limits or the metrics
	SA0160: Recursive calls
	SA0161: Unpacked structure in packed structure
	SA0162: Missing comments
	SA0163: Nested comments
	SA0164: Multiline comments
	SA0165: Tasks calling other POUs than programs
	SA0166: Max. number of input/output/in-out variables...
	SA0167: Temporary function block instances
	SA0168: Unnecessary Assignments
	SA0169: Ignored outputs

	1.8.4 Drive composer pro integration
	1.8.5 Professional Version Control
	1.8.5.1 Getting Started
	1.8.5.2 Version control
	1.8.5.3 Using an SVN Repository
	1.8.5.4 Using Working Copies
	1.8.5.5 Reference, User Interface
	1.8.5.5.1 Overlay Icons
	1.8.5.5.2 Commands
	Command 'SVN Repository Browser'
	Command 'Edit SVN working copy'
	Command 'Import project to SVN'
	Command 'Checkout'
	Command 'Commit', Command 'Commit Project'
	Command 'Compare'
	Command 'Compare with HEAD revision'
	Command 'Compare with revision'
	Command 'Compare to remote project...'
	Command 'Include externals to project', Command 'Include externals'
	Command 'Ignore on commit'
	Command 'SVN Info'
	Command 'Show properties'
	Command 'Get lock'
	Command 'Steal locks'
	Command 'Release lock'
	Command 'Release locks recursively'
	Command 'Show log', Command 'Show project log'
	Command 'Revert', Command 'Revert project'
	Command 'Revert to revision', Command 'Revert project to revision'
	Command 'Update', Command 'Update project'
	Command 'Update to revision'
	Command 'Update only this'
	Command 'Disconnect project from SVN'
	Command 'Switch'
	Command 'Un-Ignore on commit'
	Command 'SVN Cleanup'
	Command 'Clear authentication data'
	Command 'Merge changes'
	Command 'Connect to existing project'
	Command 'Resolve conflict'
	Command 'Work in offline mode'
	Command 'Copy (Branch/Tag)'
	Command 'Pending Changes'

	1.8.5.5.3 Dialogs
	Dialog 'Options' - 'SVN Settings'
	Dialog 'Project Settings' - 'SVN Settings'
	Dialog 'Select revision'
	Dialog 'Subversion Authentication'
	Dialog 'Automatic locking failed'

	1.8.5.5.4 Objects
	Object 'SVN_VERSION_INFO'

	1.8.6 Subversion
	1.8.6.1 Project Version Control with Subversion
	1.8.6.1.1 Preconditions
	1.8.6.1.2 Working with Project Version Control
	1.8.6.1.3 Recommendations on Working with Project Version Control
	1.8.6.1.4 Known Issues and Troubleshooting

	1.8.6.2 SVN Support Examples
	1.8.6.2.1 Importing Automation Builder Project to SVN Repository
	1.8.6.2.2 Logging in User2
	1.8.6.2.3 Examples

	1.8.7 Python
	1.8.7.1 Python script support
	1.8.7.2 Working with script objects
	1.8.7.3 Python script editor

	1.9 Human machine interface
	1.9.1 Panel Builder interface
	1.9.1.1 Adding desired AC500 PLC to the project
	1.9.1.2 Creating a Panel Builder project
	1.9.1.3 Configuring Panel Builder

	1.9.2 SCADA Integration
	1.9.2.1 Creating Workspace and Project
	1.9.2.2 Loading existing Workspace and Project
	1.9.2.3 Checking the Gateway Settings in a Zenon Project
	1.9.2.4 Generating a Symbol File
	1.9.2.5 Updating Standard Data Types
	1.9.2.6 Creating Data Types
	1.9.2.7 Importing Data Types in zenon Editor

	1.10 Reference, function blocks
	1.11 Contact ABB

	2 Index

